JP7293574B2 - Planar light source and manufacturing method thereof - Google Patents

Planar light source and manufacturing method thereof Download PDF

Info

Publication number
JP7293574B2
JP7293574B2 JP2021071507A JP2021071507A JP7293574B2 JP 7293574 B2 JP7293574 B2 JP 7293574B2 JP 2021071507 A JP2021071507 A JP 2021071507A JP 2021071507 A JP2021071507 A JP 2021071507A JP 7293574 B2 JP7293574 B2 JP 7293574B2
Authority
JP
Japan
Prior art keywords
hole
wiring
light source
layer
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021071507A
Other languages
Japanese (ja)
Other versions
JP2022022972A (en
Inventor
保紀 四宮
啓 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to KR1020227020489A priority Critical patent/KR20230019404A/en
Priority to PCT/JP2021/020792 priority patent/WO2021246389A1/en
Priority to EP21177298.3A priority patent/EP3920247A1/en
Priority to US17/337,030 priority patent/US11506937B2/en
Priority to CN202110618600.4A priority patent/CN113759598A/en
Priority to CN202121264230.0U priority patent/CN216210339U/en
Priority to TW110120281A priority patent/TW202205700A/en
Publication of JP2022022972A publication Critical patent/JP2022022972A/en
Priority to US17/964,503 priority patent/US12124131B2/en
Priority to JP2023087808A priority patent/JP7503739B2/en
Application granted granted Critical
Publication of JP7293574B2 publication Critical patent/JP7293574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Description

実施形態は、面状光源及びその製造方法に関する。 TECHNICAL FIELD Embodiments relate to a planar light source and a manufacturing method thereof.

配線基板と、配線基板の上に配置された光源と、配線基板上に配置され、光源の周囲を囲んだ導光部材と、を備える面状光源は、例えば液晶ディスプレイのバックライトに広く利用されている。 A planar light source, which includes a wiring board, a light source arranged on the wiring board, and a light guide member arranged on the wiring board and surrounding the light source, is widely used, for example, as a backlight for a liquid crystal display. ing.

配線基板に関しては、絶縁層と、絶縁層の下に設けられ、光源における2つの電極に対応する2つの配線層と、を有する構成が知られている。このような配線基板における各配線層と各配線層に対応する電極と電気的に接続する構造として、絶縁層に2つの貫通穴を設け、各貫通穴内に導電部材を配置し、各導電部材を対応する電極及び対応する配線層に接続した構造が知られている。 As for the wiring board, there is known a configuration having an insulating layer and two wiring layers provided under the insulating layer and corresponding to two electrodes in the light source. As a structure for electrically connecting each wiring layer and an electrode corresponding to each wiring layer in such a wiring board, two through holes are provided in an insulating layer, and a conductive member is arranged in each through hole. Structures connected to corresponding electrodes and corresponding wiring layers are known.

特開2015-192095号公報JP 2015-192095 A

本実施形態は、配線基板における配線層と光源の電極との電気的な接続構造において、接続不良の発生を抑制できる面状光源及びその製造方法を提供することを目的とする。 An object of the present embodiment is to provide a planar light source capable of suppressing the occurrence of poor connection in an electrical connection structure between a wiring layer on a wiring substrate and an electrode of the light source, and a method of manufacturing the same.

実施形態に係る面状光源は、互いに離隔した第1貫通穴及び第2貫通穴が設けられた絶縁層と、前記絶縁層の下に配置され、前記第1貫通穴及び前記第2貫通穴から離隔した第1配線層及び第2配線層と、を有する配線基板と、前記配線基板上に配置され、互いに離隔した第1電極及び第2電極を有する光源と、前記配線基板上に配置され、前記光源の周囲を囲んだ導光部材と、前記第1貫通穴内を充填し、前記第1電極に電気的に接続された第1部分と、前記絶縁層の下に配置され、前記第1部分に連なり、前記第1配線層に接した第2部分と、を有する第1配線部材と、前記第2貫通穴内を充填し、前記第2電極に電気的に接続された第3部分と、前記絶縁層の下に配置され、前記第3部分に連なり、前記第2配線層に接した第4部分と、を有する第2配線部材と、を備え、上面視において前記第1配線層と前記第2配線層が前記第1貫通穴及び前記第2貫通穴を挟むように配置されている。 A planar light source according to an embodiment includes an insulating layer provided with a first through hole and a second through hole separated from each other; a wiring board having a first wiring layer and a second wiring layer separated from each other; a light source arranged on the wiring board and having a first electrode and a second electrode separated from each other; arranged on the wiring board; a light guide member surrounding the light source; a first portion filling the first through hole and electrically connected to the first electrode; and the first portion disposed under the insulating layer. a first wiring member having a second portion connected to the first wiring layer and in contact with the first wiring layer; a third portion filling the second through hole and electrically connected to the second electrode; a second wiring member disposed under the insulating layer, connected to the third portion, and having a fourth portion in contact with the second wiring layer; Two wiring layers are arranged so as to sandwich the first through hole and the second through hole.

実施形態に係る面状光源は、互いに離隔した第1貫通穴及び第2貫通穴が設けられた絶縁層と、前記絶縁層の下に配置され、前記第1貫通穴及び前記第2貫通穴から離隔した第1配線層及び第2配線層と、前記第1貫通穴及び前記第2貫通穴が露出するように、前記絶縁層の下面において前記第1貫通穴及び前記第2貫通穴の周囲を被覆し、前記第1配線層及び前記第2配線層の一部を露出する被覆層と、を有する配線基板と、前記配線基板上に配置され、互いに離隔した第1電極及び第2電極を有する光源と、前記配線基板上に配置され、前記光源の周囲を囲んだ導光部材と、前記第1貫通穴内を充填し、前記第1電極に電気的に接続された第1部分と、前記第1部分に連なり、前記被覆層の下面を経由して、前記第1配線層において前記被覆層から露出した部分に接した第2部分と、を有する第1配線部材と、前記第2貫通穴内を充填し、前記第2電極に電気的に接続された第3部分と、前記第3部分に連なり、前記被覆層の下面を経由して、前記第2配線層において前記被覆層から露出した部分に接した第4部分と、を有する第2配線部材と、を備える。 A planar light source according to an embodiment includes an insulating layer provided with a first through hole and a second through hole separated from each other; In the lower surface of the insulating layer, the periphery of the first through hole and the second through hole is formed so that the separated first wiring layer and second wiring layer, and the first through hole and the second through hole are exposed. a wiring board covering and exposing a part of the first wiring layer and the second wiring layer; and a first electrode and a second electrode arranged on the wiring board and separated from each other. a light source, a light guide member disposed on the wiring board and surrounding the light source, a first portion filling the first through hole and electrically connected to the first electrode, a second wiring member connected to one part and in contact with a portion of the first wiring layer exposed from the covering layer via a lower surface of the covering layer; a third portion filled and electrically connected to the second electrode; and a second wiring member having a contacting fourth portion.

実施形態に係る面状光源の製造方法は、互いに離隔した第1貫通穴及び第2貫通穴が設けられた絶縁層と、前記絶縁層の下に配置され、前記第1貫通穴及び前記第2貫通穴から離隔した第1配線層及び第2配線層と、を有し、上面視において前記第1配線層と前記第2配線層が前記第1貫通穴及び前記第2貫通穴を挟むように配置された配線基板を、準備する工程と、前記配線基板の上に、導光部材及び光源を配置する工程と、前記第1貫通穴内を充填し、前記絶縁層の下に配置され、前記第1配線層に接し、前記光源の第1電極に電気的に接続された第1配線部材と、前記第1配線部材から離隔し、前記第2貫通穴内を充填し、前記絶縁層の下に配置され、前記第2配線層に接し、前記光源の第2電極に電気的に接続された第2配線部材と、を形成する工程と、を備える。 A method for manufacturing a planar light source according to an embodiment includes an insulating layer provided with a first through hole and a second through hole separated from each other; a first wiring layer and a second wiring layer separated from the through-hole, and the first wiring layer and the second wiring layer sandwich the first through-hole and the second through-hole when viewed from above. arranging a light guide member and a light source on the wiring substrate; filling the first through hole, arranged under the insulating layer, a first wiring member in contact with one wiring layer and electrically connected to the first electrode of the light source; forming a second wiring member in contact with the second wiring layer and electrically connected to the second electrode of the light source.

本実施形態によれば、配線基板における配線層と光源における電極との電気的な接続構造において、接続不良の発生を抑制できる面状光源及びその製造方法を提供できる。 According to this embodiment, it is possible to provide a planar light source capable of suppressing the occurrence of poor connection in the electrical connection structure between the wiring layer of the wiring board and the electrode of the light source, and a method of manufacturing the same.

第1の実施形態に係る面状光源を示す模式的な上面図である。1 is a schematic top view showing a planar light source according to a first embodiment; FIG. 面状光源において一つの発光領域及びその周囲を拡大して示す模式的な上面図である。FIG. 4 is a schematic top view showing an enlarged view of one light emitting region and its surroundings in the planar light source; 図2のIII-III線における模式的な断面図である。FIG. 3 is a schematic cross-sectional view taken along line III-III of FIG. 2; 配線基板の一部を拡大して示す模式的な上面図である。FIG. 3 is a schematic top view showing an enlarged part of the wiring board; 配線基板の一部を拡大して示す模式的な下面図である。It is a typical bottom view which expands and shows a part of wiring board. 図3における光源を拡大して示す模式的な断面図である。4 is a schematic cross-sectional view showing an enlarged light source in FIG. 3; FIG. 図3における光源を拡大して示す模式的な上面図である。4 is a schematic top view showing an enlarged light source in FIG. 3; FIG. 配線基板の一部、シート積層体の一部、及び光源を拡大して示す模式的な上面図である。FIG. 3 is a schematic top view showing an enlarged view of part of the wiring board, part of the sheet laminate, and a light source; 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な下面図である。It is a typical bottom view which shows the manufacturing method of a planar light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 配線基板の中央部及び配線基板の端部を拡大して示す模式的な下面図である。FIG. 4 is a schematic bottom view showing an enlarged central portion of the wiring board and end portions of the wiring board; 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な下面図である。It is a typical bottom view which shows the manufacturing method of a planar light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 第1配線部材、第2配線部材、及び被覆層の形状の他の例を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the shapes of the first wiring member, the second wiring member, and the covering layer; 第1配線部材、第2配線部材、及び被覆層の形状の他の例を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the shapes of the first wiring member, the second wiring member, and the covering layer; 第2の実施形態に係る面状光源の一部を拡大して示す模式的な断面図である。It is a typical sectional view showing an enlarged part of a planar light source according to a second embodiment. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 第3の実施形態に係る面状光源の配線基板の一部、シート積層体の一部、及び光源を拡大して示す模式的な上面図である。FIG. 11 is a schematic top view showing an enlarged view of part of a wiring board, part of a sheet laminate, and a light source of a planar light source according to a third embodiment; 第4の実施形態に係る面状光源を示す模式的な断面図である。It is a typical sectional view showing a planar light source concerning a 4th embodiment. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 第5の実施形態に係る面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source concerning a 5th embodiment. 第6の実施形態に係る面状光源を示す模式的な断面図である。It is a typical sectional view showing a planar light source concerning a 6th embodiment. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 第7の実施形態に係る面状光源における光源及び配線基板の一部を拡大して示す模式的な下面図である。FIG. 21 is a schematic bottom view showing an enlarged part of a light source and a wiring board in a planar light source according to a seventh embodiment; 図30のXXXI-XXXI線における模式的な断面図である。FIG. 31 is a schematic cross-sectional view taken along line XXXI-XXXI of FIG. 30; 光源及び配線基板の他の例を示す模式的な下面図である。It is a typical bottom view showing other examples of a light source and a wiring board. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 面状光源の製造方法を示す模式的な断面図である。It is a typical sectional view showing a manufacturing method of a plane light source. 第8の実施形態に係る面状光源における配線基板の一部を拡大して示す模式的な下面図である。FIG. 21 is a schematic bottom view showing an enlarged part of a wiring board in a planar light source according to an eighth embodiment; 第9の実施形態に係る面状光源を示す模式的な上面図である。FIG. 21 is a schematic top view showing a planar light source according to a ninth embodiment; 第9の実施形態における発光モジュールにおいて、図34の破線XXXVで囲まれた領域を拡大して示す模式的な上面図である。FIG. 35 is a schematic top view showing an enlarged area surrounded by broken line XXXV in FIG. 34 in the light-emitting module according to the ninth embodiment; 図35のXXXVI-XXXVI線における模式的な断面図である。FIG. 36 is a schematic cross-sectional view taken along line XXXVI-XXXVI of FIG. 35; 第9の実施形態における発光モジュールにおいて、図34のXXXVで囲まれた領域を拡大し、配線パターンを透過して示す模式的な上面図である。FIG. 35 is a schematic top view showing an enlarged area surrounded by XXXV in FIG. 34 and showing the wiring pattern in the light-emitting module according to the ninth embodiment. 図34の破線XXXVIIIで囲まれた部分を拡大して示す模式的な下面図である。35 is a schematic bottom view showing an enlarged portion surrounded by broken line XXXVIII in FIG. 34; FIG. 第9の実施形態における配線基板において図38の破線XXXIXで囲まれた部分を拡大して示す模式的な下面図である。FIG. 39 is a schematic bottom view showing an enlarged portion surrounded by broken line XXXIX in FIG. 38 in the wiring board according to the ninth embodiment; 第9の実施形態における配線基板及び発光モジュールにおいて図38の破線XXXIXで囲まれた部分を拡大して示す模式的な下面図である。FIG. 39 is a schematic bottom view showing an enlarged portion surrounded by broken line XXXIX in FIG. 38 in the wiring board and the light emitting module according to the ninth embodiment; 図40のXLI-XLI線における模式的な断面図である。FIG. 41 is a schematic cross-sectional view along the XLI-XLI line in FIG. 40; 配線基板の他の例を示す模式的な下面図である。FIG. 4 is a schematic bottom view showing another example of a wiring board; 変形例における配線基板の一部を拡大して示す模式的な下面図である。It is a typical bottom view which expands and shows some wiring boards in a modification.

<第1の実施形態>
先ず、第1の実施形態について説明する。
図1は、本実施形態に係る面状光源を示す模式的な上面図である。
図2は、面状光源において一つの発光領域及びその周囲を拡大して示す模式的な上面図である。
図3は、図2のIII-III線における模式的な断面図である。
本実施形態に係る面状光源100は、図3に示すように、配線基板110と、配線基板110の上に配置された光源120と、配線基板110の上に配置され、光源120の周囲を囲んだ導光部材130と、を備える。以下、面状光源100の各部について詳述する。
<First Embodiment>
First, the first embodiment will be described.
FIG. 1 is a schematic top view showing a planar light source according to this embodiment.
FIG. 2 is a schematic top view showing an enlarged view of one light emitting region and its surroundings in the planar light source.
FIG. 3 is a schematic cross-sectional view taken along line III--III in FIG.
As shown in FIG. 3, the planar light source 100 according to the present embodiment includes a wiring board 110, a light source 120 arranged on the wiring board 110, and a light source 120 arranged on the wiring board 110. and a surrounding light guide member 130 . Each part of the planar light source 100 will be described in detail below.

なお、以下の説明では、XYZ直交座標系を用いる。配線基板110から光源120に向かう方向を「Z方向」とする。Z方向と直交する一の方向を「X方向」とし、X方向及びZ方向と直交する一の方向を「Y方向」とする。また、「Z方向」を「上方向」ともいい、その反対方向を「下方向」ともいうが、これらの表現は便宜的なものであり、重力方向とは無関係である。また、上側から対象部材を、肉眼で直接見ること、又は、適宜透過させて見ることを「上面視」という。また、下側から対象部材を、肉眼で直接見ること、又は、適宜透過させて見ることを「下面視」という。 Note that the XYZ orthogonal coordinate system is used in the following description. A direction from the wiring board 110 toward the light source 120 is defined as a "Z direction". One direction orthogonal to the Z direction is defined as the "X direction", and one direction orthogonal to the X direction and the Z direction is defined as the "Y direction". Also, the "Z direction" is also called the "upward direction", and the opposite direction is also called the "downward direction", but these expressions are for convenience and have nothing to do with the direction of gravity. In addition, viewing the object member directly with the naked eye from above, or viewing the target member through appropriate transmission is referred to as “top view”. In addition, viewing the target member directly with the naked eye from below or viewing through appropriate transmission is referred to as “bottom view”.

また、本実施形態では、導光部材130には、図1に示すように、X方向及びY方向に複数の光源配置部131が設けられている。そして各光源120は、各光源配置部131内に配置されている。ただし、配列する光源の数は、1以上であれば特に限定されない。また、導光部材130には、区画溝132が設けられており、上面視において各光源120の発光領域Rを区画している。以下においては、主に上面視で一つの発光領域R内に位置する部分について説明するが、上面視で他の発光領域R内に位置する部分についても、特に言及がない限り、同様に構成できる。 In addition, in the present embodiment, the light guide member 130 is provided with a plurality of light source arrangement portions 131 in the X direction and the Y direction, as shown in FIG. Each light source 120 is arranged in each light source arrangement portion 131 . However, the number of light sources to be arranged is not particularly limited as long as it is one or more. In addition, the light guide member 130 is provided with partition grooves 132 that partition the light emitting regions R of the light sources 120 when viewed from above. In the following, a portion positioned within one light emitting region R when viewed from the top will be mainly described, but portions positioned within another light emitting region R when viewed from the top can be configured in the same manner unless otherwise specified. .

配線基板110は、図3に示すように、ベース層111と、ベース層111の上に配置された第1被覆層112と、ベース層111の下に配置され、1つの光源120に対応する第1配線層113及び第2配線層114と、ベース層111の下に設けられた第2被覆層115と、を有する。 As shown in FIG. 3 , the wiring board 110 includes a base layer 111 , a first covering layer 112 arranged on the base layer 111 , and a first covering layer 112 arranged below the base layer 111 corresponding to one light source 120 . It has a first wiring layer 113 , a second wiring layer 114 , and a second covering layer 115 provided under the base layer 111 .

ベース層111は、絶縁材料からなる。ベース層111を構成する絶縁材料としては、例えば、エポキシ、シリコーン、液晶ポリマー、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、又はポリエチレンナフタレート(PEN)等の樹脂材料が挙げられる。 The base layer 111 is made of an insulating material. Examples of the insulating material forming the base layer 111 include resin materials such as epoxy, silicone, liquid crystal polymer, polyimide (PI), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN).

第1被覆層112は、絶縁材料からなる。第1被覆層112を構成する絶縁材料としては、例えば、エポキシ、シリコーン、液晶ポリマー、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、又はポリエチレンナフタレート(PEN)等の樹脂材料が挙げられる。 The first covering layer 112 is made of an insulating material. Examples of the insulating material forming the first coating layer 112 include resin materials such as epoxy, silicone, liquid crystal polymer, polyimide (PI), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN).

本明細書では、配線基板において、第1配線層及び第2配線層よりも上方に位置する絶縁性の層を「絶縁層」という。したがって、本実施形態では、ベース層111及び第1被覆層112が「絶縁層116」に相当する。ただし、絶縁層の構成は、上記に限定されない。例えば、配線基板においてベース層と第1被覆層との間には、絶縁性の接着層が配置されていてもよい。この場合、ベース層、第1被覆層、及び接着層が絶縁層に相当する。また、例えば、ベース層の上には第1被覆層が設けられていなくてもよい。この場合、ベース層のみが絶縁層に相当する。また、第1配線層及び第2配線層は、第2被覆層の下に配置されてもよい。この場合、第1被覆層、ベース層、及び第2被覆層が絶縁層に相当する。第1被覆層とベース層との間、及び、ベース層と第2被覆層の間に絶縁性の接着層が配置されていてもよい。 In this specification, an insulating layer positioned above the first wiring layer and the second wiring layer in the wiring board is referred to as an "insulating layer". Therefore, in this embodiment, the base layer 111 and the first covering layer 112 correspond to the "insulating layer 116". However, the configuration of the insulating layer is not limited to the above. For example, an insulating adhesive layer may be arranged between the base layer and the first covering layer in the wiring board. In this case, the base layer, the first covering layer, and the adhesive layer correspond to the insulating layer. Also, for example, the first covering layer may not be provided on the base layer. In this case, only the base layer corresponds to the insulating layer. Also, the first wiring layer and the second wiring layer may be arranged under the second covering layer. In this case, the first covering layer, the base layer, and the second covering layer correspond to the insulating layer. An insulating adhesive layer may be arranged between the first covering layer and the base layer and between the base layer and the second covering layer.

絶縁層116には、互いに離隔した第1貫通穴116a及び第2貫通穴116bが設けられている。各貫通穴116a、116bは、絶縁層116をZ方向(上下方向)に貫通している。各貫通穴116a、116bの内面は、例えばZ方向に概ね平行である。 The insulating layer 116 is provided with a first through hole 116a and a second through hole 116b that are separated from each other. Each through hole 116a, 116b penetrates the insulating layer 116 in the Z direction (vertical direction). The inner surface of each through-hole 116a, 116b is substantially parallel to the Z direction, for example.

図4Aは、配線基板の一部を拡大して示す模式的な上面図である。
図4Bは、配線基板の一部を拡大して示す模式的な下面図である。
図4Aに示すように、上面視における各貫通穴116a、116bの形状は、円形である。ただし、上面視における各貫通穴の形状は、上記に限定されず、例えば、四角形等の多角形、角部が丸められた多角形、又は楕円形等の円形以外の形状であってもよい。第1貫通穴116a及び第2貫通穴116bは、X方向に配列されている。ただし、第1貫通穴及び第2貫通穴はY方向に配列されていてもよいし、X方向及びY方向に対して交差する方向に配列されていてもよい。
FIG. 4A is a schematic top view showing an enlarged part of the wiring board.
FIG. 4B is a schematic bottom view showing an enlarged portion of the wiring board.
As shown in FIG. 4A, each through-hole 116a, 116b has a circular shape when viewed from above. However, the shape of each through-hole when viewed from above is not limited to the above, and may be, for example, a polygon such as a square, a polygon with rounded corners, or a shape other than a circle such as an ellipse. The first through holes 116a and the second through holes 116b are arranged in the X direction. However, the first through holes and the second through holes may be arranged in the Y direction, or may be arranged in a direction crossing the X direction and the Y direction.

第1配線層113及び第2配線層114のそれぞれは、銅(Cu)等の金属材料からなる。第1配線層113及び第2配線層114は、互いに離隔している。第1配線層113及び第2配線層114のそれぞれは、第1貫通穴116a及び第2貫通穴116bから離隔している。 Each of the first wiring layer 113 and the second wiring layer 114 is made of a metal material such as copper (Cu). The first wiring layer 113 and the second wiring layer 114 are separated from each other. Each of the first wiring layer 113 and the second wiring layer 114 is separated from the first through hole 116a and the second through hole 116b.

第1配線層113は、光源120側に位置する先端部113aと、先端部113aと繋がる中間部113bと、中間部113bにおける先端部113aとは反対側に位置する外部接続部と、を有する。同様に、第2配線層114は、光源120側に位置する先端部114aと、先端部114aと繋がる中間部114bと、中間部114bにおける先端部114aとは反対側に位置する外部接続部と、を有する。面状光源100は、外部接続部に給電されることで点灯する。 The first wiring layer 113 has a tip portion 113a located on the light source 120 side, an intermediate portion 113b connected to the tip portion 113a, and an external connection portion located on the opposite side of the tip portion 113a in the intermediate portion 113b. Similarly, the second wiring layer 114 includes a tip portion 114a located on the light source 120 side, an intermediate portion 114b connected to the tip portion 114a, an external connection portion located on the opposite side of the tip portion 114a in the intermediate portion 114b, have The planar light source 100 is lit by power supply to the external connection portion.

配線基板110は、平面視において、配線基板110の端部から外側に突出する突出領域を設け、突出領域に外部接続部を配置する構成でもよい。 The wiring board 110 may have a projecting region that projects outward from the end of the wiring board 110 in plan view, and the external connection portion may be arranged in the projecting region.

外部接続部は、別の部材(例えば、駆動回路を備える基板)と電気的に接続してもよい。外部接続部を別の部材に電気的に接続する際、コネクタを用いてもよいし、薄型化の観点で導電性シートを用いてもよい。 The external connection portion may be electrically connected to another member (for example, a substrate including a drive circuit). When electrically connecting the external connection portion to another member, a connector may be used, or a conductive sheet may be used from the viewpoint of thinning.

上面視において第1配線層113及び第2配線層114は、第1貫通穴116a及び第2貫通穴116bを挟むように配置されている。本明細書において、「上面視で第1配線層及び第2配線層は、第1貫通穴及び第2貫通穴を挟むように配置」とは、上面視において第1配線層と第2配線層との間に第1貫通穴及び第2貫通穴が配置されており、第1貫通穴と第2貫通穴との間に第1配線層及び第2配線層が配置されていないことを意味する。本実施形態では、第1配線層113の先端部113a及び第2配線層114の先端部114aが、第1貫通穴116a及び第2貫通穴116bを挟むように配置されている。 When viewed from above, the first wiring layer 113 and the second wiring layer 114 are arranged so as to sandwich the first through hole 116a and the second through hole 116b. In this specification, "the first wiring layer and the second wiring layer are arranged so as to sandwich the first through hole and the second through hole when viewed from the top" means that the first wiring layer and the second wiring layer are arranged when viewed from the top. means that the first through hole and the second through hole are arranged between and and the first wiring layer and the second wiring layer are not arranged between the first through hole and the second through hole . In this embodiment, the tip portion 113a of the first wiring layer 113 and the tip portion 114a of the second wiring layer 114 are arranged so as to sandwich the first through hole 116a and the second through hole 116b.

第1配線層113の先端部113aの上面視における形状は、本実施形態では円弧状である。先端部113aの表面は、図3に示すように、絶縁層116に接する上面113cと、上面113cの反対側に位置する下面113dと、上面113cと下面113dとの間に位置する側面113eと、を含む。 The top view shape of the tip portion 113a of the first wiring layer 113 is arcuate in this embodiment. As shown in FIG. 3, the front end portion 113a has a top surface 113c in contact with the insulating layer 116, a bottom surface 113d located on the opposite side of the top surface 113c, a side surface 113e located between the top surface 113c and the bottom surface 113d, including.

側面113eは、Z方向に平行である。ただし、側面は、Z方向に平行でなく、湾曲していてもよい。側面113eは、図4Aに示すように、上面視において第1貫通穴116aと対向する第1領域113s1と、第1領域113s1の反対側に位置する第2領域113s2と、第1領域113s1と第2領域113s2との間に位置する第3領域113s3と、を有する。 The side surface 113e is parallel to the Z direction. However, the side surface may be curved instead of being parallel to the Z direction. As shown in FIG. 4A, the side surface 113e includes a first region 113s1 facing the first through hole 116a in top view, a second region 113s2 located on the opposite side of the first region 113s1, and a first region 113s1 and the first region 113s1. and a third region 113s3 located between the second region 113s2.

上面視における第1領域113s1の形状は、第1貫通穴116aから離れる方向に凹状であり、例えば円弧状である。上面視における第2領域113s2の形状は、第1領域113s1と同じ方向に湾曲した形状であり、例えば円弧状である。上面視における第3領域113s3の形状は、Y方向に平行な直線状である。ただし、上面視における第1領域の形状、第2領域の形状、及び第3領域の形状は、上記に限定されない。例えば、第1領域の形状及び第2領域の形状は、Y方向に平行な直線状であり、第3領域の形状は、X方向に平行な直線状であってもよい。 The shape of the first region 113s1 when viewed from above is concave in a direction away from the first through hole 116a, and is, for example, an arc shape. The shape of the second region 113s2 when viewed from above is a shape curved in the same direction as the first region 113s1, and is, for example, an arc shape. The shape of the third region 113s3 in a top view is linear parallel to the Y direction. However, the shape of the first region, the shape of the second region, and the shape of the third region in top view are not limited to the above. For example, the shape of the first region and the shape of the second region may be linear parallel to the Y direction, and the shape of the third region may be linear parallel to the X direction.

第2配線層114の先端部114aの上面視における形状は、本実施形態では円弧状である。先端部114aの表面は、図3に示すように、絶縁層116に接する上面114cと、上面114cの反対側に位置する下面114dと、上面114cと下面114dとの間に位置する側面114eと、を含む。 The top view shape of the tip portion 114a of the second wiring layer 114 is arcuate in this embodiment. As shown in FIG. 3, the tip portion 114a has a top surface 114c in contact with the insulating layer 116, a bottom surface 114d opposite to the top surface 114c, a side surface 114e located between the top surface 114c and the bottom surface 114d, including.

側面114eは、Z方向に平行である。ただし、側面は、Z方向に平行でなく、湾曲していてもよい。側面114eは、図4Aに示すように、上面視において第2貫通穴116bと対向する第1領域114s1と、第1領域114s1の反対側に位置する第2領域114s2と、第1領域114s1と第2領域114s2との間に位置する第3領域114s3と、を有する。 The side surface 114e is parallel to the Z direction. However, the side surface may be curved instead of being parallel to the Z direction. As shown in FIG. 4A, the side surface 114e includes a first region 114s1 facing the second through hole 116b in top view, a second region 114s2 located on the opposite side of the first region 114s1, and a first region 114s1 and the first region 114s1. and a third region 114s3 located between the second region 114s2.

上面視における第1領域114s1の形状は、第2貫通穴116bから離れる方向に凹状であり、例えば円弧状である。上面視における第2領域114s2の形状は、第1領域114s1と同じ方向に湾曲した形状であり、例えば円弧状である。上面視における第3領域114s3の形状は、Y方向に平行な直線状である。ただし、上面視における第1領域の形状、第2領域の形状、及び第3領域の形状は、上記に限定されない。例えば、第1領域の形状及び第2領域の形状は、Y方向に平行な直線状であり、第3領域の形状は、X方向に平行な直線状であってもよい。 The shape of the first region 114s1 when viewed from above is concave in a direction away from the second through hole 116b, and is, for example, an arc shape. The shape of the second region 114s2 when viewed from above is curved in the same direction as the first region 114s1, and is, for example, an arc shape. The shape of the third region 114s3 in a top view is linear parallel to the Y direction. However, the shape of the first region, the shape of the second region, and the shape of the third region in top view are not limited to the above. For example, the shape of the first region and the shape of the second region may be linear parallel to the Y direction, and the shape of the third region may be linear parallel to the X direction.

第1配線層113の中間部113b及び第2配線層114の中間部114bのそれぞれは、Y方向に延びている。ただし、各中間部が延びる方向は、上記に限定されず、X方向であってもよいし、X方向及びY方向に対して傾斜した方向であってもよいし、中間部が延びる方向が変化してもよい。また、第1配線層が延びる方向は、第2配線層が延びる方向と異なっていてもよい。 Each of the intermediate portion 113b of the first wiring layer 113 and the intermediate portion 114b of the second wiring layer 114 extends in the Y direction. However, the direction in which each intermediate portion extends is not limited to the above. You may Also, the direction in which the first wiring layer extends may be different from the direction in which the second wiring layer extends.

第2被覆層115は、図4Bに示すように、ベース層111の下面の一部を覆っている。また、第2被覆層115には、貫通穴115aが設けられている。貫通穴115aは、第2被覆層115をZ方向(上下方向)に貫通している。貫通穴115aからは、ベース層111の他の一部、第1配線層113の先端部113a及び中間部113bの一部、第2配線層114の先端部114a及び中間部114bの一部、後述する第1配線部材151の一部、及び第2配線部材152の一部が露出している。図4Aに示すように、上面視における貫通穴115aの形状は、長円形である。ただし、上面視における貫通穴の形状は、上記に限定されず、例えば四角形等の多角形、又は、円形であってもよい。 The second coating layer 115 covers part of the lower surface of the base layer 111, as shown in FIG. 4B. Further, the second coating layer 115 is provided with a through hole 115a. The through hole 115a penetrates the second covering layer 115 in the Z direction (vertical direction). From the through hole 115a, another part of the base layer 111, a part of the front end portion 113a and the middle portion 113b of the first wiring layer 113, a part of the front end portion 114a and the middle portion 114b of the second wiring layer 114, which will be described later. A part of the first wiring member 151 and a part of the second wiring member 152 are exposed. As shown in FIG. 4A, the through hole 115a has an oval shape when viewed from above. However, the shape of the through hole when viewed from above is not limited to the above, and may be, for example, a polygon such as a quadrangle, or a circle.

配線基板110の厚みは、例えば、50μm以上、250μm以下である。配線基板110の厚みが上記の範囲内である場合、温度又は湿度等の環境の変化により配線基板の絶縁層に収縮又は膨張等の変形が生じ易い。 The thickness of the wiring board 110 is, for example, 50 μm or more and 250 μm or less. When the thickness of the wiring board 110 is within the above range, deformation such as contraction or expansion of the insulating layer of the wiring board is likely to occur due to environmental changes such as temperature or humidity.

配線基板110の上には、図3に示すように、光反射性シート117が配置されている。光反射性シート117は、接着シート118aにより配線基板110に貼り付けられている。光反射性シート117は、光源120から出射する光の一部を反射する。光反射性シート117が配置されていない場合、光源120から光の一部が配線基板110のベース層111に吸収され、ベース層111が劣化してしまうことがある。そこで、配線基板110上に光反射性シート117を配置させることで、光源120からの光が配線基板110に到達するのを抑制することができる。これにより、配線基板110のベース層111で光が吸収されることを抑制し、ベース層111の劣化を抑制することができる。光反射性シート117は、配線基板110の上面における第1貫通穴116a及び第2貫通穴116bを除く領域に配置させることが好ましい。これにより、光源120の下方に光反射性シート117が配置されるため、配線基板110に到達する光をより抑制することができる。また、光源120からの光が光反射性シート117によって反射されることで、光源120から光が導光部材130内において光源120からより遠方まで伝搬するため、発光領域R内の輝度ムラを抑制することができる。光反射性シート117は、多数の気泡を含む樹脂シート(例えば発泡樹脂シート)又は光拡散材を含む樹脂シート等によって構成できる。光反射性シート117に用いられる樹脂としては、例えば、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート(PET)若しくはポリエステル等の熱可塑性樹脂、又は、エポキシ若しくはシリコーン等の熱硬化性樹脂を用いることができる。また、光拡散材としては、酸化チタン、シリカ、アルミナ、酸化亜鉛又はガラス等を用いることができる。 A light reflective sheet 117 is arranged on the wiring board 110 as shown in FIG. The light reflective sheet 117 is attached to the wiring board 110 with an adhesive sheet 118a. Light reflective sheet 117 reflects part of the light emitted from light source 120 . If the light reflecting sheet 117 is not arranged, part of the light from the light source 120 may be absorbed by the base layer 111 of the wiring board 110 and the base layer 111 may deteriorate. Therefore, by arranging the light reflective sheet 117 on the wiring board 110 , it is possible to suppress the light from the light source 120 from reaching the wiring board 110 . As a result, the absorption of light by the base layer 111 of the wiring substrate 110 can be suppressed, and deterioration of the base layer 111 can be suppressed. The light reflective sheet 117 is preferably arranged on the upper surface of the wiring substrate 110 except for the first through holes 116a and the second through holes 116b. Accordingly, since the light reflecting sheet 117 is arranged below the light source 120, light reaching the wiring substrate 110 can be further suppressed. In addition, since the light from the light source 120 is reflected by the light-reflecting sheet 117, the light from the light source 120 propagates farther from the light source 120 in the light guide member 130, thereby suppressing the luminance unevenness in the light emitting region R. can do. The light reflective sheet 117 can be composed of a resin sheet containing a large number of air bubbles (for example, a foamed resin sheet) or a resin sheet containing a light diffusing material. As the resin used for the light reflective sheet 117, for example, a thermoplastic resin such as acrylic, polycarbonate, cyclic polyolefin, polyethylene terephthalate (PET) or polyester, or a thermosetting resin such as epoxy or silicone can be used. . Titanium oxide, silica, alumina, zinc oxide, glass, or the like can be used as the light diffusing material.

各配線部材151、152の材料が熱硬化性の材料を主成分とする材料であり、光反射性シート117の主成分が熱可塑性の樹脂であってもよい。このとき、光反射性シート117の融点が、配線部材151、152の硬化温度よりも高いことが好ましい。これにより、各配線部材151、152が硬化する温度に到達しても、光反射性シート117は溶けないので、光反射性シート117の光反射性が低下するのを抑制することができる。配線部材の主成分がエポキシ樹脂であれば、配線部材の硬化温度はおよそ120度~130度である。また、光反射性シート117の主成分がポリエチレンテレフタレートであれば、光反射性シートの融点は、およそ220度である。 The wiring members 151 and 152 may be made of a thermosetting material as a main component, and the light-reflecting sheet 117 may be made of a thermoplastic resin as a main component. At this time, the melting point of the light reflective sheet 117 is preferably higher than the curing temperature of the wiring members 151 and 152 . As a result, even when the wiring members 151 and 152 reach a temperature at which they harden, the light reflective sheet 117 does not melt, so that the light reflectivity of the light reflective sheet 117 can be prevented from deteriorating. If the main component of the wiring member is epoxy resin, the curing temperature of the wiring member is about 120 to 130 degrees. Moreover, if the main component of the light reflective sheet 117 is polyethylene terephthalate, the melting point of the light reflective sheet is approximately 220 degrees.

光反射性シート117の上には、導光部材130が配置されている。導光部材130は、接着シート118bにより光反射性シート117に貼り付けられている。光反射性シート117、及び2枚の接着シート118a、118bを、「シート積層体119」という。 A light guide member 130 is arranged on the light reflective sheet 117 . The light guide member 130 is attached to the light reflective sheet 117 with an adhesive sheet 118b. The light reflective sheet 117 and the two adhesive sheets 118a and 118b are referred to as a "sheet laminate 119".

シート積層体119は、配線基板110の上面を覆いつつ、第1貫通穴116a及び第2貫通穴116bを露出させる。具体的には、シート積層体119には、第1貫通穴116aの直上に位置する第3貫通穴119aと、第2貫通穴116bの直上に位置する第4貫通穴119bと、が設けられている。 The sheet laminate 119 covers the upper surface of the wiring board 110 and exposes the first through holes 116a and the second through holes 116b. Specifically, the sheet stack 119 is provided with a third through-hole 119a positioned directly above the first through-hole 116a and a fourth through-hole 119b positioned directly above the second through-hole 116b. there is

上面視における第3貫通穴119aの形状は、第1貫通穴116aと同形状であり、例えば円形である。第3貫通穴119aの内面は、例えば、第1貫通穴116aの内面と面一であり、Z方向に概ね平行である。上面視における第4貫通穴119b形状は、第2貫通穴116bと同形状であり、例えば円形である。第4貫通穴119bの内面は、例えば、第2貫通穴116bの内面と面一であり、Z方向に概ね平行である。すなわち、第1貫通穴116aと第3貫通穴119aとにより、略円柱形状の1つの貫通穴が形成されており、第2貫通穴116bと第4貫通穴119bとにより、略円柱形状の1つの貫通穴が形成されている。 The shape of the third through-hole 119a in top view is the same shape as the first through-hole 116a, for example, circular. The inner surface of the third through hole 119a is, for example, flush with the inner surface of the first through hole 116a and substantially parallel to the Z direction. The shape of the fourth through hole 119b in a top view is the same shape as the second through hole 116b, for example circular. The inner surface of the fourth through hole 119b is, for example, flush with the inner surface of the second through hole 116b and substantially parallel to the Z direction. That is, one substantially cylindrical through hole is formed by the first through hole 116a and the third through hole 119a, and one substantially cylindrical through hole is formed by the second through hole 116b and the fourth through hole 119b. A through hole is formed.

ただし、シート積層体の構成は、上記に限定されない。例えば、シート積層体に、上記のように第1貫通穴及び第2貫通穴に対応する2つの貫通穴を設けるのではなく、第1貫通穴及び第2貫通穴の直上に1つの貫通穴を設け、当該1つの貫通穴により第1貫通穴及び第2貫通穴の両方を露出してもよい。また、面状光源には、シート積層体が設けられていなくてもよい。 However, the configuration of the sheet laminate is not limited to the above. For example, instead of providing two through holes corresponding to the first through hole and the second through hole in the sheet laminate as described above, one through hole is provided directly above the first through hole and the second through hole. The single through hole may expose both the first through hole and the second through hole. Further, the planar light source may not be provided with the sheet laminate.

図5Aは、図3における光源を拡大して示す模式的な断面図である。
図5Bは、図3における光源を拡大して示す模式的な上面図である。
図6は、配線基板の一部、シート積層体の一部、及び光源を拡大して示す模式的な上面図である。
光源120は、図5Aに示すように、発光素子124と、透光性部材125と、第1光調整部材126と、被覆部材127と、第1端子122と、第2端子123と、を有する。
5A is a schematic cross-sectional view showing an enlarged light source in FIG. 3. FIG.
5B is a schematic top view showing an enlarged light source in FIG. 3. FIG.
FIG. 6 is a schematic top view enlarging a portion of the wiring board, a portion of the sheet laminate, and the light source.
The light source 120 has a light emitting element 124, a translucent member 125, a first light adjusting member 126, a covering member 127, a first terminal 122, and a second terminal 123, as shown in FIG. 5A. .

発光素子124は、発光部124aと、発光部124aの下に配置され、互いに離隔した第1電極124b及び第2電極124cと、を有する。 The light-emitting element 124 has a light-emitting portion 124a, and a first electrode 124b and a second electrode 124c arranged under the light-emitting portion 124a and separated from each other.

発光部124aは、例えば、半導体成長用基板と、半導体成長用基板の下に配置された半導体積層構造と、を有する。半導体積層構造としては、可視光または紫外光を発光可能に構成され、所望とする発光ピーク波長に応じて任意の組成を用いることができる。半導体積層構造は、例えば、InAlGa1-x-yN(0≦x、0≦y、x+y≦1)層を含み、発光部124aからは青色光が出射される。ただし、発光部が出射する光の色は、青色に限定されない。 The light emitting part 124a has, for example, a semiconductor growth substrate and a semiconductor laminated structure arranged under the semiconductor growth substrate. The semiconductor laminated structure is configured to emit visible light or ultraviolet light, and any composition can be used according to the desired emission peak wavelength. The semiconductor laminated structure includes, for example, an In x Al y Ga 1-x-y N (0≦x, 0≦y, x+y≦1) layer, and blue light is emitted from the light emitting portion 124a. However, the color of the light emitted by the light emitting section is not limited to blue.

半導体積層構造は、n型半導体層及びp型半導体層と、これらに挟まれた発光層とを含む。発光層は、ダブルヘテロ接合または単一量子井戸(SQW)等の構造を有していてもよいし、多重量子井戸(MQW)のようにひとかたまりの活性層群をもつ構造を有していてもよい。
また、半導体積層構造は、n型半導体層とp型半導体層との間に1つ以上の発光層を含む構造を有していてもよいし、n型半導体層と発光層とp型半導体層とを順に含む構造が複数回繰り返された構造を有していてもよい。半導体積層構造が複数の発光層を含む場合、発光ピーク波長が異なる発光層を含んでいてもよいし、発光ピーク波長が同じ発光層を含んでいてもよい。なお、発光ピーク波長が同じとは、数nm程度のばらつきがある場合も含む。複数の発光層の間の発光ピーク波長の組み合わせは、適宜選択することができる。例えば半導体積層構造が2つの発光層を含む場合、青色光と青色光、緑色光と緑色光、赤色光と赤色光、紫外光と紫外光、青色光と緑色光、青色光と赤色光、または、緑色光と赤色光などの組み合わせで発光層を選択することができる。各発光層は、発光ピーク波長が異なる複数の活性層を含んでいてもよいし、発光ピーク波長が同じ複数の活性層を含んでいてもよい。
The semiconductor laminated structure includes an n-type semiconductor layer, a p-type semiconductor layer, and a light-emitting layer sandwiched therebetween. The light-emitting layer may have a structure such as a double heterojunction or a single quantum well (SQW), or may have a structure with a group of active layers such as a multiple quantum well (MQW). good.
In addition, the semiconductor laminated structure may have a structure including one or more light emitting layers between the n-type semiconductor layer and the p-type semiconductor layer, or the n-type semiconductor layer, the light emitting layer and the p-type semiconductor layer. You may have a structure in which a structure containing and in order is repeated multiple times. When the semiconductor laminated structure includes a plurality of light-emitting layers, it may include light-emitting layers with different emission peak wavelengths, or may include light-emitting layers with the same emission peak wavelength. In addition, the same emission peak wavelength includes the case where there is a variation of about several nanometers. A combination of emission peak wavelengths between a plurality of light-emitting layers can be selected as appropriate. For example, if the semiconductor stack includes two light-emitting layers, blue light and blue light, green light and green light, red light and red light, ultraviolet light and ultraviolet light, blue light and green light, blue light and red light, or , a combination of green light and red light, etc., to select the light-emitting layer. Each light-emitting layer may include a plurality of active layers with different emission peak wavelengths, or may include a plurality of active layers with the same emission peak wavelength.

第1電極124b及び第2電極124cは、X方向に配列されている。上面視における各電極124b、124cの形状は、図5Bに示すように、角部が丸まった略三角形である。ただし、上面視における各電極の形状は、上記に限定されず、例えば、四角形等の他の多角形、円形、又は楕円形であってもよい。 The first electrodes 124b and the second electrodes 124c are arranged in the X direction. The shape of each of the electrodes 124b and 124c when viewed from the top is a substantially triangular shape with rounded corners, as shown in FIG. 5B. However, the shape of each electrode in top view is not limited to the above, and may be, for example, other polygonal shape such as square, circular shape, or elliptical shape.

図6に示すように、上面視において第1貫通穴116aの中心c1と第2貫通穴116bの中心c2との距離D1は、第1電極124bの中心c3と第2電極124cの中心c4との距離D2よりも長い(D1>D2)。ただし、第1貫通穴の中心と第2貫通穴の中心との距離は、第1電極の中心と第2電極の中心との距離と等しくてもよい。なお、第1電極124bの中心c3は、第1電極124bが三角形の場合は、三角形の各頂点と各頂点の反対側に位置する辺の中点と、を結んだ3本の線の交点である。第2電極124cの中心c4についても同様である。 As shown in FIG. 6, the distance D1 between the center c1 of the first through hole 116a and the center c2 of the second through hole 116b in top view is the distance between the center c3 of the first electrode 124b and the center c4 of the second electrode 124c. longer than the distance D2 (D1>D2). However, the distance between the center of the first through hole and the center of the second through hole may be equal to the distance between the center of the first electrode and the center of the second electrode. When the first electrode 124b is triangular, the center c3 of the first electrode 124b is the intersection of three lines connecting each vertex of the triangle and the midpoint of the side opposite to each vertex. be. The same applies to the center c4 of the second electrode 124c.

透光性部材125は、図5Aに示すように、発光部124aの上面及び側面を覆っている。透光性部材125は、発光部124aから出射した光に対する透光性を有する。透光性部材125は、透光性材料からなる母材と、母材中に分散された複数の波長変換粒子と、を含む。母材の材料としては、例えば、シリコーン、エポキシ、ガラスなどを用いることができる。波長変換粒子としては、例えば蛍光体を用いることができる。蛍光体としては、例えば、イットリウム・アルミニウム・ガーネット系蛍光体(例えば、YAG蛍光体)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えば、Lu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えば、Tb(Al,Ga)12:Ce)、CCA系蛍光体(例えば、Ca10(POCl:Eu)、SAE系蛍光体(例えば、SrAl1425:Eu)、クロロシリケート系蛍光体(例えば、CaMgSi16Cl:Eu)、βサイアロン系蛍光体(例えば、(Si,Al)(O,N):Eu)、αサイアロン系蛍光体(例えば、Mz(Si,Al)12(O,N)16:Eu(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素))、SLA系蛍光体(例えば、SrLiAl:Eu)、CASN系蛍光体(例えば、CaAlSiN:Eu)若しくはSCASN系蛍光体(例えば、(Sr,Ca)AlSiN:Eu)等の窒化物系蛍光体、KSF系蛍光体(例えば、KSiF:Mn)、KSAF系蛍光体(例えば、K(Si,Al)F:Mn)若しくはMGF系蛍光体(例えば、3.5MgO・0.5MgF・GeO:Mn)等のフッ化物系蛍光体、ペロブスカイト構造を有する蛍光体(例えば、CsPb(F,Cl,Br,I))、又は量子ドット蛍光体(例えば、CdSe、InP、AgInS又はAgInSe)等を用いることができる。透光性部材125は、複数種類の蛍光体を含んでいてもよい。 As shown in FIG. 5A, the translucent member 125 covers the upper and side surfaces of the light emitting section 124a. The translucent member 125 has translucency with respect to the light emitted from the light emitting section 124a. The translucent member 125 includes a base material made of a translucent material and a plurality of wavelength conversion particles dispersed in the base material. As the material of the base material, for example, silicone, epoxy, glass, or the like can be used. Phosphors, for example, can be used as the wavelength conversion particles. Examples of phosphors include yttrium-aluminum-garnet-based phosphors (e.g., YAG phosphor), lutetium-aluminum-garnet-based phosphors (e.g., Lu 3 (Al, Ga) 5 O 12 :Ce), terbium- aluminum garnet-based phosphors (e.g., Tb3 (Al, Ga) 5O12 : Ce), CCA-based phosphors (e.g., Ca10 ( PO4 ) 6Cl2 : Eu), SAE-based phosphors (e.g., Sr 4 Al 14 O 25 :Eu), chlorosilicate-based phosphors (eg, Ca 8 MgSi 4 O 16 Cl 2 :Eu), β-sialon-based phosphors (eg, (Si, Al) 3 (O, N) 4 :Eu), α-sialon-based phosphors (for example, Mz(Si,Al) 12 (O,N) 16 :Eu (where 0<z≦2, and M is Li, Mg, Ca, Y, and La and lanthanide elements excluding Ce)), SLA phosphors (e.g. SrLiAl 3 N 4 :Eu), CASN phosphors (e.g. CaAlSiN 3 :Eu) or SCASN phosphors (e.g. (Sr, Ca)AlSiN 3 :Eu) and other nitride-based phosphors, KSF-based phosphors (e.g., K 2 SiF 6 :Mn), KSAF-based phosphors (e.g., K 2 (Si, Al)F 6 :Mn), or MGF-based phosphors Fluoride-based phosphors such as solids (e.g., 3.5MgO.0.5MgF2.GeO2 :Mn), phosphors having a perovskite structure (e.g., CsPb(F,Cl,Br,I) 3 ), or quantum Dot phosphors (eg, CdSe, InP, AgInS 2 or AgInSe 2 ) or the like can be used. Translucent member 125 may contain multiple types of phosphors.

また、上述した蛍光体を含有する波長変換シートを、面状光源上に配置してもよい。波長変換シートは、光源120からの青色光の一部を吸収して、黄色光、緑色光及び/又は赤色光を発し、白色光を出射する面状光源とすることができる。例えば、青色の発光が可能な光源と、黄色の発光が可能な蛍光体を含有する波長変換シートと、を組み合わせて白色光を得ることができる。また他には、青色の発光が可能な光源と、赤色蛍光体及び緑色蛍光体を含有する波長変換シートとを組み合わせてもよい。また、青色の発光が可能な光源と、複数の波長変換シートとを組み合わせてもよい。複数の波長変換シートとしては、例えば、赤色の発光が可能な蛍光体を含有する波長変換シートと、緑色の発光が可能な蛍光体を含有する波長変換シートと、を選択することができる。また、青色の発光が可能な発光素子と、赤色の発光が可能な蛍光体を含有する透光性部材とを有する光源と、緑色の発光が可能な蛍光体を含有する波長変換シートとを組み合わせてもよい。 Also, the wavelength conversion sheet containing the phosphor described above may be arranged on the planar light source. The wavelength conversion sheet can be a planar light source that absorbs part of the blue light from the light source 120, emits yellow light, green light and/or red light, and emits white light. For example, white light can be obtained by combining a light source capable of emitting blue light and a wavelength conversion sheet containing a phosphor capable of emitting yellow light. Alternatively, a light source capable of emitting blue light may be combined with a wavelength conversion sheet containing a red phosphor and a green phosphor. Also, a light source capable of emitting blue light may be combined with a plurality of wavelength conversion sheets. As the plurality of wavelength conversion sheets, for example, a wavelength conversion sheet containing a phosphor capable of emitting red light and a wavelength conversion sheet containing a phosphor capable of emitting green light can be selected. Also, a light source having a light emitting element capable of emitting blue light, a translucent member containing a phosphor capable of emitting red light, and a wavelength conversion sheet containing a phosphor capable of emitting green light are combined. may

光源120は、透光性部材125内の波長変換粒子から出射した光と、発光部124aから出射した光との混色光を出射し、混色光の色は、例えば白色である。ただし、透光性部材には、波長変換粒子が設けられていなくてもよい。この場合、光源は、発光部から出射される青色光のみを出射してもよい。 The light source 120 emits mixed light of light emitted from the wavelength conversion particles in the translucent member 125 and light emitted from the light emitting section 124a, and the color of the mixed light is white, for example. However, the translucent member may not be provided with the wavelength converting particles. In this case, the light source may emit only blue light emitted from the light emitting section.

第1光調整部材126は、透光性部材125の上面を覆っている。第1光調整部材126は、発光部124aから出射する光の一部を反射し、発光部124aから出射する光の他の一部を透過する。第1光調整部材126は、例えば、光反射性材料を含む樹脂である。具体的には、第1光調整部材126としては、光反射性材料として酸化チタンを含むシリコーン又はエポキシ等の樹脂を用いることができる。 The first light adjusting member 126 covers the top surface of the translucent member 125 . The first light adjusting member 126 reflects part of the light emitted from the light emitting section 124a and transmits another part of the light emitted from the light emitting section 124a. The first light adjustment member 126 is, for example, resin containing a light reflective material. Specifically, as the first light adjusting member 126, a resin such as silicone containing titanium oxide or epoxy can be used as a light reflecting material.

被覆部材127は、透光性部材125の下面及び発光部124aの下面を覆っている。被覆部材127は、例えば、光反射性材料を含む樹脂である。具体的には、被覆部材127としては、光反射性材料として酸化チタンを含むシリコーン又はエポキシ等の樹脂を用いることができる。 The covering member 127 covers the lower surface of the translucent member 125 and the lower surface of the light emitting section 124a. The covering member 127 is, for example, resin containing a light reflecting material. Specifically, as the coating member 127, resin such as silicone containing titanium oxide or epoxy can be used as a light-reflecting material.

第1端子122及び第2端子123は、銅(Cu)等の金属材料からなる。第1端子122は、図5Aに示すように、第1電極124bの下端に接している。第2端子123は、第2電極124cの下端に接している。第1端子122及び第2端子123は、互いに離隔している。 The first terminal 122 and the second terminal 123 are made of metal material such as copper (Cu). The first terminal 122 is in contact with the lower end of the first electrode 124b, as shown in FIG. 5A. The second terminal 123 is in contact with the lower end of the second electrode 124c. The first terminal 122 and the second terminal 123 are separated from each other.

以下、光源120において、2つの端子122、123を除いた部分(発光素子124、透光性部材125、第1光調整部材126、及び被覆部材127)を「本体部121」という。 Hereinafter, the portion of the light source 120 excluding the two terminals 122 and 123 (the light emitting element 124, the translucent member 125, the first light adjusting member 126, and the covering member 127) will be referred to as a "main body portion 121".

図5Bに示すように、上面視における本体部121の形状は、例えば四角形である。本体部121は、本体部121の一の対角線L1がX方向に平行となり、他の対角線L2がY方向に平行となるように配置されている。すなわち、本体部121は、上面視における外周を形成する4辺がX方向及びY方向に対して45度傾くように配置されている。 As shown in FIG. 5B, the shape of the main body 121 in top view is, for example, a quadrangle. The body portion 121 is arranged such that one diagonal line L1 of the body portion 121 is parallel to the X direction and the other diagonal line L2 is parallel to the Y direction. That is, the main body part 121 is arranged such that four sides forming the outer periphery in top view are inclined at 45 degrees with respect to the X direction and the Y direction.

2つの電極124b、124cは、上面視において対角線L2に対して概ね対称となるように配置されている。図6に示すように、2つの電極124b、124c及び2つの端子122、123は、対角線L1上に位置する。上面視における本体部121の寸法は、対角線L1上で最大となる。このため、2つの端子122、123を対角線L1上に配置することで、上面視における発光素子124の面積が小さい場合であっても、2つの端子122、123同士が近接することを抑制できる。配線基板110の2つの貫通穴116a、116bは、2つの端子122、123の位置に応じて設けられる。そのため、2つの端子122、123同士が近接することを抑制することで、2つの貫通穴116a、116b同士が近接することを抑制できる。その結果、発光素子124におけるp形半導体層とn形半導体層とが電気的に接続されて短絡することを抑制できる。ただし、本体部は、上面視において各対角線がX方向及びY方向に対して傾くように配置されていてもよい。また、上面視における光源の本体部の形状は、上記に限定されず、例えば、五角形等の四角形以外の多角形、又は円形であってもよい。また、2つの電極の位置は、上記に限定されない。 The two electrodes 124b and 124c are arranged so as to be substantially symmetrical with respect to the diagonal line L2 when viewed from above. As shown in FIG. 6, the two electrodes 124b, 124c and the two terminals 122, 123 are positioned on the diagonal line L1. The dimension of the main body portion 121 in top view is maximum on the diagonal line L1. Therefore, by arranging the two terminals 122 and 123 on the diagonal line L1, it is possible to prevent the two terminals 122 and 123 from approaching each other even when the light emitting element 124 has a small area when viewed from above. The two through holes 116 a and 116 b of the wiring board 110 are provided according to the positions of the two terminals 122 and 123 . Therefore, by suppressing the two terminals 122 and 123 from approaching each other, it is possible to suppress the two through holes 116a and 116b from approaching each other. As a result, the p-type semiconductor layer and the n-type semiconductor layer in the light emitting element 124 can be prevented from being electrically connected and short-circuited. However, the main body may be arranged such that each diagonal line is inclined with respect to the X direction and the Y direction when viewed from above. Also, the shape of the main body of the light source when viewed from above is not limited to the above, and may be, for example, a polygon other than a quadrangle such as a pentagon, or a circle. Also, the positions of the two electrodes are not limited to the above.

上面視において第1電極124bの一部は、本実施形態では、第1貫通穴116aと重なっている。これにより、第1電極124bと後述する第1配線部材151との距離を短くし、第1電極124bと第1配線部材151との間の抵抗を低減できる。第2電極124cについても同様である。ただし、各電極は、上面視において対応する貫通穴の全域を覆っていてもよい。また、各電極は、上面視において対応する貫通穴と重なっていなくてもよい。 A portion of the first electrode 124b overlaps the first through hole 116a in the present embodiment when viewed from above. As a result, the distance between the first electrode 124b and a first wiring member 151, which will be described later, can be shortened, and the resistance between the first electrode 124b and the first wiring member 151 can be reduced. The same applies to the second electrode 124c. However, each electrode may cover the entire area of the corresponding through hole when viewed from above. Further, each electrode does not have to overlap the corresponding through hole when viewed from above.

上面視における第1端子122の形状は、図5Bに示すように三角形である。これにより、第1端子122と後述する第1配線部材151との接続面積を大きくできる。上面視における第2端子123の形状は、対角線L2を基準として第1端子122と対称な三角形の一部を切り欠いた形状である。これにより、正極と負極の判別を容易にできる。ただし、各端子の形状は、上記に限定されず、例えば四角形等の他の多角形、角部を丸めた多角形、円形、又は楕円形であってもよい。また、第1端子の形状と第2端子の形状は同じであってもよい。 The shape of the first terminal 122 in top view is triangular as shown in FIG. 5B. Thereby, the connection area between the first terminal 122 and the first wiring member 151 described later can be increased. The shape of the second terminal 123 when viewed from above is a shape obtained by cutting out a part of a triangle that is symmetrical with the first terminal 122 with respect to the diagonal line L2. This makes it easy to distinguish between the positive electrode and the negative electrode. However, the shape of each terminal is not limited to the above. Also, the shape of the first terminal and the shape of the second terminal may be the same.

上面視における第1端子122の面積は、第1電極124bの面積より大きい。同様に、上面視における第2端子123の面積は、第2電極124cの面積より大きい。ただし、上面視における第1端子の面積は、第1電極の面積と等しく、上面視における第2端子の面積は、第2電極の面積と等しくてもよい。 The area of the first terminal 122 in top view is larger than the area of the first electrode 124b. Similarly, the area of the second terminal 123 in top view is larger than the area of the second electrode 124c. However, the area of the first terminal in top view may be equal to the area of the first electrode, and the area of the second terminal in top view may be equal to the area of the second electrode.

図6に示すように、上面視において、第1端子122は、第1貫通穴116aを覆っており、第2端子123は、第2貫通穴116bを覆っている。具体的には、第1端子122は、図3に示すように、第1貫通穴116aの直上に位置する第3貫通穴119aの上側の開口を塞ぎ、第2端子123は、第2貫通穴116bの直上に位置する第4貫通穴119bの上側の開口を塞いでいる。ただし、面状光源にシート積層体が設けられていない場合、第1端子は第1貫通穴の上側の開口を塞ぎ、第2端子は第2貫通穴の上側の開口を塞いでもよい。 As shown in FIG. 6, in top view, the first terminal 122 covers the first through hole 116a, and the second terminal 123 covers the second through hole 116b. Specifically, as shown in FIG. 3, the first terminal 122 closes the upper opening of the third through-hole 119a located directly above the first through-hole 116a, and the second terminal 123 closes the second through-hole 119a. It closes the upper opening of the fourth through hole 119b located directly above 116b. However, if the planar light source is not provided with the sheet laminate, the first terminal may close the upper opening of the first through hole, and the second terminal may close the upper opening of the second through hole.

なお、光源の構成は、上記に限定されない。例えば、光源には、端子が設けられていなくてもよい。光源に第1端子が設けられていない場合は、第1電極が第1配線部材と電気的に接続し、第2電極が第2配線部材と電気的に接続する。また、光源を構成する発光素子の数は、2以上であってもよい。この場合、各発光素子の正極側の電極は、配線基板における同一の配線層に電気的に接続されてもよいし、相互に異なる配線層に電気的に接続されてもよい。各発光素子の負極側の電極についても同様である。また、光源は、発光素子のみによって構成されていてもよい。 Note that the configuration of the light source is not limited to the above. For example, the light source may not be provided with terminals. When the light source is not provided with the first terminal, the first electrode is electrically connected to the first wiring member, and the second electrode is electrically connected to the second wiring member. Also, the number of light emitting elements constituting the light source may be two or more. In this case, the positive electrode of each light emitting element may be electrically connected to the same wiring layer in the wiring substrate, or may be electrically connected to different wiring layers. The same applies to the negative electrode of each light emitting element. Alternatively, the light source may be composed only of light emitting elements.

第1配線層113と第1電極124bとは、第1端子122及び第1配線部材151によって、電気的に接続されている。第2配線層114と第2電極124cとは、第2端子123及び第2配線部材152によって、電気的に接続されている。 The first wiring layer 113 and the first electrode 124 b are electrically connected by the first terminal 122 and the first wiring member 151 . The second wiring layer 114 and the second electrode 124 c are electrically connected by the second terminal 123 and the second wiring member 152 .

各配線部材151、152は、本実施形態では、樹脂材料からなる母材と、母材中に設けられた少なくとも1種の金属粒子と、を含む。母材中において複数の金属粒子同士は接触しており、各端子122、123と各配線層113、114とを電気的に接続している。各配線部材151、152に用いられる樹脂材料は、本実施形態では同一であり、例えば、エポキシ等の熱硬化性樹脂等が挙げられる。各配線部材151、152に用いられる金属粒子は、本実施形態では、銅(Cu)等の第1の金属材料からなるコアと、金(Au)等の第2の金属材料からなり、コアを被覆する被覆層と、からなる。ただし、各配線部材に用いられる金属粒子は、銅(Cu)、銀(Ag)、又は金(Au)等の1種類の金属材料のみからなってもよいし、2種類以上の金属粒子からなってもよい。 Each of the wiring members 151 and 152 includes a base material made of a resin material and at least one kind of metal particles provided in the base material in this embodiment. A plurality of metal particles are in contact with each other in the base material, and electrically connect the terminals 122 and 123 to the wiring layers 113 and 114 . The resin material used for each of the wiring members 151 and 152 is the same in this embodiment, and examples thereof include thermosetting resins such as epoxy. In this embodiment, the metal particles used for the wiring members 151 and 152 are composed of a core made of a first metal material such as copper (Cu) and a second metal material such as gold (Au). and a coating layer for coating. However, the metal particles used for each wiring member may consist of only one type of metal material such as copper (Cu), silver (Ag), or gold (Au), or may consist of two or more types of metal particles. may

第1配線部材151は、第1部分151aと、第2部分151bと、を有する。
第1部分151aは、第1貫通穴116a内及び第3貫通穴119a内を充填している。本明細書で、「貫通穴内を充填している」とは、貫通穴内を完全に埋めていることを意味するのではなく、実質的に貫通穴内を埋めていることを意味し、例えば、貫通穴内に空隙が存在していてもよい。第1部分151aの形状は、第1貫通穴116a及び第3貫通穴119aの形状に対応した形状であり、例えば、略円柱形状である。
The first wiring member 151 has a first portion 151a and a second portion 151b.
The first portion 151a fills the first through hole 116a and the third through hole 119a. In this specification, "filling the inside of the through hole" does not mean filling the inside of the through hole completely, but means substantially filling the inside of the through hole. Voids may exist within the holes. The shape of the first portion 151a is a shape corresponding to the shapes of the first through hole 116a and the third through hole 119a, and is, for example, a substantially cylindrical shape.

第1部分151aの上端は、第1端子122の下端に接し、第1部分151aは、第1端子122を介して、第1電極124bに電気的に接続されている。このように、本明細書において2つの部材が「電気的に接続されている」とは、2つの部材が直接的に接続されており、2つの部材間が導通可能であること、及び、2つの部材が導電性を備える他の部材を介して間接的に接続されており、2つの部材間が導通可能であること、の両方を含む。 The upper end of the first portion 151a is in contact with the lower end of the first terminal 122, and the first portion 151a is electrically connected via the first terminal 122 to the first electrode 124b. Thus, in this specification, two members are “electrically connected” means that the two members are directly connected and can conduct between the two members; and that two members are indirectly connected through another member that is electrically conductive, allowing electrical continuity between the two members.

第2部分151bは、第1配線部材151において第1貫通穴116aの下側の開口よりも下方に位置する薄膜状の部分である。第2部分151bは、第1部分151aに連なり、絶縁層116の下に配置され、第1配線層113に接している。第2部分151bは、図4Bに示すように、第1貫通穴116aの下側の開口の一部及び第1配線層113の先端部113aの下面113dの一部を覆っている。具体的には、第2部分151bは、第1貫通穴116aの下側の開口のうち、X方向において第2貫通穴116b側に位置する領域を露出している。ただし、第2部分は、第1貫通穴の下側の開口の全域を覆っていてもよい。 The second portion 151b is a thin film portion positioned below the lower opening of the first through hole 116a in the first wiring member 151 . The second portion 151 b is continuous with the first portion 151 a , is arranged under the insulating layer 116 , and is in contact with the first wiring layer 113 . The second portion 151b covers part of the lower opening of the first through hole 116a and part of the lower surface 113d of the tip portion 113a of the first wiring layer 113, as shown in FIG. 4B. Specifically, the second portion 151b exposes a region of the lower opening of the first through hole 116a located on the second through hole 116b side in the X direction. However, the second portion may cover the entire lower opening of the first through hole.

同様に、第2配線部材152は、図3に示すように、第3部分152aと、第4部分152bと、を有する。 Similarly, the second wiring member 152 has a third portion 152a and a fourth portion 152b, as shown in FIG.

第3部分152aは、第2貫通穴116b内及び第4貫通穴119b内を充填している。第3部分152aの形状は、第2貫通穴116b及び第4貫通穴119bの形状に対応した形状であり、例えば略円柱形状である。第3部分152aの上端は、第2端子123の下端に接しており、第3部分152aは、第2端子123を介して、第2電極124cに電気的に接続されている。 The third portion 152a fills the inside of the second through hole 116b and the inside of the fourth through hole 119b. The shape of the third portion 152a is a shape corresponding to the shapes of the second through hole 116b and the fourth through hole 119b, and is, for example, a substantially cylindrical shape. The upper end of the third portion 152a is in contact with the lower end of the second terminal 123, and the third portion 152a is electrically connected via the second terminal 123 to the second electrode 124c.

第4部分152bは、第2配線部材152において第2貫通穴116bの下側の開口よりも下方に位置する薄膜状の部分である。第4部分152bは、第3部分152aに連なり、絶縁層116の下に配置され、第2配線層114に接している。第4部分152bは、図4Bに示すように、第2貫通穴116bの下側の開口の一部及び第2配線層114の先端部114aの下面114dの一部を覆っている。具体的には、第4部分152bは、第2貫通穴116bの下側の開口のうち、X方向において第1貫通穴116a側に位置する領域を露出している。これにより、第2部分151bと第4部分152bとが接触することを抑制できる。ただし、第4部分は、第2貫通穴の下側の開口の全域を覆っていてもよい。 The fourth portion 152b is a thin film-like portion located below the lower opening of the second through hole 116b in the second wiring member 152 . The fourth portion 152b continues to the third portion 152a, is arranged under the insulating layer 116, and is in contact with the second wiring layer 114. As shown in FIG. The fourth portion 152b covers part of the lower opening of the second through hole 116b and part of the lower surface 114d of the tip portion 114a of the second wiring layer 114, as shown in FIG. 4B. Specifically, the fourth portion 152b exposes a region of the lower opening of the second through hole 116b located on the first through hole 116a side in the X direction. As a result, contact between the second portion 151b and the fourth portion 152b can be suppressed. However, the fourth portion may cover the entire lower opening of the second through hole.

第1配線部材151及び第2配線部材152の下面は、図3に示すように、被覆層153によって覆われている。具体的には、被覆層153は、第2被覆層115の貫通穴115aを覆うように配置されている。これにより、被覆層153は、第1配線層113、第2配線層114、第1配線部材151、及び第2配線部材152において第2被覆層115から露出した部分を覆っている。被覆層153は、絶縁材料からなる。被覆層153に用いられる絶縁材料としては、例えば、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、又はポリエチレンナフタレート(PEN)等の樹脂材料が挙げられる。 The lower surfaces of the first wiring member 151 and the second wiring member 152 are covered with a covering layer 153 as shown in FIG. Specifically, the covering layer 153 is arranged to cover the through hole 115 a of the second covering layer 115 . Thus, the covering layer 153 covers the exposed portions of the first wiring layer 113 , the second wiring layer 114 , the first wiring member 151 , and the second wiring member 152 from the second covering layer 115 . The covering layer 153 is made of an insulating material. Examples of insulating materials used for the coating layer 153 include resin materials such as polyimide (PI), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN).

導光部材130は、光源120から出射した光に対する透光性を有する。導光部材130の材料としては、例えば、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエステル等の熱可塑性樹脂、エポキシ、又はシリコーン等の熱硬化性樹脂、又はガラス等を用いることができる。 Light guide member 130 has translucency to light emitted from light source 120 . As a material of the light guide member 130, for example, acrylic, polycarbonate, cyclic polyolefin, polyethylene terephthalate (PET), thermoplastic resin such as polyester, thermosetting resin such as epoxy or silicone, glass, or the like can be used. .

導光部材130は、板状の部材によって構成されている。ただし、導光部材は、板状の部材ではなく、1以上の透光層によって構成されていてもよい。導光部材が複数の透光層によって構成されている場合、隣り合う透光層は透光性の接着シートによって貼り合せられていてもよい。透光性の接着シートの材料としては、透光層と接着シートとの間に界面が生じるのを軽減できるように、透光層と同じ材料を用いることが好ましい。 The light guide member 130 is configured by a plate-like member. However, the light guide member may be composed of one or more light-transmitting layers instead of the plate-like member. When the light guide member is composed of a plurality of light-transmitting layers, the adjacent light-transmitting layers may be bonded together with a light-transmitting adhesive sheet. As the material of the light-transmitting adhesive sheet, it is preferable to use the same material as that of the light-transmitting layer so as to reduce the occurrence of an interface between the light-transmitting layer and the adhesive sheet.

導光部材130に設けられた各光源配置部131は、Z方向(上下方向)に導光部材130を貫通する貫通穴である。上面視における光源配置部131の形状は、図2に示すように、円形である。ただし、上面視における光源配置部の形状は、上記に限定されず、四角形等の多角形、角部が丸まった多角形、又は楕円形であってもよい。また、光源配置部は、導光部材の下面に設けられた凹部であってもよい。 Each light source arrangement portion 131 provided in the light guide member 130 is a through hole penetrating the light guide member 130 in the Z direction (vertical direction). The shape of the light source arrangement portion 131 in a top view is circular as shown in FIG. However, the shape of the light source arrangement portion when viewed from above is not limited to the above, and may be a polygon such as a square, a polygon with rounded corners, or an ellipse. Further, the light source placement portion may be a recess provided on the lower surface of the light guide member.

光源配置部131内には、図3に示すように、透光性部材133が設けられている。透光性部材133は、本実施形態では、2層構造であり、光源120と光源配置部131の側面との隙間に設けられた第1層133aと、第1層133aの上に設けられた第2層133bと、を有する。ただし、透光性部材は、単層構造であってもよいし、3層以上の構造であってもよい。 As shown in FIG. 3, a translucent member 133 is provided inside the light source arrangement portion 131 . In the present embodiment, the translucent member 133 has a two-layer structure, a first layer 133a provided in the gap between the light source 120 and the side surface of the light source arrangement portion 131, and a and a second layer 133b. However, the translucent member may have a single-layer structure, or may have a structure of three or more layers.

第1層133aは、本実施形態では、光源120を封止している。ただし、第1層は光源と光源配置部の側面との隙間にのみ設けられ、光源を封止しなくてもよい。第1層133aの上面は、導光部材130の上面よりも下方に位置する。第1層133aの上面は、下方向に凹状に湾曲している。ただし、第1層の上面は、X方向及びY方向に平行な平坦面であってもよい。 The first layer 133a seals the light source 120 in this embodiment. However, the first layer is provided only in the gap between the light source and the side surface of the light source arrangement portion, and does not need to seal the light source. The top surface of the first layer 133 a is located below the top surface of the light guide member 130 . The upper surface of the first layer 133a is concavely curved downward. However, the top surface of the first layer may be a flat surface parallel to the X direction and the Y direction.

第2層133bの上面は、X方向及びY方向に平行な平坦面であり、導光部材130の上面と略面一である。ただし、第2層の上面は、下方向に凹状に湾曲していてもよいし、導光部材の上面よりも下方に位置してもよい。 The upper surface of the second layer 133b is a flat surface parallel to the X direction and the Y direction, and substantially flush with the upper surface of the light guide member 130. As shown in FIG. However, the upper surface of the second layer may be concavely curved downward, or may be positioned below the upper surface of the light guide member.

第1層133a及び第2層133bは、光源120から出射した光に対する透光性を有する。第1層133a及び第2層133bは、透光材料を含む。第1層133a及び第2層133bに用いられる透光材料としては、例えば、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエステル等の熱可塑性樹脂、エポキシ、又はシリコーン等の熱硬化性樹脂等を用いることができる。第2層133bは、更に波長変換粒子を含んでもよい。ただし、光源配置部内には透光性部材が設けられておらず、光源配置部内は、空気層であってもよい。 The first layer 133 a and the second layer 133 b have translucency with respect to light emitted from the light source 120 . The first layer 133a and the second layer 133b contain translucent material. Examples of translucent materials used for the first layer 133a and the second layer 133b include thermoplastic resins such as acrylic, polycarbonate, cyclic polyolefin, polyethylene terephthalate (PET), and polyester, and thermosetting resins such as epoxy and silicone. etc. can be used. The second layer 133b may further include wavelength converting particles. However, the translucent member may not be provided in the light source arrangement portion, and the inside of the light source arrangement portion may be an air layer.

透光性部材133の上には、第2光調整部材134が配置されている。第2光調整部材134は、図2に示すように、上面視において光源120覆い、光源配置部131の一部を露出するように配置している。ただし、第2光調整部材は、上面視において光源配置部の全域を覆うように配置してもよい。第2光調整部材134は、光源120から出射する光の一部を反射し、光源120から出射する光の他の一部を透過する。第2光調整部材134は、例えば、光反射性材料を含む樹脂である。具体的には、第2光調整部材134としては、光反射性材料として酸化チタンを含むシリコーン又はエポキシ等の樹脂を用いることができる。上面視における第2光調整部材134の形状は、図2に示すように、四角形である。ただし、上面視における第2光調整部材の形状は、上記に限定されず、例えば円形であってもよい。 A second light adjusting member 134 is arranged on the translucent member 133 . As shown in FIG. 2, the second light adjustment member 134 is arranged so as to cover the light source 120 and partially expose the light source arrangement portion 131 when viewed from above. However, the second light adjustment member may be arranged so as to cover the entire area of the light source arrangement portion when viewed from above. The second light adjusting member 134 reflects part of the light emitted from the light source 120 and transmits another part of the light emitted from the light source 120 . The second light adjustment member 134 is, for example, resin containing a light reflective material. Specifically, as the second light adjustment member 134, a resin such as silicone containing titanium oxide or epoxy can be used as a light reflective material. The shape of the second light adjustment member 134 when viewed from above is quadrangular, as shown in FIG. However, the shape of the second light adjustment member in top view is not limited to the above, and may be circular, for example.

導光部材130に設けられた区画溝132は、図1に示すように、X方向及びY方向に延びた格子状である。ただし、区画溝の形状は格子状には限定されず、各発光領域を実用上十分な程度に光学的に区画できていればよい。例えば、格子の交点部分には、区画溝が設けられていなくてもよい。 The dividing grooves 132 provided in the light guide member 130 are, as shown in FIG. 1, in a lattice shape extending in the X direction and the Y direction. However, the shape of the partitioning grooves is not limited to a lattice shape, and it is sufficient that each light emitting region can be optically partitioned to a practically sufficient extent. For example, the partition grooves may not be provided at the intersections of the lattice.

区画溝132は、図3に示すように、導光部材130をZ方向(上下方向)に貫通している。区画溝132の側面は、Z方向に平行である。ただし、区画溝の構成は上記に限定されない。例えば、区画溝の側面はZ方向に対して傾斜していてもよいし、湾曲していてもよい。また、区画溝は、導光部材の上面に設けられた凹部であってもよいし、導光部材の下面に設けられた凹部であってもよいし、導光部材の上面及び下面に到達しない中空状であってもよい。また、区画溝の一部が閉塞していてもよい。また、区画溝は、導光部材だけでなくシート積層体にも設けられていてもよい。 As shown in FIG. 3, the dividing groove 132 penetrates the light guide member 130 in the Z direction (vertical direction). The side surfaces of the dividing grooves 132 are parallel to the Z direction. However, the configuration of the dividing grooves is not limited to the above. For example, the side surfaces of the dividing grooves may be inclined or curved with respect to the Z direction. Further, the dividing groove may be a recess provided on the upper surface of the light guide member, or may be a recess provided on the lower surface of the light guide member, and may not reach the upper surface and the lower surface of the light guide member. It may be hollow. Also, a part of the dividing groove may be closed. Moreover, the dividing groove may be provided not only in the light guide member but also in the sheet laminate.

区画溝132内には、区画部材135が配置されていている。区画部材135は、例えば、光反射性材料を含む樹脂である。具体的には、区画部材135としては、光反射性材料として酸化チタンを含むシリコーン又はエポキシ等の樹脂を用いることができる。 A partitioning member 135 is arranged in the partitioning groove 132 . The partitioning member 135 is, for example, a resin containing a light reflective material. Specifically, as the partition member 135, resin such as silicone containing titanium oxide or epoxy can be used as a light-reflecting material.

区画部材135は、区画溝132内に充填されており、区画部材135の上面は、導光部材130の上面と面一である。ただし、区画部材の構成は、上記に限定されない。例えば、区画部材は、区画溝の内面に沿って層状に形成されていてもよいし、区画部材の上部は、導光部材の上面よりも上方に突出していてもよい。また、区画溝内には、区画部材が設けられておらず、区画溝の内部は、空気層であってもよい。 The partitioning member 135 is filled in the partitioning groove 132 , and the upper surface of the partitioning member 135 is flush with the upper surface of the light guide member 130 . However, the configuration of the partition member is not limited to the above. For example, the partitioning member may be formed in layers along the inner surface of the partitioning groove, or the upper portion of the partitioning member may protrude above the upper surface of the light guide member. Moreover, the partitioning member may not be provided in the partitioning groove, and the inside of the partitioning groove may be an air layer.

次に、本実施形態に係る面状光源100の製造方法について説明する。
図7は、面状光源の製造方法を示す模式的な断面図である。
図8Aは、面状光源の製造方法を示す模式的な断面図である。
図8Bは、面状光源の製造方法を示す模式的な断面図である。
図9は、面状光源の製造方法を示す模式的な断面図である。
図10Aは、面状光源の製造方法を示す模式的な断面図である。
図10Bは、面状光源の製造方法を示す模式的な下面図である。
図11Aは、面状光源の製造方法を示す模式的な断面図である。
図11Bは、面状光源の製造方法を示す模式的な断面図である。
Next, a method for manufacturing the planar light source 100 according to this embodiment will be described.
FIG. 7 is a schematic cross-sectional view showing a method of manufacturing a planar light source.
FIG. 8A is a schematic cross-sectional view showing a method of manufacturing a planar light source.
FIG. 8B is a schematic cross-sectional view showing the manufacturing method of the planar light source.
FIG. 9 is a schematic cross-sectional view showing a method of manufacturing a planar light source.
FIG. 10A is a schematic cross-sectional view showing a method of manufacturing a planar light source.
FIG. 10B is a schematic bottom view showing the manufacturing method of the planar light source.
FIG. 11A is a schematic cross-sectional view showing the manufacturing method of the planar light source.
FIG. 11B is a schematic cross-sectional view showing the manufacturing method of the planar light source.

先ず、図7に示すように、配線基板110を準備する。ここで準備される配線基板110は、互いに離隔した第1貫通穴116a及び第2貫通穴116bが設けられた絶縁層116と、絶縁層116の下に配置され、第1貫通穴116a及び第2貫通穴116bから離隔した第1配線層113及び第2配線層114と、を有している。また、配線基板110の上面には、シート積層体119が貼り付けられている。シート積層体119には、第1貫通穴116aの直上に位置する第3貫通穴119aと、第2貫通穴116bの直上に位置する第4貫通穴119bと、が設けられている。 First, as shown in FIG. 7, a wiring board 110 is prepared. The wiring board 110 prepared here includes an insulating layer 116 provided with a first through hole 116a and a second through hole 116b separated from each other, and an insulating layer 116, which is disposed under the first through hole 116a and the second through hole 116b. It has a first wiring layer 113 and a second wiring layer 114 separated from the through hole 116b. A sheet laminate 119 is attached to the upper surface of the wiring board 110 . The sheet stack 119 is provided with a third through-hole 119a located directly above the first through-hole 116a and a fourth through-hole 119b located directly above the second through-hole 116b.

第1貫通穴116a及び第3貫通穴119aは、例えば、配線基板110の上にシート積層体119を配置した後に、パンチング、ドリルによる掘削、又はレーザの照射等により一度に形成できる。同様に、第2貫通穴116b及び第4貫通穴119bは、例えば、配線基板110の上にシート積層体119を配置した後に、同様の方法により一度に形成できる。ただし、あらかじめ第1貫通穴及び第2貫通穴が形成された配線基板の上に、あらかじめ第3貫通穴及び第4貫通穴が形成されたシート積層体を配置してもよい。 The first through-holes 116a and the third through-holes 119a can be formed at once by, for example, punching, drilling, laser irradiation, or the like after the sheet laminate 119 is placed on the wiring board 110 . Similarly, the second through-hole 116b and the fourth through-hole 119b can be formed at once by a similar method after the sheet laminate 119 is arranged on the wiring substrate 110, for example. However, the sheet laminate having the third and fourth through holes formed in advance may be arranged on the wiring substrate having the first through holes and the second through holes formed in advance.

次に、図8Aに示すように、配線基板110の上に、光源120が配置される光源配置部131が設けられた導光部材130を配置する。導光部材130は、光源配置部131から第3貫通穴119a及び第4貫通穴119bが露出するように配置される。導光部材130は、接着シート118bよりシート積層体119に貼り付けられる。
次に、図8Bに示すように、導光部材130に区画溝132を形成する。
Next, as shown in FIG. 8A, the light guide member 130 provided with the light source arrangement portion 131 on which the light source 120 is arranged is arranged on the wiring substrate 110 . The light guide member 130 is arranged such that the third through hole 119 a and the fourth through hole 119 b are exposed from the light source arrangement portion 131 . The light guide member 130 is attached to the sheet laminate 119 with the adhesive sheet 118b.
Next, as shown in FIG. 8B, dividing grooves 132 are formed in the light guide member 130 .

次に、図9に示すように、配線基板110の上に光源120を配置する。光源120は、上面視において第1端子122が第1貫通穴116aを覆い、第2端子123が第2貫通穴116bを覆うように、光源配置部131内に配置される。これにより、第1端子122が第3貫通穴119aの光源120側の開口を塞ぎ、第2端子123が第4貫通穴119bの光源120側の開口を塞ぐ。 Next, as shown in FIG. 9, the light source 120 is arranged on the wiring substrate 110. Next, as shown in FIG. The light source 120 is arranged in the light source placement portion 131 so that the first terminal 122 covers the first through hole 116a and the second terminal 123 covers the second through hole 116b in top view. As a result, the first terminal 122 closes the opening of the third through hole 119a on the light source 120 side, and the second terminal 123 closes the opening of the fourth through hole 119b on the light source 120 side.

この際、第1端子122の下面の一部及び第2端子123の下面の一部は、シート積層体119の接着シート118bに貼り付けられる。これにより、光源120を配線基板110に対して仮固定できる。 At this time, part of the lower surface of the first terminal 122 and part of the lower surface of the second terminal 123 are attached to the adhesive sheet 118 b of the sheet stack 119 . Thereby, the light source 120 can be temporarily fixed to the wiring board 110 .

次に、図10Aに示すように、接着シート118bによる光源120の配線基板110への仮固定を補強するように、光源配置部131の側面と光源120との隙間に、透光性の第1樹脂部材133Faを配置する。本実施形態では、透光性の第1樹脂部材133Faは、光源120を封止しつつ、上面が導光部材130の上面よりも下方に位置するように配置される。ただし、光源の仮固定を補強するための第1樹脂部材の量は、光源配置部の側面と各端子との間の隙間を塞ぎ、光源を封止しない程度の量であってもよい。 Next, as shown in FIG. 10A , a translucent first adhesive is placed in the gap between the side surface of the light source arrangement portion 131 and the light source 120 so as to reinforce the temporary fixation of the light source 120 to the wiring substrate 110 by the adhesive sheet 118b. A resin member 133Fa is arranged. In the present embodiment, the translucent first resin member 133Fa is arranged such that the top surface thereof is located below the top surface of the light guide member 130 while sealing the light source 120 . However, the amount of the first resin member for reinforcing the temporary fixation of the light source may be such that the gap between the side surface of the light source placement portion and each terminal is closed and the light source is not sealed.

次に、本実施形態では、第1樹脂部材133Faを硬化させる。第1樹脂部材133Faの硬化物は、透光性部材133の第1層133aに相当する。ただし、第1樹脂部材は、後述する各導電性ペースト151F、152Fを配置した後に硬化させてもよい。 Next, in this embodiment, the first resin member 133Fa is cured. A cured product of the first resin member 133Fa corresponds to the first layer 133a of the translucent member 133 . However, the first resin member may be cured after disposing the conductive pastes 151F and 152F, which will be described later.

この際、図10Bに示すように、配線基板110の第2被覆層115に設けられた貫通穴115aから、第1貫通穴116a、第2貫通穴116b、第1配線層113の先端部113a及び中間部113bの一部、並びに、第2配線層114の先端部114a及び中間部114bの一部が、外部に露出している。 At this time, as shown in FIG. 10B, from the through hole 115a provided in the second covering layer 115 of the wiring substrate 110, the first through hole 116a, the second through hole 116b, the tip portion 113a of the first wiring layer 113 and the A portion of the intermediate portion 113b and a portion of the tip portion 114a and the intermediate portion 114b of the second wiring layer 114 are exposed to the outside.

次に、図11A及び図11Bに示すように、第1配線部材151、及び、第2配線部材152を形成する。 Next, as shown in FIGS. 11A and 11B, a first wiring member 151 and a second wiring member 152 are formed.

具体的には、先ず、図11Aに示すように、配線基板110と、シート積層体119と、光源120と、導光部材130と、を有する中間体を、配線基板110から光源120に向かう方向(Z方向)が重力方向Gと概ね一致するように、配置する。 Specifically, first, as shown in FIG. 11A, an intermediate body having a wiring board 110, a sheet laminate 119, a light source 120, and a light guide member 130 is placed in a direction from the wiring board 110 toward the light source 120. (Z direction) is arranged so as to approximately match the gravity direction G.

次に、第1導電性ペースト151Fを、第1貫通穴116a及び第3貫通穴119a内を充填し、かつ、絶縁層116及び第1配線層113に接するように配置する。また、第2導電性ペースト152Fを、第2貫通穴116b及び第4貫通穴119b内を充填し、かつ、絶縁層116及び第2配線層114に接するように配置する。 Next, the first conductive paste 151F is arranged so as to fill the insides of the first through holes 116a and the third through holes 119a and contact the insulating layer 116 and the first wiring layer 113 . Further, the second conductive paste 152F is arranged so as to fill the insides of the second through hole 116b and the fourth through hole 119b and contact the insulating layer 116 and the second wiring layer 114 .

このように配置された第1導電性ペースト151Fは、第1貫通穴116a及び第3貫通穴119aに充填された第1部分151Faと、第1部分151Faに連なり、絶縁層116及び第1配線層113に接する薄膜状の第2部分151Fbと、を有する。第2部分151Fbは、第1部分151Faの一部を露出している。これにより、第1導電性ペースト151Fが硬化するまでの間に、第1部分151Fa内に存在するボイドを、第1部分151Faにおいて第2部分151Fbから露出している表面から容易に逃がすことができる。その結果、第1導電性ペースト151Fの硬化物に含まれるボイドを低減できる。 The first conductive paste 151F arranged in this way continues to the first portion 151Fa filled in the first through hole 116a and the third through hole 119a, the first portion 151Fa, the insulating layer 116 and the first wiring layer. and a thin film-like second portion 151Fb in contact with 113 . The second portion 151Fb exposes part of the first portion 151Fa. As a result, voids existing in the first portion 151Fa can be easily released from the surface of the first portion 151Fa exposed from the second portion 151Fb until the first conductive paste 151F is cured. . As a result, voids included in the cured product of the first conductive paste 151F can be reduced.

同様に、このように配置された第2導電性ペースト152Fは、第2貫通穴116b及び第4貫通穴119bに充填された第3部分152Faと、第3部分152Faに連なり、絶縁層116及び第2配線層114に接する薄膜状の第4部分152Fbと、を有する。第4部分152Fbは、第3部分152Faの一部を露出している。これにより、第2導電性ペースト152Fが硬化するまでの間に、第3部分152Faに存在するボイドを、第3部分152Faにおいて第4部分152Fbから露出している表面から容易に逃がすことができる。その結果、第2導電性ペースト152Fの硬化物に含まれるボイドを低減できる。 Similarly, the second conductive paste 152F arranged in this way continues to the third portion 152Fa filled in the second through hole 116b and the fourth through hole 119b, the third portion 152Fa, and the insulating layer 116 and the third portion 152Fa. and a thin-film fourth portion 152Fb in contact with the second wiring layer 114 . The fourth portion 152Fb exposes part of the third portion 152Fa. As a result, voids existing in the third portion 152Fa can be easily released from the surface of the third portion 152Fa exposed from the fourth portion 152Fb until the second conductive paste 152F hardens. As a result, voids included in the cured product of the second conductive paste 152F can be reduced.

各導電性ペースト151F、152Fは同時に配置されてもよいし、順次配置されてもよい。各導電性ペースト151F、152Fは、未硬化の樹脂材料と、樹脂材料中に分散された1種以上の金属粒子と、を含む。各導電性ペースト151F、152Fを構成する樹脂材料としては、エポキシ等の熱硬化性樹脂が挙げられる。各導電性ペースト151F、152Fに用いられる金属粒子の材料としては、例えば、本実施形態では、銅(Cu)等の第1の金属材料からなるコアと、金(Au)等の第2の金属材料からなり、コアを被覆する被覆層と、からなる。ただし、各配線部材に用いられる金属粒子は、銅(Cu)、銀(Ag)、又は金(Au)等の1種類の金属材料のみからなってもよい。各導電性ペースト151F、152Fには、揮発性の溶媒を更に含んでもよい。 The conductive pastes 151F and 152F may be placed simultaneously or sequentially. Each conductive paste 151F, 152F includes an uncured resin material and one or more metal particles dispersed in the resin material. Thermosetting resin such as epoxy can be used as a resin material forming each of the conductive pastes 151F and 152F. Materials of the metal particles used for each of the conductive pastes 151F and 152F include, for example, a core made of a first metal material such as copper (Cu) and a second metal material such as gold (Au) in the present embodiment. and a covering layer made of a material and covering the core. However, the metal particles used for each wiring member may consist of only one type of metal material such as copper (Cu), silver (Ag), or gold (Au). Each of the conductive pastes 151F and 152F may further contain a volatile solvent.

前述したように、第3貫通穴119aの光源120側の開口は、第1端子122によって塞がれており、第4貫通穴119bの光源120側の開口は、第2端子123によって塞がれている。そのため、各導電性ペースト151F、152Fが、導光部材130の光源配置部131内に漏出することを抑制できる。 As described above, the opening of the third through hole 119 a on the light source 120 side is blocked by the first terminal 122 , and the opening of the fourth through hole 119 b on the light source 120 side is blocked by the second terminal 123 . ing. Therefore, it is possible to prevent the conductive pastes 151F and 152F from leaking into the light source placement portion 131 of the light guide member 130 .

更に、この際、光源配置部131の側面と光源120との隙間が第1樹脂部材133Faの硬化物(透光性部材133の第1層133a)により塞がれている。そのため、各端子122、123が対応する貫通穴119a、119bを完全に塞いでいない場合に、第1樹脂部材133Faの硬化物により、各導電性ペースト151F、152Fが光源配置部131内に漏出することをより一層抑制できる。 Furthermore, at this time, the gap between the side surface of the light source arrangement portion 131 and the light source 120 is filled with the cured material of the first resin member 133Fa (the first layer 133a of the translucent member 133). Therefore, when the through holes 119a and 119b corresponding to the terminals 122 and 123 are not completely blocked, the conductive pastes 151F and 152F leak into the light source arrangement portion 131 due to the cured material of the first resin member 133Fa. can be further suppressed.

次に、図11Bに示すように、第1導電性ペースト151F及び第2導電性ペースト152Fを硬化させる。各導電性ペースト151F、152Fを構成する樹脂材料が熱硬化性樹脂である場合、各導電性ペースト151F、152Fを加熱されることによって硬化する。第1導電性ペースト151Fの硬化物が第1配線部材151に相当し、第2導電性ペースト152Fの硬化物が第2配線部材152に相当する。 Next, as shown in FIG. 11B, the first conductive paste 151F and the second conductive paste 152F are cured. When the resin material forming the conductive pastes 151F and 152F is a thermosetting resin, the conductive pastes 151F and 152F are cured by being heated. A cured product of the first conductive paste 151F corresponds to the first wiring member 151, and a cured product of the second conductive paste 152F corresponds to the second wiring member 152. FIG.

図12は、配線基板の中央部及び配線基板の端部を拡大して示す模式的な下面図である。
図12では、配線基板110の端部において、位置が変化する前の各貫通穴116a、116bを2点鎖線で示している。
絶縁層116は、第1配線層113及び第2配線層114と比較して、温度又は湿度等の環境の変化により収縮又は膨張等の変形が生じやすい。絶縁層116の変形は、例えば、配線基板110を配線基板110を製造した場所から面状光源100を組み立てる場所に搬送する際の温度又は湿度等の環境に応じて生じ得る。また、絶縁層116の変形は、例えば、面状光源100の製造時において、第1樹脂部材133Faを硬化させる際に温度が高くなることにより生じ得る。絶縁層116が変形することにより、矢印で示すように、2つの配線層113、配線層114に対する2つの貫通穴116a、116bの位置が変化する場合がある。このような絶縁層116の変形の影響は、配線基板110のX方向及びY方向の各位置によって異なる。
FIG. 12 is a schematic bottom view showing an enlarged central portion of the wiring board and end portions of the wiring board.
In FIG. 12, the through holes 116a and 116b at the end of the wiring board 110 before their positions change are indicated by two-dot chain lines.
Compared to the first wiring layer 113 and the second wiring layer 114, the insulating layer 116 is more likely to undergo deformation such as contraction or expansion due to environmental changes such as temperature or humidity. The deformation of the insulating layer 116 may occur, for example, depending on the environment such as temperature or humidity when the wiring board 110 is transported from the place where the wiring board 110 is manufactured to the place where the planar light source 100 is assembled. Further, the deformation of the insulating layer 116 may occur due to, for example, an increase in temperature when curing the first resin member 133Fa during manufacturing of the planar light source 100 . Due to the deformation of the insulating layer 116, the positions of the two through holes 116a and 116b with respect to the two wiring layers 113 and 114 may change as indicated by the arrows. The influence of such deformation of the insulating layer 116 differs depending on each position on the wiring board 110 in the X direction and the Y direction.

具体的には、例えば、図12に示すように配線基板110の中央部では、絶縁層116の変形の影響が小さく、第1貫通穴116aと第1配線層113とのX方向における距離E1、及び、第2貫通穴116bと第2配線層114とのX方向における距離E2のそれぞれは、概ね設計値に等しく、例えば距離E1は、距離E2と概ね等しい。一方、配線基板110の端部では、絶縁層116の変形の影響が大きく、2つの貫通穴116a、116bがX方向にずれる。その結果、第1貫通穴116aと第1配線層113とのX方向における距離E1及び第2貫通穴116bと第2配線層114とのX方向における距離E2は、設計値と異なり、例えば、距離E1は距離E2よりも長い。 Specifically, for example, as shown in FIG. 12, in the central portion of the wiring board 110, the influence of the deformation of the insulating layer 116 is small, and the distance E1 between the first through hole 116a and the first wiring layer 113 in the X direction Also, the distance E2 in the X direction between the second through hole 116b and the second wiring layer 114 is approximately equal to the design value, for example, the distance E1 is approximately equal to the distance E2. On the other hand, the edge of the wiring board 110 is greatly affected by the deformation of the insulating layer 116, and the two through holes 116a and 116b are displaced in the X direction. As a result, the distance E1 in the X direction between the first through-hole 116a and the first wiring layer 113 and the distance E2 in the X-direction between the second through-hole 116b and the second wiring layer 114 are different from the design values. E1 is longer than distance E2.

このような場合、配線基板110の各位置において、第1導電性ペースト151Fは、第1貫通穴116a及び第3貫通穴119aの外部に位置する部分のX方向における寸法F1が距離E1に対応するように配置される。同様に、配線基板110の各位置において、第2導電性ペースト152Fは、第2貫通穴116b及び第4貫通穴119bの外部に位置する部分のX方向における寸法F2が距離E2に対応するように配置される。そのため、例えば配線基板110の中央部では、第1配線部材151の寸法F1と第2配線部材152の寸法F2は、概ね等しくなる。一方、配線基板110の端部では、第1配線部材151の寸法F1は、第2配線部材152の寸法F2より大きくなる。 In such a case, at each position on the wiring board 110, the first conductive paste 151F is such that the dimension F1 in the X direction of the portion located outside the first through hole 116a and the third through hole 119a corresponds to the distance E1. are arranged as follows. Similarly, at each position on the wiring board 110, the second conductive paste 152F is applied such that the dimension F2 in the X direction of the portions located outside the second through holes 116b and the fourth through holes 119b corresponds to the distance E2. placed. Therefore, for example, at the central portion of the wiring board 110, the dimension F1 of the first wiring member 151 and the dimension F2 of the second wiring member 152 are approximately equal. On the other hand, the dimension F1 of the first wiring member 151 is larger than the dimension F2 of the second wiring member 152 at the end of the wiring board 110 .

このように、各第1導電性ペースト151Fの寸法F1を、対応する第1配線層113と第1貫通穴116aとのX方向における距離E1に応じた寸法としている。同様に、各第2導電性ペースト152Fの寸法F2を、対応する第2配線層114と第2貫通穴116bとのX方向における距離E2に応じた寸法としている。これにより、各第1電極124bと第1配線層113とを一対一で電気的に接続し、各第2電極124cと第2配線層114と一対一で電気的に接続できる。すなわち、2つの配線層113、114と2つの電極124b、124cとの電気的な接続構造において、短絡又は開放等の接続不良の発生を抑制できる。短絡とは、例えば2つの配線層113、114のうちの少なくとも一方が、対応する配線部材では無い方の配線部材に接続された状態である。開放とは、例えば2つの配線層113、114のうちの少なくとも一方が、いずれの配線部材にも接続されていない状態である。 In this manner, the dimension F1 of each first conductive paste 151F is set according to the distance E1 in the X direction between the corresponding first wiring layer 113 and the first through hole 116a. Similarly, the dimension F2 of each second conductive paste 152F is set according to the distance E2 in the X direction between the corresponding second wiring layer 114 and the second through hole 116b. Thus, the first electrodes 124b and the first wiring layers 113 can be electrically connected one-to-one, and the second electrodes 124c and the second wiring layers 114 can be electrically connected one-to-one. That is, in the electrical connection structure between the two wiring layers 113, 114 and the two electrodes 124b, 124c, it is possible to suppress the occurrence of connection failures such as short circuits or open circuits. A short circuit is, for example, a state in which at least one of the two wiring layers 113 and 114 is connected to a wiring member other than the corresponding wiring member. Open means, for example, a state in which at least one of the two wiring layers 113 and 114 is not connected to any wiring member.

また、絶縁層116が変形することにより、図12に示すように、2つの貫通穴116a、116bがY方向等の2つの貫通穴116a、116bの配列方向(X方向)と交差する方向にずれる場合がある。これに対して、上面視で2つの配線層113、114は、2つの貫通穴116a、116bを挟むように配置されている。これにより、2つの貫通穴116a、116bが、2つの貫通穴116a、116bの配列方向及び2つの貫通穴116a、116bの配列方向と交差する方向のいずれの方向にずれた場合にも、第1貫通穴116aが第1配線層113から離隔すること、及び、第2貫通穴116bが第2配線層114から離隔することを抑制できる。また、上面視において第1貫通穴116aと第2貫通穴116bとの間に第1配線層113及び第2配線層114が配置されていないため、第1貫通穴116aが第2配線層114に近接すること、及び、第2貫通穴116bが第1配線層113に近接することを抑制できる。その結果、配線基板110における配線層113、114と光源120における電極124b、124cとの電気的な接続構造において、短絡又は開放等の接続不良の発生を抑制できる。 Moreover, due to the deformation of the insulating layer 116, as shown in FIG. 12, the two through holes 116a and 116b are displaced in a direction intersecting the arrangement direction (X direction) of the two through holes 116a and 116b, such as the Y direction. Sometimes. On the other hand, the two wiring layers 113 and 114 are arranged so as to sandwich the two through holes 116a and 116b when viewed from above. As a result, even if the two through holes 116a and 116b are displaced in any of the direction in which the two through holes 116a and 116b are arranged and the direction that intersects the direction in which the two through holes 116a and 116b are arranged, the first Separation of the through hole 116 a from the first wiring layer 113 and separation of the second through hole 116 b from the second wiring layer 114 can be suppressed. In addition, since the first wiring layer 113 and the second wiring layer 114 are not arranged between the first through hole 116a and the second through hole 116b when viewed from above, the first through hole 116a is located in the second wiring layer 114. The proximity and the proximity of the second through hole 116b to the first wiring layer 113 can be suppressed. As a result, in the electrical connection structure between the wiring layers 113 and 114 on the wiring substrate 110 and the electrodes 124b and 124c on the light source 120, it is possible to suppress the occurrence of connection failures such as short circuits or open circuits.

図13Aは、面状光源の製造方法を示す模式的な断面図である。
図13Bは、面状光源の製造方法を示す模式的な下面図である。
次に、図13A及び図13Bに示すように、第1配線部材151及び第2配線部材152を覆うように被覆層153を配置する。
具体的には、被覆層153は、第2被覆層115に設けられた貫通穴115aを覆うように配置される。これにより、第1配線部材151、第2配線部材152、第1配線層113、及び第2配線層114において外部に露出していた部分が被覆層153によって覆われる。被覆層153と第1配線部材151との間、及び被覆層153と第2配線部材152との間には、空隙が存在してもよい。また、被覆層153と第1配線部材151との間、及び被覆層153と第2配線部材152との間には、空隙が存在しなくてもよい。
FIG. 13A is a schematic cross-sectional view showing a method of manufacturing a planar light source.
FIG. 13B is a schematic bottom view showing the manufacturing method of the planar light source.
Next, as shown in FIGS. 13A and 13B, a covering layer 153 is arranged to cover the first wiring member 151 and the second wiring member 152 .
Specifically, the covering layer 153 is arranged so as to cover the through hole 115 a provided in the second covering layer 115 . As a result, portions of the first wiring member 151 , the second wiring member 152 , the first wiring layer 113 , and the second wiring layer 114 exposed to the outside are covered with the covering layer 153 . A gap may exist between the covering layer 153 and the first wiring member 151 and between the covering layer 153 and the second wiring member 152 . Further, there may be no gap between the covering layer 153 and the first wiring member 151 and between the covering layer 153 and the second wiring member 152 .

図14は、面状光源の製造方法を示す模式的な断面図である。
図15Aは、面状光源の製造方法を示す模式的な断面図である。
14A and 14B are schematic cross-sectional views showing a method for manufacturing a planar light source.
FIG. 15A is a schematic cross-sectional view showing a method of manufacturing a planar light source.

次に、図14に示すように、光源配置部131内であって、第1樹脂部材の硬化物(透光性部材133の第1層133a)上に、透光性を有する第2樹脂部材133Fbを配置し、硬化させる。第2樹脂部材133Fbは、波長変換粒子を含んでもよい。第2樹脂部材133Fbの硬化物は、透光性部材133の第2層133bに相当する。これにより、第1層133a及び第2層133bからなる透光性部材133が形成される。 Next, as shown in FIG. 14, in the light source arrangement portion 131, on the cured product of the first resin member (the first layer 133a of the translucent member 133), a second resin member having translucency is formed. 133Fb is deposited and cured. The second resin member 133Fb may contain wavelength conversion particles. A cured product of the second resin member 133Fb corresponds to the second layer 133b of the translucent member 133 . Thereby, the translucent member 133 composed of the first layer 133a and the second layer 133b is formed.

次に、図15Aに示すように、透光性部材133上に第2光調整部材134を配置し、区画溝132内に、区画部材135を配置する。第1配線部材151の下面のうち、第1貫通穴116aの直下に位置する領域は、平坦である。また、第2配線部材152の下面のうち、第2貫通穴116bの直下に位置する領域は、平坦である。以上により、面状光源100が形成される。 Next, as shown in FIG. 15A , the second light adjustment member 134 is arranged on the translucent member 133 and the partitioning member 135 is arranged in the partitioning groove 132 . A region of the lower surface of the first wiring member 151 located directly below the first through hole 116a is flat. In addition, the area of the lower surface of the second wiring member 152 that is located directly below the second through hole 116b is flat. As described above, the planar light source 100 is formed.

図15Bは、第1配線部材、第2配線部材、及び被覆層の形状の他の例を示す模式的な断面図である。
第1配線部材151の下面のうち、第1貫通穴116aの直下に位置する領域151sは、上方向に向かって窪んでいてもよい。また、第2配線部材152の下面のうち、第2貫通穴116bの直下に位置する領域152sは、上方向に向かって窪んでいてもよい。図15Bに示す例では、被覆層153の下面は、概ね平坦である。ただし、被覆層153の下面において、光源120の直下に位置する領域は、下方向に盛り上がっていてもよい。また、被覆層153の下面において、領域151sの直下に位置する及び領域152sの直下に位置する領域は、各配線部材151、152の下面に沿って、上方向に向かって窪んでいてもよい。
FIG. 15B is a schematic cross-sectional view showing another example of the shapes of the first wiring member, the second wiring member, and the covering layer.
Of the lower surface of the first wiring member 151, a region 151s located directly below the first through hole 116a may be recessed upward. In addition, of the lower surface of the second wiring member 152, a region 152s located directly below the second through hole 116b may be recessed upward. In the example shown in FIG. 15B, the lower surface of covering layer 153 is generally flat. However, in the lower surface of the coating layer 153, the area directly below the light source 120 may swell downward. In addition, on the lower surface of the covering layer 153 , the regions directly under the regions 151 s and 152 s may be recessed upward along the lower surfaces of the wiring members 151 and 152 .

例えば、各導電性ペースト151F、152Fが硬化するときに、各導電性ペースト151F、152Fに含まれる溶剤等の希釈材が抜けることにより、上記の形状を有する配線部材151、152が形成される。 For example, when the conductive pastes 151F and 152F are cured, diluents such as solvents contained in the conductive pastes 151F and 152F are removed, thereby forming the wiring members 151 and 152 having the shapes described above.

図15Cは、第1配線部材、第2配線部材、及び被覆層の形状の他の例を示す模式的な断面図である。
第1配線部材151の下面のうち、第1貫通穴116aの直下に位置する領域151sは、下方向に向かって盛り上がっていてもよい。また、第2配線部材152の下面のうち、第2貫通穴116bの直下に位置する領域152sは、下方向に向かって盛り上がっていてもよい。図15Cに示す例では、被覆層153の下面は、概ね平坦である。ただし、被覆層153の下面において、光源120の直下に位置する領域は、下方向に盛り上がっていてもよい。また、被覆層153の下面において、領域151sの直下に位置する及び領域152sの直下に位置する領域は、各配線部材151、152の下面に沿って、下方向に盛り上がっていてもよい 。
FIG. 15C is a schematic cross-sectional view showing another example of shapes of the first wiring member, the second wiring member, and the covering layer.
A region 151s of the lower surface of the first wiring member 151, which is positioned directly below the first through hole 116a, may swell downward. In addition, of the lower surface of the second wiring member 152, a region 152s located directly below the second through hole 116b may swell downward. In the example shown in FIG. 15C, the lower surface of covering layer 153 is generally flat. However, in the lower surface of the coating layer 153, the area directly below the light source 120 may swell downward. Further, on the lower surface of the covering layer 153 , regions located directly under the regions 151 s and 152 s may swell downward along the lower surfaces of the wiring members 151 and 152 .

例えば、各導電性ペースト151F、152Fにおいて各貫通穴116a、116bの直上に位置する部分が上方向に盛り上がるように、各導電性ペースト151F、152Fをディスペンサで配置することにより、上記の形状を有する配線部材151、152が形成される。また、例えば、各貫通穴116a、116bの直上に位置する部分が上方向に盛り上がるように、各導電性ペースト151F、152Fを複数回印刷することにより、上記の形状を有する配線部材151、152が形成される。 For example, by arranging the conductive pastes 151F and 152F with a dispenser so that the portions of the conductive pastes 151F and 152F located directly above the through holes 116a and 116b swell upward, the above shape can be obtained. Wiring members 151 and 152 are formed. Further, for example, by printing the conductive pastes 151F and 152F a plurality of times so that the portions located directly above the through holes 116a and 116b swell upward, the wiring members 151 and 152 having the shapes described above are formed. It is formed.

各領域151s、152sが、平坦である場合又は下方向に盛り上がっている場合、各配線部材151、152を配線基板110に押し付ける方向の力が作用し易い。そのため、各配線部材151、152を配線基板110に対して強固に固定できる。
また、面状光源100を駆動させた場合、各光源120の点灯又は非点灯等の状態によって面状光源100の温度が上昇したり下降したりする。これにより、面状光源100を構成する配線基板110、シート積層体119、導光部材130、及び配線部材151、152が変形する場合がある。この際、これらの熱膨張率が相互に異なるため、配線部材151、152に応力が加わり、クラックが生じる可能性がある。本実施形態では、上述したように、各配線部材151、152を配線基板110に対して強固に固定することで、配線部材151、152に作用する応力を緩和できる。その結果、配線部材151、152にクラックが生じることを抑制できる。
When the regions 151s and 152s are flat or protrude downward, a force in the direction of pressing the wiring members 151 and 152 against the wiring board 110 is likely to act. Therefore, each wiring member 151 and 152 can be firmly fixed to the wiring board 110 .
Further, when the planar light source 100 is driven, the temperature of the planar light source 100 rises or falls depending on whether each light source 120 is lit or not. As a result, the wiring substrate 110, the sheet laminate 119, the light guide member 130, and the wiring members 151 and 152 that constitute the planar light source 100 may be deformed. At this time, since the coefficients of thermal expansion are different from each other, stress is applied to the wiring members 151 and 152, and cracks may occur. In this embodiment, as described above, by firmly fixing the wiring members 151 and 152 to the wiring substrate 110, the stress acting on the wiring members 151 and 152 can be alleviated. As a result, the occurrence of cracks in the wiring members 151 and 152 can be suppressed.

光反射性シート117の材料は、導光部材130より小さい熱膨張率の材料であるのが好ましい。さらに、光反射性シート117の材料は、配線基板110より大きい熱膨張率の材料であることが好ましい。これにより、導光部材130と配線基板110との間の熱膨張率差を緩和することができる。導光部材130がポリカーボネートであれば、熱膨張率はおよそ60ppm/℃である。光反射性シート117の主成分がポリエチレンテレフタレートであれば、熱膨張率はおよそ25ppm/℃である。配線基板110がポリイミド及び銅を含む場合、熱膨張率はおよそ17ppm/℃である。
以上により、面状光源100の強度を向上させることができる。
The material of the light reflective sheet 117 is preferably a material with a smaller thermal expansion coefficient than the light guide member 130 . Furthermore, it is preferable that the material of the light reflective sheet 117 is a material having a higher coefficient of thermal expansion than the wiring board 110 . Thereby, the difference in thermal expansion coefficient between the light guide member 130 and the wiring board 110 can be reduced. If the light guide member 130 is polycarbonate, the coefficient of thermal expansion is approximately 60 ppm/°C. If the main component of the light reflective sheet 117 is polyethylene terephthalate, the coefficient of thermal expansion is approximately 25 ppm/°C. If the wiring substrate 110 contains polyimide and copper, the coefficient of thermal expansion is approximately 17 ppm/°C.
As described above, the intensity of the planar light source 100 can be improved.

ただし、面状光源の製造方法は、上記に限定されない。例えば、光源配置部内に光源の仮固定を補強するための第1樹脂部材は、光源配置部を充填するように配置され、第2樹脂部材を配置する工程はなくてもよい。また、各導電性ペーストを配置する前に、光源配置部内に光源の仮固定を補強するための第1樹脂部材を配置しなくてもよい。また、区画溝を形成する工程、及び第2光調整部材及び区画部材を配置する工程は、第1配線部材及び第2配線部材を形成する工程よりも前に行われてもよい。また、導光部材を配置する工程は、光源を配置する工程の後であってもよい。 However, the manufacturing method of the planar light source is not limited to the above. For example, the first resin member for reinforcing temporary fixation of the light source in the light source arrangement portion may be arranged so as to fill the light source arrangement portion, and the step of arranging the second resin member may be omitted. Moreover, it is not necessary to arrange the first resin member for reinforcing the temporary fixation of the light source in the light source arrangement portion before arranging each conductive paste. Further, the step of forming the dividing grooves and the step of arranging the second light adjustment member and the dividing member may be performed before the step of forming the first wiring member and the second wiring member. Moreover, the step of arranging the light guide member may be performed after the step of arranging the light source.

次に、本実施形態に係る面状光源100の動作について説明する。
第1配線層113は、第1配線部材151及び第1端子122を介して光源120の第1電極124bに電気的に接続されており、第2配線層114は、第2配線部材152及び第2端子123を介して光源120の第2電極124cに電気的に接続されている。そのため、外部電源から第1配線層113及び第2配線層114を介して光源120に給電することで、光源120を点灯できる。
Next, operation of the planar light source 100 according to this embodiment will be described.
The first wiring layer 113 is electrically connected to the first electrode 124b of the light source 120 via the first wiring member 151 and the first terminal 122, and the second wiring layer 114 is connected to the second wiring member 152 and the first terminal 122. It is electrically connected to the second electrode 124 c of the light source 120 via two terminals 123 . Therefore, by supplying power to the light source 120 from an external power supply through the first wiring layer 113 and the second wiring layer 114, the light source 120 can be lit.

面状光源100は、例えば、液晶ディスプレイのバックライトに適用できる。複数の光源120毎に発光領域Rを区画したバックライトにおいては、各光源120の出力を個別に調整することでローカルディミングを高精度に行うことができる。 The planar light source 100 can be applied, for example, as a backlight for a liquid crystal display. In the backlight in which the light emitting region R is divided for each of the plurality of light sources 120, local dimming can be performed with high accuracy by adjusting the output of each light source 120 individually.

次に、本実施形態の効果について説明する。
本実施形態に係る面状光源100は、配線基板110と、光源120と、導光部材130と、第1配線部材151と、第2配線部材152と、を備える。配線基板110は、互いに離隔した第1貫通穴116a及び第2貫通穴116bが設けられた絶縁層116と、絶縁層116の下に配置され、第1貫通穴116a及び第2貫通穴116bから離隔した第1配線層113及び第2配線層114と、を有する。光源120は、配線基板110上に配置され、互いに離隔した第1電極124b及び第2電極124cを有する。導光部材130は、配線基板110上に配置され、光源120の周囲を囲んでいる。第1配線部材151は、第1部分151aと、第2部分151bと、を有する。第1部分151aは、第1貫通穴116a内を充填し、第1電極124bに電気的に接続されている。第2部分151bは、絶縁層116の下に配置され、第1部分151aに連なり、第1配線層113に接している。第2配線部材152は、第3部分152aと、第4部分152bと、を有する。第3部分152aは、第2貫通穴116b内を充填し、第2電極124cに電気的に接続されている。第4部分152bは、絶縁層116の下に配置され、第3部分152aに連なり、第2配線層114に接している。上面視において第1配線層113と第2配線層114が第1貫通穴116a及び第2貫通穴116bを挟むように配置されている。
Next, the effects of this embodiment will be described.
A planar light source 100 according to this embodiment includes a wiring substrate 110 , a light source 120 , a light guide member 130 , a first wiring member 151 and a second wiring member 152 . The wiring substrate 110 is disposed under an insulating layer 116 having a first through hole 116a and a second through hole 116b separated from each other, and the insulating layer 116, and is separated from the first through hole 116a and the second through hole 116b. and a first wiring layer 113 and a second wiring layer 114 . The light source 120 is disposed on the wiring board 110 and has a first electrode 124b and a second electrode 124c separated from each other. Light guide member 130 is arranged on wiring board 110 and surrounds light source 120 . The first wiring member 151 has a first portion 151a and a second portion 151b. The first portion 151a fills the first through hole 116a and is electrically connected to the first electrode 124b. The second portion 151 b is arranged under the insulating layer 116 , connected to the first portion 151 a and in contact with the first wiring layer 113 . The second wiring member 152 has a third portion 152a and a fourth portion 152b. The third portion 152a fills the inside of the second through hole 116b and is electrically connected to the second electrode 124c. The fourth portion 152 b is arranged under the insulating layer 116 , continues to the third portion 152 a, and contacts the second wiring layer 114 . When viewed from above, the first wiring layer 113 and the second wiring layer 114 are arranged so as to sandwich the first through hole 116a and the second through hole 116b.

このように、互いに離隔した第1貫通穴116aと第1配線層113は、第1貫通穴116a及び第1配線層113の位置に応じて設けられた第1配線部材151によって電気的に接続されており、互いに離隔した第2貫通穴116bと第2配線層114は、第2貫通穴116b及び第2配線層114の位置に応じて設けられた第2配線部材152によって電気的に接続されている。更に、上面視において第1配線層113と第2配線層114が、第1貫通穴116a及び第2貫通穴116bを挟むように配置されている。すなわち、上面視において第1配線層113と第2配線層114との間に第1貫通穴116a及び第2貫通穴116bが配置されている一方、第1貫通穴116aと第2貫通穴116bとの間に第1配線層113及び第2配線層114が配置されていない。そのため、各配線部材151、152を形成する際に配線層113、114に対する貫通穴116a、116bの位置がずれていたとしても、配線基板110における配線層113、114と光源120における電極124b、124cとの電気的な接続構造において、短絡又は開放等の接続不良の発生を抑制できる。 In this way, the first through hole 116 a and the first wiring layer 113 that are separated from each other are electrically connected by the first wiring member 151 provided according to the positions of the first through hole 116 a and the first wiring layer 113 . The second through hole 116b and the second wiring layer 114, which are separated from each other, are electrically connected by a second wiring member 152 provided according to the positions of the second through hole 116b and the second wiring layer 114. there is Further, when viewed from above, the first wiring layer 113 and the second wiring layer 114 are arranged so as to sandwich the first through hole 116a and the second through hole 116b. That is, in top view, the first through hole 116a and the second through hole 116b are arranged between the first wiring layer 113 and the second wiring layer 114, while the first through hole 116a and the second through hole 116b The first wiring layer 113 and the second wiring layer 114 are not arranged between them. Therefore, even if the positions of the through holes 116a and 116b are misaligned with respect to the wiring layers 113 and 114 when forming the wiring members 151 and 152, the wiring layers 113 and 114 on the wiring substrate 110 and the electrodes 124b and 124c on the light source 120 are not aligned. In the electrical connection structure with, it is possible to suppress the occurrence of connection failure such as short circuit or open circuit.

また、上面視において第1貫通穴116aの中心c1と第2貫通穴116bの中心c2との距離D1は、第1電極124bの中心c3と第2電極124cの中心c4との距離D2よりも長い(D1>D2)。そのため、面状光源100の製造時などに絶縁層116が変形した場合に、第1配線部材151と第2配線部材152とが近接又は接触することを抑制できる。 Further, when viewed from above, the distance D1 between the center c1 of the first through hole 116a and the center c2 of the second through hole 116b is longer than the distance D2 between the center c3 of the first electrode 124b and the center c4 of the second electrode 124c. (D1>D2). Therefore, when the insulating layer 116 is deformed during manufacturing of the planar light source 100 or the like, the first wiring member 151 and the second wiring member 152 can be prevented from approaching or coming into contact with each other.

また、第1配線層113の側面113eのうち、上面視において第1貫通穴116aに対向する領域(第1領域113s1)は、第1貫通穴116aから離れる方向に凹状であり、第2配線層114の側面114eのうち、上面視において第2貫通穴116bに対向する領域(第1領域114s1)は、第2貫通穴116bから離れる方向に凹状である。 Further, of the side surface 113e of the first wiring layer 113, a region (first region 113s1) facing the first through hole 116a when viewed from above is concave in a direction away from the first through hole 116a, and is recessed in a direction away from the first through hole 116a. Of the side surface 114e of 114, a region (first region 114s1) facing the second through hole 116b in top view is concave in a direction away from the second through hole 116b.

そのため、上面視における各領域113s1、114s1の形状が直線状である場合と比較して、図4Aに示すように、上面視における第1領域113s1の各位置と第1部分151aの中心c1との距離D3の最大値、及び、上面視における第1領域114s1の各位置と第3部分152aの中心c2との距離D4の最大値を小さくできる。その結果、第1配線部材151及び第2配線部材152の内部抵抗を低減できる。 Therefore, compared to the case where the regions 113s1 and 114s1 are linear in shape when viewed from above, as shown in FIG. The maximum value of the distance D3 and the maximum value of the distance D4 between each position of the first region 114s1 and the center c2 of the third portion 152a in top view can be reduced. As a result, the internal resistance of the first wiring member 151 and the second wiring member 152 can be reduced.

また、上面視における第1貫通穴116aの形状及び第2貫通穴116bの形状のそれぞれは、円形であり、第1配線層113の側面113eのうち、上面視において第1貫通穴116aに対向する領域(第1領域113s1)の形状、及び、第2配線層114の側面114eのうち、上面視において第2貫通穴116bに対向する領域(第1領域114s1)の形状のそれぞれは、円弧状である。このように第1配線層113の第1領域113s1を第1貫通穴116aの形状に対応した形状とすることで、上面視における第1領域113s1の各位置と第1部分151aの中心c1との距離D3を概ね一定にできる。第2配線層114についても同様である。その結果、第1配線部材151及び第2配線部材152の内部抵抗を低減できる。 Further, the shape of the first through hole 116a and the shape of the second through hole 116b in top view are circular, and the side surface 113e of the first wiring layer 113 faces the first through hole 116a in top view. The shape of the region (first region 113s1) and the shape of the region (first region 114s1) of the side surface 114e of the second wiring layer 114 facing the second through hole 116b when viewed from the top are arc-shaped. be. In this way, by forming the first region 113s1 of the first wiring layer 113 into a shape corresponding to the shape of the first through hole 116a, each position of the first region 113s1 in top view and the center c1 of the first portion 151a The distance D3 can be kept substantially constant. The same applies to the second wiring layer 114 . As a result, the internal resistance of the first wiring member 151 and the second wiring member 152 can be reduced.

また、光源120は、第1電極124bの下に配置され、第1部分151aの上端に接し、上面視における面積が第1電極124bの面積以上である第1端子122と、第2電極124cの下に配置され、第3部分152aの上端に接し、上面視における面積が第2電極124cの面積以上である第2端子123と、を更に有する。そのため、第1端子122及び第2端子123の位置に応じて、互いに離隔した第1貫通穴116a及び第2貫通穴116bを設けることができる。 In addition, the light source 120 is arranged under the first electrode 124b, is in contact with the upper end of the first portion 151a, and has a first terminal 122 whose area in top view is equal to or larger than the area of the first electrode 124b, and the second electrode 124c. It further has a second terminal 123 disposed below, in contact with the upper end of the third portion 152a, and having an area as viewed from above that is equal to or larger than the area of the second electrode 124c. Therefore, according to the positions of the first terminal 122 and the second terminal 123, the first through hole 116a and the second through hole 116b that are separated from each other can be provided.

また、第1端子122は、上面視において第1貫通穴116aを覆っており、第2端子123は、上面視において第2貫通穴116bを覆っている。そのため、各端子122、123と各配線部材151、152との接触面積を大きくすることができる。これにより、各端子122、123と各配線部材151、152との接続を強固にできる。 The first terminal 122 covers the first through hole 116a in top view, and the second terminal 123 covers the second through hole 116b in top view. Therefore, the contact areas between the terminals 122 and 123 and the wiring members 151 and 152 can be increased. Thereby, the connection between the terminals 122 and 123 and the wiring members 151 and 152 can be strengthened.

また、面状光源100は、第1配線部材151及び第2配線部材152を覆う被覆層153を更に備える。そのため、各配線部材151、152が外部に露出することを抑制できる。 Moreover, the planar light source 100 further includes a covering layer 153 that covers the first wiring member 151 and the second wiring member 152 . Therefore, it is possible to prevent the wiring members 151 and 152 from being exposed to the outside.

また、第1配線部材151及び第2配線部材152のそれぞれは、樹脂材料からなる母材と、母材中に設けられた少なくとも1種の金属粒子と、を有する。このように、各配線部材151、152は、導電性ペースト151F、152Fからなる。そのため、面状光源100の製造時などに絶縁層116の変形により、2つの貫通穴116a、116bと2つの配線層113、114との相対的な位置が変化したとしても、各導電性ペースト151F、152Fにより、2つの貫通穴116a、116bと2つの配線層113、114との相対的な位置に応じた第1配線部材151及び第2配線部材152を容易に形成できる。 Also, each of the first wiring member 151 and the second wiring member 152 has a base material made of a resin material and at least one kind of metal particles provided in the base material. Thus, each wiring member 151, 152 is made of conductive paste 151F, 152F. Therefore, even if the relative positions of the two through-holes 116a and 116b and the two wiring layers 113 and 114 change due to deformation of the insulating layer 116 during manufacturing of the planar light source 100, each conductive paste 151F , 152F, the first wiring member 151 and the second wiring member 152 can be easily formed according to the relative positions of the two through holes 116a and 116b and the two wiring layers 113 and 114. FIG.

また、本実施形態に係る面状光源100の製造方法は、互いに離隔した第1貫通穴116a及び第2貫通穴116bが設けられた絶縁層116と、絶縁層116の下に配置され、第1貫通穴116a及び第2貫通穴116bから離隔した第1配線層113及び第2配線層114と、を有し、上面視において第1配線層113と第2配線層114が第1貫通穴116a及び第2貫通穴116bを挟むように配置された配線基板110を、準備する工程と、配線基板110の上に、光源120が配置される光源配置部131が設けられた導光部材130を配置する工程と、配線基板110の上に、光源120を配置する工程と、第1貫通穴116a内を充填し、第1配線層113に接し、光源120の第1電極124bに電気的に接続された第1配線部材151と、第1配線部材151から離隔し、第2貫通穴116b内を充填し、第2配線層114に接し、光源120の第2電極124cに電気的に接続された第2配線部材152を形成する工程と、を備える。 In addition, the method for manufacturing the planar light source 100 according to the present embodiment includes the insulating layer 116 provided with the first through hole 116a and the second through hole 116b separated from each other, and the insulating layer 116 arranged below the first through hole 116, The first wiring layer 113 and the second wiring layer 114 are separated from the through hole 116a and the second through hole 116b. A step of preparing the wiring substrate 110 arranged so as to sandwich the second through hole 116b, and arranging the light guide member 130 provided with the light source arrangement portion 131 on which the light source 120 is arranged on the wiring substrate 110. a step of arranging the light source 120 on the wiring substrate 110; A first wiring member 151 and a second wiring member 151 that is separated from the first wiring member 151 , fills the second through hole 116 b , is in contact with the second wiring layer 114 , and is electrically connected to the second electrode 124 c of the light source 120 . and forming the wiring member 152 .

このように、面状光源100の製造時などに絶縁層116の変形により2つ配線層113、114に対する2つの貫通穴116a、116bの位置が変化した場合に、2つの配線層113、114と2つの貫通穴116a、116bの位置に応じた配線部材151、152を形成する。更に、上面視において第1配線層113と第2配線層114が、第1貫通穴116a及び第2貫通穴116bを挟むように配置されている。そのため、各配線部材151、152を形成する際に配線層113、114に対する貫通穴116a、116bの位置がずれていたとしても、配線基板110における配線層113、114と光源120における電極124b、124cとの電気的な接続構造において、短絡又は開放等の接続不良の発生を抑制できる。 As described above, when the positions of the two through holes 116a and 116b with respect to the two wiring layers 113 and 114 are changed due to deformation of the insulating layer 116 during manufacturing of the planar light source 100, the two wiring layers 113 and 114 and Wiring members 151 and 152 are formed according to the positions of the two through holes 116a and 116b. Further, when viewed from above, the first wiring layer 113 and the second wiring layer 114 are arranged so as to sandwich the first through hole 116a and the second through hole 116b. Therefore, even if the positions of the through holes 116a and 116b are misaligned with respect to the wiring layers 113 and 114 when forming the wiring members 151 and 152, the wiring layers 113 and 114 on the wiring substrate 110 and the electrodes 124b and 124c on the light source 120 are not aligned. In the electrical connection structure with, it is possible to suppress the occurrence of connection failure such as short circuit or open circuit.

また、第1配線部材151及び第2配線部材152を形成する工程は、第1導電性ペースト151Fを、第1貫通穴116a内を充填し、かつ、第1配線層113に接するように配置し、第2導電性ペースト152Fを、第2貫通穴116b内を充填し、かつ、第2配線層114に接するように配置する工程と、第1導電性ペースト151F及び第2導電性ペースト152Fを硬化させる工程と、を有する。このように、各導電性ペースト151F、152Fを配線基板110における各貫通穴116a、116bと各配線層113、114との距離に応じて配置する。そのため、絶縁層116の変形により、2つの貫通穴116a、116bと2つの配線層113、114との相対的な位置が変化したとしても、2つの配線層113、114と2つの電極124b、124cとを一対一で接続できる。その結果、配線基板110における配線層113、114と光源120における電極124b、124cとの電気的な接続構造において、接続不良の発生を抑制できる。 In the step of forming the first wiring member 151 and the second wiring member 152, the first conductive paste 151F is filled in the first through hole 116a and arranged so as to be in contact with the first wiring layer 113. filling the second through hole 116b with the second conductive paste 152F and placing it in contact with the second wiring layer 114; and curing the first conductive paste 151F and the second conductive paste 152F. and a step of causing In this way, the conductive pastes 151F and 152F are arranged according to the distances between the through holes 116a and 116b and the wiring layers 113 and 114 in the wiring substrate 110, respectively. Therefore, even if the relative positions of the two through holes 116a and 116b and the two wiring layers 113 and 114 change due to the deformation of the insulating layer 116, the two wiring layers 113 and 114 and the two electrodes 124b and 124c can be connected one-to-one. As a result, in the electrical connection structure between the wiring layers 113 and 114 on the wiring board 110 and the electrodes 124b and 124c on the light source 120, the occurrence of poor connection can be suppressed.

また、本実施形態における面状光源100の製造方法は、導光部材130及び光源120を配置する工程の後であって、第1配線部材151及び第2配線部材152を形成する工程の前に、光源配置部131内であって導光部材130と光源120との隙間に透光性を備える樹脂部材(第1樹脂部材133Fa)を配置する工程を更に備える。そのため、樹脂部材(第1樹脂部材133Fa)により、光源配置部131内に各導電性ペースト151F、152Fが漏出することを抑制できる。 In addition, in the method of manufacturing the planar light source 100 according to the present embodiment, after the step of arranging the light guide member 130 and the light source 120 and before the step of forming the first wiring member 151 and the second wiring member 152, and placing a translucent resin member (first resin member 133Fa) in the gap between the light guide member 130 and the light source 120 within the light source placement portion 131 . Therefore, the resin member (first resin member 133Fa) can prevent the conductive pastes 151F and 152F from leaking into the light source arrangement portion 131. FIG.

また、光源120は、第1電極124bの下に配置された第1端子122と、第2電極124cの下に配置された第2端子123と、を更に有し、光源120は、上面視において第1端子122が第1貫通穴116aを覆い、第2端子123が第2貫通穴116bを覆うように配置される。そのため、各貫通穴116a、116bの光源120側の開口から各導電性ペースト151F、152Fが漏出することを抑制できる。 In addition, the light source 120 further has a first terminal 122 arranged under the first electrode 124b and a second terminal 123 arranged under the second electrode 124c. The first terminal 122 is arranged to cover the first through hole 116a, and the second terminal 123 is arranged to cover the second through hole 116b. Therefore, it is possible to prevent the conductive pastes 151F and 152F from leaking from the openings of the through holes 116a and 116b on the light source 120 side.

<第2の実施形態>
次に、第2の実施形態について説明する。
図16は、本実施形態に係る面状光源の一部を拡大して示す模式的な断面図である。
本実施形態に係る面状光源200は、絶縁層216の第1貫通穴216aの周辺部212a及び第2貫通穴216bの周辺部212bの形状、並びに、シート積層体219の第3貫通穴219aの周辺部219c及び第4貫通穴219bの周辺部219dの形状において、第1の実施形態に係る面状光源100と相違する。以下、詳述する。
なお、以下の説明においては、原則として、第1の実施形態との相違点のみを説明する。以下に説明する事項以外は、第1の実施形態と同様である。後述する他の実施形態についても同様である。
<Second embodiment>
Next, a second embodiment will be described.
FIG. 16 is a schematic cross-sectional view showing an enlarged part of the planar light source according to this embodiment.
In the planar light source 200 according to the present embodiment, the shape of the peripheral portion 212a of the first through hole 216a and the peripheral portion 212b of the second through hole 216b of the insulating layer 216, and the shape of the third through hole 219a of the sheet laminate 219 The shapes of the peripheral portion 219c and the peripheral portion 219d of the fourth through hole 219b are different from those of the planar light source 100 according to the first embodiment. Details will be described below.
In addition, in the following description, in principle, only differences from the first embodiment will be described. Except for the matters described below, this embodiment is the same as the first embodiment. The same applies to other embodiments described later.

配線基板210は、ベース層211と、ベース層211の上に配置された第1被覆層212と、ベース層211の下に配置された第1配線層213及び第2配線層214と、ベース層211の下に配置された第2被覆層215と、を有する。ベース層211及び第1被覆層212が、絶縁層216に相当する。 The wiring substrate 210 includes a base layer 211, a first covering layer 212 arranged on the base layer 211, a first wiring layer 213 and a second wiring layer 214 arranged below the base layer 211, and a base layer 211. and a second coating layer 215 positioned below 211 . The base layer 211 and the first covering layer 212 correspond to the insulating layer 216 .

絶縁層216は、第1貫通穴216aを囲む第1周辺部212aと、第2貫通穴216bを囲む第2周辺部212bと、第1周辺部212a及び第2周辺部212bの周囲に位置し、X方向及びY方向に概ね平行な平坦部212cと、を有する。 The insulating layer 216 is positioned around the first peripheral portion 212a surrounding the first through hole 216a, the second peripheral portion 212b surrounding the second through hole 216b, and the first peripheral portion 212a and the second peripheral portion 212b, and a flat portion 212c generally parallel to the X and Y directions.

第1周辺部212aの上面及び下面は、下方に向かうように湾曲している。同様に、第2周辺部212bの上面及び下面は、下方に向かうように湾曲している。第1周辺部212aの上面及び第2周辺部212bの上面が下方に向かうように湾曲することで、断面視において第3貫通穴219a及び第4貫通穴219bに充填された導電性ペースト151F、152Fが幅広になるため、発光素子と導電性ペースト151F、152Fの接続面積を大きくすることができる。 The upper and lower surfaces of the first peripheral portion 212a are curved downward. Similarly, the upper and lower surfaces of the second peripheral portion 212b are curved downward. By curving the upper surface of the first peripheral portion 212a and the upper surface of the second peripheral portion 212b downward, the conductive pastes 151F and 152F filled in the third through holes 219a and the fourth through holes 219b in a cross-sectional view , the connection area between the light emitting element and the conductive pastes 151F and 152F can be increased.

シート積層体219は、光反射性シート217と、2枚の接着シート218a、218bと、を有する。 The sheet laminate 219 has a light reflective sheet 217 and two adhesive sheets 218a and 218b.

シート積層体219は、第3貫通穴219aを囲む第1周辺部219cと、第4貫通穴219bを囲む第2周辺部219dと、第1周辺部219c及び第2周辺部219dの周囲に位置し、X方向及びY方向に概ね平行な平坦部219eと、を有する。 The sheet stack 219 is positioned around the first peripheral portion 219c surrounding the third through hole 219a, the second peripheral portion 219d surrounding the fourth through hole 219b, and the first peripheral portion 219c and the second peripheral portion 219d. , and a flat portion 219e generally parallel to the X and Y directions.

第1周辺部219cの上面及び下面は、第3貫通穴219aの中心に近づくにつれ、下方に向かうように湾曲している。同様に、第2周辺部219dの上面及び下面は、第4貫通穴219bの中心に近づくにつれ、下方に向かうように湾曲している。換言すれば、第1周辺部219c及び第2周辺部219dは、絶縁層216にめり込んでいる。 The upper and lower surfaces of the first peripheral portion 219c are curved downward as they approach the center of the third through hole 219a. Similarly, the upper and lower surfaces of the second peripheral portion 219d are curved downward toward the center of the fourth through hole 219b. In other words, the first peripheral portion 219 c and the second peripheral portion 219 d sink into the insulating layer 216 .

第1周辺部219cは、第1端子122から離隔している。同様に、第2周辺部219dは、第2端子123から離隔している。平坦部219eは、光源120における第1端子122の下面の外周部及び第2端子123の下面の外周部に接している。そのため、第1周辺部219cと第1端子122との間には、第1隙間S1が設けられており、第2周辺部219dと第2端子123との間には、第2隙間S2が設けられている。 The first peripheral portion 219 c is separated from the first terminal 122 . Similarly, the second peripheral portion 219 d is separated from the second terminal 123 . The flat portion 219 e is in contact with the outer peripheral portion of the lower surface of the first terminal 122 and the outer peripheral portion of the lower surface of the second terminal 123 of the light source 120 . Therefore, a first gap S1 is provided between the first peripheral portion 219c and the first terminal 122, and a second gap S2 is provided between the second peripheral portion 219d and the second terminal 123. It is

第1配線部材251の一部は、第1隙間S1内に設けられており、例えば第1隙間S1を充填している。同様に、第2配線部材252の一部は、第2隙間S2内に設けられており、例えば、第2隙間S2を充填している。そのため、第1配線部材251と第1端子122との接触面積、及び、第2配線部材252と第2端子123との接触面積を増大させることができる。これにより、第1配線部材251と第1端子122との接続及び第2配線部材252と第2端子123との接続を強固にできる。 A part of the first wiring member 251 is provided in the first gap S1, and fills the first gap S1, for example. Similarly, part of the second wiring member 252 is provided within the second gap S2, and fills the second gap S2, for example. Therefore, the contact area between the first wiring member 251 and the first terminal 122 and the contact area between the second wiring member 252 and the second terminal 123 can be increased. Thereby, the connection between the first wiring member 251 and the first terminal 122 and the connection between the second wiring member 252 and the second terminal 123 can be strengthened.

次に、本実施形態に係る面状光源200の製造方法について説明する。
図17は、面状光源の製造方法を示す模式的な断面図である。
図18は、面状光源の製造方法を示す模式的な断面図である。
図19は、面状光源の製造方法を示す模式的な断面図である。
図20は、面状光源の製造方法を示す模式的な断面図である。
Next, a method for manufacturing the planar light source 200 according to this embodiment will be described.
17A and 17B are schematic cross-sectional views showing a method for manufacturing a planar light source.
18A and 18B are schematic cross-sectional views showing a method for manufacturing a planar light source.
19A and 19B are schematic cross-sectional views showing a method of manufacturing a planar light source.
FIG. 20 is a schematic cross-sectional view showing a method of manufacturing a planar light source.

先ず、図17に示すように、配線基板210上にシート積層体219を配置する。
次に、図18に示すように、ドリル900をシート積層体219の上面側から絶縁層216の下面側に向かって移動させ、ドリル900をシート積層体219及び絶縁層216に貫通させる。これによって、配線基板210に第1貫通穴216a及び第2貫通穴216bが形成され、シート積層体219に第3貫通穴219a及び第4貫通穴219bが形成される。この際、加工条件、又は、シート積層体119及び絶縁層216の硬度によっては、シート積層体219においてドリル900に接している部分が、ドリル900の下方向への移動により、絶縁層216に押し込まれる。その結果、シート積層体219に、絶縁層216にめり込んだ第1周辺部219c及び第2周辺部219dが形成される。
First, as shown in FIG. 17, the sheet laminate 219 is arranged on the wiring board 210 .
Next, as shown in FIG. 18 , the drill 900 is moved from the upper surface side of the sheet laminate 219 toward the lower surface side of the insulating layer 216 to penetrate the sheet laminate 219 and the insulating layer 216 . As a result, the wiring substrate 210 is formed with a first through hole 216a and a second through hole 216b, and the sheet laminate 219 is formed with a third through hole 219a and a fourth through hole 219b. At this time, depending on the processing conditions or the hardness of the sheet laminate 119 and the insulating layer 216, the portion of the sheet laminate 219 in contact with the drill 900 may be pushed into the insulating layer 216 by the downward movement of the drill 900. be As a result, a first peripheral portion 219 c and a second peripheral portion 219 d that are embedded in the insulating layer 216 are formed in the sheet laminate 219 .

次に、配線基板210及びシート積層体219上に、光源配置部131が設けられた導光部材130を配置する。
次に、導光部材130に区画溝132を形成する。
次に、光源配置部131内に光源120を配置する。光源120は、第1端子122の外周部及び第2端子123の外周部がシート積層体219の平坦部219eに接するように配置される。
次に、第1樹脂部材133Faを光源配置部131内に配置し、硬化させる。
Next, the light guide member 130 provided with the light source arrangement portion 131 is arranged on the wiring board 210 and the sheet laminate 219 .
Next, dividing grooves 132 are formed in the light guide member 130 .
Next, the light source 120 is arranged inside the light source arrangement portion 131 . The light source 120 is arranged such that the outer peripheral portion of the first terminal 122 and the outer peripheral portion of the second terminal 123 are in contact with the flat portion 219 e of the sheet stack 219 .
Next, the first resin member 133Fa is placed inside the light source placement portion 131 and cured.

次に、図19に示すように、第1導電性ペースト251Fを、第1貫通穴216a、第3貫通穴219a、及び第1隙間S1内に充填し、かつ、絶縁層216の下面及び第1配線層213に接するように配置する。また、第2導電性ペースト252Fを、第2貫通穴216b、第4貫通穴219b、及び第2隙間S2内を充填し、かつ、絶縁層216の下面及び第2配線層214に接するように配置する。 Next, as shown in FIG. 19, a first conductive paste 251F is filled in the first through hole 216a, the third through hole 219a, and the first gap S1, and the lower surface of the insulating layer 216 and the first gap S1 are filled with the first conductive paste 251F. It is arranged so as to be in contact with the wiring layer 213 . In addition, the second conductive paste 252F is arranged to fill the second through hole 216b, the fourth through hole 219b, and the second gap S2 and to be in contact with the lower surface of the insulating layer 216 and the second wiring layer 214. do.

次に、図20に示すように、第1導電性ペースト251F及び第2導電性ペースト252Fを硬化させる。第1導電性ペースト251Fの硬化物が、第1配線部材251に相当し、第2導電性ペースト252Fの硬化物が、第2配線部材252に相当する。 Next, as shown in FIG. 20, the first conductive paste 251F and the second conductive paste 252F are cured. A cured product of the first conductive paste 251F corresponds to the first wiring member 251, and a cured product of the second conductive paste 252F corresponds to the second wiring member 252. FIG.

以降の手順は、第1の実施形態に係る面状光源100の製造方法と同様であるため、説明を省略する。 Since subsequent steps are the same as those of the manufacturing method of the planar light source 100 according to the first embodiment, description thereof is omitted.

<第3の実施形態>
次に、第3の実施形態に係る面状光源について説明する。
図21は、本実施形態に係る面状光源の配線基板の一部、シート積層体の一部、及び光源を拡大して示す模式的な上面図である。
本実施形態に係る面状光源300は、光源320における2つの電極324b、324c、及び、2つの端子322、323の形状において第1の実施形態における面状光源100と相違する。以下、詳述する。
<Third Embodiment>
Next, a planar light source according to the third embodiment will be described.
FIG. 21 is a schematic top view showing an enlarged view of part of the wiring board, part of the sheet laminate, and the light source of the planar light source according to this embodiment.
A planar light source 300 according to this embodiment differs from the planar light source 100 according to the first embodiment in the shapes of two electrodes 324 b and 324 c and two terminals 322 and 323 in the light source 320 . Details will be described below.

光源320は、本体部321と、第1端子322と、第2端子323と、を有する。上面視における第1電極324bの形状は、互いに平行な2つの長辺及び互いに平行な2つの短辺を有する長方形である。上面視において第1電極324bの各長辺は、本体部321の4辺のうち、互いに平行な2つの辺に対して平行である。上面視において第1電極324bの各短辺は、第1電極324bの各長辺と直交している。 The light source 320 has a body portion 321 , a first terminal 322 and a second terminal 323 . The shape of the first electrode 324b in a top view is a rectangle having two long sides parallel to each other and two short sides parallel to each other. Each long side of the first electrode 324b is parallel to two of the four sides of the main body 321 that are parallel to each other when viewed from above. Each short side of the first electrode 324b is perpendicular to each long side of the first electrode 324b when viewed from above.

上面視における第2電極324cの形状は、本体部321の中心を通り、第1電極324bの2本の長辺に平行な軸L3を基準として、第1電極324bと対称である。 The shape of the second electrode 324c in top view is symmetrical with the first electrode 324b with respect to an axis L3 passing through the center of the main body 321 and parallel to the two long sides of the first electrode 324b.

上面視における第1端子322の形状は、互いに平行な2本の長辺及び互いに平行な2本の短辺を有する長方形である。上面視において第1端子322の各長辺は、第1電極324bの2本の長辺に対して概ね平行である。上面視において第1端子322の各短辺は、第1端子322の各長辺と直交している。 The shape of the first terminal 322 in top view is a rectangle having two long sides parallel to each other and two short sides parallel to each other. When viewed from above, each long side of the first terminal 322 is substantially parallel to the two long sides of the first electrode 324b. Each short side of the first terminal 322 is perpendicular to each long side of the first terminal 322 when viewed from above.

上面視における第2端子323の形状は、軸L3を基準として第1端子322と対称な長方形の一部を切り欠いたような形状である。 The shape of the second terminal 323 when viewed from above is a shape obtained by cutting out a part of a rectangle that is symmetrical with the first terminal 322 with respect to the axis L3.

上面視における第1端子322の面積は、第1電極324bの面積よりも大きく、上面視における第2端子323の面積は、第2電極324cの面積よりも大きい。 The area of the first terminal 322 in top view is larger than the area of the first electrode 324b, and the area of the second terminal 323 in top view is larger than the area of the second electrode 324c.

上面視において第1端子322は、第1貫通穴116aを覆っており、第2端子323は、第2貫通穴116bを覆っている。 When viewed from above, the first terminal 322 covers the first through hole 116a, and the second terminal 323 covers the second through hole 116b.

以上説明したように、上面視における第1電極324bの形状及び第2電極324cの形状は、長方形であってもよい。また、上面視における第1端子322の形状及び第2端子323形状は、長方形であってもよい。 As described above, the shape of the first electrode 324b and the shape of the second electrode 324c in top view may be rectangular. Also, the shape of the first terminal 322 and the shape of the second terminal 323 in top view may be rectangular.

<第4の実施形態>
次に、第4の実施形態について説明する。
図22は、本実施形態に係る面状光源を示す模式的な断面図である。
本実施形態に係る面状光源400は、第1配線部材451及び第2配線部材452の構成が、第1の実施形態に係る面状光源100と相違する。以下、詳述する。
<Fourth Embodiment>
Next, a fourth embodiment will be described.
FIG. 22 is a schematic cross-sectional view showing a planar light source according to this embodiment.
A planar light source 400 according to this embodiment differs from the planar light source 100 according to the first embodiment in the configuration of the first wiring member 451 and the second wiring member 452 . Details will be described below.

第1配線部材451は、第1貫通穴116a及び第3貫通穴119a内を充填し、第1端子122に接した第1部分451aと、第1部分451aに連なり、絶縁層116の下面及び第1配線層113に接した薄膜状の第2部分451bと、を有する。 The first wiring member 451 fills the insides of the first through hole 116a and the third through hole 119a, connects the first portion 451a in contact with the first terminal 122, the first portion 451a, the lower surface of the insulating layer 116 and the third through hole 119a. and a thin film-like second portion 451 b in contact with one wiring layer 113 .

第2配線部材452は、第2貫通穴116b及び第4貫通穴119b内を充填し、第2端子123に接した第3部分452aと、第3部分452aに連なり、絶縁層116の下面及び第2配線層114に接した薄膜状の第4部分452bと、を有する。 The second wiring member 452 fills the insides of the second through hole 116b and the fourth through hole 119b, is connected to the third portion 452a in contact with the second terminal 123, and extends from the lower surface of the insulating layer 116 and the third portion 452a. and a thin-film fourth portion 452 b in contact with the second wiring layer 114 .

第1部分451aを構成する樹脂材料と第3部分452aを構成する樹脂材料は、同一であり、第1部分451aを構成する金属粒子と第3部分452aを構成する金属粒子は、同一である。第2部分451bを構成する樹脂材料と第4部分452bを構成する樹脂材料は、同一であり、第2部分451bを構成する金属粒子と第4部分452bを構成する金属粒子は、同一である。 The resin material forming the first portion 451a and the resin material forming the third portion 452a are the same, and the metal particles forming the first portion 451a and the metal particles forming the third portion 452a are the same. The resin material forming the second portion 451b and the resin material forming the fourth portion 452b are the same, and the metal particles forming the second portion 451b and the metal particles forming the fourth portion 452b are the same.

一方、第1部分451aを構成する樹脂材料は、第2部分451bを構成する樹脂材料と異なっていている。また、第1部分451aを構成する金属粒子は、第2部分451bを構成する金属粒子と異なっている。ただし、樹脂材料又は金属粒子の少なくとも一方は同一でもよい。このように、第1配線部材451の第1部分451aを構成する材料と第2部分451bを構成する材料とを異ならせることで、第1部分451aと第2部分451bの柔軟性等の機械的特性又は導電性等の電気的特性等の特性を異ならせることができる。第2配線部材452についても同様である。 On the other hand, the resin material forming the first portion 451a is different from the resin material forming the second portion 451b. Also, the metal particles forming the first portion 451a are different from the metal particles forming the second portion 451b. However, at least one of the resin material and the metal particles may be the same. In this way, by using different materials for the first portion 451a and the second portion 451b of the first wiring member 451, the first portion 451a and the second portion 451b can be mechanically improved in terms of flexibility, etc. Properties such as properties or electrical properties such as conductivity may be different. The same applies to the second wiring member 452 as well.

次に、本実施形態に係る面状光源400の製造方法について説明する。
図23は、面状光源の製造方法を示す模式的な断面図である。
図24は、面状光源の製造方法を示す模式的な断面図である。
図25は、面状光源の製造方法を示す模式的な断面図である。
Next, a method for manufacturing the planar light source 400 according to this embodiment will be described.
23A to 23C are schematic cross-sectional views showing a method for manufacturing a planar light source.
FIG. 24 is a schematic cross-sectional view showing a method of manufacturing a planar light source.
FIG. 25 is a schematic cross-sectional view showing a method of manufacturing a planar light source.

光源配置部131内に第1樹脂部材133Faを配置して硬化させた後、図23に示すように、第1貫通穴116a内及び第3貫通穴119a内に第1導電性ペースト451Faを充填し、第2貫通穴116b内及び第4貫通穴119bに第2導電性ペースト452Faを充填する。各導電性ペースト451Fa、452Faは、同一の材料からなり、第1の実施形態における導電性ペースト151F、152Fと同様に、未硬化の樹脂材料と、樹脂材料中に分散された1種以上の金属粒子と、を含む。各導電性ペースト451Fa、452Faが硬化した際に収縮することを見込んで、各導電性ペースト451Fa、452Faは、各貫通穴116a、116bから突出するように配置されてもよい。 After the first resin member 133Fa is arranged in the light source arrangement portion 131 and cured, as shown in FIG. , the second through holes 116b and the fourth through holes 119b are filled with the second conductive paste 452Fa. Each of the conductive pastes 451Fa and 452Fa is made of the same material, and similar to the conductive pastes 151F and 152F in the first embodiment, an uncured resin material and one or more metals dispersed in the resin material. particles. Anticipating that the conductive pastes 451Fa and 452Fa will shrink when cured, the conductive pastes 451Fa and 452Fa may be arranged to protrude from the through holes 116a and 116b.

次に、図24に示すように、第1導電性ペースト451Fa及び第2導電性ペースト452Faを硬化させる。第1導電性ペースト451Faの硬化物は、第1配線部材451の第1部分451aに相当し、第2導電性ペースト452Faの硬化物は、第2配線部材452の第3部分452aに相当する。 Next, as shown in FIG. 24, the first conductive paste 451Fa and the second conductive paste 452Fa are cured. A cured product of the first conductive paste 451Fa corresponds to the first portion 451a of the first wiring member 451, and a cured product of the second conductive paste 452Fa corresponds to the third portion 452a of the second wiring member 452.

次に、第3導電性ペースト451Fbを、絶縁層116、第1導電性ペースト451Faの硬化物である第1部分451a及び第1配線層113に接するように配置し、第4導電性ペースト452Fbを、絶縁層116、第2導電性ペースト452Faの硬化物である第3部分452a及び第2配線層114に接するように配置する。 Next, the third conductive paste 451Fb is placed in contact with the insulating layer 116, the first portion 451a, which is a cured product of the first conductive paste 451Fa, and the first wiring layer 113, and the fourth conductive paste 452Fb is applied. , the insulating layer 116, the third portion 452a which is the cured product of the second conductive paste 452Fa, and the second wiring layer 114. As shown in FIG.

次に、図25に示すように、第3導電性ペースト451Fb及び第4導電性ペースト452Fbを硬化させる。第3導電性ペースト451Fbの硬化物は、第1配線部材451の第2部分451bに相当し、第4導電性ペースト452Fbの硬化物は、第2配線部材452の第4部分452bに相当する。 Next, as shown in FIG. 25, the third conductive paste 451Fb and the fourth conductive paste 452Fb are cured. A cured product of the third conductive paste 451Fb corresponds to the second portion 451b of the first wiring member 451, and a cured product of the fourth conductive paste 452Fb corresponds to the fourth portion 452b of the second wiring member 452.

以降の手順は、第1の実施形態に係る面状光源100の製造方法と同様であるため、説明を省略する。 Since subsequent steps are the same as those of the manufacturing method of the planar light source 100 according to the first embodiment, description thereof is omitted.

以上説明したように、本実施形態に係る面状光源400の製造方法では、第1配線部材451及び第2配線部材452を形成する工程は、第1導電性ペースト451Faを第1貫通穴116a内に充填し、第2導電性ペースト452Faを第2貫通穴116b内に充填する工程と、第1導電性ペースト451Fa及び第2導電性ペースト452Faを硬化させる工程と、第3導電性ペースト451Fbを、第1導電性ペースト451Faの硬化物及び第1配線層113に接するように配置し、第4導電性ペースト452Fbを、第2導電性ペースト452Faの硬化物及び第2配線層114に接するように配置する工程と、第3導電性ペースト451Fb及び第4導電性ペースト452Fbを硬化させる工程と、を有する。このように、第1配線部材451の第1部分451aと第2部分451bは同時に形成されなくてもよい。また、第2配線部材452の第3部分452aと第4部分452bは同時に形成されなくてもよい。このような方法によれば、第1導電性ペースト451Fa及び第2導電性ペースト452Faの材料と、第3導電性ペースト451Fb及び第4導電性ペースト452Fbの材料と、を異ならせることができる。 As described above, in the method of manufacturing the planar light source 400 according to the present embodiment, the step of forming the first wiring member 451 and the second wiring member 452 includes applying the first conductive paste 451Fa into the first through hole 116a. filling the second through hole 116b with the second conductive paste 452Fa; curing the first conductive paste 451Fa and the second conductive paste 452Fa; Arranged so as to be in contact with the cured first conductive paste 451Fa and the first wiring layer 113, and arrange the fourth conductive paste 452Fb so as to be in contact with the cured second conductive paste 452Fa and the second wiring layer 114. and curing the third conductive paste 451Fb and the fourth conductive paste 452Fb. Thus, the first portion 451a and the second portion 451b of the first wiring member 451 do not have to be formed at the same time. Also, the third portion 452a and the fourth portion 452b of the second wiring member 452 may not be formed at the same time. According to such a method, the materials of the first conductive paste 451Fa and the second conductive paste 452Fa can be made different from the materials of the third conductive paste 451Fb and the fourth conductive paste 452Fb.

なお、第1導電性ペースト及び第2導電性ペーストを硬化させる前に、第3導電性ペースト及び第4導電性ペーストを配置してもよい。すなわち、第1配線部材及び第2配線部材を形成する工程は、第1導電性ペーストを第1貫通穴内に充填し、第2導電性ペーストを第2貫通穴内に充填する工程と、第3導電性ペーストを、第1導電性ペースト及び第1配線層に接するように配置し、第4導電性ペーストを、第2導電性ペースト及び第2配線層に接するように配置する工程と、第1導電性ペースト、第2導電性ペースト、第3導電性ペースト、及び第4導電性ペーストを硬化させる工程と、を有していてもよい。 Note that the third conductive paste and the fourth conductive paste may be arranged before curing the first conductive paste and the second conductive paste. That is, the step of forming the first wiring member and the second wiring member includes filling the first conductive paste into the first through hole and filling the second conductive paste into the second through hole; placing a conductive paste in contact with the first conductive paste and the first wiring layer, and placing a fourth conductive paste in contact with the second conductive paste and the second wiring layer; curing the conductive paste, the second conductive paste, the third conductive paste, and the fourth conductive paste.

<第5の実施形態>
次に、第5の実施形態について説明する。
図26は、第5の実施形態に係る面状光源の製造方法を示す模式的な断面図である。
本実施形態に係る面状光源の製造方法は、光源120の配線基板110への仮固定を補強する第1樹脂部材533Faの硬化物の形状において、第1の実施形態に係る面状光源100の製造方法と相違する。以下、詳述する。
<Fifth Embodiment>
Next, a fifth embodiment will be described.
26A and 26B are schematic cross-sectional views showing a method for manufacturing a planar light source according to the fifth embodiment.
In the method for manufacturing the planar light source according to the present embodiment, the shape of the cured product of the first resin member 533Fa that reinforces the temporary fixing of the light source 120 to the wiring board 110 is changed from that of the planar light source 100 according to the first embodiment. It differs from the manufacturing method. Details will be described below.

配線基板110上にシート積層体119、導光部材130、及び光源120を配置した後、接着シート118bによる光源120の配線基板110への仮固定を補強するように、光源配置部131の側面と光源120との隙間に、透光性の第1樹脂部材533Faを配置し、硬化させる。 After arranging the sheet laminate 119, the light guide member 130, and the light source 120 on the wiring substrate 110, the side surface of the light source arrangement portion 131 and the light source arrangement portion 131 are arranged so as to reinforce the temporary fixing of the light source 120 to the wiring substrate 110 by the adhesive sheet 118b. A translucent first resin member 533Fa is placed in the gap with the light source 120 and cured.

本実施形態では、透光性の第1樹脂部材533Faは、光源120を封止しつつ、上面が導光部材130の上面よりも下方に位置するように配置される。第1樹脂部材533Faの硬化物は、透光性部材の第1層に相当する。また、第1樹脂部材533Faの上面において、光源配置部131の側面と光源120との間に位置する領域533Fcは、下方向に窪んでいる。領域533Fcの一部は、光源120の上面よりも下方に位置する。 In the present embodiment, the translucent first resin member 533Fa is arranged such that the top surface thereof is located below the top surface of the light guide member 130 while sealing the light source 120 . The cured product of the first resin member 533Fa corresponds to the first layer of the translucent member. In addition, on the upper surface of the first resin member 533Fa, a region 533Fc positioned between the side surface of the light source placement portion 131 and the light source 120 is recessed downward. A portion of the region 533Fc is positioned below the top surface of the light source 120 .

次に、第1の実施形態と同様に、各導電性ペースト151F、152Fを配置する。この際、光源配置部131の側面と光源120との隙間が第1樹脂部材533Faにより塞がれている。そのため、各導電性ペースト151F、152Fが光源配置部131内に漏出することを抑制できる。以降の手順は、第1の実施形態に係る面状光源100と同様であるため、その説明を省略する。 Next, conductive pastes 151F and 152F are arranged in the same manner as in the first embodiment. At this time, the gap between the side surface of the light source arrangement portion 131 and the light source 120 is closed by the first resin member 533Fa. Therefore, it is possible to prevent the conductive pastes 151F and 152F from leaking into the light source placement portion 131 . Since the subsequent procedure is the same as that of the planar light source 100 according to the first embodiment, the explanation thereof is omitted.

<第6の実施形態>
次に、第6の実施形態について説明する。
図27は、本実施形態に係る面状光源を示す模式的な断面図である。
本実施形態に係る面状光源600は、光源620及び導光部材630の構成において第1の実施形態に係る面状光源100と相違する。
<Sixth Embodiment>
Next, a sixth embodiment will be described.
FIG. 27 is a schematic cross-sectional view showing a planar light source according to this embodiment.
A planar light source 600 according to this embodiment differs from the planar light source 100 according to the first embodiment in the configurations of a light source 620 and a light guide member 630 .

光源620は、発光素子621と、波長変換部材622と、透光性部材623と、被覆層624とを有する。 The light source 620 has a light emitting element 621 , a wavelength conversion member 622 , a translucent member 623 and a coating layer 624 .

発光素子621は、発光部621aと、発光部621aの下に配置され、互いに離隔した第1電極621b及び第2電極621cと、を有する。波長変換部材622は、発光素子621上に設けられている。 The light-emitting element 621 has a light-emitting portion 621a, and a first electrode 621b and a second electrode 621c arranged under the light-emitting portion 621a and separated from each other. A wavelength conversion member 622 is provided on the light emitting element 621 .

透光性部材623は、波長変換部材622の下方であって、発光部621aの周囲に設けられている。被覆層624は、透光性部材623の周囲及び発光部621aの下に設けられている。透光性部材623の外側面は、傾斜面としてもよい。 The translucent member 623 is provided below the wavelength converting member 622 and around the light emitting section 621a. The covering layer 624 is provided around the translucent member 623 and under the light emitting portion 621a. The outer surface of the translucent member 623 may be an inclined surface.

導光部材630には、光源620が配置される光源配置部631が設けられている。光源配置部631は、本実施形態では導光部材630の下面に設けられた凹部である。 The light guide member 630 is provided with a light source arrangement portion 631 in which the light source 620 is arranged. The light source arrangement portion 631 is a concave portion provided on the lower surface of the light guide member 630 in this embodiment.

また、導光部材630には、各光源620を囲むように区画溝632が設けられている。区画溝632は、本実施形態では、導光部材630の下面に設けられた凹部である。 Further, the light guide member 630 is provided with partition grooves 632 so as to surround each light source 620 . The dividing grooves 632 are recesses provided on the lower surface of the light guide member 630 in this embodiment.

導光部材630の下面及び区画溝632内には、区画部材633が設けられている。区画部材633には、導光部材630の光源配置部631に連通する貫通穴633aが設けられている。光源配置部631及び貫通穴633aには、透光性部材634が設けられている。区画部材633は、接着シート618により、配線基板110に貼り付けられている。 A partitioning member 633 is provided on the lower surface of the light guide member 630 and in the partitioning groove 632 . The partitioning member 633 is provided with a through hole 633 a that communicates with the light source arrangement portion 631 of the light guide member 630 . A translucent member 634 is provided in the light source arrangement portion 631 and the through hole 633a. The partition member 633 is attached to the wiring board 110 with an adhesive sheet 618 .

接着シート618には、第3貫通穴618a及び第4貫通穴618bが設けられている。第3貫通穴618aは、第1貫通穴116aの直上に位置する。第4貫通穴618bは、第2貫通穴116bの直上に位置する。 The adhesive sheet 618 is provided with a third through hole 618a and a fourth through hole 618b. The third through hole 618a is located directly above the first through hole 116a. The fourth through hole 618b is located directly above the second through hole 116b.

また、導光部材630の上面には、複数の凹部635が設けられている。各凹部635は、各光源620の直上に位置する。各凹部635には、光調整部材636が設けられている。 A plurality of concave portions 635 are provided on the upper surface of the light guide member 630 . Each recess 635 is positioned directly above each light source 620 . A light adjustment member 636 is provided in each recess 635 .

次に、本実施形態に係る面状光源600の製造方法について説明する。
図28は、面状光源の製造方法を示す模式的な断面図である。
図29は、面状光源の製造方法を示す模式的な断面図である。
先ず、図28に示すように、配線基板110を準備する。
Next, a method for manufacturing the planar light source 600 according to this embodiment will be described.
FIG. 28 is a schematic cross-sectional view showing a method of manufacturing a planar light source.
FIG. 29 is a schematic cross-sectional view showing a method of manufacturing a planar light source.
First, as shown in FIG. 28, a wiring board 110 is prepared.

次に、配線基板110上に、導光部材630及び光源620を配置する。本実施形態では、光源620、導光部材630、区画部材633、透光性部材634、及び光調整部材636は、配線基板110上に配置される前に、発光モジュールとして予め一体化されており、接着シート618により、配線基板110に貼り付けられる。ただし、光調整部材636は、光源620及び導光部材630を配線基板110上に配置した後に、導光部材630上に設けてもよい。 Next, the light guide member 630 and the light source 620 are arranged on the wiring board 110 . In this embodiment, the light source 620 , the light guide member 630 , the partition member 633 , the translucent member 634 , and the light adjustment member 636 are previously integrated as a light emitting module before being arranged on the wiring board 110 . , is attached to the wiring board 110 with an adhesive sheet 618 . However, the light adjustment member 636 may be provided on the light guide member 630 after the light source 620 and the light guide member 630 are arranged on the wiring board 110 .

次に、図29に示すように、第1導電性ペースト151Fを、第1貫通穴116a及び第3貫通穴618a内を充填し、かつ、絶縁層116及び第1配線層113に接するように配置する。また、第2導電性ペースト152Fを、第2貫通穴116b及び第4貫通穴618b内を充填し、かつ、絶縁層116及び第2配線層114に接するように配置する。 Next, as shown in FIG. 29, a first conductive paste 151F is placed so as to fill the first through hole 116a and the third through hole 618a and contact the insulating layer 116 and the first wiring layer 113. do. Further, the second conductive paste 152F is arranged so as to fill the second through holes 116b and the fourth through holes 618b and contact the insulating layer 116 and the second wiring layer 114 .

以降の手順は、第1の実施形態に係る面状光源100の製造方法と同様であるため、その説明を省略する。 Since the subsequent steps are the same as those of the manufacturing method of the planar light source 100 according to the first embodiment, description thereof will be omitted.

以上説明したように、光源配置部631は、導光部材630の下面に設けられた凹部であってもよい。また、面状光源600を製造する際、光源620及び導光部材630を一体化してから、配線基板110上に配置してもよい。 As described above, the light source arrangement portion 631 may be a concave portion provided on the lower surface of the light guide member 630 . Further, when manufacturing the planar light source 600 , the light source 620 and the light guide member 630 may be integrated and then arranged on the wiring board 110 .

なお、本実施形態では、光源620が第1端子及び第2端子を有していない例を説明したが、光源620は第1端子及び第2端子を更に有していてもよい。 Although the light source 620 does not have the first terminal and the second terminal in this embodiment, the light source 620 may further have the first terminal and the second terminal.

また、本実施形態では、配線基板110の第1貫通穴116aと第2貫通穴116bが光源620の下方に位置する場合で説明したが、これに限定されない。すなわち、配線基板110の第1貫通穴116aと第2貫通穴116bが光源620の下方に位置する必要はない。この場合、配線基板110の上面又は区画部材633の下面に、光源の各電極621a、621bに電気的に接続された導電層を設け、導電層を第1配線部材151及び第2配線部材152に接続してもよい。 Also, in the present embodiment, the case where the first through hole 116a and the second through hole 116b of the wiring board 110 are positioned below the light source 620 has been described, but the present invention is not limited to this. That is, the first through hole 116a and the second through hole 116b of the wiring board 110 do not need to be positioned below the light source 620. FIG. In this case, a conductive layer electrically connected to the electrodes 621 a and 621 b of the light source is provided on the upper surface of the wiring substrate 110 or the lower surface of the partitioning member 633 , and the conductive layer is provided on the first wiring member 151 and the second wiring member 152 . may be connected.

<第7の実施形態>
次に、第7の実施形態について説明する。
図30は、本実施形態に係る面状光源における光源及び配線基板の一部を拡大して示す模式的な下面図である。
図31Aは、図30のXXXI-XXXI線における模式的な断面図である。
本実施形態に係る面状光源700は、配線基板710の構成が第1の実施形態に係る面状光源100と相違する。
<Seventh Embodiment>
Next, a seventh embodiment will be described.
FIG. 30 is a schematic bottom view showing an enlarged part of the light source and the wiring board in the planar light source according to this embodiment.
31A is a schematic cross-sectional view taken along line XXXI-XXXI of FIG. 30. FIG.
A planar light source 700 according to this embodiment differs from the planar light source 100 according to the first embodiment in the configuration of a wiring board 710 .

配線基板710は、図30及び図31Aに示すように、ベース層711と、ベース層711の上に配置された第1被覆層712と、ベース層711の下に配置された第1配線層713及び第2配線層714と、ベース層711の下に設けられた第2被覆層715と、を有する。ベース層711及び第1被覆層712が、絶縁層716に相当する。 The wiring substrate 710 includes a base layer 711, a first covering layer 712 arranged on the base layer 711, and a first wiring layer 713 arranged below the base layer 711, as shown in FIGS. 30 and 31A. and a second wiring layer 714 and a second covering layer 715 provided under the base layer 711 . The base layer 711 and the first covering layer 712 correspond to the insulating layer 716 .

絶縁層716には、互いに離隔した第1貫通穴716a及び第2貫通穴716bが設けられている。各貫通穴716a、716bは、絶縁層716をZ方向に貫通している。 The insulating layer 716 is provided with a first through hole 716a and a second through hole 716b that are separated from each other. Each through hole 716a, 716b penetrates the insulating layer 716 in the Z direction.

第1配線層713及び第2配線層714は、図30に示すように、間に第1貫通穴716a及び第2貫通穴716bを挟み込むように配置されておらず、Y方向において第1貫通穴716a及び第2貫通穴716bから離隔している。各配線層713、714は、本実施形態ではY方向に延びている。第1配線層713の先端部713aと第2配線層714の先端部714aとの距離D5は、第1貫通穴716aと第2貫通穴716bとの距離D6よりも長い。ただし、第1配線層の先端部と第2配線層の先端部との距離と、第1貫通穴と第2貫通穴との距離との大小関係は、上記に限定されない。 As shown in FIG. 30, the first wiring layer 713 and the second wiring layer 714 are not arranged so as to sandwich the first through hole 716a and the second through hole 716b, and the first through hole 716a and the second through hole 716b 716a and the second through hole 716b. Each wiring layer 713, 714 extends in the Y direction in this embodiment. The distance D5 between the tip portion 713a of the first wiring layer 713 and the tip portion 714a of the second wiring layer 714 is longer than the distance D6 between the first through hole 716a and the second through hole 716b. However, the size relationship between the distance between the tip of the first wiring layer and the tip of the second wiring layer and the distance between the first through hole and the second through hole is not limited to the above.

第2被覆層715は、第1貫通穴716a及び第2貫通穴716bが露出するように、絶縁層716の下面のうち第1貫通穴716a及び第2貫通穴716bの周囲の領域を覆っている。また、第2被覆層715は、第1配線層713及び第2配線層714の一部を露出している。 The second covering layer 715 covers the lower surface of the insulating layer 716 around the first through holes 716a and the second through holes 716b so that the first through holes 716a and the second through holes 716b are exposed. . Also, the second covering layer 715 partially exposes the first wiring layer 713 and the second wiring layer 714 .

具体的には、第2被覆層715には、第1貫通穴716aを露出する第1開口715aと、第2貫通穴716bを露出する第2開口715bと、が設けられている。第1開口715aは、第1貫通穴716aの直下に位置する。第2開口715bは、第2貫通穴716bの直下に位置する。上面視における第1開口715a及び第2開口715bの形状は、例えば第1貫通穴716a及び第2貫通穴716bと略同一であり、例えば、円形や三角形等の多角形である。ただし、上面視における第1開口及び第2開口の形状は、上記に限定されない。第1開口715aの開口径は、図30、図31Aに示すように、第1貫通穴716aの開口径と一致する。同様に、第2開口715bの開口径は、図30、図31Aに示すように、第2貫通穴716bの開口径と一致する。 Specifically, the second covering layer 715 is provided with a first opening 715a exposing the first through hole 716a and a second opening 715b exposing the second through hole 716b. The first opening 715a is positioned directly below the first through hole 716a. The second opening 715b is positioned directly below the second through hole 716b. The shape of the first opening 715a and the second opening 715b in top view is substantially the same as the first through hole 716a and the second through hole 716b, for example, and is polygonal such as circular or triangular. However, the shapes of the first opening and the second opening when viewed from above are not limited to the above. The opening diameter of the first opening 715a matches the opening diameter of the first through hole 716a, as shown in FIGS. 30 and 31A. Similarly, the opening diameter of the second opening 715b matches the opening diameter of the second through hole 716b, as shown in FIGS. 30 and 31A.

また、第2被覆層715には、第1配線層713の先端部713aを露出する第3開口715cと、第2配線層714の先端部713bを露出する第4開口715dと、が設けられている。上面視における各開口715c、715dの形状は、円形である。ただし、上面視における第3開口及び第4開口の形状は、半円、矩形等の多角形でもよい。また、一つの開口により、第1配線層及び第2配線層の一部を露出してもよい。 Further, the second cover layer 715 is provided with a third opening 715c exposing the tip portion 713a of the first wiring layer 713 and a fourth opening 715d exposing the tip portion 713b of the second wiring layer 714. there is The shape of each of the openings 715c and 715d in top view is circular. However, the shape of the third opening and the fourth opening when viewed from above may be a polygon such as a semicircle or a rectangle. Moreover, one opening may expose a part of the first wiring layer and the second wiring layer.

第3開口715c及び第4開口715dは、第1開口715a及び第2開口715bから離隔している。第3開口715cと第4開口715dとの距離D7は、第1貫通穴716aと第2貫通穴716bとの距離D6よりも長い。ただし、第3開口と第4開口との距離と、第1貫通穴と第2貫通穴との距離との大小関係は、上記に限定されない。 The third opening 715c and the fourth opening 715d are separated from the first opening 715a and the second opening 715b. A distance D7 between the third opening 715c and the fourth opening 715d is longer than a distance D6 between the first through hole 716a and the second through hole 716b. However, the size relationship between the distance between the third opening and the fourth opening and the distance between the first through hole and the second through hole is not limited to the above.

第1配線部材751は、図31Aに示すように、第1貫通穴716a、第3貫通穴119a、及び第1開口715a内を充填する第1部分751aと、第2被覆層715の下面を経由して第1配線層713において第2被覆層715から露出した部分に接する第2部分751bと、を有する。 As shown in FIG. 31A, the first wiring member 751 passes through the first through hole 716a, the third through hole 119a, the first portion 751a filling the first opening 715a, and the lower surface of the second coating layer 715. and a second portion 751 b in contact with a portion of the first wiring layer 713 exposed from the second covering layer 715 .

第1部分751aは、第1端子122に接しており、第1端子122を介して、第1電極124bに電気的に接続されている。第2部分751bは、本実施形態では、第1配線層713の先端部713aに接している。 The first portion 751a is in contact with the first terminal 122 and electrically connected to the first electrode 124b via the first terminal 122 . The second portion 751b is in contact with the tip portion 713a of the first wiring layer 713 in this embodiment.

第2配線部材752は、第2貫通穴716b、第4貫通穴119b、及び第2開口715b内を充填する第3部分752aと、第2被覆層715の下面を経由して第2配線層714において第2被覆層715から露出した部分に接する第4部分752bと、を有する。 The second wiring member 752 extends through the second wiring layer 714 via a third portion 752a filling the insides of the second through holes 716b, the fourth through holes 119b, and the second openings 715b, and the lower surface of the second covering layer 715. and a fourth portion 752b in contact with the portion exposed from the second covering layer 715 at the .

第3部分752aは、第2端子123に接しており、第2端子123を介して、第2電極124cに電気的に接続されている。第4部分752bは、本実施形態では、第2配線層714の先端部714aに接している。 The third portion 752a is in contact with the second terminal 123 and electrically connected to the second electrode 124c via the second terminal 123 . The fourth portion 752b is in contact with the tip portion 714a of the second wiring layer 714 in this embodiment.

なお、面状光源700は、第1配線部材751、第2配線部材752、第1配線層713、及び第2配線層714において第2被覆層715から露出した部分を被覆する被覆層を更に備えていてもよい。 In addition, the planar light source 700 further includes a covering layer that covers portions of the first wiring member 751, the second wiring member 752, the first wiring layer 713, and the second wiring layer 714 exposed from the second covering layer 715. may be

なお、本実施形態では、第3開口715c及び第4開口715dは、図30に示すように、第1開口715a及び第2開口715bより-Y方向側に位置するが、これに限定されない。例えば、第3開口715c及び第4開口715dは、第1開口715a及び第2開口715bより+Y方向側に位置してもよい。また、第3開口715cが、第1開口715a及び第2開口715bより-Y方向側に位置に位置し、第4開口715dが、第1開口715a及び第2開口715bより+Y方向側に位置してもよい。反対に、第4開口715dが、第1開口715a及び第2開口715bより-Y方向側に位置し、第3開口715cが、第1開口715a及び第2開口715bより+Y方向側に位置してもよい。また、第3開口715c及び第4開口715dは、第1開口715aと第2開口715bを通過する仮想線上に、第1開口715aと第2開口715bを挟むように配置されてもよい。 In this embodiment, as shown in FIG. 30, the third opening 715c and the fourth opening 715d are located on the -Y direction side of the first opening 715a and the second opening 715b, but the present invention is not limited to this. For example, the third opening 715c and the fourth opening 715d may be located on the +Y direction side from the first opening 715a and the second opening 715b. Further, the third opening 715c is located on the -Y direction side from the first opening 715a and the second opening 715b, and the fourth opening 715d is located on the +Y direction side from the first opening 715a and the second opening 715b. may On the contrary, the fourth opening 715d is located on the -Y direction side from the first opening 715a and the second opening 715b, and the third opening 715c is located on the +Y direction side from the first opening 715a and the second opening 715b. good too. Also, the third opening 715c and the fourth opening 715d may be arranged on a virtual line passing through the first opening 715a and the second opening 715b so as to sandwich the first opening 715a and the second opening 715b.

図31Bは、光源及び配線基板の他の例を示す模式的な下面図である。
図31Bに示すように、光源120は、2つの電極124b、124cがX方向及びY方向と交差する方向に並ぶように配置されていてもよい。この場合、第3開口715cが、第1開口715a及び第2開口715bより+Y方向側に位置し、第4開口715dが、第1開口715a及び第2開口715bより-Y方向側に位置してもよい。なお、第3開口が、第1開口及び第2開口より-Y方向側に位置し、第4開口が、第1開口及び第2開口より+Y方向側に位置してもよい。
FIG. 31B is a schematic bottom view showing another example of the light source and wiring board;
As shown in FIG. 31B, the light source 120 may be arranged such that the two electrodes 124b and 124c are arranged in a direction intersecting the X direction and the Y direction. In this case, the third opening 715c is located on the +Y direction side of the first opening 715a and the second opening 715b, and the fourth opening 715d is located on the -Y direction side of the first opening 715a and the second opening 715b. good too. The third opening may be located on the -Y direction side of the first and second openings, and the fourth opening may be located on the +Y direction side of the first and second openings.

次に、本実施形態に係る面状光源700の製造方法を説明する。
図32Aは、面状光源の製造方法を示す模式的な断面図である。
図32Bは、面状光源の製造方法を示す模式的な断面図である。
Next, a method for manufacturing the planar light source 700 according to this embodiment will be described.
FIG. 32A is a schematic cross-sectional view showing a method of manufacturing a planar light source;
FIG. 32B is a schematic cross-sectional view showing the manufacturing method of the planar light source.

先ず、配線基板710を準備する。ここで準備される配線基板710において、第2被覆層715は、第1貫通穴716a及び第2貫通穴716bが露出するように絶縁層716の下面において第1貫通穴716a及び第2貫通穴716bの周囲を被覆し、第1配線層713及び第2配線層714の一部を露出している。 First, the wiring board 710 is prepared. In the wiring board 710 prepared here, the second covering layer 715 is formed in the lower surface of the insulating layer 716 so that the first through holes 716a and the second through holes 716b are exposed so that the first through holes 716a and the second through holes 716b are exposed. , and part of the first wiring layer 713 and the second wiring layer 714 are exposed.

次に、第1の実施形態と同様に、導光部材130及び光源120を配線基板710上に配置する。 Next, the light guide member 130 and the light source 120 are arranged on the wiring board 710 in the same manner as in the first embodiment.

次に、第1配線部材751及び第2配線部材752を形成する。具体的には、図32Aに示すように、第1導電性ペースト751Fを、第1貫通穴716a、第3貫通穴119a、及び第1開口715a内を充填し、かつ、第2被覆層715の下面を経由して第1配線層713に接するように配置する。同様に、図32Bに示すように、第2導電性ペースト752Fを、第2貫通穴716b、第4貫通穴119b、及び第2開口715b内を充填し、かつ、第2被覆層715の下面を経由して第2配線層714に接するように配置する。第1導電性ペースト751F及び第2導電性ペースト752Fは、同時に配置されてもよいし、別々に配置されてもよい。 Next, a first wiring member 751 and a second wiring member 752 are formed. Specifically, as shown in FIG. 32A, the first conductive paste 751F is filled in the first through hole 716a, the third through hole 119a, and the first opening 715a, and the second coating layer 715 is filled with the first conductive paste 751F. It is arranged so as to be in contact with the first wiring layer 713 via the lower surface. Similarly, as shown in FIG. 32B, the second conductive paste 752F is filled in the second through hole 716b, the fourth through hole 119b, and the second opening 715b, and the lower surface of the second coating layer 715 is It is arranged so as to be in contact with the second wiring layer 714 via the second wiring layer 714 . The first conductive paste 751F and the second conductive paste 752F may be placed simultaneously or separately.

各導電性ペースト751F、752Fは、例えば、スキージや押圧機による印刷により配線基板710上に配置される。前述したように、第2被覆層715は、絶縁層716の下面において第1貫通穴716aの周囲に設けられている。そのため、印刷機等の押圧機Mにより第1導電性ペースト751Fを第1貫通穴716a、第3貫通穴119a、及び第1開口715a内に押し込み易い。第2導電性ペースト752Fについても同様である。押圧機Mは、内部にローラーを備えることができる。このローラーが回転することによって、押圧機Mに充填された導電性ペーストは押圧された状態で供給される。これにより、第1導電性ペースト751Fを第1貫通穴716a、第3貫通穴119a、及び第1開口715a内に押し込みやすくなる。また、第2導電性ペースト752Fも同様である。 The conductive pastes 751F and 752F are arranged on the wiring board 710 by printing with a squeegee or a pressing machine, for example. As described above, the second covering layer 715 is provided on the lower surface of the insulating layer 716 around the first through hole 716a. Therefore, it is easy to press the first conductive paste 751F into the first through-hole 716a, the third through-hole 119a, and the first opening 715a with a pressing machine M such as a printing machine. The same applies to the second conductive paste 752F. The press M can have rollers inside. By rotating this roller, the conductive paste filled in the pressing machine M is supplied in a pressed state. This makes it easier to push the first conductive paste 751F into the first through hole 716a, the third through hole 119a, and the first opening 715a. The same applies to the second conductive paste 752F.

以降の手順は、第1の実施形態に係る面状光源100の製造方法と同様であるため、その説明を省略する。第1導電性ペースト751Fの硬化物が第1配線部材751に相当する。第2導電性ペースト752Fの硬化物が第2配線部材752に相当する。ただし、硬化時に第1部分751aとなる第1導電性ペースト及び第3部分752aとなる第2導電性ペーストを配置した後に、硬化時に第2部分751bとなる第3導電性ペースト及び第4部分752bとなる第4導電性ペーストを配置してもよい。 Since the subsequent steps are the same as those of the manufacturing method of the planar light source 100 according to the first embodiment, description thereof will be omitted. A cured product of the first conductive paste 751</b>F corresponds to the first wiring member 751 . A cured product of the second conductive paste 752</b>F corresponds to the second wiring member 752 . However, after placing the first conductive paste that becomes the first portion 751a and the second conductive paste that becomes the third portion 752a when cured, the third conductive paste and the fourth portion 752b that become the second portion 751b when cured are placed. You may arrange|position the 4th conductive paste which becomes.

第1貫通穴716a、第3貫通穴719a及び第1開口715aは、完全に一致して重なってもよいし、互いにずれた状態で重なってもよい。同様に、第2貫通穴716b、第4貫通穴719b及び第2開口715bは、完全に一致して重なってもよいし、互いにずれた状態で重なってもよい。 The first through-hole 716a, the third through-hole 719a, and the first opening 715a may be completely aligned and overlapped, or may be overlapped while being offset from each other. Similarly, the second through-hole 716b, the fourth through-hole 719b, and the second opening 715b may be completely coincident and overlapped, or they may be offset from each other.

以上説明したように、本実施形態に係る面状光源700において、配線基板710は、第1貫通穴716a及び第2貫通穴716bが露出するように、絶縁層716の下面において第1貫通穴716a及び第2貫通穴716bの周囲を被覆し、第1配線層713及び第2配線層714の一部を露出する第2被覆層715を有する。そして、第1配線部材751の第2部分751bは、第1部分751aに連なり、第2被覆層715の下面を経由して、第1配線層713において第2被覆層715から露出した部分に接している。また、第2配線部材752の第4部分762bは、第3部分752aに連なり、第2被覆層715の下面を経由して、第2配線層714において第2被覆層715から露出した部分に接している。 As described above, in the planar light source 700 according to the present embodiment, the wiring substrate 710 has the first through holes 716a formed on the lower surface of the insulating layer 716 so that the first through holes 716a and the second through holes 716b are exposed. and a second covering layer 715 covering the periphery of the second through hole 716 b and exposing a part of the first wiring layer 713 and the second wiring layer 714 . The second portion 751b of the first wiring member 751 continues to the first portion 751a and contacts the exposed portion of the first wiring layer 713 from the second covering layer 715 via the lower surface of the second covering layer 715. ing. Further, the fourth portion 762b of the second wiring member 752 continues to the third portion 752a and is in contact with the portion of the second wiring layer 714 exposed from the second covering layer 715 via the lower surface of the second covering layer 715. ing.

このように、第2被覆層715が、絶縁層716の下面において第1貫通穴716a及び第2貫通穴716bの周囲に設けられている。第2被覆層715の第1開口715a及び第2開口715bが第1貫通孔穴及び第2貫通孔穴と同程度の開口径であると、導電性ペーストを印刷で行う際に導電性ペーストを押し込む力が高まるため、第1配線部材751の第1部分751aを第1貫通穴716aの奥(すなわち、第1貫通孔の光源側)まで配置し易い。同様に、第2配線部材752の第3部分752aを第2貫通穴716bの奥
(すなわち、第2貫通孔の光源側)まで配置し易い。そのため、配線基板710における配線層713、714と光源120における電極124b、124cとの電気的な接続構造において、接続不良の発生を抑制できる。
Thus, the second covering layer 715 is provided on the lower surface of the insulating layer 716 around the first through holes 716a and the second through holes 716b. When the first opening 715a and the second opening 715b of the second coating layer 715 have the same opening diameter as the first through hole and the second through hole, the force pushing the conductive paste when printing the conductive paste is increased, the first portion 751a of the first wiring member 751 can be easily arranged to the depth of the first through hole 716a (that is, the light source side of the first through hole). Similarly, it is easy to arrange the third portion 752a of the second wiring member 752 to the depth of the second through hole 716b (that is, the light source side of the second through hole). Therefore, in the electrical connection structure between the wiring layers 713 and 714 on the wiring board 710 and the electrodes 124b and 124c on the light source 120, the occurrence of poor connection can be suppressed.

また、第2被覆層715には、第1貫通穴716aから離隔し、第1配線層713の一部を露出する第3開口715cと、第2貫通穴716bから離隔し、第2配線層714の一部を露出する第4開口715dと、が設けられている。すなわち、第2被覆層715は、第1配線層713及び第2配線層714を別々に露出している。そのため、第1配線層713及び第2配線層714が電気的に接続されることを抑制できる。 In addition, the second covering layer 715 has a third opening 715c that is separated from the first through hole 716a and exposes a part of the first wiring layer 713, and a third opening 715c that is separated from the second through hole 716b and has a second wiring layer 714. A fourth opening 715d that exposes a part of is provided. That is, the second covering layer 715 exposes the first wiring layer 713 and the second wiring layer 714 separately. Therefore, electrical connection between the first wiring layer 713 and the second wiring layer 714 can be suppressed.

また、第3開口715cと第4開口715dとの距離D7は、第1貫通穴716aと第2貫通穴716bとの距離D6よりも長い。そのため、第1配線層713及び第2配線層714が短絡することを抑制できる。 Also, the distance D7 between the third opening 715c and the fourth opening 715d is longer than the distance D6 between the first through hole 716a and the second through hole 716b. Therefore, short-circuiting between the first wiring layer 713 and the second wiring layer 714 can be suppressed.

<第8の実施形態>
次に、第8の実施形態について説明する。
図33は、本実施形態に係る面状光源における配線基板の一部を拡大して示す模式的な下面図である。
本実施形態に係る面状光源800は、配線基板810における第1配線層813、第2配線層814、及び第2被覆層815の構成において、第7の実施形態に係る面状光源700と相違する。
なお、以下の説明においては、原則として、第7の実施形態との相違点のみを説明する。以下に説明する事項以外は、第7の実施形態と同様である。
<Eighth embodiment>
Next, an eighth embodiment will be described.
FIG. 33 is a schematic bottom view showing an enlarged part of the wiring board in the planar light source according to this embodiment.
The planar light source 800 according to this embodiment differs from the planar light source 700 according to the seventh embodiment in the configuration of the first wiring layer 813, the second wiring layer 814, and the second covering layer 815 in the wiring substrate 810. do.
In addition, in the following description, in principle, only differences from the seventh embodiment will be described. Except for the matters described below, this embodiment is the same as the seventh embodiment.

第1配線層813及び第2配線層814は、第1貫通穴716a及び第2貫通穴716bを挟み込むように配置されている。第1配線層813及び第2配線層814の形状は、第1の実施形態における第1配線層113及び第2配線層114の形状と概ね同じである。 The first wiring layer 813 and the second wiring layer 814 are arranged so as to sandwich the first through hole 716a and the second through hole 716b. The shapes of the first wiring layer 813 and the second wiring layer 814 are substantially the same as the shapes of the first wiring layer 113 and the second wiring layer 114 in the first embodiment.

第2被覆層815において、第3開口815a及び第4開口815bは、第1開口715a及び第2開口715bを挟み込むように配置されている。上面視における第3開口815a及び第4開口815bの形状は、半円状である。ただし、第3開口及び第4開口の形状は上記に限定されない。 In the second covering layer 815, the third opening 815a and the fourth opening 815b are arranged so as to sandwich the first opening 715a and the second opening 715b. The shape of the third opening 815a and the fourth opening 815b in top view is semicircular. However, the shapes of the third opening and the fourth opening are not limited to the above.

このように、第3開口815a及び第4開口815bは、第1開口715a及び第2開口715bを挟み込むように配置されていてもよい。これにより、各配線部材751、752を形成する際に配線層813、814に対する貫通穴716a、716bの位置がずれていたとしても、配線基板810における配線層813、814と光源120における電極124b、124cとの電気的な接続構造において接続不良の発生を抑制できる。 In this manner, the third opening 815a and the fourth opening 815b may be arranged so as to sandwich the first opening 715a and the second opening 715b. As a result, even if the positions of the through holes 716a and 716b with respect to the wiring layers 813 and 814 are misaligned when forming the wiring members 751 and 752, the wiring layers 813 and 814 in the wiring substrate 810 and the electrodes 124b and In the electrical connection structure with 124c, the occurrence of poor connection can be suppressed.

<第9の実施形態>
次に、第9の実施形態について説明する。
図34は、本実施形態に係る面状光源を示す模式的な上面図である。
本実施形態に係る面状光源1000は、配線基板910と、配線基板910上に配置された発光モジュール920と、を備える。
<Ninth Embodiment>
Next, a ninth embodiment will be described.
FIG. 34 is a schematic top view showing a planar light source according to this embodiment.
A planar light source 1000 according to this embodiment includes a wiring board 910 and a light emitting module 920 arranged on the wiring board 910 .

配線基板910は、本実施形態では、上面視における形状が略矩形の本体部910aと、本体部910aのY方向における端部に接続され、Y方向に突出した複数の突出部910bと、を有する。本体部910aの上に、発光モジュール920が配置されている。ただし、配線基板の形状は、上記の形状に限定されず、多角形でもよいし、矩形を除く四角形(例えば、略台形)でもよい。また、配線基板910に設ける突出部910bの数は、図34に示すように4つに限定されず、4つより少なくてもよいし、4つより多くてもよい。 In the present embodiment, the wiring board 910 includes a body portion 910a having a substantially rectangular shape when viewed from above, and a plurality of projecting portions 910b that are connected to the ends of the body portion 910a in the Y direction and project in the Y direction. . A light-emitting module 920 is arranged on the body portion 910a. However, the shape of the wiring board is not limited to the above shape, and may be a polygon or a quadrangle other than a rectangle (for example, a substantially trapezoid). Also, the number of projecting portions 910b provided on the wiring board 910 is not limited to four as shown in FIG. 34, and may be less than four or more than four.

図35は、本実施形態における発光モジュールにおいて、図34の破線XXXVで囲まれた領域を拡大して示す模式的な上面図である。
図36は、図35のXXXVI-XXXVI線における模式的な断面図である。
発光モジュール920は、第6の実施形態と同様に、複数の光源620と、複数の凹部635が設けられた導光部材630と、区画部材633と、透光性部材634と、光調整部材636と、を有する。発光モジュール920は、区画部材633の下に配置された複数の配線層921と、複数の配線層921の下に設けられた被覆層922と、を更に備える。
FIG. 35 is a schematic top view showing an enlarged area surrounded by broken lines XXXV in FIG. 34 in the light-emitting module according to this embodiment.
36 is a schematic cross-sectional view taken along line XXXVI-XXXVI of FIG. 35. FIG.
As in the sixth embodiment, the light emitting module 920 includes a plurality of light sources 620, a light guide member 630 provided with a plurality of recesses 635, a partition member 633, a translucent member 634, and a light adjustment member 636. and have The light-emitting module 920 further includes a plurality of wiring layers 921 arranged under the partition member 633 and a covering layer 922 provided under the plurality of wiring layers 921 .

複数の光源620は、図35に示すように、X方向及びY方向に配列している。
配線層921には、第1の実施形態における配線層113、114と同様の材料を用いることができる。各配線層921は、図36に示すように、複数の光源620のうちのいずれかに電気的に接続されている。
被覆層922には、絶縁性の樹脂を用いることができる。被覆層922は、各配線層921の少なくとも一部を被覆している。
A plurality of light sources 620 are arranged in the X direction and the Y direction, as shown in FIG.
The same material as the wiring layers 113 and 114 in the first embodiment can be used for the wiring layer 921 . Each wiring layer 921 is electrically connected to one of the plurality of light sources 620, as shown in FIG.
An insulating resin can be used for the coating layer 922 . The covering layer 922 covers at least part of each wiring layer 921 .

以下、発光モジュール920における複数の配線層921の配線パターンについて説明する。
図37は、本実施形態における発光モジュールにおいて、図34のXXXVで囲まれた領域を拡大し、配線パターンを透過して示す模式的な上面図である。
なお、図37では、説明をわかりやすくするために、配線層921が設けられた領域をドットで示している。また、図37では、配線パターンをわかりやすくするために、導光部材630に設けられた凹部635及び光調整部材636を省略している。
複数の配線層921は、5つごとに配線層群921Sを形成している。各配線層群921Sは、本実施形態では4つの光源620を直列に接続している。これら4つの光源620は、X方向に列が2つ並び、かつ、Y方向に行が2つ並んだ行列を成すように配置されている。すなわち、各配線層群921Sは、4つの光源620を直列に接続する電流経路に相当する。ただし、各配線層群が接続する光源の数は、上記の数に限定されない。
The wiring patterns of the plurality of wiring layers 921 in the light emitting module 920 will be described below.
FIG. 37 is a schematic top view of the light-emitting module according to the present embodiment, enlarging the region surrounded by XXXV in FIG. 34 and showing the wiring pattern through the wiring pattern.
In addition, in FIG. 37, the area in which the wiring layer 921 is provided is indicated by dots for easy understanding of the explanation. Also, in FIG. 37, the concave portion 635 and the light adjustment member 636 provided in the light guide member 630 are omitted in order to make the wiring pattern easier to understand.
The plurality of wiring layers 921 form a wiring layer group 921S every five. Each wiring layer group 921S connects four light sources 620 in series in this embodiment. These four light sources 620 are arranged in a matrix with two columns in the X direction and two rows in the Y direction. That is, each wiring layer group 921S corresponds to a current path connecting four light sources 620 in series. However, the number of light sources connected to each wiring layer group is not limited to the above number.

複数の配線層群921Sは、X方向及びY方向に配列している。以下では、X方向に配列された複数の配線層群921Sを「行MT」という。すなわち、本実施形態では、複数の行MTが、Y方向に並んでいる。以下では、図34に示すように、複数の行MTのうち、配線基板910の突出部910bに最も近い行MTを、「第1行MT1」ともいう。また、複数の行MTのうち、第1行MT1とY方向において隣り合う行MTを「第2行MT2」ともいう。また、複数の行MTのうち、配線基板910の突出部910bから最も遠い行MTを、「最終行MTn」ともいう。 A plurality of wiring layer groups 921S are arranged in the X direction and the Y direction. A plurality of wiring layer groups 921S arranged in the X direction are hereinafter referred to as "rows MT". That is, in the present embodiment, multiple rows MT are arranged in the Y direction. Hereinafter, as shown in FIG. 34, among the plurality of rows MT, the row MT closest to the projecting portion 910b of the wiring board 910 is also referred to as "first row MT1". Further, among the plurality of rows MT, a row MT adjacent to the first row MT1 in the Y direction is also referred to as a “second row MT2”. Further, among the plurality of rows MT, the row MT farthest from the projecting portion 910b of the wiring board 910 is also referred to as the “last row MTn”.

以下、第1行MT1に属する配線層群921Sの配線パターンについて説明する。
以下、図37に示すように、第1行MT1に属する配線層群921Sを構成する5つの配線層921を、「第1配線層921a」、「第2配線層921b」、「第3配線層921c」、「第4配線層921d」、及び「第5配線層921e」ともいう。また、配線層群921Sが直列に接続する4つの光源620のうちの一の光源620を「第1光源620a」ともいい、第1光源620aとX方向において隣り合う光源620を「第2光源620b」ともいい、第1光源620aとY方向において隣り合う光源620を「第3光源620c」ともいい、第2光源620bとY方向において隣り合い、かつ、第3光源620cとX方向において隣り合う光源620を「第4光源620d」ともいう。
The wiring pattern of the wiring layer group 921S belonging to the first row MT1 will be described below.
Hereinafter, as shown in FIG. 37, the five wiring layers 921 constituting the wiring layer group 921S belonging to the first row MT1 are designated as "first wiring layer 921a,""second wiring layer 921b," and "third wiring layer."921c","fourth wiring layer 921d", and "fifth wiring layer 921e". One light source 620 of the four light sources 620 connected in series by the wiring layer group 921S is also referred to as a "first light source 620a", and the light source 620 adjacent to the first light source 620a in the X direction is referred to as a "second light source 620b". , the light source 620 that is adjacent to the first light source 620a in the Y direction is also referred to as a “third light source 620c,” and is adjacent to the second light source 620b in the Y direction and to the third light source 620c in the X direction. 620 is also referred to as "fourth light source 620d".

第1配線層921aは、被覆層922の開口922aから少なくとも一部が露出したパッド部P1と、一端がパッド部P1に連なり、他端が第1光源620の第1電極621b
(図36参照)に電気的に接続された延伸部P2と、を有する。パッド部P1の形状は、本実施形態では、略矩形である。ただし、パッド部の形状は、四角形以外の多角形、円形、又は楕円形等であってもよい。後述するパッド部P3、P5、P7の形状も同様である。延伸部P2は、被覆層922に被覆されている。
The first wiring layer 921a has a pad portion P1 at least partially exposed from an opening 922a of the covering layer 922, one end connected to the pad portion P1, and the other end connected to the first electrode 621b of the first light source 620.
(see FIG. 36) and an extension P2 electrically connected to the . The shape of the pad part P1 is substantially rectangular in this embodiment. However, the shape of the pad portion may be polygonal, circular, elliptical, or the like other than square. The same applies to the shapes of pad portions P3, P5, and P7, which will be described later. The extending portion P2 is covered with a covering layer 922 .

第2配線層921bは、一端が、第1光源620aの第2電極621c(図36参照)に電気的に接続され、他端が、第2光源620bの第1電極621bに電気的に接続されている。 The second wiring layer 921b has one end electrically connected to the second electrode 621c (see FIG. 36) of the first light source 620a and the other end electrically connected to the first electrode 621b of the second light source 620b. ing.

第3配線層921cは、一端が、第2光源620bの第2電極621cに電気的に接続され、他端が、第3光源620cの第1電極621bに電気的に接続されている。 The third wiring layer 921c has one end electrically connected to the second electrode 621c of the second light source 620b and the other end electrically connected to the first electrode 621b of the third light source 620c.

第4配線層921dは、一端が、第3光源620cの第2電極621cに電気的に接続され、他端が、第4光源620dの第1電極621bに電気的に接続されている。 The fourth wiring layer 921d has one end electrically connected to the second electrode 621c of the third light source 620c and the other end electrically connected to the first electrode 621b of the fourth light source 620d.

第2配線層921b、第3配線層921c、及び第4配線層921dは、被覆層922に被覆されている。 The second wiring layer 921 b, the third wiring layer 921 c, and the fourth wiring layer 921 d are covered with a covering layer 922 .

第5配線層921eは、被覆層922の開口922bから少なくとも一部が露出したパッド部P3と、一端がパッド部P3に連なり、他端が第4光源620dの第2電極621cに電気的に接続された延伸部P4と、を有する。パッド部P3は、X方向において第1配線層921aのパッド部P1と隣り合っている。延伸部P4は、被覆層922に被覆されている。 The fifth wiring layer 921e has one end connected to the pad portion P3 at least partially exposed from the opening 922b of the covering layer 922 and the pad portion P3, and the other end electrically connected to the second electrode 621c of the fourth light source 620d. and an extension P4. The pad portion P3 is adjacent to the pad portion P1 of the first wiring layer 921a in the X direction. The extending portion P4 is covered with a covering layer 922 .

パッド部P1、P3は、Y方向において、4つの光源620a、620b、620c、620dよりも突出部910bから離隔している。また、パッド部P1、P3は、下面視で、第1行MT1に属する配線層群921Sが直列に接続する4つの光源620と、第2行MT2に属する配線層群921Sが直列に接続する4つの光源620と、の間に位置する。したがって、第1行MT1に属する配線層群921Sのパッド部P1、P3配線基板の本体部121のY方向における突出部910b側の外縁から離隔させることができる。この場合、本実施形態に係る第1行MT1に属する配線層群921Sのパッド部P1及びP2から配線基板の本体部121のY方向の突出部910b側の外縁までの距離は、パッド部P1が光源620aと光源620cとの間に位置し、パッド部P3が光源620bと光源620dとの間に位置する場合におけるパッド部P1及びP2から配線基板の本体部121のY方向の突出部910b側の外縁までの距離よりも大きくすることができる。 The pad portions P1 and P3 are further apart from the projecting portion 910b than the four light sources 620a, 620b, 620c and 620d in the Y direction. In addition, the pad portions P1 and P3 have four light sources 620 to which the wiring layer group 921S belonging to the first row MT1 are connected in series and four light sources 620 to which the wiring layer group 921S belonging to the second row MT2 are connected in series in a bottom view. between the two light sources 620 and . Therefore, the pad portions P1 and P3 of the wiring layer group 921S belonging to the first row MT1 can be separated from the outer edge of the main body portion 121 of the wiring substrate on the side of the projecting portion 910b in the Y direction. In this case, the distance from the pad portions P1 and P2 of the wiring layer group 921S belonging to the first row MT1 according to the present embodiment to the outer edge of the main body portion 121 of the wiring substrate on the side of the projecting portion 910b in the Y direction is When the pad portion P3 is positioned between the light source 620b and the light source 620d and the pad portion P1 and P2 are positioned between the light source 620a and the light source 620c and the pad portion P3 is positioned between the light source 620b and the light source 620d, the projection portion 910b side of the body portion 121 of the wiring substrate in the Y direction It can be greater than the distance to the outer edge.

次に、第2行MT2に属する配線層群921Sの配線パターンについて説明する。
第2行MT2に属する配線層群921Sは、第1行MT1に属する配線層群921Sと同様に、第1配線層921f、第2配線層921g、第3配線層921h、第4配線層921i、及び第5配線層921jからなる。また、第2行MT2に属する配線層群921Sは、第1行MT1に属する配線層群921Sと同様に、第1光源620e、第2光源620f、第3光源620g、及び第4光源620hを直列に接続している。以下では、第2行MT2において、第1行MT1との相違点のみを説明する。
Next, the wiring pattern of the wiring layer group 921S belonging to the second row MT2 will be described.
The wiring layer group 921S belonging to the second row MT2 includes, similarly to the wiring layer group 921S belonging to the first row MT1, a first wiring layer 921f, a second wiring layer 921g, a third wiring layer 921h, a fourth wiring layer 921i, and a fifth wiring layer 921j. Similarly to the wiring layer group 921S belonging to the first row MT1, the wiring layer group 921S belonging to the second row MT2 includes the first light source 620e, the second light source 620f, the third light source 620g, and the fourth light source 620h connected in series. connected to. Only the difference between the second row MT2 and the first row MT1 will be described below.

第1配線層921fのパッド部P5は、下面視で、第1光源620eと第3光源620gとの間に位置する。また、第5配線層921jのパッド部P7は、下面視で、第2光源620fと第4光源620hとの間に位置する。また、第1配線層921fのパッド部P5と第5配線層921jのパッド部P7は、下面視で、X方向において第3配線層921hを挟み込むように配置されている。 The pad portion P5 of the first wiring layer 921f is positioned between the first light source 620e and the third light source 620g in bottom view. Also, the pad portion P7 of the fifth wiring layer 921j is located between the second light source 620f and the fourth light source 620h in bottom view. Further, the pad portion P5 of the first wiring layer 921f and the pad portion P7 of the fifth wiring layer 921j are arranged so as to sandwich the third wiring layer 921h in the X direction when viewed from below.

したがって、第1行MT1に属する配線層群921Sの配線パターンが、第2行MT2に属する配線層群921Sの配線パターンと同じである場合と比較して、第1行MT1に属する配線層群921Sのパッド部P1と、第2行MT2に属する配線層群921Sのパッド部P5との距離D8を短くできる。 Therefore, compared to the case where the wiring pattern of the wiring layer group 921S belonging to the first row MT1 is the same as the wiring pattern of the wiring layer group 921S belonging to the second row MT2, the wiring layer group 921S belonging to the first row MT1 and the pad portion P5 of the wiring layer group 921S belonging to the second row MT2 can be shortened.

また、第1配線層921fの延伸部P6は、パッド部P5に接続され、パッド部P5よりも突出部910bから離隔した第1光源621eに電気的に接続されている。また、第5配線層921jの延伸部P8は、パッド部P7に接続され、パッド部P7よりも突出部910bに近い第4光源620hに電気的に接続されている。延伸部P8のY方向の長さは、第1行MT1における延伸部P4のY方向の長さよりも短い。 Further, the extending portion P6 of the first wiring layer 921f is connected to the pad portion P5 and electrically connected to the first light source 621e which is more distant from the protruding portion 910b than the pad portion P5. Further, the extending portion P8 of the fifth wiring layer 921j is connected to the pad portion P7 and electrically connected to the fourth light source 620h closer to the projecting portion 910b than the pad portion P7. The Y-direction length of the extension portion P8 is shorter than the Y-direction length of the extension portion P4 in the first row MT1.

ただし、第2行MT2に属する配線層群921Sの配線パターンは、第1行MT1に属する配線層群921Sの配線パターンと同じであってもよい。また、第2行MT2から最終行MTnまでの行MTに属する配線層群921Sの配線パターンは、第1行MT1に属する配線層群921Sの配線パターンと同じであってもよいし、第2行MT2に属する配線層群921Sの配線パターンと同じであってもよい。 However, the wiring pattern of the wiring layer group 921S belonging to the second row MT2 may be the same as the wiring pattern of the wiring layer group 921S belonging to the first row MT1. The wiring pattern of the wiring layer group 921S belonging to the rows MT from the second row MT2 to the last row MTn may be the same as the wiring pattern of the wiring layer group 921S belonging to the first row MT1. The wiring pattern may be the same as the wiring pattern of the wiring layer group 921S belonging to MT2.

本実施形態では、パッド部P1、P5が、アノードとして機能し、パッド部P3、P7が、カソードとして機能する。 In this embodiment, the pad portions P1 and P5 function as anodes, and the pad portions P3 and P7 function as cathodes.

次に、配線基板910と発光モジュール920との接続構造について説明する。
図38は、図34の破線XXXVIIIで囲まれた部分を拡大して示す模式的な下面図である。
図39は、本実施形態における配線基板において図38の破線XXXIXで囲まれた部分を拡大して示す模式的な下面図である。
図40は、本実施形態における配線基板及び発光モジュールにおいて図38の破線XXXIXで囲まれた部分を拡大して示す模式的な下面図である。
図41は、図40のXLI-XLI線における模式的な断面図である。
配線基板910は、絶縁層911と、絶縁層911の下に設けられ、パッド部P3、P7に電気的に接続される複数の第1配線層912と、絶縁層911の下に設けられ、パッド部P1、P5に電気的に接続される複数の第2配線層917と、を有する。また、配線基板910は、図34に示すように、絶縁層911の上に設けられた識別用の表示913を更に有する。また、配線基板910は、複数の第1配線層912及び第2配線層917の下に設けられた被覆層(図示省略)を更に有していてもよい。
Next, a connection structure between the wiring board 910 and the light emitting module 920 will be described.
38 is a schematic bottom view showing an enlarged portion surrounded by broken line XXXVIII in FIG. 34. FIG.
FIG. 39 is a schematic bottom view showing an enlarged portion surrounded by broken line XXXIX in FIG. 38 in the wiring board according to the present embodiment.
FIG. 40 is a schematic bottom view showing an enlarged portion of the wiring board and the light emitting module in this embodiment, which is surrounded by the dashed line XXXIX in FIG.
41 is a schematic cross-sectional view along line XLI-XLI in FIG. 40. FIG.
The wiring board 910 includes an insulating layer 911, a plurality of first wiring layers 912 provided under the insulating layer 911 and electrically connected to the pad portions P3 and P7, and a wiring board 910 provided under the insulating layer 911 and the pads. and a plurality of second wiring layers 917 electrically connected to the portions P1 and P5. Moreover, the wiring board 910 further has an identification display 913 provided on the insulating layer 911, as shown in FIG. Moreover, the wiring board 910 may further have a covering layer (not shown) provided under the plurality of first wiring layers 912 and the second wiring layers 917 .

絶縁層911は、第1の実施形態における絶縁層116と同様の材料からなる。絶縁層911は、接着シート等により発光モジュール920に貼り付けられていてもよい。絶縁層911は、1つの層からなってもよいし、複数の層からなってもよい。図40及び図41に示すように、絶縁層911において、各パッド部P1、P3、P5、P7の直下には、貫通穴911aが設けられている。各貫通穴911aは絶縁層911をZ方向に貫通している。上面視における各貫通穴911aの形状は、本実施形態では円形である。ただし、各貫通穴の形状は、上記の形状に限定されず、四角形等の多角形、又は楕円形等であってもよい。各貫通穴911a内には、配線部材930が設けられている。 The insulating layer 911 is made of the same material as the insulating layer 116 in the first embodiment. The insulating layer 911 may be attached to the light emitting module 920 with an adhesive sheet or the like. The insulating layer 911 may consist of one layer or may consist of a plurality of layers. As shown in FIGS. 40 and 41, in the insulating layer 911, through holes 911a are provided directly below the pad portions P1, P3, P5, and P7. Each through hole 911a penetrates the insulating layer 911 in the Z direction. The shape of each through-hole 911a in the top view is circular in this embodiment. However, the shape of each through-hole is not limited to the shape described above, and may be polygonal such as quadrangular, elliptical, or the like. A wiring member 930 is provided in each through hole 911a.

各配線部材930は、複数のパッド部P1、P3、P5、P7のうち、直上に位置するパッド部に電気的に接続されている。なお、図38、図39、及び図40では、説明をわかりやすくするために、配線部材930が設けられている領域を、ドットで示している。各配線部材930は、導電性ペーストを硬化させてなる。 Each wiring member 930 is electrically connected to one of the plurality of pad portions P1, P3, P5, and P7, which is located directly above. In addition, in FIGS. 38, 39, and 40, the regions in which the wiring members 930 are provided are indicated by dots in order to facilitate the explanation. Each wiring member 930 is formed by curing a conductive paste.

各第1配線層912は、図38に示すように、一端が、配線基板910の突出部910b上に位置し、配線基板910の本体部910a上に延在している。すなわち、複数の第1配線層912の一端は、突出部910b上において集約されている。また、各第1配線層912は、図40に示すように、パッド部P3、P7に接続された1以上の配線部材930に接している。これにより、複数の第1配線層912と、発光モジュール920の複数の配線層群921Sのカソードとが、電気的に接続される。突出部910b上に集約された複数の第1配線層912の一端は、面状光源1000を駆動する外部の駆動基板等に電気的に接続される。 As shown in FIG. 38, each first wiring layer 912 has one end located on the protruding portion 910b of the wiring substrate 910 and extending over the main body portion 910a of the wiring substrate 910 . That is, one ends of the plurality of first wiring layers 912 are concentrated on the projecting portion 910b. Each first wiring layer 912 is in contact with one or more wiring members 930 connected to the pad portions P3 and P7, as shown in FIG. Thereby, the plurality of first wiring layers 912 and the cathodes of the plurality of wiring layer groups 921S of the light emitting module 920 are electrically connected. One ends of the plurality of first wiring layers 912 gathered on the protruding portion 910b are electrically connected to an external drive substrate or the like that drives the planar light source 1000. FIG.

各第2配線層917は、配線基板910の本体部910a上に延在している。また、各第2配線層917は、パッド部P1、P5に接続された1以上の配線部材930に接している。これにより、複数の第2配線層917と、発光モジュール920の複数の配線層群921Sのアノードとが、電気的に接続される。 Each second wiring layer 917 extends over the main body portion 910 a of the wiring substrate 910 . Each second wiring layer 917 is in contact with one or more wiring members 930 connected to the pad portions P1 and P5. Thereby, the plurality of second wiring layers 917 and the anodes of the plurality of wiring layer groups 921S of the light emitting module 920 are electrically connected.

このように、配線基板910には、複数の第1配線層912が設けられている。そして、突出部910bには、複数の第1配線層912の端部が集約される。この際、本体部910aにおいて突出部910bの近辺の領域では、複数の第1配線層912の一部が、Y方向に並ぶように集約される。そして、複数の第1配線層912において、本体部910a上でY方向に並ぶように集約された部分は、第1行MT1に属する配線層群921Sに電気的に接続される配線部材930よりも、Y方向における突出部910b側に位置する必要がある。 Thus, the wiring substrate 910 is provided with a plurality of first wiring layers 912 . Then, the end portions of the plurality of first wiring layers 912 are collected at the projecting portion 910b. At this time, in a region in the vicinity of the projecting portion 910b in the main body portion 910a, some of the plurality of first wiring layers 912 are concentrated so as to be aligned in the Y direction. In addition, in the plurality of first wiring layers 912, the portions that are concentrated so as to be aligned in the Y direction on the main body portion 910a are closer to each other than the wiring member 930 electrically connected to the wiring layer group 921S belonging to the first row MT1. , on the side of the protrusion 910b in the Y direction.

第1行MT1に属する配線層群921Sに電気的に接続される配線部材930は、第1行MT1におけるパッド部P3の直下に位置する。したがって、パッド部P3が発光モジュール920のY方向における突出部910b側の外縁に近い程、複数の第1配線層912において、本体部910a上でY方向に並んだ状態で集約された部分を、Y方向における突出部910b側にシフトさせる必要がある。この場合、複数の第1配線層912が本体部910aの外縁の内側に収まるように、本体部910aのY方向の寸法を大きくする必要がある。これに対して、本実施形態では、第1行MT1に属する配線層群921Sのパッド部P3は、この配線層群921Sが直列に接続する複数の光源620よりも、Y方向において突出部910bから離隔していている。そのため、パッド部P3を、発光モジュール920のY方向の突出部910b側の外縁から離隔させることができる。これにより、本体部910aのY方向の寸法を大きくすることなく、複数の第1配線層912を配線基板910の外縁より内側に形成することができる。そのため、配線基板910をコンパクトにできる。 A wiring member 930 electrically connected to the wiring layer group 921S belonging to the first row MT1 is positioned directly below the pad portion P3 in the first row MT1. Therefore, the closer the pad portion P3 is to the outer edge of the light-emitting module 920 on the side of the projecting portion 910b in the Y direction, the more the portions of the plurality of first wiring layers 912 that are aligned in the Y direction on the main body portion 910a are gathered. It is necessary to shift to the protrusion 910b side in the Y direction. In this case, it is necessary to increase the dimension of the body portion 910a in the Y direction so that the plurality of first wiring layers 912 can be accommodated inside the outer edge of the body portion 910a. On the other hand, in the present embodiment, the pad portion P3 of the wiring layer group 921S belonging to the first row MT1 is more distant from the projecting portion 910b in the Y direction than the plurality of light sources 620 to which the wiring layer group 921S is connected in series. isolated. Therefore, the pad portion P3 can be separated from the outer edge of the light emitting module 920 on the side of the projecting portion 910b in the Y direction. Accordingly, the plurality of first wiring layers 912 can be formed inside the outer edge of the wiring substrate 910 without increasing the dimension of the main body portion 910a in the Y direction. Therefore, the wiring board 910 can be made compact.

識別用の表示913は、例えば商品のロット等を識別するための表示である。識別用の表示913は、例えば、データマトリクス等の2次元コード、バーコード等の1次元コード、又は、文字、数字、若しくは記号等の組み合わせからなる文字コード等である。識別用の表示913は、例えば銅等の金属材料からなる。識別用の表示913は、本実施形態では、図34に示すように突出部910bの上面に配置されている。複数の配線層912と識別用の表示913との間には上述した絶縁層911が介在している。識別用の表示913は、絶縁層911から露出している。ただし、識別用の表示は、突出部の下面、又は本体部の表面に配置されてもよい。また、配線基板に識別用の表示は、設けられていなくてもよい。 The identification display 913 is, for example, a display for identifying product lots. The identification display 913 is, for example, a two-dimensional code such as a data matrix, a one-dimensional code such as a bar code, or a character code made up of a combination of letters, numbers, symbols, or the like. The identification display 913 is made of a metal material such as copper. The identification display 913 is arranged on the upper surface of the projecting portion 910b as shown in FIG. 34 in this embodiment. The insulating layer 911 described above is interposed between the plurality of wiring layers 912 and the identification display 913 . A display 913 for identification is exposed from the insulating layer 911 . However, the identification mark may be arranged on the lower surface of the protrusion or on the surface of the main body. In addition, the wiring substrate may not have an identification mark.

識別用の表示913は、ベース層111上において配線層113、114とは絶縁されて配置された銅等の金属層を用いることができる。この場合、金属層にレーザを照射又は金属層をエッチングし、金属層を部分的に除去することで識別用の表示913を形成することができる。 A metal layer such as copper arranged on the base layer 111 so as to be insulated from the wiring layers 113 and 114 can be used for the indication 913 for identification. In this case, the identification mark 913 can be formed by irradiating the metal layer with a laser or etching the metal layer to partially remove the metal layer.

別の例として、前述した金属層の上面に第1被覆層112を配置し、第1被覆層112にレーザを照射又は第1被覆層112をエッチングし、第1被覆層112を部分的に除去することで識別用の表示913を形成することができる。第1被覆層112における除去された領域は、貫通してもよいし、貫通していなくてもよい。第1被覆層112は、透明の材料でもよく、視認性を高める観点では、白色の材料、もしくは、緑色又は青色のような着色された材料であることが好ましい。なお、金属層がベース層の下面に配置される場合は、金属層の表面に第2被覆層115を配置し、第2被覆層115にレーザを照射又は第2被覆層115をエッチングすることで、第2被覆層115を部分的に除去する。 As another example, the first coating layer 112 is placed on the upper surface of the metal layer described above, the first coating layer 112 is irradiated with a laser or the first coating layer 112 is etched, and the first coating layer 112 is partially removed. By doing so, a display 913 for identification can be formed. The removed regions in the first covering layer 112 may or may not be penetrating. The first coating layer 112 may be a transparent material, and from the viewpoint of enhancing visibility, it is preferably a white material or a colored material such as green or blue. In addition, when the metal layer is arranged on the lower surface of the base layer, the second coating layer 115 is arranged on the surface of the metal layer, and the second coating layer 115 is irradiated with a laser or etched by etching the second coating layer 115. , the second covering layer 115 is partially removed.

さらに別の例として、白色樹脂又は着色された樹脂を塗布又は印刷すること、或いは、ステッカーを貼ることで識別用の表示913を形成することができる。 As yet another example, the identifying indicia 913 can be formed by applying or printing a white or colored resin, or by applying a sticker.

なお、配線基板910の構成は、上記に限定されない。例えば、突出部910bのY方向における先端部の厚さは、突出部910bのY方向における基端部(本体部910aに接続された部分)の厚さよりも厚くてもよい。このような先端部は、例えば突出部910bの先端部に、ポリイミド等の樹脂材料からなるシートを設けることにより、形成できる。 Note that the configuration of the wiring board 910 is not limited to the above. For example, the thickness of the distal end portion of the projecting portion 910b in the Y direction may be thicker than the thickness of the proximal end portion (the portion connected to the main body portion 910a) of the projecting portion 910b in the Y direction. Such a tip portion can be formed, for example, by providing a sheet made of a resin material such as polyimide on the tip portion of the projecting portion 910b.

図42は、本実施形態における配線基板の他の例を示す模式的な下面図である。
また、例えば、図42に示すように、配線基板910には、異方性導電膜910dを設け、複数の第1配線層912は異方性導電膜910dに集約されてもよい。図42では、異方性導電膜910dは、突出部910bに設けられている。そして、異方性導電膜910dに電気的に接続されるように、外部の駆動基板に接続するための端子910cを突出部910bに連結してもよい。すなわち、複数の第1配線層912は、異方性導電膜910dを介して端子910c電気的に接続されてもよい。また、配線基板には、複数の突出部が設けられていなくてもよい。この場合、本体部の下面に複数の異方性導電膜を設け、各異方性導電膜に複数の配線を集約してもよい。そして、各異方性導電膜に端子を電気的に接続してもよい。
FIG. 42 is a schematic bottom view showing another example of the wiring board in this embodiment.
Further, for example, as shown in FIG. 42, the wiring substrate 910 may be provided with an anisotropic conductive film 910d, and the plurality of first wiring layers 912 may be collected in the anisotropic conductive film 910d. In FIG. 42, the anisotropic conductive film 910d is provided on the projecting portion 910b. A terminal 910c for connecting to an external driving substrate may be connected to the protrusion 910b so as to be electrically connected to the anisotropic conductive film 910d. That is, the plurality of first wiring layers 912 may be electrically connected to the terminal 910c through the anisotropic conductive film 910d. Also, the wiring substrate may not be provided with a plurality of projecting portions. In this case, a plurality of anisotropic conductive films may be provided on the lower surface of the main body, and a plurality of wirings may be concentrated on each anisotropic conductive film. A terminal may be electrically connected to each anisotropic conductive film.

また、配線層群921Sは、発光モジュール920ではなく、配線基板910の上面、例えば絶縁層911上に設けられていてもよい。また、配線層912、917は、少なくとも配線部材930に接する部分が、絶縁層911の下に位置すればよい。したがって、例えば、配線層912、917は、絶縁層911の下に設けられ、配線部材930に接する第1部分と、絶縁層911の上に設けられた第2部分と、絶縁層911を貫通し、第1部分及び第2部分を接続する第3部分と、を有していてもよい。また、配線層912、917は、絶縁層911に設けられた貫通穴911aから離隔していてもよい。そして、配線部材930は、貫通穴911a内を充填する第1部分と、絶縁層911の下に配置され、第1部分に連なり、配線層912、917に接した第2部分と、を備えていてもよい。なお、配線層群921Sは、図37に示す配線パターンを、Y方向に延びる軸に対して反転させたような配線パターンとすることもできる。 Also, the wiring layer group 921S may be provided not on the light emitting module 920 but on the upper surface of the wiring substrate 910, for example, on the insulating layer 911. FIG. At least the portions of the wiring layers 912 and 917 in contact with the wiring member 930 should be located under the insulating layer 911 . Therefore, for example, the wiring layers 912 and 917 have a first portion provided under the insulating layer 911 and in contact with the wiring member 930 , a second portion provided above the insulating layer 911 , and a portion penetrating the insulating layer 911 . , and a third portion connecting the first portion and the second portion. Also, the wiring layers 912 and 917 may be separated from the through hole 911 a provided in the insulating layer 911 . The wiring member 930 has a first portion that fills the inside of the through hole 911a, and a second portion that is arranged under the insulating layer 911, continues to the first portion, and is in contact with the wiring layers 912 and 917. may The wiring layer group 921S can also have a wiring pattern in which the wiring pattern shown in FIG. 37 is inverted with respect to the axis extending in the Y direction.

次に、本実施形態の効果について説明する。
本実施形態における面状光源1000においては、第1行MT1に属する配線層群921Sにおいて、パッド部P3は、この配線層群921Sが直列に接続する複数の光源620よりも、Y方向において突出部910bから離隔していている。これにより、本体部910aのY方向の寸法を大きくすることなく、複数の第1配線層912を配線基板910の外縁より内側に形成することができる。そのため、配線基板910をコンパクトにできる。
Next, the effects of this embodiment will be described.
In the planar light source 1000 according to the present embodiment, in the wiring layer group 921S belonging to the first row MT1, the pad portion P3 protrudes in the Y direction from the plurality of light sources 620 to which the wiring layer group 921S is connected in series. 910b. Accordingly, the plurality of first wiring layers 912 can be formed inside the outer edge of the wiring board 910 without increasing the dimension of the main body 910a in the Y direction. Therefore, the wiring board 910 can be made compact.

また、本実施形態においては、下面視で、第2行MT2に属する配線層群921Sと隣り合う配線層群921Sにおいて、パッド部P5、P7は、この配線層群921Sが直列に接続する複数の光源620の間に位置する。これにより、第1行MT1におけるパッド部P1、P3と第2行MT2におけるパッド部P5、P7と、の距離を短くできる。その結果、パッド部P1、P3の直下に位置する絶縁層911の貫通穴911aと、パッド部P5、P7の直下に位置する絶縁層911の貫通穴911aと、の距離を短くできる。面状光源1000を駆動させた場合、各光源620の点灯又は非点灯等の状態によって面状光源1000の温度が上昇したり下降したりする。これにより、面状光源1000を構成する配線基板910、接着シート、発光モジュール920、及び配線部材930が変形する場合がある。この際、これらの熱膨張率が相互に異なるため、配線部材930に応力が加わり、クラックが生じる可能性がある。本実施形態では、上述したように、パッド部P1、P3の直下に位置する絶縁層911の貫通穴911aと、パッド部P5、P7の直下に位置する絶縁層911の貫通穴911aと、の距離を短くすることで、配線部材930に作用する応力を緩和できる。その結果、配線部材930にクラックが生じることを抑制できる。 In addition, in the present embodiment, in the wiring layer group 921S adjacent to the wiring layer group 921S belonging to the second row MT2 in the bottom view, the pad portions P5 and P7 are connected in series with the wiring layer group 921S. Located between light sources 620 . Thereby, the distance between the pad portions P1 and P3 in the first row MT1 and the pad portions P5 and P7 in the second row MT2 can be shortened. As a result, the distance between the through holes 911a in the insulating layer 911 located directly under the pads P1 and P3 and the through holes 911a in the insulating layer 911 located directly under the pads P5 and P7 can be shortened. When the planar light source 1000 is driven, the temperature of the planar light source 1000 rises or falls depending on whether each light source 620 is lit or not. As a result, the wiring board 910, the adhesive sheet, the light emitting module 920, and the wiring member 930 that constitute the planar light source 1000 may be deformed. At this time, since the coefficients of thermal expansion are different from each other, stress is applied to the wiring member 930, and cracks may occur. In the present embodiment, as described above, the distance between the through hole 911a in the insulating layer 911 located directly under the pad portions P1 and P3 and the through hole 911a in the insulating layer 911 located directly under the pad portions P5 and P7 is By shortening , the stress acting on the wiring member 930 can be relaxed. As a result, the occurrence of cracks in the wiring member 930 can be suppressed.

<変形例>
次に、第9の実施形態の変形例について説明する。
図43は、本変形例における配線基板の一部を拡大して示す模式的な下面図である。
図43に示すように、配線基板910の外周の一部は、複数の第1配線層912のうち最も外側に位置する第1配線層912aの形状に沿った形状を有していてもよい。例えば、図43では、本体部910aにおいて、突出部910bが接続される側面910sは、発光モジュール920の外周及び第1配線層912aの一部に沿ってX方向に延びている。また、例えば図43では、突出部910bの側面は、第1配線層912aに沿って、2つの段差を有する。これにより、配線基板910の本体部910aのY方向の寸法を小さくできる。
<Modification>
Next, a modification of the ninth embodiment will be described.
FIG. 43 is a schematic bottom view showing an enlarged part of the wiring board in this modification.
As shown in FIG. 43, part of the outer periphery of the wiring board 910 may have a shape that conforms to the shape of the outermost first wiring layer 912 a among the plurality of first wiring layers 912 . For example, in FIG. 43, in the body portion 910a, the side surface 910s to which the projecting portion 910b is connected extends in the X direction along the outer periphery of the light emitting module 920 and part of the first wiring layer 912a. Further, for example, in FIG. 43, the side surface of the projecting portion 910b has two steps along the first wiring layer 912a. As a result, the dimension of the body portion 910a of the wiring board 910 in the Y direction can be reduced.

上記の複数の実施形態では、面状光源が、導光部材、区画部材、透光性部材、及び光調整部材等を備える形態を説明した。しかし、面状光源は、導光部材、区画部材、透光性部材、及び光調整部材等を備なくてもよい。すなわち、面状光源は、配線基板及び複数の光源により構成されていてもよい。 In the above embodiments, the planar light source includes the light guide member, the partition member, the translucent member, the light adjustment member, and the like. However, the planar light source does not have to include the light guide member, the partition member, the translucent member, the light adjustment member, and the like. That is, the planar light source may be composed of a wiring board and a plurality of light sources.

本発明は、例えば、バックライトに利用することができる。 The present invention can be used, for example, in backlights.

100、200、300、400、600、700、800、1000:面状光源
110、210、710、910:配線基板
111、211、711:ベース層
112、212、712:第1被覆層
113、213、713:第1配線層
113a、713a:先端部
113b:中間部
113c:上面
113d:下面
113e:側面
113s1:第1領域(第1貫通穴に対向する領域)
113s2:第2領域
113s3:第3領域
114、214:第2配線層
114a、714a:先端部
114b:中間部
114c:上面
114d:下面
114e:側面
114s1:第1領域(第2貫通穴に対向する領域)
114s2:第2領域
114s3:第3領域
115、215、715、815:第2被覆層
115a:貫通穴
116、216、716、911:絶縁層
116a、216a、716a:第1貫通穴
116b、216b、716b:第2貫通穴
117、217:光反射性シート
118a、218a、718:接着シート
118b、218b:接着シート
119、219:シート積層体
119a、219a、718a:第3貫通穴
119b、219b、718b:第4貫通穴
120、320、620:光源
121、321:本体部
122、322:第1端子
123、323:第2端子
124、624:発光素子
124a、624a、621a:発光部
124b、324b、624b、621b:第1電極
124c、324c、624c、621c:第2電極
125、623:透光性部材
126:第1光調整部材
127、624:被覆部材
130、630:導光部材
131、631:光源配置部
132、632:区画溝
133、634:透光性部材
133a:第1層
133b:第2層
133Fa、533Fa:第1樹脂部材
133Fb:第2樹脂部材
134:第2光調整部材
135、633:区画部材
151、251、451、751:第1配線部材
151a、451a、751a:第1部分
151b、451b、751b:第2部分
151F、251F、451Fa、751F:第1導電性ペースト
152、252、452、752:第2配線部材
152a、452a、752a:第3部分
152b、452b、752b:第4部分
152F、252F、452Fa、752F:第2導電性ペースト
153:被覆層
451Fb:第3導電性ペースト
452Fb:第4導電性ペースト
第1開口:715a
第2開口:715b
第3開口:715c、815c
第4開口:715d、815d
900:ドリル
D1~D7:距離
E1、E2:距離
F1、F2:寸法
G:重力方向
L1、L2:対角線
L3:軸
R:発光領域
S1:第1隙間
S2:第2隙間
c1~c4:中心
100, 200, 300, 400, 600, 700, 800, 1000: planar light source 110, 210, 710, 910: wiring board 111, 211, 711: base layer 112, 212, 712: first coating layer 113, 213 , 713: first wiring layer 113a, 713a: tip portion 113b: intermediate portion 113c: upper surface 113d: lower surface 113e: side surface 113s1: first region (region facing the first through hole)
113s2: second region 113s3: third region 114, 214: second wiring layer 114a, 714a: tip portion 114b: intermediate portion 114c: upper surface 114d: lower surface 114e: side surface region)
114s2: second region 114s3: third region 115, 215, 715, 815: second coating layer 115a: through hole 116, 216, 716, 911: insulating layer 116a, 216a, 716a: first through hole 116b, 216b, 716b: Second through hole 117, 217: Light reflective sheet 118a, 218a, 718: Adhesive sheet 118b, 218b: Adhesive sheet 119, 219: Sheet laminate 119a, 219a, 718a: Third through hole 119b, 219b, 718b : fourth through hole 120, 320, 620: light source 121, 321: body portion 122, 322: first terminal 123, 323: second terminal 124, 624: light emitting element 124a, 624a, 621a: light emitting portion 124b, 324b, 624b, 621b: first electrode 124c, 324c, 624c, 621c: second electrode 125, 623: translucent member 126: first light adjusting member 127, 624: covering member 130, 630: light guiding member 131, 631: Light source arrangement part 132, 632: partition groove 133, 634: translucent member 133a: first layer 133b: second layer 133Fa, 533Fa: first resin member 133Fb: second resin member 134: second light adjustment member 135, 633: Partition member 151, 251, 451, 751: First wiring member 151a, 451a, 751a: First part 151b, 451b, 751b: Second part 151F, 251F, 451Fa, 751F: First conductive paste 152, 252 , 452, 752: second wiring member 152a, 452a, 752a: third portion 152b, 452b, 752b: fourth portion 152F, 252F, 452Fa, 752F: second conductive paste 153: coating layer 451Fb: third conductive Paste 452Fb: Fourth conductive paste First opening: 715a
Second opening: 715b
Third opening: 715c, 815c
Fourth opening: 715d, 815d
900: Drill D1-D7: Distance E1, E2: Distance F1, F2: Dimension G: Direction of gravity L1, L2: Diagonal L3: Axis R: Light-emitting area S1: First gap S2: Second gap c1-c4: Center

Claims (18)

互いに離隔した第1貫通穴及び第2貫通穴が設けられた絶縁層と、前記絶縁層の下に配置され、前記第1貫通穴及び前記第2貫通穴から離隔した第1配線層及び第2配線層と、
を有する配線基板と、
前記配線基板上に配置され、互いに離隔した第1電極及び第2電極を有する光源と、
前記配線基板上に配置され、前記光源の周囲を囲んだ導光部材と、
前記第1貫通穴内を充填し、前記第1電極に電気的に接続された第1部分と、前記絶縁層の下に配置され、前記第1部分に連なり、前記第1配線層に接した第2部分と、を有する第1配線部材と、
前記第2貫通穴内を充填し、前記第2電極に電気的に接続された第3部分と、前記絶縁層の下に配置され、前記第3部分に連なり、前記第2配線層に接した第4部分と、を有する第2配線部材と、
を備え、
上面視において前記第1配線層と前記第2配線層が前記第1貫通穴及び前記第2貫通穴を挟むように配置されており、
前記第1配線層の側面のうち、前記第2部分に接し、かつ、上面視において前記第1貫通穴に対向する領域は、前記第1貫通穴から離れる方向に凹状であり、
前記第2配線層の側面のうち、前記第4部分に接し、かつ、上面視において前記第2貫通穴に対向する領域は、前記第2貫通穴から離れる方向に凹状である面状光源。
An insulating layer provided with a first through hole and a second through hole separated from each other; and a first wiring layer and a second wiring layer arranged under the insulating layer and separated from the first through hole and the second through hole. a wiring layer;
a wiring board having
a light source disposed on the wiring substrate and having a first electrode and a second electrode separated from each other;
a light guide member disposed on the wiring board and surrounding the light source;
a first portion filling the first through-hole and electrically connected to the first electrode; a first wiring member having two portions;
a third portion filling the inside of the second through hole and electrically connected to the second electrode; a second wiring member having four portions;
with
The first wiring layer and the second wiring layer are arranged so as to sandwich the first through hole and the second through hole when viewed from above,
A region of the side surface of the first wiring layer, which is in contact with the second portion and faces the first through hole when viewed from above, is concave in a direction away from the first through hole,
A planar light source, wherein a region of a side surface of the second wiring layer, which is in contact with the fourth portion and faces the second through hole when viewed from above, is concave in a direction away from the second through hole.
上面視において前記第1貫通穴の中心と前記第2貫通穴の中心との距離は、前記第1電極の中心と前記第2電極の中心との距離よりも長い請求項1に記載の面状光源。 2. The planar shape according to claim 1, wherein the distance between the center of the first through hole and the center of the second through hole in top view is longer than the distance between the center of the first electrode and the center of the second electrode. light source. 上面視における前記第1貫通穴の形状及び前記第2貫通穴の形状のそれぞれは、円形であり、
前記第2部分に接し、かつ、上面視において前記第1貫通穴に対向する領域の形状、及び、前記第4部分に接し、かつ、上面視において前記第2貫通穴に対向する領域の形状のそれぞれは、円弧状である請求項に記載の面状光源。
Each of the shape of the first through hole and the shape of the second through hole in a top view are circular,
The shape of the region that contacts the second portion and faces the first through hole when viewed from the top, and the shape of the region that contacts the fourth portion and faces the second through hole when viewed from the top 2. The planar light source of claim 1 , wherein each is arcuate.
前記光源は、
前記第1電極の下に配置され、前記第1部分の上端に接し、上面視における面積が前記第1電極の面積以上である第1端子と、
前記第2電極の下に配置され、前記第3部分の上端に接し、上面視における面積が前記第2電極の面積以上である第2端子と、
を更に有する請求項1~のいずれか1つに記載の面状光源。
The light source is
a first terminal disposed under the first electrode, in contact with the upper end of the first portion, and having an area in top view equal to or larger than the area of the first electrode;
a second terminal disposed under the second electrode, in contact with the upper end of the third portion, and having an area in top view equal to or larger than the area of the second electrode;
The planar light source according to any one of claims 1 to 3 , further comprising
前記第1端子は、上面視において前記第1貫通穴を覆っており、
前記第2端子は、上面視において前記第2貫通穴を覆っている請求項に記載の面状光源。
The first terminal covers the first through hole in top view,
5. The planar light source according to claim 4 , wherein the second terminal covers the second through hole when viewed from above.
前記第1配線部材及び前記第2配線部材を覆う被覆層を更に備える請求項1~のいずれか1つに記載の面状光源。 6. The planar light source according to claim 1, further comprising a coating layer covering said first wiring member and said second wiring member. 前記第1配線部材及び前記第2配線部材のそれぞれは、樹脂材料からなる母材と、前記母材中に設けられた少なくとも1種の金属粒子と、を有する請求項1~のいずれか一つに記載の面状光源。 Each of the first wiring member and the second wiring member has a base material made of a resin material, and at least one kind of metal particles provided in the base material. The planar light source according to 1. 互いに離隔した第1貫通穴及び第2貫通穴が設けられた絶縁層と、前記絶縁層の下に配置され、前記第1貫通穴及び前記第2貫通穴から離隔した第1配線層及び第2配線層と、前記第1貫通穴及び前記第2貫通穴が露出するように、前記絶縁層の下面において前記第1貫通穴及び前記第2貫通穴の周囲を被覆し、前記第1配線層及び前記第2配線層の一部を露出する被覆層と、を有する配線基板と、
前記配線基板上に配置され、互いに離隔した第1電極及び第2電極を有する光源と、
前記配線基板上に配置され、前記光源の周囲を囲んだ導光部材と、
前記第1貫通穴内を充填し、前記第1電極に電気的に接続された第1部分と、前記第1部分に連なり、前記被覆層の下面を経由して、前記第1配線層において前記被覆層から露出した部分に接した第2部分と、を有する第1配線部材と、
前記第2貫通穴内を充填し、前記第2電極に電気的に接続された第3部分と、前記第3部分に連なり、前記被覆層の下面を経由して、前記第2配線層において前記被覆層から露出した部分に接した第4部分と、を有する第2配線部材と、
を備え
前記被覆層には、前記第1貫通穴から離隔し、前記第1配線層の一部を露出する第3開口と、前記第2貫通穴から離隔し、前記第2配線層の一部を露出する第4開口と、が設けられている面状光源。
An insulating layer provided with a first through hole and a second through hole separated from each other; and a first wiring layer and a second wiring layer arranged under the insulating layer and separated from the first through hole and the second through hole. covering the periphery of the first through-hole and the second through-hole on the lower surface of the insulating layer so that the wiring layer, the first through-hole and the second through-hole are exposed; a wiring board having a covering layer exposing a part of the second wiring layer;
a light source disposed on the wiring substrate and having a first electrode and a second electrode separated from each other;
a light guide member disposed on the wiring board and surrounding the light source;
a first portion filling the first through hole and electrically connected to the first electrode; a first wiring member having a second portion in contact with the portion exposed from the layer;
a third portion filling the second through hole and electrically connected to the second electrode; a second wiring member having a fourth portion in contact with the portion exposed from the layer;
with
The covering layer includes a third opening that is separated from the first through hole and exposes a portion of the first wiring layer, and a third opening that is separated from the second through hole and exposes a portion of the second wiring layer. and a planar light source provided with a fourth aperture .
前記被覆層には、前記第1貫通穴を露出する第1開口と、前記第2貫通穴を露出する第2開口と、が設けられている請求項に記載の面状光源。 9. The planar light source according to claim 8 , wherein the covering layer is provided with a first opening exposing the first through hole and a second opening exposing the second through hole. 前記第3開口と前記第4開口との距離は、前記第1貫通穴と前記第2貫通穴との距離よりも長い請求項に記載の面状光源。 9. The planar light source according to claim 8 , wherein the distance between the third opening and the fourth opening is longer than the distance between the first through hole and the second through hole. 前記配線基板において前記第1貫通穴及び前記第2貫通穴を除く領域の上に配置される光反射性シートを備える請求項1~10のいずれか1つに記載の面状光源。 11. The planar light source according to any one of claims 1 to 10 , further comprising a light-reflecting sheet disposed on the wiring board in areas other than the first through holes and the second through holes. 前記第1配線部材及び前記第2配線部材の材料が、熱硬化性の材料を主成分とする材料であり、
前記光反射性シートの主成分が熱可塑性の樹脂であり、
前記光反射性シートの融点が、前記第1配線部材及び前記第2配線部材の硬化温度よりも高い請求項11に記載の面状光源。
a material of the first wiring member and the second wiring member is a material containing a thermosetting material as a main component;
The main component of the light reflective sheet is a thermoplastic resin,
12. The planar light source according to claim 11 , wherein the melting point of the light reflective sheet is higher than the curing temperatures of the first wiring member and the second wiring member .
互いに離隔した第1貫通穴及び第2貫通穴が設けられた絶縁層と、前記絶縁層の下に配置され、前記第1貫通穴及び前記第2貫通穴から離隔した第1配線層及び第2配線層と、を有し、上面視において前記第1配線層と前記第2配線層が前記第1貫通穴及び前記第2貫通穴を挟むように配置された配線基板を、準備する工程と、
前記配線基板の上に、導光部材及び光源を配置する工程と、
前記第1貫通穴内を充填し、前記絶縁層の下に配置され、前記第1配線層に接し、前記光源の第1電極に電気的に接続された第1配線部材と、前記第1配線部材から離隔し、前記第2貫通穴内を充填し、前記絶縁層の下に配置され、前記第2配線層に接し、前記光源の第2電極に電気的に接続された第2配線部材と、を形成する工程と、
を備え
前記配線基板の上に、前記導光部材及び前記光源を配置する工程において、前記配線基板上に前記導光部材を配置した後に、前記光源を前記導光部材に設けられた光源配置部に配置する面状光源の製造方法。
An insulating layer provided with a first through hole and a second through hole separated from each other; and a first wiring layer and a second wiring layer arranged under the insulating layer and separated from the first through hole and the second through hole. a wiring layer, wherein the first wiring layer and the second wiring layer are arranged so as to sandwich the first through hole and the second through hole when viewed from above;
disposing a light guide member and a light source on the wiring substrate;
a first wiring member that fills the first through hole, is arranged under the insulating layer, is in contact with the first wiring layer, and is electrically connected to a first electrode of the light source; a second wiring member spaced apart from, filling the second through hole, disposed under the insulating layer, in contact with the second wiring layer, and electrically connected to the second electrode of the light source; forming;
with
In the step of arranging the light guide member and the light source on the wiring board, after the light guide member is arranged on the wiring board, the light source is arranged in a light source arrangement portion provided on the light guide member. A method for manufacturing a planar light source.
前記第1配線部材及び前記第2配線部材を形成する工程は、
第1導電性ペーストを、前記第1貫通穴内を充填し、かつ、前記第1配線層に接するように配置し、第2導電性ペーストを、前記第2貫通穴内を充填し、かつ、前記第2配線層に接するように配置する工程と、
前記第1導電性ペースト及び前記第2導電性ペーストを硬化させる工程と、
を有する請求項13に記載の面状光源の製造方法。
The step of forming the first wiring member and the second wiring member includes:
A first conductive paste is filled in the first through hole and arranged to be in contact with the first wiring layer, a second conductive paste is filled in the second through hole, and the second conductive paste is arranged to be in contact with the first wiring layer. arranging so as to be in contact with two wiring layers;
curing the first conductive paste and the second conductive paste;
14. The method for manufacturing a planar light source according to claim 13 .
前記第1配線部材及び前記第2配線部材を形成する工程は、
第1導電性ペーストを前記第1貫通穴内に充填し、第2導電性ペーストを前記第2貫通穴内に充填する工程と、
前記第1導電性ペースト及び前記第2導電性ペーストを硬化させる工程と、
第3導電性ペーストを、前記第1導電性ペーストの硬化物及び前記第1配線層に接するように配置し、第4導電性ペーストを、前記第2導電性ペーストの硬化物及び前記第2配線層に接するように配置する工程と、
前記第3導電性ペースト及び前記第4導電性ペーストを硬化させる工程と、
を有する請求項13に記載の面状光源の製造方法。
The step of forming the first wiring member and the second wiring member includes:
filling a first conductive paste into the first through hole and filling a second conductive paste into the second through hole;
curing the first conductive paste and the second conductive paste;
A third conductive paste is placed in contact with the cured first conductive paste and the first wiring layer, and a fourth conductive paste is placed in contact with the cured second conductive paste and the second wiring. placing in contact with the layer;
curing the third conductive paste and the fourth conductive paste;
14. The method for manufacturing a planar light source according to claim 13 .
前記第1配線部材及び前記第2配線部材を形成する工程は、
第1導電性ペーストを前記第1貫通穴内に充填し、第2導電性ペーストを前記第2貫通穴内に充填する工程と、
第3導電性ペーストを、前記第1導電性ペースト及び前記第1配線層に接するように配置し、第4導電性ペーストを、前記第2導電性ペースト及び前記第2配線層に接するように配置する工程と、
前記第1導電性ペースト、前記第2導電性ペースト、前記第3導電性ペースト、及び前記第4導電性ペーストを硬化させる工程と、
を有する請求項13に記載の面状光源の製造方法。
The step of forming the first wiring member and the second wiring member includes:
filling a first conductive paste into the first through hole and filling a second conductive paste into the second through hole;
A third conductive paste is arranged so as to be in contact with the first conductive paste and the first wiring layer, and a fourth conductive paste is arranged so as to be in contact with the second conductive paste and the second wiring layer. and
curing the first conductive paste, the second conductive paste, the third conductive paste, and the fourth conductive paste;
14. The method for manufacturing a planar light source according to claim 13 .
前記導光部材及び前記光源を配置する工程の後であって、前記第1配線部材及び前記第2配線部材を形成する工程の前に、前記導光部材に設けられた光源配置部内であって前記導光部材と前記光源との隙間に透光性を備える樹脂部材を配置する工程を更に備える請求項1416のいずれか1つに記載の面状光源の製造方法。 After the step of arranging the light guide member and the light source and before the step of forming the first wiring member and the second wiring member, in a light source arrangement portion provided in the light guide member, 17. The method of manufacturing a planar light source according to any one of claims 14 to 16 , further comprising placing a translucent resin member in a gap between the light guide member and the light source. 前記光源は、前記第1電極の下に配置された第1端子と、前記第2電極の下に配置された第2端子と、を更に有し、
前記光源は、上面視において前記第1端子が前記第1貫通穴を覆い、前記第2端子が前記第2貫通穴を覆うように配置される請求項1417のいずれか1つに記載の面状光源の製造方法。
the light source further comprises a first terminal located under the first electrode and a second terminal located under the second electrode;
18. The light source according to any one of claims 14 to 17 , wherein the light source is arranged such that the first terminal covers the first through hole and the second terminal covers the second through hole when viewed from above. A method for manufacturing a planar light source.
JP2021071507A 2020-06-03 2021-04-21 Planar light source and manufacturing method thereof Active JP7293574B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020227020489A KR20230019404A (en) 2020-06-03 2021-06-01 Planar light source and manufacturing method thereof
PCT/JP2021/020792 WO2021246389A1 (en) 2020-06-03 2021-06-01 Planar light source and method for manufacturing same
US17/337,030 US11506937B2 (en) 2020-06-03 2021-06-02 Planar light source and method of manufacturing the same
EP21177298.3A EP3920247A1 (en) 2020-06-03 2021-06-02 Planar light source and method of manufacturing the same
CN202110618600.4A CN113759598A (en) 2020-06-03 2021-06-03 Planar light source and method for manufacturing same
CN202121264230.0U CN216210339U (en) 2020-06-03 2021-06-03 Planar light source
TW110120281A TW202205700A (en) 2020-06-03 2021-06-03 Planar light source and method of manufacturing the same
US17/964,503 US12124131B2 (en) 2020-06-03 2022-10-12 Planar light source and method of manufacturing the same
JP2023087808A JP7503739B2 (en) 2020-06-03 2023-05-29 Surface Light Source

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020096970 2020-06-03
JP2020096970 2020-06-03
JP2020142852 2020-08-26
JP2020142852 2020-08-26
JP2020189799 2020-11-13
JP2020189799 2020-11-13
JP2021013393 2021-01-29
JP2021013393 2021-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023087808A Division JP7503739B2 (en) 2020-06-03 2023-05-29 Surface Light Source

Publications (2)

Publication Number Publication Date
JP2022022972A JP2022022972A (en) 2022-02-07
JP7293574B2 true JP7293574B2 (en) 2023-06-20

Family

ID=80225041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021071507A Active JP7293574B2 (en) 2020-06-03 2021-04-21 Planar light source and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7293574B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018896A (en) 2014-07-08 2016-02-01 大日本印刷株式会社 Mounting substrate and method for manufacturing mounting substrate
WO2016103547A1 (en) 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Light emitting device and method for manufacturing same
JP2016219505A (en) 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Light-emitting device
WO2017014127A1 (en) 2015-07-21 2017-01-26 株式会社村田製作所 Led mounting substrate
JP2020057664A (en) 2018-09-28 2020-04-09 日亜化学工業株式会社 Printed circuit board and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018896A (en) 2014-07-08 2016-02-01 大日本印刷株式会社 Mounting substrate and method for manufacturing mounting substrate
WO2016103547A1 (en) 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Light emitting device and method for manufacturing same
JP2016219505A (en) 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Light-emitting device
WO2017014127A1 (en) 2015-07-21 2017-01-26 株式会社村田製作所 Led mounting substrate
JP2020057664A (en) 2018-09-28 2020-04-09 日亜化学工業株式会社 Printed circuit board and manufacturing method thereof

Also Published As

Publication number Publication date
JP2022022972A (en) 2022-02-07

Similar Documents

Publication Publication Date Title
JP7503739B2 (en) Surface Light Source
KR102524438B1 (en) Light-emitting device and surface-emitting light source
CN112310056B (en) Light emitting device and surface light emitting source
WO2020235239A1 (en) Illuminating device and display apparatus
KR102417580B1 (en) Light emitting device, light emitting module, manufacturing method for light emitting device and munufacturing method for light emitting module
CN109755220B (en) Light emitting device and method for manufacturing the same
CN107086266B (en) Semiconductor light emitting device package
JP7293574B2 (en) Planar light source and manufacturing method thereof
JP7295438B2 (en) planar light source
US11709310B2 (en) Surface-emitting light source and method of manufacturing the same
JP7117684B2 (en) Manufacturing method of planar light source
KR102417584B1 (en) Light emitting device, light emitting module, manufacturing method for light emitting device and munufacturing method for light emitting module
US12124131B2 (en) Planar light source and method of manufacturing the same
JP2021136119A (en) Manufacturing method of light-emitting module
JP7277865B2 (en) Planar light source and manufacturing method thereof
JP7422336B2 (en) Planar light source
JP7454118B2 (en) Manufacturing method of planar light source
JP7174269B2 (en) light emitting module
JP7256946B2 (en) light emitting module
JP7153184B2 (en) light emitting device
CN111129273B (en) Light emitting device, light emitting module, and method for manufacturing light emitting device and light emitting module
WO2021038995A1 (en) Lighting device and display device
JP2022058079A (en) Light-emitting device and manufacturing method for the same
JP2024027179A (en) Section member, surface light source and liquid crystal display device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230521

R151 Written notification of patent or utility model registration

Ref document number: 7293574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151