JP7292721B2 - 標的外形推定装置および治療装置 - Google Patents

標的外形推定装置および治療装置 Download PDF

Info

Publication number
JP7292721B2
JP7292721B2 JP2019185550A JP2019185550A JP7292721B2 JP 7292721 B2 JP7292721 B2 JP 7292721B2 JP 2019185550 A JP2019185550 A JP 2019185550A JP 2019185550 A JP2019185550 A JP 2019185550A JP 7292721 B2 JP7292721 B2 JP 7292721B2
Authority
JP
Japan
Prior art keywords
image
target
outline
learning
tracked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019185550A
Other languages
English (en)
Other versions
JP2021058480A (ja
Inventor
利之 照沼
武二 榮
英幸 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2019185550A priority Critical patent/JP7292721B2/ja
Publication of JP2021058480A publication Critical patent/JP2021058480A/ja
Application granted granted Critical
Publication of JP7292721B2 publication Critical patent/JP7292721B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Nuclear Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、標的外形推定装置および治療装置に関する。
X線等の放射電磁波や陽電子線等の粒子線のような放射線を照射して腫瘍の治療などを行う場合に、被検者(患者)の腫瘍部以外に放射線が照射されないように、腫瘍の外形形状を特定することが必要である。また、患者の呼吸や拍動等で、治療の標的対象(腫瘍等)の位置が移動するため、放射線を標的対象以外の部位(正常部位)に照射しないようにするためには、リアルタイムでX線透視画像を撮影して標的対象を追跡してその位置を特定し、標的対象が放射線の照射位置に移動したときにだけ放射線を照射する必要がある。なお、画像を撮影して標的対象の位置を特定および追跡し放射線の照射位置を誘導する技術、いわゆる画像誘導による対象追跡技術は、kVオーダのX線を使用して撮影するX線透視画像を使用することが一般的であるが、これに限定されない。例えば、X線透視画像だけでなく、MVオーダのX線を使用して撮影したX線画像や超音波画像、MRI(Magnetic Resonance Imaging:核磁気共鳴画像法)画像、CT画像(Computed Tomography)、PET(Positron Emission Tomography:陽電子放射断層撮影)画像を使用することも可能である。また、透視画像の代わりに,後方散乱を利用したX線後方散乱画像を利用することも可能である。
標的対象の位置を特定し追跡するための技術として、以下の技術が公知である。
特許文献1(国際公開2018/159975号公報)には、患者の呼吸等で移動する腫瘍等の追跡対象を追跡する技術が記載されている。特許文献1記載の技術では、追跡対象(腫瘍等)を含む画像から、骨等の骨構造DRR画像と、腫瘍等の軟部組織DRR画像とを分離し、骨構造DRR画像をランダムに線形変換したものを軟部組織DRR画像に重ねた(ランダムオーバーレイした)重畳画像を複数作成する。そして、複数の重畳画像を使用してディープラーニングを使用して学習する。治療時には、治療時の透視画像と学習結果から、追跡対象の領域を特定して、治療用X線を照射している。
特許文献2(特許第3053389号公報)には、治療の標的対象となる腫瘍近傍に埋め込まれた腫瘍マーカを複数の方向からX線で透視して撮影し、予め登録された追跡対象(腫瘍)マーカのテンプレート画像と濃淡正規化相互相関によるテンプレートマッチングを行って、腫瘍マーカの位置を3次元で特定する技術が記載されている。
国際公開2018/159775号:WO2018/159775A1公報(「0031」~「0053」、図1-図7) 特許第3053389号公報(「0035」~「0046」、図1、図2)
(従来技術の問題点)
特許文献1、2に記載の技術では、標的対象を透視撮影するためのX線を患者に向けて照射する方向と、治療用のビームを患者に向けて照射する方向が異なっている。腫瘍の形状は、球形のような3次元的に均質、等方的な形状ではなく、長細かったり、凹凸があったりする。したがって、透視方向と治療ビーム照射方向では、各方向に投影された腫瘍の形状が異なることが一般的であり、単純に透視方向の画像を使用して治療ビームを照射すると、腫瘍の全体にX線が照射されなかったり、正常部位にX線が照射されたりする問題がある。
特許文献2に記載の技術では、2つの方向から撮影した透視画像から、腫瘍マーカの3次元座標を計算している。そして、3次元上の位置座標から、治療用のビームを照射する位置を演算して、照射している。したがって、特許文献2に記載の技術は、2つの撮影画像(2次元)から腫瘍の3次元上の座標(3次元)を計算し、治療用のビームの照射方向の照射野(2次元)を導出する技術である。
特許文献2に記載の技術のように、2次元、3次元、2次元のように順に演算を行うと、処理に時間がかかり、リアルタイムな追跡や外形の形状の変化に対応しにくい問題がある。また、特許文献2記載の技術のように、体内に金属のマーカーを埋め込む技術は、侵襲的な方法となり、患者に負担がかかる問題もある。
本発明は、複数の撮影画像から3次元上の位置を導出して標的対象部位を推定する技術に比べて、標的対象部位を速やかに推定することを技術的課題とする。
前記技術的課題を解決するために、請求項1に記載の発明の標的外形推定装置は、
被検者の体内の標的に第1の放射線を照射する第1の照射手段を有し、前記第1の放射線を照射する第1の方向に対して、前記第1の方向とは異なる第2の方向から前記被検者の体内の標的を含む領域を透視した画像を撮影する撮影手段と、
前記第2の方向からの透視画像に映る標的の外形に基づいて、前記透視画像に映る標的の外形と前記第1の方向における標的の外形との相関を学習して相関情報である識別器を出力する学習手段と、
治療が行われる直近に撮影された前記第2の方向からの透視画像に映る標的の外形と、前記識別器とに基づいて、前記第1の方向における標的の外形を推定する外形推定手段と、
を備えたことを特徴とする。
請求項2に記載の発明は、請求項1に記載の標的外形推定装置において、
前記第1の放射線が、X線または粒子線であり、
前記透視画像が、X線画像、核磁気共鳴画像、超音波検査画像、陽電子放射断層撮影画像、体表面形状画像および光音響イメージング画像のいずれか1つまたはその組み合わせである
ことを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の標的外形推定装置において、
前記透視画像に映る標的の外形に基づいて、透視画像に映る標的の外形と前記第1の方向における前記第1の照射手段からの距離との相関も学習する前記学習手段と、
治療が行われる直近に撮影された前記透視画像に映る標的の外形と、前記識別器とに基づいて、前記第1の方向における標的の前記第1の照射手段からの距離を推定する距離推定手段と、
を備えたことを特徴とする。
請求項4に記載の発明は、請求項1ないし3のいずれかに記載の標的外形推定装置において、
前記第2の方向とは異なる第3の方向から前記被検者の体内の標的を含む領域の画像を撮影する撮影手段と、
前記第2の方向からの透視画像に映る標的の外形と、前記第3の方向からの透視画像に映る標的の外形とに基づいて、各透視画像に映る標的の外形と前記第1の方向における標的の外形との相関を学習して識別器を出力する前記学習手段と、
を備えたことを特徴とする。
請求項5に記載の発明は、請求項1ないし4のいずれかに記載の標的外形推定装置において、
前記標的の画像特徴を含む追跡対象部画像に、前記画像特徴を含まない複数からなる非追跡対象画像のそれぞれを重ねた複数の重畳画像を作成する重畳画像作成手段と、
前記第2の方向からの透視画像に映る標的の外形に基づいて、前記透視画像に映る標的の外形と前記第1の方向における標的の外形との相関を学習すると共に、前記複数の重畳画像に基づいて前記標的の画像特徴および位置情報の少なくとも一方を学習して、識別器を作成する前記学習手段と、
を備えたことを特徴とする。
請求項6に記載の発明は、請求項5に記載の標的外形推定装置において、
前記標的の画像特徴を特定する教師画像を予め入力する入力部と、
前記複数の重畳画像と前記教師画像に基づいて、前記標的の画像特徴および位置情報の少なくとも一方を学習して識別器を作成する前記学習手段と、
を備えたことを特徴とする。
請求項7に記載の発明は、請求項5または6に記載の標的外形推定装置において、
前記標的の画像特徴の大きさと、画像の分解能と、予め設定された追跡精度とに基づいて、前記非追跡対象画像の枚数を導出して、導出された枚数に応じた前記非追跡対象画像を作成する非追跡対象画像編集手段、
を備えたことを特徴とする。
請求項8に記載の発明は、請求項5ないし7のいずれかに記載の標的外形推定装置において、
前記標的の画像特徴を含む学習用の元画像から、前記標的の画像特徴を含む追跡対象部画像と、前記標的の画像特徴を含まない分離非追跡対象画像とに分離抽出する画像分離手段と、
前記分離非追跡対象画像を編集して複数からなる前記非追跡対象画像を編集作成する非追跡対象画像編集手段と、
前記追跡対象部画像と前記非追跡対象画像とに基づいて前記重畳画像を作成する前記重畳画像作成手段と
を備えたことを特徴とする。
請求項9に記載の発明は、請求項5ないし7のいずれかに記載の標的外形推定装置において、
前記標的の画像特徴を含む元画像から、前記標的の画像特徴を含む追跡対象部画像と、前記標的の画像特徴を含まない分離非追跡対象画像とに分離する画像分離手段と、
前記元画像に含まれず且つ前記非追跡対象画像に含まれる障害物の画像を取得する障害物画像取得手段と、
前記分離非追跡対象画像と前記障害物の画像との少なくとも1つを編集して複数からなる前記非追跡対象画像を編集作成する非追跡対象画像編集手段と、
前記追跡対象部画像と前記非追跡対象画像とに基づいて前記重畳画像を作成する前記重畳画像作成手段と、
を備えたことを特徴とする。
請求項10に記載の発明は、請求項8または9に記載の標的外形推定装置において、
前記標的の画像特徴を含む学習用の元画像から、前記標的の画像特徴の画像コントラスト情報に基づき、前記追跡対象部画像と前記分離非追跡対象画像とに分離抽出する前記画像分離手段と、
を備えたことを特徴とする。
請求項11に記載の発明は、請求項5ないし10のいずれかに記載の標的外形推定装置において、
前記標的の画像特徴および位置情報の少なくとも一方が予め設定された評価用の画像と、前記識別器とに基づいて、前記標的の追跡の精度を評価する追跡精度評価手段、
を備えたことを特徴とする。
請求項12に記載の発明は、請求項11に記載の標的外形推定装置において、
前記追跡精度評価手段による追跡の精度が、予め設定された精度に達しない場合に、前記非追跡対象画像の枚数を増やして前記識別器を再作成する前記学習手段、
を備えたことを特徴とする。
前記技術的課題を解決するために、請求項13に記載の発明の治療装置は、
請求項1ないし12のいずれかに記載の標的外形推定装置と、
前記標的外形推定装置が推定した標的の外形に基づいて、前記第1の方向から治療用の放射線を照射する照射手段と、
を備えたことを特徴とする。
請求項1,13に記載の発明によれば、複数の撮影画像から3次元上の位置を導出して標的対象部位を推定する技術に比べて、標的対象部位を速やかに推定することができる。
請求項2に記載の発明によれば、X線画像、核磁気共鳴画像、超音波検査画像、陽電子放射断層撮影画像、体表面形状画像および光音響イメージング画像のいずれか1つまたはその組み合わせの画像で撮影を行い、X線または粒子線での治療に活用することができる。
請求項3に記載の発明によれば、標的までの距離も推定することができ、陽子線等の粒子線での治療に活用することができる。
請求項4に記載の発明によれば、2つの方向からの透視画像に基づいて腫瘍の外形を推定しており、1つの方向からの場合に比べて、外形の推定精度を向上させることができる。
請求項5に記載の発明によれば、従来技術のテンプレートマッチングによる画像追跡法に比べて、治療の標的の部位の領域および位置の少なくとも一方の特定を容易且つ短時間で行える。
請求項6に記載の発明によれば、教師画像を使用しない場合に比べて、処理を高速化できる。請求項6の記載によれば、教師画像がある場合には、教師画像中の標的の画像特徴領域の位置と形状は、複数の重畳画像に含まれる標的の画像特徴領域の位置と形状とに相関があるが、標的ではない障害物の画像特徴の位置と形状には相関がない。この相関の有無が、追跡に必要な情報か否かを区別して学習する効果を生じさせる。
請求項7に記載の発明によれば、画像の大きさや分解能、追跡制度に応じて、必要十分な枚数の非追跡対象画像を作成することができる。
請求項8に記載の発明によれば、骨などの追跡の障害となる背景物・障害物を含む分離された非追跡対象画像を使用しない場合に比べて、患者などの被検体ごとに異なる背景や障害物の差異に応じた学習ができる。すなわち、従来技術では、多くの被検体に基づいて作成された識別器のみ実現可能であったが、それら従来技術に比して個々の被検体に適した追跡を行うことができる。
請求項9に記載の発明によれば、元画像に含まれない障害物の画像を追加することで、元画像に含まれていない障害物が、対象追跡中の非追跡対象画像に混入した時にでも、対象追跡の精度も向上させることができる。すなわち、従来は、このような学習の元画像に入っていない障害物が標的の非追跡対象画像に混入した時には著しく標的追跡の精度が低下したが、それら従来技術に比して、個別の非追跡対象画像に適した追跡を行う事ができる。
請求項10に記載の発明によれば、コントラスト情報に基づいて、標的と非標的とを分離することを自動的に行うことができ、手動で標的を指定する場合に比べて、分離の処理を容易にできる。
請求項11に記載の発明によれば、実際の治療の前に識別器の評価をすることができる。
請求項12に記載の発明によれば、識別器の精度が不十分な場合は、枚数の増えた重畳画像を利用して識別器を再作成することができ、識別器の精度を向上させることができる。
図1は本発明の実施例1の腫瘍外形推定装置が適用された放射線治療機の説明図である。 図2は実施例1の放射線治療機の要部説明図である。 図3は実施例1の放射線治療機の制御部が備えている各機能をブロック図で示した図である。 図4は実施例1の制御部における処理の一例の説明図である。 図5は実施例1の重畳画像26と教師画像30の一例の説明図であり、図5Aは一方向から擬似的に透視したDRR画像による重畳画像の一例の説明図、図5Bは図5Aに対応する教師画像の一例の説明図、図5Cは2方向からの擬似的透視DRR画像による重畳画像の一例の説明図、図5Dは図5Cに対応する教師画像の一例の説明図である。 図6は追跡対象の位置の学習の一例の説明図であり、図6Aは複数の重畳画像の一例の説明図、図6Bは重畳画像が重ねられた場合の説明図である。 図7は実施例1の放射線治療機の使用方法の一例の説明図である。 図8は実施例2の説明図であり、実施例1の図2に対応する図である。 図9は実施例2のブロック図であり、実施例1の図3に対応する図である。 図10は実施例2の重畳画像と教師画像の一例の説明図であり、図10Aは一方向から擬似的に透視したDRR画像による重畳画像の一例の説明図、図10Bは図10Aに対応する教師画像の一例の説明図、図10Cは2方向からの擬似的透視DRR画像による重畳画像の一例の説明図、図10Dは図10Cに対応する教師画像の一例の説明図である。
次に図面を参照しながら、本発明の実施の形態の具体例である実施例を説明するが、本発明は以下の実施例に限定されるものではない。
なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
図1は本発明の実施例1の腫瘍外形推定装置が適用された放射線治療機の説明図である。
図2は実施例1の放射線治療機の要部説明図である。
図1、図2において、本発明の実施例1の対象追跡装置が適用された放射線治療機(治療装置の一例)1は、治療の被検体である患者2が寝るベッド3を有する。ベッド3の下方には、透視撮影用X線照射装置4が配置されている。実施例1の透視撮影用X線照射装置4は、2つのX線照射部(第1チャンネル4aおよび第2チャンネル4b)を有する。各X線照射部(第2の照射手段および第3の照射手段)4a,4bは、透視用の放射線の一例としてのX線を患者2に向けて照射可能である。
患者2を挟んで各X線照射部4a,4bの反対側には、撮像装置(撮像手段)6a,6bが配置されている。撮像装置6a,6bは、患者を透過したX線を受けてX線透視画像を撮像する。撮像装置6で撮影した画像は画像生成器7で電気信号に変換され、コントロールシステム8に入力される。以下の説明において、第1チャンネルX線照射部4aから撮像装置6aに向かう方向を0ー方向とする。その場合、本実施例では、第2チャンネルX線照射部4bから撮像装置6bに向かう方向が90ーになるように、X線照射部4a,4bと撮像装置6a,6bが配置されている例である。この配置は、実際の治療現場に応じて、任意の角度にて設置して本発明を実施することが可能である。
また、ベッド3の上方には、治療用放射線照射器(第1の照射手段)11が配置されている。本実施例では、第1の照射手段の照射方向(Beam’sEye View方向)は、治療用放射線照射器11から追跡対象9(腫瘍など治療の標的対象)に向かう45ー方向に配置されている。この配置も、実際の治療現場に応じて、任意の角度にて設置して本発明を実施することが可能である。治療用放射線照射器11は、コントロールシステム8から制御信号が入力可能に構成されている。治療用放射線照射器11は、制御信号の入力に応じて、予め設定された位置(患者2の患部)に向けて治療用の放射線の一例としてのX線を照射可能に構成されている。なお、実施例1では、治療用放射線照射器11において、X線源の外側に、追跡対象9(腫瘍等)の外形に合わせてX線の通過領域(X線が通過する開口の形状)を調整可能な絞り部の一例としてのMLC(Multi Leaf Collimator:マルチリーフコリメータ、図示せず)が設置されている。なお、MLCは従来公知であり、市販のものを使用可能であるが、MLCに限定されず、X線の通過領域を調整可能な任意の構成を採用可能である。
なお、実施例1では、透視撮影用のX線として加速電圧がkV(キロボルト)オーダーのX線が照射され、治療用のX線としては加速電圧がMV(メガボルト)オーダーのX線が照射される。
(実施例1のコントロールシステム(制御部)の説明)
図3は実施例1の放射線治療機の制御部が備えている各機能をブロック図で示した図である。
図3において、コントロールシステム8の制御部Cは、外部との信号の入出力等を行う入出力インターフェースI/Oを有する。また、制御部Cは、必要な処理を行うためのプログラムおよび情報等が記憶されたROM:リードオンリーメモリを有する。また、制御部Cは、必要なデータを一時的に記憶するためのRAM:ランダムアクセスメモリを有する。また、制御部Cは、ROM等に記憶されたプログラムに応じた処理を行うCPU:中央演算処理装置を有する。したがって、実施例1の制御部Cは、小型の情報処理装置、いわゆるマイクロコンピュータにより構成されている。よって、制御部Cは、ROM等に記憶されたプログラムを実行することにより種々の機能を実現することができる。
(制御部Cに接続された信号出力要素)
制御部Cは、操作部UIや、画像生成器7、図示しないセンサ等の信号出力要素からの出力信号が入力されている。
操作部(ユーザインタフェース)UIは、表示部の一例であって入力部の一例としてのタッチパネルUI0を有する。また、操作部UIは、学習処理開始用のボタンUI1、教師データ入力用のボタンUI2や透視撮影開始用のボタンUI3等の各種入力部材を有する。
画像生成器7は、撮像装置6で撮影された画像を制御部Cに入力する。
(制御部Cに接続された被制御要素)
制御部Cは、透視撮影用X線照射装置4や治療用放射線照射器11、その他の図示しない制御要素に接続されている。制御部Cは、透視撮影用X線照射装置4や治療用放射線照射器11等へ、それらの制御信号を出力している。
透視撮影用X線照射装置4は、学習時や治療時にX線透視画像を撮影するためのX線を患者2に向けて照射する。
治療用放射線照射器11は、治療時に治療用の放射線(X線)を患者2に向けて照射する。
(制御部Cの機能)
制御部Cは、前記信号出力要素からの入力信号に応じた処理を実行して、前記各制御要素に制御信号を出力する機能を有している。すなわち、制御部Cは次の機能を有している。
図4は実施例1の制御部における処理の一例の説明図である。
C1:学習画像読み取り手段
学習画像読み取り手段C1は、画像生成器7から入力された画像を読み取る(読み込む)。実施例1の学習画像読み取り手段C1は、学習処理開始用のボタンUI1が入力された場合に、画像生成器7から入力された画像を読み取る。なお、実施例1では、学習処理開始用のボタンUI1の入力が開始されてから、予め設定された学習期間の間、CT画像の読み取りが行われる。なお、実施例1の学習画像読み取り手段C1は、図4に示す追跡対象画像領域21(治療の標的対象である追跡対象9の一例として腫瘍の画像領域)を含む学習用の元画像(複数の横断面画像)22から、縦断面画像(図示せず)を構成して、以下の作業を行う。よって、実施例1では、学習に関連する各手段C2~C10は、学習画像読み取り手段C1が読み取り、記憶した時系列に沿った各画像それぞれに基づいて、画像分離や編集、重畳等を実行する。すなわち、実施例1では、CT画像の撮影に対して、リアルタイムでの学習処理は行わないが、CPUの高速化等で処理速度が向上し、リアルタイムでも処理が可能になれば、リアルタイムで行うことも可能である。
C2:画像分離手段
画像分離手段C2は、追跡対象画像領域21を含む学習用の3次元情報を含む元画像22に基づいて、追跡対象画像領域21を含む追跡対象部画像23(一例としての軟部組織DRR(Digitally Reconstructed Radiography)画像)と、追跡対象画像領域21を含まない分離背景画像(非追跡対象画像、分離非追跡対象画像)24(一例としての骨構造の画像領域を含む骨構造DRR画像(骨画像))とに分離抽出する。実施例1の画像分離手段C2は、CT画像のコントラスト情報であるCT値に基づいて、追跡対象部画像23(第1の画像、軟部組織DRR画像)と分離背景画像24(骨構造DRR画像)とに分離する。実施例1では、一例として、CT値が200以上の領域を骨構造DRR画像として分離背景画像24を構成し、CT値が200未満の領域を軟部組織DRR画像として追跡対象部画像23を構成する。
なお、実施例1では、一例として、肺に発生した腫瘍(追跡対象9)すなわち治療の標的対象が軟部組織DRR画像として追跡対象部画像23に写る場合の実施例であるが、例えば、追跡対象が骨の異常部分等である場合は、追跡対象部画像23として骨構造DRR画像を選択し、分離背景画像24として軟部組織DRR画像を選択する。このように、追跡対象部画像と背景画像(非追跡対象画像)の選択は、追跡対象および障害物を含む背景画像に応じて、適切に選択される。
C3:障害物画像取得手段
障害物画像取得手段C3は、治療用放射線照射器11において非追跡対象画像28を取得する場合に含まれ、且つ、分離背景画像24とは異なる障害物の画像25を取得する。実施例1では、障害物画像25として、ベッド3のフレーム(カウチフレーム)や患者をベッド3に固定する固定具のX線透視画像が予め記憶媒体に記憶されており、障害物画像取得手段C3は、記憶媒体に記憶されたカウチフレームや固定具の画像(障害物画像25)を読み取って取得する。
C4:乱数発生手段
乱数発生手段C4は乱数を発生させる。
C5:背景画像編集手段(非追跡対象画像編集手段、非追跡対象画像作成手段)
背景画像編集手段C5は、分離背景画像24や障害物画像25の追跡対象部画像23に対する位置、拡縮、回転および明暗の少なくとも一つを編集して、背景画像(非追跡対象画像)29を作成する一例である。実施例1の背景画像編集手段C5は乱数に基づいて、位置、拡縮、回転および明暗の少なくとも一つを編集する。実施例1では、具体的には、アフィン変換を行って分離背景画像24や障害物画像25を平行移動させたり、線形変換(回転、せん断、拡大、縮小)させており、乱数に基づいてアフィン変換の行列の各値を変化させることで、分離背景画像24等を編集し背景画像29を作成する。なお、明暗(コントラスト)についても、分離背景画像24等の明暗を、明または暗の方向に、乱数に応じた量変化させる。実施例1では、背景画像編集手段C5は、1つの分離背景画像24等に対して、予め設定された数の一例としての100枚の編集された背景画像を作成する。すなわち、分離背景画像24等の位置等が乱数によりランダムに編集された100枚の背景画像29が作成される。
なお、作成される背景画像29の枚数Nは、追跡対象部画像23の画像の領域の大きさと、画像の分解能と、予め設定された追跡精度とに基づいて、設定することが望ましい。一例として、追跡対象部画像23の画像が10cm×10cmで、分解能が1mm、要求される追跡精度が分解能の10倍の場合には、{10(cm)/1(mm)}×10(倍)=1000(枚)として、1000枚の背景画像29を作成するようにすることも可能である。
C6:重畳画像作成手段
重畳画像作成手段C6は、追跡対象部画像23に、背景画像29(分離背景画像24や障害物画像25に回転等の編集がされた画像)をそれぞれ重畳した重畳画像26を作成する。
C7:教師画像の入力受付手段
教師画像の入力受付手段C7は、タッチパネルUI0への入力や教師データ入力用のボタンUI2への入力に応じて、追跡すべき対象を教師する画像の一例としての教師画像領域27を含む教師画像30の入力を受け付ける。なお、実施例1では、タッチパネルUI0に学習用の元画像(CT画像)22を表示し、医師が治療の標的対象である追跡対象の画像領域を囲むように画面上にて入力して、教師画像領域27を決定することが可能なように構成されている。
図5は実施例1の重畳画像26と教師画像30の一例の説明図であり、図5Aは一方向から擬似的に透視したDRR画像による重畳画像の一例の説明図、図5Bは図5Aに対応する教師画像の一例の説明図、図5Cは2方向からの擬似的透視DRR画像による重畳画像の一例の説明図、図5Dは図5Cに対応する教師画像の一例の説明図である。
図5A、図5Bは、一例として、X線透過画像を0度方向(図2の上方のX線照射手段4aから下方の撮像装置6aに向けた0度方向)にて撮影し、治療用のX線を45度傾いた方向(図2の45度方向。Beam’s Eye View, BEV方向)にて照射する場合に相当する。図5Aに示す、0度方向にて(擬似的に)透視したDRR重畳画像26に対して、図5Bに示すように、45度方向における2次元画像の領域での追跡対象9(腫瘍など)の輪郭(教師画像領域27)を教師画像30として入力可能である。
図5C、図5Dは、X線透過画像を0度方向だけでなく、90度方向(図2の水平方向)からも撮影する場合の例である。図5Cに示す0度方向と90度方向から擬似的に透視した2つ1組のDRR重畳画像26に対して、図5Dに示すように、45度方向における2次元画像の領域での腫瘍の輪郭(教師画像領域27)を教師画像30として入力可能である。
図5C、図5Dに示す構成では、0度方向と90度方向という2つの透視(撮影)方向のそれぞれに対して、DRR重畳画像と教師画像のセットができることになるが、2つの(もしくはさらに多数)の重畳画像・教師画像のセットを作成する方法には、各方向間の背景画像の関係性を独立に作成してもよいし、連動させて作成してもよい。
各方向間の背景画像を連動させて作成すると、異なる方向の重畳画像・教師画像のセットにおいて、座標の自由度を部分的に連動させて学習させることができ、追跡対象の位置・形状の推定精度を向上させることが可能である。例えば、図1,2において、0度方向と90度方向の2つの撮像方向においては、患者の体軸方向(頭から足の方向)の座標は2つの撮像手段で共通になるので、背景画像をランダム編集する場合に、0度方向画像と90度方向画像の両方の体軸方向を連動してランダムに操作するとよい。
したがって、実施例1では2方向から撮影を行い、図5C、図5Dのように処理が行われるが、これに限定されず、図5A、図5Bのように1方向から撮影する場合にも適用可能である。
C8:教師画像付加手段
教師画像付加手段C8は、入力された教師画像領域27を含む教師画像30を重畳画像26に付加する(さらに重畳する)。
図6は追跡対象の位置の学習の一例の説明図であり、図6Aは複数の重畳画像の一例の説明図、図6Bは重畳画像が重ねられた場合の説明図である。
C9:学習手段(識別器作成手段、相関学習手段)
学習手段C9は、複数の重畳画像26に教師画像30が付加された複数の学習画像51に基づいて、画像における追跡対象画像領域21の領域情報および位置情報の少なくとも一方を学習して、識別器を作成する。なお、実施例1では、追跡対象画像領域21の領域と位置の両方を学習すると共に、透過撮影用のX線の照射方向(撮影方向、第2の方向、第3の方向)からの透視画像に映る腫瘍の外形に基づいて、透視画像に映る腫瘍の外形と治療用のX線の照射方向(第1の方向。以下、治療方向と記載)における腫瘍の外形との相関を学習して識別器(相関情報)を出力する。
また、実施例1では、追跡対象画像領域21の領域の重心の位置を追跡対象画像領域21の位置としているが、領域の上端、下端、右端、左端等、設計や仕様等に応じて任意の位置に変更可能である。
図6において、実施例1の学習手段C9では、ランダムに位置等が編集された障害物画像領域31の画像が追跡対象画像領域32に重畳された複数の重畳画像(図6A参照)において、各画像を更に重畳すると、図6Bに示すように、位置が編集されていない追跡対象画像領域32が相対的に強調(増幅)され、且つ、位置等がランダムな障害物画像領域31が相対的に抑制(減衰)されることとなる。したがって、CT画像における追跡対象画像領域32の位置や外形を学習することが可能である。
また、実施例1の学習手段C9は、治療が開始される前、例えば、治療計画の策定段階等では撮影方向に加えて、治療方向からも透視画像を撮影する。そして、撮影方向(2つの方向)と治療方向からの画像に基づいて、撮影方向と治療方向との相関を予め学習しておく。すなわち、撮影方向から腫瘍がある外形形状に見えた場合には治療方向では外形がどのようになるか(相関)を学習しておく。学習手段C9は、従来公知の任意の構成を採用可能であるが、いわゆるディープラーニング(多層構造のニューラルネットワーク)を使用することが好ましく、特に、CNN(Convolutional Neural Network:畳込みニューラルネットワーク)を使用することが好ましい。実施例1では、ディープラーニングの一例としてのCaffeを使用したが、これに限定されず、任意の学習手段(フレームワーク、アルゴリズム、ソフトウェア)を採用可能である。
なお、サンプル数が少ない場合には、例えば、各手段C2~C9で説明したように、腫瘍等の軟部組織の画像と骨等の画像を分離して、骨等の画像を回転、拡大、縮小等をランダムで行った画像を生成し、腫瘍等の画像に重ねる(ランダムオーバーレイ)ことでサンプル数を増やして学習を行うことを説明したが、これに限定されない。例えば、予め外形形状が既知のサンプルを使用して学習しておいて、患者2の腫瘍の画像を加えて学習を深化させる構成とすることも可能である。
また、腫瘍の位置特定用の識別器と、相関用の識別器とを別個に生成し、2つの識別器を使う構成とすることも可能である。
C10:学習結果記憶手段
学習結果記憶手段C10は、学習手段C9の学習結果を記憶する。すなわち、学習で最適化されたCNNを識別器として記憶する。
C11:透視画像読み取り手段
透視画像読み取り手段C11は、画像生成器7から入力された画像を読み取る(読み込む)。実施例1の透視画像読み取り手段C11は、透視撮影開始用のボタンUI3が入力された場合に、画像生成器7から入力された画像を読み取る。実施例1では、各X線照射部4a,4bから照射されたX線が患者2を透過して、各撮像装置6a,6bで撮影された画像を読み取る。
C12:腫瘍特定手段(標的特定手段)
腫瘍特定手段C12は、撮影された画像に基づいて、標的である腫瘍の外形を特定する。腫瘍の外形は、CT画像のコントラスト情報であるCT値に基づいて腫瘍を特定する。なお、特定方法は、従来公知の画像解析技術を採用することも可能であるし、複数の腫瘍の画像を読み込ませて学習を行って判別することも可能であるし、特許文献1,2に記載の技術を使用することも可能である。なお、標的の「外形」は、腫瘍自体の外形(=正常部位と腫瘍との境界)に限定されず、医師の判断等で腫瘍の内側または外側に設定される場合も含む。すなわち、「外形」は、ユーザが定めた領域とすることも可能である。したがって、「標的」も腫瘍に限定されず、ユーザが追跡したい領域とすることも可能である。
実施例1の腫瘍特定手段C12は、各撮像装置6a,6bで撮影された2つの撮影画像に写る腫瘍をそれぞれ特定する。
C13:外形推定手段
外形推定手段C13は、治療が行われる直近に撮影された撮影方向からの透視画像に映る腫瘍の外形と、相関情報とに基づいて、治療方向における腫瘍の外形を推定し、結果を出力する。
C14:放射線照射手段
放射線照射手段C14は、治療用放射線照射器11を制御して、外形推定手段C13で推定された腫瘍の領域および位置が、治療用X線の照射範囲に含まれる場合に、治療用X線を照射させる。なお、実施例1の放射線照射手段C14は、外形推定手段C13で推定された腫瘍の領域(外形)に応じて、MLCを制御して、治療用X線の照射領域(照射野)が腫瘍の外形となるように調整する。なお、放射線照射手段C14は、治療用X線が照射される場合は、時間経過に応じて変化する腫瘍の外形の推定結果の出力に対して、MLCをリアルタイムで制御する。
C15:追跡精度評価手段
追跡精度評価手段C15は、追跡対象の領域および位置の少なくとも一方が予め設定された評価用の画像(テスト画像)と、識別器とに基づいて、追跡対象の追跡の精度を評価する。実施例1では、テスト画像として、追跡対象の領域および位置が既知の画像を使用して、識別器で追跡対象の追跡を行い、識別器で特定した追跡対象の領域および位置と、既知の領域および位置とのズレを評価する。評価は、領域については、例えば、識別器で特定した領域の外縁の各画素(ピクセル)と、テスト画像における追跡対象の外縁の画素で、(位置が一致するピクセル数)/(外縁の総ピクセル数)を演算し、それが、閾値(例えば90%)を超えていれば、識別器の精度が領域の特定については十分と評価することが可能である。同様に、位置についても、識別器で特定した追跡対象の位置(重心位置)が、テスト画像における追跡対象の位置に対して、ズレが、閾値(例えば、5ピクセル)以内であれば、識別器の精度が位置の特定については十分と評価することが可能である。なお、評価方法は、上記に限定されず、例えば、領域は外形の形状同士の相関係数を導出して評価をする等、任意の評価方法を採用可能である。
なお、実施例1では、追跡精度評価手段C15で精度が不十分と評価された場合には、背景画像編集手段C5でそれまでの枚数Nの2倍の枚数(2N)の編集画像を作成して、追加された編集画像を使用して重畳画像を追加で作成し、増えた重畳画像を使用して学習手段C9で識別器を再作成する。したがって、再作成された識別器の精度は向上される。なお、識別器の精度が、予め設定された閾値に達するまで、自動的に編集画像を増やして、識別器を再作成し続けるように構成することも可能であるし、手動で編集画像の増加や識別器の再作成を行うようにすることも可能である。
なお、透視撮影用X線照射装置4や撮像装置6、画像生成器7、コントロールシステム8、前記各手段C1~C15により実施例1の標的外形推定装置が構成されている。
(実施例1の作用)
前記構成を備えた実施例1の放射線治療機1では、撮影方向の画像と治療方向の画像との相関情報が予め学習され、治療時には、撮影画像から治療方向における腫瘍の外形が推定される。そして、推定された腫瘍の外形に応じて治療用のX線が照射される。
従来の技術では、2次元の撮影画像から3次元の画像を作成し、3次元画像から治療方向の投影画像を導出していたが、この従来技術に比べて、実施例1では、相関情報を使用して2次元の撮影画像から治療方向の画像が導出可能であり、処理時間を短時間にすることが可能である。したがって、腫瘍(追跡対象部位)の位置を速やかに推定することが可能であり、リアルタイム性が向上する。よって、治療時のタイムラグが従来技術よりも短くなり、腫瘍に対してより高精度にX線を照射可能である。
特に、実施例1では、2つの方向からの撮影画像と治療方向の画像との相関が使用されている。1つの方向の撮影画像と治療方向の画像との相関情報を使用することも可能であるが、1つの方向の撮影画像の場合に比べて、実施例1では、治療方向における腫瘍の外形の推定の精度が向上する。
また、実施例1では、治療が行われる患者2の撮影画像を使用して学習しているので、第3者の撮影画像を使用する場合に比べて、精度が向上する。
さらに、実施例1では、軟部組織と骨等の画像を分離し、ランダムオーバーレイを行うことで、治療が行われる患者2における学習するサンプル数を増やしている。従来の2次元の撮影画像から3次元の画像を作成する構成では、このようなことは行われておらず、2次元の撮影画像にベッド等の固定具や構造物等が映り込んでいて、構造物等が腫瘍と重なっていると、腫瘍等の標的の外形の推定精度が低下すると共に、治療日以前の撮影時と、治療当日の撮影時でベッド等と患者の位置がずれていると、ベッド等の位置を基準に位置合わせが行われることがあり、腫瘍等の外形や位置の推定精度が低下する恐れがある(ロバスト性が低い)。これに対して、本願では、ランダムオーバーレイでサンプル数を増やして学習することで、ベッド等の影響を低減することができ、腫瘍の外形や位置の推定精度を向上させることができる。
また、ランダムオーバーレイでサンプル数を増やすことで、治療日以前の治療計画時に撮影する画像の枚数を減らすことができる。したがって、事前の撮影から当日の治療の全体における患者の受ける放射線の線量も低減することも可能である。
また、従来は、患者本人の撮影画像のみで学習を行おうとするとサンプルが不足しがちであり、患者本人以外の撮影画像を使用して学習を行う場合もある。この場合、作成される識別器は、患者本人の専用ではなく、多くの人の状況が平均化された汎用的なものとなり、患者本人の腫瘍に対して精度が低下する問題がある。これに対して、実施例1では、患者本人の撮影画像からランダムオーバーレイでサンプル数を増やすことが可能であり、患者本人の撮影画像から識別器が作成されるので、精度を向上させることが可能である。
さらに、実施例1では、教師画像を使用して学習を行っており、教師画像を使用しない場合に比べて、学習にかかる時間を短縮できる。なお、教師画像を使用しない場合は、ランダムオーバーレイでサンプル数を増やせば、時間がかかるだけで、同様の結果は得られるため、教師画像を使用しない構成とすることも可能である。
さらに、実施例1では、追跡対象部画像23(軟部組織DRR画像)と分離背景画像24(骨構造DRR画像)をCT値に基づいて元画像22から分離して、編集、加工しているので、患者に応じた学習が可能である。
また、実施例1では、分離背景画像24を編集する際に明暗(コントラスト)も編集している。したがって、学習用の元画像22の撮影時と治療用のX線透視画像を撮影する時でコントラストが異なっても、コントラストが異なる状況についても学習済みであり、追跡し易い。なお、分離背景画像24のコントラストだけでなく元画像22の全体のコントラストを変えたものを使用して学習すれば、追跡の精度がさらに向上させることが可能である。
さらに、実施例1では、分離背景画像24や障害物画像25をランダムに編集している。精度の高い学習には、均一に分散された十分なデータがあればよいが、ランダムに編集せずに予め準備しておく場合は面倒で手間がかかる。これに対して、実施例1では、元画像22から分離した分離背景画像24や、治療用放射線照射器11に応じて追加された障害物画像25を乱数でランダムに編集しており、均一に分散された十分な数のデータを容易に揃えることが可能である。
一般的に、元画像の輝度変換、幾何学変換などによって学習画像数を増加させることは「データ拡張」と呼ばれる。データ拡張は、過学習(オーバーフィッティング)を防ぐために用いられる。これは、過学習により細かな特徴を学習しすぎてしまい汎化性能が落ちることを防ぐ目的である。しかし、これら線形変換は単純な変換によって元の画像に復元可能なため、せいぜい、数十倍程度までの画像増加が限界である。つまり、数百倍以上のデータ拡張には非線形変換の効果が必須になる。実施例1では、重畳画像26は、全体として非線形変換となっている。したがって、数百倍以上のデータ拡張でも汎化性能の低下はないと考えられる。
また、実施例1では、学習を行う際に、所定の学習期間のCT画像に対して学習を行う。すなわち、空間(3次元)の要素に加えて、時間(4次元目)の要素も加わったCT画像、いわゆる4DCTに対して学習が行われる。したがって、撮影から照射までのタイムラグや呼吸により時間的に変動する追跡対象の位置や外形に対しても精度良く追跡可能である。実施例1では、ランダムオーバーレイで学習を行う際に、相対的に骨等に対して追跡対象がずれている状況を学習するので、4DCTで取得した呼吸移動の範囲を超えた予想外の動きの状況(咳やくしゃみ)に対応することもできる。特に、実施例1では、ランダムオーバーレイで軟部組織DRR画像と骨構造DRR画像とを重畳させる場合に、解剖学的にあり得ない組み合わせの状況も含めて学習を行うため、解剖学的にありうる組み合わせのみで学習を行う従来の学習方法に比べて予想外の動きにも対応しやすい。
また、時間の要素も加わったCT画像とすることで、撮影時の線量を減らして1枚当たりの画質を低下させても、時間的に前後の撮影画像も加味することで、十分に精度を確保することも可能である。
さらに、実施例1では、追跡精度評価手段C15によって、作成された識別器の評価が行われる。したがって、実際に放射線を照射する治療を行う前に、作成された識別器の精度の評価を行うことができ、識別器の精度が十分かどうかを治療当日以前に事前に確認することができる。そして、精度が不十分な場合には、識別器の再作成を実行することが可能である。したがって、十分な精度を有する識別器を使用して治療を行うことができ、治療の精度が向上し、不十分な識別器を使用する場合に比べて、患者が余計な放射線被曝をすることも低減できる。
図7は実施例1の放射線治療機の使用方法の一例の説明図である。
放射線治療が行われる場合には、治療計画が事前に策定され、放射線が照射される治療当日よりも前に、患部を事前に撮影して位置や状態の診断等が行われ、治療日前の撮影結果に基づいて治療当日の治療も行われる。図7において、治療日前には、まず、患者の透視画像を撮影して(ST1)、予め設定された治療計画(ST2)に基づいて、訓練データを生成する(ST3)。そして、放射線治療機1の学習手段C9のCNNを初期化し(ST4)、訓練データに基づいて、深層学習(ディープラーニング)の新規訓練(学習)を行う(ST5)。なお、新規訓練には、計算時間が1時間程度と見積もられる。そして、訓練済みのCNNを出力する(ST6)。
治療日には、治療直前の患者の透視画像を撮影する(ST11)。治療直前の透視画像において標的を確認し(ST12)、訓練データを生成する(ST13)。放射線治療機1では、ST6で訓練済みのCNNを読み込んで(ST14)、ST13で生成した訓練データを使用して深層学習の再訓練(学習)を行う(ST15)。なお、再訓練では、訓練済みのCNNを使用するため、計算時間は10分程度と見積もられる。そして、再訓練済みのCNNを出力する(ST16)。
治療が開始されると、リアルタイムで透視画像が撮影され(ST21)、リアルタイムの透視画像と再訓練済みのCNNとを使用して、深層学習による標的対象の位置、外形の推定が行われる(ST22)。なお、位置、外形の推定の計算時間は、1画像あたり25ミリ秒程度と見積もられる。そして、標的対象の推定結果に応じて、治療用のX線が照射される(ST23)。
位置、外形の推定(ST22)とX線の照射(ST23)は、治療が終了するまで繰り返し行われる(ST24)。
放射線治療機1を、図7に示した一例のように使用した場合、治療の前日以前の撮影画像を使用して予め学習を行うと共に、治療当日の撮影画像を使用して再訓練(再学習)を行うことで、日々大きさや形状が変化する腫瘍に応じて微調整(=ファインチューニング)、再調整ができ、腫瘍の外形の推定の精度が向上する。また、当日再訓練を行う場合は、初期の訓練に比べて訓練時間を短くすることもでき、治療開始まで長時間患者を待たせることもなく、患者の負担も減らせる。
特に、従来構成のように、2次元(2D)の撮影画像から3次元(3D)の画像を作成する技術では、ファインチューニングにも長時間かかり、患者の負担が大きくなるが、実施例1では、2Dの撮影画像と2Dの治療方向における画像との相関であるため、3Dの画像を作成する場合に比べて、大幅に訓練時間を短縮できる。
なお、ファインチューニングをすることが望ましいが、ファインチューニングをせずに治療を行うことも可能である。
また、一般的な医科用のCT(MDCT)では、X線は扇状に照射されるのに対して、歯科等で広く使用されているCBCT(Cone Beam CT)では、先端が細い円錐(Cone)状のX線が照射される。CBCTを使用して撮像することも可能であるが、CBCTではX線が照射される範囲がMDCTに比べて狭いため、患者の周囲を1周して撮影するのに、MDCTでは0.5秒程度で済むが、CBCTでは1分程度必要である。よって、CBCTでは、撮像に時間がかかるため、呼吸等で動く臓器は画像がぼやけてしまう問題がある一方で、ほとんど動かない骨等は撮像時に際立つため、治療当日の撮影画像に対して位置合わせがしやすいメリットもある。よって、例えば、治療前の撮影や治療時にはMDCTを使用し、ファインチューニング時にCBCTを使用する等の変更も可能である。
次に本発明の実施例2の説明をするが、この実施例2の説明において、前記実施例1の構成要素に対応する構成要素には同一の符号を付して、その詳細な説明は省略する。
この実施例は下記の点で、前記実施例1と相違しているが、他の点では前記実施例1と同様に構成される。
図8は実施例2の説明図であり、実施例1の図2に対応する図である。
図8において、実施例2の放射線治療機1′では、治療用放射線照射器11′として患者2の患部に向けて治療用の放射線の一例としての陽子線を照射可能に構成されている。
(実施例2のコントロールシステム(制御部)の説明)
図9は実施例2のブロック図であり、実施例1の図3に対応する図である。
図9において、実施例2の制御部C′では、学習手段C9′は、撮影方向からの透視画像に映る腫瘍の外形に基づいて、透視画像に映る腫瘍の外形と治療方向腫瘍の外形との相関に加え、治療用放射線照射器11′からの距離との相関も学習する。すなわち、2つの透視画像にそれぞれ腫瘍がある外形形状に見えた場合に、腫瘍の外形の各位置が治療用放射線照射器11′からどのくらいの距離があるのか(距離の相関情報)を学習する。
実施例2の制御部C′の距離推定手段C21は、治療が行われる直近に撮影された透視画像に映る腫瘍の外形と、相関情報とに基づいて、治療方向における腫瘍の治療用放射線照射器11′からの距離を推定する。
そして、実施例2の放射線照射手段C14′は、治療用放射線照射器11′を制御して、外形推定手段C13で推定された腫瘍の領域および位置が、治療用陽子線の照射範囲に含まれる場合に、距離推定手段C21で推定された距離に治療用陽子線を照射させる。
図10は実施例2の重畳画像と教師画像の一例の説明図であり、図10Aは一方向から擬似的に透視したDRR画像による重畳画像の一例の説明図、図10Bは図10Aに対応する教師画像の一例の説明図、図10Cは2方向からの擬似的透視DRR画像による重畳画像の一例の説明図、図10Dは図10Cに対応する教師画像の一例の説明図である。
実施例2において、治療方向における腫瘍の外形と距離を推定する場合は、図8,図10B、図10Dに示すように、腫瘍の外形に応じた範囲の情報に加えて、標的最深部までの飛程(図8記載のRangeに相当。体表面から追跡対象の最深部境界面までの(体内)距離を、荷電粒子が体内に入ってから水中を進み停止するまでの距離に換算したもの)の2次元分布(Range Map、標的飛程分布)の情報27aを含む第1の教師画像30aおよび、標的の治療方向に沿った厚み(図8記載のWidthに相当)の2次元分布(Width Map、標的厚み分布)の情報27bを含む第2教師画像30bも加えることで、学習の精度が向上すると共に学習時間も短縮されるため好ましい。
(実施例2の作用)
前記構成を備えた実施例2の放射線治療機1′では、陽子線を照射する場合には、水と筋肉と骨とで陽子が透過する能力(飛程)が異なる。したがって、治療用の放射線がX線の場合に比べて、治療方向から見て腫瘍の位置がどのくらいの距離(体表面から体内部への深さ)にあるのかという情報と、治療方向から見て腫瘍がどのくらいの厚さを持っているのかという情報が重要になる。したがって、実施例2のように、2つの撮影画像から外形の形状や位置だけでなく、標的までの距離(飛程)や厚さも相関情報を使用して導出することで、精度の高い治療を行うことができる。
(変更例)
以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。本発明の変更例(H01)~(H05)を下記に例示する。
(H01)前記実施例において、撮影画像としてkVオーダのX線を使用したX線透視画像を使用する構成を例示したがこれに限定されない。例えば、MVオーダのX線を使用したX線画像(治療用MV-X線が患者を通過後に検出された画像)、超音波検査画像(いわゆる、超音波エコー画像)、MRI画像(Magnetic Resonance Imaging:核磁気共鳴画像)、PET画像(Positron Emission tomography:陽電子放射断層撮影画像)、光音響イメージング(PAI:Photoacoustic Imaging)画像、X線後方散乱画像等を使用することも可能である。また、X線画像(kV-X線またはMV-X線)とMRI画像等とを組み合わせる等の変更も可能である。なお、MRI画像は、任意断面の画像を出力可能であるが、特定方向から切断した断面の画像しか取得することができない。したがって、任意断面の法線方向を治療用放射線の照射方向に合わせるだけでは、腫瘍の3次元的な形状は不明である。よって、3次元的な形状を得るには、複数の断面の画像を組み合わせて3次元形状を計算する必要がある。これに対して、MRI画像の法線方向を、治療用放射線の照射方向とは敢えてずらして、相関を学習することで、3次元形状を計算する場合に比べて、処理を高速に行うことが可能である。
他にも、呼吸等の動きと腫瘍の動きとの相関が深いことを利用して、3Dカメラや距離センサ等の撮像手段で、呼吸等で変動する患者の体表面形状を撮影して、体表面形状画像を使用して腫瘍の位置、外形を推定することも可能である。
(H02)前記実施例において、2つの撮影画像を使用する構成を例示したが、これに限定されない。要求される精度によっては撮影は1つ(一方向)とすることも可能である。また、3つ以上の方向からの撮影して、さらに精度を向上させることも可能である。
(H03)前記実施例において、マーカを使用せずに追跡を行う構成を例示したが、これに限定されない。マーカを埋め込んだX線画像等を使用することも可能である。
(H04)前記実施例において、標的対象である腫瘍等が1つの場合について説明を行ったが、標的対象が複数の場合にも適用可能である。
(H05)前記本実施例では、追跡対象部画像23および分離背景画像24および障害物画像25は、2次元のDRR画像としたので、2次元のDRR画像にてランダムに編集された多数の背景画像を生成する例を示した。一方、追跡対象部画像23および分離背景画像24及び障害物画像25を3次元CT画像のままとして、3次元CT画像としてランダムに編集された多数の背景画像を生成して、それを3次元CT画像としての追跡対象部画像23と重畳させてから、1方向もしくは多方向の疑似透視2次元画像に相当する重畳画像26を作成してもよい。この場合、背景画像のランダムな編集は、3次元CT画像として操作されるので、作成された複数の異なる方向の背景画像、重畳画像は全ての自由度(座標)で連動する。その結果、2次元DRR画像にて背景画像をランダムに編集した場合に比べて、学習による位置・形状の推定精度が向上する(異なる複数方向の2次元DRR画像セットにて背景画像をランダムに編集した場合は、3次元情報は部分的に失われるので、異なる方向の背景画像間で連動しない自由度(座標)が出てくる)。
2…被検者、
4a…第2の照射手段、
4b…第3の照射手段、
6a…第2の撮像手段(撮像装置)、
6b…第3の撮像手段(撮像装置)、
9…追跡対象(治療の標的対象)
11,11′…第1の照射手段、
C9,C9′…学習手段、
C13…外形推定手段、
C21…距離推定手段。

Claims (13)

  1. 被検者の体内の標的に第1の放射線を照射する第1の照射手段を有し、前記第1の放射線を照射する第1の方向に対して、前記第1の方向とは異なる第2の方向から前記被検者の体内の標的を含む領域を透視した画像を撮影する撮影手段と、
    前記第2の方向からの透視画像に映る標的の外形に基づいて、前記透視画像に映る標的の外形と前記第1の方向における標的の外形との相関を学習して相関情報である識別器を出力する学習手段と、
    治療が行われる直近に撮影された前記第2の方向からの透視画像に映る標的の外形と、前記識別器とに基づいて、前記第1の方向における標的の外形を推定する外形推定手段と、
    を備えたことを特徴とする標的外形推定装置。
  2. 前記第1の放射線が、X線または粒子線であり、
    前記透視画像が、X線画像、核磁気共鳴画像、超音波検査画像、陽電子放射断層撮影画像、体表面形状画像および光音響イメージング画像のいずれか1つまたはその組み合わせである
    ことを特徴とする請求項1に記載の標的外形推定装置。
  3. 前記透視画像に映る標的の外形に基づいて、透視画像に映る標的の外形と前記第1の方向における前記第1の照射手段からの距離との相関も学習する前記学習手段と、
    治療が行われる直近に撮影された前記透視画像に映る標的の外形と、前記識別器とに基づいて、前記第1の方向における標的の前記第1の照射手段からの距離を推定する距離推定手段と、
    を備えたことを特徴とする請求項1または2に記載の標的外形推定装置。
  4. 前記第2の方向とは異なる第3の方向から前記被検者の体内の標的を含む領域の画像を撮影する撮影手段と、
    前記第2の方向からの透視画像に映る標的の外形と、前記第3の方向からの透視画像に映る標的の外形とに基づいて、各透視画像に映る標的の外形と前記第1の方向における標的の外形との相関を学習して識別器を出力する前記学習手段と、
    を備えたことを特徴とする請求項1ないし3のいずれかに記載の標的外形推定装置。
  5. 前記標的の画像特徴を含む追跡対象部画像に、前記画像特徴を含まない複数からなる非追跡対象画像のそれぞれを重ねた複数の重畳画像を作成する重畳画像作成手段と、
    前記第2の方向からの透視画像に映る標的の外形に基づいて、前記透視画像に映る標的の外形と前記第1の方向における標的の外形との相関を学習すると共に、前記複数の重畳画像に基づいて前記標的の画像特徴および位置情報の少なくとも一方を学習して、識別器を作成する前記学習手段と、
    を備えたことを特徴とする請求項1ないし4のいずれかに記載の標的外形推定装置。
  6. 前記標的の画像特徴を特定する教師画像を予め入力する入力部と、
    前記複数の重畳画像と前記教師画像に基づいて、前記標的の画像特徴および位置情報の少なくとも一方を学習して識別器を作成する前記学習手段と、
    を備えたことを特徴とする請求項5に記載の標的外形推定装置。
  7. 前記標的の画像特徴の大きさと、画像の分解能と、予め設定された追跡精度とに基づいて、前記非追跡対象画像の枚数を導出して、導出された枚数に応じた前記非追跡対象画像を作成する非追跡対象画像編集手段、
    を備えたことを特徴とする請求項5または6に記載の標的外形推定装置。
  8. 前記標的の画像特徴を含む学習用の元画像から、前記標的の画像特徴を含む追跡対象部画像と、前記標的の画像特徴を含まない分離非追跡対象画像とに分離抽出する画像分離手段と、
    前記分離非追跡対象画像を編集して複数からなる前記非追跡対象画像を編集作成する非追跡対象画像編集手段と、
    前記追跡対象部画像と前記非追跡対象画像とに基づいて前記重畳画像を作成する前記重畳画像作成手段と
    を備えたことを特徴とする請求項5ないし7のいずれかに記載の標的外形推定装置。
  9. 前記標的の画像特徴を含む元画像から、前記標的の画像特徴を含む追跡対象部画像と、前記標的の画像特徴を含まない分離非追跡対象画像とに分離する画像分離手段と、
    前記元画像に含まれず且つ前記非追跡対象画像に含まれる障害物の画像を取得する障害物画像取得手段と、
    前記分離非追跡対象画像と前記障害物の画像との少なくとも1つを編集して複数からなる前記非追跡対象画像を編集作成する非追跡対象画像編集手段と、
    前記追跡対象部画像と前記非追跡対象画像とに基づいて前記重畳画像を作成する前記重畳画像作成手段と、
    を備えたことを特徴とする請求項5ないし7のいずれかに記載の標的外形推定装置。
  10. 前記標的の画像特徴を含む学習用の元画像から、前記標的の画像特徴の画像コントラスト情報に基づき、前記追跡対象部画像と前記分離非追跡対象画像とに分離抽出する前記画像分離手段と、
    を備えたことを特徴とする請求項8または9に記載の標的外形推定装置。
  11. 前記標的の画像特徴および位置情報の少なくとも一方が予め設定された評価用の画像と、前記識別器とに基づいて、前記標的の追跡の精度を評価する追跡精度評価手段、
    を備えたことを特徴とする請求項5ないし10のいずれかに記載の標的外形推定装置。
  12. 前記追跡精度評価手段による追跡の精度が、予め設定された精度に達しない場合に、前記非追跡対象画像の枚数を増やして前記識別器を再作成する前記学習手段、
    を備えたことを特徴とする請求項11に記載の標的外形推定装置。
  13. 請求項1ないし12のいずれかに記載の標的外形推定装置と、
    前記標的外形推定装置が推定した標的の外形に基づいて、前記第1の方向から治療用の放射線を照射する照射手段と、
    を備えたことを特徴とする治療装置。
JP2019185550A 2019-10-08 2019-10-08 標的外形推定装置および治療装置 Active JP7292721B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019185550A JP7292721B2 (ja) 2019-10-08 2019-10-08 標的外形推定装置および治療装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019185550A JP7292721B2 (ja) 2019-10-08 2019-10-08 標的外形推定装置および治療装置

Publications (2)

Publication Number Publication Date
JP2021058480A JP2021058480A (ja) 2021-04-15
JP7292721B2 true JP7292721B2 (ja) 2023-06-19

Family

ID=75380842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019185550A Active JP7292721B2 (ja) 2019-10-08 2019-10-08 標的外形推定装置および治療装置

Country Status (1)

Country Link
JP (1) JP7292721B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160175614A1 (en) 2014-12-19 2016-06-23 Kabushiki Kaisha Toshiba Medical image processing apparatus, treatment system, medical image processing method, and medical image processing program
JP2018075356A (ja) 2016-11-02 2018-05-17 国立研究開発法人量子科学技術研究開発機構 X線透視装置およびx線透視方法
WO2018159775A1 (ja) 2017-03-03 2018-09-07 国立大学法人筑波大学 対象追跡装置
WO2019003474A1 (ja) 2017-06-30 2019-01-03 株式会社島津製作所 放射線治療用追跡装置、位置検出装置および動体追跡方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160175614A1 (en) 2014-12-19 2016-06-23 Kabushiki Kaisha Toshiba Medical image processing apparatus, treatment system, medical image processing method, and medical image processing program
JP2016116659A (ja) 2014-12-19 2016-06-30 株式会社東芝 医用画像処理装置、治療システム、医用画像処理方法、および医用画像処理プログラム
JP2018075356A (ja) 2016-11-02 2018-05-17 国立研究開発法人量子科学技術研究開発機構 X線透視装置およびx線透視方法
WO2018159775A1 (ja) 2017-03-03 2018-09-07 国立大学法人筑波大学 対象追跡装置
WO2019003474A1 (ja) 2017-06-30 2019-01-03 株式会社島津製作所 放射線治療用追跡装置、位置検出装置および動体追跡方法

Also Published As

Publication number Publication date
JP2021058480A (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
US11328434B2 (en) Object tracking device
Rottmann et al. A multi-region algorithm for markerless beam's-eye view lung tumor tracking
JP6656251B2 (ja) Mri誘導リナックのモーション管理
JP6208535B2 (ja) 放射線治療装置およびシステムおよび方法
US9179982B2 (en) Method and system for automatic patient identification
US8571639B2 (en) Systems and methods for gating medical procedures
US10143431B2 (en) Medical image processing apparatus and method, and radiotherapeutic apparatus
CN111918697B (zh) 医用图像处理装置、治疗系统以及存储介质
US20090060311A1 (en) Systems and methods for processing x-ray images
EP3710109B1 (en) Three-dimensional tracking of a target in a body
JP7362130B2 (ja) 放射線治療装置
WO2023235923A1 (en) Markerless anatomical object tracking during an image-guided medical procedure
JP7292721B2 (ja) 標的外形推定装置および治療装置
US20190080442A1 (en) System and method for image guided tracking to enhance radiation therapy
Wei et al. A constrained linear regression optimization algorithm for diaphragm motion tracking with cone beam CT projections
JP2021153952A (ja) 精度検証装置、放射線治療システム、精度検証方法及びコンピュータプログラム
WO2023068365A1 (ja) 標的外形推定装置および治療装置
WO2024117129A1 (ja) 医用画像処理装置、治療システム、医用画像処理方法、およびプログラム
WO2024047915A1 (ja) 放射線治療システム、動き追跡装置、および動き追跡方法
Yoshidome et al. Automated and robust estimation framework for lung tumor location in kilovolt cone-beam computed tomography images for target-based patient positioning in lung stereotactic body radiotherapy
JP2024151221A (ja) 動き追跡装置、放射線治療システム、および動き追跡方法
JP2024048137A (ja) 照射位置確認支援装置、照射位置確認支援方法、および照射位置確認支援プログラム
JP2021013741A (ja) アパーチャ制御を用いる低線量ct透視のシステムおよび方法
Hugo -Online Monitoring, Tracking, and Dose Accumulation
Zhang Application of online image guidance for moving tumour treatment using scanned proton therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230531

R150 Certificate of patent or registration of utility model

Ref document number: 7292721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150