JP7292670B2 - Dust exhaust gas blower runner and its repair method - Google Patents

Dust exhaust gas blower runner and its repair method Download PDF

Info

Publication number
JP7292670B2
JP7292670B2 JP2019092899A JP2019092899A JP7292670B2 JP 7292670 B2 JP7292670 B2 JP 7292670B2 JP 2019092899 A JP2019092899 A JP 2019092899A JP 2019092899 A JP2019092899 A JP 2019092899A JP 7292670 B2 JP7292670 B2 JP 7292670B2
Authority
JP
Japan
Prior art keywords
layer
exhaust gas
runner
hardness
vickers hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019092899A
Other languages
Japanese (ja)
Other versions
JP2020186699A (en
Inventor
真生 西
肇 河津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
ING Shoji Co Ltd
Original Assignee
Nippon Steel Corp
ING Shoji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, ING Shoji Co Ltd filed Critical Nippon Steel Corp
Priority to JP2019092899A priority Critical patent/JP7292670B2/en
Publication of JP2020186699A publication Critical patent/JP2020186699A/en
Application granted granted Critical
Publication of JP7292670B2 publication Critical patent/JP7292670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、含塵排ガスブロワーのランナー及びその補修方法に関する。 TECHNICAL FIELD The present invention relates to a dust exhaust gas blower runner and a repair method thereof.

製鉄プロセスで発生する排ガスは、一般にブロワーによって排出される場合が多い。例えば、鉄鉱石、炭材、及び石灰類を焼結原料に用いて焼結鉱を製造する焼結工程では、焼結原料を焼結機のパレットに装入した後、点火炉で焼結原料表面を点火し、パレットの下方から外気を吸引しながら炭材を酸化させ、酸化時の発熱を利用して鉄鉱石を焼結させることが一般に行われている。パレットの下方には吸気用のウインドボックスが設置され、ウインドボックスの下端部はダクトに接続されている。
パレット上の焼結原料が燃焼することによって発生する焼結機排ガスは、ダクトの途中に設置されている焼結機主排ガスブロワーを作動させることによりウインドボックス内に吸引され、ダクトを介して電気集塵機に導入される。
Exhaust gas generated in the steelmaking process is generally discharged by a blower in many cases. For example, in a sintering process for producing sintered ore using iron ore, carbonaceous material, and lime as sintering raw materials, the sintering raw materials are charged into a pallet of a sintering machine and then fired in an ignition furnace. Generally, the surface is ignited, the carbonaceous material is oxidized while the outside air is sucked from below the pallet, and the iron ore is sintered using the heat generated during oxidation. A wind box for air intake is installed below the pallet, and the lower end of the wind box is connected to a duct.
The sintering machine exhaust gas generated by burning the sintering raw materials on the pallet is sucked into the wind box by operating the sintering machine main exhaust gas blower installed in the middle of the duct, and is supplied with electricity through the duct. Introduced to the dust collector.

焼結機主排ガスブロワーのランナー(羽根車)は、粉塵の衝突による摩耗(特に、翼板の先端部は粉塵の衝突が激しい。)や、排気ガス環境起因の腐食による減肉により寿命が決定される。
このような粉塵を含む排ガス(含塵排ガス)に用いる排ガスブロワーのランナーの減肉は、焼結機主排ガスブロワーに限られるものではなく、製鉄プロセスの一例である製銑プロセスや製鋼プロセスにおいても発生する。製銑プロセスの例としては、ブロワーの焼結機排鉱部の排気ブロワー、コークス原料炭の乾燥炉の排ガスブロワー等が挙げられる。また、製鋼プロセスの例としては、転炉OG設備のブロワー、電気炉集塵設備のブロワー等が挙げられる。製鉄プロセスではないが、石炭ボイラーの排気設備、焼却炉の排気設備でも同様な課題が存在する。
The life of the runner (impeller) of the main exhaust gas blower of the sintering machine is determined by wear due to dust collision (particularly, the tip of the blade plate is hit hard by dust) and thinning due to corrosion caused by the exhaust gas environment. be done.
Thinning of the runner of the exhaust gas blower used for exhaust gas containing such dust (dust-containing exhaust gas) is not limited to the main exhaust gas blower of the sintering machine, but also in the ironmaking process and steelmaking process, which are examples of the ironmaking process. Occur. Examples of the ironmaking process include an exhaust blower of a sintering machine ore discharge section of a blower, an exhaust gas blower of a drying furnace for coke coking coal, and the like. Examples of the steelmaking process include a blower for converter OG equipment, a blower for electric furnace dust collection equipment, and the like. Similar problems exist in coal boiler exhaust equipment and incinerator exhaust equipment, although they are not steelmaking processes.

これらの設備においては、大気中に排ガスを放散する前に所定の規制値以下となるように排ガス中の粉塵(煤煙)濃度が低減される。しかし、規制値以下ではあるが0.7mg/m以上の粉塵が排ガスに含まれる場合があり、このような含塵排ガスがブロワーのランナーの減肉の原因となっている。
そのため、含塵排ガスブロワーのランナー(以下、単に「ランナー」と呼ぶことがある。)などの摩耗部品には、金属肉盛等を用いた耐摩耗性向上が従来から種々検討されている。
In these facilities, the dust (soot) concentration in the exhaust gas is reduced so that it is below a predetermined regulation value before the exhaust gas is diffused into the atmosphere. However, the exhaust gas may contain dust of 0.7 mg/m 3 or more, although it is below the regulation value, and such dust-containing exhaust gas causes thinning of the runner of the blower.
Therefore, for wear parts such as runners of dust-containing exhaust gas blowers (hereinafter sometimes simply referred to as "runners"), improvements in wear resistance using metal build-up or the like have been conventionally studied.

例えば特許文献1には、衝撃を受ける部分に母材よりも耐浸食性及び耐摩耗性の高い肉盛溶接層を有する部材を適用した水車及びその製造方法が開示されている。
また、特許文献2には、表面の少なくとも一部に、Ni,Cr,Coの内の少なくとも1種類を含む金属とクロム炭化物とを含む第1溶射皮膜と、Ni,Cr,Coの内の少なくとも1種類を含む金属とタングステン炭化物とを含む第2溶射皮膜を被覆した水車ランナーが開示されている。
For example, Patent Literature 1 discloses a water turbine in which a member having a build-up weld layer with higher erosion resistance and wear resistance than the base material is applied to a portion that receives an impact, and a manufacturing method thereof.
Further, in Patent Document 2, a first thermal spray coating containing a metal containing at least one of Ni, Cr, and Co and chromium carbide, and at least Ni, Cr, and Co on at least a part of the surface A water turbine runner coated with a second thermal spray coating comprising a metal comprising one and tungsten carbide is disclosed.

特開平2-230968号公報JP-A-2-230968 特開平9-303245号公報JP-A-9-303245

特許文献1記載の技術によれば、相応の寿命向上は期待できるが、ビッカース硬さが300~700であるため耐摩耗性が不十分である。また、溶接方法がプラズマ溶射に限定されており、より簡便な方法で羽根の補修ができることが望まれる。
一方、特許文献2記載の技術の場合、第2溶射皮膜のビッカース硬さが1000以上あり耐摩耗性は十分確保されるが、耐摩耗性向上の肉盛方法として溶射を採用しているため、膜厚は1.0mm程度が上限となり、長寿命化に限界がある。また、400℃以上650℃以下の温度で1時間以上30時間以下の予熱が必要であるため、現場での補修は困難である。
According to the technique described in Patent Document 1, a corresponding improvement in life can be expected, but the Vickers hardness is 300 to 700, so the wear resistance is insufficient. Also, the welding method is limited to plasma spraying, and it is desired that the blade can be repaired by a simpler method.
On the other hand, in the case of the technique described in Patent Document 2, the Vickers hardness of the second thermal spray coating is 1000 or more, and wear resistance is sufficiently ensured. The upper limit of the film thickness is about 1.0 mm, and there is a limit to extending the life. In addition, since preheating at a temperature of 400° C. or more and 650° C. or less for 1 hour or more and 30 hours or less is required, on-site repair is difficult.

本発明はかかる事情に鑑みてなされたもので、従来に比べて寿命の長いランナーを提供することを目的とする。また、従来に比べて補修期間を短縮することが可能なランナーの補修方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a runner having a longer life than conventional runners. Another object of the present invention is to provide a runner repair method capable of shortening the repair period compared to the conventional method.

上記目的を達成するため、第1の発明は、表面の少なくとも一部に、それぞれ1.5mm以上3.0mm以下の厚さの下盛り及び上盛りの2層の溶接肉盛を施した、含塵排ガスブロワーのランナーであって、
前記下盛りを施す母材のマイクロビッカース硬さの平均値Hvmが100~400、
前記上盛りのマイクロビッカース硬さの平均値Hvuが1000~1400、
前記下盛りのマイクロビッカース硬さの平均値Hvlが450~950、且つ前記下盛りのクロム含有量が10~30質量%とされ、
(1)式で定義される硬度勾配αと(2)式で定義される硬度勾配βがそれぞれ18以上320以下であることを特徴としている。
α=(Hvu-Hvm)/[tu/2+tl] (1)
β=(Hvu-Hvl)/[(tu+tl)/2] (2)
ただし、tu:前記上盛りの層厚(mm)、tl:前記下盛りの層厚(mm)とし、
前記母材のマイクロビッカース硬さは溶接する前の表面、前記上盛りのマイクロビッカース硬さは上盛り溶接後の上盛り表面、前記下盛りのマイクロビッカース硬さは下盛り溶接後の下盛り表面、でそれぞれ測定し、かつ、それぞれ負荷荷重500g、0.5mm間隔で15点測定し、その平均で算出された平均値である。
In order to achieve the above object, the first invention includes two layers of weld overlay, an underlay and a top build, each having a thickness of 1.5 mm or more and 3.0 mm or less on at least a part of the surface. A runner for a dust flue gas blower,
The average value Hvm of the micro Vickers hardness of the base material to be subjected to the underlay is 100 to 400,
The average value Hvu of the micro Vickers hardness of the top layer is 1000 to 1400,
The average value Hvl of the micro Vickers hardness of the undercoat is 450 to 950, and the chromium content of the undercoat is 10 to 30% by mass,
The hardness gradient α defined by the formula (1) and the hardness gradient β defined by the formula (2) are each 18 or more and 320 or less.
α=(Hvu−Hvm)/[tu/2+tl] (1)
β=(Hvu−Hvl)/[(tu+tl)/2] (2)
However, tu: the layer thickness of the top layer (mm), tl: the layer thickness of the bottom layer (mm) ,
The micro Vickers hardness of the base material is the surface before welding, the micro Vickers hardness of the top layer is the surface of the top layer after welding, and the micro Vickers hardness of the bottom layer is the surface of the bottom layer after welding. , and 500 g load, 15 measurements at intervals of 0.5 mm, and the average value calculated as the average.

本発明では、図1に示すように、上盛りのマイクロビッカース硬さの平均値Hvuを上盛りの層厚の1/2箇所で代表させ、下盛りのマイクロビッカース硬さの平均値Hvlを下盛りの層厚の1/2箇所で代表させる。また、母材のマイクロビッカース硬さの平均値Hvmは母材表面で代表させる。このように想定すると、上盛りと母材間の厚さ方向の硬度勾配αは(1)式、上盛りと下盛り間の厚さ方向の硬度勾配βは(2)式で表される。 In the present invention, as shown in FIG. 1, the average value Hvu of the micro Vickers hardness of the upper layer is represented by half the layer thickness of the upper layer, and the average value Hvl of the micro Vickers hardness of the lower layer is lower. It is represented by 1/2 of the layer thickness of the pile. Also, the average value Hvm of the micro-Vickers hardness of the base material is represented by the surface of the base material. Based on this assumption, the hardness gradient α in the thickness direction between the overlying layer and the base material is expressed by Equation (1), and the hardness gradient β in the thickness direction between the overlying layer and the base material is represented by Equation (2).

一般に、溶接肉盛や溶射等によりランナーの耐摩耗性を向上させることができる。しかし、単にランナーの最表層の硬度を上げた場合、表層に亀裂が入りやすくなるだけでなく、亀裂が進展・成長するという知見を本発明者らは得ている。
母材に溶接肉盛を施した場合、ランナーの耐摩耗性は向上する。しかし、溶接肉盛の硬度を上げると、母材と肉盛層の硬度差が大きくなり、熱膨張係数等の機械的性質が母材と肉盛層とで大きく異なることになる。その結果、ランナーに引張荷重が作用したり、ランナーが熱膨張する際に、肉盛層に存在する亀裂が進展・成長する。亀裂が進展し、肉盛層が剥離すると、そこから母材の減肉が進行して破損に至る。
In general, the wear resistance of a runner can be improved by welding overlay, thermal spraying, or the like. However, the inventors of the present invention have found that simply increasing the hardness of the outermost layer of the runner not only makes the surface layer more prone to cracking, but also promotes and grows the cracks.
The wear resistance of the runner is improved when the base metal is welded. However, if the hardness of the weld overlay is increased, the difference in hardness between the base material and the overlay layer increases, resulting in a large difference in mechanical properties such as thermal expansion coefficient between the base material and the overlay layer. As a result, when a tensile load acts on the runner or the runner thermally expands, cracks existing in the build-up layer progress and grow. When the crack progresses and the build-up layer peels off, the thickness of the base metal progresses from there, leading to breakage.

このように、単なる摩耗だけではなく、亀裂の進展に起因する肉盛層の剥離による損耗がランナーの寿命を決定する大きな要因であることを本発明者らは発見した。
そこで、本発明では、ランナーの溶接肉盛を上盛りと下盛りの2層とし、上盛りの硬度を高くして耐摩耗性を向上させると共に、上盛りに不可避的に発生する亀裂の進展を抑制することにより上盛り層の剥離を防止する。具体的には、上盛りと母材間の厚さ方向の硬度勾配αと、上盛りと下盛り間の厚さ方向の硬度勾配βをそれぞれ所定の数値範囲内とすることにより、上盛りと下盛りと母材間の硬度変化量や、これに伴う熱膨張係数の変化量を適正値にする。
Thus, the present inventors discovered that not only mere wear but also wear due to peeling of the build-up layer due to the progress of cracks is a major factor that determines the life of the runner.
Therefore, in the present invention, the weld overlay of the runner is made of two layers, the upper and lower layers, and the hardness of the upper layer is increased to improve wear resistance, and the cracks that inevitably occur in the upper layer are prevented from progressing. By suppressing it, the overlying layer is prevented from being peeled off. Specifically, the hardness gradient α in the thickness direction between the top layer and the base material, and the hardness gradient β in the thickness direction between the top layer and the bottom layer are each set within a predetermined numerical range, so that the top layer and the Adjust the amount of change in hardness between the underlay and the base material, and the amount of change in the thermal expansion coefficient associated with this, to appropriate values.

また、第2の発明は、一定期間使用後の第1の発明に係る含塵排ガスブロワーのランナーの補修方法であって、
前記下盛りが露出している部位に、請求項1の要件を満足する上盛りの溶接肉盛を施すことを特徴としている。
A second invention is a method for repairing a runner of a dust-containing exhaust gas blower according to the first invention after use for a certain period of time, comprising:
It is characterized in that a top weld surfacing that satisfies the requirements of claim 1 is applied to the portion where the underlay is exposed.

本発明に係る含塵排ガスブロワーのランナーでは、溶接肉盛を上盛りと下盛りの2層とし、上盛りの硬度を高くすると共に、上盛りと母材間の厚さ方向の硬度勾配αと、上盛りと下盛り間の厚さ方向の硬度勾配βをそれぞれ所定の数値範囲内とすることにより、摩耗の進行及び亀裂の進展を抑制する。これにより、従来に比べてランナーの寿命を延ばすことが可能となる。 In the runner of the dust-containing exhaust gas blower according to the present invention, the weld overlay is made up of two layers, the top layer and the bottom layer, and the hardness of the top layer is increased, and the hardness gradient α in the thickness direction between the top layer and the base material is , and the hardness gradient β in the thickness direction between the top layer and the bottom layer is set within a predetermined numerical range, thereby suppressing the progress of wear and the progress of cracks. As a result, it becomes possible to extend the life of the runner compared to the conventional one.

また、本発明に係る含塵排ガスブロワーのランナーの補修方法では、予熱や後熱を実施せず、上盛り層が剥離して下盛りが露出した箇所にのみ上盛り溶接を施すので、従来に比べて補修工程を短縮することができる。 In addition, in the method for repairing the runner of the dust-containing exhaust gas blower according to the present invention, preheating and postheating are not performed, and the top welding is performed only at the place where the top layer is peeled off and the bottom layer is exposed. The repair process can be shortened in comparison.

硬度勾配α、βを説明するための模式図である。FIG. 4 is a schematic diagram for explaining hardness gradients α and β; 本発明の一実施の形態に係る焼結機主排ガスブロワーのランナーの斜視図である。1 is a perspective view of a runner of a main exhaust gas blower of a sintering machine according to one embodiment of the present invention; FIG. 下盛り及び上盛りの2層の溶接肉盛を施した、ランナーの翼板先端部の断面図である。FIG. 4 is a cross-sectional view of the leading edge of the vane plate of the runner on which two layers of weld surfacing, a lower layer and an upper layer, are applied.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。 Next, an embodiment embodying the present invention will be described with reference to the attached drawings for understanding of the present invention.

本発明の一実施の形態に係る焼結機主排ガスブロワー(含塵排ガスブロワーの一例)のランナー10を図2に示す。
ランナー10は、中心部に軸孔13を有する円盤状の主板12と、回転方向に沿って等間隔に配置された複数の翼板11とを備えている。各翼板11は弧状に湾曲し、湾曲した一方の端面が主板12に固着されている。主板12の軸孔13にはモータシャフト(図示省略)が嵌挿される。
FIG. 2 shows a runner 10 of a sintering machine main exhaust gas blower (an example of a dust-containing exhaust gas blower) according to one embodiment of the present invention.
The runner 10 includes a disk-shaped main plate 12 having a shaft hole 13 in the center, and a plurality of vanes 11 arranged at regular intervals along the direction of rotation. Each blade 11 is curved in an arc, and one curved end surface is fixed to the main plate 12 . A motor shaft (not shown) is inserted into the shaft hole 13 of the main plate 12 .

ランナー10はケーシング(図示省略)内に収納され、ランナー10の前方(モータが設置されていない側)に焼結機排ガス14の吸込口が、ランナー10の側方に焼結機排ガス14の吹出口がそれぞれ設けられている。 The runner 10 is housed in a casing (not shown), with a suction port for the sintering machine exhaust gas 14 on the front side of the runner 10 (on the side where the motor is not installed) and a blowing port for the sintering machine exhaust gas 14 on the side of the runner 10 . Each has an exit.

含塵排ガスである焼結機主排ガスのダスト(煤塵)は、規制値以下ではあるが0.7mg/m以上であり、含塵排ガスの中でも比較的濃度が高い(例えば、8.0mg/m以上、規制値以下)。 The dust (soot) in the main exhaust gas from the sintering machine, which is dust-containing exhaust gas, is 0.7 mg/ m3 or more, although it is below the regulation value, and has a relatively high concentration among the dust-containing exhaust gas (e.g., 8.0 mg/m3). m 3 or more, below the regulation value).

モータ(図示省略)によりランナー10が回転すると、焼結機排ガス14が吸込口からケーシング内に吸い込まれる。ケーシング内に吸い込まれた焼結機排ガス14はランナー10内に流入し、翼板11間の隙間からランナー10外へ流出する。ランナー10外へ流出した焼結機排ガス14はケーシング内を回転方向に移動し、吹出口からケーシング外へ排出される。 When the runner 10 is rotated by a motor (not shown), the sintering machine exhaust gas 14 is sucked into the casing through the suction port. The sintering machine exhaust gas 14 sucked into the casing flows into the runner 10 and flows out of the runner 10 through the gap between the blades 11 . The exhaust gas 14 from the sintering machine that has flowed out of the runner 10 moves in the rotation direction inside the casing and is discharged out of the casing from the outlet.

ランナー10の表面の少なくとも一部には、それぞれ1.5mm以上3.0mm以下の厚さの下盛り及び上盛りの2層の溶接肉盛が施されている。
溶接肉盛の厚さが1.5mm未満であると、長寿命化の効果が小さくなる一方、3.0mmを超えると、溶接の際に表層と内部の温度差により亀裂生成が増長される。
At least a portion of the surface of the runner 10 is provided with two layers of weld overlay, ie, an underlying layer and an upper layer, each having a thickness of 1.5 mm or more and 3.0 mm or less.
When the thickness of the weld overlay is less than 1.5 mm, the effect of extending the service life is reduced, while when it exceeds 3.0 mm, the temperature difference between the surface layer and the inside during welding increases crack generation.

下盛りを施す母材のマイクロビッカース硬さの平均値Hvmは100~400である。母材のマイクロビッカース硬さの平均値Hvmが100未満であると、母材自体の強度不足が懸念される一方、400を超えると、母材自体が割れやすくなる。 The average value Hvm of the micro Vickers hardness of the base material to be underlaid is 100-400. If the average value Hvm of the micro Vickers hardness of the base material is less than 100, the strength of the base material itself may be insufficient.

上盛りのマイクロビッカース硬さの平均値Hvuは1000~1400である。上盛りのマイクロビッカース硬さの平均値Hvuが1000未満であると、耐摩耗性が不足する一方、1400を超えると、亀裂の発生や進展を抑制できない可能性がある。 The average value Hvu of the micro Vickers hardness of the overlay is 1000-1400. If the average micro Vickers hardness Hvu of the top layer is less than 1,000, the wear resistance is insufficient, while if it exceeds 1,400, the occurrence and propagation of cracks may not be suppressed.

下盛りのマイクロビッカース硬さの平均値Hvlは450~950、且つ下盛りのクロム含有量は10~30質量%とされている。上盛り層が剥離して下盛りが露出した際、下盛りの耐摩耗性を確保するため、下盛りのマイクロビッカース硬さの平均値Hvlは450以上としている。一方、下盛りのマイクロビッカース硬さの平均値Hvlを950以下とすることで、下盛り層における新たな亀裂生成を概ね抑制することができる。 The average micro Vickers hardness Hvl of the underlay is 450-950, and the chromium content of the underlay is 10-30% by mass. When the overlying layer is peeled off to expose the underlying layer, the average value Hvl of the micro Vickers hardness of the underlying layer is set to 450 or more in order to secure the wear resistance of the underlying layer. On the other hand, by setting the average value Hvl of the micro-Vickers hardness of the underlayer to 950 or less, it is possible to substantially suppress the generation of new cracks in the underlayer.

焼結機排ガス等の含塵排ガスは、水分、SOx、NOxを含んでいるため、水分、SOx、NOx由来の酸が焼結機主排ガスブロワーのランナーに付着する場合がある。上盛り層に亀裂が発生し、亀裂が進展して上盛り層と下盛り層の境界部に到達した場合、上記酸が亀裂を通って境界部を腐食させる場合がある。境界部は、異なる金属が接触しているので腐食が進みやすい。そのため、下盛りにクロムを含有させ、耐腐食性を保つクロム含有量を10質量%以上とすることにより、境界部の腐食進行を抑制する。クロム含有量の上限値としては、30質量%程度のものを市中で入手することができる。 Since dust-containing exhaust gas such as sintering machine exhaust gas contains moisture, SOx, and NOx, acids derived from moisture, SOx, and NOx may adhere to the runner of the main exhaust gas blower of the sintering machine. When a crack occurs in the upper layer and progresses to reach the boundary between the upper layer and the underlayer, the acid may pass through the crack and corrode the boundary. Since different metals are in contact with each other at the boundary, corrosion tends to progress. Therefore, by adding chromium to the underlay and setting the content of chromium to maintain corrosion resistance to 10% by mass or more, the progress of corrosion at the boundary is suppressed. The upper limit of the chromium content is about 30% by mass, which is commercially available.

なお、上盛りにもクロムを含有させても良い。しかし、焼結機排ガスには粉塵が含まれているため、上盛りは摩耗しやすく、耐腐食性よりは耐摩耗性を優先させるべきと考えられる。故に、上盛りにクロムを含有させることによって上盛りの耐摩耗性が低下するよりは、クロムは少量含有もしくは無添加として上盛りの耐摩耗性を向上させたほうが良い。 It should be noted that chromium may be contained in the top layer as well. However, since the exhaust gas from the sintering machine contains dust, the top layer is easily worn, and it is thought that wear resistance should be prioritized over corrosion resistance. Therefore, it is better to improve the wear resistance of the top layer by adding a small amount of chromium or not adding it, rather than lowering the wear resistance of the top layer by adding chromium to the top layer.

上盛りと母材間の厚さ方向の硬度勾配αと、上盛りと下盛り間の厚さ方向の硬度勾配βはそれぞれ18以上320以下とする。なお、硬度勾配αは(3)式、硬度勾配βは(4)式により算出する。
α=(Hvu-Hvm)/[tu/2+tl] (3)
β=(Hvu-Hvl)/[(tu+tl)/2] (4)
ただし、tu:上盛りの層厚(mm)、tl:下盛りの層厚(mm)
The hardness gradient α in the thickness direction between the overlying layer and the base material and the hardness gradient β in the thickness direction between the overlying layer and the underlying layer are set to 18 or more and 320 or less, respectively. The hardness gradient α is calculated by the formula (3), and the hardness gradient β by the formula (4).
α=(Hvu−Hvm)/[tu/2+tl] (3)
β=(Hvu−Hvl)/[(tu+tl)/2] (4)
However, tu: upper layer thickness (mm), tl: lower layer thickness (mm)

上盛りに発生する亀裂の進展は、上盛りを拘束する下盛りや母材の熱膨張係数によって決定されると考えられる。しかし、熱膨張係数の計測は困難であるため、本発明では、熱膨張係数に概ね符合するマイクロビッカース硬さを代用することにより、材料間の熱膨張係数差を硬度勾配として評価した。なお、上記拘束度合は、肉盛厚さにも影響されることから、拘束度合の評価に硬度勾配を用いることは理に適っていると考えられる。 It is considered that the propagation of cracks generated in the top layer is determined by the coefficient of thermal expansion of the base material and the bottom layer that restrains the top layer. However, since it is difficult to measure the coefficient of thermal expansion, in the present invention, the difference in coefficient of thermal expansion between materials was evaluated as a hardness gradient by substituting the micro Vickers hardness, which approximately matches the coefficient of thermal expansion. Since the degree of constraint is also affected by the build-up thickness, it is considered logical to use the hardness gradient to evaluate the degree of constraint.

上述した母材、上盛り、及び下盛りの各マイクロビッカース硬さの平均値、並びに上盛り及び下盛りの各層厚によれば、硬度勾配α及びβの最大値は633となるが、硬度勾配が高すぎると、上盛りに対して下盛りや母材の熱膨張係数が過大となる。その結果、高温環境(例えば120℃程度)において焼結機主排ガスブロワーのランナーが熱膨張すると、下盛りや母材の膨張代に応じて、上盛りにおいて亀裂が進展しやすくなる。
本発明者らの知見によれば、硬度勾配α及びβを320以下とすることで、下盛りや母材の拘束による上盛りの亀裂進展を抑制することができる。
According to the average values of the micro Vickers hardnesses of the base material, the top layer, and the bottom layer, and the layer thicknesses of the top layer and the bottom layer, the maximum values of the hardness gradients α and β are 633, but the hardness gradient If is too high, the coefficient of thermal expansion of the underlay and the base material will be too large compared to the overlay. As a result, when the runner of the main exhaust gas blower of the sintering machine thermally expands in a high-temperature environment (for example, about 120° C.), cracks tend to develop in the upper layer according to the expansion allowance of the lower layer and the base material.
According to the findings of the present inventors, by setting the hardness gradients α and β to 320 or less, it is possible to suppress the growth of cracks in the underlying layer or the upper layer due to the constraint of the base material.

一方、上述した母材、上盛り、及び下盛りの各マイクロビッカース硬さの平均値、並びに上盛り及び下盛りの各層厚によれば、硬度勾配α及びβの最小値は16となるが、硬度勾配が低すぎる場合、例えば、上盛りと概ね同等な硬さを有する下盛りを配置することとなる。これは、熱膨張係数が上盛りと下盛りで概ね同等となり、下盛りの拘束による上盛りの亀裂進展が抑制できていることとなる。しかし、熱膨張の観点での亀裂進展は抑制されるものの、焼結機主排ガスブロワーの回転振動による亀裂進展も発生しうるため、上盛り層と下盛り層の境界部に亀裂が到達する懸念が残る。上盛り層と下盛り層の境界部に亀裂が到達した際、上盛りと同等の硬さ(靭性)を有する下盛りの場合、下盛り内部への亀裂進展を抑制することが難しくなる。 On the other hand, according to the average value of the micro Vickers hardness of the base material, the top layer, and the bottom layer, and the layer thicknesses of the top layer and the bottom layer, the minimum values of the hardness gradients α and β are 16, If the hardness gradient is too low, for example, an underlay having approximately the same hardness as the overlay will be placed. This means that the thermal expansion coefficients of the upper and lower layers are approximately the same, and crack propagation in the upper layer due to restraint of the lower layer can be suppressed. However, although crack growth is suppressed from the perspective of thermal expansion, crack growth may occur due to the rotational vibration of the main exhaust gas blower of the sintering machine, so there is concern that cracks may reach the boundary between the upper and lower layers. remains. When a crack reaches the boundary between the upper layer and the underlayer, it is difficult to suppress the crack from propagating into the underlayer if the underlayer has the same hardness (toughness) as the upper layer.

因って、上盛りに対して下盛りの硬さをある程度低下させること、即ち、硬度勾配に下限値を設けることによって、上盛り層を貫通した亀裂が下盛り内部に進展するのを抑制することができる。本発明者らの知見によれば、硬度勾配α及びβを18以上とすることで、下盛りや母材の拘束による上盛りの亀裂進展を抑制することができる。 Therefore, by lowering the hardness of the lower layer to some extent with respect to the upper layer, that is, by setting a lower limit for the hardness gradient, cracks penetrating the upper layer are suppressed from propagating into the inner layer. be able to. According to the findings of the present inventors, by setting the hardness gradients α and β to 18 or more, it is possible to suppress crack growth in the underlay or overlay due to the constraint of the base material.

図3に、ランナー10の翼板11の先端部に下盛り16及び上盛り17の溶接肉盛を施した例を示す。本例では、翼板11と同じ材質のプレート15(母材)を翼板11と同じ形状に加工し、上述した要件を満たす下盛り16及び上盛り17をプレート15に施した後、翼板11の先端部に固定している。
なお、翼板11(母材)に直接、下盛り16及び上盛り17を施してもよい。
FIG. 3 shows an example in which a bottom 16 and a top 17 are welded onto the tip of the vane plate 11 of the runner 10 . In this example, a plate 15 (base material) made of the same material as that of the blade 11 is processed into the same shape as the blade 11, and the plate 15 is provided with a lower lining 16 and a top lining 17 that satisfy the above-described requirements. It is fixed to the tip of 11.
The underlay 16 and the top build 17 may be applied directly to the vane plate 11 (base material).

母材、下盛り、及び上盛りのマイクロビッカース硬さの測定は以下のように行う。
母材は溶接する前の表面、上盛り及び下盛りはそれぞれ溶接した後の表面を対象とし、JIS Z2244:2009「ビッカース硬さ試験-試験方法」に従う方法で測定する。負荷荷重(試験力)は500gとし、各対象物について0.5mm間隔で15点測定し、その平均を算出して平均値とする。
The micro-Vickers hardness of the base material, underlay, and overlay is measured as follows.
The base material is the surface before welding, and the upper and lower layers are the surfaces after welding, respectively, and measured by a method according to JIS Z2244:2009 "Vickers hardness test - test method". The applied load (test force) is 500 g, 15 points are measured at intervals of 0.5 mm for each object, and the average is calculated to be the average value.

上盛り及び下盛りの肉厚測定は以下のように行う。
A.ランナー表面と同形状のプレート(母材)を作成し、肉盛施工後に当該プレートをランナー表面に取り付ける場合
プレート表面に下盛り、上盛りをそれぞれ溶接した後、ノギスやマイクロメーターで厚みを測り、3点の平均値を肉盛厚さとする。その後、当該プレートをランナー表面へ取り付ける。
The thickness of the upper and lower layers is measured as follows.
A. When a plate (base material) with the same shape as the runner surface is created and the plate is attached to the runner surface after overlaying. Let the average value of three points be the build-up thickness. The plate is then attached to the runner surface.

B.ランナー(母材)表面に直接溶接肉盛を施工する場合の肉厚測定方法は以下の2通りの方法がある。
(a)予め、溶接条件(電流、電圧、溶接速度等)と肉盛厚さとの関係を調べておき、肉盛厚さが既知である溶接条件でランナー表面に肉盛溶接をする方法
(b)超音波距離計で測定する方法
上盛り、下盛り、母材はそれぞれ異なる材質であるため、その境界は超音波で検知でき、肉盛厚さを算出することができる。
B. There are two methods for measuring the thickness of the runner (base metal) when directly welding overlay on the surface.
(a) A method in which the relationship between welding conditions (current, voltage, welding speed, etc.) and overlay thickness is investigated in advance, and overlay welding is performed on the runner surface under welding conditions in which the overlay thickness is known. ) Method of measuring with an ultrasonic distance meter Since the top, bottom, and base materials are made of different materials, their boundaries can be detected by ultrasonic waves, and the build-up thickness can be calculated.

ランナー表面に直接溶接肉盛を施工する場合、上記2方法が採用できるが、肉盛素材には炭化物等の超音波透過を阻害するものが含まれる場合があるため、(a)の方法が望ましい。 The above two methods can be adopted when welding overlay is applied directly to the runner surface. However, since the overlay material may contain substances such as carbides that hinder the transmission of ultrasonic waves, method (a) is preferable. .

一定期間使用後の焼結機主排ガスブロワーのランナーを補修する場合は、下盛りが露出している部位に、上述した要件を満足する上盛りの溶接肉盛を施せばよい。 When repairing the runner of the main exhaust gas blower of the sintering machine that has been used for a certain period of time, the portion where the underlay is exposed should be welded with a top weld surfacing that satisfies the above requirements.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment. Other possible embodiments and modifications are also included.

本発明の効果について検証するために実施した検証試験について説明する。
表1及び表2に試験結果の一覧を示す。試験条件は以下の通りである。
(a)試験片
試験片は、長さ×幅×厚さ=200mm×50mm×6mmの母材とした。試験片の厚さを6mmとしたのは、焼結機主排ガスブロワーのランナーにおいて最も摩耗や亀裂による損傷が多い部位の厚さが6mmであることによる。
試験片の表面に、表1及び表2に記載されている条件でアーク溶接により2層肉盛を施し、試験片Aを作製した。また、試験片Aと同じ条件で試験片Bを作製した。
検証試験には試験片Aを使用し、試験片Bは試験未実施とし評価の際の比較対象とした。
Verification tests conducted to verify the effects of the present invention will be described.
Tables 1 and 2 show a list of test results. The test conditions are as follows.
(a) Test piece A test piece was a base material of length x width x thickness = 200 mm x 50 mm x 6 mm. The reason why the thickness of the test piece was set to 6 mm is that the thickness of the portion of the runner of the main exhaust gas blower of the sintering machine that is most damaged due to wear and cracking is 6 mm.
A two-layer overlay was applied to the surface of the test piece by arc welding under the conditions described in Tables 1 and 2 to prepare a test piece A. Also, a test piece B was produced under the same conditions as the test piece A.
The test piece A was used for the verification test, and the test piece B was not subjected to the test and was used for comparison in the evaluation.

(b)引張試験
最大90kN(300MPa)となるように負荷する引張試験を試験片Aに対して実施した。
試験片の断面(厚さ方向×長さ方向約10mm)観察を行って、亀裂長さ上位10本の平均値である平均亀裂長さL(mm)と、顕微鏡視野(20倍)で確認できた亀裂密度N(本/mm)を、試験片Aと試験片Bについてそれぞれ測定し、L、Nと、L、Nとした。
各試験片について、平均亀裂長さLの評価値を(L-L)/L、亀裂密度Nの評価値を(N-N)/Nとして算出し、平均亀裂長さLの評価値と亀裂密度Nの評価値の両方が0.5以下であれば合格、それ以外であれば不合格とした。
(b) Tensile test A tensile test was performed on test piece A with a maximum load of 90 kN (300 MPa).
Observe the cross section of the test piece (thickness direction x length direction about 10 mm), and confirm the average crack length L (mm), which is the average value of the top 10 crack lengths, and the microscope field of view (20 times). The crack densities N (lines/mm 2 ) were measured for test piece A and test piece B, respectively, and were defined as LA, NA , LB , and NB .
For each test piece, the evaluation value of the average crack length L was calculated as (L A −L B )/L A and the evaluation value of the crack density N was calculated as (N A −N B )/N A , and the average crack length If both the evaluation value of L and the evaluation value of crack density N were 0.5 or less, it was judged to be acceptable, and otherwise, it was judged to be unsatisfactory.

(c)熱膨張試験
120℃(実機使用環境)に設定した炉に試験片Aを2時間入れた後、1時間自然放冷するプロセスを10回繰り返した。
熱膨張試験の評価は引張試験と同じ方法で行った。
(c) Thermal expansion test A process of placing the test piece A in a furnace set at 120°C (actual machine operating environment) for 2 hours and then naturally cooling for 1 hour was repeated 10 times.
The thermal expansion test was evaluated in the same manner as the tensile test.

(d)最終評価
引張試験と熱膨張試験の両方に合格した場合○(可)とし、それ以外の場合×(不可)とした。
(d) Final evaluation When both the tensile test and the thermal expansion test were passed, it was evaluated as ◯ (acceptable), and in other cases, it was evaluated as x (impossible).

Figure 0007292670000001
Figure 0007292670000001

Figure 0007292670000002
Figure 0007292670000002

表1より実施例は全て評価が○であった一方、表2より比較例は全て評価が×であったことがわかる。 It can be seen from Table 1 that all of the examples were evaluated as ◯, while from Table 2, all of the comparative examples were evaluated as x.

10:ランナー、11:翼板、12:主板、13:軸孔、14:焼結機排ガス、15:プレート(母材)、16:下盛り、17:上盛り 10: runner, 11: vane plate, 12: main plate, 13: shaft hole, 14: sintering machine exhaust gas, 15: plate (base material), 16: underlay, 17: overlay

Claims (2)

表面の少なくとも一部に、それぞれ1.5mm以上3.0mm以下の厚さの下盛り及び上盛りの2層の溶接肉盛を施した、含塵排ガスブロワーのランナーであって、
前記下盛りを施す母材のマイクロビッカース硬さの平均値Hvmが100~400、
前記上盛りのマイクロビッカース硬さの平均値Hvuが1000~1400、
前記下盛りのマイクロビッカース硬さの平均値Hvlが450~950、且つ前記下盛りのクロム含有量が10~30質量%とされ、
(1)式で定義される硬度勾配αと(2)式で定義される硬度勾配βがそれぞれ18以上320以下であることを特徴とする含塵排ガスブロワーのランナー。
α=(Hvu-Hvm)/[tu/2+tl] (1)
β=(Hvu-Hvl)/[(tu+tl)/2] (2)
ただし、tu:前記上盛りの層厚(mm)、tl:前記下盛りの層厚(mm)とし、
前記母材のマイクロビッカース硬さは溶接する前の表面、前記上盛りのマイクロビッカース硬さは上盛り溶接後の上盛り表面、前記下盛りのマイクロビッカース硬さは下盛り溶接後の下盛り表面、でそれぞれ測定し、かつ、それぞれ負荷荷重500g、0.5mm間隔で15点測定し、その平均で算出された平均値である。
A runner for a dust-containing exhaust gas blower, wherein at least a part of the surface is provided with two layers of weld overlay, a base layer and a top layer, each having a thickness of 1.5 mm or more and 3.0 mm or less,
The average value Hvm of the micro Vickers hardness of the base material to be subjected to the underlay is 100 to 400,
The average value Hvu of the micro Vickers hardness of the top layer is 1000 to 1400,
The average value Hvl of the micro Vickers hardness of the undercoat is 450 to 950, and the chromium content of the undercoat is 10 to 30% by mass,
A runner for a dust-containing exhaust gas blower, characterized in that the hardness gradient α defined by formula (1) and the hardness gradient β defined by formula (2) are 18 or more and 320 or less, respectively.
α=(Hvu−Hvm)/[tu/2+tl] (1)
β=(Hvu−Hvl)/[(tu+tl)/2] (2)
However, tu: the layer thickness of the top layer (mm), tl: the layer thickness of the bottom layer (mm) ,
The micro Vickers hardness of the base material is the surface before welding, the micro Vickers hardness of the top layer is the surface of the top layer after welding, and the micro Vickers hardness of the bottom layer is the surface of the bottom layer after welding. , and 500 g load, 15 measurements at intervals of 0.5 mm, and the average value calculated as the average.
一定期間使用後の請求項1記載の含塵排ガスブロワーのランナーの補修方法であって、
前記下盛りが露出している部位に、請求項1の要件を満足する上盛りの溶接肉盛を施すことを特徴とする含塵排ガスブロワーのランナーの補修方法。
A method for repairing a runner of a dust-containing exhaust gas blower according to claim 1 after use for a certain period of time,
A method for repairing a runner of a dust-containing exhaust gas blower, characterized in that an upper weld surfacing that satisfies the requirements of claim 1 is applied to the portion where the underlay is exposed.
JP2019092899A 2019-05-16 2019-05-16 Dust exhaust gas blower runner and its repair method Active JP7292670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019092899A JP7292670B2 (en) 2019-05-16 2019-05-16 Dust exhaust gas blower runner and its repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019092899A JP7292670B2 (en) 2019-05-16 2019-05-16 Dust exhaust gas blower runner and its repair method

Publications (2)

Publication Number Publication Date
JP2020186699A JP2020186699A (en) 2020-11-19
JP7292670B2 true JP7292670B2 (en) 2023-06-19

Family

ID=73221602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019092899A Active JP7292670B2 (en) 2019-05-16 2019-05-16 Dust exhaust gas blower runner and its repair method

Country Status (1)

Country Link
JP (1) JP7292670B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497309B1 (en) * 1970-06-13 1974-02-19
JPS56129798A (en) * 1980-03-18 1981-10-12 Kobe Steel Ltd Impeller for dust collecting blower excellent in wear-proof and corrosion resistance and manufacture thereof

Also Published As

Publication number Publication date
JP2020186699A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP4949092B2 (en) Method for repairing HPT sidewalls with sintered preforms
CN100404793C (en) Gas turbine bucket tip cap
EP2191930A2 (en) Repair Method For TBC Coated Turbine Components
US8414269B2 (en) Turbine component trailing edge and platform restoration by laser cladding
JPS595808A (en) External air seal ceramic-faced of gas turbine engine
CN112518092B (en) Composite protection process for fire grate segment based on plasma surfacing and laser cladding technology
EP3395494A1 (en) Treated turbine diaphragm and method for treating a turbine diaphragm
KR20070099675A (en) Alloy, protective layer for protecting a component against corrosion and oxidation at high temperatures and component
JP3759028B2 (en) High temperature parts repair method and repaired high temperature parts
JP7292670B2 (en) Dust exhaust gas blower runner and its repair method
EP2366813A2 (en) Layered Article
JP2014205912A (en) Erosion-resistant coating system and processing method therefor
US11319819B2 (en) Turbine blade with squealer tip and densified oxide dispersion strengthened layer
JP2007192218A (en) Method for repairing gas turbine engine component and gas turbine engine component
JP2001107833A (en) Hydraulic machine and its manufacturing device
JP2003082476A (en) Corrosion and wear resistant turbine member and manufacturing method
US2336366A (en) Furnace
JP4153335B2 (en) High Cr cast iron with excellent heat resistance, corrosion resistance and wear resistance
Cheruvu et al. In-service degradation of corrosion resistant coatings
DuPont et al. High-temperature corrosion behavior of alloy 600 and 622 weld claddings and coextruded coatings
JP2013217227A (en) Fuel gas compressor
RU2241123C1 (en) Method of strengthening surface of upper part of turbine blade airfoil portion
JP2005146409A5 (en)
JP4364246B2 (en) Dust collecting fan
JP4512564B2 (en) Special steel for sinter cake support stand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230530

R150 Certificate of patent or registration of utility model

Ref document number: 7292670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150