JP7290406B2 - Breathing gas supply device and its control method - Google Patents

Breathing gas supply device and its control method Download PDF

Info

Publication number
JP7290406B2
JP7290406B2 JP2018188026A JP2018188026A JP7290406B2 JP 7290406 B2 JP7290406 B2 JP 7290406B2 JP 2018188026 A JP2018188026 A JP 2018188026A JP 2018188026 A JP2018188026 A JP 2018188026A JP 7290406 B2 JP7290406 B2 JP 7290406B2
Authority
JP
Japan
Prior art keywords
pressure gradient
gradient threshold
threshold
pressure
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018188026A
Other languages
Japanese (ja)
Other versions
JP2020054676A (en
JP2020054676A5 (en
Inventor
理人 佐々木
直之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2018188026A priority Critical patent/JP7290406B2/en
Priority to DE102019213637.0A priority patent/DE102019213637A1/en
Priority to CN201910922376.0A priority patent/CN110975086B/en
Publication of JP2020054676A publication Critical patent/JP2020054676A/en
Publication of JP2020054676A5 publication Critical patent/JP2020054676A5/ja
Application granted granted Critical
Publication of JP7290406B2 publication Critical patent/JP7290406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • A61M16/0677Gas-saving devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M16/101Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • A61M2205/702General characteristics of the apparatus with testing or calibration facilities automatically during use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/63Motion, e.g. physical activity

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Emergency Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は使用者の呼吸サイクルに応じて、濃縮酸素などの呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置及びその制御方法に関する。 TECHNICAL FIELD The present invention relates to a breathing synchronized breathing gas supply device for supplying breathing gas such as concentrated oxygen according to a user's breathing cycle, and a control method thereof.

喘息、肺気腫、慢性気管支炎などの呼吸器系疾患の治療法として、患者に高濃度の酸素ガスを吸入させ、不足している酸素を補う酸素吸入療法が行われている。在宅酸素吸入療法は、医師の処方に従って、酸素濃縮装置や酸素ボンベなどの呼吸用気体供給装置を、患者である使用者が操作し、自宅で酸素吸入療法を行うものである。最近では、バッテリーで駆動する携帯式の酸素濃縮装置なども開発され、呼吸用気体供給装置の用途が拡大している。 Oxygen inhalation therapy, in which patients are made to inhale high-concentration oxygen gas to compensate for insufficient oxygen, is used as a treatment for respiratory diseases such as asthma, emphysema, and chronic bronchitis. In home oxygen inhalation therapy, a user, who is a patient, operates a respiratory gas supply device such as an oxygen concentrator or an oxygen cylinder according to a doctor's prescription to perform oxygen inhalation therapy at home. Recently, portable oxygen concentrators driven by batteries have been developed, and the applications of respiratory gas supply devices are expanding.

携帯型の呼吸用気体供給装置では、装置の小型軽量化と長時間の稼働を可能にするため、デマンドレギュレータ機能を備えた呼吸同調式のものが多い(特許文献1、2)。デマンドレギュレータ機能は、圧力センサなどで使用者の呼吸位相を検知し、呼吸サイクルに同調して吸気相でのみ酸素ガスなどの呼吸用気体を供給し、呼気相では供給を停止する。呼吸用気体を連続して供給するのではなく、使用者の呼吸サイクルに応じてパルス的に供給することで、呼吸用気体の節減、消費電力の削減が図れる。 Many of the portable respiratory gas supply devices are breath-synchronized with a demand regulator function in order to reduce the size and weight of the device and enable long-time operation (Patent Documents 1 and 2). The demand regulator function detects the respiratory phase of the user with a pressure sensor or the like, supplies respiratory gas such as oxygen gas only in the inspiratory phase in synchronization with the respiratory cycle, and stops the supply in the expiratory phase. By supplying the breathing gas in pulses according to the breathing cycle of the user instead of supplying it continuously, it is possible to save the breathing gas and reduce power consumption.

デマンドレギュレータ機能で呼吸位相を検知する手段は、カニューラに気体を供給する気体供給経路に圧力センサを設け、呼吸位相に伴う圧力変化を検出する方法などが考案されており、圧力センサで検出した圧力値が、予め定めた圧力値閾値より低下した場合、又は呼気相から吸気相側に向かう圧力値の時間変化率(圧力勾配)が、予め定めた圧力勾配閾値を超えた場合に、吸気相が開始したと判断する方法がある。 As a means for detecting the respiratory phase with the demand regulator function, a method has been devised in which a pressure sensor is installed in the gas supply path that supplies gas to the cannula and the pressure change associated with the respiratory phase is detected. When the value falls below a predetermined pressure value threshold, or when the time rate of change (pressure gradient) of the pressure value from the expiratory phase to the inspiratory phase exceeds a predetermined pressure gradient threshold, the inspiratory phase is There is a way to determine when it has started.

呼吸位相の検知に用いられる圧力センサは検出感度が極めて高いため、温度などの使用環境の影響や、長期間の使用による経時変化の影響により、圧力センサの基準点がシフトするオフセットの問題がある。圧力値閾値により吸気相開始を検知しようとすると、オフセットによる測定値のシフトにより、吸気相開始の検知エラー又は吸気相開始の検知タイミングの遅れなどが生じる。このため、オフセットの影響を受け難い、圧力勾配閾値で吸気相開始を検知する方法が好ましいとされている。 Since the pressure sensor used to detect the respiratory phase has extremely high detection sensitivity, there is a problem of offset where the reference point of the pressure sensor shifts due to the effects of the usage environment such as temperature and the effects of changes over time due to long-term use. . If an attempt is made to detect the start of the inspiratory phase using the pressure value threshold, a shift in the measured value due to the offset causes an error in detecting the start of the inspiratory phase or a delay in the detection timing of the start of the inspiratory phase. For this reason, a method of detecting the start of the inspiratory phase using a pressure gradient threshold, which is less susceptible to the offset, is considered preferable.

特許第2656530号公報Japanese Patent No. 2656530 特開2004-105230号公報Japanese Patent Application Laid-Open No. 2004-105230

人の呼吸パターンは、安静、労作、睡眠といった活動状況によって大きく異なる。このため、圧力勾配閾値で吸気相開始を判断する方法を採用しても、使用者の活動状況が変わることにより吸気相開始の検知エラーが多発する場合があり、デマンドレギュレータ機能を使用する際の問題の一つとなっている。 A person's breathing pattern varies greatly depending on activity conditions such as rest, exertion, and sleep. For this reason, even if the method of judging the start of the inspiratory phase by the pressure gradient threshold is adopted, detection errors of the inspiratory phase start may occur frequently due to changes in the user's activity status, and when using the demand regulator function is one of the problems.

本発明はこのような事情に鑑みてなされたものであり、使用者の呼吸位相を正確に検知し、呼吸サイクルに同調して吸入用気体を供給するデマンドレギュレータ機能を備えた、呼吸用気体供給装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances. The purpose is to provide an apparatus.

本発明は以下の(1)~(18)の態様を含む。
(1)本発明の呼吸用気体供給装置は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、気体流路の圧力を測定する圧力センサと、設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する制御部とを備え、前記制御部は、前記圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなった点を吸気検知点と判断するとともに前記吸気検知点から一定時間前記呼吸用気体を供給し、かつ前記吸気検知点を所定の回数検出するのに要した時間に基づいて、前記複数の圧力勾配閾値の中のいずれかに前記1つの圧力勾配閾値を切り替えることを特徴とする。
(2)(1)において、前記複数の圧力勾配閾値は、少なくとも2つの圧力勾配閾値を含み、前記制御部は、前記吸気検知点を所定回数検出するのに要した時間が第1の時間より長い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが小さい圧力勾配閾値に切り替え、前記制御部は、前記吸気検知点を所定回数検出するのに要した時間が第2の時間より短い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが大きい圧力勾配閾値に切り替えることを特徴とする。
(3)(2)において、圧力勾配閾値として、少なくとも第1圧力勾配閾値と、第1圧力勾配閾値よりも傾きの大きさが小さい第2圧力勾配閾値を含み、前記第1圧力勾配閾値は-2.4Pa/20ms以上、-1.0Pa/20ms以下であり、前記第2圧力勾配閾値は-0.8Pa/20ms以上、-0.1Pa/20ms以下であることを特徴とする。
(4)(2)から(4)のいずれかにおいて、前記第1の時間は、60秒あたり1回から8回の吸気検知点を検出するのに要する時間に相当する時間であることを特徴とする。
(5)(2)又は(3)において、前記第2の時間は、60秒あたり48回から60回の吸気検知点を検出するのに要する時間に相当する時間であることを特徴とする。
(6)(2)から(5)のいずれかにおいて、最も傾きの大きさが小さい圧力勾配閾値選択しているとき、前記吸気検知点を所定回数検出するのに要した時間が第3の時間より長い場合前記制御部は、前記呼吸用気体の供給を一定時間の連続供給又は一定周期のパルス供給に切り替えることを特徴とする。
(7)(2)から(6)のいずれかにおいて、前記第3の時間は、60秒あたり1回から10回の吸気検知点を検出するのに要する時間に相当する時間であることを特徴とする。
(8)本発明の呼吸用気体供給装置は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、気体流路の圧力を測定する圧力センサと、設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する制御部とを備え、前記制御部は、前記圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなった点を吸気検知点と判断するとともに前記吸気検知点から一定時間前記呼吸用気体を供給し、かつ直近複数回分の前記吸気検知点の間の時間の平均値に基づいて、前記複数の圧力勾配閾値の中のいずれかに前記1つの圧力勾配閾値を切り替えることを特徴とする。
(9)(8)において、前記複数の圧力勾配閾値は、少なくとも2つの圧力勾配閾値を含み、前記制御部は、前記直近複数回分の前記吸気検知点の間の時間の平均値が第1の時間よりも長い場合、圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが小さい圧力勾配閾値に切り替え、前記制御部は、前記直近複数回分の前記吸気検知点の間の時間の平均値が第2の時間よりも短い場合、圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが大きい圧力勾配閾値に切り替えることを特徴とする。
(10)(9)において、前記第1の時間は、7.5秒よりも長いことを特徴とする。
(11)(9)において前記第2の時間は、1.2秒よりも短いことを特徴とする。
(12)(1)から(11)のいずれかにおいて、前記呼吸用気体は濃縮酸素であり、前記呼吸用気体供給装置は酸素濃縮装置であることを特徴とする。
(13)本発明の制御方法は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する圧力勾配閾値選択ステップと、前記呼吸サイクルを検知する圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、前記圧力勾配閾値選択ステップで選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなる吸気検知点を検出する吸気検知点検出ステップと、前記吸気検知点を所定回数検出するのに要した時間に基づいて、前記複数の圧力勾配閾値の中のいずれかに前記1つの圧力勾配閾値を切り替える圧力勾配閾値切り替えステップとを有することを特徴とする。
(14)(13)において、前記吸気検知点検出ステップにおいて吸気検知点を検出すると、前記呼吸用気体を一定時間パルス供給するステップをさらに有することを特徴とする。
(15)(13)又は(14)において、前記圧力勾配閾値切り替えステップは、前記吸気検知点を所定回数検出するのに要した時間が第1の時間より長い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが小さい圧力勾配閾値に切り替え、前記吸気検知点を所定回数検出するのに要した時間が第2の時間より短い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが大きい圧力勾配閾値に切り替えることを特徴とする。
(16)本発明の制御方法は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する圧力勾配閾値選択ステップと、前記呼吸サイクルを検知する圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、前記圧力勾配閾値選択ステップで選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなる吸気検知点を検出する吸気検知点検出ステップと、直近複数回分の前記吸気検知点の間の時間の平均値に基づいて、前記複数の圧力勾配閾値の中のいずれかに前記1つの圧力勾配閾値を切り替える圧力勾配閾値切り替えステップとを有することを特徴とする。
(17)(16)において、前記吸気検知点検出ステップにおいて吸気検知点を検出すると、前記呼吸用気体を一定時間パルス供給するステップをさらに有することを特徴とする。
(18)(16)又は(17)において、前記圧力勾配閾値切り替えステップは、前記直近複数回分の前記吸気検知点の間の時間の平均値が第1の時間よりも長い場合、前記1つの圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが小さい圧力勾配閾値に切り替え、前記直近複数回分の前記吸気検知点の間の時間の平均値が第2の時間よりも短い場合、前記1つの圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが大きい圧力勾配閾値に切り替えることを特徴とする。
The present invention includes the following aspects (1) to (18).
(1) The respiratory gas supply apparatus of the present invention is a respiratory synchronized type respiratory gas supply apparatus that supplies respiratory gas according to the user's breathing cycle, and the pressure in the gas flow path is measured. A sensor, and a control unit that selects one pressure gradient threshold from among a plurality of set pressure gradient thresholds, the control unit calculating from the signal of the pressure sensor , from the expiratory phase to the inspiratory phase side A point at which the magnitude of the gradient of the pressure gradient is larger than the magnitude of the gradient of the selected one pressure gradient threshold is determined as an inspiratory detection point, and the breathing gas is supplied from the inhalation detection point for a certain period of time. and switching the one pressure gradient threshold to one of the plurality of pressure gradient thresholds based on the time required to detect the intake detection point a predetermined number of times.
(2) In (1), the plurality of pressure gradient thresholds includes at least two pressure gradient thresholds, and the controller determines that the time required to detect the intake detection point a predetermined number of times is greater than the first time. If it is longer, the pressure gradient threshold is switched to a pressure gradient threshold with a smaller gradient than the selected pressure gradient threshold, and the control unit determines the time required to detect the intake detection point a predetermined number of times. If it is shorter than the time, the pressure gradient threshold is switched to a pressure gradient threshold having a greater slope than the selected pressure gradient threshold.
(3) In (2), the pressure gradient threshold includes at least a first pressure gradient threshold and a second pressure gradient threshold having a smaller slope than the first pressure gradient threshold, and the first pressure gradient threshold is − 2.4 Pa/20 ms or more and -1.0 Pa/20 ms or less, and the second pressure gradient threshold is -0.8 Pa/20 ms or more and -0.1 Pa/20 ms or less.
(4) In any one of (2) to (4) , the first time is a time corresponding to the time required to detect the intake detection point 1 to 8 times per 60 seconds. and
(5) In (2) or (3), the second time is a time corresponding to the time required to detect the intake detection point 48 times to 60 times in 60 seconds.
(6) In any one of (2) to (5), when the pressure gradient threshold with the smallest slope is selected , the time required to detect the intake detection point a predetermined number of times is the third If it is longer than the time, the control unit switches the supply of the respiratory gas to continuous supply for a certain period of time or pulse supply for a certain period.
(7) In any one of (2) to (6), the third time is a time corresponding to the time required to detect the intake detection point 1 to 10 times per 60 seconds. and
(8) The respiratory gas supply apparatus of the present invention is a respiratory synchronized type respiratory gas supply apparatus that supplies respiratory gas according to the user's breathing cycle, and the pressure in the gas flow path is measured. A sensor, and a control unit that selects one pressure gradient threshold from among a plurality of set pressure gradient thresholds, the control unit calculating from the signal of the pressure sensor , from the expiratory phase to the inspiratory phase side A point at which the magnitude of the gradient of the pressure gradient is larger than the magnitude of the gradient of the selected one pressure gradient threshold is determined as an inspiratory detection point, and the breathing gas is supplied from the inhalation detection point for a certain period of time. and switching the one pressure gradient threshold to one of the plurality of pressure gradient thresholds based on an average value of times between the intake detection points for the most recent multiple times.
(9) In (8), the plurality of pressure gradient thresholds include at least two pressure gradient thresholds, and the control unit determines that the average value of the times between the intake detection points for the most recent multiple times is the first If it is longer than the time, the pressure gradient threshold is switched to a pressure gradient threshold with a smaller gradient than the selected pressure gradient threshold, and the control unit determines the time between the inspiratory detection points for the most recent multiple times. If the average value is shorter than the second time, the pressure gradient threshold is switched to a pressure gradient threshold having a greater slope than the selected pressure gradient threshold.
(10) In (9), the first time is longer than 7.5 seconds.
(11) In (9), the second time is shorter than 1.2 seconds.
(12) In any one of (1) to (11), the breathing gas is concentrated oxygen, and the breathing gas supply device is an oxygen concentrator.
(13) A control method of the present invention is a method of controlling a respiratory-coordinated respiratory gas supply device that supplies respiratory gas in accordance with a user's breathing cycle, wherein a plurality of set pressure gradient thresholds are controlled. A pressure gradient threshold selection step of selecting one pressure gradient threshold from the an intake detection point detection step of detecting an intake detection point where the magnitude of the gradient of the pressure gradient threshold selected in the pressure gradient threshold selection step is greater than the magnitude of the gradient, and the time required to detect the intake detection point a predetermined number of times and a pressure gradient threshold switching step of switching the one pressure gradient threshold to one of the plurality of pressure gradient thresholds based on the threshold.
(14) In (13), the step further comprises a step of supplying a pulse of the respiratory gas for a predetermined period of time when the inhalation detection point is detected in the inhalation detection point detection step.
(15) In (13) or (14), the pressure gradient threshold switching step selects the pressure gradient threshold if the time required to detect the intake detection point a predetermined number of times is longer than a first time. If the time required to detect the intake detection point a predetermined number of times is shorter than the second time, the pressure gradient threshold is switched to the selected pressure gradient threshold. It is characterized by switching to a pressure gradient threshold with a larger gradient than the threshold.
(16) A control method of the present invention is a control method for a respiratory-coordinated respiratory gas supply device that supplies respiratory gas in accordance with a user's breathing cycle, wherein a plurality of set pressure gradient thresholds are controlled. A pressure gradient threshold selection step of selecting one pressure gradient threshold from the An intake detection point detection step of detecting an intake detection point at which the magnitude of the gradient of the pressure gradient threshold selected in the pressure gradient threshold selection step is larger than the average value of the times between the intake detection points for the most recent multiple times. and a pressure gradient threshold switching step of switching the one pressure gradient threshold to one of the plurality of pressure gradient thresholds based on.
(17) In (16), the step further comprises a step of supplying a pulse of the respiratory gas for a predetermined time when the inhalation detection point is detected in the inhalation detection point detection step.
(18) In (16) or (17), the pressure gradient threshold switching step changes the one pressure when the average value of the times between the intake detection points for the most recent multiple times is longer than a first time. If the gradient threshold is switched to a pressure gradient threshold with a smaller gradient than the selected pressure gradient threshold, and the average value of the time between the inspiration detection points for the most recent multiple times is shorter than a second time, The one pressure gradient threshold is switched to a pressure gradient threshold having a larger gradient than the selected pressure gradient threshold.

本発明によれば、呼吸位相を正確に検知し、呼吸サイクルに同調して吸入用気体を供給するデマンドレギュレータ機能を備えた、呼吸用気体供給装置を提供することができる。 According to the present invention, it is possible to provide a respiratory gas supply apparatus having a demand regulator function that accurately detects a respiratory phase and supplies an inhalation gas in synchronization with a respiratory cycle.

呼吸用気体供給装置のデマンドレギュレータ機能の構成を示す図である。FIG. 4 is a diagram showing the configuration of the demand regulator function of the respiratory gas supply device; 圧力勾配閾値切り替えのフロー図である。FIG. 10 is a flow diagram of pressure gradient threshold switching; マニュアル切り替えを含む圧力勾配閾値切り替えのフロー図である。FIG. 10 is a flow diagram of pressure gradient threshold switching including manual switching. 呼吸用気体の自動連続供給への切り替えを含むフロー図である。FIG. 4 is a flow diagram including switching to automatic continuous delivery of breathing gas. 呼吸用気体の自動パルス供給への切り替えを含むフロー図である。FIG. 4 is a flow diagram including switching to automatic pulsing of breathing gas. 覚醒時の呼吸パターンと睡眠時の呼吸パターンを模式的に示す図である。FIG. 4 is a diagram schematically showing a breathing pattern during wakefulness and a breathing pattern during sleep;

以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.

図6は人における覚醒時の呼吸パターンと、睡眠時の呼吸パターンとを模式的に示したものである。通常、睡眠時の呼吸は浅くなるため、睡眠時の呼吸パターン(図6(b))では、覚醒時の呼吸パターン(図6(a))に比べて圧力振幅が小さく、呼気相から吸気相側に向かう圧力勾配も小さい。なお、呼吸パターンの呼気相から吸気相側に向かう圧力勾配は常にゼロ以下である。本発明において圧力勾配の大小とは、圧力勾配の絶対値についての大小を意味する。 FIG. 6 schematically shows a breathing pattern during wakefulness and a breathing pattern during sleep of a person. Normally, breathing during sleep is shallow, so in the breathing pattern during sleep (Fig. 6(b)), the pressure amplitude is smaller than in the breathing pattern during wakefulness (Fig. 6(a)). The sideward pressure gradient is also small. Note that the pressure gradient from the expiratory phase to the inspiratory phase of the breathing pattern is always less than zero. In the present invention, the magnitude of the pressure gradient means the magnitude of the absolute value of the pressure gradient.

例えば、図6の呼吸パターンについて、圧力勾配閾値(以下、「閾値A」ということもある。)を-2.0Pa/20msと設定し、圧力センサで測定された圧力勾配の傾きの大きさが、閾値Aの傾きの大きさより大きくなる点を吸気検知点Gとし、この吸気検知点Gを吸気相の開始と判断する。覚醒時の呼吸パターンである図6(a)では、呼気相から吸気相に移った直後に圧力勾配は-4.0Pa/20msの最大勾配となり閾値Aの傾きの大きさより大きくなるので、吸気相の開始を吸気検知点Gとして検知できる。 For example, for the breathing pattern in FIG. 6, the pressure gradient threshold (hereinafter sometimes referred to as "threshold A") is set to -2.0 Pa/20 ms, and the magnitude of the gradient of the pressure gradient measured by the pressure sensor is , and the slope of the threshold value A is set as an intake detection point G, and this intake detection point G is determined as the start of the intake phase. In FIG. 6(a), which is the breathing pattern during wakefulness, the pressure gradient becomes the maximum gradient of −4.0 Pa/20 ms immediately after the change from the expiratory phase to the inspiratory phase, which is larger than the slope of the threshold A. The start of the phase can be detected as an inspiration detection point G.

一方、睡眠時の呼吸パターンである図6(b)では、覚醒時に比べ呼吸が浅く緩やかなため圧力勾配の傾きの大きさは最大でも-1.0Pa/20msと閾値Aの傾きの大きさより大きくなることが少ない。このため、吸気検知点Gが検出されず、吸気相開始の検知エラーとなりやすい。このとき、例えば閾値Aを-0.2Pa/20msに設定しなおせば、感度が上がり最大勾配が-1.0Pa/20msであっても吸気検知点Gを検出できる。しかし、睡眠時に合わせた閾値Aを覚醒時に設定すると、感度が高すぎて、呼吸用気体供給装置の携帯中に生じる振動や僅かな体動などによって生じる圧力センサのノイズまで圧力変化として検知し、吸気検知点Gの誤検知が多発する。 On the other hand, in FIG. 6(b), which is the breathing pattern during sleep, since breathing is shallower and gentler than during wakefulness, the maximum slope of the pressure gradient is -1.0 Pa/20 ms, which is greater than the slope of the threshold A. less likely to grow. For this reason, the intake detection point G is not detected, and an intake phase start detection error is likely to occur. At this time, if the threshold value A is reset to -0.2 Pa/20 ms, for example, the sensitivity increases and the intake detection point G can be detected even if the maximum gradient is -1.0 Pa/20 ms. However, if the threshold value A is set during wakefulness to match sleep, the sensitivity is too high, and even the noise of the pressure sensor caused by vibrations and slight body movements that occur while carrying the respiratory gas supply device is detected as a pressure change. False detection of the intake detection point G occurs frequently.

実施形態の呼吸用気体供給装置におけるデマンドレギュレータ機能は、覚醒時に適した圧力勾配閾値(閾値A、閾値A、閾値A)と、睡眠時に適した圧力勾配閾値(閾値A)が予め設定されており、呼吸用気体供給装置の制御部が、吸気検知点Gを所定の回数検出するのに要した時間を基準に、使用者が覚醒中であるか睡眠中であるか、および吸気相の開始を適切に検知できているかを判断し、閾値A、閾値A、閾値A、閾値Aを切り替える機能を有している。 The demand regulator function of the respiratory gas supply apparatus of the embodiment is such that the pressure gradient thresholds (threshold A 1 , threshold A 2 , threshold A 3 ) suitable for wakefulness and the pressure gradient threshold (threshold A 4 ) suitable for sleep are set in advance. Based on the time required for the control unit of the respiratory gas supply device to detect the inspiratory detection point G a predetermined number of times, whether the user is awake or sleeping, and It has a function of judging whether the start of the phase is properly detected and switching among threshold A 1 , threshold A 2 , threshold A 3 , and threshold A 4 .

図1は呼吸用気体供給装置のデマンドレギュレータ機能の主な構成を示す図である。図中、実線は気体の流路を示し、点線は電気的な信号の経路を示す。呼吸用気体供給源1は、例えば酸素濃縮器、酸素ボンベなどであり、吸入用気体を所定の圧力と濃度で供給する。コントロールバルブ6は電磁バルブなどであり、制御部5からの信号により開閉される。呼吸用気体供給源1から供給された気体は、制御部5に制御されたコントロールバルブ6の開閉により、カニューラ2から使用者に供給される。コントロールバルブ6とカニューラ2をつなぐ気体供給経路3には、圧力センサ4が設けられている。 FIG. 1 is a diagram showing the main configuration of the demand regulator function of the respiratory gas supply device. In the figure, solid lines indicate gas flow paths, and dotted lines indicate electrical signal paths. The breathing gas supply source 1 is, for example, an oxygen concentrator, an oxygen cylinder, or the like, and supplies inhalation gas at a predetermined pressure and concentration. The control valve 6 is an electromagnetic valve or the like, and is opened and closed by a signal from the control section 5 . The gas supplied from the respiratory gas supply source 1 is supplied to the user from the cannula 2 by opening and closing the control valve 6 controlled by the controller 5 . A pressure sensor 4 is provided in the gas supply path 3 connecting the control valve 6 and the cannula 2 .

デマンドレギュレータ機能では、圧力センサ4が使用者の呼吸によって変動する、気体供給経路3の圧力を常時測定し制御部5に送信する。制御部5は圧力センサ4によって得られたリアルタイムの呼吸パターンから吸気検知点Gを検出し、吸気検知点Gを吸気相の開始と判断してコントロールバルブ6を開き、カニューラ2へ一定流量の呼吸用気体を一定時間だけ供給した後コントロールバルブ6を閉じる。また一般的に、吸気の前半60%以降に投与された酸素は死腔に留まり肺胞でのガス交換に関与しないこと、患者の呼吸数は一般的に8~48bpm程度であることを踏まえると、供給酸素量のほぼ全てを確実に肺胞での酸素交換に充てるためには、吸気検知点Gが検知されてから約0.24~1.2秒以内に酸素供給が完了していることが望ましい。 In the demand regulator function, the pressure sensor 4 constantly measures the pressure of the gas supply path 3, which fluctuates according to the user's breathing, and transmits the pressure to the controller 5. FIG. The control unit 5 detects the inspiratory detection point G from the real-time respiratory pattern obtained by the pressure sensor 4, judges that the inspiratory detection point G is the start of the inspiratory phase, opens the control valve 6, and allows the cannula 2 to breathe at a constant flow rate. After supplying the gas for a certain period of time, the control valve 6 is closed. In addition, in general, oxygen administered after the first 60% of inspiration stays in the dead space and does not participate in gas exchange in the alveoli. In order to ensure that almost all of the supplied oxygen is used for oxygen exchange in the alveoli, oxygen supply must be completed within about 0.24 to 1.2 seconds after the inspiratory detection point G is detected. is desirable.

また、制御部5はコントロールバルブ6の制御と並行して、吸気検知点Gを予め設定された回数を検知するのに要した時間から、吸気検知点Gの検出に使用している閾値Aの切り替えが必要か判断する。より具体的には、所定回数の検出に要した吸気検知点Gの時間を基準に、覚醒時に適した圧力勾配閾値(閾値A、閾値A、閾値A)又は睡眠時に適した圧力勾配閾値(閾値A)のいずれかを選択して閾値Aを切り替える。 In parallel with the control of the control valve 6, the control unit 5 determines the threshold value A used for detecting the intake detection point G from the time required to detect the intake detection point G a preset number of times. Decide if you need to switch. More specifically, the pressure gradient threshold (threshold A 1 , threshold A 2 , threshold A 3 ) suitable for wakefulness or the pressure gradient suitable for sleep is determined based on the time required for detection of the predetermined number of times of the inspiratory detection point G. Threshold A is switched by selecting one of the thresholds (threshold A 4 ).

制御部5が閾値Aの切り替えの要否を判断し、閾値Aを閾値A、閾値A、閾値A又は閾値Aに切り替えるフローを図2に示す。 FIG. 2 shows a flow in which the control unit 5 determines whether or not the threshold A needs to be switched, and switches the threshold A to the threshold A 1 , the threshold A 2 , the threshold A 3 or the threshold A 4 .

装置が起動されデマンドレギュレータ機能が作動すると、制御部5は閾値Aを覚醒時に
適した圧力勾配閾値のうち最も低い感度である圧力勾配閾値(閾値A)に設定する(ステップS1)。閾値A、閾値A、閾値Aについては、覚醒時における複数のHOT患者の呼吸パターンを測定し検討した結果、-4.0Pa/20ms~-1.0Pa/20msの範囲に設定することができ、-2.4Pa/20ms~-1.0Pa/20msの範囲とすることが好ましく、閾値Aは-4.0Pa/20ms程度、閾値Aは-2.0Pa/20ms程度、閾値Aは-1.0Pa/20ms程度が更に好ましいとわかった。また、閾値Aについて睡眠時における複数のHOT患者の呼吸パターンを測定し検討した結果、実際の呼吸回数に対する吸気検知点Gの回数の比率(検知率)を75%以上に保つためには、閾値Aは-0.8Pa/20ms~-0.1Pa/20msであることが好ましく、-0.2Pa/20ms程度が更に好ましいとわかった。閾値A、閾値A、閾値Aが-2.4Pa/20msより大きい場合、あるいは閾値Aが-0.8Pa/20msより大きい場合、それぞれ覚醒時、睡眠時の患者呼吸パターンに対して感度が不足するため実際の呼吸回数に対する吸気検知点Gの検知率が75%未満となり、使用者の血中酸素飽和度(SpO2)を一般的な適正値とされる90%以上に保つために十分な呼吸用気体が供給できない。図2~5は、4段階の圧力勾配閾値を有する場合の例であり、閾値Aが-4.0Pa/20ms、閾値Aが-2.0Pa/20ms、閾値Aが-1.0Pa/20ms、閾値Aが-0.2Pa/20msの例で示している。
When the device is activated and the demand regulator function is activated, the control unit 5 sets the threshold A to the pressure gradient threshold (threshold A 1 ) which is the lowest sensitivity among the pressure gradient thresholds suitable for wakefulness (step S1). Threshold A 1 , A 2 , and A 3 should be set in the range of -4.0 Pa/20 ms to -1.0 Pa/20 ms as a result of measuring and examining the breathing patterns of multiple HOT patients during wakefulness. It is preferable to be in the range of -2.4 Pa / 20 ms to -1.0 Pa / 20 ms, threshold A 1 is about -4.0 Pa / 20 ms, threshold A 2 is about -2.0 Pa / 20 ms, threshold A 3 was found to be more preferably about -1.0 Pa/20 ms. In addition, as a result of measuring and examining the breathing patterns of a plurality of HOT patients during sleep with respect to the threshold A4 , in order to keep the ratio (detection rate) of the number of intake detection points G to the actual number of breaths at 75% or more, It was found that the threshold A4 is preferably between -0.8 Pa/20 ms and -0.1 Pa/20 ms, and more preferably about -0.2 Pa/20 ms. When threshold A 1 , threshold A 2 , and threshold A 3 are greater than −2.4 Pa/20 ms, or when threshold A 4 is greater than −0.8 Pa/20 ms, respectively, In order to keep the user's blood oxygen saturation (SpO2) at 90% or more, which is considered to be a general appropriate value, the detection rate of the inhalation detection point G is less than 75% due to the lack of sensitivity. Insufficient supply of breathing gas. 2 to 5 are examples in which there are four levels of pressure gradient thresholds, where threshold A 1 is -4.0 Pa / 20 ms, threshold A 2 is -2.0 Pa / 20 ms, and threshold A 3 is -1.0 Pa. /20 ms, and the threshold A4 is -0.2 Pa/20 ms.

また、閾値A、閾値A、閾値Aが-1.0Pa/20msより小さい場合、又は閾値Aが-0.1Pa/20msより小さい場合は、実際の呼吸回数に対する吸気検知点Gの検知率が130%以上となる。圧力センサ4のノイズを誤って吸気検知点Gと検知する割合が大きくなり、吸気相の開始と同調した呼吸用気体の供給がされないため、使用者は不快を感じ、また呼吸用気体の消費も多くなる。 In addition, when the threshold A 1 , threshold A 2 , and threshold A 3 are smaller than −1.0 Pa/20 ms, or when the threshold A 4 is smaller than −0.1 Pa/20 ms, the intake detection point G with respect to the actual number of breaths The detection rate becomes 130% or more. The ratio of erroneous detection of the inspiratory detection point G due to the noise of the pressure sensor 4 increases, and respiratory gas is not supplied in synchronism with the start of the inspiratory phase, so that the user feels uncomfortable and consumes respiratory gas. become more.

制御部5はステップS1で設定された閾値Aと、圧力センサ4の信号から求めた圧力勾配から、吸気検知点Gを検出し吸気相の開始と同調した呼吸用気体のパルス供給を開始する。 The control unit 5 detects the inspiratory detection point G from the threshold value A1 set in step S1 and the pressure gradient obtained from the signal of the pressure sensor 4, and starts pulse supply of respiratory gas synchronized with the start of the inspiratory phase. .

次に、制御部5は所定の回数分の吸気検知点Gのタイミングを記憶し、最新の吸気検知点Gのタイミングと、そこから過去所定の回数分遡った吸気検知点Gの検出タイミングとの時間差により、閾値Aから閾値A、閾値Aから閾値A、閾値Aから閾値Aへの切り替えの要否を判断する(ステップS2、S5、S8)。閾値Aから閾値A、閾値Aから閾値A、閾値Aから閾値Aに切り替える判断は、測定時の最新の吸気検知点Gからnup回分遡った吸気検知点のタイミングとの差分が所定時間tup秒間を超えるか否かを基準とする。ヒトの呼吸数は一般的に8~48bpm程度であるため、例えば、最新の吸気検知点Gから4回遡った吸気検知点との検知タイミングの差分が30秒間(8bpm相当)を超えた場合には((tup,nup)=(30,4))、現在の閾値A(閾値A、閾値A、又は閾値A)では、吸気検知点Gを正確に検知できていない可能性が高い。そこで、制御部5は、吸気検知点4回に対するtupが30秒以上のとき閾値Aを一段階感度の高い閾値A、閾値A、又は閾値Aへの切り替えを行う(ステップS3,S6,S9)。 Next, the control unit 5 stores the timing of the intake detection point G for a predetermined number of times, and stores the timing of the latest intake detection point G and the detection timing of the intake detection point G that is traced back a predetermined number of times. Based on the time difference, it is determined whether or not it is necessary to switch from the threshold A1 to the threshold A2 , from the threshold A2 to the threshold A3 , and from the threshold A3 to the threshold A4 (steps S2, S5, S8). The determination to switch from the threshold A1 to the threshold A2 , from the threshold A2 to the threshold A3 , and from the threshold A3 to the threshold A4 depends on the timing of the inhalation detection point that is nup times before the latest inhalation detection point G at the time of measurement. The criterion is whether or not the difference exceeds a predetermined time t_up seconds. Since the respiratory rate of humans is generally about 8 to 48 bpm, for example, when the difference in detection timing from the latest inhalation detection point G to the inhalation detection point going back four times exceeds 30 seconds (equivalent to 8 bpm) ((t up , n up )=(30, 4)), the current threshold A (threshold A 1 , threshold A 2 , or threshold A 3 ) may not accurately detect the intake detection point G. is high. Therefore, the control unit 5 switches the threshold A to the threshold A 2 , the threshold A 3 , or the threshold A 4 with a one-step higher sensitivity when t up for four intake detection points is 30 seconds or longer (steps S3, S6, S9).

所定回数nupの吸気検知点Gの検出にする時間tupをカウントするためのnupは、3回~12回程度が好ましい。また、判断基準とするtup,nupの組合せは、上述した(tup,nup)=(30,4)以外にも、60秒あたり1回~8回に相当する関係を満たす限りは、あらゆるtup,nupの組合せでも実施可能である。(例えば、(tup,nup)=(30,3)、(60,3)、(60,4)、(60,5)、(60,6)、(60,7)、(60,8)、(90,4)、(90,5)、(90,6)、(90,7)、(90,8)、(90,9)、(90,10)、(90,11)、(90,12)など)。(tup,nup)の組み合わせが60秒あたりの8回より多い(つまり、8回の吸気を検知するのに60秒未満)と、正しく呼吸検知できているにもかかわらず、より感度の高い閾値Aへの不要な切り替えが行われる可能性が高くなり、体動等の外乱による吸気検知点Gの誤検知による閾値の切り替えが頻発し使用者が不快に感じる。また、60秒あたりのnupが1回より少ないと吸気検知が不十分となっているにもかかわらず閾値の切り替えが遅れ、現在の患者呼吸パターンに対して低すぎる感度の閾値Aが選択され続けることになり、使用者に十分な呼吸用気体が供給できず、呼吸用気体供給装置による治療の効果が低下する。なお、図2~5は、(tup,nup)=(30,4)の例で示している。 The n- up for counting the time t- up for detecting the intake detection point G a predetermined number of times n- up is preferably about 3 to 12 times. In addition, the combination of t up and n up used as the judgment criteria is not limited to (t up , n up )=(30, 4) described above, as long as it satisfies the relationship corresponding to 1 to 8 times per 60 seconds. , any combination of t up and n up can be implemented. (For example, (t up , n up ) = (30, 3), (60, 3), (60, 4), (60, 5), (60, 6), (60, 7), (60, 8), (90,4), (90,5), (90,6), (90,7), (90,8), (90,9), (90,10), (90,11) , (90, 12), etc.). Combinations of (t up , n up ) greater than 8 times per 60 seconds (i.e. less than 60 seconds to detect 8 inspirations), despite correct breath detection, are more sensitive. The possibility of unnecessary switching to a high threshold A increases, and the switching of the threshold due to erroneous detection of the intake detection point G due to disturbances such as body movements frequently occurs, making the user feel uncomfortable. Also, if the n up is less than 1 per 60 seconds, the switching of the threshold is delayed even though inspiration detection is insufficient, and the threshold A is selected with too low sensitivity for the current patient respiratory pattern. As a result, sufficient respiratory gas cannot be supplied to the user, and the therapeutic effect of the respiratory gas supply device is reduced. 2 to 5 show an example of (t up , n up )=(30, 4).

ステップS9で圧力勾配閾値が睡眠時に適した閾値A4に切り替えられると、制御部5は圧力センサ4で測定される呼吸パターンから、圧力勾配が閾値A の傾きより大きさが大きくなった点を吸気検知点Gとして検出し、呼吸用気体をパルス供給する。閾値Aが閾値Aに切り替えられたことにより、閾値A~Aで検知不能となりやすかった睡眠時における吸気層の開始点も吸気開始点Gとして検出可能となる。 When the pressure gradient threshold is switched to the threshold A4 suitable for sleep in step S9, the control unit 5 detects from the breathing pattern measured by the pressure sensor 4 the point where the pressure gradient is greater than the slope of the threshold A4 . It is detected as the inspiratory detection point G and pulses of respiratory gas are supplied. By switching the threshold A to the threshold A 4 , the starting point of the inspiratory layer during sleep, which was likely to be undetectable with the thresholds A 1 to A 3 , can now be detected as the inspiratory starting point G.

閾値A、閾値A、又は閾値Aが選択されているとき、制御部5は所定の回数吸気検知点Gが検出されるのに要する時間をカウントし、閾値Aから閾値A、閾値Aから閾値A、又は閾値Aから閾値Aへの切り替えの要否を判断する(ステップS4、S7、S10)。閾値Aから閾値A3、、閾値Aから閾値A、又は閾値Aから閾値Aに切り替える判断は、測定時から最新の吸気検知点Gをndown回検出するのに要した時間がtdown秒間よりも短くなるか否かを基準とする。上述の通り、ヒトの呼吸数は8~48bpm程度であるため、例えば、吸気検知点Gを5秒未満で4回検出した場合(48bpm相当)には((tdown,ndown)=(5,4))、現在の閾値A(閾値A、閾値A、又は閾値A)で吸気検知点Gを検出する条件では、感度が高すぎてノイズを吸気検知点Gと誤検知している可能性が高い。そこで、吸気検知点4回に対するtdownが5秒より短いときは閾値Aを一段階感度の低い閾値A、閾値A、又は閾値Aに切り替える(ステップS1、S3、S6)。 When the threshold A 2 , threshold A 3 or threshold A 4 is selected, the controller 5 counts the time required for the intake detection point G to be detected a predetermined number of times, and selects thresholds A 4 to A 3 , It is determined whether it is necessary to switch from the threshold A3 to the threshold A2 or from the threshold A2 to the threshold A1 (steps S4, S7, S10). The decision to switch from the threshold A4 to the threshold A3 , from the threshold A3 to the threshold A2 , or from the threshold A2 to the threshold A1 is based on the time required to detect the latest intake detection point G n down times from the time of measurement. becomes shorter than t down seconds. As described above, since the respiratory rate of humans is about 8 to 48 bpm, for example, when the inspiratory detection point G is detected four times in less than 5 seconds (equivalent to 48 bpm), ((t down , n down )=(5 , 4)), under the condition that the intake detection point G is detected with the current threshold A (threshold A 2 , threshold A 3 , or threshold A 4 ), the sensitivity is too high and noise is erroneously detected as the intake detection point G. likely to be. Therefore, when t down for four intake detection points is shorter than 5 seconds, threshold A is switched to threshold A 3 , threshold A 2 , or threshold A 1 with one level lower sensitivity (steps S1, S3, S6).

所定回数ndownを検知するのに必要な時間tdownをカウントするためのndownは、3から60回程度が好ましい。また、判断基準とするtdown,ndownの組合せは、上述した(tdown,ndown)=(5,4)以外にも、60秒あたり48~60回に相当する関係を満たす限りは、あらゆるtdown,ndownの組合せでも実施可能である。(例えば、(tdown,ndown)=(15,12)、(15,13)、(15,14)(15,15)、(30,24)、(30,25)、(30,26)、(30,27)、(30,28)、(30,29)(30,30)、(60,48)、(60,49)、(60,50)、(60,51)、(60,52)、(60,53)、(60,54)、(60,55)、(60,56)、(60,57)、(60,58)、(60,59)、(60,60)など)。48回の吸気検知点Gの検出に要する時間の閾値tdownが60秒より長いと、正しく呼吸検知できているにもかかわらずより感度の低い閾値Aへの不要な切り替えが行われる可能性が高くなり、患者の呼吸を正しく検知できず、結果として使用者に十分な呼吸用気体が供給できず、呼吸用気体供給装置による治療効果が低減する。また、48回の吸気検知点Gの検出に要する時間の閾値tdownが48秒より短いと、体動等の外乱による吸気検知点Gの誤検知が発生しているにもかかわらず現在の呼吸パターンに対して高すぎる感度の閾値Aが選択され続けることになり、吸気以外のタイミングにも呼吸用気体がパルス供給され使用者が不快を感じやすくなる。なお、図2~5は、(tdown,ndown)=(5,4)の例で示している。 The n down for counting the time t down required to detect n down a predetermined number of times is preferably about 3 to 60 times. In addition, the combination of t down and n down used as the judgment criteria is as long as it satisfies the relationship corresponding to 48 to 60 times per 60 seconds in addition to (t down , n down )=(5, 4) described above. Any combination of t down and n down is also feasible. (For example, (t down , n down ) = (15, 12), (15, 13), (15, 14) (15, 15), (30, 24), (30, 25), (30, 26 ), (30,27), (30,28), (30,29) (30,30), (60,48), (60,49), (60,50), (60,51), ( 60,52), (60,53), (60,54), (60,55), (60,56), (60,57), (60,58), (60,59), (60, 60), etc.). If the threshold t down of the time required to detect the inspiratory detection point G 48 times is longer than 60 seconds, there is a possibility that unnecessary switching to the threshold A with lower sensitivity is performed even though breathing can be detected correctly. As a result, the patient's respiration cannot be detected correctly, and as a result, sufficient respiratory gas cannot be supplied to the user, and the therapeutic effect of the respiratory gas supply device is reduced. In addition, if the threshold tdown of the time required to detect the inspiratory detection point G 48 times is shorter than 48 seconds, the current respiration is A too high sensitivity threshold A will continue to be selected for the pattern, and the breathing gas will be pulsed at timings other than inspiration, and the user will likely feel discomfort. 2 to 5 show an example of (t down , n down )=(5, 4).

このように、制御部5は、最新の吸気検知点Gから遡り所定の回数nup回の吸気検知点Gの検出に要した時間tupと、最新の吸気検知点Gから遡り所定の回数ndown回の吸気検知点Gの検出に要した時間tdownと閾値A、閾値A、閾値A、閾値Aを切り替え、使用者の状態に応じたデマンドレギュレータ機能の制御を行うため、吸気相の開始を正確に検知し、呼吸サイクルに同調した呼吸用気体を供給することができる。 In this way, the control unit 5 determines the time t up required to detect the intake detection point G a predetermined number of times n up from the latest intake detection point G, and the predetermined number of times n up from the latest intake detection point G. In order to switch the time t down required to detect the intake detection point G down times and the threshold A 1 , threshold A 2 , threshold A 3 , and threshold A 4 to control the demand regulator function according to the state of the user, The onset of the inspiratory phase can be accurately detected and respiratory gas delivered in phase with the respiratory cycle.

また、閾値A、閾値A、閾値A、閾値Aは、直近複数回分の吸気検知点G同士の時間間隔の平均値を基準に切り替えることも可能である。より具体的には、直近複数回分の吸気検知点Gの間の時間の平均値が所定時間tよりも長いと呼吸が正確に検知されていないと判断し、閾値Aをより感度の高い閾値Aに切り替える。逆に、直近複数回分の吸気検知点Gの間の時間の平均値が所定時間tよりも短いと体動等の外乱を誤検知していると判断し、閾値Aをより感度の低い閾値Aに切り替える。このとき、ヒトの呼吸数は一般的に8~48bpm程度であることを考慮すると、tは7.5秒よりも長く、tは1.2秒よりも短いことが望ましい。 Also, the threshold A 1 , the threshold A 2 , the threshold A 3 , and the threshold A 4 can be switched based on the average value of the time intervals between the intake detection points G for the most recent multiple times. More specifically, if the average value of the times between the inhalation detection points G for the most recent multiple times is longer than the predetermined time t1 , it is determined that respiration is not accurately detected, and the threshold A is set to a threshold with a higher sensitivity. Switch to A. Conversely, if the average value of the times between the intake detection points G for the most recent multiple times is shorter than the predetermined time t2 , it is determined that a disturbance such as body movement is erroneously detected, and the threshold A is set to a threshold with a lower sensitivity. Switch to A. At this time, considering that the human respiratory rate is generally about 8 to 48 bpm, it is desirable that t1 is longer than 7.5 seconds and t2 is shorter than 1.2 seconds.

また、上記では実施形態の一例として、切り替え可能な圧力勾配閾値Aの段階数を4段階のものを示したが、閾値Aは上記の切り替え方法の範囲内において、任意の段階数に設定することも可能であり、連続的に変化させてもよい。 In the above description, as an example of the embodiment, the switchable pressure gradient threshold value A has four steps, but the threshold value A can be set to any number of steps within the range of the above switching method. is also possible, and may be changed continuously.

図1の実施形態の呼吸用気体供給装置では、使用者はユーザーインターフェース7から、感度切り替え信号を制御部5に送信し、閾値A、閾値A、閾値A、閾値Aの切り替えを手動で行うこともできる。図3は使用者のマニュアル操作によって感度切り替え可能なフローの一例である。 In the respiratory gas supply apparatus of the embodiment of FIG. 1, the user transmits a sensitivity switching signal from the user interface 7 to the controller 5 to switch the threshold A 1 , threshold A 2 , threshold A 3 and threshold A 4 . It can also be done manually. FIG. 3 is an example of a flow in which the sensitivity can be switched by manual operation by the user.

装置が起動されデマンドレギュレータ機能が作動すると、制御部5は閾値Aを閾値Aに設定する(ステップS11)。使用者がユーザーインターフェース7の感度上昇ボタンを押すと(ステップS12)、ステップS14に進み閾値Aが閾値Aに切り替えられる。閾値AがA、A(ステップS14、S19)の場合も同様に、感度上昇ボタンを押すと(ステップS15、S20)、ステップS19、ステップS24に進み、閾値AがA、Aに切替えられる。また、呼吸用気体供給装置が閾値Aで制御されているとき、使用者が感度低下ボタンを押すと(ステップS16)、ステップS11に進み閾値Aに切り替えられる。閾値AがA、A(ステップS19、S24)の場合も同様に、感度低下ボタンを押すと(ステップS21、S25)、ステップS14、ステップS19に進み、閾値AがA、Aに切替えられる。図3の例では、使用者による感度切り替えボタンの操作が、制御部5による所定回数の吸気検知点Gの検出に要する時間tup、tdownを基準とする判断に優先して、圧力勾配閾値が切り替えられる。 When the device is activated and the demand regulator function is activated, the controller 5 sets the threshold A to the threshold A1 (step S11). When the user presses the sensitivity increase button of the user interface 7 (step S12), the process proceeds to step S14 and the threshold A1 is switched to the threshold A2 . Similarly, when the threshold A is A 2 , A 3 (steps S14, S19), pressing the sensitivity increase button (steps S15, S20) proceeds to steps S19, S24, and the threshold A becomes A 3 , A 4 . can be switched. Also, when the respiratory gas supply apparatus is controlled with the threshold A2 and the user presses the sensitivity reduction button (step S16), the process proceeds to step S11 and the threshold is switched to A1 . Similarly, when the threshold A is A 3 and A 4 (steps S19 and S24), pressing the sensitivity reduction button (steps S21 and S25) proceeds to steps S14 and S19, and the threshold A is set to A2 and A3 . can be switched. In the example of FIG. 3, the operation of the sensitivity switching button by the user has priority over the determination based on the time t up and t down required for the control unit 5 to detect the intake detection point G a predetermined number of times, and the pressure gradient threshold can be switched.

図4は呼吸位相に同調した呼吸用気体のパルス供給に加え、呼吸位相とは関係なく約90秒間だけ呼吸用気体を連続供給する安全機能を備えた例である。ステップS40までの流れは、図2のステップS1~10と同じである。ステップS40で吸気検知点Gを4回検出するのに要した時間が5秒以上の場合、ステップS41で最新の吸気検知点Gから遡り所定回数nbackup回の吸気検知点Gの検出に要した時間がtbackup秒間以上となるか否かをチェックし、睡眠時における最低限の呼吸回数が検知できているか確認する。 FIG. 4 shows an example in which, in addition to pulsed supply of respiratory gas synchronized with the respiratory phase, a safety function of continuously supplying respiratory gas for about 90 seconds regardless of the respiratory phase is provided. The flow up to step S40 is the same as steps S1 to 10 in FIG. If the time required to detect the intake detection point G four times in step S40 is 5 seconds or more, it was necessary to detect the intake detection point G a predetermined number of times n backup times from the latest intake detection point G in step S41. Check whether the time is t backup seconds or longer, and confirm whether the minimum number of breaths during sleep can be detected.

上述の通り、ヒトの呼吸数は一般的に8~48bpm程度であるため、例えば、4回の吸気検知点Gの検出に要した時間が30秒以上(8bpm相当)となった場合には((tbackup,nbackup)=(30,4))、感度の高い閾値Aで制御しているにもかかわらず、吸気検知点Gの間隔が長く呼吸用気体が十分に供給されていない可能性が高い。そこで、制御部5は呼吸用気体の供給方法を連続供給(オート連続流)するように切り替える(ステップS42)。図1によると、呼吸用気体の連続供給中はコントロールバルブ6が解放状態を継続し、圧力センサ4は呼吸用気体の圧力を検知圧として出力するため、この間は呼吸に伴う圧力変動を検知することができない。したがって、定期的に呼吸用気体の連続供給を止めて、使用者の呼吸が十分に検知可能な強さに戻ったかを確認する必要があるため、オート連続流の供給開始から一定時間が経過すると制御部5は閾値AをAに戻して吸気検知点Gの検出を再開する(ステップS45)。発明者らの検討によれば、オート連続流の供給時間は、睡眠時における複数のHOT患者の呼吸パターンを測定し検討した結果、10秒~120秒とすることで呼吸時間全体の75%以上の時間で呼吸用気体を吸える可能性が高く、90秒程度がさらに好ましい。 As described above, since the respiratory rate of humans is generally about 8 to 48 bpm, for example, if the time required to detect the intake detection point G four times is 30 seconds or more (equivalent to 8 bpm) ( (t backup , n backup ) = (30, 4)), although the control is performed with a highly sensitive threshold value A4 , the interval between the inhalation detection points G is long and it is possible that the respiratory gas is not sufficiently supplied. highly sexual. Therefore, the control unit 5 switches the supply method of the respiratory gas to continuous supply (automatic continuous flow) (step S42). According to FIG. 1, during the continuous supply of breathing gas, the control valve 6 continues to be in an open state, and the pressure sensor 4 outputs the pressure of the breathing gas as the detection pressure, so pressure fluctuations accompanying breathing are detected during this period. I can't. Therefore, it is necessary to periodically stop the continuous supply of breathing gas and check if the user's breathing has returned to a sufficiently detectable level. The controller 5 resets the threshold A to A4 and restarts the detection of the intake detection point G (step S45). According to the study of the inventors, as a result of measuring and examining the breathing patterns of a plurality of HOT patients during sleep, the supply time of the auto continuous flow is 10 seconds to 120 seconds. It is highly likely that the breathing gas can be inhaled in the time of , and about 90 seconds is more preferable.

図5は呼吸位相に同調した呼吸用気体のパルス供給に加え、呼吸位相とは関係なく一定周期で呼吸用気体をパルス供給する安全機能を備えた例である。ステップS51~S61までの流れは、図4のステップS31~41と同じである。 FIG. 5 shows an example in which, in addition to the respiratory gas pulse supply synchronized with the respiratory phase, a safety function is provided to supply the respiratory gas pulse at a constant cycle regardless of the respiratory phase. The flow from steps S51 to S61 is the same as steps S31 to S41 in FIG.

制御部5は、オート連続流を供給する(図4のステップS42)ことに代えて、呼吸用気体の供給方法を一定周期(例えば50bpm)でパルス供給(オートパルス)するように切り替える(ステップS62)。このオートパルス動作の期間も閾値Aによる吸気検知点Gの検出は継続されており、吸気検知点Gが再検出されると制御部5はオートパルス供給を解除する(ステップS65)。 Instead of supplying an automatic continuous flow (step S42 in FIG. 4), the control unit 5 switches the respiratory gas supply method to pulse supply (auto pulse) at a constant cycle (for example, 50 bpm) (step S62). ). Detection of the intake detection point G by the threshold value A4 is continued even during the period of this auto pulse operation, and when the intake detection point G is detected again, the control unit 5 cancels the auto pulse supply (step S65).

吸気検知点Gを所定回数検出するのに要する時間tbackupを測定する際の所定回数nbackupは、3回から12回が好ましい。また、判断基準とするtbackup、nbackupの組合せは、上述した(tbackup,nbackup)=(30,4)以外にも、60秒あたり1回~8回に相当する関係を満たす限りは、あらゆるtbackup,nbackupの組合せでも実施可能である。(例えば、(tbackup,nbackup)=(30,3)、(60,3)、(60,4)、(60,5)、(60,6)、(60,7)、(60,8)、(90,4)、(90,5)、(90,6)、(90,7)、(90,8)、(90,9)、(90,10)、(90,11)、(90,12)など)。なお、図5は、(tbackup,nbackup)=(30,4)の例で示している。3回の吸気検知点Gの検出に要する時間tbackupが20秒より短いと、閾値Aにおいて実際の呼吸回数に対する吸気検知点Gの検知率が75%以上となるよう吸気検知できているにもかかわらず、不必要に呼吸用気体のオート連続流もしくはオートパルス供給が開始される。酸素をオート連続流もしくはオートパルスで供給することにより、未供給時に比べて患者の血中酸素飽和度低下リスクを低減することが可能となるが、患者の呼吸パターンに関係なく呼吸用気体を自動供給する方式であることを考慮すると、必ずしも患者が必要とする酸素量を十分に満足するとは限らない。そのため、呼吸用気体供給装置が酸素濃縮器の場合には治療効果が低下する可能性が高くなる。したがって、吸気検知が適切に行われて患者が必要とする量の酸素が十分に供給されている場合は、オート連続流もしくはオートパルスへの不必要な切り替えは避けることが望ましい。また、3回の呼吸検知点Gの検出に要する時間がtbackupが180秒より長いと吸気検知点Gがほとんど検出できておらずオート連続流もしくはオートパルスの供給が遅れ、睡眠中の使用者に十分な呼吸用気体が供給できず、呼吸用気体供給装置による治療の効果が低下する。そして、オート連続流もしくはオートパルスへの切り替え条件(ステップS41又はステップS61)を30分間で5回満たしたとき(ステップS43又はステップS63)は、使用者又は呼吸用気体供給装置に、何らかの異常が起きている可能性が高いと判断して警報を鳴らす(ステップS44又はステップS64)。 The predetermined number of times n backup when measuring the time t backup required to detect the intake detection point G a predetermined number of times is preferably 3 to 12 times. In addition, the combination of t backup and n backup used as the judgment criteria is not limited to the above-described (t backup , n backup )=(30, 4), as long as it satisfies the relationship corresponding to 1 to 8 times per 60 seconds. , any combination of t backup and n backup . (For example, (t backup , n backup ) = (30, 3), (60, 3), (60, 4), (60, 5), (60, 6), (60, 7), (60, 8), (90,4), (90,5), (90,6), (90,7), (90,8), (90,9), (90,10), (90,11) , (90, 12), etc.). Note that FIG. 5 shows an example of (t backup , n backup )=(30, 4). If the time t backup required to detect the inspiratory detection point G three times is shorter than 20 seconds, the inhalation can be detected so that the detection rate of the inspiratory detection point G with respect to the actual number of breaths is 75% or more at the threshold value A4 . Nevertheless, auto-continuous flow or auto-pulse delivery of breathing gas is unnecessarily initiated. Although the risk of desaturation in the patient's blood oxygen can be reduced compared to when oxygen is not supplied by auto-continuous flow or auto-pulse oxygen, it is possible to automatically supply breathing gas regardless of the patient's breathing pattern. Considering that it is a supply method, it does not necessarily satisfy the oxygen amount required by the patient. Therefore, if the respiratory gas supply device is an oxygen concentrator, there is a high possibility that the therapeutic effect will be reduced. Therefore, it is desirable to avoid unnecessary switching to auto-continuous-flow or auto-pulse when inspiratory detection is properly performed and sufficient oxygen is being supplied to the patient as required. In addition, if the time required to detect the respiratory detection point G three times is longer than 180 seconds, the intake detection point G is hardly detected, and the supply of the auto continuous flow or auto pulse is delayed, and the user is sleeping. Inadequate respiratory gas can be supplied to the patient, reducing the effectiveness of treatment with the respiratory gas supply device. Then, when the condition for switching to auto continuous flow or auto pulse (step S41 or step S61) is satisfied five times in 30 minutes (step S43 or step S63), there is some abnormality in the user or the respiratory gas supply device. It is judged that there is a high possibility of occurrence, and an alarm is sounded (step S44 or step S64).

図4、図5のフローでは、吸気検知点Gがほとんど検出できず、デマンドレギュレータ機能では呼吸用気体を十分に供給できない状態になっても、呼吸用気体がオート連続流もしくはオートパルスの供給により自動供給されるので、使用者が息苦しさを感じるリスクが低下する。 In the flow of FIGS. 4 and 5, even if the inspiratory detection point G is hardly detected and the demand regulator function cannot sufficiently supply the respiratory gas, the respiratory gas is supplied by auto continuous flow or auto pulse. Automatic supply reduces the risk of the user feeling suffocated.

以上、本発明の好ましい実施形態について詳述したが、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications, Change is possible.

本発明によれば、吸気相の開始を検知する圧力勾配閾値を、呼吸用気体供給装置の制御部が使用者の状態に応じて切り替えるので、呼吸位相を正確に検知し、呼吸サイクルに同調して吸入用気体を供給するデマンドレギュレータ機能を備えた、呼吸用気体供給装置を提供することができる。 According to the present invention, the control unit of the respiratory gas supply apparatus switches the pressure gradient threshold for detecting the start of the inspiratory phase according to the user's condition, so that the respiratory phase can be accurately detected and synchronized with the respiratory cycle. It is possible to provide a respiratory gas delivery device with a demand regulator function to deliver inhalation gas at a constant pressure.

1 呼吸用気体供給源
2 カニューラ
3 気体供給経路
4 圧力センサ
5 制御部
6 コントロールバルブ
7 ユーザーインターフェース
1 respiratory gas supply 2 cannula 3 gas supply path 4 pressure sensor 5 controller 6 control valve 7 user interface

Claims (7)

使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、
気体流路の圧力を測定する圧力センサと、
少なくとも第1圧力勾配閾値と、第1圧力勾配閾値よりも傾きの大きさが小さい第2圧力勾配閾値を含む設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなった点を吸気検知点と判断するとともに前記吸気検知点から一定時間前記呼吸用気体を供給し、
前記制御部は、所定の吸気検知点からn回数分の吸気検知点を検出するのに要した時間が(7.5×n)秒より長い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが1段階小さい圧力勾配閾値に切り替え、
前記制御部は、前記n回数分の吸気検知点を検出するのに要した時間が(1.2×n)秒より短い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが1段階大きい圧力勾配閾値に切り替え、
前記第1圧力勾配閾値は-2.4Pa/20ms以上、-1.0Pa/20ms以下の範囲内に設定され
前記第2圧力勾配閾値は-0.8Pa/20ms以上、-0.1Pa/20ms以下の範囲内に設定され、
前記第1圧力勾配閾値および前記第2圧力勾配閾値のそれぞれの範囲内に、複数の圧力勾配閾値が設定され得ることを特徴とする呼吸用気体供給装置。
A breath-coordinated breathing gas delivery device for delivering breathing gas in accordance with a user's breathing cycle,
a pressure sensor that measures the pressure in the gas flow path;
A control unit that selects one pressure gradient threshold from among a plurality of set pressure gradient thresholds including at least a first pressure gradient threshold and a second pressure gradient threshold having a slope smaller than the first pressure gradient threshold. and
The control unit detects a point at which the slope of the pressure gradient from the expiratory phase to the inspiratory phase calculated from the signal of the pressure sensor becomes larger than the slope of the selected one pressure gradient threshold. determining the detection point and supplying the respiratory gas for a certain period of time from the inhalation detection point;
If the time required to detect n intake detection points from a predetermined intake detection point is longer than (7.5×n) seconds, the control unit sets the pressure gradient threshold to the selected pressure gradient threshold. Switch to a pressure gradient threshold value with a slope that is one step smaller,
If the time taken to detect the inhalation detection points for the n times is shorter than (1.2×n) seconds, the control unit sets the pressure gradient threshold to a slope larger than the selected pressure gradient threshold. is switched to a pressure gradient threshold that is one step larger,
The first pressure gradient threshold is set within a range of -2.4 Pa / 20 ms or more and -1.0 Pa / 20 ms or less,
The second pressure gradient threshold is set within a range of -0.8 Pa/20 ms or more and -0.1 Pa/20 ms or less,
A respiratory gas delivery apparatus , wherein a plurality of pressure gradient thresholds can be set within each of said first pressure gradient threshold and said second pressure gradient threshold.
使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、
気体流路の圧力を測定する圧力センサと、
少なくとも第1圧力勾配閾値と、第1圧力勾配閾値よりも傾きの大きさが小さい第2圧力勾配閾値を含む設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなった点を吸気検知点と判断するとともに前記吸気検知点から一定時間前記呼吸用気体を供給し、
前記制御部は、前記直近複数回分の前記吸気検知点の間の時間の平均値が7.5秒よりも長い場合、圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが1段階小さい圧力勾配閾値に切り替え、
前記制御部は、前記直近複数回分の前記吸気検知点の間の時間の平均値が1.2秒よりも短い場合、圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが1段階大きい圧力勾配閾値に切り替え、
前記第1圧力勾配閾値は-2.4Pa/20ms以上、-1.0Pa/20ms以下の範囲内に設定され
前記第2圧力勾配閾値は-0.8Pa/20ms以上、-0.1Pa/20ms以下の範囲内に設定され、
前記第1圧力勾配閾値および前記第2圧力勾配閾値のそれぞれの範囲内に、複数の圧力勾配閾値が設定され得ることを特徴とする呼吸用気体供給装置。
A breath-coordinated breathing gas delivery device for delivering breathing gas in accordance with a user's breathing cycle,
a pressure sensor that measures the pressure in the gas flow path;
A control unit that selects one pressure gradient threshold from among a plurality of set pressure gradient thresholds including at least a first pressure gradient threshold and a second pressure gradient threshold having a slope smaller than the first pressure gradient threshold. and
The control unit detects a point at which the slope of the pressure gradient from the expiratory phase to the inspiratory phase calculated from the signal of the pressure sensor becomes larger than the slope of the selected one pressure gradient threshold. determining the detection point and supplying the respiratory gas for a certain period of time from the inhalation detection point;
When the average value of the times between the intake detection points for the most recent multiple times is longer than 7.5 seconds, the control unit sets the pressure gradient threshold to a gradient of 1 from the selected pressure gradient threshold. switch to stepwise smaller pressure gradient thresholds,
When the average value of the times between the intake detection points for the most recent multiple times is shorter than 1.2 seconds, the control unit sets the pressure gradient threshold to a gradient of 1 from the selected pressure gradient threshold. switch to a stepwise larger pressure gradient threshold,
The first pressure gradient threshold is set within a range of -2.4 Pa / 20 ms or more and -1.0 Pa / 20 ms or less,
The second pressure gradient threshold is set within a range of -0.8 Pa/20 ms or more and -0.1 Pa/20 ms or less,
A respiratory gas delivery apparatus , wherein a plurality of pressure gradient thresholds can be set within each of said first pressure gradient threshold and said second pressure gradient threshold.
最も傾きの大きさが小さい圧力勾配閾値を選択しているとき、前記n回数分の吸気検知点を検出するのに要した時間が(7.5×n)秒より長い場合、前記制御部は、前記呼吸用気体の供給を一定時間の連続供給又は一定周期のパルス供給に切り替えることを特徴とする請求項1または2に記載の呼吸用気体供給装置。 When the pressure gradient threshold with the smallest slope is selected, if the time required to detect the intake detection points for the n number of times is longer than (7.5×n) seconds, the control unit 3. The respiratory gas supply apparatus according to claim 1, wherein the supply of the respiratory gas is switched between continuous supply for a certain period of time and pulse supply for a certain period. 前記呼吸用気体は濃縮酸素であり、前記呼吸用気体供給装置は酸素濃縮装置であることを特徴とする請求項1~のいずれか1項に記載の呼吸用気体供給装置。 The respiratory gas supply device according to any one of claims 1 to 3 , wherein the respiratory gas is concentrated oxygen, and the respiratory gas supply device is an oxygen concentrator. 使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御部による制御方法であって、前記制御部において、
少なくとも第1圧力勾配閾値と、第1圧力勾配閾値よりも傾きの大きさが小さい第2圧力勾配閾値を含む設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する圧力勾配閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、前記圧力勾配閾値選択ステップで選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなる吸気検知点を検出する吸気検知点検出ステップと、
所定の吸気検知点からn回数分の吸気検知点を検出するのに要した時間が(7.5×n)秒より長い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが1段階小さい圧力勾配閾値に切り替え、
前記n回数分の吸気検知点を検出するのに要した時間が(1.2×n)秒より短い場合、圧力勾配閾値を選択されている圧力勾配閾値より傾きの大きさが1段階大きい圧力勾配閾値に切り替える圧力勾配閾値切り替えステップとを制御し、
前記第1圧力勾配閾値は-2.4Pa/20ms以上、-1.0Pa/20ms以下の範囲内に設定され
前記第2圧力勾配閾値は-0.8Pa/20ms以上、-0.1Pa/20ms以下の範囲内に設定され、
前記第1圧力勾配閾値および前記第2圧力勾配閾値のそれぞれの範囲内に、複数の圧力勾配閾値が設定され得ることを特徴とする呼吸用気体供給装置の制御方法。
A method of controlling a breathing-coordinated breathing gas supply device for supplying breathing gas in accordance with a user's breathing cycle by a control unit, the control unit comprising:
A pressure gradient that selects one pressure gradient threshold from among a plurality of set pressure gradient thresholds including at least a first pressure gradient threshold and a second pressure gradient threshold having a gradient smaller than the first pressure gradient threshold. a threshold selection step;
The magnitude of the slope of the pressure gradient from the expiratory phase to the inspiratory phase calculated from the signal of the pressure sensor that detects the respiratory cycle is the magnitude of the slope of the one pressure gradient threshold selected in the pressure gradient threshold selection step. an intake detection point detection step of detecting an intake detection point that is greater than
If the time taken to detect n inspiratory sensing points from a given inspiratory sensing point is greater than (7.5×n) seconds, then the pressure gradient threshold is greater than the selected pressure gradient threshold. is switched to a pressure gradient threshold that is one step smaller,
If the time required to detect the inspiratory detection points for n times is shorter than (1.2×n) seconds, the pressure gradient threshold is the pressure that is one step larger than the selected pressure gradient threshold. controlling the pressure gradient threshold switching step to switch to the gradient threshold;
The first pressure gradient threshold is set within a range of -2.4 Pa / 20 ms or more and -1.0 Pa / 20 ms or less,
The second pressure gradient threshold is set within a range of -0.8 Pa/20 ms or more and -0.1 Pa/20 ms or less,
A method of controlling a respiratory gas delivery device, wherein a plurality of pressure gradient thresholds can be set within respective ranges of said first pressure gradient threshold and said second pressure gradient threshold.
使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御部による制御方法であって、前記制御部において、
少なくとも第1圧力勾配閾値と、第1圧力勾配閾値よりも傾きの大きさが小さい第2圧力勾配閾値を含む設定された複数の圧力勾配閾値の中から、1つの圧力勾配閾値を選択する圧力勾配閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した、呼気相から吸気相側に向かう圧力勾配の傾きの大きさが、前記圧力勾配閾値選択ステップで選択した前記1つの圧力勾配閾値の傾きの大きさより大きくなる吸気検知点を検出する吸気検知点検出ステップと、
前記直近複数回分の前記吸気検知点の間の時間の平均値が7.5秒よりも長い場合、前記1つの圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが1段階小さい圧力勾配閾値に切り替え、
前記直近複数回分の前記吸気検知点の間の時間の平均値が1.2秒よりも短い場合、前記1つの圧力勾配閾値を前記選択されている圧力勾配閾値より傾きの大きさが1段階大きい圧力勾配閾値に切り替える圧力勾配閾値切り替えステップとを制御し、
前記第1圧力勾配閾値は-2.4Pa/20ms以上、-1.0Pa/20ms以下の範囲内に設定され
前記第2圧力勾配閾値は-0.8Pa/20ms以上、-0.1Pa/20ms以下の範囲内に設定され、
前記第1圧力勾配閾値および前記第2圧力勾配閾値のそれぞれの範囲内に、複数の圧力勾配閾値が設定され得ることを特徴とする呼吸用気体供給装置の制御方法。
A method of controlling a breathing-coordinated breathing gas supply device for supplying breathing gas in accordance with a user's breathing cycle by a control unit, the control unit comprising:
A pressure gradient that selects one pressure gradient threshold from among a plurality of set pressure gradient thresholds including at least a first pressure gradient threshold and a second pressure gradient threshold having a gradient smaller than the first pressure gradient threshold. a threshold selection step;
The magnitude of the slope of the pressure gradient from the expiratory phase to the inspiratory phase calculated from the signal of the pressure sensor that detects the respiratory cycle is the magnitude of the slope of the one pressure gradient threshold selected in the pressure gradient threshold selection step. an intake detection point detection step of detecting an intake detection point that is greater than
If the average value of the time between the inspiration detection points for the most recent plurality is greater than 7.5 seconds, then the one pressure gradient threshold is one step less than the selected pressure gradient threshold. switch to pressure gradient threshold,
If the average value of the time between the inspiration detection points for the most recent plurality is less than 1.2 seconds, then the one pressure gradient threshold is one step greater than the selected pressure gradient threshold. controlling the pressure gradient threshold switching step of switching to the pressure gradient threshold;
The first pressure gradient threshold is set within a range of -2.4 Pa/20 ms or more and -1.0 Pa/20 ms or less,
The second pressure gradient threshold is set within a range of -0.8 Pa/20 ms or more and -0.1 Pa/20 ms or less,
A method of controlling a respiratory gas delivery device, wherein a plurality of pressure gradient thresholds can be set within respective ranges of said first pressure gradient threshold and said second pressure gradient threshold.
最も傾きの大きさが小さい圧力勾配閾値を選択しているとき、前記n回数分の吸気検知点を検出するのに要した時間が(7.5×n)秒より長い場合、前記制御部は、前記呼吸用気体の供給を一定時間の連続供給又は一定周期のパルス供給に切り替えるステップを有することを特徴とする請求項5または6に記載の呼吸用気体供給装置。When the pressure gradient threshold with the smallest slope is selected, if the time required to detect the intake detection points for the n number of times is longer than (7.5×n) seconds, the control unit 7. The respiratory gas supply apparatus according to claim 5, further comprising a step of switching the supply of the respiratory gas to continuous supply for a certain period of time or pulse supply for a certain period.
JP2018188026A 2018-10-03 2018-10-03 Breathing gas supply device and its control method Active JP7290406B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018188026A JP7290406B2 (en) 2018-10-03 2018-10-03 Breathing gas supply device and its control method
DE102019213637.0A DE102019213637A1 (en) 2018-10-03 2019-09-09 GAS FEEDING DEVICE FOR BREATHING AND CONTROL METHOD THEREFOR
CN201910922376.0A CN110975086B (en) 2018-10-03 2019-09-27 Breathing gas supply device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188026A JP7290406B2 (en) 2018-10-03 2018-10-03 Breathing gas supply device and its control method

Publications (3)

Publication Number Publication Date
JP2020054676A JP2020054676A (en) 2020-04-09
JP2020054676A5 JP2020054676A5 (en) 2021-10-28
JP7290406B2 true JP7290406B2 (en) 2023-06-13

Family

ID=69886350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188026A Active JP7290406B2 (en) 2018-10-03 2018-10-03 Breathing gas supply device and its control method

Country Status (3)

Country Link
JP (1) JP7290406B2 (en)
CN (1) CN110975086B (en)
DE (1) DE102019213637A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111588953A (en) * 2020-05-07 2020-08-28 湖南信息学院 Electronic oxygen saver and oxygen therapy equipment
CN113332549B (en) * 2021-05-19 2022-06-03 吉林大学 Oxygen supply device for nursing megaloblastic anemia

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170177A (en) 1999-12-21 2001-06-26 Teijin Ltd Respiration-synchronized oxygen-feeding device
JP2004105230A (en) 2002-09-13 2004-04-08 Teijin Ltd Respiration gas feeding method and its device
US20080078392A1 (en) 2006-09-29 2008-04-03 Pelletier Dana G Breath detection system
JP2015531308A (en) 2012-10-12 2015-11-02 イノヴァ ラボ,インコーポレイテッド Methods and systems for oxygen-enriched gas delivery
WO2017178440A1 (en) 2016-04-15 2017-10-19 Hamilton Medical Ag Respirator having improved synchronicity during the transition from expiratory to inspiratory operation
JP2018114194A (en) 2017-01-20 2018-07-26 ダイキン工業株式会社 Oxygen condensation apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656530B2 (en) * 1988-02-29 1997-09-24 帝人株式会社 Respiratory gas supply device
JP2002085568A (en) * 2000-09-21 2002-03-26 Ngk Spark Plug Co Ltd Oxygen supplier, controller and recording medium therefor
US7841343B2 (en) * 2004-06-04 2010-11-30 Inogen, Inc. Systems and methods for delivering therapeutic gas to patients

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170177A (en) 1999-12-21 2001-06-26 Teijin Ltd Respiration-synchronized oxygen-feeding device
JP2004105230A (en) 2002-09-13 2004-04-08 Teijin Ltd Respiration gas feeding method and its device
US20080078392A1 (en) 2006-09-29 2008-04-03 Pelletier Dana G Breath detection system
JP2015531308A (en) 2012-10-12 2015-11-02 イノヴァ ラボ,インコーポレイテッド Methods and systems for oxygen-enriched gas delivery
WO2017178440A1 (en) 2016-04-15 2017-10-19 Hamilton Medical Ag Respirator having improved synchronicity during the transition from expiratory to inspiratory operation
JP2018114194A (en) 2017-01-20 2018-07-26 ダイキン工業株式会社 Oxygen condensation apparatus

Also Published As

Publication number Publication date
JP2020054676A (en) 2020-04-09
CN110975086B (en) 2024-08-13
DE102019213637A1 (en) 2020-04-09
CN110975086A (en) 2020-04-10

Similar Documents

Publication Publication Date Title
EP1326670B1 (en) Breathing apparatus
JP6891268B2 (en) Respiratory gas supply device and its control method
JP6320755B2 (en) Obesity hypoventilation syndrome treatment system and method
JP2008501445A (en) System and method for delivering therapeutic gas to a patient
CN102711888A (en) Methods and apparatus for adaptable pressure treatment of sleep disordered breathing
JP2007502149A (en) Positive airway pressure system and method for treatment of sleep disorders in patients
JP2013543769A5 (en)
JP7290406B2 (en) Breathing gas supply device and its control method
JP6885943B2 (en) Methods and Devices for Treating Ataxic Breathing
US20150080642A1 (en) System and method for a wakeful sleep detection alarm
US20220305227A1 (en) Device for supportive respiration of a living being and computer program
JP6211253B2 (en) Oxygen supply equipment
EP3169388B1 (en) Phenotyping of sleep breathing disorders using a breathing therapy machine
JP7548691B2 (en) Respiratory gas supply device and control method thereof
CN116157182A (en) Flow triggered gas delivery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230320

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230327

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230601

R150 Certificate of patent or registration of utility model

Ref document number: 7290406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150