JP7288847B2 - Pump diagnostic method and pump diagnostic device - Google Patents

Pump diagnostic method and pump diagnostic device Download PDF

Info

Publication number
JP7288847B2
JP7288847B2 JP2019233264A JP2019233264A JP7288847B2 JP 7288847 B2 JP7288847 B2 JP 7288847B2 JP 2019233264 A JP2019233264 A JP 2019233264A JP 2019233264 A JP2019233264 A JP 2019233264A JP 7288847 B2 JP7288847 B2 JP 7288847B2
Authority
JP
Japan
Prior art keywords
pump
temperature
lubricating oil
measuring
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019233264A
Other languages
Japanese (ja)
Other versions
JP2021102925A (en
Inventor
真 野口
健司 浦野
潤弥 佐藤
靖志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2019233264A priority Critical patent/JP7288847B2/en
Publication of JP2021102925A publication Critical patent/JP2021102925A/en
Application granted granted Critical
Publication of JP7288847B2 publication Critical patent/JP7288847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ポンプの診断方法およびポンプ診断装置に関する。 The present invention relates to a pump diagnostic method and a pump diagnostic apparatus.

近年、本川に合流する支川のような比較的少水量な水路において、上流側水路と下流側水路との境界部に備えられた既存の樋門に加えてまたは替えて、ポンプゲートが設置される例が増えている。ポンプゲートは、水路に開閉自在に設置される扉体に、上流側水路の水を下流側水路へと排水するための水中ポンプが設けられた構造を有する。ポンプゲートは、既存の水路内に直接設置可能であるので、従来型の排水機場のようなバイパス水路や機場スペースなどが不要であるため、設置用地土木構造物を著しく減少でき、トータルコストの大幅な縮減が可能である点において優れている。 In recent years, pump gates have been installed in addition to or in place of existing sluice gates at the boundaries between upstream and downstream waterways in waterways with a relatively small amount of water, such as tributaries that join the main river. increasing number of cases. The pump gate has a structure in which a submersible pump for draining water from an upstream side water channel to a downstream side water channel is provided on a door body installed in a water channel so that it can be opened and closed. Since the pump gate can be installed directly in the existing waterway, there is no need for a bypass waterway or pumping station space, which is required for conventional drainage pumping stations. It is superior in that it can be reduced to a large extent.

ポンプゲートは、たとえば集中豪雨時のように、下流側水路の水位が高くなったときに閉鎖され、下流側水路から上流側水路への逆流を防止する。またこのとき、水中ポンプを稼働させ、上流側水路内の水を下流側水路へ強制的に排水する。逆に、晴天時のように下流側水位が低くなったときは、上記のような逆流のおそれがないため、扉体を開放し上流側水路の内水を下流側水路へ自然流下させる。 The pump gate is closed when the water level in the downstream waterway becomes high, such as during torrential rain, to prevent backflow from the downstream waterway to the upstream waterway. At this time, the submersible pump is operated to forcibly drain the water in the upstream waterway to the downstream waterway. Conversely, when the water level on the downstream side becomes low as in fine weather, there is no risk of backflow as described above, so the gate body is opened and the inner water in the upstream side waterway naturally flows down to the downstream side waterway.

上記のような性質上、ポンプゲートは、その運転が集中豪雨などの緊急時に限られる一方で、その運転には確実性が求められる。すなわち、平常時の運転状態に基づいて故障またはその兆候を検知する機会が乏しいにもかかわらず、故障を確実に防止することが求められる。そこで、設置済みのポンプゲートについて定期的な管理運転(診断)が行われることが好ましい。そのような管理運転の方法として、ポンプゲートのポンプについて、回転機器に係る公知の管理運転方法(たとえば、特開2019-21305号公報(特許文献1)、特許第3053305号公報(特許文献2)など)を適用することが考えられる。 Due to the nature described above, the operation of the pump gate is limited to emergencies such as torrential rain, but reliability is required for its operation. In other words, there is a need to reliably prevent failures even though there is little opportunity to detect failures or their signs based on normal operating conditions. Therefore, it is preferable that periodic maintenance operation (diagnosis) is performed on the installed pump gate. As such a managed operation method, for pump gate pumps, known managed operation methods related to rotating equipment (for example, Japanese Patent Application Laid-Open No. 2019-21305 (Patent Document 1), Japanese Patent No. 3053305 (Patent Document 2) etc.) may be applied.

特開2019-21305号公報JP 2019-21305 A 特許第3053305号公報Japanese Patent No. 3053305

ところで、ポンプゲートのポンプは本来水中において駆動する装置であるので、管理運転時にポンプを水中に配置して管理運転を行うことが望ましい。しかし、当該ポンプを水中に配置するためには扉体を閉鎖して上流側水路の水位を確保する必要があり、一時的に水路の流通を妨げることになるが、設置場所の用水計画によってはたとえ短期間の閉鎖であっても実施が難しい場合がある。また、流水量が少ないときは、扉体を閉鎖したとしてもポンプを水中に配置するのに十分な水量が確保できない場合がある。そこで、ポンプを水面より上に配置した状態、すなわちポンプの本来の運転状態とは異なる状態にあっても、有効な管理運転を実施できる技術の実現が求められるが、本来の運転条件に近い状態で実施することを前提とする特許文献1および2のような技術では不十分だった。 By the way, since the pump of the pump gate is originally a device that is driven in water, it is desirable to place the pump in the water during maintenance operation to perform maintenance operation. However, in order to place the pump in the water, it is necessary to close the gate and secure the water level in the upstream waterway. Even short-term closures can be difficult to implement. Moreover, when the water flow rate is low, even if the door body is closed, there may be cases where a sufficient water rate cannot be secured for arranging the pump in the water. Therefore, there is a demand for a technology that enables effective controlled operation even when the pump is placed above the water surface, that is, in a state different from the original operating condition of the pump. Techniques such as those in Patent Documents 1 and 2, which are based on the assumption that the

そこで、実使用時の負荷環境と大きく異なる状態であっても有効な診断を実施できるポンプの診断方法およびポンプ診断装置の実現が求められる。 Therefore, it is desired to realize a pump diagnostic method and a pump diagnostic apparatus that can perform effective diagnosis even under a load environment that is significantly different from the load environment during actual use.

本発明に係るポンプの診断方法は、軸封部にメカニカルシールを有するポンプの診断方法であって、前記ポンプの運転を停止した後の、前記メカニカルシールに流通する潤滑油の温度を測定する停止時測温工程と、前記停止時測温工程において測定された温度の変化傾向をもとに前記潤滑油の充填量を推定する油量推定工程と、を有することを特徴とする。 A method for diagnosing a pump according to the present invention is a method for diagnosing a pump having a mechanical seal in a shaft seal portion, wherein the temperature of lubricating oil flowing through the mechanical seal is measured after the operation of the pump is stopped. and an oil amount estimation step of estimating the filling amount of the lubricating oil based on the change tendency of the temperature measured in the stop temperature measurement process.

また、本発明に係るポンプ診断装置は、軸封部にメカニカルシールを有するポンプを診断可能なポンプ診断装置であって、前記メカニカルシールに流通する潤滑油の温度を測定可能な測温部と、前記測温部により測定された温度の変化傾向をもとに前記ポンプの状態を診断可能な診断部と、を備え、前記診断部は、前記ポンプの運転を停止した後の、前記メカニカルシールに流通する潤滑油の温度を、前記測温部を用いて測定する停止時測温機能と、前記停止時測温機能において測定された温度の変化傾向をもとに前記潤滑油の充填量を推定する油量推定機能と、を実現可能であることを特徴とする。 Further, a pump diagnostic device according to the present invention is a pump diagnostic device capable of diagnosing a pump having a mechanical seal in a shaft seal portion, the temperature measuring portion being capable of measuring the temperature of lubricating oil flowing through the mechanical seal; a diagnostic unit capable of diagnosing the state of the pump based on the change tendency of the temperature measured by the temperature measuring unit; Estimate the filling amount of the lubricating oil based on the temperature change function measured by the stop temperature measurement function that measures the temperature of the flowing lubricating oil using the temperature measurement unit, and the temperature change tendency measured by the stop temperature measurement function. and an oil amount estimation function .

これらの構成によれば、実使用時の負荷環境と大きく異なる状態であっても有効な診断を実施できる。特に、本発明が潤滑油の充填量を推定可能な態様で実施される場合は、ポンプに対して後付けすることが難しい油面計を設置することなく、油量を推定できる。また、本発明において潤滑油の充填量の推定を行う場合、当該推定は潤滑油の温度に基づいて実施されるが、潤滑油の温度自体もポンプの重要な管理項目であるので、本発明によれば、単一の重要項目の測定により二つの重要項目に関する診断が可能になる。 According to these configurations, effective diagnosis can be performed even under a load environment that is significantly different from the load environment during actual use. In particular, when the present invention is implemented in a manner that allows estimation of the filling amount of lubricating oil, the amount of oil can be estimated without installing an oil level gauge, which is difficult to retrofit to the pump. In addition, when estimating the filling amount of lubricating oil in the present invention, the estimation is performed based on the temperature of the lubricating oil. Thus, the measurement of a single key item allows diagnosis of two key items.

以下、本発明の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本発明の範囲が限定されるわけではない。 Preferred embodiments of the present invention are described below. However, the scope of the present invention is not limited by the preferred embodiments described below.

本発明に係るポンプの診断方法は、一態様として、前記ポンプを停止状態から起動した後の、前記潤滑油の温度を測定する運転時測温工程と、前記運転時測温工程において測定された温度の変化傾向をもとに前記ポンプにおける発熱量を推定する発熱量推定工程と、をさらに有することが好ましい。 As one aspect of the pump diagnostic method according to the present invention, after the pump is started from a stopped state, the temperature of the lubricating oil is measured during operation, and the temperature is measured in the temperature measurement during operation. and a calorific value estimating step of estimating the calorific value of the pump based on the obtained temperature change tendency.

この構成によれば、潤滑油に係る複数の管理項目に基づいて、より精密にポンプの異常またはその兆候の有無を判定しうる。 According to this configuration, it is possible to more precisely determine whether or not there is an abnormality in the pump or a sign thereof based on a plurality of control items related to lubricating oil.

本発明に係るポンプの診断方法は、一態様として、前記発熱量推定工程において、前記油量推定工程において推定された前記充填量に基づいて、推定される前記発熱量を補正することが好ましい。 As one aspect of the pump diagnostic method according to the present invention, in the calorific value estimating step, the estimated calorific value is corrected based on the filling amount estimated in the oil amount estimating step. is preferred.

この構成によれば、より精密に発熱量を推定しうる。 According to this configuration, the calorific value can be estimated more precisely.

本発明に係るポンプの診断方法は、一態様として、前記発熱量推定工程において、推定された前記発熱量が所定の閾値を下回ったときに、前記潤滑油の充填量が不足していると判定することが好ましい。 As one aspect of the pump diagnosing method according to the present invention, in the calorific value estimation step, when the estimated calorific value falls below a predetermined threshold value, the filling amount of the lubricating oil is insufficient. It is preferable to determine that

この構成によれば、潤滑油の不足によりポンプに重大な不具合が生じる前に、潤滑油が不足していることを検知しやすいAccording to this configuration, it is easy to detect the lack of lubricating oil before serious trouble occurs in the pump due to the lack of lubricating oil .

本発明に係るポンプの診断方法は、一態様として、前記ポンプの周辺温度を測定する周辺温度測定工程をさらに有し、前記油量推定工程において、前記周辺温度に基づいて補正した前記変化傾向をもとに前記潤滑油の充填量を推定することが好ましい。 As one aspect, the pump diagnosis method according to the present invention further includes an ambient temperature measuring step of measuring an ambient temperature of the pump, and in the oil amount estimating step, the change corrected based on the ambient temperature It is preferable to estimate the filling amount of the lubricating oil based on the trend .

この構成によれば、ポンプの異常またはその兆候の有無を判定する際の、周辺温度に起因する外乱の影響を抑制しうる
According to this configuration, it is possible to suppress the influence of disturbance caused by the ambient temperature when determining whether or not there is an abnormality in the pump or a symptom thereof .

本発明のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the invention will become clearer from the following description of exemplary and non-limiting embodiments described with reference to the drawings.

本実施形態に係るポンプゲートの開放状態の概要図Schematic diagram of the open state of the pump gate according to the present embodiment 本実施形態に係るポンプゲートの閉鎖状態の概要図Schematic diagram of the closed state of the pump gate according to the present embodiment 本実施形態に係るポンプの診断方法のフロー図Flow chart of the pump diagnostic method according to the present embodiment 本実施形態に係る温度計の設置状態を表す図The figure showing the installation state of the thermometer which concerns on this embodiment. 本実施形態に係るポンプの診断方法において計測される温度の値の経時変化の一例An example of temporal changes in temperature values measured in the pump diagnostic method according to the present embodiment

本発明に係るポンプの診断方法およびポンプ診断装置の実施形態について、図面を参照して説明する。以下では、本発明に係るポンプの診断方法を、流水路100(流路の例)に設置されたポンプゲート1の水中ポンプ3の診断に適用した例について説明する。 An embodiment of a pump diagnostic method and a pump diagnostic device according to the present invention will be described with reference to the drawings. An example in which the pump diagnosis method according to the present invention is applied to diagnosis of a submersible pump 3 of a pump gate 1 installed in a running water channel 100 (an example of a flow channel) will be described below.

〔ポンプゲートの概要〕
まず、本実施形態に係るポンプの診断方法において診断対象とする水中ポンプ3が設置されたポンプゲート1の概要について説明する。ポンプゲート1は、扉体2と、扉体に設けられた水中ポンプ3と、扉体2を上下動させることができる駆動装置4と、を備える(図1)。ポンプゲート1は、河川の本流と支流とが合流する地点において、流水路100に設置されている。流水路100は、支流側流水路101と本流側流水路102とを有する。
[Overview of pump gate]
First, the outline of the pump gate 1 installed with the submersible pump 3 to be diagnosed in the pump diagnostic method according to the present embodiment will be described. The pump gate 1 includes a door 2, a submersible pump 3 provided on the door, and a driving device 4 capable of moving the door 2 up and down (Fig. 1). The pump gate 1 is installed in a flowing water channel 100 at a point where a main stream and a branch stream of a river converge. The water channel 100 has a tributary side water channel 101 and a main stream side water channel 102 .

平常時は、図1に示すように、流水路100を流通する水(流体の例)の水面103(液面の例)より上に扉体2を配置し、水中ポンプ3の運転を停止している。水は、支流側流水路101から本流側流水路102に向かって自然流下する。 Normally, as shown in FIG. 1, the gate 2 is arranged above the water surface 103 (example of liquid surface) of water (example of fluid) flowing through the water channel 100, and the operation of the submersible pump 3 is stopped. ing. Water naturally flows down from the tributary side running water channel 101 toward the main stream side running water channel 102 .

集中豪雨などにより増水すると、本流が増水し、本流側流水路102の水位が上昇する場合がある。このような場合、本流側流水路102から支流側流水路101に向かって水が逆流することを防ぐために、扉体2を下降させ、流水路100を閉塞する(図2)。このとき、水中ポンプ3は、水面103より下に配置される。ここで、水中ポンプ3を運転すると、支流側流水路101から本流側流水路102へと水を付勢し、これを強制的に排出できる。 When the water level rises due to torrential rain or the like, the water level in the mainstream side flowing water channel 102 may rise. In such a case, in order to prevent water from flowing back from the main flow channel 102 toward the branch flow channel 101, the gate 2 is lowered to block the flow channel 100 (FIG. 2). At this time, the submersible pump 3 is arranged below the water surface 103 . Here, when the submersible pump 3 is operated, water is urged from the tributary side water channel 101 to the main stream side water channel 102, and can be forcibly discharged.

水中ポンプ3は、公知の水中ポンプであり、モータと、当該モータにより回転駆動される駆動軸Xと、駆動軸Xに取り付けられた羽根車とを有する。モータを駆動すると羽根車が回転し、当該羽根車の回転により、支流側流水路101側から本流側流水路102側へと水を付勢する。ここで、駆動軸Xの軸封部は、公知のメカニカルシール7により封止されている。メカニカルシール7は、水中ポンプ3のケーシングCに固定される固定環71と、駆動軸Xに固定される回転環72と、を有し、固定環71と回転環72との間にシール部73a、73bが形成される。シール部73a、73bはケーシングCの内部空間である潤滑油室5に充填された潤滑油によって潤滑される(図4)。 The submersible pump 3 is a known submersible pump, and has a motor, a drive shaft X rotationally driven by the motor, and an impeller attached to the drive shaft X. When the motor is driven, the impeller rotates, and the rotation of the impeller urges water from the tributary side water channel 101 side to the main stream side water channel 102 side. Here, the shaft seal portion of the drive shaft X is sealed with a known mechanical seal 7 . The mechanical seal 7 has a fixed ring 71 fixed to the casing C of the submersible pump 3 and a rotary ring 72 fixed to the drive shaft X. A seal portion 73a is provided between the fixed ring 71 and the rotary ring 72. , 73b are formed. The seal portions 73a and 73b are lubricated with lubricating oil filled in the lubricating oil chamber 5, which is the internal space of the casing C (FIG. 4).

〔ポンプゲートの診断〕
ポンプゲート1の性質上、水中ポンプ3は、平常時は運転されず、集中豪雨などの場合のみに運転される。一方で、水中ポンプ3の運転が必要な場合は、緊急の排水が必要な場合であるので、水中ポンプ3が確実に運転できることが求められる。すなわち、平常時の運転状態に基づいて故障またはその兆候を検知する機会が乏しいにもかかわらず、故障を確実に防止することが求められる。そのような要求に鑑みて、水中ポンプ3について定期的な診断が行われ、故障およびその兆候の有無が検査される。本実施形態に係るポンプの診断方法は、運転時測温工程S10、停止時測温工程S20、および推定工程S30を有する。ここで推定工程は、油量推定工程S31および発熱量推定工程S32を有する(図3)。以下では、各工程の内容について説明する。
[Pump gate diagnosis]
Due to the nature of the pump gate 1, the submersible pump 3 is not operated in normal times, and is operated only in cases such as torrential rain. On the other hand, when the operation of the submersible pump 3 is required, it is required to operate the submersible pump 3 reliably because it is a case of emergency drainage. In other words, there is a need to reliably prevent failures even though there is little opportunity to detect failures or signs thereof based on normal operating conditions. In view of such requirements, periodic diagnostics are performed on the submersible pump 3 to check for failures and their symptoms. The pump diagnosis method according to the present embodiment includes an operation temperature measurement step S10, a stop temperature measurement step S20, and an estimation step S30. Here, the estimation process has an oil amount estimation process S31 and a calorific value estimation process S32 (Fig. 3). Below, the content of each process is demonstrated.

診断を行う前に、水中ポンプ3の潤滑油室5に温度計6(測温部の例)を設置する。より具体的には、熱電対として実装される温度計6のプローブを、その先端61が潤滑油の液面L1より下に配置されるように潤滑油室5に設置する(図4)。なお、先端61の詳細な位置については後述する。また、温度計6により測定された温度の値は、温度計6と接続可能なコンピュータ(不図示)(診断部、油量推定部、および発熱量推定部の例)に入力され、コンピュータ上における解析処理に温度の値を用いることができる。上記の温度計6およびコンピュータとしては、公知のものを使用できる。 Before diagnosis, a thermometer 6 (an example of a temperature measuring section) is installed in the lubricating oil chamber 5 of the submersible pump 3 . More specifically, the probe of the thermometer 6 implemented as a thermocouple is installed in the lubricating oil chamber 5 so that its tip 61 is positioned below the liquid level L1 of the lubricating oil (FIG. 4). A detailed position of the tip 61 will be described later. Further, the temperature value measured by the thermometer 6 is input to a computer (not shown) (example of a diagnostic unit, an oil amount estimating unit, and a calorific value estimating unit) connectable to the thermometer 6, and Temperature values can be used in the analytical process. As the thermometer 6 and the computer, known ones can be used.

運転時測温工程S10は、本実施形態に係るポンプの診断方法の最初の工程として行われる工程であり、水中ポンプ3を運転しながら潤滑油の温度を測定する工程である。運転時測温工程S10を開始する時点において水中ポンプ3は完全に停止した状態であり、水中ポンプ3は完全に停止した状態から起動されることになる。なお、運転時測温工程S10は、平常時におけるポンプゲート1の状態、すなわち、流水路100を流通する水の水面103より上に扉体2を配置し、したがって水中ポンプ3を水面103より上に配置した状態(図1)で実施する。 The operating temperature measurement step S10 is a step performed as the first step of the pump diagnosis method according to the present embodiment, and is a step of measuring the temperature of the lubricating oil while the submersible pump 3 is in operation. The submersible pump 3 is in a completely stopped state at the time when the operating temperature measurement step S10 is started, and the submersible pump 3 is started from a completely stopped state. Note that the operating temperature measurement step S10 is the normal state of the pump gate 1, that is, the gate body 2 is arranged above the water surface 103 of the water flowing through the water channel 100, so that the submersible pump 3 is placed above the water surface 103. It is carried out in the state (Fig. 1) placed in the

上記のように水中ポンプ3は完全に停止した状態から起動されるため、水中ポンプ3を起動した時点における潤滑油の温度は、気温(周辺温度の例)と同等である。そして、水中ポンプ3を運転するとメカニカルシールにおいて摩擦熱が生じるため、潤滑油の温度は徐々に上昇する。図5は、潤滑油の温度の経時変化を示しており、図5中の区間P1が、運転時測温工程S10に対応する。より詳細には、区間P1の始点P1aにおいて水中ポンプ3を起動し、区間P1の終点P1bにおいて水中ポンプ3を停止する。 Since the submersible pump 3 is started from a completely stopped state as described above, the temperature of the lubricating oil at the time when the submersible pump 3 is started is equivalent to the air temperature (an example of ambient temperature). When the submersible pump 3 is operated, frictional heat is generated in the mechanical seal, so the temperature of the lubricating oil gradually rises. FIG. 5 shows changes over time in the temperature of the lubricating oil, and the section P1 in FIG. 5 corresponds to the operating temperature measurement step S10. More specifically, the submersible pump 3 is started at the start point P1a of the section P1, and stopped at the end point P1b of the section P1.

続く停止時測温工程S20は、運転時測温工程S10の最後に水中ポンプ3を停止したときを始点とする工程であり、水中ポンプ3の運転を停止した後の潤滑油の温度を測定する工程である。停止時測温工程S20では、水中ポンプ3の運転を停止しているので、潤滑油の温度を上昇させる摩擦熱は発生しない。一方、運転時測温工程S10において潤滑油の温度が気温より高い温度に上昇しているため、潤滑油の温度は放熱により徐々に低下する。図5では、運転時測温工程S10(区間P1)の終点P1bを始点とする区間P2が、停止時測温工程S20に対応する。なお、水中ポンプ3の運転の停止が継続する場合は、所定の時間の経過をもって停止時測温工程S20を終了する。 The subsequent temperature measurement step S20 at the time of operation is a step that starts when the submersible pump 3 is stopped at the end of the temperature measurement step S10 at the time of operation, and measures the temperature of the lubricating oil after the operation of the submersible pump 3 is stopped. It is a process. In the stop temperature measurement step S20, since the operation of the submersible pump 3 is stopped, frictional heat that raises the temperature of the lubricating oil is not generated. On the other hand, since the temperature of the lubricating oil has risen to a temperature higher than the air temperature in the operating temperature measurement step S10, the temperature of the lubricating oil gradually decreases due to heat radiation. In FIG. 5, a section P2 starting from the end point P1b of the operating temperature measurement step S10 (section P1) corresponds to the stop temperature measurement step S20. If the operation of the submersible pump 3 continues to be stopped, the stop temperature measurement step S20 ends after a predetermined period of time has elapsed.

推定工程S30は、運転時測温工程S10および停止時測温工程S20において収集された温度の値に基づいて、潤滑油の充填量と、水中ポンプ3における発熱量とを推定する。推定されるこれらの情報は、水中ポンプ3が正常に運転可能であるか否かを判断する材料になりうる。以下では、推定工程S30に含まれる油量推定工程S31および発熱量推定工程S32について順に説明する。 The estimation step S30 estimates the filling amount of lubricating oil and the amount of heat generated in the submersible pump 3 based on the temperature values collected in the operating temperature measurement step S10 and the stop temperature measurement step S20. These estimated information can be the material for determining whether or not the submersible pump 3 can be operated normally. Below, the oil amount estimation step S31 and the calorific value estimation step S32 included in the estimation step S30 will be described in order.

油量推定工程S31は、潤滑油室5における潤滑油の充填量を推定する工程である。潤滑油の充填量が所定の下限を下回る場合、メカニカルシールの潤滑ができず、メカニカルシールの破損などの不具合を生じるおそれがある。そのため、潤滑油の充填量は水中ポンプ3の重要な管理項目である。なお、以降の説明において、潤滑油の充填量が所定の基準値の範囲内にある状態を「基準状態」という。 The oil amount estimation step S31 is a step of estimating the amount of lubricating oil filled in the lubricating oil chamber 5 . If the filling amount of the lubricating oil is less than the predetermined lower limit, the mechanical seal cannot be lubricated, and there is a possibility that problems such as breakage of the mechanical seal may occur. Therefore, the filling amount of lubricating oil is an important control item for the submersible pump 3 . In the following description, a state in which the amount of lubricating oil filled is within a predetermined reference value range is referred to as a "reference state."

油量推定工程S31では、停止時測温工程S20において収集された温度の値をもとに、単位時間当たりの温度変化ΔToff(温度の変化傾向の例)を算出する。図5では、区間P2における温度の傾きがΔToffを表す。ここで、停止時測温工程S20において潤滑油の温度が徐々に低下するため、ΔToffは負の値になる。 In the oil amount estimating step S31, a temperature change ΔT off per unit time (example of temperature change tendency) is calculated based on the temperature values collected in the stop temperature measuring step S20. In FIG. 5, the slope of the temperature in section P2 represents ΔToff . Here, ΔT off becomes a negative value because the temperature of the lubricating oil gradually decreases in the stop temperature measurement step S20.

潤滑油の充填量が所定の下限を下回ると、潤滑油の液面が低くなる(図5の二点鎖線L2)。このとき、先端61が液面より上に露出し、温度計6は潤滑油の温度ではなく空気の温度を検出することになる。ここで、メカニカルシールにおける摩擦熱は潤滑油の温度を上昇させるが、その熱は空気まではほとんど伝熱しないことから、水中ポンプ3の運転に伴う温度上昇幅が小さくなる(図5の二点鎖線)。そのため、ΔToffの絶対値が基準値より小さくなる。したがって、停止時測温工程S20において算出されるΔToffが所定の基準値より大きい(絶対値が小さい)ときは、潤滑油の充填量が所定の下限を下回っていると判断できる。なお上記の基準値は、潤滑油の充填量が所定の下限にあるときの単位時間当たりの温度変化に基づいて設定される。 When the filling amount of lubricating oil falls below a predetermined lower limit, the liquid level of lubricating oil becomes low (chain double-dashed line L2 in FIG. 5). At this time, the tip 61 is exposed above the liquid surface, and the thermometer 6 detects the temperature of the air instead of the temperature of the lubricating oil. Here, the frictional heat in the mechanical seal raises the temperature of the lubricating oil, but the heat is hardly transferred to the air, so the temperature rise width accompanying the operation of the submersible pump 3 becomes small (two points in FIG. 5 dashed line). Therefore, the absolute value of ΔT off becomes smaller than the reference value. Therefore, when the ΔT off calculated in the stop temperature measurement step S20 is larger than the predetermined reference value (the absolute value is small), it can be determined that the amount of lubricating oil charged is below the predetermined lower limit. The above reference value is set based on the temperature change per unit time when the amount of lubricating oil filled is at the predetermined lower limit.

また、潤滑油の充填量が多いほど潤滑油全体の熱容量が大きくなるため、ΔToffの絶対値が小さくなる。たとえば、図5の実線と一点鎖線とを比較すると、一点鎖線のほうがΔToffの絶対値が大きい。したがって、図5の一点鎖線は、実線よりも潤滑油の充填量が少ない状態を表している。このように、潤滑油の充填量とΔToffとの関係をあらかじめ明らかにしておけば、算出されたΔToffの値に基づいて潤滑油の充填量Vを推定できる。 Further, the larger the amount of lubricating oil filled, the larger the heat capacity of the entire lubricating oil, so the absolute value of ΔT off becomes smaller. For example, comparing the solid line and the one-dot chain line in FIG. 5, the one-dot chain line has a larger absolute value of ΔToff . Therefore, the dashed-dotted line in FIG. 5 represents a state in which the amount of lubricating oil filled is smaller than that of the solid line. Thus, if the relationship between the filling amount of lubricating oil and ΔT off is clarified in advance, the filling amount V of lubricating oil can be estimated based on the calculated value of ΔT off .

発熱量推定工程S32は、水中ポンプ3における発熱量を推定する工程である。水中ポンプ3において、メカニカルシールの摺動状態が変わると発熱量が変わる。たとえば、摺動状態が悪い場合は発熱量が大きくなる。また、反対に摺動状態が良い場合は発熱量が小さくなるが、発熱量が過度に小さいときは、摺動部に流体が潤沢に存在すること、すなわち潤滑油または水の漏れが大きくなっていることが疑われる。そのため、発熱量を推定できれば、メカニカルシールの故障またはその兆候を検知する重要な手掛かりとなる。 The calorific value estimation step S<b>32 is a step of estimating the calorific value of the submersible pump 3 . In the submersible pump 3, the amount of heat generated changes as the sliding state of the mechanical seal changes. For example, if the sliding condition is poor, the amount of heat generated increases. On the other hand, if the sliding condition is good, the amount of heat generated will be small. suspected to be Therefore, if the amount of heat generated can be estimated, it will be an important clue to detect mechanical seal failure or its symptoms.

発熱量推定工程S32では、運転時測温工程S10において収集された温度の値をもとに、単位時間当たりの温度変化ΔTon(温度の変化傾向の例)を算出する。図5では、区間P1における温度の傾きがΔTonを表す。ここで、運転時測温工程S10において潤滑油の温度が徐々に上昇するため、ΔTonは正の値になる。ここで、算出されたΔTonが所定の基準値より大きい場合は、メカニカルシールが正常な状態に比べて発熱量が多い状態である可能性がある。反対に、算出されたΔTonが所定の基準値より小さい場合は、摺動部において漏洩量が増大している可能性がある。このように、算出されたΔTonの値によって、故障またはその兆候が存在する可能性が示される。なお、上記の基準値は、水中ポンプ3が正常であることが保証されている状態(製造時の完成検査後など)における単位時間当たりの温度変化に基づいて設定される。 In the calorific value estimation step S32, a temperature change ΔT on per unit time (an example of temperature change tendency) is calculated based on the temperature values collected in the operating temperature measurement step S10. In FIG. 5, the slope of the temperature in section P1 represents ΔT on . Here, since the temperature of the lubricating oil gradually rises in the operating temperature measurement step S10, ΔT on becomes a positive value. Here, when the calculated ΔT on is larger than a predetermined reference value, there is a possibility that the amount of heat generated is larger than when the mechanical seal is in a normal state. Conversely, if the calculated ΔT on is smaller than the predetermined reference value, there is a possibility that the amount of leakage has increased in the sliding portion. Thus, the calculated value of ΔT on indicates the likelihood that a fault or symptom thereof exists. The above reference value is set based on the temperature change per unit time in a state where the submersible pump 3 is guaranteed to be normal (such as after a final inspection at the time of manufacture).

また、潤滑油の単位時間当たりの温度変化であるΔTonは、発熱量の他に、潤滑油全体の熱容量や放熱量などのパラメータの影響を受ける。ここで、発熱量以外のパラメータが一定であるとの仮定を置くと、ΔTonに基づいて発熱量Qを算出できる(式(1))。
Q=C・d・V・ΔTon+H 式(1)
ただし、式(1)において、Cは潤滑油の比熱であり、dは潤滑油の密度であり、Vは潤滑油の体積であり、Hは放熱量である。ここで、Cおよびdは潤滑油の物質に基づく定数であり、VおよびHは水中ポンプ3の構造および潤滑油充填量の標準値に基づく定数である。
Also, ΔT on , which is the temperature change per unit time of the lubricating oil, is affected by parameters such as the heat capacity and heat dissipation of the lubricating oil as a whole, in addition to the amount of heat generated. Here, if it is assumed that parameters other than the calorific value are constant, the calorific value Q can be calculated based on ΔT on (equation (1)).
Q=C・d・V 0・ΔT on +H formula (1)
However, in equation (1), C is the specific heat of the lubricating oil, d is the density of the lubricating oil, V0 is the volume of the lubricating oil, and H is the heat release amount. where C and d are constants based on the substance of the lubricating oil, and V 0 and H are constants based on the structure of the submersible pump 3 and the standard value of the lubricating oil filling amount.

さらに、式(1)においては潤滑油の体積を一定値Vに仮定したが、これを油量推定工程S31において算出された潤滑油の充填量Vに置き換えると、発熱量の推定がより正確になる。補正された発熱量Qは、以下の式(2)により表される。
=(Q-H)・V/V+H 式(2)
Furthermore, in the equation (1), the volume of the lubricating oil is assumed to be a constant value V 0 , but if this is replaced with the filling amount V of the lubricating oil calculated in the oil amount estimation step S31, the calorific value can be estimated more accurately. become. The corrected calorific value Qc is represented by the following equation (2).
Qc =(Q−H)·V/ V0 +H Formula (2)

以上の手順により、水中ポンプ3における潤滑油の充填量Vおよび発熱量Q(またはQ)を推定できる。ポンプゲート1の管理者は、推定された充填量Vおよび発熱量Qに基づいて水中ポンプ3の故障またはその兆候を検知し、水中ポンプ3の保守を行うことができる。 Through the above procedure, the filling amount V of the lubricating oil and the calorific value Q c (or Q) in the submersible pump 3 can be estimated. A manager of the pump gate 1 can detect failure or signs of failure of the submersible pump 3 based on the estimated filling amount V and calorific value Qc , and perform maintenance of the submersible pump 3 .

〔上記の実施形態の変形例〕
上記の実施形態において説明した運転時測温工程S10、停止時測温工程S20、および推定工程S30に加えて、周辺温度測定工程を設けてもよい。周辺温度測定工程では、水中ポンプ3の設置場所の周辺温度を公知の温度計を用いて測定する工程である。ここで、周辺温度としては気温や水温などが例示されるが、当変形例では周辺温度として気温を用いる実施形態について説明する。周辺温度測定工程は、運転時測温工程S10および停止時測温工程S20を実施したときと気温が同一視できる期間内であれば任意の時期に実行でき、たとえば、運転時測温工程S10の直前、運転時測温工程S10と停止時測温工程S20との間、停止時測温工程S20の直後、などに実行できる。なおこのとき、潤滑油室5に温度計6を設置する前に周辺温度測定工程を実施し、温度計6を用いて気温を測定するようにしてもよい。測定された気温の値は、コンピュータに入力される。
[Modification of above embodiment]
In addition to the operating temperature measurement step S10, stop temperature measurement step S20, and estimation step S30 described in the above embodiment, an ambient temperature measurement step may be provided. The ambient temperature measurement step is a step of measuring the ambient temperature of the location where the submersible pump 3 is installed using a known thermometer. Here, air temperature, water temperature, and the like are exemplified as the ambient temperature, but in this modified example, an embodiment using air temperature as the ambient temperature will be described. The ambient temperature measurement step can be performed at any time within a period in which the temperature can be the same as when the temperature measurement step S10 during operation and the temperature measurement step S20 are performed. It can be executed immediately before, between the operating temperature measurement step S10 and the stop temperature measurement step S20, and immediately after the stop temperature measurement step S20. At this time, the surrounding temperature may be measured before installing the thermometer 6 in the lubricating oil chamber 5 so that the temperature can be measured using the thermometer 6 . The measured temperature values are entered into a computer.

一般に、空気中における物体からの放熱量は、当該物体と気温との温度差に比例する。そのため、ΔToffは気温の影響を受けうる。すなわち、気温が低いときは水中ポンプ3から空気に放熱される熱量が大きくなるため、ΔToffは小さくなる。反対に、気温が高いときは、ΔToffは大きくなる。本実施形態に係るポンプの診断方法が気温測定工程を含む場合、気温の測定値に基づいてΔToffを補正しうる。 In general, the amount of heat released from an object in the air is proportional to the temperature difference between the object and the air temperature. Therefore, ΔT off can be affected by temperature. That is, when the air temperature is low, the amount of heat radiated from the submersible pump 3 to the air increases, so ΔToff decreases. Conversely, when the air temperature is high, ΔT off increases. If the method for diagnosing a pump according to the present embodiment includes an air temperature measurement step, ΔT off can be corrected based on the measured air temperature.

なお、上記の変形例において気温を測定するときに、空気の温度を直接測定しなくてもよい。たとえば、水中ポンプ3が最後に運転されてから十分に時間が経過しているとき、潤滑油の温度と気温とも同一視しうる。したがって、運転時測温工程S10の開始前に測定した潤滑油の温度を、周辺温度として用いてもよい。 It should be noted that it is not necessary to directly measure the temperature of the air when measuring the air temperature in the above modified example. For example, when a sufficient amount of time has passed since the submersible pump 3 was last operated, the lubricating oil temperature can be equated with the air temperature. Therefore, the lubricating oil temperature measured before the start of the operating temperature measurement step S10 may be used as the ambient temperature.

〔その他の実施形態〕
最後に、本発明に係るポンプの診断方法のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
[Other embodiments]
Finally, another embodiment of the pump diagnostic method according to the present invention will be described. It should be noted that the configurations disclosed in the respective embodiments below can also be applied in combination with configurations disclosed in other embodiments unless there is a contradiction.

上記の実施形態では、本発明に係る診断方法をポンプゲート1(水中ポンプ3)の診断に適用した構成を例として説明した。しかし、本発明に係るポンプの診断方法は、排水機場ポンプ、マンホールポンプ、陸上ポンプなどのポンプの診断にも適用できる。 In the above-described embodiment, the configuration in which the diagnosis method according to the present invention is applied to the diagnosis of the pump gate 1 (submersible pump 3) has been described as an example. However, the method for diagnosing a pump according to the present invention can also be applied to diagnosing a pump such as a drainage station pump, a manhole pump, or a land pump.

上記の実施形態では、運転時測温工程S10および停止時測温工程S20を含む態様のポンプの診断方法の例について説明した。しかし、本発明に係るポンプの診断方法は、運転時測温工程および停止時測温工程の一方を含まなくてもよい。 In the above embodiment, an example of the pump diagnosis method including the operating temperature measurement step S10 and the stop temperature measurement step S20 has been described. However, the method for diagnosing a pump according to the present invention does not have to include one of the operating temperature measurement step and the stop temperature measurement step.

上記の実施形態では、運転時測温工程S10および停止時測温工程S20を一回ずつ含む態様のポンプの診断方法の例について説明した。しかし、本発明に係るポンプの診断方法は、運転時測温工程および停止時測温工程を複数回含んでもよい。また、運転時測温工程と停止時測温工程との回数が異なってもよい。 In the above-described embodiment, an example of the pump diagnosis method including the temperature measurement step S10 during operation and the temperature measurement step S20 during stop has been described. However, the method for diagnosing a pump according to the present invention may include the step of temperature measurement during operation and the step of temperature measurement during stop multiple times. Further, the number of times of the temperature measurement process during operation and the temperature measurement process during stop may be different.

上記の実施形態では、運転時測温工程S10および停止時測温工程S20を、水中ポンプ3を水面103より上に配置した状態で実施する構成について説明した。しかし、本発明に係るポンプの診断方法において、運転時測温工程および停止時測温工程を、ポンプを水中に配置した状態で実施してもよい。なお、この場合において周辺温度測定工程を設ける場合は、周辺温度として水温を測定することが好ましい。 In the above-described embodiment, the temperature measurement step S10 during operation and the temperature measurement step S20 during stop are performed with the submersible pump 3 placed above the water surface 103 . However, in the method for diagnosing a pump according to the present invention, the step of temperature measurement during operation and the step of temperature measurement during stop may be performed while the pump is placed in water. In this case, if an ambient temperature measuring step is provided, it is preferable to measure the water temperature as the ambient temperature.

上記の実施形態では、発熱量推定工程S32において、油量推定工程S31で推定した潤滑油の充填量Vに基づいて発熱量Qを補正する構成を例として説明した。しかし、本発明に係るポンプの診断方法が発熱量推定工程を含む場合、推定された潤滑油の充填量に基づく発熱量の補正は、行われなくてもよい。 In the above-described embodiment, in the calorific value estimating step S32, the calorific value Q is corrected based on the filling amount V of the lubricating oil estimated in the oil amount estimating step S31. However, if the pump diagnosis method according to the present invention includes the calorific value estimation step, the calorific value based on the estimated filling amount of lubricating oil need not be corrected.

本発明に係るポンプの診断方法において、温度を測定するための装置は、診断の度に設置されてもよいし、常設されていてもよい。 In the method for diagnosing a pump according to the present invention, the device for measuring temperature may be installed each time diagnosis is performed, or may be permanently installed.

本発明に係るポンプの診断方法は、発熱量推定工程において、推定された発熱量が所定の閾値を下回ったときに、潤滑油の充填量が不足していると判定するように構成されてもよい。また、この場合、潤滑油の充填量が不足していると判定したときに、診断結果とは別に警報を発報するようにしてもよい。 The method for diagnosing a pump according to the present invention may be configured to determine in the calorific value estimation step that the amount of lubricating oil charged is insufficient when the estimated calorific value falls below a predetermined threshold. good. Further, in this case, when it is determined that the amount of lubricating oil filled is insufficient, an alarm may be issued separately from the diagnosis result.

本発明に係るポンプの診断方法が運転時測温工程を有する場合において、運転時測温工程において測定された温度が所定の上限値を超えたときに、診断結果とは別に警報を発報するようにしてもよい。 In the case where the method for diagnosing a pump according to the present invention includes the step of temperature measurement during operation, when the temperature measured in the step of temperature measurement during operation exceeds a predetermined upper limit value, an alarm is issued separately from the diagnosis result. You may do so.

本発明に係るポンプの診断方法において、運転時測温工程および停止時測温工程において収集された温度およびその経時変化に関する情報、油量推定工程で推定された潤滑油の充填量に関する情報、および発熱量推定工程において推定された潤滑油の発熱量に関する情報などを、公知のサーバ装置に蓄積してもよい。このように構成すると、サーバ装置に蓄積された診断に係る諸情報を遠隔地において確認できる。 In the method for diagnosing a pump according to the present invention, information about the temperature and its change over time collected in the temperature measurement step during operation and the temperature measurement step when stopped, information about the filling amount of lubricating oil estimated in the oil amount estimation step, and Information about the calorific value of the lubricating oil estimated in the calorific value estimation step may be accumulated in a known server device. With this configuration, it is possible to remotely confirm various information related to diagnosis accumulated in the server device.

その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 Regarding other configurations, it should be understood that the embodiments disclosed in this specification are examples in all respects, and that the scope of the present invention is not limited by them. Those skilled in the art will easily understand that modifications can be made as appropriate without departing from the scope of the present invention. Therefore, other embodiments modified without departing from the gist of the present invention are naturally included in the scope of the present invention.

本発明は、たとえば流水路に設置されたポンプゲートの水中ポンプを診断する方法として利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used, for example, as a method for diagnosing a submersible pump of a pump gate installed in a running water channel.

1 :ポンプゲート
2 :扉体
3 :水中ポンプ
4 :駆動装置
5 :潤滑油室
6 :温度計
61 :温度計のプローブの先端
7 :メカニカルシール
71 :固定環
L1 :潤滑油の液面(基準状態)
L2 :潤滑油の液面(充填量減少時)
X :駆動軸
100 :流水路
101 :支流側流水路
102 :本流側流水路
103 :水面
P1 :区間(運転時測温工程S10)
P1a :始点(運転時測温工程S10)
P1b :終点(運転時測温工程S10)
P2 :区間(停止時測温工程S20)
ΔTon :温度変化(運転時測温工程S10)
ΔToff :温度変化(停止時測温工程S20)
1: Pump gate 2: Gate body 3: Submersible pump 4: Driving device 5: Lubricating oil chamber 6: Thermometer 61: Thermometer probe tip 7: Mechanical seal 71: Fixed ring L1: Lubricating oil level (reference situation)
L2: Liquid level of lubricating oil (when filling amount decreases)
X: drive shaft 100: water channel 101: tributary side water channel 102: main stream side water channel 103: water surface P1: section (operation temperature measurement step S10)
P1a: starting point (operational temperature measurement step S10)
P1b: end point (operational temperature measurement step S10)
P2: section (stop temperature measurement step S20)
ΔT on : temperature change (operational temperature measurement step S10)
ΔT off : temperature change (stop temperature measurement step S20)

Claims (6)

軸封部にメカニカルシールを有するポンプの診断方法であって、
前記ポンプの運転を停止した後の、前記メカニカルシールに流通する潤滑油の温度を測定する停止時測温工程と、
前記停止時測温工程において測定された温度の変化傾向をもとに前記潤滑油の充填量を推定する油量推定工程と、を有するポンプの診断方法。
A diagnostic method for a pump having a mechanical seal in a shaft seal, comprising:
A stopping temperature measuring step of measuring the temperature of the lubricating oil flowing through the mechanical seal after the operation of the pump is stopped;
an oil amount estimation step of estimating the filling amount of the lubricating oil based on the temperature change tendency measured in the stop temperature measurement step.
前記ポンプを停止状態から起動した後の、前記潤滑油の温度を測定する運転時測温工程と、
前記運転時測温工程において測定された温度の変化傾向をもとに前記ポンプにおける発熱量を推定する発熱量推定工程と、をさらに有する請求項1に記載のポンプの診断方法。
an operating temperature measuring step of measuring the temperature of the lubricating oil after starting the pump from a stopped state;
2. The pump diagnostic method according to claim 1, further comprising a calorific value estimation step of estimating a calorific value of the pump based on the temperature change tendency measured in the operating temperature measurement step.
前記発熱量推定工程において、前記油量推定工程において推定された前記充填量に基づいて、推定される前記発熱量を補正する請求項2に記載のポンプの診断方法。 3. The method of diagnosing a pump according to claim 2, wherein in the calorific value estimation step, the estimated calorific value is corrected based on the filling amount estimated in the oil amount estimating step. 前記発熱量推定工程において、推定された前記発熱量が所定の閾値を下回ったときに、前記潤滑油の充填量が不足していると判定する請求項2または3に記載のポンプの診断方法。 4. The method of diagnosing a pump according to claim 2, wherein in the calorific value estimating step, it is determined that the filling amount of the lubricating oil is insufficient when the estimated calorific value falls below a predetermined threshold value. 前記ポンプの周辺温度を測定する周辺温度測定工程をさらに有し、
前記油量推定工程において、前記周辺温度に基づいて補正した前記変化傾向をもとに前記潤滑油の充填量を推定する請求項1~のいずれか一項に記載のポンプの診断方法。
further comprising an ambient temperature measuring step of measuring the ambient temperature of the pump;
The pump diagnosis method according to any one of claims 1 to 4 , wherein in the oil amount estimation step, the filling amount of the lubricating oil is estimated based on the change tendency corrected based on the ambient temperature.
軸封部にメカニカルシールを有するポンプを診断可能なポンプ診断装置であって、
前記メカニカルシールに流通する潤滑油の温度を測定可能な測温部と、前記測温部により測定された温度の変化傾向をもとに前記ポンプの状態を診断可能な診断部と、を備え、
前記診断部は、
前記ポンプの運転を停止した後の、前記メカニカルシールに流通する潤滑油の温度を、前記測温部を用いて測定する停止時測温機能と、
前記停止時測温機能において測定された温度の変化傾向をもとに前記潤滑油の充填量を推定する油量推定機能と、を実現可能であるポンプ診断装置。
A pump diagnostic device capable of diagnosing a pump having a mechanical seal in a shaft seal,
A temperature measuring unit capable of measuring the temperature of lubricating oil flowing through the mechanical seal, and a diagnostic unit capable of diagnosing the state of the pump based on the temperature change tendency measured by the temperature measuring unit,
The diagnosis unit
A stopping temperature measuring function for measuring the temperature of lubricating oil flowing through the mechanical seal after the operation of the pump is stopped using the temperature measuring unit;
and an oil amount estimating function for estimating the filling amount of the lubricating oil based on the temperature change tendency measured by the stop temperature measuring function.
JP2019233264A 2019-12-24 2019-12-24 Pump diagnostic method and pump diagnostic device Active JP7288847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019233264A JP7288847B2 (en) 2019-12-24 2019-12-24 Pump diagnostic method and pump diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019233264A JP7288847B2 (en) 2019-12-24 2019-12-24 Pump diagnostic method and pump diagnostic device

Publications (2)

Publication Number Publication Date
JP2021102925A JP2021102925A (en) 2021-07-15
JP7288847B2 true JP7288847B2 (en) 2023-06-08

Family

ID=76754917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233264A Active JP7288847B2 (en) 2019-12-24 2019-12-24 Pump diagnostic method and pump diagnostic device

Country Status (1)

Country Link
JP (1) JP7288847B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038133A (en) 2004-07-28 2006-02-09 Hitachi Constr Mach Co Ltd Warning control device of construction machine
JP2019002522A (en) 2017-06-19 2019-01-10 ファナック株式会社 Abnormal abrasion detection device for seal member, and rotor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724954Y2 (en) * 1976-11-13 1982-05-29
JP3122011B2 (en) * 1995-06-07 2001-01-09 株式会社荏原製作所 Submersible pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038133A (en) 2004-07-28 2006-02-09 Hitachi Constr Mach Co Ltd Warning control device of construction machine
JP2019002522A (en) 2017-06-19 2019-01-10 ファナック株式会社 Abnormal abrasion detection device for seal member, and rotor device

Also Published As

Publication number Publication date
JP2021102925A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US20200386091A1 (en) State estimation and run life prediction for pumping system
US20070185655A1 (en) Wellbore Diagnostic System and Method
JP6488174B2 (en) Drainage pump station, pump management method, and pump management system
US20120247200A1 (en) Method of detecting wear in a pump driven with a frequency converter
US10634583B2 (en) Condition monitoring method
US10378332B2 (en) Monitoring a component used in a well operation
KR101933091B1 (en) Tunnel system for controlling the inflow and control method thereof
JP7288847B2 (en) Pump diagnostic method and pump diagnostic device
US20240003352A1 (en) Adaptive Learning System for Improving Sump Pump Control
JP2008063954A (en) Abnormality diagnostic method of drainage pump and its device
JP3155095B2 (en) Lubricating oil monitoring device for internal combustion engine
JP2022055239A (en) Diagnostic method for pump
JP4637614B2 (en) Submersible pump oil monitoring device
US20200282371A1 (en) Monitoring device, monitoring method, and program
CN107605463A (en) A kind of pit shaft hydrodynamic face monitoring method for drilling leakage blockage construction
JP7461262B2 (en) Pump diagnostic method, pump gate diagnostic method, and pump diagnostic device
CN105189912A (en) Improved air-driven degasser assembly
JP2013174619A (en) Method and device for estimating property of concrete
JP7286509B2 (en) Pump facility, diagnostic device for pump facility, monitoring control device, supervisory control method, supervisory control program, diagnostic method for pump facility, diagnostic program for pump facility
JP2019070361A (en) Pump installation soundness evaluation method
JP2021102924A (en) Diagnosis method for pump, diagnosis method for pump gate, and pump diagnosis device
JP2020200892A (en) Gear damage prediction device, gear damage prediction system and gear damage prediction method
JP2023094732A (en) Pump diagnosis method
JP5914093B2 (en) Gas shut-off device
CN112413098B (en) Dynamic oil pressure characteristic quantity-based static oil level measuring method for lubricating oil of mining speed reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7288847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150