JP7287634B2 - Method for producing purified platelets - Google Patents

Method for producing purified platelets Download PDF

Info

Publication number
JP7287634B2
JP7287634B2 JP2017545489A JP2017545489A JP7287634B2 JP 7287634 B2 JP7287634 B2 JP 7287634B2 JP 2017545489 A JP2017545489 A JP 2017545489A JP 2017545489 A JP2017545489 A JP 2017545489A JP 7287634 B2 JP7287634 B2 JP 7287634B2
Authority
JP
Japan
Prior art keywords
platelets
cells
megakaryocyte
culture
platelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017545489A
Other languages
Japanese (ja)
Other versions
JPWO2017065280A1 (en
Inventor
秀徳 広瀬
路子 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Megakaryon Corp
Original Assignee
Megakaryon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megakaryon Corp filed Critical Megakaryon Corp
Publication of JPWO2017065280A1 publication Critical patent/JPWO2017065280A1/en
Application granted granted Critical
Publication of JP7287634B2 publication Critical patent/JP7287634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/19Platelets; Megacaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • B04B7/14Inserts, e.g. armouring plates for separating walls of conical shape
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0644Platelets; Megakaryocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2527/00Culture process characterised by the use of mechanical forces, e.g. strain, vibration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Description

本発明は、巨核球細胞の培養物から精製血小板を製造する方法等に関する。 TECHNICAL FIELD The present invention relates to a method for producing purified platelets from a culture of megakaryocyte cells, and the like.

血小板製剤は、手術時や傷害時の大量出血、或いは、抗がん剤治療後の血小板減少に伴う出血傾向を呈する患者に対して、その症状の治療および予防を目的として投与される。現在、血小板製剤の製造は、健常ボランティアによる献血に依存している。しかし、日本では人口構成に起因して献血者数が減少しており、2027年には約100万人分の献血が不足すると推測されている。したがって、血小板の安定供給は当技術分野の重要な課題である。 Platelet preparations are administered to patients who exhibit massive bleeding during surgery or injury, or bleeding tendencies associated with decreased platelets after treatment with anticancer agents, for the purpose of treatment and prevention of such symptoms. Currently, production of platelets relies on blood donations by healthy volunteers. However, in Japan, the number of blood donors is declining due to the demographic structure, and it is estimated that there will be a shortage of about 1 million blood donations by 2027. Therefore, a stable supply of platelets is an important issue in the art.

また、従来の血小板製剤は、細菌汚染によるリスクが高いため、血小板製剤の移植後に重篤な感染症を引き起こす可能性がある。そのため、臨床現場では、常に、より安全な血小板製剤が求められている。そのニーズに応えるべく、今日では、in vitroで培養した巨核球細胞から血小板を産生する方法が開発されている。 In addition, conventional platelets are at high risk of bacterial contamination, which can lead to serious infections after platelet transplantation. Therefore, safer platelet preparations are always required in clinical practice. In order to meet the needs, today, a method for producing platelets from in vitro cultured megakaryocyte cells is being developed.

血小板製剤を輸血する際、稀に輸血副作用(蕁麻疹やアナフィラキシー反応など)を発症する場合がある。これは、血小板製剤に含まれている血漿が原因の一つと考えられている。そこで、輸血副作用を予防するために、血小板製剤中の血漿を人工的に調製した液(洗浄保存液)で置換する方法が開発されている。例えば、濃厚血小板製剤の血小板を洗浄するために、分離ボウルを備えた遠心分離装置を用いて血小板を洗浄する方法がある。ここで言う濃厚血小板製剤とは、血液成分採血により、白血球の大部分を除去して採取した血小板を血漿に浮遊させたものである。 In rare cases, transfusion side effects (urticaria, anaphylactic reaction, etc.) may occur when platelet products are transfused. One of the reasons for this is considered to be plasma contained in platelet preparations. Therefore, in order to prevent transfusion side effects, a method has been developed in which the plasma in the platelet preparation is replaced with an artificially prepared liquid (washing and preserving liquid). For example, there is a method of washing platelets using a centrifugal separator equipped with a separation bowl in order to wash platelets in a platelet concentrate. The platelet concentrate referred to here is obtained by removing most of the leukocytes from blood components and suspending the collected platelets in plasma.

一方、in vitroで巨核球細胞を培養して血小板を産生する場合、血小板を巨核球細胞から分離して濃縮する必要がある。両者は表面マーカーが同じであるため、セルソーターで分離することができず、血小板と巨核球細胞の分離には、大きさの違いを利用してフィルターや中空糸膜で分離する方法や、遠心管を用いる遠心分離による方法が用いられてきた。しかしながら、フィルターや中空糸膜を用いる方法では、表面タンパク質の損傷等により血小板の生理活性が失われる上に、回収率も10%程度と低い。また、遠心分離を用いる方法では、機能が低下しないように低い遠心速度を採用するため、巨核球細胞の除去率が低く、血小板回収率も10%程度にしかならず、また一度に精製できる量が遠心管の容積に制限されるという問題がある。 On the other hand, when megakaryocyte cells are cultured in vitro to produce platelets, it is necessary to separate and concentrate platelets from the megakaryocyte cells. Since the two have the same surface marker, they cannot be separated by a cell sorter. A method by centrifugation using However, in the method using a filter or a hollow fiber membrane, platelet bioactivity is lost due to surface protein damage, etc., and the recovery rate is as low as about 10%. In addition, in the method using centrifugation, since a low centrifugation speed is adopted so as not to deteriorate the function, the removal rate of megakaryocyte cells is low, the platelet recovery rate is only about 10%, and the amount that can be purified at one time is not centrifuged. The problem is that the volume of the tube is limited.

本発明は、巨核球細胞の培養物から、高い回収率で、且つ一度に大量に血小板を分離精製して高品質な精製血小板を製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for producing high-quality purified platelets by separating and purifying a large amount of platelets at once from a culture of megakaryocyte cells at a high recovery rate.

本発明者らは、上記課題を解決するために検討を重ねた結果、所定の遠心力で巨核球細胞の培養物を遠心処理した後、当該遠心処理で得られた液体成分をより高い遠心力でもう一度遠心処理することにより、巨核球細胞の培養物から、高品質な血小板を高回収率で精製できることを見出した。 The present inventors, as a result of repeated studies to solve the above problems, after centrifuging the culture of megakaryocyte cells at a predetermined centrifugal force, the liquid component obtained by the centrifugal treatment higher centrifugal force By centrifuging once again, it was found that high-quality platelets can be purified with a high recovery rate from the culture of megakaryocyte cells.

すなわち本発明は、
〔1〕巨核球細胞の培養物から精製血小板を製造する方法であって、
前記培養物を150×g~550×gの遠心力で遠心分離する第1の遠心分離工程と、
第1の遠心分離工程で回収された液体成分を600×g~4000×gの遠心力で遠心分離する第2の遠心分離工程とを含む、方法;
〔2〕前記遠心分離工程が、
遠心力に応じて比重の大きい物質を付着させる内壁と、分離後の液体成分を流出させる流出口とを備えた、回転可能な分離ボウルと、前記流出口から流出した液体成分を回収する回収手段と、を備えた遠心分離で実施される、〔1〕に記載の方法。
〔3〕前記第2の遠心分離工程後、前記分離ボウルに洗浄液を加えて回転させる洗浄工程と、
前記洗浄工程後、回収液を加えて回転させる血小板回収工程と、
を含む、〔2〕に記載の方法;
〔4〕第1の遠心分離工程は、前記培養物を自然落下によって分離ボウルに注入する、〔2〕又は〔3〕に記載の方法;
〔5〕前記巨核球細胞の培養物は、
巨核球細胞より未分化な細胞において、癌遺伝子及びポリコーム遺伝子を強制発現させる工程と、
前記細胞でBcl-xL遺伝子を強制発現させる工程と、
前記強制発現をすべて解除する工程と、
で得られたものである、〔1〕~〔4〕のいずれかに記載の方法;
〔6〕〔1〕から〔3〕のいずれか1項に記載された方法で精製された血小板と、他の成分とを混合する工程を含む、血液製剤の製造方法;
に関する。
That is, the present invention
[1] A method for producing purified platelets from a culture of megakaryocyte cells,
a first centrifugation step of centrifuging the culture at a centrifugal force of 150×g to 550×g;
a second centrifugation step of centrifuging the liquid component recovered in the first centrifugation step with a centrifugal force of 600 x g to 4000 x g;
[2] The centrifugation step is
A rotatable separation bowl having an inner wall to which a substance having a large specific gravity adheres according to centrifugal force, an outlet for discharging the liquid component after separation, and a recovery means for recovering the liquid component that has flowed out from the outlet. and the method according to [1], which is carried out by centrifugation.
[3] After the second centrifugal separation step, a washing step of adding a washing liquid to the separation bowl and rotating it;
After the washing step, a platelet recovery step of adding a recovery liquid and rotating;
The method according to [2], comprising;
[4] The method according to [2] or [3], wherein the first centrifugation step is to inject the culture into the separation bowl by gravity;
[5] The megakaryocyte culture is
A step of forcibly expressing an oncogene and a polycomb gene in cells that are undifferentiated from megakaryocyte cells;
a step of forcibly expressing the Bcl-xL gene in the cell;
a step of canceling all the forced expression;
The method according to any one of [1] to [4];
[6] A method for producing a blood product, comprising the step of mixing platelets purified by the method according to any one of [1] to [3] with other components;
Regarding.

本発明の方法によれば、巨核球細胞の培養物から、高品質な血小板を高い回収率で、且つ一度に大量に精製することができるので、細菌汚染リスクの低い安全な血小板製剤を大量に生産し、供給することができる。 According to the method of the present invention, high-quality platelets can be purified from megakaryocyte cell cultures at a high recovery rate and in large quantities at once, so a large amount of safe platelet preparations with low risk of bacterial contamination can produce and supply.

図1は、本発明に係る精製方法による精製前後の血小板数を測定した結果を示す。FIG. 1 shows the results of measuring platelet counts before and after purification by the purification method according to the present invention. 図2は、本発明に係る精製方法による精製後の血小板の生理活性を測定した結果を示す。FIG. 2 shows the results of measuring the physiological activity of platelets purified by the purification method according to the present invention. 図3は、本発明に係る精製方法による精製後の異常血小板の割合を測定した結果を示す。FIG. 3 shows the results of measuring the ratio of abnormal platelets after purification by the purification method according to the present invention. 図4は、本発明に係る精製方法で精製してから6日後に、血小板の生理活性を測定した結果を示す。FIG. 4 shows the results of measuring the physiological activity of platelets 6 days after purification by the purification method according to the present invention. 図5は、本発明に係る精製方法で精製してから6日後に、異常血小板の割合を測定した結果を示す。FIG. 5 shows the results of measuring the ratio of abnormal platelets 6 days after purification by the purification method according to the present invention.

本発明に係る血小板の製造方法は、巨核球細胞を含む試料を異なる遠心力で2回以上の遠心分離する工程を含む。例えば、第1の遠心分離工程は約150×g~約550×gの遠心力で、第2の遠心分離工程は約600×g~約4000×gの遠心力で実施され得る。遠心分離工程は、遠心力に応じて比重の大きい物質を付着させる内壁と、分離後の液体成分を流出させる流出口とを備えた回転可能な分離ボウルと、
流出口から流出した液体成分を回収する回収手段とを備えた遠心分離で実施してもよい。
The method for producing platelets according to the present invention includes a step of centrifuging a sample containing megakaryocyte cells two or more times with different centrifugal forces. For example, the first centrifugation step can be performed at a centrifugal force of about 150×g to about 550×g and the second centrifugation step can be performed at a centrifugal force of about 600×g to about 4000×g. In the centrifugal separation step, a rotatable separation bowl having an inner wall to which a substance having a large specific gravity adheres according to centrifugal force and an outlet for discharging the liquid component after separation,
Centrifugal separation provided with recovery means for recovering the liquid component that has flowed out from the outlet may also be used.

当該遠心分離装置では、分離ボウルをその底面の中心を通り底面に垂直な軸を中心に回転させながら、液体混合物を注入すると、遠心力に応じて、比重の大きい成分は分離ボウルの内壁に付着・堆積し、比重の小さい成分は液体中に残る。 In the centrifugal separator, when the liquid mixture is injected while the separation bowl is rotated about an axis that passes through the center of the bottom surface and is perpendicular to the bottom surface, the component with a large specific gravity adheres to the inner wall of the separation bowl according to the centrifugal force.・The component with low specific gravity remains in the liquid.

比重の小さい成分を含む液体は、回収手段により回収される。回収手段は、例えば、分離ボウルの流出口に接続したチューブと、チューブに交換可能に接続した回収バッグから構成される。回収バッグは、血小板の品質に影響を与えないものであれば特に限定されないが、市販の血液や血液成分の保存用バッグを用いてもよい。 A liquid containing a component with a low specific gravity is recovered by the recovery means. The collection means is composed of, for example, a tube connected to the outlet of the separation bowl and a collection bag exchangeably connected to the tube. The collection bag is not particularly limited as long as it does not affect the quality of platelets, but a commercially available blood or blood component storage bag may be used.

当該遠心分離装置は、分離ボウルに液体混合物を所定の速度で注入しながら、遠心分離を行い、同時に分離された液体を回収手段で回収できるので、分離ボウルの容量とは関係なく、大量の液体混合物を連続的に分離することができる。 The centrifugal separation device performs centrifugal separation while injecting a liquid mixture into the separation bowl at a predetermined speed, and at the same time, the separated liquid can be recovered by the recovery means. The mixture can be separated continuously.

本発明に係る精製血小板製造方法に用いられる遠心分離装置としては、例えば、特開2005-296675号公報に開示された装置や、特開平7-284529号公報に開示された装置などを用いることができる。また、血液成分の分離に使用される市販の遠心分離装置や、従来、濃厚血小板製剤の血小板の洗浄に用いられている市販の装置を使用することもできる。例えば、HAEMONETICS社のACP215、テルモ社のCOBE2991を使用してもよい。 As the centrifugation device used in the method for producing purified platelets according to the present invention, for example, the device disclosed in JP-A-2005-296675 and the device disclosed in JP-A-7-284529 can be used. can. Moreover, commercially available centrifugal separators used for separating blood components and commercially available apparatuses conventionally used for washing platelets in concentrated platelet preparations can also be used. For example, ACP215 from HAEMONETICS and COBE2991 from Terumo may be used.

特定の態様において、第1の遠心分離工程は、分離ボウルを約150×g~約550×gの遠心力で回転させて行ってもよい。遠心力は、好ましくは約160×g~約500×g、より好ましくは約170×g~約400×g、更に好ましくは約180×g~約300×gである。遠心力をこの範囲として遠心分離を行うことにより、培養物中の巨核球細胞が分離ボウルの内側に付着・堆積する。これ以上遠心力を大きくすると、血小板にシェアストレスがかかるために、血小板の生理活性が発現して凝集してしまう。
なお、遠心力(g)と回転数(rpm)と回転半径(cm)との間には以下の関係が成立するので、使用する回転ボウルに大きさによって回転数を決めることができる。
遠心力(g)=1119×回転半径(cm)×(回転数(rpm))2×10-8
In certain embodiments, the first centrifugation step may be performed by spinning the separation bowl at a centrifugal force of about 150 xg to about 550 xg. The centrifugal force is preferably about 160×g to about 500×g, more preferably about 170×g to about 400×g, even more preferably about 180×g to about 300×g. By performing centrifugation with the centrifugal force in this range, the megakaryocyte cells in the culture adhere and accumulate inside the separation bowl. If the centrifugal force is increased beyond this point, shear stress is applied to the platelets, causing physiological activity of the platelets to cause aggregation.
Since the following relationship holds between the centrifugal force (g), rotation speed (rpm), and radius of rotation (cm), the rotation speed can be determined according to the size of the rotating bowl to be used.
Centrifugal force (g) = 1119 x Radius of rotation (cm) x (Number of revolutions (rpm)) 2 x 10 -8

この工程では、巨核球細胞の培養物に、血小板保存液を加えてもよい。例えば、生物学的製剤基準血液保存液A液(Acid-Citrate-Dextrose;ACD-A)が挙げられる。ACD-Aは、血液・血小板抗凝固作用を有し、血小板のエネルギー源であるグルコース供給源としても機能する。 In this step, a platelet stock solution may be added to the culture of megakaryocyte cells. Examples thereof include biological product standard blood preservation solution A (Acid-Citrate-Dextrose; ACD-A). ACD-A has a blood/platelet anticoagulant action and also functions as a glucose supply source, which is an energy source for platelets.

第1の遠心分離工程の際、巨核球細胞の培養物を分離ボウルに注入する方法は特に限定されず、装置に備えられたポンプを使用してもよく、培養物を入れた容器と分離ボウルをチューブで接続し、当該容器を高い位置に吊るし、チューブを通して培養物をボウル内に自然落下させてもよい。注入速度は、例えば、約50ml/min~約150ml/min、約80ml/min~約130ml/min、又は約100ml/minとすることができる。 During the first centrifugation step, the method of injecting the culture of megakaryocyte cells into the separation bowl is not particularly limited, and a pump provided in the device may be used, and the container containing the culture and the separation bowl may be connected by a tube, the container may be hung high, and the culture may be allowed to fall naturally into the bowl through the tube. Infusion rates can be, for example, from about 50 ml/min to about 150 ml/min, from about 80 ml/min to about 130 ml/min, or about 100 ml/min.

第1の遠心分離工程は、室温で行うことができる。第1の遠心分離工程の時間は、培養物の体積を、培養物の注入速度で除した時間、又はそれ以上とすることができる。
第1の遠心分離工程では、血小板は溶液中に残り、回収手段に回収される。
The first centrifugation step can be performed at room temperature. The duration of the first centrifugation step can be the volume of the culture divided by the injection rate of the culture, or longer.
During the first centrifugation step, the platelets remain in solution and are collected by the collection means.

本発明に係る血小板の精製方法の第2の遠心分離工程は、第1の遠心分離工程で回収された液体成分から血小板を分離する工程である。
第1の遠心分離工程後、分離ボウルを交換又は洗浄した後、分離ボウルを回転させながら、第1の遠心分離工程で回収された液体成分を注入する。注入は、第1の遠心分離工程と同様に行うことができる。第1の遠心分離工程で用いた回収バッグを、そのまま高い位置に吊るし、チューブを通して自然落下により分離ボウルに注入してもよい。
The second centrifugation step of the method for purifying platelets according to the present invention is a step of separating platelets from the liquid component collected in the first centrifugation step.
After the first centrifugation step, the separation bowl is replaced or washed, and then the liquid component recovered in the first centrifugation step is injected while rotating the separation bowl. Injection can be performed similarly to the first centrifugation step. The collection bag used in the first centrifugation step may be suspended in a high position and injected into the separation bowl by gravity through the tube.

特定の態様において、第2の遠心分離工程は、分離ボウルを、約600×g~約4000×gの遠心力で回転させて行ってもよい。遠心力は、好ましくは約800×g~約3000×g、更に好ましくは約1000×g~約2000×gとしてもよい。遠心力をこの範囲として遠心分離を行うことにより、血小板を、その生理活性が失われることなく、分離ボウル内壁に付着・堆積させることができる。
第2の遠心分離工程は室温で行うことができる。第1の遠心分離工程の時間は、第1の遠心分離工程で回収された液体成分の体積を、当該液体の注入速度で除した時間、又はそれ以上とすることができる。
第2の遠心分離工程で分離される液体成分は、回収手段に回収し、廃棄する。
In certain embodiments, the second centrifugation step may be performed by spinning the separation bowl at a centrifugal force of about 600 xg to about 4000 xg. Centrifugal force may be preferably about 800×g to about 3000×g, more preferably about 1000×g to about 2000×g. By performing centrifugal separation with the centrifugal force within this range, platelets can adhere and accumulate on the inner wall of the separation bowl without losing their physiological activity.
A second centrifugation step can be performed at room temperature. The time of the first centrifugation step can be equal to or longer than the volume of the liquid component collected in the first centrifugation step divided by the injection rate of the liquid.
The liquid component separated in the second centrifugal separation step is recovered by the recovery means and discarded.

別の態様において、第2の遠心分離工程の後、洗浄工程を行ってもよい。第2の遠心分離工程では、血小板と共に培地や添加物も分離ボウルの内壁に付着・堆積する。この培地を除去するための洗浄工程である。
洗浄工程では、分離ボウル内に洗浄液を加え、約600×g~約3600×gの遠心力で回転させる。洗浄液としては、重炭酸リンゲル溶液、例えばビカーボンを用いてもよい。また、ビカーボンに血小板保存液を加えても良い。血小板保存液は、例えばACD液を加えてもよい。なお、分離ボウルに洗浄液を加える際は、一定速度で洗浄液を注入する。このとき、血小板は分離ボウルの内壁に付着したまま維持され、培地や添加物を含んだ洗浄液は、回収手段により回収される。
In another embodiment, a washing step may be performed after the second centrifugation step. In the second centrifugation step, the medium and additives as well as the platelets adhere and accumulate on the inner wall of the separation bowl. It is a washing step for removing this medium.
In the washing step, a wash solution is added into the separation bowl and spun with a centrifugal force of about 600×g to about 3600×g. A bicarbonate Ringer's solution, such as Bicarbon, may be used as the cleaning liquid. Also, a platelet preservation solution may be added to Bicarbon. The platelet preservation solution may be added with ACD solution, for example. When adding the cleaning liquid to the separation bowl, the cleaning liquid is injected at a constant speed. At this time, the platelets are kept attached to the inner wall of the separation bowl, and the washing liquid containing the culture medium and additives is collected by the collecting means.

別の態様において、洗浄工程の後、血小板の回収工程を行ってもよい。回収工程では、分離ボウルの内壁に付着した血小板を回収するために回収液を加え、約600×g~約3600×gの遠心力で回転させる。これにより、血小板は分離ボウルから振り落とされ、回収液に浮遊する。回収液としては、例えば、ビカーボンを用いることができ、これを分離ボウルに一定速度で注入する。ビカーボンに5%のACDを加えてもよい。血小板を含む回収液は分離ボウルの流出口から流出し、回収バッグなどの回収手段に回収される。これを最終製品とすることもできる。 In another embodiment, the washing step may be followed by a platelet recovery step. In the recovery step, a recovery liquid is added to recover platelets adhering to the inner wall of the separation bowl, and the bowl is spun with a centrifugal force of about 600×g to about 3600×g. This causes the platelets to be shaken off the separation bowl and float in the collected liquid. Bicarbon, for example, can be used as the recovery liquid, and is injected into the separation bowl at a constant speed. 5% ACD may be added to bicarbon. A recovery liquid containing platelets flows out from the outlet of the separation bowl and is recovered in a recovery means such as a recovery bag. This can also be used as the final product.

本明細書において「巨核球細胞」とは、生体内においては骨髄中に存在する最大の細胞であり、血小板を放出することを特徴とする。巨核球細胞は、細胞表面マーカーCD41a、CD42a、及びCD42b陽性で特徴づけられ、他に、CD9、CD61、CD62p、CD42c、CD42d、CD49f、CD51、CD110、CD123、CD131、及びCD203cからなる群より選択されるマーカーをさらに発現していることもある。巨核球細胞は、多核化(多倍体化)すると、通常の細胞の16~32倍のゲノムを有する。本明細書において、単に「巨核球細胞」という場合、上記の特徴を備えている限り、多核化した巨核球細胞と多核化前の巨核球細胞の双方を含む。「多核化前の巨核球細胞」は、「未熟な巨核球細胞」又は「増殖期の巨核球細胞」とも同義である。 As used herein, the term “megakaryocyte” refers to the largest cell existing in the bone marrow in vivo, and is characterized by releasing platelets. The megakaryocyte is characterized by positive cell surface markers CD41a, CD42a, and CD42b, and is selected from the group consisting of CD9, CD61, CD62p, CD42c, CD42d, CD49f, CD51, CD110, CD123, CD131, and CD203c. It may also express a marker that is Megakaryocyte cells, when multinucleated (polyploidized), have 16 to 32 times the genome of normal cells. As used herein, the term "megakaryocyte" simply includes both multinucleated megakaryocyte and pre-multinucleated megakaryocyte as long as it has the above characteristics. "Megakaryocyte cells before multinucleation" is also synonymous with "immature megakaryocyte cells" or "proliferative megakaryocyte cells".

巨核球細胞は、公知の様々な方法で得ることができる。巨核球細胞の製造方法の非限定的な例として、国際公開第2011/034073号に記載された方法が挙げられる。同方法では、「巨核球細胞より未分化な細胞」において、癌遺伝子とポリコーム遺伝子を強制発現させることにより、無限に増殖する不死化巨核球細胞株を得ることができる。また、国際公開第2012/157586号に記載された方法に従って、「巨核球細胞より未分化な細胞」において、アポトーシス抑制遺伝子を強制発現させることによっても、不死化巨核球細胞株を得ることができる。これらの不死化巨核球細胞株は、遺伝子の強制発現を解除することにより、多核化が進み、血小板を放出するようになる。 Megakaryocyte cells can be obtained by various known methods. Non-limiting examples of methods for producing megakaryocyte cells include the method described in International Publication No. 2011/034073. In this method, an immortalized megakaryocyte cell line that proliferates indefinitely can be obtained by forcibly expressing the oncogene and the polycomb gene in "cells that are undifferentiated from megakaryocyte cells". In addition, according to the method described in International Publication No. 2012/157586, in "cells undifferentiated from megakaryocyte cells", immortalized megakaryocyte cell lines can also be obtained by forced expression of apoptosis suppressor genes. . These immortalized megakaryocyte cell lines undergo multinucleation and release platelets by canceling forced gene expression.

巨核球細胞を得るために、上記の文献に記載された方法を組み合わせてもよい。その場合、癌遺伝子、ポリコーム遺伝子、及びアポトーシス抑制遺伝子の強制発現は、同時に行ってもよく、順次行ってもよい。例えば、癌遺伝子とポリコーム遺伝子を強制発現させ、当該強制発現を抑制し、次にアポトーシス抑制遺伝子を強制発現させ、当該強制発現を抑制して、多核化巨核球細胞を得てもよい。また、癌遺伝子とポリコーム遺伝子とアポトーシス抑制遺伝子を同時に強制発現させ、当該強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。まず、癌遺伝子とポリコーム遺伝子を強制発現させ、続いてアポトーシス抑制遺伝子を強制発現させ、当該強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。 In order to obtain megakaryocyte cells, the methods described in the above documents may be combined. In that case, forced expression of the oncogene, polycomb gene and apoptosis suppressor gene may be performed simultaneously or sequentially. For example, an oncogene and a polycomb gene may be forcibly expressed, the forced expression may be suppressed, then an apoptosis suppressor gene may be forcedly expressed, the forced expression may be suppressed, and multinucleated megakaryocyte cells may be obtained. Alternatively, the oncogene, the polycomb gene and the apoptosis suppressor gene can be forced to express simultaneously, and the forced expression can be suppressed simultaneously to obtain multinucleated megakaryocyte cells. First, the oncogene and Polycomb gene are forcibly expressed, then the apoptosis suppressor gene is forcibly expressed, and the forced expression is simultaneously suppressed to obtain multinucleated megakaryocyte cells.

本明細書において「巨核球細胞より未分化な細胞」とは、巨核球への分化能を有する細胞であって、造血幹細胞系から巨核球細胞に至る様々な分化段階の細胞を意味する。巨核球より未分化な細胞の非限定的な例としては、造血幹細胞、造血前駆細胞、CD34陽性細胞、巨核球・赤芽球系前駆細胞(MEP)が挙げられる。これらの細胞は、例えば、骨髄、臍帯血、末梢血から単離して得ることもできるし、より未分化な細胞であるES細胞、iPS細胞等の多能性幹細胞から分化誘導して得ることもできる。 As used herein, the term “cells undifferentiated from megakaryocyte cells” refers to cells that have the ability to differentiate into megakaryocytes, and that are cells in various stages of differentiation from hematopoietic stem cell lineage to megakaryocyte cells. Non-limiting examples of cells less differentiated than megakaryocytes include hematopoietic stem cells, hematopoietic progenitor cells, CD34-positive cells, and megakaryocyte/erythroid progenitor cells (MEP). These cells can be obtained by, for example, isolating from bone marrow, umbilical cord blood, or peripheral blood, or can be obtained by inducing differentiation from pluripotent stem cells such as ES cells and iPS cells, which are more undifferentiated cells. can.

本明細書において「癌遺伝子」とは、生体内において細胞の癌化を誘導する遺伝子のことをいい、例えば、MYCファミリー遺伝子(例えば、c-MYC、N-MYC、L-MYC)、SRCファミリー遺伝子、RASファミリー遺伝子、RAFファミリー遺伝子、c-Kit、PDGFR、Ablなどのプロテインキナーゼファミリー遺伝子が挙げられる。 As used herein, the term "oncogene" refers to a gene that induces canceration of cells in vivo. genes, RAS family genes, RAF family genes, protein kinase family genes such as c-Kit, PDGFR, and Abl.

本明細書において「ポリコーム遺伝子」とは、CDKN2a(INK4a/ARF)遺伝子を負に制御し、細胞老化を回避するために機能する遺伝子として知られている(小倉ら, 再生医療 vol.6, No.4, pp26-32;Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7, pp667-677, 2006;Proc. Natl. Acad. Sci. USA vol.100, pp211-216, 2003)。ポリコーム遺伝子の非限定的な例として、BMI1、Mel18、Ring1a/b、Phc1/2/3、Cbx2/4/6/7/8、Ezh2、Eed、Suz12、HADC、Dnmt1/3a/3bが挙げられる。 As used herein, "polycomb gene" is known as a gene that negatively regulates the CDKN2a (INK4a/ARF) gene and functions to avoid cell senescence (Ogura et al., Regenerative Medicine vol.6, No. 4, pp26-32; Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7, pp667-677, 2006; Proc. Natl. Acad. Sci. ). Non-limiting examples of Polycomb genes include BMI1, Mel18, Ring1a/b, Phc1/2/3, Cbx2/4/6/7/8, Ezh2, Eed, Suz12, HADC, Dnmt1/3a/3b .

本明細書において「アポトーシス抑制遺伝子」とは、細胞のアポトーシスを抑制する機能を有する遺伝子をいい、例えば、BCL2遺伝子、BCL-xL遺伝子、Survivin遺伝子、MCL1遺伝子などが挙げられる。 As used herein, the term "apoptosis suppressor gene" refers to a gene that has the function of suppressing cell apoptosis, and includes, for example, BCL2 gene, BCL-xL gene, Survivin gene, and MCL1 gene.

遺伝子の強制発現及び強制発現の解除は、国際公開第2011/034073号、国際公開第2012/157586号、国際公開第2014/123242またはNakamura S et al, Cell Stem Cell. 14, 535-548, 2014に記載された方法、その他の公知の方法又はそれに準ずる方法で行うことができる。 Forced expression of genes and release of forced expression are described in WO 2011/034073, WO 2012/157586, WO 2014/123242 or Nakamura S et al, Cell Stem Cell. 14, 535-548, 2014 can be carried out by the method described in , other known methods, or methods based thereon.

本明細書において「血小板」は、血液中の細胞成分の一つであり、CD41a陽性及びCD42b陽性で特徴づけられる。血小板は、血栓形成と止血において重要な役割を果たすとともに、損傷後の組織再生や炎症の病態生理にも関与する。出血等により血小板が活性化されると、その膜上にIntegrin αIIBβ3(glycoprotein IIb/IIIa; CD41aとCD61の複合体)などの細胞接着因子の受容体が発現する。その結果、血小板同士が凝集し、血小板から放出される各種の血液凝固因子によってフィブリンが凝固することにより、血栓が形成され、止血が進む。 As used herein, "platelets" are one of the cellular components in blood and are characterized by being CD41a-positive and CD42b-positive. Platelets play an important role in thrombus formation and hemostasis, and are also involved in post-injury tissue regeneration and the pathophysiology of inflammation. When platelets are activated by bleeding or the like, receptors for cell adhesion factors such as integrin αIIBβ3 (glycoprotein IIb/IIIa; complex of CD41a and CD61) are expressed on the membrane. As a result, platelets aggregate with each other and fibrin is coagulated by various blood coagulation factors released from the platelets to form a thrombus and promote hemostasis.

本発明の方法で精製された血小板は、高品質である。本明細書において高品質な精製血小板とは、巨核球細胞が実質的に除去された結果、画分当たりの生理活性が高く維持され、異常血小板が十分に少ない血小板をいう。 Platelets purified by the method of the present invention are of high quality. As used herein, the term “high-quality purified platelets” refers to platelets from which megakaryocyte cells have been substantially removed so that physiological activity per fraction is maintained at a high level and abnormal platelets are sufficiently low.

血小板の生理活性は、公知の方法により測定し評価することができる。例えば、活性化した血小板膜上のIntegrin αIIBβ3に特異的に結合するPAC-1に対する抗体を用いて、活性化した血小板量を測定することができる。また、同様に血小板の活性化マーカーであるCD62p(P-selectin)を抗体で検出し、活性化した血小板量を測定してもよい。例えば、フローサイトメトリーを用い、活性化非依存性の血小板マーカーCD61又はCD41に対する抗体でゲーティングを行い、その後、抗PAC-1抗体や抗CD62p抗体の結合を検出することにより行うことができる。これらの工程は、アデノシン二リン酸(ADP)存在下で行ってもよい。 Physiological activities of platelets can be measured and evaluated by known methods. For example, an antibody to PAC-1 that specifically binds to integrin αIIBβ3 on activated platelet membranes can be used to measure the amount of activated platelets. Similarly, CD62p (P-selectin), which is a platelet activation marker, may be detected with an antibody to measure the amount of activated platelets. For example, it can be performed by using flow cytometry, performing gating with an antibody against the activation-independent platelet marker CD61 or CD41, and then detecting binding of an anti-PAC-1 antibody or an anti-CD62p antibody. These steps may be performed in the presence of adenosine diphosphate (ADP).

また、血小板の機能の評価は、ADP存在下でフィブリノーゲンと結合するか否かを見て行うこともできる。血小板がフィブリノーゲンと結合することにより、血栓形成の初期に必要なインテグリンの活性化が生じる。
さらに、血小板の機能の評価は、国際公開第2011/034073号の図6に示されるように、in vivoでの血栓形成能を可視化して観察する方法で行うこともできる。
In addition, evaluation of platelet function can also be performed by observing whether or not platelets bind to fibrinogen in the presence of ADP. Binding of platelets to fibrinogen results in the activation of integrins that are required early in thrombus formation.
Furthermore, evaluation of platelet function can also be performed by a method of visualizing and observing in vivo thrombus forming ability, as shown in FIG. 6 of WO 2011/034073.

一方、血小板のCD42bの発現率が低い場合や、アネキシンV陽性率が低い場合は、血小板が劣化又は異常であると評価される。これらの血小板は、血栓形成や止血機能を十分に有さず、臨床的に有用でない。 On the other hand, when the platelet CD42b expression rate is low or when the annexin V positive rate is low, the platelets are evaluated as degraded or abnormal. These platelets do not have sufficient thrombogenic or hemostatic function and are not clinically useful.

本明細書において「血小板の劣化」とは、血小板表面のCD42b(GPIbα)が減少することをいう。したがって、劣化した血小板には、CD42bの発現が低下した血小板や、シェディング反応によってCD42bの細胞外領域が切断された血小板が含まれる。血小板表面のCD42bがなくなると、フォン・ウィルブランド因子(von Willebrand factor:VWF)との会合ができなくなり、結果的に、血小板の血液凝固機能が失われる。血小板の劣化は、血小板分画中のCD42b陽性率(又はCD42b陽性粒子数)に対するCD42b陰性率(又はCD42b陰性粒子数)を指標として評価することができる。CD42b陽性率に対するCD42b陰性率高いほど、又は、CD42b陽性粒子数に対するCD42b陰性粒子数が多いほど、血小板は劣化している。CD42b陽性率とは、血小板分画に含まれる血小板のうち、抗CD42b抗体が結合できる血小板の割合を意味し、CD42b陰性率とは、血小板分画に含まれる血小板のうち、抗CD42b抗体が結合しない血小板の割合を意味する。 As used herein, “platelet deterioration” refers to a decrease in CD42b (GPIbα) on the platelet surface. Degraded platelets therefore include platelets with decreased CD42b expression and platelets in which the extracellular region of CD42b has been cleaved by the shedding reaction. When CD42b on the platelet surface is lost, it becomes impossible to associate with von Willebrand factor (VWF), and as a result, the blood coagulation function of platelets is lost. Degradation of platelets can be evaluated using the CD42b negative rate (or CD42b negative particle count) relative to the CD42b positive rate (or CD42b positive particle count) in the platelet fraction as an index. The higher the CD42b-negative rate relative to the CD42b-positive rate, or the greater the CD42b-negative particle count relative to the CD42b-positive particle count, the worse the platelets are. The CD42b positive rate means the percentage of platelets that can bind to anti-CD42b antibody among the platelets contained in the platelet fraction, and the CD42b negative rate means that among the platelets contained in the platelet fraction, anti-CD42b antibody binds. means the percentage of platelets that do not.

本明細書において「異常な血小板」とは、陰性電荷リン脂質であるホスファチジルセリンが脂質二重層の内側から外側に露出した血小板を言う。生体内においては、ホスファチジルセリンは血小板の活性化に伴って表面に露出し、そこに多くの血液凝固因子が結合することによって、血液凝固カスケード反応が増幅されることが知られている。一方、異常な血小板では、常に多くのホスファチジルセリンが表面に露出しており、かかる血小板が患者に投与されると、過剰な血液凝固反応を引き起こし、播種性血管内凝固症候群などの重篤な病態に繋がる可能性がある。ホスファチジルセリンにはアネキシンVが結合するので、血小板表面上のホスファチジルセリンは、蛍光標識したアネキシンVの結合量を指標にしてフローサイトメータを用いて検出することができる。よって、異常な血小板の量は、血小板分画中のアネキシンV陽性率、すなわちアネキシンが結合する血小板の割合又は数で評価することができる。アネキシンV陽性率が高いほど、又はアネキシンV粒子数が多いほど、異常な血小板が多い。 As used herein, the term "abnormal platelets" refers to platelets in which the negatively charged phospholipid, phosphatidylserine, is exposed from the inside to the outside of the lipid bilayer. It is known that in vivo, phosphatidylserine is exposed on the surface of platelets upon platelet activation, and many blood coagulation factors bind to the surface, thereby amplifying the blood coagulation cascade reaction. On the other hand, in abnormal platelets, a large amount of phosphatidylserine is always exposed on the surface, and when such platelets are administered to patients, they cause excessive blood coagulation reactions, leading to serious pathological conditions such as disseminated intravascular coagulation. may lead to Since annexin V binds to phosphatidylserine, phosphatidylserine on the platelet surface can be detected using a flow cytometer using the amount of fluorescence-labeled annexin V bound as an indicator. Therefore, the amount of abnormal platelets can be assessed by the annexin V positive rate in the platelet fraction, ie the percentage or number of platelets to which annexin binds. The higher the annexin V positive rate or the higher the annexin V particle count, the more abnormal platelets.

本発明における巨核球細胞の培養条件は、通常の条件とすることができる。例えば、温度は約35℃~約42℃、約36℃~約40℃、又は約37℃~約39℃とすることができ、5~15%CO2及び/又は20%O2としてもよい。Culture conditions for megakaryocyte cells in the present invention can be normal conditions. For example, the temperature can be from about 35°C to about 42°C, from about 36°C to about 40°C, or from about 37°C to about 39°C, and can be 5-15% CO2 and/or 20% O2 . .

巨核球細胞を培養する際の培地は特に限定されず、巨核球細胞から血小板が産生されるのに好適な公知の培地やそれに準ずる培地を適宜使用することができる。例えば、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばIMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)およびこれらの混合培地が挙げられる。 The medium for culturing megakaryocyte cells is not particularly limited, and a known medium suitable for producing platelets from megakaryocyte cells or a medium based thereon can be used as appropriate. For example, a medium used for culturing animal cells can be prepared as a basal medium. Examples of basal media include IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, and Neurobasal Medium (Life Technologies). ) and mixed media thereof.

培地には、血清又は血漿が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、モノチオグリセロール(MTG)、脂質、アミノ酸(例えばL-グルタミン)、アスコルビン酸、ヘパリン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカインなどの1つ以上の物質も含有し得る。サイトカインとは、血球系分化を促進するタンパク質であり、例えば、血管内皮細胞増殖因子(VEGF)、トロンボポエチン(TPO)、各種TPO様作用物質、Stem Cell Factor(SCF)、ITS(インスリン-トランスフェリン-セレナイト)サプリメント、ADAM阻害剤、などが例示される。本発明において好ましい培地は、血清、インスリン、トランスフェリン、セリン、チオールグリセロール、アスコルビン酸、TPOを含むIMDM培地である。さらにSCFを含んでいてもよく、さらにヘパリンを含んでいてもよい。それぞれの濃度も特に限定されないが、例えば、TPOは、約10ng/mL~約200ng/mL、又は約50ng/mL~約100ng/mLとすることができ、SCFは、約10ng/mL~約200ng/mL、又は約50ng/mLとすることができ、ヘパリンは、約10U/mL~約100U/mL、又は約25U/mLとすることができる。ホルボールエステル(例えば、ホルボール-12-ミリスタート-13-アセタート;PMA)を加えてもよい。 The medium may contain serum or plasma, or may be serum-free. Optionally, the medium contains e.g. albumin, insulin, transferrin, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, monothioglycerol (MTG), lipids, amino acids (e.g. L-glutamine), ascorbic acid , heparin, non-essential amino acids, vitamins, growth factors, small compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines, and the like. Cytokines are proteins that promote blood cell lineage differentiation. ) supplements, ADAM inhibitors, and the like. A preferred medium in the present invention is IMDM medium containing serum, insulin, transferrin, serine, thiolglycerol, ascorbic acid and TPO. Furthermore, it may contain SCF, and may further contain heparin. Each concentration is also not particularly limited, but for example, TPO can be about 10 ng/mL to about 200 ng/mL, or about 50 ng/mL to about 100 ng/mL, and SCF can be about 10 ng/mL to about 200 ng. /mL, or about 50 ng/mL, and heparin can be about 10 U/mL to about 100 U/mL, or about 25 U/mL. Phorbol esters (eg phorbol-12-myristate-13-acetate; PMA) may be added.

血清を用いる場合はヒト血清が望ましい。また、血清に代えて、ヒト血漿等を用いてもよい。本発明に係る方法によれば、これらの成分を用いても、血清を用いたときと同等の血小板が得られうる。 When serum is used, human serum is preferred. Also, instead of serum, human plasma or the like may be used. According to the method of the present invention, platelets equivalent to those obtained using serum can be obtained using these components.

遺伝子の強制発現及びその解除のために、Tet-on(登録商標)又はTet-off(登録商標)システムのような薬剤応答性の遺伝子発現誘導システムを用いてもよい。その場合、強制発現する工程においては、対応する薬剤、例えば、テトラサイクリンまたはドキシサイクリンを培地に含有させ、これらを培地から除くことによって強制発現を抑制することができる。 A drug-responsive gene expression induction system such as the Tet-on (registered trademark) or Tet-off (registered trademark) system may be used for forced gene expression and release thereof. In that case, in the forced expression step, the forced expression can be suppressed by adding a corresponding drug such as tetracycline or doxycycline to the medium and removing them from the medium.

本発明における巨核球細胞の培養工程は浮遊培養によって行われるので、フィーダー細胞なしで実施することができる。 Since the culture step of megakaryocyte cells in the present invention is performed by suspension culture, it can be performed without feeder cells.

本発明に係る「巨核球細胞の培養物」は、上述の培養工程で得られる培養物であり、巨核球細胞と、種々の添加物を含む培養液を含む。 The "megakaryocyte cell culture" according to the present invention is a culture obtained in the above-described culture step, and includes megakaryocyte cells and a culture solution containing various additives.

本発明は、本発明に係る方法で精製した血小板も包含する。 The present invention also includes platelets purified by the method of the present invention.

本発明に係る血液製剤の製造方法は、本発明に係る方法で血小板製剤を製造する工程と、当該血小板製剤を他の成分と混合する工程と、を含む。他の成分としては、例えば赤血球細胞が挙げられる。
本発明は、この方法で精製した血液製剤も包含する。
血小板製剤及び血液製剤には、その他、細胞の安定化に資する他の成分を加えてもよい。
The method for producing a blood product according to the present invention includes the steps of producing a platelet product by the method according to the present invention and mixing the platelet product with other components. Other components include, for example, red blood cells.
The invention also includes blood products purified by this method.
In addition, other ingredients that contribute to cell stabilization may be added to platelet preparations and blood preparations.

本明細書において引用されるすべての特許文献及び非特許文献の開示は、全体として本明細書に参照により組み込まれる。 The disclosures of all patent and non-patent literature cited herein are hereby incorporated by reference in their entirety.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は何らこれに限定されるものではない。当業者は、本発明の意義を逸脱することなく様々な態様に本発明を変更することができ、かかる変更も本発明の範囲に含まれる。 EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these. Persons skilled in the art can modify the present invention in various ways without departing from the meaning of the invention, and such modifications are also included in the scope of the present invention.

1.不死化巨核球細胞の作製
1-1.iPS細胞からの造血前駆細胞の調製
ヒトiPS細胞(TKDN SeV2:センダイウイルスを用いて樹立されたヒト胎児皮膚繊維芽細胞由来iPS細胞)から、Takayama N., et al. J Exp Med. 2817-2830 (2010)に記載の方法に従って、血球細胞への分化培養を実施した。即ち、ヒトES/iPS細胞コロニーを20ng/mL VEGF (R&D SYSTEMS)存在下でC3H10T1/2フィーダー細胞と14日間共培養して造血前駆細胞(Hematopoietic Progenitor Cells;HPC)を作製した。培養条件は20% O2、5% CO2で実施した(特に記載がない限り、以下同条件)。
1. Generation of immortalized megakaryocyte cells
1-1. Preparation of hematopoietic progenitor cells from iPS cells From human iPS cells (TKDN SeV2: iPS cells derived from human fetal skin fibroblasts established using Sendai virus), Takayama N., et al. J Exp Med. (2010), differentiation culture into blood cells was performed. That is, human ES/iPS cell colonies were co-cultured with C3H10T1/2 feeder cells for 14 days in the presence of 20 ng/mL VEGF (R&D SYSTEMS) to prepare hematopoietic progenitor cells (HPC). The culture conditions were 20% O 2 and 5% CO 2 (same conditions below unless otherwise specified).

1-2.遺伝子導入システム
遺伝子導入システムは、レンチウイルスベクターシステムを利用した。レンチウイルスベクターは、Tetracycline制御性のTet-on(登録商標)遺伝子発現誘導システムベクターである。LV-TRE-mOKS-Ubc-tTA-I2G(Kobayashi, T., et al. Cell 142, 787-799 (2010))のmOKSカセットをc-MYC、BMI1、BCL-xLに組み替えることで作製した。それぞれ、LV-TRE-c-Myc-Ubc-tTA-I2G、LV-TRE-BMI1-Ubc-tTA-I2G、およびLV-TRE-BCL-xL-Ubc-tTA-I2Gとした。
ウイルス粒子は、293T細胞へ上記レンチウイルスベクターで遺伝子導入することにより作成した。
かかるウイルス粒子を目的の細胞に感染させることによって、BMI1、MYC、及びBCL-xLの遺伝子が目的の細胞のゲノム配列に導入される。安定的にゲノム配列に導入されたこれらの遺伝子は、培地にドキシサイクリン (clontech #631311)を加えることによって強制発現させることができる。
1-2. Gene transfer system A lentiviral vector system was used as the gene transfer system. The lentiviral vector is a Tetracycline-regulated Tet-on® gene expression induction system vector. It was produced by recombining the mOKS cassette of LV-TRE-mOKS-Ubc-tTA-I2G (Kobayashi, T., et al. Cell 142, 787-799 (2010)) with c-MYC, BMI1, and BCL-xL. LV-TRE-c-Myc-Ubc-tTA-I2G, LV-TRE-BMI1-Ubc-tTA-I2G, and LV-TRE-BCL-xL-Ubc-tTA-I2G, respectively.
Virus particles were produced by transfecting 293T cells with the above lentiviral vector.
By infecting the target cells with such virus particles, the BMI1, MYC, and BCL-xL genes are introduced into the target cell's genomic sequence. These genes stably introduced into the genomic sequence can be forced to express by adding doxycycline (clontech #631311) to the medium.

1-3.造血前駆細胞へのc-MYC及びBMI1ウイルス感染
予めC3H10T1/2フィーダー細胞を播種した6 well plate上に、上記の方法で得られたHPCを5x104cells/wellずつ播種し、レンチウイルス法にてc-MYCおよびBMI1を強制発現させた。このとき、細胞株1種類につき6 wellずつ使用した。即ち、それぞれMOI 20になるように培地中にウイルス粒子を添加し、スピンインフェクション(32℃ 900rpm、60分間遠心)で感染させた。本操作は、12時間おきに2回実施した。
培地は、基本培地(15% Fetal Bovine Serum (GIBCO)、1% Penicillin-Streptomycin-Glutamine (GIBCO)、1% Insulin, Transferrin, Selenium Solution (ITS-G) (GIBCO)、0.45mM 1-Thioglycerol (Sigma-Aldrich)、50μg/mL L-Ascorbic Acid (Sigma-Aldrich)を含有するIMDM (Iscove’s Modified Dulbecco’s Medium) (Sigma-Aldrich))に50ng/mL Human thrombopoietin (TPO) (R&D SYSTEMS)、50ng/mL Human Stem Cell Factor (SCF) (R&D SYSTEMS)および2μg/mL Doxycycline (Dox)を添加した培地(以下、分化培地)に、更に、Protamineを最終濃度10μg/mL加えたものを使用した。
1-3. Infection of hematopoietic progenitor cells with c-MYC and BMI1 viruses On a 6-well plate pre-seeded with C3H10T1/2 feeder cells, HPCs obtained by the above method were seeded at 5 x 10 4 cells/well, and lentiviral method was used. Forced expression of c-MYC and BMI1. At this time, 6 wells were used for each type of cell line. That is, virus particles were added to the medium at an MOI of 20, respectively, and infected by spin infection (centrifugation at 32°C, 900 rpm for 60 minutes). This operation was performed twice every 12 hours.
The medium consists of basal medium (15% Fetal Bovine Serum (GIBCO), 1% Penicillin-Streptomycin-Glutamine (GIBCO), 1% Insulin, Transferrin, Selenium Solution (ITS-G) (GIBCO), 0.45mM 1-Thioglycerol (Sigma -Aldrich), 50ng/mL Human thrombopoietin (TPO) (R&D SYSTEMS), 50ng/mL Human A medium supplemented with Stem Cell Factor (SCF) (R&D SYSTEMS) and 2 µg/mL Doxycycline (Dox) (hereinafter referred to as differentiation medium) was further supplemented with Protamine at a final concentration of 10 µg/mL.

1-4.巨核球自己増殖株の作製および維持培養
上記の方法でcMYC及びBMI1ウイルス感染を実施した日を感染0日目として、以下の通り、cMYC及びBMI1遺伝子導入型巨核球細胞を培養することで、巨核球自己増殖株をそれぞれ作製した。BMI1遺伝子、c-MYC遺伝子の強制発現は、培地にドキシサイクリン (clontech #631311) 1μg/mLを加えることにより行った。
1-4. Preparation and maintenance culture of megakaryocyte self-propagating strain The day cMYC and BMI1 virus infection was performed by the above method as day 0 of infection, and as follows, by culturing cMYC and BMI1 transgenic megakaryocyte cells, megakaryocytes Each sphere autologous strain was generated. Forced expression of the BMI1 gene and c-MYC gene was performed by adding 1 μg/mL of doxycycline (clontech #631311) to the medium.

・感染2日目~感染11日目
ピペッティングにて上記の方法で得られたウイルス感染済み血球細胞を回収し、1200rpm、5分間遠心操作を行って上清を除去した後、新しい分化培地で懸濁して新しいC3H10T1/2フィーダー細胞上に播種した(6well plate)。感染9日目に同様の操作をすることによって継代を実施した。細胞数を計測後1×105 cells/2mL/wellでC3H10T1/2フィーダー細胞上に播種した(6well plate)。
・From day 2 of infection to day 11 of infection Collect the virus-infected blood cells obtained by the above method by pipetting, centrifuge at 1200 rpm for 5 minutes to remove the supernatant, and add new differentiation medium. It was suspended and plated on fresh C3H10T1/2 feeder cells (6 well plate). Passaging was carried out by performing the same operation on day 9 of infection. After counting the number of cells, the cells were seeded on C3H10T1/2 feeder cells at 1×10 5 cells/2 mL/well (6 well plate).

・感染12日目~感染13日目
感染2日目と同様の操作を実施した。細胞数を計測後3×105cells/10mL/100mm dishでC3H10T1/2フィーダー細胞上に播種した(100mm dish)。
・Day 12 to day 13 of infection The same procedure as on day 2 of infection was performed. After counting the number of cells, the cells were seeded on C3H10T1/2 feeder cells at 3×10 5 cells/10 mL/100 mm dish (100 mm dish).

・感染14日目
ウイルス感染済み血球細胞を回収し、細胞1.0×105個あたり、抗ヒトCD41a-APC抗体(BioLegend)、抗ヒトCD42b-PE抗体(eBioscience)、抗ヒトCD235ab-pacific blue(BioLegend)抗体をそれぞれ2μL、1μL、1μLずつを用いて抗体反応した。反応後に、FACS Verse(BD)を用いて解析した。感染14日目において、CD41a陽性率が50%以上であった細胞を、巨核球自己増殖株とした。
・ On day 14 of infection, virus-infected blood cells were collected, and per 1.0 × 10 5 cells, anti-human CD41a-APC antibody (BioLegend), anti-human CD42b-PE antibody (eBioscience), anti-human CD235ab-pacific blue (BioLegend) ) Antibody reaction was performed using 2 μL, 1 μL, and 1 μL of each antibody. After the reaction, it was analyzed using FACS Verse (BD). Cells with a CD41a positive rate of 50% or more on day 14 of infection were defined as megakaryocyte autologous strains.

1-4.巨核球自己増殖株へのBCL-xLウイルス感染
前記感染14日目の巨核球自己増殖株に、レンチウイルス法にてBCL-xLを遺伝子導入した。MOI 10になるように培地中にウイルス粒子を添加し、スピンインフェクション(32℃ 900rpm、60分間遠心)で感染させた。BCL-xL遺伝子の強制発現は、培地にドキシサイクリン (clontech #631311) 1μg/mLを加えることにより行った。
1-4. BCL-xL Virus Infection into Self-Proliferating Megakaryocyte Strain BCL-xL was gene-introduced into the self-proliferating megakaryocyte strain on day 14 of infection by the lentiviral method. Virus particles were added to the medium at an MOI of 10, and infected by spin infection (centrifugation at 32°C, 900 rpm for 60 minutes). Forced expression of the BCL-xL gene was performed by adding 1 μg/mL of doxycycline (clontech #631311) to the medium.

1-5.巨核球不死化株の作成及び維持培養
・感染14目~感染18日目
前述の方法で得られたBCL-xLを遺伝子導入した巨核球自己増殖株を回収し、1200rpm、5分間遠心操作を行った。遠心後、沈殿した細胞を新しい分化培地で懸濁した後、新しいC3H10T1/2フィーダー細胞上に2×105cells/2mL/wellで播種した(6well plate)。
1-5. Creation and maintenance culture of megakaryocyte immortalized strain/infection day 14-infection day 18 The megakaryocyte self-proliferating strain transfected with BCL-xL obtained by the above method is collected and centrifuged at 1200 rpm for 5 minutes. rice field. After centrifugation, the precipitated cells were suspended in a new differentiation medium and seeded onto new C3H10T1/2 feeder cells at 2×10 5 cells/2 mL/well (6-well plate).

・感染18日目:継代
細胞数を計測後、3×105 cells/10mL/100mm dishで播種した。
- Day 18 of infection: Passage After counting the number of cells, the cells were seeded at 3 x 105 cells/10 mL/100 mm dish.

・感染24日目:継代
細胞数を計測後、1×105 cells/10mL/100mm dishで播種した。以後、4-7日毎に継代を行い、維持培養を行った。
- Day 24 of infection: Passage After counting the number of cells, the cells were seeded at 1 x 105 cells/10 mL/100 mm dish. Thereafter, subculture was performed every 4 to 7 days, and maintenance culture was performed.

感染24日目にBCL-xLを遺伝子導入した巨核球自己増殖株を回収し、細胞1.0×105個あたり、抗ヒトCD41a-APC抗体(BioLegend)、抗ヒトCD42b-PE抗体(eBioscience)、抗ヒトCD235ab-Pacific Blue(Anti-CD235ab-PB; BioLegend)抗体をそれぞれ2μL、1μL、1μLずつを用いて免疫染色した後にFACS Verse(BD)を用いて解析して、感染24日目においても、CD41a陽性率が50%以上である株を不死化巨核球細胞株とした。感染後24日以上増殖することができたこれらの細胞を、不死化巨核球細胞株SeV2-MKCLとした。On day 24 of infection, the BCL-xL gene-introduced megakaryocyte self-proliferation strain was collected, and anti-human CD41a-APC antibody (BioLegend), anti-human CD42b-PE antibody (eBioscience), anti-human CD42b-PE antibody (eBioscience) were applied per 1.0 × 10 5 cells. After immunostaining with 2 μL, 1 μL, and 1 μL of human CD235ab-Pacific Blue (Anti-CD235ab-PB; BioLegend) antibody, respectively, analysis was performed using FACS Verse (BD). A strain with a positive rate of 50% or more was defined as an immortalized megakaryocyte cell strain. These cells, which were able to proliferate for 24 days or more after infection, were designated as the immortalized megakaryocyte cell line SeV2-MKCL.

得られたSeV2-MKCLを、10cmディッシュ(10mL/ディッシュ)で静置培養した。培地は、IMDMを基本培地として、以下の成分を加えた(濃度は終濃度)。
FBS(シグマ#172012 lot.12E261)15%
L-Glutamin (Gibco #25030-081) 2mM
ITS (Gibco #41400-045) 100倍希釈
MTG (monothioglycerol, sigma #M6145-25ML) 450μM
アスコルビン酸 (sigma #A4544) 50μg/mL
Puromycin (sigma #P8833-100MG) 2μg/mL
SCF (和光純薬 #193-15513) 50ng/mL
TPO様作用物質 200ng/mL
培養条件は、37℃、5%CO2とした。
The resulting SeV2-MKCL was statically cultured in a 10 cm dish (10 mL/dish). IMDM was used as a basal medium, and the following components were added (concentrations are final concentrations).
FBS (Sigma #172012 lot.12E261) 15%
L-Glutamin (Gibco #25030-081) 2mM
ITS (Gibco #41400-045) diluted 1:100
MTG (monothioglycerol, sigma #M6145-25ML) 450μM
Ascorbic acid (sigma #A4544) 50 μg/mL
Puromycin (sigma #P8833-100MG) 2 μg/mL
SCF (Wako Pure Chemical #193-15513) 50ng/mL
TPO-like agent 200ng/mL
The culture conditions were 37°C and 5% CO 2 .

2.血小板の生産
次に、ドキシサイクリンを含まない培地で培養することで強制発現を解除した。具体的には、1.の方法で得た不死化巨核球細胞株(SeV2-MKCL)を、PBS(-)で2度洗浄し、下記の血小板の生産のための培地に懸濁した。細胞の播種密度は、1.0x105 cells/mLとした。
2. Platelet production Next, forced expression was released by culturing in a medium containing no doxycycline. Specifically, 1. The immortalized megakaryocyte cell line (SeV2-MKCL) obtained by the method of 1 was washed twice with PBS(-) and suspended in the following medium for platelet production. The cell seeding density was 1.0×10 5 cells/mL.

血小板生産培地で6日間培養して、血小板を産生させた。 Platelets were produced by culturing in platelet production medium for 6 days.

血小板の生産のための培地(血小板生産培地)は、IMDMを基本培地として、以下の成分を加えた(濃度は終濃度)。
FBS 15%
L-Glutamin (Gibco #25030-081) 2mM
ITS (Gibco #41400-045) 100倍希釈
MTG (monothioglycerol, sigma #M6145-25ML) 450μM
アスコルビン酸 (sigma #A4544) 50μg/mL
SCF (和光純薬 #193-15513) 50ng/mL
TPO様作用物質 200ng/mL
ADAM阻害剤 15μM
SR1 750nM
ROCK阻害剤 10μM
A medium for platelet production (platelet production medium) was prepared by adding the following components to IMDM as a basal medium (concentrations are final concentrations).
FBS 15%
L-Glutamin (Gibco #25030-081) 2mM
ITS (Gibco #41400-045) diluted 1:100
MTG (monothioglycerol, sigma #M6145-25ML) 450μM
Ascorbic acid (sigma #A4544) 50 μg/mL
SCF (Wako Pure Chemical #193-15513) 50ng/mL
TPO-like agent 200ng/mL
ADAM inhibitor 15 μM
SR1 750nM
ROCK inhibitor 10 μM

3.血小板の精製
3-1.巨核球除去
先ず、無菌接合装置を用いて、ACP215ディスポーザブルセットの廃液バッグを回収用バッグに置換した。回収用バッグは、ハイカリックIVHバック(テルモ HC-B3006A)を用いた。
次に、血小板の生産工程で得られた巨核球および産生血小板を含む培養液2.4Lを調製した。かかる培養液量2.4Lに対して10%量のACD-A液を添加した。その後、ACD-A液を添加した培養液を、細胞バッグに注入した。細胞バッグは、ハイカリックIVHバック(テルモ HC-B3006A)を用いた。
次に、無菌接合装置を用いて、培養液を含む細胞バッグをACP215ディスポーザブルセットに接合した。
ACP215をサービスモードで立ち上げ、遠心速度を2000rpm(223.8×g)にセットした。
ACP215にACP215ディスポーザブルセットをセットし、培地の入った細胞バッグはスタンドに設置した。
ACP215をスタートさせ、細胞バッグ中の培養液を約100mL/minで分離ボウルに注入した。ボウルより溶出する溶出液は、回収バッグに回収した。
細胞バッグ中の培養液の全量を分離ボウルに添加後、さらに500mLの洗浄液を追加した。
洗浄液を分離ボウルに注入した後、遠心を止めてチューブシーラーを用いて回収液(血小板を含む)を含む回遊バッグを切り離した。
3. Purification of platelets 3-1. Megakaryocyte removal First, the waste bag of the ACP215 disposable set was replaced with a collection bag using a sterile conjugator. Hycalic IVH bag (Terumo HC-B3006A) was used as a collection bag.
Next, 2.4 L of culture medium containing megakaryocytes obtained in the platelet production process and produced platelets was prepared. 10% of ACD-A solution was added to 2.4 L of such culture solution. After that, the culture medium to which the ACD-A solution was added was injected into the cell bag. Hycalic IVH bag (Terumo HC-B3006A) was used as the cell bag.
The cell bag containing culture medium was then bonded to the ACP215 disposable set using a sterile mating device.
The ACP215 was started in service mode and the centrifugation speed was set at 2000 rpm (223.8 xg).
The ACP215 disposable set was set on the ACP215, and the cell bag containing the medium was placed on the stand.
ACP215 was started and the medium in the cell bag was pumped into the separation bowl at approximately 100 mL/min. The eluate eluted from the bowl was collected in a collection bag.
After adding the entire amount of medium in the cell bag to the separation bowl, an additional 500 mL of wash solution was added.
After injecting the wash solution into the separation bowl, the centrifugation was stopped and the circulation bag containing the recovery solution (including platelets) was separated using a tube sealer.

3-2.濃縮、洗浄、製剤化
(1)濃縮工程
新しいACP215ディスポーザブルセットへ、無菌接合装置を用いて回収液(血小板を含む)を含んだ回収バッグを接合した。
ACP215を通常モードで立ち上げた。プログラム設定はWPCを選択し、機器の指示に従い、上述の回収バッグを接合したACP215ディスポーザブルセットをセットした。尚、回収液を含んだ回収バッグはスタンドに設置した。
次に、ACP215の遠心速度を5000rpm(1398.8×g)に変更し、遠心をスタートさせた。
分離ボウルへの回収液が注入され始めたとき、自動注入から手動注入に変更した。具体的には、回収液を約100mL/minで分離ボウルに注入させた。回収液全量を分離ボウルに添加後、さらに500mLの洗浄液を追加した。
(2)洗浄工程
洗浄は、ACP215のプログラムに従って、2000mLの洗浄液で洗浄した。
(3)製剤化
ACP215のプログラムに従って、200mLの洗浄済み血小板を血小板製剤バッグに回収した。
3-2. Concentration, Washing, Formulation (1) Concentration Process A collection bag containing a collection liquid (containing platelets) was joined to a new ACP215 disposable set using a sterile joining device.
Booted ACP215 in normal mode. WPC was selected as the program setting, and the ACP215 disposable set to which the collection bag described above was joined was set according to the instructions of the device. The recovery bag containing the recovery liquid was placed on a stand.
Next, the centrifugation speed of ACP215 was changed to 5000 rpm (1398.8×g) and centrifugation was started.
When the recovery fluid into the separation bowl began to pour, the auto-injection was changed to manual injection. Specifically, the collected liquid was injected into the separation bowl at about 100 mL/min. After adding the entire amount of the collected liquid to the separation bowl, 500 mL of washing liquid was added.
(2) Washing step Washing was performed with 2000 mL of washing solution according to the ACP215 program.
(3) Formulation
200 mL of washed platelets were collected into a platelet product bag according to the ACP215 program.

4.巨核球数、血小板数、血小板の生理活性、異常血小板の測定
4-1.測定方法
精製した血小板製剤中の巨核球数、血小板数、血小板の生理活性、異常血小板などを、フローサイトメータを用いて測定した。
巨核球数、血小板数、血小板の生理活性の測定では、1.5mLマイクロチューブに希釈液900μLを添加し、巨核球細胞の培養物又は血小板精製後の回収物100μLを添加し、混合した。得られた溶液200μLをFACSチューブに分注し、標識抗体を添加して染色を行った。
異常血小板の測定では、巨核球細胞の培養物又は血小板精製後の回収物100μLをFACSチューブに分注し、標識抗体及びタンパク質を添加して染色を行い、フローサイトメータ分析直前にアネキシンV binding buffer(BD)で5倍希釈し、分析した。
抗体は、以下を用いた。
(1)巨核球数、血小板数の測定
1.0μL 抗CD41a抗体 APC標識(Bio Legend 303710)
1.0μL 抗CD42a抗体PB標識(eBioscience 48-0428-42)
1.0μL 抗CD42b抗体PE標識(Bio Legend 303906)
(2)血小板の生理活性の測定
0.5μL 抗CD42a抗体PB標識(eBioscience 48-0428-42)
0.5μL 抗CD42b抗体PE標識(Bio Legend 303906)
0.5μL 抗CD62p抗体APC標識(Bio Legend 304910)
10μL 抗PAC-1抗体FITC標識(BD 303704)
(3)異常血小板数の測定
1.0μL 抗CD41a抗体 APC標識(Bio Legend 303710)
1.0μL 抗CD42b抗体PE標識(Bio Legend 303906)
5μL Annexin V FITC標識(BD 556419)
4. Measurement of megakaryocyte count, platelet count, platelet physiological activity, and abnormal platelets
4-1. Measurement method The megakaryocyte count, platelet count, platelet physiological activity, abnormal platelets, etc. in the purified platelet preparation were measured using a flow cytometer.
Megakaryocyte count, platelet count, platelet physiological activity measurement, 900 μL of diluent was added to a 1.5 mL microtube, 100 μL of megakaryocyte cell culture or platelet purification recovery was added and mixed. 200 µL of the resulting solution was dispensed into FACS tubes, and a labeled antibody was added for staining.
In the measurement of abnormal platelets, dispensed 100μL of megakaryocyte culture or collected after platelet purification into FACS tubes, stained by adding labeled antibody and protein, annexin V binding buffer just before flow cytometer analysis (BD) was diluted 5-fold and analyzed.
The following antibodies were used.
(1) Measurement of megakaryocyte count and platelet count
1.0 μL anti-CD41a antibody APC-labeled (Bio Legend 303710)
1.0 μL anti-CD42a antibody PB-labeled (eBioscience 48-0428-42)
1.0 μL anti-CD42b antibody PE-labeled (Bio Legend 303906)
(2) Measurement of physiological activity of platelets
0.5 μL anti-CD42a antibody PB-labeled (eBioscience 48-0428-42)
0.5 μL anti-CD42b antibody PE-labeled (Bio Legend 303906)
0.5 μL anti-CD62p antibody APC-labeled (Bio Legend 304910)
10 μL anti-PAC-1 antibody FITC-labeled (BD 303704)
(3) Measurement of abnormal platelet count
1.0 μL anti-CD41a antibody APC-labeled (Bio Legend 303710)
1.0 μL anti-CD42b antibody PE-labeled (Bio Legend 303906)
5 μL Annexin V FITC-labeled (BD 556419)

4-2.巨核球数、血小板数の測定結果
CD41a陽性CD42b陽性の粒子数を血小板数とし、陽性の粒子数を巨核球細胞数とした。精製前の培養物(Versusを使用して6日間培養した培養物)と、精製後の回収物に含まれる血小板数と巨核球数をそれぞれ測定した。
結果を下表と図1に示す。

Figure 0007287634000001

精製前
(2600mL)
精製後
(200mL)
収率(%)

血小板
2.40×1010
7.41×109
30.8

巨核球数
6.91×108
1.60×107
3.3

4-2. Measurement results of megakaryocyte count and platelet count
The number of CD41a-positive and CD42b-positive particles was defined as the platelet count, and the number of positive particles was defined as the megakaryocyte cell count. The number of platelets and the number of megakaryocytes contained in the culture before purification (culture cultured for 6 days using Versus) and the recovered product after purification were measured.
The results are shown in the table below and in FIG.
Figure 0007287634000001

Before purification (2600mL)
After purification (200mL)
yield(%)

platelet
2.40×10 10
7.41× 109
30.8

Megakaryocyte count
6.91× 108
1.60× 107
3.3

表1から血小板回収率は30.8%であった。また、巨核球数は、精製前の2.3%に減少した(巨核球除去率97.7%)。従来の方法(フィルターを使用する方法や遠心管を用いる遠心分離法)に比較して、血小板回収率が3倍上昇した。 From Table 1, the platelet recovery rate was 30.8%. In addition, the number of megakaryocytes decreased to 2.3% before purification (97.7% megakaryocyte removal rate). Compared to the conventional method (method using a filter or centrifugation method using a centrifugal tube), the platelet recovery rate increased threefold.

4-3.血小板の生理活性の測定結果
血小板の刺激を、PMA 0.2μM(Phorbol 12-myristate 13-acetate, sigma #P1585-1MG)、又は、ADP 100μM(sigma #A2754)およびThrombin 0.5 U/mL(sigma)で室温にて行った。刺激開始から30分後にBD社FACSverceにて測定を実施した。
CD42a陽性の血小板画分における、刺激前後のPAC-1陽性率及びCD62p(p-selectin)
陽性率を測定し、生理活性を比較評価した。
結果を図2に示す。刺激後にPAC-1陽性及びCD62p(p-selectin)陽性細胞が増加し、精製血小板が高い生理活性を維持していることが確認された。
4-3. Measurement results of platelet physiological activity Stimulation of platelets was performed with PMA 0.2 μM (Phorbol 12-myristate 13-acetate, sigma #P1585-1MG) or ADP 100 μM (sigma #A2754) and Thrombin 0.5 U/mL (sigma). It was done at room temperature. Thirty minutes after the start of stimulation, measurement was performed using BD's FACSverse.
PAC-1 positive rate and CD62p (p-selectin) before and after stimulation in the CD42a positive platelet fraction
The positive rate was measured, and physiological activity was comparatively evaluated.
The results are shown in FIG. PAC-1-positive and CD62p (p-selectin)-positive cells increased after stimulation, confirming that the purified platelets maintained high physiological activity.

4-4.異常血小板の測定結果
アネキシンV陽性の粒子数を異常血小板数とした。結果を図3に示す。
アネキシンV陽性率は14.5%と低く、血小板の異常は十分に抑えられた。
4-4. Measurement result of abnormal platelets The number of annexin V-positive particles was defined as the number of abnormal platelets. The results are shown in FIG.
The annexin V positive rate was as low as 14.5%, and platelet abnormalities were sufficiently suppressed.

4-5.精製6日後の血小板の生理活性及び異常の測定結果
上記3-2.及び3-3と同様の方法で、精製6日後の血小板の生理活性と異常を測定した。
結果を図4及び図5に示す。
精製6日後でも、血小板の生理活性は高く維持され、異常血小板も十分に少なかった。
4-5. Measurement results of physiological activity and abnormalities of platelets 6 days after purification 3-2. Physiological activities and abnormalities of platelets 6 days after purification were measured in the same manner as in 3-3.
The results are shown in FIGS. 4 and 5. FIG.
Even after 6 days of purification, the physiological activity of platelets was maintained at a high level, and the number of abnormal platelets was sufficiently low.

Claims (6)

巨核球細胞の培養物から精製血小板を製造する方法であって、
回転可能な分離ボウルにおいて、前記培養物を150×g~550×gの遠心力で遠心分離することにより前記培養物から巨核球細胞を除去し、巨核球から分離された血小板を含む液体成分を回収する工程と、
回転可能な分離ボウルにおいて、前記工程で回収された液体成分を600×g~3000×gの遠心力で遠心分離することにより前記液体成分における血小板を精製する工程とを含む、方法。
A method for producing purified platelets from a culture of megakaryocyte cells,
In a rotatable separation bowl, the megakaryocyte cells are removed from the culture by centrifuging the culture at a centrifugal force of 150 × g to 550 × g, and the liquid component containing platelets separated from the megakaryocytes is a step of recovering;
and purifying the platelets in the liquid component by centrifuging the liquid component collected in the step with a centrifugal force of 600×g to 3000×g in a rotatable separation bowl.
前記遠心分離が、
遠心力に応じて比重の大きい物質を付着させる内壁と、分離後の液体成分を流出させる流出口とを備えた、回転可能な分離ボウルと、
前記流出口から流出した液体成分を回収する回収手段と、を備えた遠心分離装置で実施される、請求項1に記載の方法。
The centrifugation is
a rotatable separation bowl having an inner wall for adhering a substance having a large specific gravity according to centrifugal force, and an outlet for discharging the separated liquid component;
2. The method according to claim 1, wherein the method is carried out in a centrifugal separator comprising a recovery means for recovering the liquid component discharged from said outlet.
血小板を精製する工程が、600×g~3000×gの遠心力での遠心分離工程後、前記分離ボウルに洗浄液を加えて回転させる洗浄工程と、
前記洗浄工程後、回収液を加えて回転させる血小板回収工程と、
を含む、請求項2に記載の方法。
The step of purifying platelets includes, after a centrifugal separation step with a centrifugal force of 600 x g to 3000 x g , a washing step of adding a washing solution to the separation bowl and rotating it;
After the washing step, a platelet recovery step of adding a recovery liquid and rotating;
3. The method of claim 2, comprising:
150×g~550×gの遠心力での遠心分離工程では、前記培養物を自然落下によって分離ボウルに注入する、請求項2又は3に記載の方法。 The method according to claim 2 or 3, wherein the centrifugation step at a centrifugal force of 150xg to 550xg pours the culture into the separation bowl by gravity. 前記巨核球細胞の培養物は、
巨核球細胞より未分化な細胞において、癌遺伝子及びポリコーム遺伝子を強制発現させる工程と、
前記細胞でBcl-xL遺伝子を強制発現させる工程と、
前記強制発現をすべて解除する工程と、
で得られたものである、請求項1~4のいずれか1項に記載の方法。
The megakaryocyte culture is
A step of forcibly expressing an oncogene and a polycomb gene in cells that are undifferentiated from megakaryocyte cells;
a step of forcibly expressing the Bcl-xL gene in the cell;
a step of canceling all the forced expression;
The method according to any one of claims 1 to 4, which is obtained from
請求項1から5のいずれか1項に記載された方法で製造された精製血小板と、血小板保存液とを混合する工程を含む、血液製剤の製造方法。 A method for producing a blood product, comprising the step of mixing purified platelets produced by the method according to any one of claims 1 to 5 and a platelet storage solution.
JP2017545489A 2015-10-14 2016-10-14 Method for producing purified platelets Active JP7287634B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015203275 2015-10-14
JP2015203275 2015-10-14
PCT/JP2016/080553 WO2017065280A1 (en) 2015-10-14 2016-10-14 Method for producing purified platelets

Publications (2)

Publication Number Publication Date
JPWO2017065280A1 JPWO2017065280A1 (en) 2018-09-13
JP7287634B2 true JP7287634B2 (en) 2023-06-06

Family

ID=58518210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017545489A Active JP7287634B2 (en) 2015-10-14 2016-10-14 Method for producing purified platelets

Country Status (10)

Country Link
US (1) US10851343B2 (en)
EP (1) EP3363443A4 (en)
JP (1) JP7287634B2 (en)
KR (1) KR20180063307A (en)
CN (1) CN108135940B (en)
AU (1) AU2016338030A1 (en)
CA (1) CA3000116A1 (en)
RU (1) RU2766177C2 (en)
SG (1) SG11201802159UA (en)
WO (1) WO2017065280A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002245B2 (en) * 2017-08-10 2022-01-20 シスメックス株式会社 Blood analyzers, blood analysis methods and programs
WO2019059234A1 (en) * 2017-09-19 2019-03-28 株式会社メガカリオン Platelet production method, platelet preparation production method, and blood preparation production method
US11773374B2 (en) 2017-09-19 2023-10-03 Megakaryon Corporation Method for producing purified platelets, method for producing platelet product, method for producing blood product, platelet preserving solution, platelet preserving agent, and method for preserving platelets
RU2710367C2 (en) * 2018-05-29 2019-12-26 Общество с ограниченной ответственностью "Институт биотехнологий и фармакологии", ООО "ИНБИОФАРМА" Method for producing cytokines from umbilical blood thrombocytes as substrate for developing drugs for humans and animals
KR20210126086A (en) * 2019-03-15 2021-10-19 가부시키가이샤 메가카리온 Preservation of Mammalian Cells
IT201900006867A1 (en) * 2019-05-15 2020-11-15 Prometheus Soc A Responsabilita Limitata METHOD AND DEVICE FOR MAKING A COMPOSITION INCLUDING PLASMA ENRICHED WITH PLATES, A KIT FOR SAID DEVELOPMENT DEVICE, SAID COMPOSITION ITSELF AND USE OF SAID COMPOSITION
CN114829584A (en) 2019-12-13 2022-07-29 株式会社美加细胞 Composition and use thereof
EP4238572A1 (en) 2020-10-27 2023-09-06 Nagasaki University Osteogenic composition and use thereof
KR102543304B1 (en) 2022-10-05 2023-06-14 주식회사 듀셀바이오테라퓨틱스 A method for producing cells with platelet producing ability and platelets

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518603A (en) 2004-11-01 2008-06-05 ウイスコンシン アラムニ リサーチ ファンデーション Stem cell-derived platelets
JP2009511069A (en) 2005-10-14 2009-03-19 ザイムクエスト インコーポレイティッド Compositions and methods for prolonging platelet survival
EP2163261A1 (en) 2008-07-14 2010-03-17 Canadian Blood Services Cold storage of PEG modified platelets
WO2012157586A1 (en) 2011-05-13 2012-11-22 国立大学法人東京大学 Polynucleated megakaryocytic cell and method for manufacturing platelets
JP2013512676A (en) 2009-12-04 2013-04-18 ステム セル アンド リジェネレイティブ メディスン インターナショナル, インコーポレイテッド Large-scale generation of functional megakaryocytes and platelets from human embryonic stem cells under non-stromal conditions
JP2014515352A (en) 2011-05-17 2014-06-30 ベリコ メディカル インコーポレイティッド Improving platelet storage using sialidase inhibitors
WO2015109220A1 (en) 2014-01-17 2015-07-23 President And Fellows Of Harvard College Platelet decoy and use thereof
WO2015153102A1 (en) 2014-04-01 2015-10-08 Rubius Therapeutics, Inc. Methods and compositions for immunomodulation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715338B2 (en) 1994-11-11 2005-11-09 テルモ株式会社 Blood component separator
JPH09108594A (en) * 1995-10-16 1997-04-28 Terumo Corp Centrifugal separator and component separation method
SE9600713L (en) 1996-02-26 1997-10-17 Omega Medicinteknik Ab Method of separating cells, especially platelets and bag set therefor
JP3313572B2 (en) * 1996-04-03 2002-08-12 ヘモネティクス・コーポレーション Blood processing centrifuge bowl
RU2129883C1 (en) * 1998-07-08 1999-05-10 Закрытое акционерное общество "Международная компания Дельта SP" Obtaining of thromocyte concentrate from plasma enriched with thrombocytes according to "delrus" technology
CN101052710A (en) * 2004-11-01 2007-10-10 威斯康星校友研究基金会 Platelets from stem cells
JP3850429B2 (en) * 2005-06-22 2006-11-29 テルモ株式会社 Blood component separator
JP5863459B2 (en) * 2008-12-04 2016-02-16 インセルム (アンスティテュ・ナショナル・ドゥ・ラ・サント・エ・ドゥ・ラ・ルシェルシュ・メディカル)INSERM (Institut National de la Sante et de la Recherche Medicale) Platelet production method
US20120294842A1 (en) 2011-05-17 2012-11-22 Qiyong Peter Liu Platelet Additive Solution Having a Sialidase Inhibitor
US9609861B2 (en) 2011-05-17 2017-04-04 Velico Medical Inc. Platelet additive solution having a β-galactosidase inhibitor
CN103028154B (en) * 2011-12-14 2015-10-07 南京双威生物医学科技有限公司 A kind of platelet separation bag and the hematoblastic method of manual separation
EP2934555B1 (en) * 2012-12-21 2021-09-22 Astellas Institute for Regenerative Medicine Methods for production of platelets from pluripotent stem cells
WO2015073587A2 (en) 2013-11-18 2015-05-21 Rubius Therapeutics, Inc. Synthetic membrane-receiver complexes
JP2015188381A (en) * 2014-03-28 2015-11-02 東レエンジニアリング株式会社 Separation device and separation method
CA2989755A1 (en) * 2015-06-16 2016-12-22 Kyoto University Method for producing highly functional platelets

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518603A (en) 2004-11-01 2008-06-05 ウイスコンシン アラムニ リサーチ ファンデーション Stem cell-derived platelets
JP2009511069A (en) 2005-10-14 2009-03-19 ザイムクエスト インコーポレイティッド Compositions and methods for prolonging platelet survival
EP2163261A1 (en) 2008-07-14 2010-03-17 Canadian Blood Services Cold storage of PEG modified platelets
JP2013512676A (en) 2009-12-04 2013-04-18 ステム セル アンド リジェネレイティブ メディスン インターナショナル, インコーポレイテッド Large-scale generation of functional megakaryocytes and platelets from human embryonic stem cells under non-stromal conditions
WO2012157586A1 (en) 2011-05-13 2012-11-22 国立大学法人東京大学 Polynucleated megakaryocytic cell and method for manufacturing platelets
JP2014515352A (en) 2011-05-17 2014-06-30 ベリコ メディカル インコーポレイティッド Improving platelet storage using sialidase inhibitors
WO2015109220A1 (en) 2014-01-17 2015-07-23 President And Fellows Of Harvard College Platelet decoy and use thereof
WO2015153102A1 (en) 2014-04-01 2015-10-08 Rubius Therapeutics, Inc. Methods and compositions for immunomodulation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biotechnol.Bioeng.,2015,Vol.112,No.4,pp.788-800
Journal of Clinical Rehabilitative Tissue Engineering Research,2009,Vol.13,No.10,pp.1976-1980

Also Published As

Publication number Publication date
CN108135940A (en) 2018-06-08
AU2016338030A1 (en) 2018-04-26
RU2018117518A3 (en) 2020-02-25
KR20180063307A (en) 2018-06-11
US10851343B2 (en) 2020-12-01
CN108135940B (en) 2022-04-15
SG11201802159UA (en) 2018-04-27
EP3363443A4 (en) 2019-06-26
EP3363443A1 (en) 2018-08-22
US20180282697A1 (en) 2018-10-04
CA3000116A1 (en) 2017-04-20
RU2018117518A (en) 2019-11-14
RU2766177C2 (en) 2022-02-08
JPWO2017065280A1 (en) 2018-09-13
WO2017065280A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP7287634B2 (en) Method for producing purified platelets
JP6856537B2 (en) Platelet production method using a reciprocating stirrer and culture vessel used for platelet production
JP6814507B2 (en) Method for producing highly functional platelets
JP6851311B2 (en) Method for producing platelets by rotary stirring culture method
JP6959135B2 (en) A method for producing a culture containing megakaryocytes and a method for producing platelets using the same.
JP2023100831A (en) Production method of purified blood platelet, production method of blood platelet formulation, production method of blood formulation, blood platelet preservation liquid, blood platelet preservation agent and preservation method of blood platelet
WO2018164040A1 (en) Method for producing platelets
JP7160353B2 (en) Method for producing platelets, method for producing platelet product, and method for producing blood product
Afreen The role of anti-apoptotic BCL-XL protein in the maintenance of human hematopoiesis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210716

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210913

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210914

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211008

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211012

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220511

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7287634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150