JP7287596B2 - Electronic circuit device, manufacturing method thereof, and test method for electronic circuit device - Google Patents

Electronic circuit device, manufacturing method thereof, and test method for electronic circuit device Download PDF

Info

Publication number
JP7287596B2
JP7287596B2 JP2019134418A JP2019134418A JP7287596B2 JP 7287596 B2 JP7287596 B2 JP 7287596B2 JP 2019134418 A JP2019134418 A JP 2019134418A JP 2019134418 A JP2019134418 A JP 2019134418A JP 7287596 B2 JP7287596 B2 JP 7287596B2
Authority
JP
Japan
Prior art keywords
solid
state battery
minute
minute output
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019134418A
Other languages
Japanese (ja)
Other versions
JP2021018935A (en
Inventor
敏洋 緒方
明彦 松延
恒平 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Micro Devices Inc
Original Assignee
Nisshinbo Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Micro Devices Inc filed Critical Nisshinbo Micro Devices Inc
Priority to JP2019134418A priority Critical patent/JP7287596B2/en
Publication of JP2021018935A publication Critical patent/JP2021018935A/en
Application granted granted Critical
Publication of JP7287596B2 publication Critical patent/JP7287596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電子部品が実装基板に実装されている電子回路装置およびその製造方法、ならびに電子回路装置の試験方法に関し、特に気密状態の実装が求められる全固体電池が実装される電子回路装置等に関する。 TECHNICAL FIELD The present invention relates to an electronic circuit device in which electronic components are mounted on a mounting substrate, a manufacturing method thereof, and a test method for the electronic circuit device. Regarding.

スマートフォンやタブレット端末などのモバイル機器、腕時計型歩数計などのウェアラブル機器等では高機能化と小型化の要請が強く、これらの機器に搭載される電子回路装置は、小型化が求められている。 Mobile devices such as smartphones and tablet terminals, and wearable devices such as wristwatch-type pedometers are in strong demand for high functionality and miniaturization.

電子回路装置を小型化するためには、実装基板に電子部品を高密度実装するのが好ましい。高密度実装された電子回路装置は種々提案されている(例えば、特許文献1等)。 In order to miniaturize the electronic circuit device, it is preferable to mount the electronic components on the mounting substrate with high density. Various electronic circuit devices mounted at high density have been proposed (for example, Patent Document 1, etc.).

一方、実装基板に実装される電子部品の中には、大気中の水分等により特性が劣化するため、気密状態で実装する必要があることが知られている。例えば、全固体電池では、ガラス封止により気密状態を保つ方法が採用されている(特許文献2)。 On the other hand, it is known that some electronic components to be mounted on a mounting substrate must be mounted in an airtight state because their characteristics deteriorate due to moisture in the atmosphere. For example, an all-solid-state battery employs a method of maintaining an airtight state by glass sealing (Patent Document 2).

本願出願人は、簡便に全固体電池のような電子部品を気密構造に保つことができる電子回路装置を提案した(特願2019-71980号、特願2019-100087号)。 The applicant of the present application has proposed an electronic circuit device that can easily keep an electronic component such as an all-solid-state battery in an airtight structure (Japanese Patent Application No. 2019-71980, Japanese Patent Application No. 2019-100087).

ところで全固体電池は、電荷が蓄積した状態(充電された状態)で加熱されると全固体電池の内部の組成変化や変質等の劣化が生じることが知られている。一方、本願出願人が先に提案したこの種の全固体電池を備えた電子回路装置は、マザー基板等に実装する際には半田等を用いるため、リフロー加熱温度(240℃程度)に晒されることになる。 By the way, it is known that when an all-solid-state battery is heated in a state in which electric charges are accumulated (charged state), deterioration such as a change in composition or deterioration occurs inside the all-solid-state battery. On the other hand, the electronic circuit device equipped with this type of all-solid-state battery previously proposed by the applicant of the present application is exposed to reflow heating temperature (about 240° C.) because it uses solder or the like when mounted on a mother board or the like. It will be.

特開2002-76561号公報JP-A-2002-76561 特開2018-170297号公報JP 2018-170297 A

この種の電子回路装置では、実装時に加熱工程を避けることが難しい。そのため実装工程前には、全固体電池に電荷を蓄積させることなく電子回路装置の試験を行うことが望まれる。本発明はこのような実情に鑑み、全固体電池に電荷を蓄積させることなく、全固体電池の実装状態を確認することができる電子回路装置およびその製造方法、ならびに電子回路装置の試験方法を提供することを目的とする。 In this type of electronic circuit device, it is difficult to avoid a heating process during mounting. Therefore, before the mounting process, it is desirable to test the electronic circuit device without accumulating charges in the all-solid-state battery. In view of such circumstances, the present invention provides an electronic circuit device, a manufacturing method thereof, and a test method for an electronic circuit device that can check the mounting state of an all-solid-state battery without accumulating charges in the all-solid-state battery. intended to

上記目的を達成するため、請求項1に係る電子回路装置は、実装面と、該実装面に連続し断面形状をコの字型とする壁部とを備えた実装基板と、該実装基板の前記壁部の間の一方の表面に実装された全固体電池と、該全固体電池の2つの電極のいずれかの電極にそれぞれ複数の分割引出配線からなる一組の分割引出配線が接続し、各分割引出配線は相互に電気的に分離されている少なくとも2組の分割引出配線と、前記壁部間に充填され、前記全固体電池を被覆する封止樹脂と、一組の前記分割引出配線のうち少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記実装基板の他方の表面に実装された電子部品と、前記分割引出配線にそれぞれ接続し前記壁部表面に露出する外部引出電極と、前記分割引出配線に接続する試験用コンタクト部と、を備えたことを特徴とする。 In order to achieve the above object, an electronic circuit device according to claim 1 comprises: a mounting board having a mounting surface; an all-solid-state battery mounted on one surface between the wall portions, and a set of minute-distribution wirings each made up of a plurality of minute-distribution wirings connected to one of two electrodes of the all-solid-state battery, At least two sets of minute output wires electrically isolated from each other, a sealing resin filled between the wall portions and covering the all-solid-state battery, and a set of the minute output wires. and an electronic component mounted on the other surface of the mounting substrate so as to be connected to at least one of the component output wirings and to be unconnected to at least one of the component output wirings, and connected to the component output wirings, respectively. and a lead-out electrode exposed on the surface of the wall portion, and a test contact portion connected to the portion lead-out wiring.

本願請求項2に係る電子回路装置の製造方法は、列状に配置される電子回路装置の形成予定領域に凹部を備えた集合基板を用意する工程と、前記集合基板上に、外部引出電極と、該外部引出電極と全固体電池の2つの電極のいずれかの電極にそれぞれ接続し、相互に電気的に分離された分割引出配線と、該分割引出配線に接続する試験用コンタクト部とを形成する工程と、前記全固体電池の2つの電極のいずれかの電極にそれぞれ複数の前記分割引出配線からなる一組の前記分割引出配線が接続するように、前記凹部内に全固体電池を実装する工程と、前記凹部内に樹脂を注入し、前記全固体電池を樹脂封止する工程と、前記全固体電池の2つの電極のいずれかの電極にそれぞれ接続する一組の前記分割引出配線のうち、少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記集合基板の他方の面に電子部品を実装する工程と、樹脂封止された前記全固体電池および前記電子部品を含み、前記集合基板の表面に前記外部引出電極および前記試験用コンタクト部が露出する各電子回路装置に個片化する工程と、を含むことを特徴とする。 A method for manufacturing an electronic circuit device according to claim 2 of the present application comprises the steps of: preparing an aggregate substrate having recesses in regions where electronic circuit devices arranged in a row are to be formed; , the external lead-out electrode and the two electrodes of the all-solid-state battery are connected to each other, and electrically isolated from each other, and a test contact portion connected to the component extraction wiring is formed. and mounting the all-solid-state battery in the recess such that one of the two electrodes of the all-solid-state battery is connected to a set of the minute extraction wirings each composed of a plurality of the minute extraction wirings. a step of injecting a resin into the recess to seal the all-solid-state battery with resin; a step of mounting an electronic component on the other surface of the collective board so as to be connected to at least one of the minute extraction wirings and unconnected to the at least one of the minute extraction wirings; and a step of individualizing each electronic circuit device including a solid battery and the electronic component, and exposing the external extraction electrode and the test contact portion on the surface of the collective substrate.

本願請求項3に係る電子回路装置の製造方法は、列状に配置される電子回路装置の形成予定領域に凹部を備えた集合基板を用意する工程と、前記集合基板上に、外部引出電極と、該外部引出電極と全固体電池の2つの電極のいずれかの電極にそれぞれ接続し、相互に電気的に分離された分割引出配線と、該分割引出配線に接続する試験用コンタクト部とを形成する工程と、前記全固体電池の2つの電極のいずれかの電極にそれぞれ複数の前記分割引出配線からなる一組の前記分割引出配線が接続するように、前記凹部内に前記全固体電池を実装する工程と、未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、前記凹部内に樹脂を注入し、前記全固体電池を樹脂封止する工程と、前記全固体電池の2つの電極のいずれかの電極にそれぞれ接続する一組の前記分割引出配線のうち、少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記集合基板の他方の面に電子部品を実装する工程と、樹脂封止された前記全固体電池および前記電子部品を含み、前記集合基板の表面に前記外部引出電極および前記試験用コンタクト部が露出する各電子回路装置に個片化する工程と、を含むことを特徴とする。 A method of manufacturing an electronic circuit device according to claim 3 of the present application comprises the steps of: preparing an aggregate substrate having recesses in regions where electronic circuit devices arranged in rows are to be formed; , the external lead-out electrode and the two electrodes of the all-solid-state battery are connected to each other, and electrically isolated from each other, and a test contact portion connected to the component extraction wiring is formed. and mounting the all-solid-state battery in the recess such that one of the two electrodes of the all-solid-state battery is connected to a set of the minute extraction wirings each composed of a plurality of the minute extraction wirings. and between the test contact portion connected to two of the minute output wirings among a set of the minute output wirings connected to one of the two electrodes of the all-solid-state battery in an uncharged state. After or before the step of measuring the resistance value, connecting to two of the minute output wirings out of a set of the minute output wirings connected to the other electrode of the two electrodes of the all-solid-state battery. a step of measuring a resistance value between the test contact portions; a step of injecting a resin into the recess to seal the all-solid-state battery; and one electrode of the two electrodes of the all-solid-state battery. electronic components on the other surface of the collective substrate so as to be connected to at least one of the minute output wirings and to be unconnected to at least one of the minute output wirings of the set of the minute output wirings respectively connected to the and individualizing each electronic circuit device including the resin-sealed all-solid-state battery and the electronic component, and exposing the external extraction electrode and the test contact portion on the surface of the collective substrate. and a step.

本願請求項4に係る電子回路装置の製造方法は、請求項3記載の電子回路装置の製造方法において、未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程を、前記凹部内に前記全固体電池を実装し、前記凹部内に樹脂を注入し、前記試験用コンタクト部が露出するように前記全固体電池を樹脂封止する工程の後に行うことを特徴とする。 A method for manufacturing an electronic circuit device according to claim 4 of the present application is the method for manufacturing an electronic circuit device according to claim 3, wherein the pair of electrodes connected to one of the two electrodes of the all-solid-state battery in an uncharged state a step of measuring the resistance value between the test contact portions connected to the two of the minute output wirings, and after or before the measurement, measuring the resistance of the other of the two electrodes of the all-solid-state battery; The step of measuring the resistance value between the test contact portions connected to two of the divided output wirings connected to the electrodes is performed by mounting the all-solid-state battery in the recess. and the step of injecting a resin into the concave portion and sealing the all-solid-state battery with the resin so that the test contact portion is exposed.

本願請求項5に係る電子回路装置の製造方法は、請求項3記載の電子回路装置の製造方法において、未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程は、前記凹部内に前記全固体電池を実装し、前記凹部に樹脂を注入し、前記試験用コンタクト部が露出するように前記全固体電池を樹脂封止し、前記全固体電池の2つの電極のいずれかの電極にそれぞれ接続する一組の前記分割引出配線のうち、少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記集合基板の他方の面に電子部品を実装した後、未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程であることを特徴とする。 The method for manufacturing an electronic circuit device according to claim 5 of the present application is the method for manufacturing an electronic circuit device according to claim 3, wherein the pair of electrodes connected to one of the two electrodes of the all-solid-state battery in an uncharged state a step of measuring the resistance value between the test contact portions connected to the two of the minute output wirings, and after or before the measurement, measuring the resistance of the other of the two electrodes of the all-solid-state battery; The step of measuring the resistance value between the test contact portions connected to two of the pair of the minute output wirings connected to the electrodes includes mounting the all-solid-state battery in the recess. , resin is injected into the concave portion, the all-solid-state battery is resin-sealed so that the test contact portion is exposed, and a set of the above-mentioned After mounting an electronic component on the other surface of the collective substrate so as to be connected to at least one of the minute output wirings and not connected to at least one of the minute output wirings, an uncharged state is obtained. out of a set of the minute output wirings connected to one electrode of the two electrodes of the all-solid-state battery, two of the minute output wirings connected to the two minute output wirings including the minute output wiring that is not connected to the electronic component measuring the resistance value between the test contact portions; and after or before the measurement, the electronic The step of measuring a resistance value between the test contact portions connected to two of the divisional distribution wirings including the divisional distribution wiring in an unconnected state with the component is measured.

本願請求項6に係る電子回路装置の試験方法は、実装面と、該実装面に連続し断面形状をコの字型とする壁部とを備えた実装基板と、該実装基板の前記壁部の間の一方の表面に実装された全固体電池と、該全固体電池の2つの電極のいずれかの電極にそれぞれ複数の分割引出配線からなる一組の分割引出配線が接続し、各分割引出配線は相互に電気的に分離されている少なくとも2組の分割引出配線と、前記壁部間に充填され、前記全固体電池を被覆する封止樹脂と、一組の前記分割引出配線のうち少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記実装基板の他方の表面に実装された電子部品と、前記分割引出配線にそれぞれ接続し前記壁部表面に露出する外部引出電極と、前記分割引出配線に接続する試験用コンタクト部と、を備えた電子回路装置の試験方法において、未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、を含むことを特徴とする。 A method for testing an electronic circuit device according to claim 6 of the present application comprises: a mounting substrate having a mounting surface; a wall portion continuous with the mounting surface and having a U-shaped cross section; an all-solid-state battery mounted on one surface between the two electrodes of the all-solid-state battery; The wiring includes at least two sets of divisional output wiring that are electrically separated from each other, a sealing resin that is filled between the wall portions and covers the all-solid-state battery, and at least one set of the divisional distribution wiring. an electronic component mounted on the other surface of the mounting substrate so as to be connected to one of the minute output wirings and unconnected to at least one of the minute output wirings; In a method for testing an electronic circuit device comprising an external extraction electrode exposed on the surface of a part and a test contact part connected to the part extraction wiring, one electrode of the two electrodes of the all-solid-state battery in an uncharged state measuring the resistance value between the test contact portions connected to two of the sub-distribution wirings that are connected to the electronic component and including the sub-distribution wiring that is not connected to the electronic component; and, after or before the measurement, of the set of the minute output wirings connected to the other of the two electrodes of the all-solid-state battery, including the minute output wiring that is not connected to the electronic component. and measuring a resistance value between the test contact portions connected to the two branch output wirings.

本発明の電子回路装置は、気密状態の実装が要求される全固体電池を封止樹脂による封止を行うのみで気密性良く封止でき、非常に簡便に全固体電池を備えた電子回路装置を形成することが可能となる。一方気密状態の実装が要求されない電子部品は、実装基板上に露出して実装された構造とすることができ、部品の交換等が容易となるという利点がある。 The electronic circuit device of the present invention is an electronic circuit device equipped with an all-solid-state battery that can be sealed with good airtightness only by sealing the all-solid-state battery, which is required to be mounted in an airtight state, with a sealing resin. can be formed. On the other hand, electronic components that do not require airtight mounting can be mounted exposed on the mounting board, which has the advantage of facilitating replacement of the components.

実装基板に接続する壁部を備える構成とすることで、外部引出用の分割電極の形成が容易となる。さらに、電子回路装置が実装されるマザー基板等と熱膨張率が等しく、あるいは近い材料を選択することで、信頼性の向上も図ることが可能となる。 By adopting the configuration including the wall portion connected to the mounting substrate, it becomes easy to form the split electrodes for external extraction. Furthermore, by selecting a material having a coefficient of thermal expansion equal to or close to that of the mother board or the like on which the electronic circuit device is mounted, it is possible to improve reliability.

外部引出電極を複数の電極で構成することで、各外部引出電極の熱容量を小さくでき、そのばらつきも小さくできる。その結果、半田実装する際に、各外部引出電極の半田が溶融するタイミングが揃い、電子回路装置が傾いたり、位置ずれを起こすことなく実装することが可能となる。また、各外部引出電極を小さく形成することができ、外部引出電極への半田の這い上がりが良くなり、実装信頼性が向上するという利点がある。視認性が良くなるという利点もある。 By forming the external extraction electrode with a plurality of electrodes, the heat capacity of each external extraction electrode can be reduced, and the variation thereof can also be reduced. As a result, when the electronic circuit device is mounted by soldering, the timing of melting of the solder of each lead-out electrode is aligned, and the electronic circuit device can be mounted without being tilted or misaligned. In addition, each lead-out electrode can be formed small, and there is an advantage that the solder creeps up to the lead-out electrode and the mounting reliability is improved. It also has the advantage of better visibility.

本発明の電子回路装置の製造方法は、通常の半導体装置の製造工程のみで形成することができ、歩留まり良く、簡便に電子回路装置を形成することが可能となる。 The method of manufacturing an electronic circuit device according to the present invention can be formed only by a normal semiconductor device manufacturing process, and it is possible to easily form an electronic circuit device with a high yield.

本発明の電子回路装置の製造工程中の試験工程および電子回路装置の試験方法は、全固体電池の一方の電極のみ、あるいは他方の電極のみに接続する試験用コンタクト部を用いて試験を行うことで、全固体電池を未充電の状態に保つことができ、その後に加熱工程を経たとしても全固体電池の特性劣化を招くことがなく好ましい。 In the test step during the manufacturing process of the electronic circuit device and the test method of the electronic circuit device of the present invention, the test is performed using a test contact portion connected to only one electrode or only the other electrode of the all-solid-state battery. Therefore, the all-solid-state battery can be kept in an uncharged state, and even if the heating process is performed after that, the characteristics of the all-solid-state battery do not deteriorate, which is preferable.

本発明の電子回路装置の製造工程を説明する図である。It is a figure explaining the manufacturing process of the electronic circuit device of this invention. 本発明の電子回路装置の製造工程を説明する図である。It is a figure explaining the manufacturing process of the electronic circuit device of this invention. 本発明の電子回路装置の製造工程を説明する図である。It is a figure explaining the manufacturing process of the electronic circuit device of this invention. 本発明の電子回路装置の製造方法を説明する図である。It is a figure explaining the manufacturing method of the electronic circuit device of this invention. 本発明の電子回路装置の製造工程を説明する図である。It is a figure explaining the manufacturing process of the electronic circuit device of this invention. 本発明の電子回路装置の説明図である。1 is an explanatory diagram of an electronic circuit device of the present invention; FIG. 本発明の電子回路装置の試験方法を説明する図である。It is a figure explaining the test method of the electronic circuit device of this invention. 本発明の電子回路装置の製造工程中に行う試験工程を説明する図である。It is a figure explaining the test process performed during the manufacturing process of the electronic circuit device of this invention. 本発明の電子回路装置の製造工程中に行う別の試験工程を説明する図である。It is a figure explaining another test process performed during the manufacturing process of the electronic circuit device of the present invention.

本発明は、気密状態の実装が求められる全固体電池と、気密状態の実装が求められない電子部品とを高密度に実装することで小型化が可能で、信頼性が高く、さらに全固体電池を充電することなく試験を行うことができる電子回路装置およびその製造方法に関する。また本発明は、全固体電池を未充填状態に保ち試験工程を行うことができる電子回路装置の製造方法および試験方法に関する。以下、本発明について詳細に説明する。 The present invention enables miniaturization and high reliability by mounting all-solid-state batteries that require airtight mounting and electronic components that do not require air-tight mounting at high density, and furthermore, all-solid-state batteries. and a method of manufacturing the same. The present invention also relates to a manufacturing method and a testing method for an electronic circuit device that can perform a testing process while keeping an all-solid-state battery in an unfilled state. The present invention will be described in detail below.

本発明の第1の実施例について、電子回路装置の製造工程に従い説明する。まず、エポキシ樹脂等からなる集合基板1を用意する。この種の集合基板1は、通常の半導体装置の製造工程で使用されている樹脂基板(有機基板)を使用することができる。集合基板1は、完成した電子回路装置が実装されるマザー基板の材質に応じて、適宜選択するのが好ましく、例えば熱膨張率の等しい材質あるいは近い材質を選択すると、実装信頼性の向上を図ることができる。集合基板1は個片化により分割されると、個々の実装基板を構成する。 A first embodiment of the present invention will be described according to the manufacturing process of an electronic circuit device. First, an aggregate substrate 1 made of epoxy resin or the like is prepared. For this type of aggregate substrate 1, a resin substrate (organic substrate) that is used in a normal semiconductor device manufacturing process can be used. It is preferable to select the assembly substrate 1 according to the material of the mother substrate on which the completed electronic circuit device is mounted. be able to. When the collective substrate 1 is divided by singulation, it constitutes individual mounting substrates.

図1は、凹部2が形成された集合基板1の説明図で、図1(a)に断面図を、図1(b)に平面図を示している。図1に示す例では、後述する工程に従い、4個の電子回路装置が形成される。凹部2を備えた集合基板1は、絶縁層の両面に所望の配線パターン等が形成された導電膜を備えた両面板1aと、凹部2に相当する貫通孔を備えた枠板1bとを貼り合せて用意することができる。 FIGS. 1A and 1B are explanatory diagrams of a collective substrate 1 having recesses 2 formed therein. FIG. 1A shows a cross-sectional view, and FIG. 1B shows a plan view. In the example shown in FIG. 1, four electronic circuit devices are formed according to the steps described later. A collective substrate 1 having recesses 2 is made by bonding a double-sided board 1a having conductive films with desired wiring patterns formed on both sides of an insulating layer, and a frame plate 1b having through holes corresponding to the recesses 2. Can be prepared together.

凹部2の両端には壁部3が形成されており、この壁部3を構成する集合基板1に円形の貫通孔4を形成する。この円形の貫通孔4はドリルを用いて形成すると、低コストで加工時間も短く、簡便に形成することができる。貫通孔4内および集合基板1の表裏面には外部引出電極5を形成する。外部引出電極5は、両面板1aの金属膜と、貫通孔内や枠板1b表面にメッキ法等により形成する金属膜で形成することができる。外部引出電極5は、凹部2内に延出し、相互に電気的に分離された分割引出配線6に接続している。この分割引出配線6は、図1(b)に示すように、両面板1aの金属膜やメッキ法等により形成する金属膜で形成することができる。 Wall portions 3 are formed at both ends of the recess 2, and a circular through-hole 4 is formed in the collective substrate 1 constituting the wall portions 3. As shown in FIG. If the circular through hole 4 is formed using a drill, it can be easily formed at low cost and in a short processing time. External extraction electrodes 5 are formed in the through holes 4 and on the front and rear surfaces of the collective substrate 1 . The external lead-out electrodes 5 can be formed of a metal film on the double-sided plate 1a and a metal film formed in the through holes or on the surface of the frame plate 1b by a plating method or the like. The external extraction electrodes 5 extend into the recess 2 and are connected to the extraction wirings 6 which are electrically separated from each other. As shown in FIG. 1(b), the output wiring 6 can be formed of the metal film of the double-sided plate 1a or the metal film formed by plating or the like.

次に図2に示すように、凹部2内に全固体電池7を実装する。全固体電池7は、凹部2の底部に形成された分割引出配線6に接続される。このとき、全固体電池7の陽極あるいは陰極のいずれかとなる電極それぞれに、電気的に分離された3個(一組)の分割引出配線6を接続している。 Next, as shown in FIG. 2, the all-solid-state battery 7 is mounted in the concave portion 2 . The all-solid-state battery 7 is connected to a minute output wiring 6 formed at the bottom of the recess 2 . At this time, three (one set) of electrically separated output wirings 6 are connected to each of the electrodes, which are either anode or cathode, of the all-solid-state battery 7 .

凹部2内に実装される全固体電池7は、大気中の水分等により特性が劣化してしまうので気密状態の実装が求められる。そこでこのような特性劣化を防止するため、図3に示すようにエポキシ樹脂等の封止樹脂8を凹部2内に充填して樹脂封止する。十分な気密性を保つためには、全固体電池7の表面を封止樹脂8で十分に覆う必要がある。そのため図2で示した凹部2の深さ(換言すると、壁部3の高さ)は、集合基板1上に実装される全固体電池7の高さより深く(高く)するのが好ましい。具体的には、全固体電池7の高さが0.6mmのとき、凹部2の壁部3の高さを0.8mm程度とすることで、全固体電池7を凹部2の底部に形成された分割引出配線6や接着材の高さ等のばらつき等が発生しても、水分の侵入等のない気密構造を形成することができる。気密構造を形成するためさらに厚く封止樹脂8を形成する必要がある場合には、封止樹脂8の厚さや、全固体電池7の高さ等を考慮し、枠板1bの厚さを適宜設定すればよい。 The all-solid-state battery 7 mounted in the recess 2 is required to be mounted in an airtight state because its characteristics deteriorate due to moisture in the atmosphere. Therefore, in order to prevent such characteristic deterioration, as shown in FIG. In order to maintain sufficient airtightness, it is necessary to sufficiently cover the surface of the all-solid-state battery 7 with the sealing resin 8 . Therefore, it is preferable that the depth of the concave portion 2 (in other words, the height of the wall portion 3) shown in FIG. Specifically, when the height of the all-solid-state battery 7 is 0.6 mm, the height of the wall 3 of the recess 2 is set to about 0.8 mm so that the all-solid-state battery 7 is formed at the bottom of the recess 2. Therefore, even if the height of the output wiring 6 or the adhesive material varies, it is possible to form an airtight structure that does not allow moisture to enter. If it is necessary to make the sealing resin 8 thicker in order to form an airtight structure, the thickness of the sealing resin 8, the height of the all-solid-state battery 7, and the like are taken into consideration, and the thickness of the frame plate 1b is appropriately adjusted. You can set it.

なお図2では、全固体電池7を2個ずつ実装した例を示しているが、気密状態の実装が求められない別の種類の電子部品を組み合わせて実装しても良い。 Note that FIG. 2 shows an example in which two all-solid-state batteries 7 are mounted, but other types of electronic components that do not require airtight mounting may be combined and mounted.

このように集合基板1の表面は封止樹脂8により平坦化される(図3)。使用される封止樹脂8は、ディスペンサーから滴下して平坦化できるように、粘度100Pa・s程度以下が好ましい。また耐薬品性、耐リフロー性等を考慮し、例えばエポキシ系樹脂を選択するのが好ましい。二酸化シリコン等のフィラーの充填量を多くし(例えば60wt%程度以上)、吸水率を0.3wt%程度以下の樹脂を用いることで、気密状態の実装が可能となる。全固体電池7を実装する際、半田を用いた場合にはフラックス除去の工程を追加しても良い。 In this manner, the surface of the collective substrate 1 is flattened by the sealing resin 8 (FIG. 3). The sealing resin 8 used preferably has a viscosity of about 100 Pa·s or less so that it can be dropped from a dispenser and flattened. Considering chemical resistance, reflow resistance, etc., it is preferable to select, for example, an epoxy resin. By increasing the filling amount of a filler such as silicon dioxide (for example, about 60 wt % or more) and using a resin having a water absorption rate of about 0.3 wt % or less, it is possible to mount in an airtight state. When mounting the all-solid-state battery 7, if solder is used, a step of flux removal may be added.

その後、集合基板1の裏面(他方の表面に相当)に電子部品を実装する。図4に示す例では、3個の電子部品9a、9b、9cを実装している。 After that, electronic components are mounted on the rear surface (corresponding to the other surface) of the collective board 1 . In the example shown in FIG. 4, three electronic components 9a, 9b and 9c are mounted.

図4に示すようにこの種の電子回路装置では、集合基板1上に様々な大きさの電子部品が実装される。このような場合、裏面側の電子部品9a~9cを実装した後、表面側の全固体電池7を実装して樹脂封止する工程とすると、電子部品9a~9cが脱落する可能性がある。そのため、上述のように表面側に全固体電池7を実装し、樹脂封止する工程を先に行うのが好ましい。当然ながら、電子部品の脱落等が無ければ、工程を逆にすることは可能である。 As shown in FIG. 4, in this type of electronic circuit device, electronic components of various sizes are mounted on an aggregate substrate 1. As shown in FIG. In such a case, if the process of mounting the all-solid-state battery 7 on the front side and sealing with resin after mounting the electronic parts 9a to 9c on the back side, the electronic parts 9a to 9c may drop off. Therefore, as described above, it is preferable to first perform the step of mounting the all-solid-state battery 7 on the surface side and sealing with resin. As a matter of course, the process can be reversed if there is no falling off of the electronic component.

次に、集合基板を個片化する。この個片化は、外部引出電極5が電子回路装置の外周に露出するように行う。具体的には図5に示すように、貫通孔4の中央部が切断位置10となる格子状に、例えばダイシングソーを走行させて行う。ダイシングソーを用いた切断方法では、集合基板1を所定の寸法だけ切削除去することになる。本実施例では、貫通孔4を比較的小さい径となるように形成しているため、図5に示すように切断位置10の端部が貫通孔4の中央に位置するようにする。凹部2間の切断位置10は、両端が貫通孔4の中央に位置するように配置している。凹部2間の切断は、必ずしも1回の切断で両端の貫通孔4を切断する必要は無く、一方の貫通孔4を切断した後、他方の貫通孔4を切断するように構成してもよい。 Next, the aggregate substrate is separated into individual pieces. This singulation is performed so that the external extraction electrodes 5 are exposed to the outer periphery of the electronic circuit device. Specifically, as shown in FIG. 5, for example, a dicing saw is run in a lattice pattern with cutting positions 10 at the central portions of the through holes 4 . In the cutting method using a dicing saw, the aggregate substrate 1 is cut away by a predetermined dimension. In this embodiment, since the through hole 4 is formed to have a relatively small diameter, the end of the cutting position 10 is positioned at the center of the through hole 4 as shown in FIG. A cutting position 10 between the concave portions 2 is arranged so that both ends are positioned in the center of the through hole 4 . The cutting between the concave portions 2 does not necessarily need to cut the through holes 4 at both ends in one cutting, and may be configured such that after cutting one through hole 4, the other through hole 4 is cut. .

図5に示す例では、4個の電子回路装置に個片化される。一般的に個片化工程は、集合基板を固定するためのシートに貼り付けて行うため、集合基板の裏面が封止樹脂の充填により平坦化されていることは、集合基板あるいは個片化後の電子回路装置をシートに確実に接着できる点で好ましい。また壁部3と全固体電池7との隙間に切削屑が入り込むこともなく好ましい。なお、図5では、表面に実装されている電子部品9a~9cに接続する配線の一部は図示を省略している。 In the example shown in FIG. 5, four electronic circuit devices are separated. In general, the singulation process is performed by attaching a sheet for fixing the aggregate substrate, so that the back surface of the aggregate substrate is flattened by filling the sealing resin, the aggregate substrate or after singulation It is preferable in that the electronic circuit device can be reliably adhered to the sheet. Moreover, it is preferable that cutting wastes do not enter the gap between the wall portion 3 and the all-solid-state battery 7 . In FIG. 5, some of the wirings connected to the electronic components 9a to 9c mounted on the surface are omitted.

図6は、個片化後の電子回路装置20の斜視図を示す。図6に示すように個片化された電子回路装置20は、個片化された集合基板(実装基板1A)の表面に複数の電子部品9a、9b、9cが実装され、実装基板の逆の面には、全固体電池が封止樹脂8で被覆された状態で実装されている。また壁部3には、図1および図2で説明した全固体電池の陽極あるいは陰極となる2つの電極のいずれかの電極にそれぞれ接続し、相互に電気的に分離された分割引出配線に接続する外部引出電極5が露出している。 FIG. 6 shows a perspective view of the electronic circuit device 20 after singulation. As shown in FIG. 6, the individualized electronic circuit device 20 has a plurality of electronic components 9a, 9b, and 9c mounted on the surface of the individualized collective board (mounting board 1A), and the reverse side of the mounting board. An all-solid-state battery is mounted on the surface while being covered with a sealing resin 8 . On the wall portion 3, one of the two electrodes, which are the anode or the cathode of the all-solid-state battery described in FIGS. The external extraction electrodes 5 are exposed.

本実施例では、貫通孔4の開口径を小さくすることで、壁部3として残る厚さを薄くしている。これは、大きな開口径の貫通孔を形成する場合と比較して、電子回路装置を小型化できることを示している。一方図面上下方向の両端には、壁部3は残らないように切断し小型化を実現している。 In this embodiment, the thickness remaining as the wall portion 3 is reduced by reducing the opening diameter of the through hole 4 . This indicates that the size of the electronic circuit device can be reduced compared to the case of forming a through hole with a large opening diameter. On the other hand, at both ends in the vertical direction of the drawing, the wall portion 3 is cut so as not to remain, thereby realizing miniaturization.

このように本実施例の電子回路装置20は、全固体電池7と複数の電子部品9a~9cを高密度実装することができ、さらに全固体電池7が封止樹脂によって被覆することで気密封止されている。また、外部引出電極5が電子回路装置の側壁に露出する構造となっているため、電子回路装置を実装する際、半田等の接続部材が外部引出電極5の側壁を這い上がり、確実な接続を形成でき、目視検査等も容易となる。 As described above, the electronic circuit device 20 of the present embodiment can mount the all-solid-state battery 7 and the plurality of electronic components 9a to 9c with high density, and the all-solid-state battery 7 is hermetically sealed by being covered with a sealing resin. is stopped. In addition, since the lead-out electrodes 5 are exposed on the side walls of the electronic circuit device, when the electronic circuit device is mounted, a connection member such as solder creeps up the side walls of the lead-out electrodes 5 to ensure a reliable connection. can be formed, and visual inspection and the like are facilitated.

ところで本実施例の外部引出電極5は、すべて全固体電池の陽極あるいは陰極となる電極に接続しているが、図6に示すように一部の外部引出電極5のみが電子部品9a~9cのいずれかと接続し、外部引出電極5の一部は接続を形成していない。このように接続を形成していない外部引出電極5および分割引出配線6を備えることで、以下に詳述するように電子回路装置の試験を行うことが可能となる。 By the way, all of the external extraction electrodes 5 in this embodiment are connected to the electrodes that become the anode or cathode of the all-solid-state battery, but as shown in FIG. Some of the external extraction electrodes 5 are not connected. By providing the external lead-out electrodes 5 and the split lead-out wirings 6 that are not connected in this way, it is possible to test the electronic circuit device as described in detail below.

次に第2の実施例として、上述の第1の実施例で説明した電子回路装置20の試験方法において説明する。図6に示す電子回路装置20は、図2で説明したように全固体電池7の陽極あるいは陰極となる電極を比較的深い凹部2内で分割引出配線6に接続する構造となっている。そのため、全固体電池7の電極が確実に分割引出配線6と接続していることを確認する必要がある。ところで、この接続状態を確認する際、全固体電池7に電荷が蓄積されることは好ましくない。そこで本実施例では、全固体電池7の陽極あるいは陰極となる2つの電極間に電圧を印加しない方法で全固体電池7の接続状態を確認する。 Next, as a second embodiment, the test method for the electronic circuit device 20 described in the first embodiment will be described. The electronic circuit device 20 shown in FIG. 6 has a structure in which the electrode, which is the anode or cathode of the all-solid-state battery 7, is connected to the division output wiring 6 within the relatively deep recess 2, as described with reference to FIG. Therefore, it is necessary to confirm that the electrodes of the all-solid-state battery 7 are securely connected to the minute output wiring 6 . By the way, when confirming this connection state, it is not preferable that electric charge is accumulated in the all-solid-state battery 7 . Therefore, in this embodiment, the connection state of the all-solid-state battery 7 is confirmed by a method in which a voltage is not applied between the two electrodes that are the anode or cathode of the all-solid-state battery 7 .

全固体電池の2つの電極間に電圧を印加しないため、本実施例の試験方法は、電子回路装置20の全固体電池の2つの電極のいずれか一方の電極に接続する端子のみを使用して試験を行う。例えば図7に示すように、封止樹脂8により封止された電子回路装置20の全固体電池の一方の電極に接続する3個(一組)の分割引出配線、これにそれぞれ接続する外部引出電極5、さらに外部引出電極5に接続して延出する試験用コンタクト部11(a)に接続するように、それぞれ試験装置に接続したプローブ12を接触させる。図7では、3本のプローブ12を用いる例を示している。なお、試験用コンタクト部11は電子部品9a等に接続する配線パターンと同時に形成することができる。 Since no voltage is applied between the two electrodes of the all-solid-state battery, the test method of this embodiment uses only a terminal connected to one of the two electrodes of the all-solid-state battery of the electronic circuit device 20. do the test. For example, as shown in FIG. 7, three (one set) of lead wires connected to one electrode of an all-solid-state battery of an electronic circuit device 20 sealed with a sealing resin 8, and an external lead wire connected to each of them. Probes 12 connected to the test equipment are brought into contact so as to connect to the electrodes 5 and to the test contact portions 11 ( a ) extending in connection with the external extraction electrodes 5 . FIG. 7 shows an example using three probes 12 . The test contact portion 11 can be formed at the same time as the wiring pattern connected to the electronic component 9a or the like.

まず、試験用コンタクト部11(a)に接続するプローブ12(1)とプローブ12(2)の間に所定の電圧を印加し抵抗値を測定する。プローブ12(1)は、このプローブ12(1)に接続する試験用コンタクト部11(a)、外部引出電極5および図示しない分割引出配線を介して一つの全固体電池の一方の電極に接続する。さらにこの全固体電池の一方の電極は、図示しない別の分割引出配線、外部引出電極5および試験用コンタクト部11(a)を介してプローブ12(2)に接続する。したがって、プローブ12(1)とプローブ12(2)間の抵抗値を測定し、所定の抵抗値以下であることを確認することで全固体電池が分割引出配線および外部引出電極5に確実に接続していることが確認できる。 First, a predetermined voltage is applied between the probes 12(1) and 12(2) connected to the test contact portion 11(a) to measure the resistance value. The probe 12(1) is connected to one electrode of one all-solid-state battery via a test contact portion 11(a) connected to the probe 12(1), an external extraction electrode 5, and a minute extraction wiring (not shown). . Further, one electrode of this all-solid-state battery is connected to the probe 12(2) through another unillustrated branch extraction wiring, the external extraction electrode 5, and the test contact portion 11(a). Therefore, by measuring the resistance value between the probes 12(1) and 12(2) and confirming that it is equal to or less than a predetermined resistance value, the all-solid-state battery can be reliably connected to the minute extraction wiring and the external extraction electrode 5. It can be confirmed that

同様にプローブ12(2)とプローブ12(3)の間に所定の電圧を印加し抵抗値を測定する。上述の通りプローブ12(2)は、このプローブ12(2)に接続する試験用コンタクト部11(a)、外部引出電極5および図示しない分割引出配線を介して全固体電池の一方の電極に接続する。さらにこの全固体電池の一方の電極は、図示しないさらに別の分割引出配線、外部引出電極5および試験用コンタクト部11(a)を介してプローブ12(3)に接続する。したがって、プローブ12(2)とプローブ12(3)間の抵抗値を測定し、所定の抵抗値以下であることを確認することで全固体電池が分割引出配線および外部引出電極5に確実に接続していることが確認できる。 Similarly, a predetermined voltage is applied between the probes 12(2) and 12(3) to measure the resistance value. As described above, the probe 12(2) is connected to one electrode of the all-solid-state battery via the test contact portion 11(a) connected to the probe 12(2), the external extraction electrode 5, and the minute extraction wiring (not shown). do. Further, one electrode of this all-solid-state battery is connected to the probe 12 (3) through a separate extraction wiring (not shown), an external extraction electrode 5, and a test contact portion 11(a). Therefore, by measuring the resistance value between the probes 12(2) and 12(3) and confirming that it is equal to or less than a predetermined resistance value, the all-solid-state battery can be reliably connected to the minute extraction wiring and the external extraction electrode 5. It can be confirmed that

このような抵抗値の測定結果が、いずれかの抵抗値あるいは両方の抵抗値が所定の値を超える場合には、正常な接続状態にないことになり、不良品と判断されることになる。 If one or both of the resistance values exceed a predetermined value as a result of such resistance measurement, it means that the connection is not normal and the product is determined to be defective.

なお、図7に示すように電子部品9a等を実装した状態では、プローブ12(2)は電子部品9a、9c等を介して全固体電池の他方の電極に接続している。しかしながら、全固体電池が正常に接続している状態であれば抵抗値を測定することができる程度の低い電圧を印加するように設定することで、全固体電池を充電する電荷が供給されることはない。ただし回路配置によって、プローブ12(2)とプローブ12(1)あるいはプローブ12(2)とプローブ12(3)との間に電圧を印加するのが好ましくない場合には、プローブ12(1)とプローブ12(3)の間の抵抗値により、全固体電池が正常に接続されたことを確認する構成とすることも可能である。 As shown in FIG. 7, when the electronic components 9a and the like are mounted, the probe 12 (2) is connected to the other electrode of the all-solid-state battery through the electronic components 9a, 9c and the like. However, if the all-solid-state battery is in a normally connected state, the electric charge for charging the all-solid-state battery can be supplied by setting the voltage to be low enough to measure the resistance value. no. However, depending on the circuit arrangement, if it is not desirable to apply a voltage between probe 12(2) and probe 12(1) or between probe 12(2) and probe 12(3), probe 12(1) and It is also possible to use a configuration in which the resistance value between the probes 12(3) confirms that the all-solid-state battery is properly connected.

以上のように測定することで、1つの全固体電池の一方の電極の接続状態を確認することができる。その後、この全固体電池の他方の電極に接続する試験用コンタクト部11(b)にプローブ12を接続し、同様の測定を行うことで、この全固体電池の他方の電極の接続状態を確認することができる。この際、一方の電極側の測定と他方の電極側の測定を同時に行わなければ、いずれを先に測定しても良い。また、別の全固体電池の接続状態を同時に確認しても問題ない。 By measuring as described above, the connection state of one electrode of one all-solid-state battery can be confirmed. After that, the probe 12 is connected to the test contact portion 11 (b) connected to the other electrode of this all-solid-state battery, and the same measurement is performed to confirm the connection state of the other electrode of this all-solid-state battery. be able to. At this time, if the measurement on one electrode side and the measurement on the other electrode side are not performed at the same time, either one may be measured first. Moreover, there is no problem even if the connection state of another all-solid-state battery is confirmed at the same time.

本実施例の電子回路装置は、全固体電池を2個備える構成としているので、別の全固体電池についても同様の測定を行えば、すべての全固体電池の接続状態を確認することができる。 Since the electronic circuit device of this embodiment includes two all-solid-state batteries, the connection state of all the all-solid-state batteries can be confirmed by performing the same measurement for another all-solid-state battery.

なお試験用コンタクト部11(a)、11(b)は、必ずしも特別に形成する必要はなく、外部引出電極5の一部に上述のプローブ12を接続する程度の大きさが確保できれば、この接続する部分を試験用コンタクト部とすることもできる。また接続状態を確認するための電気的測定は、抵抗値を算出する他、所定の電圧印加時の電流値、あるいは所定の電流値に達する電圧値を測定する構成としても良いことは言うまでもない。 It should be noted that the test contact portions 11(a) and 11(b) do not necessarily need to be specially formed. The portion to be tested can also be used as the test contact portion. It goes without saying that the electrical measurement for confirming the connection state may be performed by measuring the current value when a predetermined voltage is applied, or the voltage value reaching the predetermined current value, in addition to calculating the resistance value.

次に第3の実施例について説明する。上述の第2の実施例の電子回路装置の試験方法は、電子回路装置20の個片化後に行う試験方法として説明した。しかしながら、個片化後の試験では、電子回路装置20を所定の位置に配置し、プローブ12を位置合わせする必要があり、測定に要する時間が長くなってしまう。そこで、製造工程中に試験工程を追加する構成すると、多数の電子回路装置を測定する際の測定時間を大幅に短縮することができる。 A third embodiment will now be described. The test method for the electronic circuit device of the above-described second embodiment has been described as a test method that is performed after the electronic circuit device 20 is singulated. However, in the test after singulation, it is necessary to arrange the electronic circuit device 20 at a predetermined position and align the probes 12, which lengthens the time required for measurement. Therefore, by adding a test process to the manufacturing process, it is possible to greatly shorten the measurement time when measuring a large number of electronic circuit devices.

例えば、図2で説明したように全固体電池7の電極を比較的深い凹部2内で分割引出配線6に接続する。その後、封止樹脂8で全固体電池7を被覆する前に全固体電池7の接続状態を確認する。 For example, as described with reference to FIG. 2, the electrodes of the all-solid-state battery 7 are connected to the minute output wiring 6 within the relatively deep recess 2 . After that, before covering the all-solid-state battery 7 with the sealing resin 8, the connection state of the all-solid-state battery 7 is confirmed.

本実施例においても、全固体電池の2つの電極間に電圧を印加しないため、全固体電池の一方の電極あるいは他方の電極の一方のみを交互に試験する。例えば図8に示すように、全固体電池7の一方の電極に接続する分割引出配線6に接続する試験用コンタクト部11(a)にそれぞれ試験装置に接続したプローブ12を接触させる。 Also in this example, since no voltage is applied between the two electrodes of the all-solid-state battery, only one electrode or the other electrode of the all-solid-state battery is alternately tested. For example, as shown in FIG. 8, the probes 12 connected to the test equipment are brought into contact with the test contact portions 11(a) connected to the output wiring 6 connected to one electrode of the all-solid-state battery 7 respectively.

試験用コンタクト部11(a)に接続するプローブ12(1)とプローブ12(2)の間に所定の電圧を印加し抵抗値を測定する。プローブ12(1)は、このプローブ12(1)に接続する試験用コンタクト部11(a)、分割引出配線6を介して一つの全固体電池7の一方の電極に接続する。さらにこの全固体電池7の一方の電極は、別の分割引出配線6および試験用コンタクト部11(a)を介してプローブ12(2)に接続する。したがって、プローブ12(1)とプローブ12(2)間の抵抗値を測定し、所定の抵抗値以下であることを確認することで全固体電池7が分割引出配線6に確実に接続していることが確認できる。 A predetermined voltage is applied between the probes 12(1) and 12(2) connected to the test contact portion 11(a) to measure the resistance value. The probe 12 ( 1 ) is connected to one electrode of one all-solid-state battery 7 via the test contact portion 11 ( a ) connected to the probe 12 ( 1 ) and the splitting wiring 6 . Further, one electrode of this all-solid-state battery 7 is connected to a probe 12(2) via another branch output wiring 6 and a test contact portion 11(a). Therefore, by measuring the resistance value between the probes 12(1) and 12(2) and confirming that it is equal to or less than a predetermined resistance value, the all-solid-state battery 7 is reliably connected to the minute output wiring 6. can be confirmed.

同様にプローブ12(2)とプローブ12(3)の間に所定の電圧を印加し抵抗値を測定する。上述の通りプローブ12(2)は、このプローブ12(2)に接続する試験用コンタクト部11(a)および分割引出配線6を介して全固体電池7の一方の電極に接続する。さらにこの全固体電池の一方の電極は、さらに別の分割引出配線および試験用コンタクト部11(a)を介してプローブ(3)に接続する。したがって、プローブ12(2)とプローブ12(3)間の抵抗値を測定し、所定の抵抗値以下であることを確認することで全固体電池7が分割引出配線6に確実に接続していることが確認できる。 Similarly, a predetermined voltage is applied between the probes 12(2) and 12(3) to measure the resistance value. As described above, the probe 12(2) is connected to one electrode of the all-solid-state battery 7 via the test contact portion 11(a) connected to the probe 12(2) and the segment output wiring 6. FIG. Furthermore, one electrode of this all-solid-state battery is connected to the probe (3) through another branch wiring and test contact portion 11(a). Therefore, by measuring the resistance value between the probes 12(2) and 12(3) and confirming that it is equal to or less than a predetermined resistance value, the all-solid-state battery 7 is reliably connected to the minute output wiring 6. can be confirmed.

このような抵抗値の測定結果が、いずれかの抵抗値あるいは両方の抵抗値が所定の値を超える場合には、正常な接続状態にないことになり、不良と判断されることになる。 If any of the resistance values or both of the resistance values exceed a predetermined value in such a resistance measurement result, it means that the connection is not normal and is judged to be defective.

なお本実施例においても、全固体電池7の一方の電極と他方の電極とを直接接続する配線を形成しなければ、全固体電池7の一方の電極に接続したプローブ12が他方の電極に接続することはない。しかしながら、全固体電池7の一方の電極と他方の電極を直接接続する配線が配置されている場合には、そのような配線に未接続状態のプローブ12間の抵抗値により、全固体電池が正常に接続されたことを確認する構成とすることも可能である。 Also in this embodiment, if a wiring for directly connecting one electrode and the other electrode of the all-solid-state battery 7 is not formed, the probe 12 connected to one electrode of the all-solid-state battery 7 is connected to the other electrode. never do. However, when wiring is arranged to directly connect one electrode and the other electrode of the all-solid-state battery 7, the resistance value between the probes 12 not connected to such wiring may cause the all-solid-state battery to function normally. It is also possible to have a configuration that confirms that the device is connected to the device.

以上のように測定することで、1つの全固体電池7の一方の電極の実装状態を確認することができる。その後、この全固体電池7の他方の電極に接続する試験用コンタクト部11(b)にプローブ12を接続し、同様の測定を行うことで、この全固体電池7の他方の電極の接続状態を確認することができる。この際、一方の電極側の測定と他方の電極側の測定を同時に行わなければ、いずれを先に測定しても良い。また、別の全固体電池の接続状態を同時に確認しても問題ない。 By measuring as described above, the mounting state of one electrode of one all-solid-state battery 7 can be confirmed. After that, the probe 12 is connected to the test contact portion 11 (b) connected to the other electrode of the all-solid-state battery 7, and the same measurement is performed to check the connection state of the other electrode of the all-solid-state battery 7. can be confirmed. At this time, if the measurement on one electrode side and the measurement on the other electrode side are not performed at the same time, either one may be measured first. Moreover, there is no problem even if the connection state of another all-solid-state battery is confirmed at the same time.

本実施例では、集合基板上に複数の全固体電池7を備える構成としているので、各全固体電池7について同様の測定を行えば、すべての全固体電池7の接続状態を確認することができる。本実施例では、集合基板上に配置された試験用コンタクト部11に測定のためのプローブ12を接触させるため、集合基板1の位置合わせを行えば、通常のテスト工程のように順次測定を行うことができ、短時間の測定が可能となる。 In this embodiment, since a plurality of all-solid-state batteries 7 are provided on the collective substrate, the connection state of all the all-solid-state batteries 7 can be confirmed by performing the same measurement for each all-solid-state battery 7. . In this embodiment, since the probes 12 for measurement are brought into contact with the test contact portions 11 arranged on the collective board, once the collective board 1 is aligned, the measurements are sequentially performed as in a normal test process. It is possible to measure in a short time.

なお試験用コンタクト部11(a)、11(b)は、必ずしも特別に形成する必要はなく、外部引出電極5の一部に上述のプローブ12を接続する程度の大きさが確保できれば、この接続する部分を試験用コンタクト部とすることも可能である。また接続状態を確認するための電気的測定は、抵抗値を算出する他、所定の電圧印加時の電流値、あるいは所定の電流値に達する電圧値を測定する構成としても良いことは言うまでもない。 It should be noted that the test contact portions 11(a) and 11(b) do not necessarily need to be specially formed. It is also possible to use the contact portion for testing. It goes without saying that the electrical measurement for confirming the connection state may be performed by measuring the current value when a predetermined voltage is applied, or the voltage value reaching the predetermined current value, in addition to calculating the resistance value.

本実施例では、全固体電池7が露出した状態で試験結果を得ることができるので、その試験結果に基づき、全固体電池7の交換や接続をやり直すことができる。このとき全固体電池7を加熱したとしても、全固体電池7には電荷が蓄積していないので特性が劣化することはない。全固体電池7の接続状態の確認のみを行う場合には、全固体電池7を封止樹脂8で被覆した後、上述の測定を行うようにしても良い。 In this embodiment, since the test results can be obtained with the all-solid-state battery 7 exposed, the all-solid-state battery 7 can be replaced or reconnected based on the test results. At this time, even if the all-solid-state battery 7 is heated, the characteristics do not deteriorate because electric charges are not accumulated in the all-solid-state battery 7 . When only confirming the connection state of the all-solid-state battery 7 , the above-described measurement may be performed after the all-solid-state battery 7 is covered with the sealing resin 8 .

次に第4の実施例について説明する。上述の第3の実施例では、集合基板に全固体電池7が実装された面を表面にして、分割引出配線6に接続する試験用コンタクト部11に測定のためのプローブ12を接触させた場合について説明した。本実施例は、集合基板の逆の面を表面にして試験を行うこともできる。 A fourth embodiment will now be described. In the above-described third embodiment, the surface on which the all-solid-state battery 7 is mounted on the collective substrate faces up, and the probe 12 for measurement is brought into contact with the test contact portion 11 connected to the minute output wiring 6. explained. This embodiment can also be tested with the opposite surface of the aggregate substrate facing up.

例えば図9に示すように、図4および図5で説明した電子部品9a~9cを実装する面を表面にして、全固体電池7の一方の電極に接続する分割引出配線6、外部引出電極5および試験用コンタクト部11(a)にそれぞれ試験装置に接続したプローブ12を接触させる。なお図9では、電子部品9a~9cに接続を形成するための電極の一部の図示を省略している。 For example, as shown in FIG. 9, with the mounting surface of the electronic components 9a to 9c described in FIGS. and the test contact portions 11(a) are brought into contact with the probes 12 connected to the test equipment. Note that FIG. 9 omits illustration of some electrodes for forming connections to the electronic components 9a to 9c.

試験方法は、上記第3の実施例と同様である。試験用コンタクト部11(a)に接続するプローブ12(1)とプローブ12(2)の間に所定の電圧を印加し抵抗値を測定する。プローブ12(1)は、このプローブ12(1)に接続する試験用コンタクト部11(a)、外部引出電極5および分割引出配線6を介して一つの全固体電池7の一方の電極に接続する。さらにこの全固体電池7の一方の電極は、別の分割引出配線6、外部引出電極5および試験用コンタクト部11(a)を介してプローブ12(2)に接続する。したがって、プローブ12(1)とプローブ12(2)間の抵抗値を測定し、所定の抵抗値以下であることを確認することで全固体電池7が分割引出配線6に確実に接続していることが確認できる。 The test method is the same as in the third embodiment. A predetermined voltage is applied between the probes 12(1) and 12(2) connected to the test contact portion 11(a) to measure the resistance value. The probe 12(1) is connected to one electrode of one all-solid-state battery 7 via a test contact portion 11(a) connected to the probe 12(1), an external extraction electrode 5, and a segment extraction wiring 6. . Further, one electrode of this all-solid-state battery 7 is connected to a probe 12 (2) through another separate extraction wiring 6, an external extraction electrode 5, and a test contact portion 11(a). Therefore, by measuring the resistance value between the probes 12(1) and 12(2) and confirming that it is equal to or less than a predetermined resistance value, the all-solid-state battery 7 is reliably connected to the minute output wiring 6. can be confirmed.

同様にプローブ12(2)とプローブ12(3)の間に所定の電圧を印加し抵抗値を測定する。上述の通りプローブ12(2)は、このプローブ12(2)に接続する試験用コンタクト部11(a)、外部引出電極5および分割引出配線6を介して全固体電池7の一方の電極に接続する。さらにこの全固体電池の一方の電極は、さらに別の分割引出配線6、外部引出電極5および試験用コンタクト部11(a)を介してプローブ12(3)に接続する。したがって、プローブ12(2)とプローブ12(3)間の抵抗値を測定し、所定の抵抗値以下であることを確認することで全固体電池7が分割引出配線6に確実に接続していることが確認できる。 Similarly, a predetermined voltage is applied between the probes 12(2) and 12(3) to measure the resistance value. As described above, the probe 12(2) is connected to one electrode of the all-solid-state battery 7 via the test contact portion 11(a) connected to the probe 12(2), the external extraction electrode 5, and the minute extraction wiring 6. do. Furthermore, one electrode of this all-solid-state battery is connected to the probe 12 (3) through another segment extraction wiring 6, an external extraction electrode 5 and a test contact portion 11(a). Therefore, by measuring the resistance value between the probes 12(2) and 12(3) and confirming that it is equal to or less than a predetermined resistance value, the all-solid-state battery 7 is reliably connected to the minute output wiring 6. can be confirmed.

このような抵抗値の測定結果が、いずれかの抵抗値あるいは両方の抵抗値が所定の値を超える場合には、正常な接続状態にないことになり、不良と判断されることになる。 If any of the resistance values or both of the resistance values exceed a predetermined value in such a resistance measurement result, it means that the connection is not normal and is judged to be defective.

なお本実施例においても、全固体電池7の一方の電極と他方の電極とを直接接続する配線を形成しなければ、全固体電池7の一方の電極に接続したプローブ12が他方の電極に接続することはない。しかしながら、全固体電池7の一方の電極と他方の電極を直接接続する配線が配置されている場合には、そのような配線に未接続状態のプローブ12間の抵抗値により、全固体電池が正常に接続されたことを確認する構成とすることも可能である。 Also in this embodiment, if a wiring for directly connecting one electrode and the other electrode of the all-solid-state battery 7 is not formed, the probe 12 connected to one electrode of the all-solid-state battery 7 is connected to the other electrode. never do. However, when wiring is arranged to directly connect one electrode and the other electrode of the all-solid-state battery 7, the resistance value between the probes 12 not connected to such wiring may cause the all-solid-state battery to function normally. It is also possible to have a configuration that confirms that the device is connected to the device.

以上のように測定することで、1つの全固体電池7の一方の電極の実装状態を確認することができる。その後、この全固体電池7の他方の電極に接続する試験用コンタクト部11(b)にプローブ12を接続し、同様の測定を行うことで、この全固体電池7の他方の電極の接続状態を確認することができる。この際、一方の電極側の測定と他方の電極側の測定を同時に行わなければ、いずれを先に測定しても良い。また、別の全固体電池の接続状態を同時に確認しても問題ない。 By measuring as described above, the mounting state of one electrode of one all-solid-state battery 7 can be confirmed. After that, the probe 12 is connected to the test contact portion 11 (b) connected to the other electrode of the all-solid-state battery 7, and the same measurement is performed to check the connection state of the other electrode of the all-solid-state battery 7. can be confirmed. At this time, if the measurement on one electrode side and the measurement on the other electrode side are not performed at the same time, either one may be measured first. Moreover, there is no problem even if the connection state of another all-solid-state battery is confirmed at the same time.

本実施例でも、集合基板上に複数の全固体電池7を備える構成としているので、各全固体電池7について同様の測定を行えば、すべての全固体電池の接続状態を確認することができる。本実施例では、集合基板上に配置された試験用コンタクト部11に測定のためのプローブ12を接触させるため、集合基板1の位置合わせを行えば、通常のテスト工程のように順次測定を行うことができ、短時間の測定が可能となる。 Also in this embodiment, since a plurality of all-solid-state batteries 7 are provided on the collective substrate, if the same measurement is performed for each all-solid-state battery 7, the connection state of all all-solid-state batteries can be confirmed. In this embodiment, since the probes 12 for measurement are brought into contact with the test contact portions 11 arranged on the collective board, once the collective board 1 is aligned, the measurements are sequentially performed as in a normal test process. It is possible to measure in a short time.

なお試験用コンタクト部11(a)、11(b)は、必ずしも特別に形成する必要はなく、外部引出電極5の一部に上述のプローブ12を接続する程度の大きさが確保できれば、この接続する部分を試験用コンタクト部とすることも可能である。また接続状態を確認するための電気的測定は、抵抗値を算出する他、所定の電圧印加時の電流値、あるいは所定の電流値に達する電圧値を測定する構成としても良いことは言うまでもない。 It should be noted that the test contact portions 11(a) and 11(b) do not necessarily need to be specially formed. It is also possible to use the contact portion for testing. It goes without saying that the electrical measurement for confirming the connection state may be performed by measuring the current value when a predetermined voltage is applied, or the voltage value reaching the predetermined current value, in addition to calculating the resistance value.

本実施例では、全固体電池7が露出した状態で試験結果を得ることができるので、その試験結果に基づき、全固体電池7の交換や接続をやり直すことができる。このとき全固体電池7を加熱したとしても、全固体電池7には電荷が蓄積していないので特性が劣化することはない。全固体電池7の接続状態の確認のみを行う場合には、全固体電池7を封止樹脂8で被覆した後、上述の測定を行っても良い。また電子部品9a~9cを実装した後、個片化する前に上述の試験を行っても良い。 In this embodiment, since the test results can be obtained with the all-solid-state battery 7 exposed, the all-solid-state battery 7 can be replaced or reconnected based on the test results. At this time, even if the all-solid-state battery 7 is heated, the characteristics do not deteriorate because electric charges are not accumulated in the all-solid-state battery 7 . When only confirming the connection state of the all-solid-state battery 7 , the above-described measurement may be performed after the all-solid-state battery 7 is covered with the sealing resin 8 . Further, after mounting the electronic components 9a to 9c, the above-described test may be performed before separating into individual pieces.

以上本発明の実施例について説明したが、本発明はこれら実施例に限定されるものでないことは言うまでもない。例えば、外部引出電極5の形状は、電子回路装置が実装されるマザー基板との接続構造に応じて適宜変更可能である。また分割引出配線6、外部引出電極5の数は、電子回路装置上に実装される電子部品や回路構成に応じて適宜変更可能で、所望の試験を行うため少なくとも電気的に分離された2つ以上に分割された分割引出配線6等を備える等種々変更可能である。 Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments. For example, the shape of the external extraction electrode 5 can be appropriately changed according to the connection structure with the mother board on which the electronic circuit device is mounted. Also, the numbers of the branch lead-out wirings 6 and the external lead-out electrodes 5 can be appropriately changed according to the electronic components and the circuit configuration to be mounted on the electronic circuit device. It is possible to make various modifications, such as providing the divided output wiring 6 and the like.

1: 集合基板、1a:両面板、1b:枠板、1A:実装基板、2:凹部、3:壁部、4:貫通孔、5:外部引出電極、6:分割引出配線、7:全固体電池、8:封止樹脂、9、9a、9b、9c:電子部品、10:切断位置、11:試験用コンタクト部、12:プローブ、20:電子回路装置 1: collective substrate, 1a: double-sided board, 1b: frame plate, 1A: mounting substrate, 2: recessed portion, 3: wall portion, 4: through hole, 5: external extraction electrode, 6: minute extraction wiring, 7: all-solid Battery, 8: sealing resin, 9, 9a, 9b, 9c: electronic component, 10: cutting position, 11: test contact portion, 12: probe, 20: electronic circuit device

Claims (6)

実装面と、該実装面に連続し断面形状をコの字型とする壁部とを備えた実装基板と、
該実装基板の前記壁部の間の一方の表面に実装された全固体電池と、
該全固体電池の2つの電極のいずれかの電極にそれぞれ複数の分割引出配線からなる一組の分割引出配線が接続し、各分割引出配線は相互に電気的に分離されている少なくとも2組の分割引出配線と、
前記壁部間に充填され、前記全固体電池を被覆する封止樹脂と、
一組の前記分割引出配線のうち少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記実装基板の他方の表面に実装された電子部品と、
前記分割引出配線にそれぞれ接続し前記壁部表面に露出する外部引出電極と、
前記分割引出配線に接続する試験用コンタクト部と、を備えたことを特徴とする電子回路装置。
a mounting substrate having a mounting surface and a wall portion continuous with the mounting surface and having a U-shaped cross section;
an all-solid-state battery mounted on one surface between the walls of the mounting substrate;
At least two sets of minute output wirings each having a plurality of minute output wirings connected to one of the two electrodes of the all-solid-state battery, and each of the minute output wirings being electrically isolated from each other minute output wiring;
A sealing resin that is filled between the wall portions and covers the all-solid-state battery;
an electronic component mounted on the other surface of the mounting board so as to be connected to at least one of the set of minute output wirings and unconnected to at least one of the minute output wirings;
an external lead electrode connected to each of the part lead wires and exposed on the surface of the wall;
an electronic circuit device comprising: a test contact portion connected to the minute output wiring.
列状に配置される電子回路装置の形成予定領域に凹部を備えた集合基板を用意する工程と、
前記集合基板上に、外部引出電極と、該外部引出電極と全固体電池の2つの電極のいずれかの電極にそれぞれ接続し、相互に電気的に分離された分割引出配線と、該分割引出配線に接続する試験用コンタクト部とを形成する工程と、
前記全固体電池の2つの電極のいずれかの電極にそれぞれ複数の前記分割引出配線からなる一組の前記分割引出配線が接続するように、前記凹部内に全固体電池を実装する工程と、
前記凹部内に樹脂を注入し、前記全固体電池を樹脂封止する工程と、
前記全固体電池の2つの電極のいずれかの電極にそれぞれ接続する一組の前記分割引出配線のうち、少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記集合基板の他方の面に電子部品を実装する工程と、
樹脂封止された前記全固体電池および前記電子部品を含み、前記集合基板の表面に前記外部引出電極および前記試験用コンタクト部が露出する各電子回路装置に個片化する工程と、を含むことを特徴とする電子回路装置の製造方法。
a step of preparing an aggregate substrate having recesses in areas where electronic circuit devices arranged in a row are to be formed;
On the collective substrate, an external extraction electrode, a minute extraction wiring electrically separated from each other and electrically connected to either one of the external extraction electrode and the two electrodes of the all-solid-state battery, and the minute extraction wiring forming a test contact portion connected to the
a step of mounting the all-solid-state battery in the recess such that one of the two electrodes of the all-solid-state battery is connected to a set of the minute output wirings each composed of a plurality of the minute output wirings;
A step of injecting resin into the recess to seal the all-solid-state battery with resin;
a state of being connected to at least one of the minute output wirings and unconnected to at least one of the minute output wirings among a set of the minute output wirings respectively connected to either of the two electrodes of the all-solid-state battery; a step of mounting an electronic component on the other surface of the aggregate substrate so as to be
a step of singulating into electronic circuit devices each including the resin-sealed all-solid-state battery and the electronic component, wherein the external lead-out electrode and the test contact portion are exposed on the surface of the collective substrate. A method of manufacturing an electronic circuit device, characterized by:
列状に配置される電子回路装置の形成予定領域に凹部を備えた集合基板を用意する工程と、
前記集合基板上に、外部引出電極と、該外部引出電極と全固体電池の2つの電極のいずれかの電極にそれぞれ接続し、相互に電気的に分離された分割引出配線と、該分割引出配線に接続する試験用コンタクト部とを形成する工程と、
前記全固体電池の2つの電極のいずれかの電極にそれぞれ複数の前記分割引出配線からなる一組の前記分割引出配線が接続するように、前記凹部内に前記全固体電池を実装する工程と、
未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、
前記凹部内に樹脂を注入し、前記全固体電池を樹脂封止する工程と、
前記全固体電池の2つの電極のいずれかの電極にそれぞれ接続する一組の前記分割引出配線のうち、少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記集合基板の他方の面に電子部品を実装する工程と、
樹脂封止された前記全固体電池および前記電子部品を含み、前記集合基板の表面に前記外部引出電極および前記試験用コンタクト部が露出する各電子回路装置に個片化する工程と、を含むことを特徴とする電子回路装置の製造方法。
a step of preparing an aggregate substrate having recesses in areas where electronic circuit devices arranged in a row are to be formed;
On the collective substrate, an external extraction electrode, a minute extraction wiring electrically separated from each other and electrically connected to either one of the external extraction electrode and the two electrodes of the all-solid-state battery, and the minute extraction wiring forming a test contact portion connected to the
a step of mounting the all-solid-state battery in the recess such that one of the two electrodes of the all-solid-state battery is connected to a set of the minute output wirings each composed of a plurality of the minute output wirings;
A resistance value between the test contact portions connected to two of the minute output wirings among a set of the minute output wirings connected to one of the two electrodes of the all-solid-state battery in an uncharged state is measured. and after or before the measurement, the test contacts connected to two of the minute output wirings among a set of the minute output wirings connected to the other electrode of the two electrodes of the all-solid-state battery. measuring the resistance between the parts;
A step of injecting resin into the recess to seal the all-solid-state battery with resin;
a state of being connected to at least one of the minute output wirings and unconnected to at least one of the minute output wirings among a set of the minute output wirings respectively connected to either of the two electrodes of the all-solid-state battery; a step of mounting an electronic component on the other surface of the aggregate substrate so as to be
a step of singulating into electronic circuit devices each including the resin-sealed all-solid-state battery and the electronic component, wherein the external lead-out electrode and the test contact portion are exposed on the surface of the collective substrate. A method of manufacturing an electronic circuit device, characterized by:
請求項3記載の電子回路装置の製造方法において、
未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程を、前記凹部内に前記全固体電池を実装し、前記凹部内に樹脂を注入し、前記試験用コンタクト部が露出するように前記全固体電池を樹脂封止する工程の後に行うことを特徴とする電子回路装置の製造方法。
In the method for manufacturing an electronic circuit device according to claim 3,
A resistance value between the test contact portions connected to two of the minute output wirings among a set of the minute output wirings connected to one of the two electrodes of the all-solid-state battery in an uncharged state is measured. and after or before the measurement, the test contacts connected to two of the minute output wirings among a set of the minute output wirings connected to the other electrode of the two electrodes of the all-solid-state battery. The all-solid-state battery is mounted in the recess, resin is injected into the recess, and the all-solid-state battery is sealed with resin so that the test contact portion is exposed. A method of manufacturing an electronic circuit device, characterized in that it is performed after the step of stopping.
請求項3記載の電子回路装置の製造方法において、
未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程は、前記凹部内に前記全固体電池を実装し、前記凹部に樹脂を注入し、前記試験用コンタクト部が露出するように前記全固体電池を樹脂封止し、前記全固体電池の2つの電極のいずれかの電極にそれぞれ接続する一組の前記分割引出配線のうち、少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記集合基板の他方の面に電子部品を実装した後、未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程であることを特徴とする電子回路装置の製造方法。
In the method for manufacturing an electronic circuit device according to claim 3,
A resistance value between the test contact portions connected to two of the minute output wirings among a set of the minute output wirings connected to one of the two electrodes of the all-solid-state battery in an uncharged state is measured. and after or before the measurement, the test contacts connected to two of the minute output wirings among a set of the minute output wirings connected to the other electrode of the two electrodes of the all-solid-state battery. The step of measuring the resistance value between the portions includes mounting the all-solid-state battery in the recess, injecting resin into the recess, and sealing the all-solid-state battery with resin so that the test contact portion is exposed. connected to at least one of the minute output wirings and unconnected to at least one of the minute output wirings among a set of the minute output wirings respectively connected to either of the two electrodes of the all-solid-state battery. After mounting electronic components on the other surface of the collective substrate so as to be in the state of a step of measuring a resistance value between the test contact portions connected to the two divisional distribution wirings including the divisional distribution wiring that is not connected to an electronic component; Of the set of the minute output wirings connected to the other of the two electrodes of the test contact part connected to two of the minute output wirings including the minute output wiring that is not connected to the electronic component 1. A method of manufacturing an electronic circuit device, characterized in that the step is a step of measuring a resistance value between.
実装面と、該実装面に連続し断面形状をコの字型とする壁部とを備えた実装基板と、該実装基板の前記壁部の間の一方の表面に実装された全固体電池と、該全固体電池の2つの電極のいずれかの電極にそれぞれ複数の分割引出配線からなる一組の分割引出配線が接続し、各分割引出配線は相互に電気的に分離されている少なくとも2組の分割引出配線と、前記壁部間に充填され、前記全固体電池を被覆する封止樹脂と、一組の前記分割引出配線のうち少なくとも一つの前記分割引出配線に接続するとともに少なくとも一つの前記分割引出配線に未接続状態となるように前記実装基板の他方の表面に実装された電子部品と、前記分割引出配線にそれぞれ接続し前記壁部表面に露出する外部引出電極と、前記分割引出配線に接続する試験用コンタクト部と、を備えた電子回路装置の試験方法において、
未充電状態の前記全固体電池の2つの電極の一方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、該測定の後あるいは前に、前記全固体電池の2つの電極の他方の電極に接続する一組の前記分割引出配線のうち、前記電子部品と未接続状態の前記分割引出配線を含む2つの前記分割引出配線に接続する前記試験用コンタクト部の間の抵抗値を測定する工程と、を含むことを特徴とする電子回路装置の試験方法。
A mounting substrate having a mounting surface, a wall portion continuous with the mounting surface and having a U-shaped cross section, and an all-solid-state battery mounted on one surface between the wall portions of the mounting substrate. , at least two sets of each of the two electrodes of the all-solid-state battery, each of which is connected to one of two electrodes of the all-solid-state battery by a set of a plurality of minute distribution wirings, each of the minute distribution wirings being electrically isolated from each other. a minute extraction wiring, a sealing resin filled between the wall portions and covering the all-solid-state battery, and a set of the minute extraction wirings connected to at least one of the minute extraction wirings and at least one of the an electronic component mounted on the other surface of the mounting board so as to be unconnected to the minute output wiring; external lead electrodes connected to the minute output wiring and exposed on the wall surface; and the minute output wiring. In a test method for an electronic circuit device comprising a test contact portion connected to
Of the set of the minute output wirings connected to one of the two electrodes of the all-solid-state battery in an uncharged state, the two minute output wirings including the minute output wiring that is not connected to the electronic component. a step of measuring the resistance value between the test contact portions to be connected; and measuring a resistance value between the test contact portions connected to the two sub-distribution wirings including the sub-distribution wiring that is not connected to the electronic component. test method.
JP2019134418A 2019-07-22 2019-07-22 Electronic circuit device, manufacturing method thereof, and test method for electronic circuit device Active JP7287596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019134418A JP7287596B2 (en) 2019-07-22 2019-07-22 Electronic circuit device, manufacturing method thereof, and test method for electronic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019134418A JP7287596B2 (en) 2019-07-22 2019-07-22 Electronic circuit device, manufacturing method thereof, and test method for electronic circuit device

Publications (2)

Publication Number Publication Date
JP2021018935A JP2021018935A (en) 2021-02-15
JP7287596B2 true JP7287596B2 (en) 2023-06-06

Family

ID=74563261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134418A Active JP7287596B2 (en) 2019-07-22 2019-07-22 Electronic circuit device, manufacturing method thereof, and test method for electronic circuit device

Country Status (1)

Country Link
JP (1) JP7287596B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197164A (en) 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd All solid battery built-in semiconductor device
JP2010519675A (en) 2006-09-20 2010-06-03 オーク・リツジ・マイクロ−エナジー Thin film battery sealed package
JP2015204263A (en) 2014-04-16 2015-11-16 新光電気工業株式会社 Substrate with built-in battery and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197164A (en) 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd All solid battery built-in semiconductor device
JP2010519675A (en) 2006-09-20 2010-06-03 オーク・リツジ・マイクロ−エナジー Thin film battery sealed package
JP2015204263A (en) 2014-04-16 2015-11-16 新光電気工業株式会社 Substrate with built-in battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2021018935A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US20170138988A1 (en) Magnetic field current sensors
US7888173B2 (en) Semiconductor device manufacturing method
US10403616B2 (en) Method of manufacturing a semiconductor device
US20080308886A1 (en) Semiconductor Sensor
US20090147490A1 (en) Substrate for wiring, semiconductor device for stacking using the same, and stacked semiconductor module
US20080179711A1 (en) Substrate and semiconductor device using the same
US9466542B2 (en) Semiconductor device
KR20150009668A (en) Semiconductor device package and method for manufacturing the same
KR101494814B1 (en) Semiconductor package using glass and method for manufacturing the same
US6627987B1 (en) Ceramic semiconductor package and method for fabricating the package
WO2007040193A1 (en) Hybrid integrated circuit device and method for manufacturing same
US11211373B1 (en) Double-sided chip stack assembly
JP7287596B2 (en) Electronic circuit device, manufacturing method thereof, and test method for electronic circuit device
KR20180103661A (en) Wafer level fan-out package and method of manufacturing the same
US20220322537A9 (en) Method of fabricating battery protection circuit package
TW201246474A (en) Semiconductor device, semiconductor package
JP2021015960A (en) Battery protection circuit package and method of fabricating the same
KR101819033B1 (en) method for manufacturing battery protection apparatus
JP7354513B2 (en) Electronic circuit device and its manufacturing method
CN113973428A (en) Semiconductor device package and method of assembling the same
US11404333B2 (en) Semiconductor device and method for manufacturing the same
CN102738022A (en) Method for assembling semiconductor device containing insulating substrate and heat sink
JPH0740576B2 (en) Film carrier semiconductor device electrical test method
JP7332094B2 (en) electronic circuit device
EP0170022B1 (en) Semiconductor power device package for surface mounting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7287596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150