JP7284979B2 - 位置決めシステムおよび関連方法 - Google Patents

位置決めシステムおよび関連方法 Download PDF

Info

Publication number
JP7284979B2
JP7284979B2 JP2018532692A JP2018532692A JP7284979B2 JP 7284979 B2 JP7284979 B2 JP 7284979B2 JP 2018532692 A JP2018532692 A JP 2018532692A JP 2018532692 A JP2018532692 A JP 2018532692A JP 7284979 B2 JP7284979 B2 JP 7284979B2
Authority
JP
Japan
Prior art keywords
amplitude
estimates
signal
determining
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018532692A
Other languages
English (en)
Other versions
JPWO2017112903A5 (ja
JP2019504312A (ja
Inventor
エドワード アール. ジュニア ダウスキー,
グレゴリー ジョンソン,
Original Assignee
アセンティア イメージング, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/162,329 external-priority patent/US10126114B2/en
Application filed by アセンティア イメージング, インコーポレイテッド filed Critical アセンティア イメージング, インコーポレイテッド
Publication of JP2019504312A publication Critical patent/JP2019504312A/ja
Publication of JPWO2017112903A5 publication Critical patent/JPWO2017112903A5/ja
Application granted granted Critical
Publication of JP7284979B2 publication Critical patent/JP7284979B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/7835Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using coding masks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Communication System (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

(関連出願の相互参照)
本願は、2015年12月23日に出願された米国仮出願第62/387,387号に対する優先権を主張するものであり、該米国仮出願は、その全体が参照により本明細書中に援用される。また、本願は、2016年5月23日に出願された米国特許出願第15/162,329号の継続出願であり、これは、2015年5月21日に出願された米国仮出願第62/164,696号に対する優先権を主張するものである。
位置決めシステムは、位置決めシステムの視野内にある位置決めドメイン内の1つまたはそれを上回るオブジェクトの場所および移動を追跡する。角度ベースの位置決めシステムは、部分的に、追跡されたオブジェクトと平面上の場所との間の相対角度を計算することによって場所を判定する。角度ベースの位置決めシステムは、多くの場合、例えば、位置決め精度が要求されるとき、および/または位置決めドメインのサイズが画像ベースの位置決めシステムの画像センサのものをはるかに超えるときに、画像ベースの位置決めシステムより好ましい。
第1の実施形態では、オブジェクトの位置決めパラメータを判定するための方法は、オブジェクトからベースバンド信号の第1の周波数ドメイン振幅の複数の推定値を生成するステップを含む。複数の推定値はそれぞれ、ベースバンド信号の複数の時間区画のうちの個別のものに対応する。第1の周波数ドメイン振幅は、ベースバンド信号の時間周波数に対応する。本方法はまた、複数の推定値のうちの最も一般的な値として第1の周波数ドメイン振幅を判定するステップと、第1の周波数ドメイン振幅に基づいて位置決めパラメータを判定するステップとを含む。
第2の実施形態では、位置決めシステムは、メモリと、マイクロプロセッサとを含む。メモリは、非一過性のコンピュータ可読命令を記憶し、時間周波数成分と、対応する第1の周波数ドメイン振幅とを有する、ベースバンド信号を記憶するように構成される。マイクロプロセッサは、(i)ベースバンド信号の複数の時間区画のうちの個別のものにそれぞれ対応する、第1の周波数ドメイン振幅の複数の推定値を生成し、(ii)複数の推定値のうちの最も一般的な値として第1の周波数ドメイン振幅を判定する命令を実行するように適合される。
例えば、本願は以下の項目を提供する。
(項目1)
オブジェクトの位置決めパラメータを判定するための方法であって、
前記オブジェクトからベースバンド信号の第1の周波数ドメイン振幅の複数の推定値を生成するステップであって、前記複数の推定値はそれぞれ、前記ベースバンド信号の複数の時間区画のうちの個別のものに対応し、前記第1の周波数ドメイン振幅は、前記ベースバンド信号の時間周波数に対応する、ステップと、
前記複数の推定値のうちの最も一般的な値として前記第1の周波数ドメイン振幅を判定するステップと、
前記第1の周波数ドメイン振幅に基づいて前記位置決めパラメータを判定するステップと、
を含む、方法。
(項目2)
前記第1の周波数ドメイン振幅を判定するステップは、
前記複数の推定値を複数のビンにビン化するステップであって、前記複数のビンはそれぞれ、前記複数の推定値のうちの最大値と前記複数の推定値のうちの最小値との間の個別の間隔に対応する、ステップと、
最大数の推定値を有する前記間隔に対応する前記ビンのうちの1つの内側の推定値として、前記第1の周波数ドメイン振幅を判定するステップと、
を含む、項目1に記載の方法。
(項目3)
前記複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数のビンであって、第2の複数の間隔のそれぞれの中心が、前記第1の複数の間隔のうちの1つの縁に対応するように、前記第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含む、項目2に記載の方法。
(項目4)
複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用して前記ベースバンド信号を前処理するステップをさらに含む、項目3に記載の方法。
(項目5)
前記オブジェクトから光学信号の第1の部分を検出するステップであって、前記光学信号は、前記時間周波数において変調される、ステップと、
空間次元xのx範囲内で厳密に単調な透過率T2(x)を有する、低速変動光学マスクを通して透過される、前記光学信号の第2の部分を検出するステップと、
前記x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T3(x)を有する高速変動光学マスクを通して透過される、前記光学信号の第3の部分を検出するステップと、
前記検出された第1の部分、前記検出された第2の部分、および前記検出された第3の部分のうちの1つを復調し、前記ベースバンド信号を生じるステップと、
をさらに含む、項目1に記載の方法。
(項目6)
前記検出された第1の部分、前記検出された第2の部分、および前記検出された第3の部分のうちの前記1つは、前記検出された第1の部分であり、
前記検出された第2の部分を復調し、第2のベースバンド信号を生じるステップと、
前記第2のベースバンド信号の複数の第2の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第2の周波数ドメイン振幅の第2の複数の推定値を生成するステップと、
前記第2の複数の推定値のうちの最も一般的な値として前記第2の周波数ドメイン振幅を判定するステップと、
前記検出された第3の部分を復調し、第3のベースバンド信号を生じるステップと、
前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第3の周波数ドメイン振幅の第3の複数の推定値を生成するステップと、
前記第3の複数の推定値のうちの最も一般的な値として前記第3の周波数ドメイン振幅を判定するステップと、
をさらに含む、項目5に記載の方法。
(項目7)
前記x範囲内で、前記第1の周波数ドメイン振幅によって除算された前記第2の周波数ドメイン振幅に等しい透過率を有する、前記低速変動光学マスク上の場所に対応する、粗い推定場所x2を判定するステップと、
前記x範囲内で、前記第1の周波数ドメイン振幅によって除算された前記第3の周波数ドメイン振幅に等しい透過率を有する、前記高速変動光学マスク上の場所に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、
粗い推定場所x2に最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定するステップと、
前記空間次元xと垂直であり、前記低速変動光学マスクおよび前記高速変動光学マスクに交差する平面に対する前記オブジェクトの角度として、前記精緻化された推定場所に基づいて前記位置決めパラメータを判定するステップと、
をさらに含む、項目6に記載の方法。
(項目8)
オブジェクトの位置決めパラメータを判定するための位置決めシステムであって、
非一過性のコンピュータ可読命令を記憶し、時間周波数成分と、対応する第1の周波数ドメイン振幅とを有する、前記オブジェクトからのベースバンド信号を記憶するように構成される、メモリと、
マイクロプロセッサであって、前記命令を実行すると、
前記第1の周波数ドメイン振幅の複数の推定値を生成するステップであって、前記複数の推定値はそれぞれ、前記ベースバンド信号の複数の時間区画のうちの個別のものに対応する、ステップと、
前記複数の推定値のうちの最も一般的な値として前記第1の周波数ドメイン振幅を判定するステップと、
前記第1の周波数ドメイン振幅に基づいて前記位置決めパラメータを判定するステップと、
を行うように適合される、マイクロプロセッサと、
を備える、位置決めシステム。
(項目9)
前記マイクロプロセッサはさらに、前記命令を実行すると、前記第1の周波数ドメイン振幅を判定するときに、
前記複数の推定値を複数のビンにビン化するステップであって、前記複数のビンはそれぞれ、前記複数の推定値のうちの最大値と前記複数の推定値のうちの最小値との間の個別の間隔に対応する、ステップと、
最大数の推定値を有する前記間隔に対応する前記ビン内の推定値として、前記第1の周波数ドメイン振幅を判定するステップと、
を行うように適合される、
項目8に記載の位置決めシステム。
(項目10)
前記複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数のビンであって、第2の複数の間隔のそれぞれの中心が、前記第1の複数の間隔のうちの1つの縁に対応するように、前記第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含む、項目9に記載の位置決めシステム。
(項目11)
前記マイクロプロセッサはさらに、前記命令を実行すると、複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用して前記ベースバンド信号を前処理するように適合される、項目9に記載の位置決めシステム。
(項目12)
第1のチャネル、第2のチャネル、および第3のチャネルを含む、受信機をさらに備え、
前記第1のチャネルは、(i)前記オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)前記受信された第1の部分を、前記第1の周波数ドメイン振幅を有する第1の電気信号に変換するための第1の光検出器であって、前記光学信号は、前記時間周波数において変調される、第1の光検出器とを含み、
前記第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T2(x)を有する、低速変動光学マスクに向かって前記光学信号の第2の部分を指向するための第2のレンズと、(ii)前記低速変動光学マスクを通して透過される前記第2の部分を第2の電気信号に変換するための第2の光検出器とを含み、
前記第3のチャネルは、(i)前記x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T3(x)を有する、高速変動光学マスクに向かって前記光学信号の第3の部分を指向するための第3のレンズと、(ii)前記高速変動光学マスクを通して透過される前記第3の部分を第3の電気信号に変換するための第3の光検出器とを含み、
前記マイクロプロセッサはさらに、(i)それぞれ、前記第2および第3の電気信号から第2および第3の周波数ドメイン振幅を判定し、(ii)前記第1、第2、および第3の周波数ドメイン振幅を比較することによって、前記オブジェクトの位置決めパラメータを判定するように構成される、
項目8に記載の位置決めシステム。
(項目13)
前記マイクロプロセッサはさらに、
前記第2の部分を復調し、第2のベースバンド信号を生じるステップと、
前記第2のベースバンド信号の個別の複数の第2の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第2の周波数ドメイン振幅の第2の複数の推定値を生成するステップと、
前記第2の複数の推定値のうちの最も一般的な値として前記第2の周波数ドメイン振幅を判定するステップと、
前記第3の部分を復調し、第3のベースバンド信号を生じるステップと、
前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第3の周波数ドメイン振幅の第3の複数の推定値を生成するステップと、
前記第3の複数の推定値のうちの最も一般的な値として前記第3の周波数ドメイン振幅を判定するステップと
を行うように構成される、項目12に記載の位置決めシステム。
(項目14)
前記マイクロプロセッサはさらに、
前記x範囲内で、前記第1の周波数ドメイン振幅によって除算された前記第2の周波数ドメイン振幅に等しい透過率を有する、前記低速変動光学マスク上の位置に対応する、粗い推定場所x2を判定するステップと、
前記x範囲内で、前記周波数ドメイン振幅によって除算された前記第3の周波数ドメイン振幅に等しい透過率を有する、前記高速変動光学マスク上の位置に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、
粗い推定場所x2に最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定するステップと、
前記空間次元xと垂直であり、前記低速変動光学マスクおよび前記高速変動光学マスクに交差する平面に対する前記オブジェクトの角度として、前記精緻化された推定場所に基づいて前記位置決めパラメータを判定するステップと、
によって、前記位置決めパラメータを判定するように構成される、
項目12に記載の位置決めシステム。
(項目15)
オブジェクトの位置決めパラメータを判定するための位置決めシステムであって、
第1のチャネル、第2のチャネル、および第3のチャネルを含む、受信機であって、
前記第1のチャネルは、(i)前記オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)前記受信された第1の部分を第1の電気信号に変換するための第1の光検出器とを含み、
前記第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T2(x)を有する、低速変動光学マスクに向かって前記光学信号の第2の部分を指向するための第2のレンズと、(ii)前記低速変動光学マスクを通して透過される前記第2の部分を第2の電気信号に変換するための第2の光検出器とを含み、
前記第3のチャネルは、(i)前記x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T3(x)を有する、高速変動光学マスクに向かって前記光学信号の第3の部分を指向するための第3のレンズと、(ii)前記高速変動光学マスクを通して透過される前記第3の部分を第3の電気信号に変換するための第3の光検出器とを含む、受信機と、
信号プロセッサであって、(i)それぞれ、前記第1、第2、および第3の電気信号から第1、第2、および第3の信号振幅を判定し、(ii)前記第1、第2、および第3の信号振幅を比較することによって、前記位置決めパラメータを判定するように構成される、信号プロセッサと、
を備える、位置決めシステム。
(項目16)
前記光学信号は、変調周波数を有する、変調された光学信号であり、前記第1、第2、および第3の信号振幅は、前記第1、第2、および第3の電気信号の前記変調周波数に対応する、個別の第1、第2、および第3の周波数ドメイン振幅である、項目15に記載の位置決めシステム。
(項目17)
前記第1、第2、および第3のチャネルはそれぞれ、両方の他のチャネルの視野に重複する個別の視野を有する、項目15に記載の位置決めシステム。
(項目18)
前記第1の光検出器と前記第1のレンズとの間にあり、前記低速変動光学マスクの最大透過率および前記高速変動光学マスクの最大透過率に等しい、またはそれを超える、一様な透過率を有する、一様な光学マスクをさらに備える、項目15に記載の位置決めシステム。
(項目19)
前記信号プロセッサは、
前記x範囲内で、前記第1の信号振幅によって除算された前記第2の信号振幅に等しい透過率を有する、前記低速変動光学マスク上の位置に対応する、粗い推定場所x2を判定するステップと、
前記x範囲内で、前記第1の信号振幅によって除算された前記第3の信号振幅に等しい透過率を有する、前記高速変動光学マスク上の位置に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、
粗い推定場所x2に最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定するステップと、
前記精緻化された推定場所に基づいて、前記空間次元xと垂直であり、前記マスクに交差する平面に対する前記オブジェクトの角度を判定するステップと、
によって、前記位置決めパラメータを判定するように構成される、
項目15に記載の位置決めシステム。
(項目20)
(i)前記光学信号を発するステップおよび(ii)前記光学信号を反射するステップのうちの少なくとも1つのためのエミッタをさらに備え、前記エミッタは、(a)前記オブジェクトの上、または(b)前記受信機に近接してのいずれかで位置し、少なくとも前記オブジェクト上に搭載される反射体に向かって前記光学信号を指向するように構成される、項目15に記載の位置決めシステム。
(項目21)
前記光学信号は、0.40マイクロメートル~2.0マイクロメートルの自由空間波長を有する、項目15に記載の位置決めシステム。
(項目22)
前記空間的に変動する透過率T3(x)は、xの周期関数である、項目15に記載の位置決めシステム。
(項目23)
前記低速変動マスクの一部および前記高速変動マスクの一部は、前記x次元と垂直な線に沿って同一線上にある、項目15に記載の位置決めシステム。
(項目24)
前記低速変動光学マスクは、空間次元x内の前記x範囲に跨がり、空間次元xに直交する空間次元y内の第1のy範囲に跨がり、透過率T2(x)は、yから独立し、
前記高速変動光学マスクは、空間次元x内の前記x範囲に跨がり、空間次元y内の第2のy範囲に跨がり、透過率T3(x)は、yから独立している、
項目15に記載の位置決めシステム。
(項目25)
空間的に変動する透過率T3(x)は、周期Λxを有する周期関数であり、前記受信機はさらに、
(i)空間的に変動する透過率T4(x)=T3(x+Δx)、Δx≦0.5Λxを有する、第2の高速変動光学マスクに向かう前記光学信号の第4の部分を受信するための第4のレンズと、(ii)前記第2の高速変動光学マスクを通して透過される前記第4の部分を第4の電気信号に変換するための第4の光検出器とを含む、第4のチャネルを含み、
前記信号プロセッサはさらに、(i)前記第4の電気信号から第4の信号振幅を判定し、(ii)前記第1、第2、第3、および第4の信号振幅を比較することによって、前記位置決めパラメータを判定するように構成される、項目15に記載の位置決めシステム。
(項目26)
オブジェクトの位置決めパラメータを判定するための方法であって、
前記オブジェクトから光学信号の第1の部分を検出するステップと、
前記検出された第1の部分の第1の信号振幅を判定するステップと、
空間次元xのx範囲内で、厳密に単調な透過率T2(x)を有する低速変動光学マスクを通して透過される、前記光学信号の第2の部分を検出するステップと、
前記低速変動光学マスクを通して透過される、前記第2の部分の第2の信号振幅を判定するステップと、
前記x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T3(x)を有する、高速変動光学マスクを通して透過される、前記光学信号の第3の部分を検出するステップと、
前記高速変動光学マスクを通して透過される、前記第3の部分の第3の信号振幅を判定するステップと、
前記x範囲内で、前記第1の信号振幅によって除算された前記第2の信号振幅に等しい透過率を有する、前記低速変動光学マスク上の場所に対応する、粗い推定場所x2を判定するステップと、
前記x範囲内で、前記第1の信号振幅によって除算された前記第3の信号振幅に等しい透過率を有する、前記高速変動光学マスク上の場所に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、
粗い推定場所x2に最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定するステップと、
前記精緻化された推定場所に基づいて、前記空間次元xと垂直であり、前記マスクに交差する平面に対する前記オブジェクトの角度を判定するステップと、
を含む、方法。
(項目27)
前記第1の部分を検出するステップは、前記第2の光学マスクの最大透過率に等しい、またはそれを超える、一様な透過率を有する、一様な光学マスクに向かって前記第1の部分を指向するステップを含む、項目26に記載の方法。
(項目28)
前記光学信号は、変調周波数と、対応する周波数ドメイン振幅とを有する、変調された光学信号であり、前記第1、第2、および第3の信号振幅を判定するステップはさらに、
それぞれ、前記第1の部分、前記第2の部分、および前記第3の部分の第1、第2、および第3の周波数ドメイン表現を生成するステップと、
それぞれ、前記第1、第2、および第3の信号振幅として、前記第1、第2、および第3の周波数ドメイン表現の前記周波数ドメイン振幅を判定するステップと、
を含む、項目26に記載の方法。
(項目29)
再配置可能な構成要素と、
光学信号を発するための前記再配置可能な構成要素上のエミッタと、
前記光学信号の第1の部分、第2の部分、および第3の部分を受信するように構成される受信機であって、前記第1、第2、および第3の部分は、空間的に明確に異なるおよび時間的に明確に異なるのうちの少なくとも1つである、受信機と、
前記光学信号の前記第1の部分、第2の部分、および第3の部分に基づいて、前記受信機に通信可能に結合される伝送機から制御信号を受信するように適合される、コントローラと、
前記制御信号に基づいて前記再配置可能な構成要素を作動させるために、前記コントローラに通信可能に結合され、前記再配置可能な構成要素に機械的に結合される、アクチュエータと、
を備える、再配置可能な機械的構造。
(項目30)
第1のチャネルであって、(i)前記光学信号の第1の部分を受信するための第1のレンズと、(ii)前記受信された第1の部分を第1の電気信号に変換するための第1の光検出器とを含む、第1のチャネルと、
第2のチャネルであって、(i)空間次元xのx範囲内で厳密に単調な透過率T2(x)を有する、低速変動光学マスクに向かって前記光学信号の第2の部分を指向するための第2のレンズと、(ii)前記低速変動光学マスクを通して透過される前記第2の部分を第2の電気信号に変換するための第2の光検出器とを含む、第2のチャネルと、
第3のチャネルであって、(i)前記x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T3(x)を有する、高速変動光学マスクに向かって前記光学信号の第3の部分を指向するための第3のレンズと、(ii)前記高速変動光学マスクを通して透過される前記第3の部分を第3の電気信号に変換するための第3の光検出器とを含む、第3のチャネルと、
を含む、前記受信機
をさらに備える、項目29に記載の再配置可能な機械的構造。
(項目31)
(i)それぞれ、前記第1、第2、および第3の電気信号から第1、第2、および第3の信号振幅を判定し、(ii)前記第1、第2、および第3の信号振幅を比較することによって、前記エミッタの位置決めパラメータを判定するように構成される、信号プロセッサをさらに備える、項目30に記載の再配置可能な機械的構造。
(項目32)
前記信号プロセッサは、
前記x範囲内で、前記第1の信号振幅によって除算された前記第2の信号振幅に等しい透過率を有する、前記低速変動光学マスク上の位置に対応する、粗い推定場所x2を判定するステップと、
前記x範囲内で、前記第1の信号振幅によって除算された前記第3の信号振幅に等しい透過率を有する、前記高速変動光学マスク上の位置に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、
粗い推定場所x2に最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定するステップと、
前記精緻化された推定場所に基づいて、前記空間次元xと垂直であり、前記マスクに交差する平面に対する前記再配置可能な構成要素の角度を判定するステップと、
によって、前記位置決めパラメータを判定する、項目31に記載の再配置可能な機械的構造。
(項目33)
前記光学信号は、変調周波数を有する、変調された光学信号であり、前記第1、第2、および第3の信号振幅は、前記第1、第2、および第3の電気信号の前記変調周波数に対応する、個別の第1、第2、および第3の周波数ドメイン振幅である、項目30に記載の再配置可能な機械的構造。
(項目34)
ベースバンド信号の時間周波数に対応する第1の周波数ドメイン振幅を判定するための方法であって、
前記ベースバンド信号の複数の時間区画のうちの個別のものにそれぞれ対応する、前記第1の周波数ドメイン振幅の複数の推定値を生成するステップと、
前記複数の推定値のうちの最も一般的な値として前記第1の周波数ドメイン振幅を判定するステップと、
を含む、方法。
(項目35)
前記第1の周波数ドメイン振幅を判定するステップは、
前記複数の推定値を複数のビンにビン化するステップであって、各ビンは、前記複数の推定値のうちの最大値と前記複数の推定値のうちの最小値との間の個別の間隔に対応する、ステップと、
最大数の推定値を有する前記間隔に対応する前記ビン内の推定値として、前記第1の周波数ドメイン振幅を判定するステップと、
を含む、項目34に記載の方法。
(項目36)
前記複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数の間隔のそれぞれの中心が、前記第1の複数の間隔のうちの1つの縁に対応するように、前記第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含む、項目35に記載の方法。
(項目37)
複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用して前記ベースバンド信号を前処理するステップをさらに含む、項目36に記載の方法。
(項目38)
オブジェクトから光学信号の第1の部分を検出するステップであって、前記光学信号は、前記時間周波数において変調される、ステップと、
空間次元xのx範囲内で厳密に単調な透過率T2(x)を有する、低速変動光学マスクを通して透過される、前記光学信号の第2の部分を検出するステップと、
前記x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T3(x)を有する高速変動光学マスクを通して透過される、前記光学信号の第3の部分を検出するステップと、
前記検出された第1の部分、前記検出された第2の部分、および前記検出された第3の部分のうちの1つを復調し、前記ベースバンド信号を生じるステップと、
をさらに含む、項目34に記載の方法。
(項目39)
前記検出された第1の部分、前記検出された第2の部分、および前記検出された第3の部分のうちの前記1つは、前記検出された第1の部分であり、
前記検出された第2の部分を復調し、第2のベースバンド信号を生じるステップと、
前記第2のベースバンド信号の複数の第2の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第2の周波数ドメイン振幅の第2の複数の推定値を生成するステップと、
前記第2の複数の推定値のうちの最も一般的な値として前記第2の周波数ドメイン振幅を判定するステップと、
前記検出された第3の部分を復調し、第3のベースバンド信号を生じるステップと、
前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第3の周波数ドメイン振幅の第3の複数の推定値を生成するステップと、
前記第3の複数の推定値のうちの最も一般的な値として前記第3の周波数ドメイン振幅を判定するステップと、
をさらに含む、項目38に記載の方法。
(項目40)
前記x範囲内で、前記第1の周波数ドメイン振幅によって除算された前記第2の周波数ドメイン振幅に等しい透過率を有する、前記低速変動光学マスク上の場所に対応する、粗い推定場所x2を判定するステップと、
前記x範囲内で、前記第1の周波数ドメイン振幅によって除算された前記第3の周波数ドメイン振幅に等しい透過率を有する、前記高速変動光学マスク上の場所に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、
粗い推定場所x2に最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定するステップと、
前記精緻化された推定場所に基づいて、前記空間次元xと垂直であり、前記低速変動光学マスクおよび前記高速変動光学マスクに交差する平面に対する前記オブジェクトの角度を判定するステップと、
をさらに含む、項目39に記載の方法。
(項目41)
周波数ドメイン分析器であって、
非一過性のコンピュータ可読命令を記憶し、時間周波数成分と、対応する第1の周波数ドメイン振幅とを有する、ベースバンド信号を記憶するように構成される、メモリと、
マイクロプロセッサであって、前記命令を実行すると、
前記ベースバンド信号の複数の時間区画のうちの個別のものにそれぞれ対応する、前記第1の周波数ドメイン振幅の複数の推定値を生成するステップと、
前記複数の推定値のうちの最も一般的な値として前記第1の周波数ドメイン振幅を判定するステップと、
を行うように適合される、マイクロプロセッサと、
を備える、周波数ドメイン分析器。
(項目42)
前記マイクロプロセッサはさらに、前記命令を実行すると、前記第1の周波数ドメイン振幅を判定するときに、
前記複数の推定値を複数のビンにビン化するステップであって、各ビンは、前記複数の推定値のうちの最大値と前記複数の推定値のうちの最小値との間の個別の間隔に対応する、ステップと、
最大数の推定値を有する前記間隔に対応する前記ビン内の推定値として、前記第1の周波数ドメイン振幅を判定するステップと、
を行うように適合される、
項目41に記載の周波数ドメイン分析器。
(項目43)
前記複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数の間隔のそれぞれの中心が、前記第1の複数の間隔のうちの1つの縁に対応するように、前記第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含む、項目42に記載の周波数ドメイン分析器。
(項目44)
前記マイクロプロセッサはさらに、前記命令を実行すると、複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用して前記ベースバンド信号を前処理するように適合される、項目42に記載の周波数ドメイン分析器。
(項目45)
第1のチャネル、第2のチャネル、および第3のチャネルを含む、受信機をさらに備え、
前記第1のチャネルは、(i)前記オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)前記受信された第1の部分を、前記第1の周波数ドメイン振幅を有する第1の電気信号に変換するための第1の光検出器であって、前記光学信号は、前記時間周波数において変調される、第1の光検出器とを含み、
前記第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T2(x)を有する、低速変動光学マスクに向かって前記光学信号の第2の部分を指向するための第2のレンズと、(ii)前記低速変動光学マスクを通して透過される前記第2の部分を第2の電気信号に変換するための第2の光検出器とを含み、
前記第3のチャネルは、(i)前記x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T3(x)を有する、高速変動光学マスクに向かって前記光学信号の第3の部分を指向するための第3のレンズと、(ii)前記高速変動光学マスクを通して透過される前記第3の部分を第3の電気信号に変換するための第3の光検出器とを含み、
前記マイクロプロセッサはさらに、(i)それぞれ、前記第2および第3の電気信号から第2および第3の周波数ドメイン振幅を判定し、(ii)前記第1、第2、および第3の周波数ドメイン振幅を比較することによって、前記オブジェクトの場所パラメータを判定するように構成される、
項目41に記載の周波数ドメイン分析器。
(項目46)
前記マイクロプロセッサはさらに、
前記第2の部分を復調し、第2のベースバンド信号を生じるステップと、
前記第2のベースバンド信号の個別の複数の第2の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第2の周波数ドメイン振幅の第2の複数の推定値を生成するステップと、
前記第2の複数の推定値のうちの最も一般的な値として前記第2の周波数ドメイン振幅を判定するステップと、
前記第3の部分を復調し、第3のベースバンド信号を生じるステップと、
前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものにそれぞれ対応する、前記時間周波数に対応する第3の周波数ドメイン振幅の第3の複数の推定値を生成するステップと、
前記第3の複数の推定値のうちの最も一般的な値として前記第3の周波数ドメイン振幅を判定するステップと
を行うように構成される、項目45に記載の周波数ドメイン分析器。
(項目47)
前記マイクロプロセッサはさらに、
前記x範囲内で、前記第1の周波数ドメイン振幅によって除算された前記第2の周波数ドメイン振幅に等しい透過率を有する、前記低速変動光学マスク上の位置に対応する、粗い推定場所x2を判定するステップと、
前記x範囲内で、前記周波数ドメイン振幅によって除算された前記第3の周波数ドメイン振幅に等しい透過率を有する、前記高速変動光学マスク上の位置に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、
粗い推定場所x2に最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定するステップと、
前記精緻化された推定場所に基づいて、前記空間次元xと垂直であり、前記低速変動光学マスクおよび前記高速変動光学マスクに交差する平面に対する前記オブジェクトの角度を判定するステップと、
によって、前記場所パラメータを判定するように構成される、
項目45に記載の周波数ドメイン分析器。
図1は、実施形態における、例示的使用シナリオでの位置決めシステムを示す。
図2は、図1の位置決めシステムの実施例である、位置決めシステムの実施形態を図示する。
図3は、図2の位置決めシステムの実施例である、位置決めシステムの斜視図である。
図4は、図3の位置決めシステムの断面図である。
図5は、図3の位置決めシステムの光学マスクの例示的透過関数のプロットを含む。
図6は、実施形態における、オブジェクトの角度場所を判定するための方法を図示する、フローチャートである。
図7は、実施形態における、図6の方法の随意のステップを図示する、フローチャートである。
図8は、図2の位置決めシステムのチャネルからの例示的ベースバンド信号を示す。
図9は、図8のベースバンド信号の短時間フーリエ変換(STFT)振幅の時系列を示す。
図10Aおよび10Bは、図9のSTFT振幅に対応する予測誤差のプロットである。
図11Aおよび11Bは、図10Aの予測誤差の信号対雑音比(SNR)時系列である。
図12は、図2の位置決めシステムの実施形態のチャネルによって生成される、破損したベースバンド信号のプロットである。
図13は、図12の破損したベースバンド信号の個別の複数の区画に対応する複数のSTFT振幅推定値を図示する。
図14は、図13のSTFT振幅推定値の発生を図示する、概略ヒストグラムを描写する。
図15は、実施形態における、ベースバンド信号の周波数ドメイン振幅を判定するための方法を図示する、フローチャートである。
図16Aおよび16Bは、未加工STFT振幅推定値を図15の方法に起因する精緻化されたSTFT振幅推定値と比較する、プロットである。
図17は、図2の位置決めシステムの実施形態によって生成される、測定されたSTFT振幅の時系列プロットである。
図18は、図15の方法を介して生成される、図17のSTFT振幅のヒストグラムを示す。
図19Aおよび19Bは、図17のSTFT振幅の予測誤差のプロットである。
図20は、図17のSTFT振幅の比のプロットである。
図21は、破損した測定が削除された、図17のSTFT振幅の比のプロットである。
図22は、図20および21のSTFT振幅比に対応する信号対雑音比のプロットである。
図23は、図2の位置決めシステムの受信機の実施形態の中に存在する光学構成要素アレイを図示する。
図24-27はそれぞれ、図2の位置決めシステムの受信機を含む、個別の伝送機・受信機ペアを図示する。 図24-27はそれぞれ、図2の位置決めシステムの受信機を含む、個別の伝送機・受信機ペアを図示する。 図24-27はそれぞれ、図2の位置決めシステムの受信機を含む、個別の伝送機・受信機ペアを図示する。 図24-27はそれぞれ、図2の位置決めシステムの受信機を含む、個別の伝送機・受信機ペアを図示する。
図28-32はそれぞれ、図23の光学構成要素アレイを含む受信機の実施形態を横断する波面を図示する。 図28-32はそれぞれ、図23の光学構成要素アレイを含む受信機の実施形態を横断する波面を図示する。 図28-32はそれぞれ、図23の光学構成要素アレイを含む受信機の実施形態を横断する波面を図示する。 図28-32はそれぞれ、図23の光学構成要素アレイを含む受信機の実施形態を横断する波面を図示する。 図28-32はそれぞれ、図23の光学構成要素アレイを含む受信機の実施形態を横断する波面を図示する。
図33は、実施形態における1つの例示的位置決めシステムを図示する。
図34-38は、図2の位置決めシステムおよび図6の方法の例示的使用の実施例を説明する。 図34-38は、図2の位置決めシステムおよび図6の方法の例示的使用の実施例を説明する。 図34-38は、図2の位置決めシステムおよび図6の方法の例示的使用の実施例を説明する。 図34-38は、図2の位置決めシステムおよび図6の方法の例示的使用の実施例を説明する。 図34-38は、図2の位置決めシステムおよび図6の方法の例示的使用の実施例を説明する。
図39は、実施形態における、図2の位置決めシステムのための第1の例示的使用環境を図示する。
図40は、実施形態における、図2の位置決めシステムのため第2の例示的使用環境を図示する。
図1は、環境180内の例示的使用シナリオにおける位置決めシステム100を示す。環境180は、例えば、倉庫、工場、加工プラント、仕事場、(道路、建物等の)建設現場、造園現場であり、屋内または屋外のいずれかに位置してもよい。本シナリオにおける物理的規模、電気的帯域幅、および要求される位置決め精度はそれぞれ、画像処理ベースの位置決めを非常に困難および/またはリソース集約的にするほど十分に大きい。位置決めシステム100は、米国出願第14/165,946号に説明される光学誘導システム500、600、および700の任意の特徴を含んでもよい。
環境180は、車両184と、ベスト186Vを着用している個人186と、人間の視線能力を限定する棚182等の障害物とを含む。車両184は、例えば、フォークリフト、または建設機器(バックホー、掘削機、ブルドーザ等)等の再配置可能な部品を伴う他のタイプの車両である。位置決めシステム100は、受信機130(1)を含み、車両184、ベスト186V、および棚182等の追跡可能オブジェクトの上にあるエミッタ111の位置を追跡する。受信機130(1)は、座標系198のx-y平面と垂直な平面内に前面130F(1)を有する。位置決めシステム100は、随意に、第2の受信機130(2)等の1つまたはそれを上回る付加的受信機を含む。
実施形態では、受信機130およびエミッタ111は両方とも、車両184の可動部品の場所を判定して制御するための車両184等の同一の車両の上に位置する。
エミッタ111は、位置決めシステム100の一部であってもよい。例示的動作モードでは、受信機130(1)は、それから位置決めシステム100がエミッタ111(1)についての場所情報を判定する、エミッタ111(1)からの信号112(1)を受信する。
位置決めシステム100の1つの機能は、車両184および個人186等のオブジェクトまたは人の場所を位置決めして報告することであってもよい。例えば、位置決めシステム100は、エミッタ111(1)と前面130F(1)との間のx-y平面内の場所角度113を判定する。位置決めシステム100はまた、受信機130(2)に対するエミッタ111(1)の第2の位置決め角度を判定してもよい。そのような場所データは、ナビゲーションおよび衝突回避の目的のために、車両184等のオブジェクト場所を制御するために使用されてもよい。
受信機130は、エミッタ111から、例えば、信号112(2)を発するエミッタ111(2)から、破損した信号を受信し得る。例えば、閉塞188がエミッタ111(2)と受信機130(2)との間にあるとき、受信機130(2)は、信号112(2)の破損したバージョンである、破損した信号112Cを受信する。閉塞188は、例えば、空中浮遊粉塵、または雨、みぞれ、または雪の形態の周囲湿気である。破損した信号112Cはまた、エミッタ111の誤動作によって引き起こされ得る。位置決めシステム100の信頼できる動作は、エミッタ111(2)の場所を正確に特定することができるように、システム100が破損した信号112Cの中の雑音を除去することが可能であることを要求する。
図2は、位置決めシステム100の実施例である、1つの例示的位置決めシステム200を図示する。位置決めシステム200は、受信機230と、随意に、処理ユニット280とを含む。処理ユニット280は、マイクロプロセッサ282と、メモリ284とを含む。メモリ284は、揮発性メモリ(例えば、SRAM、DRAM、またはそれらの任意の組み合わせ)および不揮発性メモリ(例えば、FLASH、ROM、磁気媒体、光学媒体、またはそれらの任意の組み合わせ)の一方もしくは両方を表してもよい。メモリ284は、機械可読命令を含むソフトウェア250を記憶する。マイクロプロセッサ282は、メモリ284に通信可能に結合され、その中に記憶された機械可読命令を実行するときに、本明細書に説明されるような位置決めシステム200の機能を果たす。ソフトウェア250は、スポット場所推定器252と、位置・角度変換器254と、随意に、周波数ドメイン分析器256と、信号調節器258と、信号評価器260と、信号対雑音(SNR)モニタ262とを含む。メモリ284はまた、随意に、それぞれ、スポット場所推定器252、位置・角度変換器254、およびSNRモニタ262によって使用される、マスク性質234P、CRAマッピング235M、ならびに時間間隔264を記憶してもよい。
位置決めシステム200はまた、随意のエミッタ211を含んでもよい。受信機230およびエミッタ211は、それぞれ、受信機130(1)およびエミッタ111として実装されてもよい。エミッタ211は、少なくともエミッタ211(1)を含み、任意の数のエミッタ211(2)から211(N)をさらに含んでもよい。各エミッタ211(1-N)は、搬送波周波数212Cを有する、個別の光学信号212(1-N)を提供する。光学信号212(1-N)は、変調周波数212F(1-N)と、対応する周波数ドメイン振幅212A(1-N)とを有してもよく、その場合、搬送波周波数212Cは、搬送波周波数である。典型的使用シナリオでは、位置決めシステム200は、その光学スペクトルの中に搬送波周波数212Cを含む、周囲光学放射218を含む環境である。光学信号212の変調周波数212Fは、位置決めシステム200が、エミッタ211から伝搬する信号を、搬送波周波数212Cを有する周囲光学放射218の成分と区別することを可能にする。
エミッタ211は、光学信号212を生成する、発光ダイオード(LED)またはレーザダイオード等の光源215を含んでもよい。エミッタ211はまた、光源215の出力を変調させるように構成される電気回路215Cを含んでもよい。光学信号212は、本来は、例えば、位置決めシステム200の一部であり、受信機230に取り付けられ得る、またはそれに近接し得る、光学伝送機220等のエミッタ211から遠隔のソースによって生成されてもよい。エミッタ211は、受信機230に向かって光学伝送機220によって生成される光学信号212を反射するための反射体216を含んでもよい。光学伝送機220は、可視光、近赤外光、およびそれらの組み合わせ等の電磁放射線を発してもよい。
個別の変調周波数212F(1-N)を伴う光学信号212(1-N)を変調させることは、エミッタ211を相互と区別する1つの方法である。代替として、各エミッタ211は、異なる搬送波周波数(212C(1,2,…N))または偏光を発してもよい。チャネル231は、単一のエミッタ211から伝搬する光のものに対応する搬送波周波数212Cまたは偏光を透過させるフィルタ236を含んでもよい。フィルタ236は、例えば、光学帯域通過フィルタ、直線偏光子、および円形偏光子のうちの少なくとも1つを含む。
搬送波周波数212Cは、例えば、0.95μm等の0.40μm~2.0μmの1つまたはそれを上回る自由空間光学波長に対応する。フィルタ236は、例えば、搬送波周波数212Cに等しい中心伝送周波数を有する、狭帯域光学帯域通過フィルタである。変調周波数212Fは、例えば、50Hz~500kHzである。光学信号212は、振幅変調、周波数変調、スペクトル拡散、ランダムワンタイムコード変調を含む、当技術分野で公知の1つまたはそれを上回る変調方法を用いて変調されてもよい。
受信機230は、複数のチャネル231を含む。各チャネル231は、光学マスク234と、光検出器233と、チャネル電子機器232と、随意に、レンズ235とを含む。各光学マスク234は、光学信号212が、事前に光検出器233によって検出される前に、光学マスク234を通って伝搬するように、その個別の光検出器233とエミッタ211との間にある。2つまたはそれを上回る光学マスク234(1-M)は、明確に異なる光学要素であってもよい。代替として、2つまたはそれを上回る光学マスク234(1-M)は、2つまたはそれを上回る個別の光検出器233を被覆する、単一の光学要素の異なる領域に対応してもよい。
実施形態では、各光検出器233は、例えば、20MHzの時間カットオフ周波数を有する、単一ピクセル光検出器、例えば、シリコンPINダイオード等のフォトダイオードである。別の実施形態では、光検出器233は、各光検出器233がピクセルアレイの異なるピクセルであるように、ピクセルアレイの中に実装される。ピクセルアレイは、例えば、相補型金属酸化膜半導体(CMOS)画像センサまたは電荷結合素子(CCD)画像センサである。
チャネル231は、受信機230内で任意の空間的構成に配列されてもよい。一実施形態では、チャネル231は、線に沿って配列される。別の実施形態では、チャネル231は、チャネル231が平面を画定するように、平面内に配列されるが、全てが同一の線上に位置するわけではない。例えば、チャネル231は、2次元アレイに配列される。
各光学マスク234(1-M)は、チャネル231(m)の光学マスク234(m)が、チャネル231(n)の光学マスク234(n)と異なり、m≠nであるように、相互に明確に異なる。本明細書の範囲から逸脱することなく、受信機230はまた、チャネル231(1-M)に加えて、チャネル231(1-M)の光学マスク234と同じ光学マスク234を有する、付加的チャネル231を含んでもよい。
光学マスク234は、入射光学信号212の個別の信号修正を課してもよい。信号修正は、位相の変化、振幅、または偏光のうちの少なくとも1つであり、例えば、随意にメモリ284の中に記憶されたマスク性質234Pとして機能的または数値的に表現可能である。光学マスクは、例えば、メモリ284の中に記憶されたマスク性質234Pの実施例である、空間的に変動する透過関数によって説明される空間的に変動する透過率を伴う光学要素である。マスク性質234Pは、例えば、透過関数を表すルックアップテーブルである。各光学マスク234は、それを通して光検出器233まで透過される光学信号212を修正し、故に、位相専用マスクを除いて、光学信号212に対応する周波数ドメイン振幅212Aも修正する。
光学信号212(1-N)は、例証を明確にするために単一の角度として図2に図示される、個別の場所角度213(1-N)でチャネル231に入射する。各場所角度213は、場所角度113の実施例である。i∈{1,2,・・・,M}である、チャネル231(i)の中に含まれるとき、レンズ235は、レンズ235が、光学信号212が入射する光検出器233(i)上の信号場所291に角度213をマップするように、チャネルの光検出器233(i)とエミッタ211(i)との間にある。
場所角度213は、例えば、レンズ235に入射する光線(主光線)の主光線角度(CRA)である。レンズ235は、CRAマッピング235Mとしてメモリ284の中に記憶され得る、特徴的CRA機能に従って、角度213を信号場所291にマップする。CRAマッピング235Mは、例えば、主光角度および対応する信号場所291のルックアップテーブルである。CRAマッピング235Mはまた、光学マスク234からのその焦点長および距離等のレンズ235の性質を含んでもよい。
各チャネル231は、その光検出器のサイズによる、個別のチャネル視野(「チャネルFOV」)と、含まれるとき、レンズ235の相対開口(f数)とを有する。実施形態では、3つまたはそれを上回るチャネル231のチャネルFOVは、少なくとも3つのチャネル231が同一のエミッタ211から光学信号212を受信するように重複する。
各光学マスク234は、修正された光学信号212Mとして、1つまたはそれを上回る光学信号212(1-N)を光検出器233に透過させ、ひいては、チャネル電子機器232によって受信される光電流信号233Cを生成する。例えば、チャネル231(1)の光検出器233は、光電流信号233C(1)を生成する。
チャネル電子機器232は、光電流信号233Cに以下の動作のうちの1つまたはそれを上回るもの、すなわち、アナログ・デジタル変換、低域通過フィルタリング、および復調を行うことが可能な回路を含んでもよい。例えば、チャネル電子機器232は、アナログ復調器としても機能する、低域通過フィルタ回路を含む。別の実施例では、チャネル電子機器232は、低域通過フィルタ、アナログ・デジタル変換器、およびデジタル復調器を含む。
実施形態では、1つまたはそれを上回るチャネル231のチャネル電子機器232は、存在する場合、1つを上回る変調周波数212Fを回収するように光電流信号233Cを復調させることが可能である。例えば、復調周期T内で、チャネル電子機器232は、1<N≦Nである、持続時間T/Nにわたって212(1-N)のうちの1つに等しい復調周波数において光電流信号233Cを復調させる。実施形態では、1つまたはそれを上回るチャネル231は、単一の変調周波数212Fに対応する、専用チャネル電子機器232を有する。別の実施形態では、チャネル電子機器232は、増幅を提供し、例えば、チャネル電子機器232が通信可能に結合される処理ユニット280内で、復調、フィルタリング、およびデジタル変換が起こる場所から空間的に分離している。本実施形態では、チャネル電子機器232はまた、バイアス消去を提供してもよい。
各チャネル231(m)のチャネル電子機器232は、個別のチャネル信号231S(m)をマイクロプロセッサ282に通信可能に結合されるメモリ284に出力し、m∈{1,2,・・・,M}である。各チャネル信号231S(m)は、メモリ284の中に測定された信号振幅242として記憶され得る、測定された信号振幅241(m)を含む。測定された信号振幅241(m)は、例えば、光学信号212が変調されないとき、またはチャネル信号231S(m)の復調、フィルタリング、およびデジタル変換に先立って、チャネル信号231S(m)の振幅であってもよい。
光学信号212が変調されるとき、すなわち、対応する周波数ドメイン振幅212A(n)における変調周波数212F(n)を用いて、ソフトウェア250は、チャネル231(m)によって検出されるような光学信号212(n)に対応する、測定された信号振幅242(n,m)を判定してもよく、n∈{1,2,・・・,N}である。
マイクロプロセッサ282は、光電流信号233Cに以下の動作のうちの1つまたはそれを上回るもの、すなわち、増幅、アナログ・デジタル変換、低域通過フィルタリング、および復調を行うように構成され、かつそれを行うことが可能な回路を含んでもよい。例えば、マイクロプロセッサ282およびチャネル電子機器232は、それらのうちの少なくとも1つが、それらが受信する個別の信号に増幅、アナログ・デジタル変換、低域通過フィルタリング、および復調を行うように、相補的である。
一実施形態では、マイクロプロセッサ282は、受信機230と統合される。例えば、マイクロプロセッサ282および受信機230は、同一の回路基板上に位置してもよい。マイクロプロセッサ282は、次いで、スレーブである他のチャネル231を伴ってマスタとして機能する、チャネル231の中へ統合されてもよい。別の実施形態では、マイクロプロセッサ282は、受信機230から分離している。例えば、マイクロプロセッサ282および受信機230は、エンクロージャを共有する、またはマイクロプロセッサ282は、受信機230から離れた距離で別個のコンピュータ上に位置する。位置決めシステム200は、通信可能に結合され、マイクロプロセッサ282およびメモリ284に対して独立して位置付け可能であり得る、1つを上回る受信機230を含んでもよい。
実施形態では、位置決めシステム200は、測定された場所角度213M(1-N)としてメモリ284の中に記憶され得る、個別のエミッタ211(1-N)に対応する場所角度213(1-N)を測定する。測定された場所角度213M(1-N)は、個別の場所角度213(1-N)に対応する。位置決めは、有線または無線通信を介して、角度213M等の位置決めデータ209をコントローラ270に出力するように構成されてもよい。コントローラ270は、例えば、イントラネットまたはインターネットであるコンピュータネットワーク272を介して、位置決めデータ209を受信するように、遠隔に位置してもよい。位置決めシステム200はまた、コントローラ270から命令274を受信し、制御伝送機266を介して、エミッタ211も含むオブジェクト上の受信機217にそれらを伝送するように構成されてもよい。例えば、エミッタ211(N)は、受信機217を含んでもよく、車両184上のエミッタ111(1)の実施例である。代替として、受信機217は、車両184等のオブジェクトが、独立して位置付け可能である受信機217およびエミッタ211を含み得るように、エミッタ211と統合される(同梱される)必要はない。制御伝送機266および受信機217は、WiFi、Bluetooth(登録商標)、Bluetooth Low Energy(BLE)、セルラー(3G、4G、5G、LTE、LTE-U、NB-1、CAT等)準拠デバイスであるが、例えば、本明細書の範囲から逸脱することなく、任意の無線伝送プロトコルであってもよい。
図3は、位置決めシステム300の斜視図であり、図4は、断面図である。図3および4は、以下の説明で、ともに最良に視認される。図3は、x-y平面と、x-z平面と、y-z平面とを有する、座標系398を含む。本明細書では、x、y、およびz方向(または軸)ならびにそれから形成される平面の参照は、別様に規定されない限り、座標系398のものである。位置決めシステム300は、位置決めシステム200の実施例であり、チャネル331(1-3)と、チャネル電子機器432と、マイクロプロセッサ282と、メモリ484とを含む。
チャネル331(1-3)はそれぞれ、チャネル231の実施例であり、それぞれ、光検出器333(1-3)と、光学マスク334(1-3)と、レンズ335(1-3)とを含む。光検出器333、光学マスク334、およびレンズ335は、それぞれ、光検出器233、光学マスク234、およびレンズ235の実施例である。チャネル電子機器432は、チャネル電子機器232の実施例である。メモリ484は、メモリ284の実施例であり、マスク334のマスク性質334Pと、レンズ335のCRAマッピング335Mとを含む。マスク性質334PおよびCRAマッピング335Mは、それぞれ、マスク性質234PおよびCRAマッピング235Mの実施例である。
チャネル331の相対位置は、位置決めシステム300の機能性に影響を及ぼすことなく変化してもよい。例えば、チャネル331(1)は、チャネル331(2,3)の間にあってもよい、またはチャネル331(3)は、チャネル331(1,2)の間にあってもよい。
光学マスク334(1-3)は、xminとxmaxとの間でx方向へ領域に跨がり、距離(xmax-xmin)は、例えば、そのいずれか一方も領域に跨がり得る、各光検出器333の幅333Wまたはレンズ335からの画像円に等しい。距離(xmax-xmin)は、本明細書の範囲から逸脱することなく、幅333W未満またはそれを超えてもよい。各光学マスク334は、x-z平面と平行である、平面396と垂直であるx-y平面と平行な平面内にある。レンズ335は、光学マスク334(1-3)の前にあり、平面396に直交する平面397内で同一平面上にある個別の光学軸335A(1-3)を有する。図4の断面図は、平面396内で、または光学軸335A(1)および335A(3)のうちの1つを含む平面396と平行な平面内で、位置決めシステム300の断面図を表す。
光学マスク334(1-3)はそれぞれ、オブジェクト391を含む領域中で重複する個別の視野を有する、位置決めシステム300の個別のチャネル331(1-3)の一部である。オブジェクト391は、平面396に交差するエミッタ311をその上に有する。エミッタ311は、エミッタ211の実施例である。線395は、平面396内にあり、x-y平面と垂直である。線395は、例えば、光学マスク334(2)の前のレンズ335の光学軸335Aと同一線上にある。光学マスク334(2)は、(勾配透過率を伴う)2平面吸収フィルタまたはx方向に変動する厚さを有する楔形の吸収フィルタであってもよい。チャネル331は、y座標値の範囲394に跨がる。オブジェクト391およびエミッタ311は、例証目的のみのために、本範囲内で示され、本明細書の範囲から逸脱することなく、本範囲外であってもよい。
平面396では、エミッタ311は、光検出器333(2)からの距離311D、光検出器333を含む平面からの距離311z、および平面397からの距離311xに位置する。距離311xおよび311zは、平面397に対する、または同等に光学軸335A(2)に対する場所角度313を有する、エミッタ211に対応する。場所角度313は、角度213の実施例であり、本明細書では場所角度θとも称される。
チャネル331(1-3)は、y方向に同一線上に配列される。例えば、チャネル331(1-3)は、各光学軸335A(1-3)が平面397内にあるように、x方向に中心整合される。そのような中心整合は、角度313を判定する際に視差誘発誤差を防止する。例えば、チャネル331(1)の光学軸335A(1)が、平面397内にあるように、チャネル331が負のy方向に沿って平行移動された場合、エミッタ311と光学軸335A(1)との間の角度は、チャネル331(1-2)がx方向に中心整合された場合のみ、前述の場所角度313に等しい。別の実施形態では、視差効果は、視差誤差を誘発するようにチャネルを意図的に配列することによって、測距推定器として使用される。
光検出器333は、y方向に沿って中心間距離333Sによって分離される。距離333Sは、例えば、典型的距離311Dよりもはるかに小さい、1ミリメートル~10センチメートルである。
レンズ335は、焦点距離fを有し、個別の光学マスク334からの距離434Dに位置する。距離434Dは、例えば、焦点距離f±Δに等しく、焦点ずれ距離Δは、ゼロに等しくてもよい。エミッタ211は、光学信号212の実施例である、光学信号312を発する。光学信号312は、主光線412(0)と、周辺光線412(±1)とを含み、そのレンズ335は、画像平面335P上に結像する。光線412は、スポットサイズ422Dを有する光学マスク334においてスポット422を形成する。スポットサイズ422Dは、半値全幅スポットサイズまたは1/eスポットサイズであってもよい。スポット422は、平面397に対して信号場所491xにおいて中心に置かれる。
画像平面335Pは、例えば、光学マスク334内に、その前面または後面に、もしくは光学マスク334と光検出器333との間にある。光学マスクは、修正された光学信号212Mの実施例である、修正された光学信号412Mとして光学信号312を透過させる。
いくつかの実施形態では、レンズ335が大きいスポット(例えば、回折限界に対する最小スポットサイズ)を生成すること、またはスポット422が設計によって大きいか、もしくは光学マスク334上のぼやけたスポットであるかのいずれかであるように、画像平面335Pが光学マスク334から変位される(|Δ|>0)ことが有利である。レンズ335は、拡張した被写界深度、広いFOV、色収差制御、および/または熱制御のため等に、焦点ずれ不変性を可能にする大きい光学スポットを生じさせるように設計されてもよい。大きい光学スポットを形成する別の方法は、単純な焦点ずれを通すものである。
例えば、光学マスク334は、2値であり(透過がTminまたはTmaxに等しい)、周期Λを伴ってx方向に周期的である、空間的に変動する透過率を有する。周期Λは、例えば、25マイクロメートル~50マイクロメートルである。スポットサイズ422Dが周期Λ未満である場合には、光学マスク334は、光学信号312を完全に減衰させるか、または完全に透過させるかのいずれかであってもよく、処理ユニットを、修正された光学信号412Mからエミッタ311についての位置決め情報の提供を判定することをできなくさせるであろう。そのようなシナリオを回避するために、レンズ335は、チャネル331の視野内の主光線角度χの周期Λと最小限に異なる、主光線角度χの関数としてスポットサイズを有する、画像平面335Pにおいてスポットを生成するように設計されてもよい。
実施形態では、レンズ335は、自由空間波長λ=1.0μmにおいて、その回折限定スポットサイズ(エアリー円盤直径)が約10マイクロメートルであるように、f数N=4を有する。レンズ335は、回折限界を超える最小直径を有するスポットに光を指向するように設計されてもよい。例えば、最小直径は、上記で説明される例示的範囲を伴って、周期Λに等しい。
主光線412(0)は、信号場所491xが(f±Δ)tan(χ)に等しいように、主光線角度(CRA)χにおいて光学軸335Aに交差する。信号場所491xは、図2の信号場所291の実施例である。実践では、主光線角度χは、図4で見られ得る、場所角度313(θ)にほぼ等しい。場所角度θが、
Figure 0007284979000001
を満たす一方で、主光線角度χは、
Figure 0007284979000002
を満たす。実践では、距離311xは、
Figure 0007284979000003
であるように、信号場所491xをはるかに上回る。検出器333は、単一ピクセル検出器であってもよく、例えば、信号場所491xが5ミリメートル未満であるように、1/2ミリメートル~10ミリメートルの幅333Wを有する。対照的に、距離311xは、約数メートルであってもよい。
主光線角度χは、主光線角度χおよび信号場所491xに関するCRAマッピング335Mを満たす。レンズ335が薄いレンズであるとき、CRAマッピング335Mは、
Figure 0007284979000004
である。距離434Dは、公知であり、故に、信号場所491xを判定することは、主光線角度χ、故に、エミッタ311およびオブジェクト391の場所角度θの判定を可能にする。
本明細書の範囲から逸脱することなく、主光線角度χおよび信号場所491xは、例えば、レンズ335が複合レンズであるときに、
Figure 0007284979000005
以外の関係を満たしてもよい。そのような場合において、主光線角度χと信号場所491xとの間の関数関係または数値的な1対1のマッピングは、当技術分野で公知であるレンズ設計ソフトウェアを使用して判定され、CRAマッピング335Mとして記憶されてもよい。例えば、レンズ335は、光線412が光学マスク334および光検出器333に到達するために十分な光学マスク334ならびに光検出器333の幅333W等の空間次元を減少させる、画像側テレセントリックレンズである。
図5は、光学マスク334(1-3)の個別の例示的透過関数334T(1-3)を示す、プロット510、520、および530を含む。光学マスク334は、例えば、成形プラスチックで形成される、または単一透過関数のための障害物がない開口部であってもよい。光学マスク334は、それらの透過関数334Tが搬送波周波数212Cに対応する波長において適用されるように、所定の場所に吸収染料を含んでもよい。吸収染料は、近赤外光を吸収し、例えば、950±20nmにおいてピーク吸収を有してもよい。光学マスク334(1-3)のうちのいずれかは、透過関数334T(1-3)がそれらの個別の測定された透過関数を表すように配列される、複数の不透明または透明ハーフトーン形状(ドット、多角形、線等)を有してもよい。そのような透過関数測定は、ハーフトーンが有効な空間透過勾配を生じさせるように、いくつかのハーフトーン形状に跨がる光学スポットを採用する。
透過関数334T(1-3)はそれぞれ、x次元と平行な方向への正規化信号場所xnormの関数である。本明細書では、透過関数334T(1-3)はまた、それぞれ、T(xnorm)、T(xnorm)、およびT(xnorm)、とも称される。透過関数334T(1-3)は、その任意の空間的変動が完全にx方向に沿っているように、yから独立し得る。2D検索が、xおよびy空間的変動を単離または判定するように行われてもよい。正規化信号場所xnormは、例えば、図3および4のxminとxmaxとの間にある。
透過関数334T(1)は、例えば、1または0.99である、xmax1に等しい、両方の方向xおよびyに一様な透過を有する。透過関数334T(2)は、最大値Tmax2≦Tmax1および最小値Tmin2>0を有する。透過関数334T(3)は、最大値Tmax3≦Tmax1および最小値Tmin3>0を有する。最小透過Tmin2およびTmin3は、例えば、0.20である。透過関数334T(1-3)はそれぞれ、例えば、ルックアップテーブルとしてメモリ484の中に記憶され得る、マスク性質234Pの実施例である。
正規化信号場所xnormは、x次元に沿って光学マスク334の幅に正規化される。修正された光学信号412Mに応答して、光検出器333(1-3)は、それからチャネル電子機器432が個別のチャネル信号431S(1-3)(図4)を生成する、それぞれ光電流信号233Cの実施例である、個別の光電流信号433C(1-3)を生成する。チャネル信号431S(1-3)は、チャネル信号231Sの実施例である。
チャネル信号431S(1-3)の振幅は、測定された信号振幅242としてメモリ284の中に記憶されてもよい。チャネル信号431S(1-3)の振幅は、エミッタ311からの信号をチャネル331に入射する周囲光と区別する、修正された光学信号412Mの単一変調周波数振幅212A、例えば、振幅変調の周波数に対応してもよい。代替として、チャネル信号431S(1-3)の振幅は、個別の光電流信号433C(1-3)に比例し得る。
本明細書では、チャネル信号431S(1-3)はまた、それぞれ、I、I、およびIによって表される。修正された光学信号412Mは、隣接する光検出器333の間の距離333Sが距離311Dと比較して小さいため、光検出器333を横断して一様と見なされることができる、光強度Pを有する。
チャネル信号I、I、およびIは、方程式1に示されるように、光強度Pとそれらの個別の透過関数T、T、およびT(m=1、2、または3)の積に比例する。
Figure 0007284979000006
プロット510、520、および530はそれぞれ、図5の信号場所491xに対応する正規化信号場所591を表す。信号場所591の値、すなわち、0~1のxnormの値は、既知の透過関数T、T、およびTを考慮して判定されてもよい。
チャネル331(1)は、T(xnorm)=Tmaxであるため、信号場所591から独立している光検出器333(1)によって生成されるチャネル信号Iを生成する。故に、自然に、チャネル信号Iである光検出器333(1)の応答は、信号場所491xについての場所を提供せず、故に、場所角度313についての場所を提供しない。
チャネル331(2)によって生成されるチャネル信号Iは、関数形式T(xnorm)が把握されるため、信号場所491xの粗い推定値xを提供する。プロット500(2)の実施例では、透過関数334T(2)(T(xnorm))は、光学マスク334(2)のTmax2およびTmin2が把握される、方程式2によって表される。
Figure 0007284979000007
測定されたチャネル信号IおよびIは、比α=I/Iの値を提供する。比αはまた、方程式1によってI∝Tであるため、T/Tに等しい。故に、チャネル331(2)では、信号場所591は、T(x)=αmax1の透過値に対応する。故に、α、または同等にαmax1は、xnormの第1の推定値xが、方程式3に示されるように、既知の数量Tmax1、Tmax2、およびTmin2から判定されることができるように、方程式2の中のT(xnorm)に代入されてもよい。スポット場所推定器252は、第1の推定値xを判定してもよい。
Figure 0007284979000008
透過関数334T(2)は、図5および方程式2で線形として示されているが、本明細書の範囲から逸脱することなく、非線形であり得る。例えば、透過関数334T(2)は、曲線522および524等のxnormの単調に増加または単調に減少する関数であってもよい。透過関数334T(2)の上記の実施例はそれぞれ、TminとTmaxとの間の各透過値がxnormの唯一の値に対応するように、1対1の関数(数学用語を使用すると、「単射」または「厳密に単調な」関数の別名でも知られる)である。厳密に単調な関数は、厳密に増加しているか、または厳密に減少しているかのいずれかであり得る。数学的に、プロット520に示されるような透過関数334T(2)は、増加する、または一定のままであるのではなく、常に減少しているため、増加するxnormの厳密に減少する関数である。透過関数334T(2)の単射または厳密に単調な性質は、測定された光電流信号433C(2)(Iとしても表される)が信号場所591の推定値として1つ(唯一の)x値を識別することを可能にする。本明細書では、(例えば、厳密に増加するまたは厳密に減少する)単射(厳密に単調な)透過関数を伴う光学マスクは、低速変動光学マスクと呼ばれる。
光学マスク334(2)の異なる実施形態は、プロット520に示される透過関数334T(2)に類似する、同一の測定された透過関数を有してもよい。第1の実施形態では、光学マスク334(2)は、真の勾配透過関数を有する。第2の実施形態では、光学マスク334(2)は、ハーフトーンマスクである。第3の実施形態では、光学マスク334(2)は、その透過がステップ幅よりも広い幅を有する光学ビームを用いて測定されるときに、その測定された透過関数が透過関数334T(2)に近似する、またはそれと区別不可能であるように、透過関数334T(2)の段階的近似値と同等の複数のグレーレベルを有する。光学マスク334(2)の段階的近似値は、例えば、xnorm軸と平行な方向に光学マスク334(2)の「左半分」または「右半分」をそれぞれ示す、2つの透過値0.75および0.25を有するように、1つのステップのみを有してもよい。
の正確度は、比α=I/Iとして、部分的にチャネル信号Iの不確実性ΔIに依存する。比αはまた、T/Tにも等しいため、本不確実性は、プロット520で表されてもよい。不確実性ΔIは、xの不確実性Δxに対応し、その規模は、方程式4に示されるように、T(xnorm)の傾斜
Figure 0007284979000009
によって判定される。
Figure 0007284979000010
不確実性Δxは、(Tmax2-Tmin2)を増加させることによって低減されることができる。しかしながら、Tminがゼロに接近すると、そのように減衰される修正された光学信号412Mの測定は、ΔIが増加し、故に、不確実性Δxに下限を加えるように、より雑音が多くなる。
不確実性Δxは、(Tmax2-Tmin2)よりも大きい傾斜を有する光学マスクを有するチャネルを用いて光強度Pを検出して低減されてもよい。例えば、本実施例では周期的である、透過関数334T(3)またはT(xnorm)を有する、光学マスク334(3)を有するチャネル331(3)である。透過関数334T(3)は、yの連続関数、例えば、シヌソイド関数、またはyの不連続関数、例えば、周期関数(例えば、方形波関数)の符号関数、三角関数、または鋸歯関数であってもよい。
光検出器333(3)によって生成されるチャネル信号Iは、関数形式T(xnorm)が把握されるため、信号場所491xの精緻化された推定値xを提供する。例えば、T(xnorm)は、プロット520が、光検出器幅333WであるWによって除算された周期Λを図示する、方程式5によって表されてもよい。
Figure 0007284979000011
チャネル信号IおよびIは、比α=I/Iの値を提供する。比αはまた、方程式1によってI∝Tであるため、T/Tに等しい。故に、チャネル331(2)では、信号場所591は、プロット530の実施例では、T(xnorm)がシヌソイド関数であるため、プロット530で垂直鎖線によって表される、いくつかの候補場所532において満たされる、T(xnorm)=αmaxの透過値に対応する。1つの場所532は、各チャネル331(1-3)上で同一の値を有する、信号場所591に対応する。故に、「正しい」候補場所532は、プロット530で正規化場所532(11)によって表される、チャネル331(2)について判定される場所xに最も近いものである。正規化場所532(11)は、信号場所591の精緻化された推定値と見なされてもよく、その後、精緻化された推定値532(11)または精緻化された推定値xとも称される。スポット場所推定器252は、精緻化された推定値532(11)を判定してもよい。
透過関数334T(3)は、本明細書の範囲から逸脱することなく、三角波形等の非シヌソイド周期関数であってもよい。透過関数334T(3)はまた、本明細書の範囲から逸脱することなく、準周期関数または局所的周期関数等の非単射かつ非周期関数であってもよい。方程式5のT(xnorm)は、周期Λがxnormの関数、すなわち、Λ=Λ(xnorm)であることを規定することによって、局所的周期関数を表すように一般化されることができる。
実施形態では、位置決めシステム300は、周期Λ/Wの個別の部分によって偏移されることを除いて、透過関数334T(3)と同じ個別の周期透過関数を有する、個別の光学マスク334とともに付加的チャネル331を含む。透過関数534Tは、そのような透過関数を図示する。位置決めシステム300のそのような実施形態は、個別の位相偏移が60°、120°、および180°である、位相偏移バージョンの透過関数334T(3)である個別の透過関数534Tとともに、以降では「位相偏移チャネル」である、3つのチャネル331を含んでもよい。位置決めシステム300のそのような実施形態は、個別の位相偏移が90°である、位相偏移バージョンの透過関数334T(3)である個別の透過関数534Tとともに、2つの位相偏移チャネル331を含んでもよい。
そのような位相偏移チャネルはそれぞれ、精緻化された推定値xがより多くの候補から判定され、精緻化された推定値xがより少ない候補場所532を用いるよりも粗い推定値xに近づくことを可能にするように、候補場所532の付加的セットを提供する。位相偏移チャネルの第2の利益は、候補場所532が、方程式4によって図示されるような大きな不確実性をもたらす、ゼロまたは非常に小さい傾斜を有する透過関数334T(3)の領域にある、またはその近傍にあるときに明白となる。位相偏移透過関数(例えば、関数534T)は、高傾斜領域中に候補場所を有し、故に、低い不確実性を伴う精緻化された推定値を提供する。
前述は、位置決めシステムがエミッタ311について平面396内の場所角度313を判定するように動作し得る方法を説明する。位置決めシステム300はまた、位置決めシステム300がエミッタ311について平面396と直交する平面397内の第2の場所角度を判定することを可能にする、付加的チャネルs331’(2)および331’(3)を含んでもよい。チャネル331’(3)とチャネル331(1)との間の距離333S’は、正確な縮尺ではなく、例えば、距離333Sに等しい。チャネル331’(2)および331’(3)は、チャネル331(1)と同一線上であり、それと平行な平面内にある。例えば、チャネル331(1)、331’(2)、および331’(3)は、y方向に沿って中心整合され、平面396と平行な平面内で同一平面上にある個別の光学軸を伴うレンズ335を有する。チャネル331’(2)および331’(3)は、チャネル331(2)および331(3)と同等であるが、それらの透過がx次元に沿って変動するように、光学マスク334(2)および334(3)に対して90度だけ個別の光学マスク334’(2)および334’(3)を回転させる。チャネル331(1)、331’(2)、および331’(3)は、位置決めシステムが平面397と平行な平面内でエミッタ311の第2の角度場所を判定することを可能にするであろう。
図6は、オブジェクトの位置決めパラメータを判定するための方法600を図示する、フローチャートである。方法600は、例えば、ソフトウェア250のコンピュータ可読命令を実行する位置決めシステム200によって実装される。位置決めパラメータは、長方形座標系に対する各位置(x、y、z)と、球面座標系(半径方向距離r、方位角θ、および極角ψ)と、座標系に対する回転配向、すなわち、ピッチ、ヨー、およびロールを示すオイラー角とを含む。角度213Mは、方位角θおよび極角ψのいずれかであってもよい。位置決めパラメータは、例えば、測定された場所角度213M等の角度場所である。位置決めパラメータは、例えば、測距用途において、オブジェクトとオブジェクトから伝搬する電磁信号を検出する受信機との間の距離であってもよい。
ステップ610では、方法600は、オブジェクトから光学信号の第1の部分を検出する。ステップ610の実施例では、光学信号312の第1の部分は、検出器333(1)に向かって第1の部分を指向するレンズ335(1)に入射する。
ステップ610は、随意に、ステップ612を含む。ステップ612では、方法600は、第1の部分を検出し、第1の部分は、第2の光学マスクの最大透過率に等しい、またはそれを超える一様な透過率を有する、一様な光学マスクを通して伝搬している。ステップ612の実施例では、レンズ335(1)は、第1の部分が検出器333(1)によって検出される前に光学マスク334(1)を通って伝搬するように、光学マスク334(1)に向かって第1の部分を指向する。
ステップ615では、方法600は、検出された第1の部分の第1の信号振幅を判定する。ステップ615の実施例では、チャネル電子機器432は、光電流信号433Cからチャネル信号431S(1)を生成し、チャネル信号431S(1)の振幅は、第1の信号振幅の実施例である。
ステップ620では、方法600は、空間次元xのx範囲内で厳密に単調な透過率T(x)を有する、低速変動光学マスクを通して透過される光学信号の第2の部分を検出する。ステップ620の実施例では、光学信号312の第2の部分は、光学マスク334(2)に向かって第2の部分を指向する、レンズ335(2)に入射する。
ステップ625では、方法600は、低速変動光学マスクを通して透過される、検出された第2の部分の第2の信号振幅を判定する。ステップ625の実施例では、チャネル電子機器432は、光電流信号433Cからチャネル信号431S(2)を生成し、チャネル信号431S(2)の振幅は、第2の信号振幅の実施例である。
ステップ630では、方法600は、x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する、高速変動光学マスクを通して透過される光学信号の第3の部分を検出する。ステップ630の実施例では、光学信号312の第3の部分は、光学マスク334(3)に向かって第3の部分を指向する、レンズ335(3)に入射する。
ステップ635では、方法600は、高速変動光学マスクを通して透過される、検出された第3の部分の第3の信号振幅を判定する。ステップ635の実施例では、チャネル電子機器432は、光電流信号433Cからチャネル信号431S(3)を生成し、チャネル信号431S(3)の振幅は、第3の信号振幅の実施例である。
ステップ640では、方法600は、x範囲内で、第1の信号振幅によって除算された第2の信号振幅に等しい透過率を有する、低速変動光学マスク上の場所に対応する、粗い推定場所xを判定する。ステップ640の実施例では、スポット場所推定器252は、マスク性質334Pを使用して、光学マスク334(2)(図3)上の場所xを判定する(プロット520、図5)。
ステップ650では、方法600は、x範囲内で、第1の信号振幅によって除算された第3の信号振幅に等しい透過率を有する、高速変動光学マスク上の場所に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定する。ステップ650の実施例では、スポット場所推定器252は、光学マスク334(3)(図3)上の候補場所532を判定する(プロット530、図5)。
ステップ660では、方法600は、粗い推定場所xに最も近い、複数の候補場所のうちの精緻化された推定場所を判定する。ステップ660の実施例では、スポット場所推定器252は、正規化場所532から、粗い推定場所xに最も近いものとして正規化場所532(11)を判定する(プロット520、図5)。
ステップ670では、方法600は、精緻化された推定場所に基づいて、空間次元xと垂直であり、マスクに交差する平面に対するオブジェクトの角度を判定する。ステップ670の実施例では、位置・角度変換器254は、x-y平面と垂直である平面397に対するオブジェクト391の場所角度313の測定である、測定された場所角度213Mを判定する。
ステップ610に導入される光学信号は、変調された光学信号、変調周波数、および対応する周波数ドメイン振幅であってもよい。そのような事例において、方法ステップ615、625、および635は、図7に示されるステップ710、720、および730を実装してもよい。ステップ710、720、および730は、例えば、ソフトウェア250のコンピュータ可読命令を実行する位置決めシステム200によって、または図33に示されるように、ソフトウェア2050のコンピュータ可読命令を実行する位置決めシステム3300によって、実装される。本明細書では、指数m、m、およびmはそれぞれ、チャネル231(1-M)のうちの異なるものを表し、すなわち、m1,2,3∈[1,2,…,M]である。指数nは、エミッタ211(1-N)のうちの1つを表し、すなわち、n∈[1,2,…,N]である。
ステップ710では、方法600は、ベースバンド信号を生じさせるように、検出された部分を復調させる。ステップ710の第1の実施例では、チャネル231(m)は、エミッタ211(1-N)から光学信号212(n)を検出する。光学信号212(n)は、図2の変調周波数212F(n)において変調される。チャネル電子機器232(m)は、変調周波数212F(n)に対応する測定された変調周波数振幅242(n,m)を有するチャネル信号231S(m)を生じさせるように、光学信号212(n)を復調させる。ステップ710の第2の実施例では、チャネル231(m)は、エミッタ211(1-N)から信号212を検出する。チャネル電子機器232(m)は、変調周波数212F(n)に対応する測定された変調周波数振幅242(n,m)を有するチャネル信号231S(m)を生じさせるように、光学信号212(n)を復調させる。ステップ710の第3の実施例では、チャネル231(m)は、エミッタ211(1-N)から信号212(n)を検出する。チャネル電子機器232(m)は、変調周波数212F(n)に対応する測定された変調周波数振幅242(n,m)を有するチャネル信号231S(m)を生じさせるように、光学信号212(n)を復調させる。
ステップ720では、方法600は、ベースバンド信号の周波数ドメイン表現を生成する。ステップ720の実施例では、周波数ドメイン分析器256は、個別のチャネル信号231S(m)、231S(m)、および231S(m)の第1、第2、ならびに第3の周波数ドメイン表現を生成する。
ステップ730は、位置決めシステム200が変調された光学信号を発するオブジェクトの角度位置を見出すように実装し得る、方法600の随意の部分である。角度位置は、ステップ710のベースバンド信号が、例えば、閉塞188によって破損されない限り、正確である。
ステップ730では、方法600は、信号振幅として、変調周波数に対応する周波数ドメイン表現の周波数ドメイン振幅を判定する。ステップ730の実施例では、周波数ドメイン分析器256は、個別の第1、第2、および第3の信号振幅として、測定された変調周波数振幅242(n,m)、242(n,m)、および242(n,m)を判定する。
ステップ730は、方法600が、ベースバンド信号が破損されているかどうかを判定する、ステップ732を含んでもよい。ステップ730はまた、方法600が破損した測定を削除する、ステップ734を含んでもよい。図8-10は、ステップ732および734の実施例を図示する、例示的な破損した信号およびそれから処理される信号を示す。
図8は、後者が破損ベースバンド信号の実施例である、チャネル信号831S(1)および831S(2)に対応する、測定された電圧の時系列プロット800である。チャネル信号831Sは両方とも、位置決めシステム200のチャネル電子機器232によって生成されるチャネル信号231Sの実施例である。チャネル信号831Sは、同一の変調周期812Tと、変調周波数212Fの実施例である、対応する変調周波数812Fとを有する。
チャネル信号831S(1)および831S(2)は、変調された光学信号212に応答して、それぞれ、位置決めシステム200のチャネル231(1)および232(2)によって生成される。変調された光学信号212は、例えば、図1のエミッタ111(2)によって生成される、変調された光学信号112(2)である。明確にするために、プロット800は、DCバイアスが除去された正規化としてチャネル信号831Sを表示する。故に、プロット800は、図1のチャネル231(1,2)のそれらの個別の光学マスク234(1,2)によって引き起こされるチャネル信号831S(1,2)の信号振幅のいかなる差も図示しない。
プロット800は、時間周期802を指定し、その間に、図1の閉塞188は、エミッタ111(2)と受信機130(2)との間にあり、チャネル信号831S(2)がチャネル信号831S(1)から逸脱する。時間周期802中のチャネル信号831S(1)からのチャネル信号831S(2)の逸脱は、図1の破損した信号112Cの検出の実施例である。
ステップ732の第1の実施例では、信号評価器260は、所定の値から逸脱するその特徴を検出することによって、チャネル信号831S(2)が破損していることを判定する。例えば、時間周期802中に、チャネル信号831S(2)の(例えば、いくつかの周期にわたる)時間平均値および振幅は両方とも、先行時間における個別の時間平均値および振幅と異なる。
本実施例では、閉塞188は、粉塵または埃等の空中浮遊粒子状物質である。プロット800の破損した信号831S(2)は、実際の粉塵/埃に起因するが、破損した信号831S(2)に類似する破損した信号はまた、他のタイプの電気または天候事象、伝送機とコード化受信機との間の極端な運動、不要な短時間反射または幻惑材、ならびに伝送機の故障がある場合に、澄んだ空気系の中で生じ得る。車両または高送電面積等の雑音が多い電気的環境もまた、澄んだ空気の類似変化を誘発し得る。高電圧過渡電流は、ディーゼルまたはガソリンおよび電動車両、航空機、ボート、ならびに多数の工業用切替システム等の中継切替システムの中で頻繁に生じる。典型的蛍光照明は、光学および電気干渉の両方を生成し、屋内では一般的である。白熱照明は、通常の50Hzおよび60Hz雑音を生成する。これらの雑音源の全ては、潜在的に位置決めシステム200を破損し得、種々の処理アプローチを使用して軽減される。
図9は、測定された変調周波数振幅への空中浮遊粉塵および埃の影響を示す、プロット800の周波数ドメイン類似物である、時系列プロット900を図示する。時系列プロット900は、位置決めシステム200の個別のチャネル231(m)および231(m)によって検出されるような、エミッタ211(n)によって発せられる光学信号212(n)の検出に対応する、測定されたSTFT振幅942(n,m)および942(n,m)を含む。STFT振幅942は、測定された信号振幅242の実施例である。プロット900は、それにわたってSTFT振幅942が時間tにおける周波数ドメイン振幅を判定するように平均され得る、時間tを含む、時間間隔964を含む。時間間隔964は、時間間隔264の実施例である。
本実施例では、光学信号212(n)は、変調周波数212(n)を有する。チャネル231(m)および231(m)は、個別のチャネル信号231S(m)および231S(m)を生成する。STFT振幅942(n,m)および942(n,m)は、時間窓910中の変調周波数212F(n)に対応する、それぞれ、チャネル信号231S(m)および231S(m)のSTFT振幅である。STFTは、1ミリ秒の滞留時間(窓幅)を有し、その間に、チャネル信号231S(m1,2)が、250kHzサンプルレートに対応する、250倍にサンプリングされた。サンプルレートは、本明細書の範囲から逸脱することなく、例えば、最大1.0MHzであり、250kHzを上回る、または250kHz未満であり得る。
時間窓910は、下位間隔912を含み、その間に、エミッタ211(n)と各チャネル231(m)および231(m)との間の空中浮遊粒子状物質(例えば、粉塵および/または埃)は、下位間隔912外であるときに、その振幅に対して雑音が多いSTFT振幅942(n,m)および942(n,m)をもたらす。空中浮遊粒子状物質は、閉塞188の実施例である。プロット900に示されるように、空中浮遊粒子状物質は、STFT振幅942を低減させるか、または増幅するかのいずれかであり得る。出願者は、そのような増幅が直射日光の存在下で粒子状物質の「レンズ」または鏡効果によって引き起こされる可能性が高いことを主張する。類似レンズおよび鏡効果は、1つのエミッタ211と1つのチャネル231との間に雨滴を伴って見られる。
随意のステップ732では、方法600は、ベースバンド信号が破損されているかどうかを判定する。ステップ732の第2の実施例は、エミッタ211(n)の例示的STFT振幅942(n,m)を伴う。本実施例では、信号評価器260は、下位間隔912中に、そのSTFT振幅942(n,m)が所定の範囲921を超える変動951を有するため、エミッタ211(n)に対応するチャネル信号231S(m)の成分が破損していることを判定する。所定の範囲921は、例えば、下位間隔912外のSTFT振幅942の変動を上回る。
閉塞188は、測定されたSTFT振幅942の値を歪ませ、エミッタ211(n)の不正確な位置決めをもたらす。STFT振幅942は、随意に、第1、第2、および第3の信号振幅を判定するために方法600の実施形態で使用される、ステップ730で判定される周波数ドメイン振幅の実施例である。方法600は、図3の平面397に対するオブジェクト391の場所角度313等のオブジェクトの角度配向を判定するために、第1、第2、および第3の信号振幅を使用する。したがって、閉塞188の存在下のSTFT振幅942の正確な判定は、位置決めシステム200が変調された信号212を発するエミッタ211の場所を正確に特定するために不可欠である。
ステップ732の第3の実施例は、図10Aおよび10Bに示され、信号評価器260によって生成される、予測誤差1010および1020を伴う。予測誤差1010および1020は、それぞれ、STFT振幅942(n,m)および942(n,m)に対応する。予測誤差1010および1020は、個別の線形予測係数を伴う個別のSTFT振幅942(n,m)および942(n,m)を畳み込むことに起因する。STFT振幅942(n,m)および942(n,m)は、変調周波数212F(n)に対応する、それぞれ、チャネル信号231S(m)および231S(m)(図2)のSTFT振幅であることを想起されたい。予測誤差1010および1020の異常値は、個別のSTFT振幅942(n,m)および942(n,m)におけるスパイクと大まかに相関性がある。
予測誤差1010および1020は、異なる受信チャネルに対応し、本質的に相関性がない。予測誤差1010および1020の相関は、誤差源に依存する。誤差が透過側現象または全てのチャネル231に影響を及ぼすシステム全体の問題、例えば、雲が太陽を突然遮断することによって誘発される場合には、全てのチャネル231が類似誤差を受けるはずであり、予測誤差が相関される。センサカバーガラスから数ミリメートル離れた1つの開口の前のみに落ちる埃または雨滴等の受信機230のより近くで起こる事象は、1つのチャネル231のみに影響を及ぼし、無相関の予測誤差をもたらし得る。
ステップ732の本実施例では、それらの個別の予測誤差が、図10Aおよび10Bの両方で図示されるように、本実施例では0.05に等しい閾値1021を超えるため、信号評価器260は、チャネル信号231S(m)および231S(m)が破損していることを判定する。位置決めシステム200の実施形態では、信号評価器260は、リアルタイムで線形予測係数を計算し、個別の予測誤差が図10Aおよび10Bの閾値1021を超えるときにチャネル信号231S(m)および231S(m)が破損していることを判定する。信号評価器260は、例えば、二乗平均平方根または当技術分野で公知である他の予測因子を使用して、線形予測因子を実行する。
ステップ730の随意のステップ734では、方法600は、破損した測定を削除する。ステップ734の実施例では、信号調節器258は、閾値1021(図10)を超える予測誤差1010および1020に対応するSTFT振幅942(図9)を削除する。
図11Aおよび11Bは、図10Aの予測誤差1010によって明らかにされる破損したデータの削除に起因する、STFT振幅942(n,m)の信号対雑音比(SNR)の改良を図示するプロットである。図11Aは、STFT振幅942(n,m)の重複しない50ミリ秒時間間隔(τ=50ms)にわたってそれぞれ計算される、補正されていないSNR時系列1111および補正されたSNR時系列1112を示す。図11Bは、STFT振幅942(n,m)の重複しない250ミリ秒時間間隔(τ=250ms)にわたってそれぞれ計算される、補正されていないSNR時系列1121および補正されたSNR時系列1122を示す。時間間隔τおよびτはそれぞれ、図9に示される時間間隔964の実施例である。SNRモニタ262は、時系列1111、1112、1121、および1122を生成し得る。
時間間隔τおよびτは、個別の更新率R=1/τおよびR=1/τに対応する。故に、図11Bの時系列はそれぞれ、図11Aのものと比較して、より低い更新率を有する。
補正されていないSNR時系列1111および1121は、STFT振幅942(n,m)の全ての値を使用して計算された。補正されたSNR時系列1112および1122は、閾値1021を超えない予測誤差を伴うSTFT振幅942(n,m)のみを使用して計算された。図11Aに示されるように、補正されていないSNR時系列1111は、約0から約100の最大値に及ぶ。補正されたSNR時系列1112は、約140の最小値から1,000を超える最大値に及ぶ。天候事象がない場合、すなわち、澄んだ空気である場合、補正されていないおよび補正されたSNR時系列1111ならびに1112は、ほぼ一定であろう。データの補正は、SNRの有意な増加、例えば、増加した最小SNRを生じさせる。最小SNRは、位置決めシステム200の性能のための基準として使用されてもよい。例えば、図11Aは、例えば、200に等しい、SNR1130として最小SNR1130を表す。
図11Bでは、補正されていないSNR時系列1121は、約0から約100の最大値に及ぶ。閉塞事象が、補正されていないSNR時系列1121がほぼ1桁だけ減少する、4秒~19秒の間で明確に見られる。補正されたSNR時系列1122は、約400の最小から5,000を超える最大値に及ぶ。時間間隔264を増加させることは、補正されたデータの最小SNRを時間増加倍数のほぼ平方根だけ増加させる。SNR時系列1112および1122の時間増加倍数は、SNR時系列1111に対するSNR時系列1112の個別の最小値の比が約
Figure 0007284979000012
となるべきであるように、5である。補正されたSNR時系列1122の最小値
Figure 0007284979000013
は、補正されたSNR時系列1112の最小値
Figure 0007284979000014
の約2.9倍である。
ステップ730は、ステップ736および738を含んでもよい。ステップ736では、方法600は、信号振幅として、時間間隔内の短時間フーリエ変換振幅の平均を判定する。ステップ736の実施例では、周波数ドメイン分析器256は、時間間隔964内のSTFT振幅942(n,m)の平均を判定する。
随意のステップ738では、方法600は、判定されたSTFT短時間フーリエ変換振幅の信号対雑音比に従って、時間間隔を調節する。ステップ738の実施例では、ステップ736の時間間隔は、図11Aのτである。ステップ738の本実施例では、SNRモニタ262は、SNR時系列1112の最小値がSNR1130等の所定の閾値を下回るため、τからτまで時間間隔264を増加させる。
方法600は、増加した信号対雑音比を伴って信号振幅を生じさせるように、ステップ738後にステップ736を繰り返してもよい。増加した時間間隔は、SNR時系列1122をSNR時系列1112と比較することによって示されるように、信号振幅、すなわち、より高いSNRを有する時間間隔964内のSTFT振幅942(n,m)の平均をもたらす。時間間隔264の実施例である、時間間隔964を増加させることは、その更新率を減少させながら、位置決めシステム200によって生成される測定された場所角度213Mの正確度を維持する。
図12は、エミッタ211が関連付けられる変調周波数212Fを伴って個別の変調された光学信号212を発することに応答して、チャネル231(m)によって生成される破損したベースバンド信号1231S(m)のプロット1201である。信号1231S(m)は、それらが両方とも雑音を含むことにより、チャネル信号831S(2)に類似する。ベースバンド信号1231Sの破損は、図8のチャネル信号831S(2)の破損に類似する。変調周波数212Fは、エミッタ211(n)に対応する変調周波数212F(n)を含む。破損したベースバンド信号1231S(n)は、持続時間1212に及び、同様に雑音によって破損されるチャネル信号831S(2)等のチャネル信号231Sの実施例である。ベースバンド信号1231Sは、周波数ドメイン振幅を破損したベースバンド信号1231Sの周波数ドメイン表現にそれぞれ寄与する、雑音成分1204を含む。破損したベースバンド信号1231Sは、変調周波数212F(n)に対応する、測定された周波数ドメインを有する。本周波数ドメイン振幅の時間変動は、図9の下位間隔912中のSTFT振幅942のものに類似する。
持続時間1212は、重複し得る複数の間隔1264(1,2,…Q)を含む。間隔1264は、図2に示される、位置決めシステム200の時間間隔264の実施例である。各間隔1264の持続時間は、変調周波数212Fのうちの最も小さいものの逆数に対応する、ベースバンド信号1231Sの最大変調周期T1231Sを超える。例えば、各間隔1264は、持続時間250・T1231Sを有する。図13は、個別の間隔1264(1,2,…Q)に対応する、複数のSTFT振幅推定値1342E(1,2,…Q)を図示する。STFT振幅推定値1342Eは、変調周波数212F(n)に対応する。STFT振幅推定値1342Eは、図14に図示される、最小値Aおよび最大値A20を有する。
図14は、STFT振幅推定値1342Eの発生を図示する、ヒストグラム1410および1420を描写する。各ヒストグラム内の発生の総数は、Qである。ヒストグラム1410および1420は、STFT振幅A-A20に跨がる水平軸を有する。ヒストグラム1410は、隣接する奇数インデックス付きSTFT振幅にそれぞれ跨がる、ビン1412を有する。ヒストグラム1420は、隣接する偶数インデックス付きSTFT振幅にそれぞれ跨がる、ビン1422を有する。ビン1422および1412は、ビン幅の半分だけ相互に対して偏移される。ヒストグラム1410のビン1412内で、最高数の発生を伴うビンは、カウント1428によって示されるように、STFT振幅A上で中心に置かれる。ヒストグラム1410および1420のビン1412ならびに1422内で、最高数の発生を伴うビンは、カウント1429によって示されるように、STFT振幅A上で中心に置かれる。故に、STFT振幅Aは、変調周波数212F(n)の最も可能性が高い振幅と見なされてもよい。STFT振幅Aは、それぞれ、図6の方法600のステップ615、ステップ625、またはステップ635によって判定される、第1、第2、または第3の信号振幅のいずれかの実施例である。
図15は、オブジェクトの位置決めパラメータを判定するための方法1500を図示する、フローチャートである。方法1500は、例えば、ソフトウェア250のコンピュータ可読命令を実行する位置決めシステム200によって、または図33に示されるように、ソフトウェア2050のコンピュータ可読命令を実行する位置決めシステム3300によって、実装される。ステップ730(図7)は、信号振幅を判定するために方法1500を採用してもよい。図12-15は、以下の説明で、ともに最も良好に視認される。
方法1500は、ステップ1520と、ステップ1530と、ステップ1540と、随意のステップ1510とを含む。ステップ1510では、方法1500は、離散差分演算子をそれに適用することによって、ベースバンド信号を調節する。ステップ1510は、調節されたベースバンド信号を生じさせる。ステップ1510の実施例では、信号調節器258は、離散差分演算子をベースバンド信号1231Sに適用し、調節されたベースバンド信号をもたらす。離散差分演算子の実施例は、Pythonプログラミング言語用のSciPyオープンソースライブラリの「numpy.diff」関数、およびMatlab(R)における「diff」関数である。
ステップ1520では、方法1500は、オブジェクトからベースバンド信号の第1の周波数ドメイン振幅の複数の推定値を生成する。複数の推定値はそれぞれ、ベースバンド信号の複数の時間区画のうちの個別のものに対応する。第1の周波数ドメイン振幅は、ベースバンド信号の時間周波数に対応する。方法1500がステップ1510を含まないとき、受信されたベースバンド信号は、ベースバンド信号である。方法1500がステップ1510を含むとき、ベースバンド信号は、調節されたベースバンド信号である。ステップ1520の第1の実施例では、周波数ドメイン分析器256は、ベースバンド信号1231Sの個別の間隔1264(1,2,…,Q)からSTFT振幅推定値1342E(1,2,…,Q)を生成する。ステップ1522の第2の実施例では、周波数ドメイン分析器256は、信号調節器258によって調節されるベースバンド信号1231Sの個別の間隔1264(1,2,…,Q)からSTFT振幅推定値1342E(1,2,…,Q)を生成する。
ステップ1530では、方法1500は、推定値の最も一般的な値として、周波数ドメイン振幅を判定する。ステップ1530の実施例では、周波数ドメイン分析器256は、STFT振幅推定値1342Eの最も一般的な値として、周波数ドメイン振幅Aを判定する。
ステップ1530は、ステップ1522および1524を含んでもよい。ステップ1522では、方法1500は、複数の推定値を複数のビンにビン化し、各ビンは、複数の推定値のうちの最大値と複数の推定値のうちの最小値との間の個別の間隔に対応する。ステップ1524では、方法1500は、最大数の推定値を有する間隔に対応するビン内の推定値として、周波数ドメイン振幅を判定する。
ステップ1522および1524の第1の実施例では、周波数ドメイン分析器256は、ヒストグラム1410を生成し、STFT振幅推定値1342Eの最も一般的な値として、周波数ドメイン振幅Aを判定する。ステップ1522および1524の第2の実施例では、周波数ドメイン分析器256は、ヒストグラム1410および1420を生成し、STFT振幅推定値1342Eの最も一般的な値として、周波数ドメイン振幅Aを判定する。
ステップ1540では、方法1500は、第1の周波数ドメイン振幅に基づいて、位置決めパラメータを判定する。ステップ1540の実施例では、位置決めシステム200の位置・角度変換器254は、測定された場所角度213Mを判定する。
図16Aは、未加工STFT振幅推定値1612(実線)および精緻化されたSTFT振幅推定値1614(点線)を比較するプロットである。未加工STFT振幅推定値1612は、STFT振幅推定値1342Eの実施例であり、41.3の信号対雑音比を有する。精緻化されたSTFT振幅推定値1614は、ステップ1510を伴わずに方法1500を実装するシステム200によって生成されるような周波数ドメイン振幅A(図12)の実施例である。STFT振幅推定値1614は、989.7の信号対雑音比を有する。
図16Bは、未加工STFT振幅推定値1622(実線)および精緻化されたSTFT振幅推定値1624(点線)を比較するプロットである。未加工STFT振幅推定値1622は、STFT振幅推定値1342Eの実施例であり、41.2の信号対雑音比を有する。精緻化されたSTFT振幅推定値1624は、ステップ1510を伴って方法1500を実装するシステム200によって生成されるような周波数ドメイン振幅A(図12)の実施例である。STFT振幅推定値1624は、STFT振幅推定値1614の信号対雑音比よりも15パーセント高い、1140.1の信号対雑音比を有する。
図17は、位置決めシステム200の個別のチャネル231(m)および231(m)によって検出されるような、エミッタ211(n)によって発せられた光学信号2121(n)の検出に対応する、測定されたSTFT振幅1742(n,m)および1742(n,m)の時系列プロットである。STFT振幅1742は、測定された信号振幅242の実施例であり、図9のSTFT振幅942に類似する。
図18は、それぞれ、STFT振幅1742(n,m)および1742(n,m)から生成される、ヒストグラム1810および1820を示す。ヒストグラム1810および1820は、図14のヒストグラム1410の実施例であり、方法1500のステップ1530に起因する。ヒストグラム1810および1820は、両方ともステップ1530で判定される周波数ドメイン振幅推定値のうちの最も一般的な値の実施例である、個別の最も一般的な値1811および1821を有する。
図19Aおよび19Bは、それぞれ、STFT振幅1742(n,m)および1742(n,m)の予測誤差1910および1920のプロットである。予測誤差1910および1920は、図10に示される予測誤差1010および1020に類似する。閾値1902を超える予測誤差1910および1920は、破損したSTFT振幅1742に対応する。以下の議論では、閾値1902は、3.1×10-5に等しい。STFT振幅1742の破損した振幅は、閾値1902を超える予測誤差1910、1920を生じさせるものである。
方法600の実施形態では、ステップ732は、ベースバンドが破損しているかどうかを判定するように、ベースバンド信号に対応するSTFT振幅を評価する。ステップ732の実施例では、信号評価器260は、予測誤差1910または1920が閾値1902を超えるときに、STFT振幅1742に対応するベースバンド信号(例えば、チャネル信号231S)が破損していることを判定する。
図20は、STFT振幅1742(n,m)に対するSTFT振幅1742(n,m)の比である、STFT比2010のプロットである。理想的には、STFT振幅1742(n,m)および1742(n,m)は、少量の統計雑音を伴う個別の平均値を有するであろう。天候事象、この場合は雪に起因して、STFT振幅1742(n,m)および1742(n,m)は、STFT振幅比2010が例証する、大きな変動を有する。STFT振幅比2010の時間平均値の推定値は、大きなバイアス、分散、または両方を有し、STFT振幅比2010がひどく破損されていることを意味するであろう。
図21は、破損した振幅が除去された、STFT振幅1742(n,m)に対するSTFT振幅1742(n,m)の比である、補正されたSTFT比2010のプロットである。これらの破損した振幅は、図19A、Bに示されている。STFT振幅比2010と比較して、補正されたSTFT振幅比2110は、雑音に起因するわずかな変動を伴う一定の値を有する。STFT振幅比2010のSNRは、相対運動を伴わない静止システムの理想的なデータのものに接近する。
方法600の実施形態では、ステップ732は、ベースバンド信号が破損しているかどうかを判定するように、ベースバンド信号に対応するSTFT振幅比を評価する。ステップ732の実施例では、信号評価器260は、STFT振幅比2010が所定の値を超える分散を有するときに、STFT振幅1742に対応するベースバンド信号(例えば、チャネル信号231S)が破損していることを判定する。
図22は、それぞれ、STFT比2010および2110に対応する、SNR時系列2210およびSNR時系列2220のプロットである。SNR時系列2210および2220は、各間隔が0.952ミリ秒の持続時間とともに26個の短時間フーリエ変換サンプルを含む、25ミリ秒持続時間を有する、非重複時間間隔264を用いて計算された。SNR時系列2210は、約0の最小値から約1,000の最大値に及ぶ。SNR時系列2220は、約1,000の最小値から3,000を超える最大値に及ぶ。天候事象がない場合、すなわち、澄んだ空気である場合、SNR時系列2210および2220は、ほぼ一定であろう。データの補正は、SNRの有意な増加および最小SNRを生じさせる。最小SNRは、システム性能のための基準として使用されてもよい。
図23は、図2の位置決めシステム200の受信機230の実施形態に存在する光学構成要素アレイ2300を図示する。アレイ2300は、レンズ2311を保持するレンズマウント2310と、窓2321を有するスペーサ2320と、レンズ2331を保持するレンズマウント2330と、窓2341を有するスペーサ2340と、光学マスク2351(1,2,…,N)を含む光学マスクアセンブリ2350とを含む。Nがアレイ2300の中の16に等しいとき、これは、本明細書の範囲から逸脱することなく、異なる正の整数に等しくあり得る。各光学マスク2351は、相互に明確に異なり得る。代替として、2つまたはそれを上回る光学マスク2351(1,2,…,N)は、同じであり得る。1つまたはそれを上回る光学マスク2351は、障害物がないマスク、例えば、光学マスクアセンブリ2350を通した開口であってもよい。
各光学マスク2351は、チャネル231の光学マスク234の実施例であり、レンズマウント2310の個別のレンズ2311、スペーサ2320の窓2321、レンズマウント2330のレンズ2331、およびスペーサ2340の窓2341と整合される。例えば、光学マスク2351(1)は、窓2341(1)、レンズ2331(1)、窓2321(1)、およびレンズ2311(1)と整合される。窓2321および2341は、個別のスペーサ2320および2340を通した開口であってもよい。
マウント2310、スペーサ2320、マウント2330、スペーサ2340、およびアセンブリ2350は、図23に示されるように、距離2361、2362、2363、および2364によって分離される。距離2361-2364およびレンズ2311ならびに2331の個別の焦点距離は、光学マスク2351と整合されるレンズ2311および2331ならびに窓2321および2341を通って伝搬する光学信号212が、(a)その上で集束されるか、または(b)例えば、マスク2351が2値かつ周期的であるときに、前述の焦点ずれ距離Δがゼロではないように、マスク2351と平行であり、それに近接する平面に集束されるかのいずれかであるように、構成されてもよい。距離2361および2362は両方とも、スペーサ2340の厚さがレンズマウント2310と2330との間の距離を画定するように、ゼロに等しくてもよい。距離2363および2364は両方とも、スペーサ2320の厚さがレンズマウント2330と光学マスクアセンブリ2350との間の距離を画定するように、ゼロに等しくてもよい。
スペーサ2320および2340は、搬送波周波数212C、例えば、可視光および近赤外光のうちの少なくとも1つに対して不透明であり、迷光が光学マスク2351に到達しないよう防止するように機能してもよい。例えば、窓2321(1)および2341(1)は、レンズ2311(1)または2331(1)を通って伝搬する光が光学マスク2351(2)に到達しないよう防止するように構成されてもよい、例えば、定寸されてもよい。
各距離2361-2364がゼロに等しいとき、光学構成要素アレイ2300は、温度のシステム効果を低減させるために、単一のタイプの光学材料で構築されるようにモノリシックであり得る。光学構成要素は、典型的には、温度の関数としてサイズおよび形態を変化させる。熱的に類似する、または同じ材料を伴う光学構成要素アレイ2300の構造は、光学構成要素アレイ2300の全ての平面を同様に移動させ、温度のシステム効果を制御する効果的な方法を可能にする。故に、全ての平面が、同様に温度の関数として変化する一方で、各平面は、本質的に同一の変化を受けており、マスクアセンブリの後の検出器上の光を測定するときに、平面の間の相対的変化を目立たなくする。
図24は、静的伝送機・受信機ペア2400の概略図である。伝送機・受信機ペア2400は、図2のエミッタ211の実施例である、伝送機2411と、図2に示される受信機230とを含む。伝送機2411は、光源215を含む。伝送機2411および受信機230は、距離Rによって分離される。
図25は、静的伝送機・受信機ペア2500の概略図である。伝送機・受信機ペア2500は、伝送機2511と、受信機230と、光源2522とを含む。伝送機2511は、受信機230に向かって光源2522によって発せられた光を指向するように構成される、再帰反射体2511Rを含む。再帰反射体2511Rは、鏡、再帰反射体、光エンジン、光パイプ、リイメージャ、および投影機のうちの1つまたはそれを上回るものを含んでもよい。光源2522および受信機230は、距離Rによって分離される。
図26は、受信機230と、光学伝送機2620とを含む、位置決めシステム2600の概略図である。光学伝送機2620は、オブジェクト2611の領域を図示する。オブジェクト2611は、エミッタ211の実施例である。光学伝送機2620は、光学伝送機220の実施例であり、そこから距離Rに位置するオブジェクト2611に向かって、光源2633によって発せられた光2633Lを反射する、鏡2632を含む。光源2633は、例えば、LEDまたはレーザダイオードである。鏡2632は、回転走査鏡および微小電気機械システム(MEM)鏡のうちの少なくとも1つを含んでもよい。オブジェクト2611は、それぞれ、上端2611Tおよび底端2611Bと、その間の前面2611Fとを有する。前面2611Fは、バーコード、またはデータの他の光学機械可読表現を含んでもよい。
鏡2632は、光学伝送機2620がその上の経路2624に沿って前面2611Fを走査するように、オブジェクト2611に向かった光2633Lを照射された場所2621に指向してもよい。経路2624は、上端2611Tから底端2611Bまで、または逆も同様に横断してもよい。照射された場所2621の運動は、例えば、時変鏡回転角θ26(t)だけ、時間の関数として鏡2632を移動させることによって、表面2611F上の点の広い領域にわたって位置決めを可能にする。光2633L、故に、照射された場所2621の移動に応じて、2つまたはそれを上回る次元内の位置決めが可能である。照射された場所2621はまた、オブジェクト2611の異なる領域を調査するように動的に制御されてもよい。
オブジェクト2611は、光学信号212の実施例である、光学信号2612として、その上に入射する光2633Lを反射する。任意の時点で、光学信号2612の一部は、処理ユニット280がオブジェクト上の照射された領域の推定場所を判定するように、受信機230に向かって指向される。走査鏡2632と受信機230との間の調整は、要求されない。光2633Lは、前面2611F上でグリッド等の任意の特定のパターンを形成する必要はない。無作為パターンが、全体的システムの時間的必要性に応じて、十分であり得る。
図27は、距離Rによって分離される、回転エミッタ2711と、受信機230とを含む、伝送機・受信機ペア2700の概略図である。エミッタ2711は、エミッタ211の実施例である。回転エミッタ2711は、受信機230の前面に対する回転角θ27でビーム2712を発するように構成される、1つの固定光源215を含む。回転角θ27は、θ27(t)として時間が変動し得る。回転エミッタ2711は、回転レーザ水準器であってもよい。回転エミッタ2711は、θ27を変化させるため等のMEM鏡構成を含んでもよい。ビーム2712は、光学信号212の実施例であり、線または扇形、もしくは周期的または別様である、複数の線または円形ビーム、もしくは他の空間的に構造化された信号等の構造化されたビームであってもよい。
源/受信機ペア2400、2500、および位置決めシステム2600は、距離Rの関数として、受信機における検出された信号強度のR-2降下を受ける。受信機230上のビーム2712のサイズが、距離Rの関数として、各横断次元内で直線的に増加するため、一定の面積にわたって検出される全光強度は、R-2として減少する。伝送機・受信機ペア2700では、少なくとも1つの完全ビーム幅を通る掃引ビーム2712は、受信機230が回転角θ27の回転平面内で本放射光強度の全てを捕捉することを可能にする。位置決めシステム200は、回転平面と垂直な平面内でエミッタ2711を角度位置決めするように、受信機230の出力を処理する。故に、伝送機・受信機ペア2700では、受信機230によって検出される光強度は、Rの関数として、(R-2ではなく)R-1倍に減少する。結果は、伝送機・受信機ペア2700が、固定されたビームシステムと比較して、電力の所与の受容された量またはSNRのはるかに大きい範囲を有し得ることである。
位置決めシステム2600および伝送機・受信機ペア2700の受信機230は、図23の光学構成要素アレイ2300を含んでもよい。光学信号2612(図26)およびビーム2712(図27)は、図28に示されるように、処理システムが付加的動作パラメータを判定するために、時空間または時間空間次元を提供するように光学構成要素アレイ2300と併せて稼働してもよい。
図28は、方向2806に受信機2800を横断する時間波面2805を図示する。時間波面2805は、例えば、光学信号2612または2712の波面であり、θ26(t)またはθ27(t)の時間的依存性に従って受信機2800を横断する。時間波面2805は、受信機2800を横断して検出可能なエネルギーの有限幅2810を有する。
受信機2800は、図2の受信機230の実施例であり、2次元アレイに配列される複数のチャネル2831を含む、故に、受信機2800は、図23に示される光学構成要素アレイ2300の実施形態を含んでもよい。各チャネル2831は、複数のチャネル列2841-2844のうちの1つの中にある。チャネル2831は、図28の鎖線ボックス2831B内に表される、複数の非周期的に離間したチャネルを含む。本実施例では、受信機2800は、掃引率の一定の角速度について他の周期的に離間したチャネルからの空間的分離を促進するように、チャネル2831の非周期的間隔を有する。
時間波面2805が受信機2800を横断すると、全てのチャネル2831が、最初に波面2805を検出するわけではない。波面2805のチャネル間隔および幅2810に応じて、図29-32に示されるように、時間の関数として異なるエネルギーを用いるが、1つを上回るチャネル列2841-2844が、波面2805を同時に検出する。図29では、チャネル列2841のチャネルは、波面2805を検出する。図30では、チャネル列2842および2843の中のチャネル2831は、波面2805を検出する。図31では、チャネル列2842および2843の中のチャネル2831は、波面2805を検出する。図32では、チャネル列2843および2844の中のチャネル2831は、波面2805を検出する。
受信機2800と2611または2711等のエミッタとの間の相対角度配向は、図32に示されるように、チャネル2831を横断する波面2805の到着時間の時間シグネチャを介して推定されてもよい。列2842および2843の中の全てのチャネル2831が、図30では波面2805を検出するが、列2844の4つのチャネルのうちの2つは、図32では波面2805を検出し、受信機2800は、図30ではその配向に対して回転される。チャネル列2844の中のチャネル2831のそのような不完全な照射は、光学信号2612およびビーム2712等の光学信号212の伝搬方向に対する受信機2800の傾転を示す。時間シグネチャの一意性は、ビーム幅または拡大源用の伝送機からの距離を判定するために使用されることができる。
図33は、位置決めシステム200の処理ユニット280の実施例である、1つの例示的位置決めシステム3300を図示する。位置決めシステム3300は、時間周波数成分を有するベースバンド信号3331の周波数ドメイン振幅3342を判定するように構成される。周波数ドメイン振幅は、時間周波数成分に対応する。ベースバンド信号3331および周波数ドメイン振幅3342は、それぞれ、位置決めシステム200のチャネル信号231Sおよび測定された信号振幅242の実施例である。
位置決めシステム3300は、マイクロプロセッサ282と、メモリ284の実施例である、メモリ3484とを含む。メモリ3484は、ソフトウェア2050、随意に、時間間隔264を記憶する。ソフトウェア2050は、周波数ドメイン分析器256と、随意に、スポット場所推定器252と、位置・角度変換器254と、信号調節器258と、信号評価器260と、SNRモニタ262とを含む。図2のソフトウェア250は、ソフトウェア2050の実施例である。
位置決めシステム3300はまた、周波数ドメイン振幅3342から位置決めパラメータ3313を判定するように構成されてもよい。位置決めパラメータ3313は、例えば、図2に示される、測定された場所角度213Mである。位置決めパラメータ3313は、例えば、位置決めシステム3300が測距に使用されるときに、オブジェクトとオブジェクトから伝搬する電磁信号を検出する受信機との間の距離であってもよい。
図34-38は、位置決めシステム200および方法600の例示的使用を説明する。図34-38の各伝送機3411は、エミッタ211の実施例である。図34の車両184は、その運転席の上方の伝送機3411(1)と、リフト(ならびにパレット3484)の場所および状態の両方が推定され、表示され、潜在的に制御されることを可能にする、パレット3484上の伝送機3411(2)とを有する。図35の自転車3520は、それが位置決めされ、潜在的に制御されることを可能にする、伝送機3411(3)を有する。
図36の移動式ラック3630は、伝送機3411(4)を介したオブジェクト3632等の追跡可能オブジェクトの範囲を含んでもよい。ラック3630の具体的領域の場所は、伝送機3411(5)および3411(6)を位置決めすることによって推定されてもよい。伝送機3411(5)は、ラック3630の一番下の棚の上にあることにより、付加的役割を果たしてもよい。ラック3630が空であるとき、伝送機3411(5)は、位置決めシステム200に可視となり、場所推定値だけでなく、ラック3630が空であるという知識も可能にする。図37の移動式階段3740は、同様に、伝送機3411(7)を介して追跡可能である。
伝送機3411を含む位置決めシステム200の例示的ユースケースでは、伝送機3411は、靴底等の通常は可視的ではない場所に設置されてもよい、または移動されるべきではない高価値アイテムの下に隠されてもよい、もしくは環境内の潜在的問題を示してもよい。靴底から可視的な伝送機3411は、おそらく事故から、腹臥位にある個人を示してもよい。伝送機3411はまた、閉塞されたときに欠落したアイテムを示してもよく、伝送機3411は、障害物が除去されたときに突然暴露され、リアルタイム窃盗検出または別様に静的な環境内の急激な変化の通知を可能にする。
図38のベスト3850は、施設または仕事場において労働者、訪問者、およびオペレータによって着用可能な特殊ベストである。ベスト3850は、ベストの材料上または内のいずれかで、透過領域3851、3852を有するという点で、特殊化される。透過領域3851および3852は、エミッタ211の実施例である。これらのベストは、伝送機システムをあまりかさばらず、着用者にとってより容認可能にし、潜在的に低費用で、伝送機としてより技術的に効果的にするように、ウェアラブル電子機器を組み込んでもよい。透過領域3851は、識別および位置決めのために略上向きに光を透過させてもよい。透過領域3852は、従来的な様式で着用されたときに、略水平に光を透過させてもよいが、着用者が座っている、横になっている等のときに、垂直にも光を透過させてもよい。ベスト3850の着用者はまた、例えば、棚から出荷まで高価値アイテムの通過を追跡するように、一時的様式で追跡するために着目アイテム上に設置される付加的な一時的伝送機3853を携行してもよい。そのような場合において、1つの一時的伝送機3853は、ユーザによってアクティブ化され、追跡を開始するように受信機によってインフラストラクチャにログインされるであろう。選択された一時的伝送機3853は、出荷に先立って高価値アイテムから除去され、一時的伝送機3853のプールの中へ再循環されることができる。
図39は、コントローラ260に通信可能に結合される位置決めシステム3900のための例示的使用環境3980を図示する。位置決めシステム3900は、位置決めシステム200の実施例である。環境3980は、図1の固定棚182に類似する固定目印3982(1-N)を含む。各目印3982は、明確に異なる光学信号3912を発するように構成される、1つまたはそれを上回る相互に明確に異なる伝送機3911を有する。伝送機3911および光学信号3912は、それぞれ、エミッタ211および光学信号212の実施例である。
数量Nは、10未満から1,000を上回るまで及んでもよい。目印3982は、それぞれ、長さ10メートル未満から長さ数千メートルであり得る、個別の長さ3982L(1-N)を有する。図39は、相互に平行であるものとして目印3982を図示するが、目印3982は他の相対配向を有してもよい。例えば、それらの相対配向は、グリッドのように単純または中世都市の街路のように複雑であり得る。
伝送機3911は、固定目印3982の領域および場所を識別するように機能する。目印3982は、用途に応じて、例えば、10未満から1,000を上回るまで及ぶ、任意の数の伝送機3911を有してもよい。
用途環境3980は、位置決めシステム3900およびコントローラ260によって経路3986に沿った場所3988に指向されている、移動式オブジェクト3984を含む。オブジェクト3984は、その上に、受信機217を含むエミッタ211の実施例である、送受信機3985を有する。送受信機3985は、例えば、コントローラ260が送受信機3985を介してオブジェクト3984を遠隔で動作し得るように、オブジェクト3984に通信可能に結合される。コントローラ260は、所望の経路3986を計算し、命令3964を介して経路3986を進行するよう一般的な移動式オブジェクト3984に命令するように、処理および制御を実行する。オブジェクト3984への通信は、送受信機3985を通して、光学的に、または無線で行われることができる。位置決めシステム3900は、オブジェクト3984が経路3986を進行している間に、潜在的障害物等のオブジェクト3984についての位置、速度、および他の関連情報を推定する。オブジェクト3984が場所3988に到着するとき、コントローラ260は、位置決めシステム3900を介して、部品を取り上げること、部品を固定目印3982に堆積させること、またはバーコードを読み取ること等の特殊タスクを行うようにオブジェクト3984に命令してもよい。
図40は、図39の移動式オブジェクト3984と併せて使用され得るシステム4080を描写する。システム4080はまた、固定システム上に搭載されることもできる。システム4080は、ロボットアーム4010を有する基板4003と、その上に搭載された位置決めシステム4000とを含む。位置決めシステム4000は、位置決めシステム200の実施例であり、位置決め受信機4030(1)および4030(2)を含む。位置決め受信機4030(1)および4030(2)はそれぞれ、受信機230の実施例である。
ロボットアーム4010は、複数のアクチュエータ4012(1-3)を含む。典型的には、複数のアクチュエータが、機械的運動を制御し、いわゆる開ループ制御をもたらすために使用される。開ループ制御は、システムが1つまたはそれを上回るアクチュエータの予期される位置の恒久的もしくは一時的誤差を自動的に補償することを可能にしない。開ループ制御はまた、人間と同じくらい効率的な様式でオブジェクトを取り上げて設置することが、多くの場合、特にロボットが比較的低費用である必要がある場合に、困難または不可能であることも意味する。自分の手に協調された人間の視覚は、閉ループ制御の一形態である。システム4080は、本質的に、人間が腕および手を使用するために採用する方法を模倣することができる、低費用ロボットの閉ループ制御を可能にする。
ロボットアーム4010は、1つまたはそれを上回る作動可能部品4021を伴うアーム4020を含有する。作動可能部品4021は、例えば、人間の手の指に類似する。代替として、作動可能部品4021は、掘削機またはクレーン等の重機に取り付けられたバケツであってもよい。例えば、アーム4020は、ブームであり、作動可能部品4021は、アクチュエータ4012(1)によって作動される油圧シリンダである。
作動可能部品4021の上には、位置決め受信機4030(1)および4030(2)を通した各作動可能部品4021の精密かつ高速位置決めを可能にする、相互に明確に異なる伝送機4011が搭載される。作動可能部品4021の位置決めは、1つまたはそれを上回る参照点4014に対して行われることができる。参照点4014は、例えば、伝送機4011および図7の伝送機711である。
作動可能部品4021からの透過放射4031および4032ならびに参照点4014からの透過放射4033は、位置決め受信機4030(1)および4030(2)に向かって進行する。受信機4030(1)および4030(2)は、そこから処理ユニット280が、位置決め角度213Mの実施例である位置決め角度4013Mを判定する、位置決めデータ4009(1)および4009(2)を介して、各作動可能部品4021ならびに参照点4014の位置決め情報を処理ユニット280に配信する。位置決めデータ4009(1)および4009(2)は、位置決めデータ209の実施例である。
例えば、複雑な部品を取り上げるために、作動可能部品4021がある位置にある、またはある運動を有することを要求する、他のシステムは、命令された場所4082によって表されるシステム4080のための入力である。処理ユニット280は、運動アクチュエータ4060によって受信される、誤差信号および更新された場所コマンド4061を判定するように、命令された場所4082を、測定された位置決め角度4013Mから判定される場所と比較する。命令された場所を実際の場所と比較することによって、作動可能部品4021の真の閉ループ制御が可能である。ロボットアーム4010内の運動アクチュエータ上の位置エンコーダは、要求されない。実際に、閉ループ制御を用いると、運動アクチュエータは、安価であり、および/または直線的に移動する古典的ロボットと比較して独特な運動経路を有し得る。アーム4020および作動可能部品4021の運動は、それぞれ、人間の腕ならびに指に類似し得る。閉ループ制御は、人間の視覚および脳が人間の手ならびに指を制御する方法に類似する、高速かつ信頼できる作用を可能にするであろう。複雑なオブジェクトを取り上げて設置することは、可能であるだけでなく、閉ループ制御のための角度コーディングを用いると比較的単純かつ低費用である。
特徴の組み合わせ
上記で説明される特徴ならびに以下で請求されるものは、本明細書の範囲から逸脱することなく、種々の方法で組み合わせられてもよい。以下の実施例は、いくつかの可能性として考えられる非限定的組み合わせを例証する。
(A1)は、オブジェクトの位置決めパラメータを判定するための方法を表す。本方法は、オブジェクトからベースバンド信号の第1の周波数ドメイン振幅の複数の推定値を生成するステップを含む。複数の推定値はそれぞれ、ベースバンド信号の複数の時間区画のうちの個別のものに対応する。第1の周波数ドメイン振幅は、ベースバンド信号の時間周波数に対応する。本方法はまた、複数の推定値のうちの最も一般的な値として第1の周波数ドメイン振幅を判定するステップと、第1の周波数ドメイン振幅に基づいて位置決めパラメータを判定するステップとを含む。
(A2)(A1)によって表される方法では、第1の周波数ドメイン振幅を判定するステップは、(i)複数の推定値を複数のビンにビン化するステップであって、複数のビンはそれぞれ、複数の推定値のうちの最大値と複数の推定値のうちの最小値との間の個別の間隔に対応する、ステップと、(ii)最大数の推定値を有する間隔に対応するビンのうちの1つの内側の推定値として、第1の周波数ドメイン振幅を判定するステップとを含んでもよい。
(A3)(A2)によって表される方法では、複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数の間隔のそれぞれの中心が第1の複数の間隔のうちの1つの縁に対応するように、第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含んでもよい。
(A4)(A2)によって表される任意の方法はさらに、複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用してベースバンド信号を前処理するステップを含んでもよい。
(A5)(A1)から(A4)のうちの1つによって表される任意の方法はさらに、(i)オブジェクトから光学信号の第1の部分を検出するステップであって、光学信号は、時間周波数において変調される、ステップと、(ii)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する、低速変動光学マスクを通して透過される、光学信号の第2の部分を検出するステップと、(iii)x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する高速変動光学マスクを通して透過される、光学信号の第3の部分を検出するステップと、(iv)検出された第1の部分、検出された第2の部分、および検出された第3の部分のうちの1つを復調させ、ベースバンド信号を生じさせるステップとを含んでもよい。
(A6)検出された第1の部分、検出された第2の部分、および検出された第3の部分のうちの1つが、検出された第1の部分である、(A5)によって表される任意の方法はさらに、(i)検出された第2の部分を復調させ、第2のベースバンド信号を生じさせるステップと、(ii)第2のベースバンド信号の複数の第2の時間区画のうちの個別のものにそれぞれ対応する、時間周波数に対応する第2の周波数ドメイン振幅の第2の複数の推定値を生成するステップと、(iii)第2の複数の推定値のうちの最も一般的な値として第2の周波数ドメイン振幅を判定するステップと、(iv)検出された第3の部分を復調させ、第3のベースバンド信号を生じさせるステップと、(v)第3のベースバンド信号の複数の第3の時間区画のうちの個別のものにそれぞれ対応する、時間周波数に対応する第3の周波数ドメイン振幅の第3の複数の推定値を生成するステップと、(vi)第3の複数の推定値のうちの最も一般的な値として第3の周波数ドメイン振幅を判定するステップとを含んでもよい。
(A7)(A6)によって表される任意の方法はさらに、(i)x範囲内で、第1の周波数ドメイン振幅によって除算された第2の周波数ドメイン振幅に等しい透過率を有する、低速変動光学マスク上の場所に対応する、粗い推定場所xを判定するステップと、(ii)x範囲内で、第1の周波数ドメイン振幅によって除算された第3の周波数ドメイン振幅に等しい透過率を有する、高速変動光学マスク上の場所に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、(iii)粗い推定場所xに最も近い、複数の候補場所のうちの精緻化された推定場所を判定するステップと、(iv)空間次元xと垂直であり、低速変動光学マスクおよび高速変動光学マスクに交差する平面に対するオブジェクトの角度として、精緻化された推定場所に基づいて位置決めパラメータを判定するステップとを含んでもよい。
(B1)位置決めシステムは、メモリと、マイクロプロセッサとを含む。メモリは、非一過性のコンピュータ可読命令を記憶し、時間周波数成分と、対応する第1の周波数ドメイン振幅とを有する、ベースバンド信号を記憶するように構成される。マイクロプロセッサは、(i)第1の周波数ドメイン振幅の複数の推定値を生成する命令であって、複数の推定値はそれぞれ、ベースバンド信号の複数の時間区画のうちの個別のものに対応する、命令と、(ii)複数の推定値のうちの最も一般的な値として第1の周波数ドメイン振幅を判定する命令とを実行するように適合される。
(B2)(B1)によって表される位置決めシステムでは、マイクロプロセッサはさらに、第1の周波数ドメイン振幅を判定するときに、(i)複数の推定値を複数のビンにビン化する命令であって、複数のビンはそれぞれ、複数の推定値のうちの最大値と複数の推定値のうちの最小値との間の個別の間隔に対応する、命令と、(ii)最大数の推定値を有する間隔に対応するビン内の推定値として、第1の周波数ドメイン振幅を判定する命令とを実行するように適合されてもよい。
(B3)(B2)によって表される位置決めシステムでは、複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数の間隔のそれぞれの中心が第1の複数の間隔のうちの1つの縁に対応するように、第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含んでもよい。
(B4)(B2)および(B3)のうちの1つによって表される任意の位置決めシステムでは、マイクロプロセッサはさらに、複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用してベースバンド信号を前処理する命令を実行するように適合されてもよい。
(B5)(B1)から(B4)のうちの1つによって表される任意の位置決めシステムはさらに、(i)第1のチャネルと、第2のチャネルと、第3のチャネルとを含む、受信機を含んでもよい。第1のチャネルは、(i)オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)受信された第1の部分を、第1の周波数ドメイン振幅を有する第1の電気信号に変換するための第1の光検出器であって、光学信号は、時間周波数において変調される、第1の光検出器とを含む。第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する、低速変動光学マスクに向かって光学信号の第2の部分を指向するための第2のレンズと、(ii)低速変動光学マスクを通して透過される第2の部分を第2の電気信号に変換するための第2の光検出器とを含む。第3のチャネルは、(i)x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する、高速変動光学マスクに向かって光学信号の第3の部分を指向するための第3のレンズと、(ii)高速変動光学マスクを通して透過される第3の部分を第3の電気信号に変換するための第3の光検出器とを含む。マイクロプロセッサはさらに、(i)それぞれ、第2および第3の電気信号から第2ならびに第3の周波数ドメイン振幅を判定し、(ii)第1、第2、および第3の周波数ドメイン振幅を比較することによって、オブジェクトの位置決めパラメータを判定するように構成されてもよい。
(B6)(B5)によって表される任意の位置決めシステムでは、マイクロプロセッサはさらに、(A6)によって表される方法のステップ(ii)から(vi)を実行するように構成されてもよい。
(B7)(B6)によって表される任意の位置決めシステムでは、マイクロプロセッサはさらに、(A7)によって表される方法のステップ(i)から(iv)を実行するように構成されてもよい。
(C1)オブジェクトの位置決めパラメータを判定するための位置決めシステムは、受信機と、信号プロセッサとを含む。受信機は、第1のチャネルと、第2のチャネルと、第3のチャネルとを含む。第1のチャネルは、(i)オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)受信された第1の部分を第1の電気信号に変換するための第1の光検出器とを含む。第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する、低速変動光学マスクに向かって光学信号の第2の部分を指向するための第2のレンズと、(ii)低速変動光学マスクを通して透過される第2の部分を第2の電気信号に変換するための第2の光検出器とを含む。第3のチャネルは、(i)x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する、高速変動光学マスクに向かって光学信号の第3の部分を指向するための第3のレンズと、(ii)高速変動光学マスクを通して透過される第3の部分を第3の電気信号に変換するための第3の光検出器とを含む。信号プロセッサは、(i)それぞれ、第1、第2、および第3の電気信号から第1、第2、および第3の周波数ドメイン振幅を判定し、(ii)第1、第2、および第3の周波数ドメイン振幅を比較することによって、位置決めパラメータを判定するように構成される。
(C2)(C1)によって表される位置決めシステムでは、光学信号は、第1、第2、および第3の信号振幅が、第1、第2、および第3の電気信号の変調周波数に対応する、個別の第1、第2、および第3の周波数ドメイン振幅である、変調周波数を有する、変調された光学信号であってもよい。
(C3)(C1)および(C2)のうちの1つによって表される位置決めシステムでは、第1、第2、および第3のチャネルはそれぞれ、両方の他のチャネルの視野に重複する個別の視野を有してもよい。
(C4)(C1)から(C3)のうちの1つによって表される位置決めシステムはさらに、第1の光検出器と第1のレンズとの間にあり、低速変動光学マスクの最大透過率および高速変動光学マスクの最大透過率に等しい、またはそれを超える、一様な透過率を有する、一様な光学マスクを含んでもよい。
(C5)(C1)から(C4)のうちの1つによって表される位置決めシステムでは、信号プロセッサは、(i)x範囲内で、第1の信号振幅によって除算された第2の信号振幅に等しい透過率を有する、低速変動光学マスク上の位置に対応する、粗い推定場所xを判定するステップと、(ii)x範囲内で、第1の信号振幅によって除算された第3の信号振幅に等しい透過率を有する、高速変動光学マスク上の位置に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、(iii)粗い推定場所xに最も近い、複数の候補場所のうちの精緻化された推定場所を判定するステップと、(iv)精緻化された推定場所に基づいて、空間次元xと垂直であり、マスクに交差する平面に対するオブジェクトの角度を判定するステップとによって、位置決めパラメータを判定するように構成されてもよい。
(C6)(C1)から(C5)のうちの1つによって表される位置決めシステムはさらに、(i)光学信号を発するステップおよび(ii)光学信号を反射するステップのうちの少なくとも1つのためのエミッタを含んでもよく、エミッタは、(a)オブジェクトの上、または(b)受信機に近接してのいずれかで位置し、少なくともオブジェクト上に搭載される反射体に向かって光学信号を指向するように構成される。
(C7)(C1)から(C6)のうちの1つによって表される位置決めシステムでは、光学信号は、0.40マイクロメートル~2.0マイクロメートルの自由空間波長を有してもよい。
(C8)(C1)から(C7)のうちの1つによって表される位置決めシステムでは、空間的に変動する透過率T(x)は、xの周期関数であってもよい。
(C9)(C1)から(C8)のうちの1つによって表される位置決めシステムでは、低速変動マスクの一部および高速変動マスクの一部は、x次元と垂直な線に沿って同一線上にあり得る。
(C10)(a)低速変動光学マスクが、空間次元x内のx範囲に跨がり、空間次元xに直交する空間次元y内の第1のy範囲に跨がり、(b)高速変動光学マスクが、空間次元x内のx範囲に跨がり、空間次元y内の第2のy範囲に跨がる、(C1)から(C9)のうちの1つによって表される位置決めシステムでは、透過率T(x)および透過率T(x)は、yから独立し得る。
(C11)空間的に変動する透過率T(x)が、周期Λを有する周期関数である、(C1)から(C10)のうちの1つによって表される位置決めシステムでは、受信機はさらに、第4のチャネルを含んでもよい。第4のチャネルは、(i)Δ≦0.5Λである、空間的に変動する透過率T(x)=T(x+Δ)を有する、第2の高速変動光学マスクに向かう光学信号の第4の部分を受信するための第4のレンズと、(ii)第2の高速変動光学マスクを通して透過される第4の部分を第4の電気信号に変換するための第4の光検出器とを含む。信号プロセッサは、(i)第4の電気信号から第4の信号振幅を判定し、(ii)第1、第2、第3、および第4の信号振幅を比較することによって、位置決めパラメータを判定するように構成される。
(D1)オブジェクトの位置決めパラメータを判定するための方法は、ステップ1-10を含む。ステップ1では、本方法は、オブジェクトから変調された光学信号の第1の部分を指向する。ステップ2では、本方法は、受信された第1の部分の第1の信号振幅を判定する。ステップ3では、本方法は、空間次元xのx範囲内で、厳密に単調な透過率T(x)を有する低速変動光学マスクに向かって、変調された光学信号の第2の部分を指向する。ステップ4では、本方法は、低速変動光学マスクを通して透過される、第2の部分の第2の信号振幅を判定する。ステップ5では、本方法は、範囲x内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する高速変動光学マスクに向かって、変調された光学信号の第3の部分を指向する。ステップ6では、本方法は、高速変動光学マスクを通して透過される、第3の部分の第3の信号振幅を判定する。ステップ7では、本方法は、範囲x内で、第1の信号振幅によって除算された第2の信号振幅に等しい透過率を有する、低速変動光学マスク上の場所に対応する、粗い推定場所xを判定する。ステップ8では、本方法は、範囲x内で、第1の信号振幅によって除算された第3の信号振幅に等しい透過率を有する、高速変動光学マスク上の場所に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定する。ステップ9では、本方法は、粗い推定場所xに最も近い、複数の候補場所のうちの精緻化された推定場所を判定する。ステップ10では、本方法は、精緻化された推定場所に基づいて、空間次元xと垂直であり、マスクに交差する平面に対するオブジェクトの角度を判定する。
(D2)(D1)によって表される方法では、第1の部分を指向するステップは、第2の光学マスクの最大透過率に等しい、またはそれを超える、一様な透過率を有する、一様な光学マスクに向かって第1の部分を指向するステップを含んでもよい。
(D3)(D1)および(D2)のうちの1つによって表される方法では、光学信号は、変調周波数と、対応する周波数ドメイン振幅とを有する、変調された光学信号であってもよい。第1、第2、および第3の信号振幅を判定するステップはさらに、それぞれ、第1の部分、第2の部分、および第3の部分の第1、第2、ならびに第3の周波数ドメイン表現を生成するステップと、それぞれ、第1、第2、および第3の信号振幅として、第1、第2、ならびに第3の周波数ドメイン表現の周波数ドメイン振幅を判定するステップとを含んでもよい。
(E1)再配置可能な機械的構造は、再配置可能な構成要素と、エミッタと、コントローラと、アクチュエータとを含む。エミッタは、再配置可能な構成要素の上に位置し、光学信号を受信機に発するように構成される。コントローラは、受信機に通信可能に結合される伝送機から制御信号を受信するように適合される。アクチュエータは、コントローラに通信可能に結合され、再配置可能な構成要素に機械的に結合され、かつ制御信号に基づいて再配置可能な構成要素を作動させるように構成される。
(E2)(E1)によって表される再配置可能な機械的構造はさらに、受信機を含んでもよい。受信機は、第1のチャネルと、第2のチャネルと、第3のチャネルとを含む。第1のチャネルは、(i)オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)受信された第1の部分を第1の電気信号に変換するための第1の光検出器とを含む。第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する、低速変動光学マスクに向かって光学信号の第2の部分を指向するための第2のレンズと、(ii)低速変動光学マスクを通して透過される第2の部分を第2の電気信号に変換するための第2の光検出器とを含む。第3のチャネルは、(i)x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する、高速変動光学マスクに向かって光学信号の第3の部分を指向するための第3のレンズと、(ii)高速変動光学マスクを通して透過される第3の部分を第3の電気信号に変換するための第3の光検出器とを含む。
(E3)(E2)によって表される再配置可能な機械的構造はさらに、(i)それぞれ、第1、第2、および第3の電気信号から第1、第2、ならびに第3の信号振幅を判定し、(ii)第1、第2、および第3の信号振幅を比較することによって、エミッタの位置決めパラメータを判定するように構成される、信号プロセッサを含んでもよい。
(E4)(E3)によって表される再配置可能な機械的構造では、信号プロセッサは、(i)x範囲内で、第1の信号振幅によって除算された第2の信号振幅に等しい透過率を有する、低速変動光学マスク上の位置に対応する、粗い推定場所xを判定するステップと、(ii)x範囲内で、第1の信号振幅によって除算された第3の信号振幅に等しい透過率を有する、高速変動光学マスク上の位置に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、(iii)粗い推定場所xに最も近い、複数の候補場所のうちの精緻化された推定場所を判定するステップと、(iv)精緻化された推定場所に基づいて、空間次元xと垂直であり、マスクに交差する平面に対する再配置可能な構成要素の角度を判定するステップとによって、位置決めパラメータを判定してもよい。
(E5)(E3)および(E4)のうちの1つによって表される再配置可能な機械的構造では、光学信号は、変調周波数と、対応する周波数ドメイン振幅とを有する、変調された光学信号であってもよい。第1、第2、および第3の信号振幅を判定するステップはさらに、それぞれ、第1の部分、第2の部分、および第3の部分の第1、第2、および第3の周波数ドメイン表現を生成するステップと、それぞれ、第1、第2、および第3の信号振幅として、第1、第2、および第3の周波数ドメイン表現の周波数ドメイン振幅を判定するステップとを含んでもよい。
ベースバンド信号の時間周波数に対応する第1の周波数ドメイン振幅を判定するための方法は、(F1)によって表される。本方法は、第1の周波数ドメイン振幅の複数の推定値を生成するステップを含む。複数の推定値はそれぞれ、ベースバンド信号の複数の時間区画のうちの個別のものに対応する。本方法はまた、複数の推定値のうちの最も一般的な値として第1の周波数ドメイン振幅を判定するステップも含む。
(F2)(F1)によって表される方法では、第1の周波数ドメイン振幅を判定するステップは、(i)複数の推定値を複数のビンにビン化するステップであって、複数のビンはそれぞれ、複数の推定値のうちの最大値と複数の推定値のうちの最小値との間の個別の間隔に対応する、ステップと、(ii)最大数の推定値を有する間隔に対応するビンのうちの1つの内側の推定値として、第1の周波数ドメイン振幅を判定するステップとを含んでもよい。
(F3)(F2)によって表される方法では、複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数の間隔のそれぞれの中心が第1の複数の間隔のうちの1つの縁に対応するように、第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含んでもよい。
(F4)(F2)によって表される任意の方法はさらに、複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用してベースバンド信号を前処理するステップを含んでもよい。
(F5)(F1)から(F4)のうちの1つによって表される任意の方法はさらに、(i)オブジェクトから光学信号の第1の部分を検出するステップであって、光学信号は、時間周波数において変調される、ステップと、(ii)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する、低速変動光学マスクを通して透過される、光学信号の第2の部分を検出するステップと、(iii)x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する高速変動光学マスクを通して透過される、光学信号の第3の部分を検出するステップと、(iv)検出された第1の部分、検出された第2の部分、および検出された第3の部分のうちの1つを復調させ、ベースバンド信号を生じさせるステップと含んでもよい。
(F6)検出された第1の部分、検出された第2の部分、および検出された第3の部分のうちの1つが、検出された第1の部分である、(F5)によって表される任意の方法はさらに、(i)検出された第2の部分を復調させ、第2のベースバンド信号を生じさせるステップと、(ii)第2のベースバンド信号の複数の第2の時間区画のうちの個別のものにそれぞれ対応する、時間周波数に対応する第2の周波数ドメイン振幅の第2の複数の推定値を生成するステップと、(iii)第2の複数の推定値のうちの最も一般的な値として第2の周波数ドメイン振幅を判定するステップと、(iv)検出された第3の部分を復調させ、第3のベースバンド信号を生じさせるステップと、(v)第3のベースバンド信号の複数の第3の時間区画のうちの個別のものにそれぞれ対応する、時間周波数に対応する第3の周波数ドメイン振幅の第3の複数の推定値を生成するステップと、(vi)第3の複数の推定値のうちの最も一般的な値として第3の周波数ドメイン振幅を判定するステップとを含んでもよい。
(F7)(F6)によって表される任意の方法はさらに、(i)x範囲内で、第1の周波数ドメイン振幅によって除算された第2の周波数ドメイン振幅に等しい透過率を有する、低速変動光学マスク上の場所に対応する、粗い推定場所xを判定するステップと、(ii)x範囲内で、第1の周波数ドメイン振幅によって除算された第3の周波数ドメイン振幅に等しい透過率を有する、高速変動光学マスク上の場所に対応する、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定するステップと、(iii)粗い推定場所xに最も近い、複数の候補場所のうちの精緻化された推定場所を判定するステップと、(iv)精緻化された推定場所に基づいて、空間次元xと垂直であり、低速変動光学マスクおよび高速変動光学マスクに交差する平面に対するオブジェクトの角度を判定するステップとを含んでもよい。
(G1)周波数ドメイン分析器は、メモリと、マイクロプロセッサとを含む。メモリは、非一過性のコンピュータ可読命令を記憶し、時間周波数成分と、対応する第1の周波数ドメイン振幅とを有する、ベースバンド信号を記憶するように構成される。マイクロプロセッサは、(i)第1の周波数ドメイン振幅の複数の推定値を生成する命令であって、複数の推定値はそれぞれ、ベースバンド信号の複数の時間区画のうちの個別のものに対応する、命令と、(ii)複数の推定値のうちの最も一般的な値として第1の周波数ドメイン振幅を判定する命令とを実行するように適合される。図33の位置決めシステム3300は、(G1)によって表される周波数ドメイン分析器として機能してもよい。
(G2)(G1)によって表される周波数ドメイン分析器では、マイクロプロセッサはさらに、第1の周波数ドメイン振幅を判定するときに、(i)複数の推定値を複数のビンにビン化する命令であって、複数のビンはそれぞれ、複数の推定値のうちの最大値と複数の推定値のうちの最小値との間の個別の間隔に対応する、命令と、(ii)最大数の推定値を有する間隔に対応するビン内の推定値として、第1の周波数ドメイン振幅を判定する命令とを実行するように適合されてもよい。
(G3)(G2)によって表される周波数ドメイン分析器では、複数のビンは、(i)個別の中心および個別の縁をそれぞれ伴う第1の複数の間隔に対応する、第1の複数のビンと、(ii)第2の複数の間隔のそれぞれの中心が第1の複数の間隔のうちの1つの縁に対応するように、第1の複数の間隔に対して偏移される第2の複数の間隔に対応する、第2の複数のビンとを含んでもよい。
(G4)(G2)および(G3)のうちの1つによって表される任意の周波数ドメイン分析器では、マイクロプロセッサはさらに、複数の推定値を生成するステップの前に、時間差分アルゴリズムを使用してベースバンド信号を前処理する命令を実行するように適合されてもよい。
(G5)(G1)から(G4)のうちの1つによって表される任意の周波数ドメイン分析器はさらに、(i)第1のチャネルと、第2のチャネルと、第3のチャネルとを含む、受信機を含んでもよい。第1のチャネルは、(i)オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)受信された第1の部分を、第1の周波数ドメイン振幅を有する第1の電気信号に変換するための第1の光検出器であって、光学信号は、時間周波数において変調される、第1の光検出器とを含む。第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する、低速変動光学マスクに向かって光学信号の第2の部分を指向するための第2のレンズと、(ii)低速変動光学マスクを通して透過される第2の部分を第2の電気信号に変換するための第2の光検出器とを含む。第3のチャネルは、(i)x範囲内のxの1つを上回る値において同一の値を有する、空間的に変動する透過率T(x)を有する、高速変動光学マスクに向かって光学信号の第3の部分を指向するための第3のレンズと、(ii)高速変動光学マスクを通して透過される第3の部分を第3の電気信号に変換するための第3の光検出器とを含む。マイクロプロセッサはさらに、(i)それぞれ、第2および第3の電気信号から第2ならびに第3の周波数ドメイン振幅を判定し、(ii)第1、第2、および第3の周波数ドメイン振幅を比較することによって、オブジェクトの場所パラメータを判定するように構成されてもよい。
(G6)(G5)によって表される任意の周波数ドメイン分析器では、マイクロプロセッサはさらに、(F6)によって表される方法のステップ(ii)から(vi)を実行するように構成されてもよい。
(G7)(G6)によって表される任意の周波数ドメイン分析器では、マイクロプロセッサはさらに、(F7)によって表される方法のステップ(i)から(iv)を実行するように構成されてもよい。
変更が、本明細書の範囲から逸脱することなく、上記の方法およびシステムに行われてもよい。したがって、上記の説明に含有される、または付随の図面に示される事柄は、限定的な意味ではなく例証的として解釈されるべきであることに留意されたい。以下の請求項は、本明細書に説明される全ての一般的および具体的特徴、ならびに言語上、その間に入ると言われ得る、本方法およびシステムの範囲の全ての記述を網羅することを意図している。

Claims (13)

  1. オブジェクトの位置決めパラメータを判定するための方法であって、
    前記オブジェクト上に配置されているエミッタが、光学信号を生成することであって、前記光学信号は、時間周波数に対応する周波数ドメインの第1の振幅を有するベースバンド信号を含む、ことと、
    受信機を用いて、前記光学信号を検出することと、
    前記検出された光学信号に基づいて、前記第1の振幅の複数の推定値を生成することであって、前記複数の推定値のそれぞれは、前記ベースバンド信号の複数の時間区画のうちの個別の時間区画に対応し、前記第1の振幅は、前記時間周波数に対応する、ことと、
    前記複数の推定値のうちの最も一般的な値として前記第1の振幅を判定することであって、前記第1の振幅を判定することは、前記複数の推定値を複数のビンにビン化することであって、前記複数のビンのそれぞれは、前記複数の推定値の最大振幅と前記複数の推定値の最小振幅との間の個別の間隔に対応する、ことと、最大数の推定値を有する前記間隔に対応する前記複数のビンのうちの1つ内の推定値として、前記第1の振幅を判定することとを含む、ことと、
    前記第1の振幅に基づいて前記位置決めパラメータを判定することであって、前記位置決めパラメータは、(i)前記受信機に対する角度、および、(ii)前記オブジェクトと前記受信機との間の距離のうちの少なくとも1つである、ことと、
    第1のレンズを通して指向される前記光学信号の第1の部分を検出することと、
    空間次元xのx範囲内で厳密に単調な透過率T(x)を有する第1の光学マスクを通して透過されるように第2のレンズによって指向される前記光学信号の第2の部分を検出することと、
    前記x範囲内のxの1より大きい値において同一の値を有する、空間的に変動する透過率T(x)を有する第2の光学マスクを通して透過されるように第3のレンズによって指向される前記光学信号の第3の部分を検出することと、
    前記検出された第1の部分および前記検出された第2の部分および前記検出された第3の部分のうちの1つを復調することにより、前記ベースバンド信号を生成することであって、前記検出された第1の部分および前記検出された第2の部分および前記検出された第3の部分のうちの前記1つは、前記検出された第1の部分である、ことと、
    前記検出された第2の部分を復調することにより、第2のベースバンド信号を生成することと、
    前記時間周波数に対応する前記周波数ドメインの第2の振幅の第2の複数の推定値を生成することであって、前記第2の複数の推定値のそれぞれは、前記第2のベースバンド信号の複数の第2の時間区画のうちの個別のものに対応する、ことと、
    前記第2の複数の推定値のうちの最も一般的な値として前記第2の振幅を判定することと、
    前記検出された第3の部分を復調することにより、第3のベースバンド信号を生成することと、
    前記時間周波数に対応する前記周波数ドメインの第3の振幅の第3の複数の推定値を生成することであって、前記第3の複数の推定値のそれぞれは、前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものに対応する、ことと、
    前記第3の複数の推定値のうちの最も一般的な値として前記第3の振幅を判定することと、
    前記x範囲内で、粗い推定場所xを判定することであって、前記粗い推定場所xは、前記第1の振幅によって除算された前記第2の振幅に等しい透過率を有する前記第1の光学マスク上の場所に対応する、ことと、
    前記x範囲内で、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定することであって、前記複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}は、前記第1の振幅によって除算された前記第3の振幅に等しい透過率を有する前記第2の光学マスク上の複数の場所に対応する、ことと、
    粗い推定場所xに最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定することと、
    前記空間次元xと垂直であり、かつ、前記第1の光学マスクおよび前記第2の光学マスクに交差する平面に対する前記オブジェクトの角度として、前記精緻化された推定場所に基づいて前記位置決めパラメータを判定することと
    を含む、方法。
  2. 前記複数のビンは、(i)第1の複数の間隔に対応する第1の複数のビンであって、前記第1の複数の間隔のそれぞれは、個別の中心と個別の縁とを有する、第1の複数のビンと、(ii)前記第1の複数の間隔に対して偏移される第2の複数の間隔に対応する第2の複数のビンであって、前記第2の複数の間隔のそれぞれの中心は、前記第1の複数の間隔のうちの1つの縁に対応する、第2の複数のビンとを含む、請求項1に記載の方法。
  3. 前記方法は、前記複数の推定値を生成することよりも前に、時間差分アルゴリズムを使用して前記ベースバンド信号を前処理することをさらに含む、請求項1に記載の方法。
  4. オブジェクトの位置決めパラメータを判定するための位置決めシステムであって、前記位置決めシステムは、
    前記オブジェクト上に配置されているエミッタであって、前記エミッタは、光学信号を生成するように構成されており、前記光学信号は、時間周波数に対応する周波数ドメインの第1の振幅を有するベースバンド信号を含む、エミッタと、
    前記光学信号を検出するように構成されている受信機であって、前記受信機は、第1のチャネルと第2のチャネルと第3のチャネルとを含み、前記第1のチャネルは、(i)前記オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)前記受信された第1の部分を、前記第1の振幅を有する第1の電気信号に変換するための第1の光検出器とを含み、前記第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する第1の光学マスクに向かって前記光学信号の第2の部分を指向するための第2のレンズと、(ii)前記第1の光学マスクを通して透過される前記第2の部分を第2の電気信号に変換するための第2の光検出器とを含み、前記第3のチャネルは、(i)前記x範囲内のxの1より大きい値において同一の値を有する、空間的に変動する透過率T(x)を有する第2の光学マスクに向かって前記光学信号の第3の部分を指向するための第3のレンズと、(ii)前記第2の光学マスクを通して透過される前記第3の部分を第3の電気信号に変換するための第3の光検出器とを含む、受信機と、
    非一過性のコンピュータ読み取り可能な命令を記憶するメモリであって、前記メモリは、前記ベースバンド信号を記憶するように構成されている、メモリと、
    マイクロプロセッサと
    を備え、
    前記マイクロプロセッサは、前記命令を実行することにより、
    前記検出された光学信号に基づいて、前記第1の振幅の複数の推定値を生成することであって、前記複数の推定値のそれぞれは、前記ベースバンド信号の複数の時間区画のうちの個別の時間区画に対応する、ことと、
    前記複数の推定値のうちの最も一般的な値として前記第1の振幅を判定することと、
    前記第1の振幅に基づいて前記位置決めパラメータを判定することであって、前記位置決めパラメータは、(i)前記受信機に対する角度、および、(ii)前記オブジェクトと前記受信機との間の距離のうちの少なくとも1つである、ことと
    を行うように適合されており、
    前記マイクロプロセッサは、前記命令を実行することにより、前記第1の振幅を判定するときに、
    前記複数の推定値を複数のビンにビン化することであって、前記複数のビンのそれぞれは、前記複数の推定値の最大振幅と前記複数の推定値の最小振幅との間の個別の間隔に対応する、ことと、
    最大数の推定値を有する前記間隔に対応する前記ビン内の推定値として、前記第1の振幅を判定することと
    を行うようにさらに適合されており、
    前記マイクロプロセッサは、(i)前記第2の電気信号および前記第3の電気信号から、それぞれ、前記周波数ドメインの第2の振幅および前記周波数ドメインの第3の振幅を判定することと、(ii)前記第1の振幅と前記第2の振幅と前記第3の振幅とを比較することによって、前記オブジェクトの位置決めパラメータを判定することとを行うようにさらに構成されており、
    前記マイクロプロセッサは、
    前記第2の部分を復調することにより、第2のベースバンド信号を生成することと、
    前記時間周波数に対応する前記第2の振幅の第2の複数の推定値を生成することであって、前記第2の複数の推定値のそれぞれは、前記第2のベースバンド信号の複数の第2の時間区画のうちの個別のものに対応する、ことと、
    前記第2の複数の推定値のうちの最も一般的な値として前記第2の振幅を判定することと、
    前記第3の部分を復調することにより、第3のベースバンド信号を生成することと、
    前記時間周波数に対応する前記第3の振幅の第3の複数の推定値を生成することであって、前記第3の複数の推定値のそれぞれは、前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものに対応する、ことと、
    前記第3の複数の推定値のうちの最も一般的な値として前記第3の振幅を判定することと
    を行うようにさらに構成されており、
    前記マイクロプロセッサは、
    前記x範囲内で、粗い推定場所xを判定することであって、前記粗い推定場所xは、前記第1の振幅によって除算された前記第2の振幅に等しい透過率を有する前記第1の光学マスク上の位置に対応する、ことと、
    前記x範囲内で、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定することであって、前記複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}は、前記第1の振幅によって除算された前記第3の振幅に等しい透過率を有する前記第2の光学マスク上の複数の位置に対応する、ことと、
    粗い推定場所xに最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定することと、
    前記空間次元xと垂直であり、かつ、前記第1の光学マスクおよび前記第2の光学マスクに交差する平面に対する前記オブジェクトの角度として、前記精緻化された推定場所に基づいて前記位置決めパラメータを判定することと
    によって、前記位置決めパラメータを判定するようにさらに構成されている、位置決めシステム。
  5. 前記複数のビンは、(i)第1の複数の間隔に対応する第1の複数のビンであって、前記第1の複数の間隔のそれぞれは、個別の中心と個別の縁とを有する、第1の複数のビンと、(ii)前記第1の複数の間隔に対して偏移される第2の複数の間隔に対応する第2の複数のビンであって、前記第2の複数の間隔のそれぞれの中心は、前記第1の複数の間隔のうちの1つの縁に対応する、第2の複数のビンとを含む、請求項4に記載の位置決めシステム。
  6. 前記マイクロプロセッサは、前記命令を実行することにより、前記複数の推定値を生成することよりも前に、時間差分アルゴリズムを使用して前記ベースバンド信号を前処理するようにさらに適合されている、請求項4に記載の位置決めシステム。
  7. ベースバンド信号を分析するための方法であって、前記方法は、
    オブジェクトから光学信号の第1の部分を検出することであって、前記光学信号の前記第1の部分は、第1のレンズを通して指向され、前記光学信号は、時間周波数において変調される、ことと、
    前記光学信号の第2の部分を検出することであって、前記光学信号の前記第2の部分は、空間次元xのx範囲内で厳密に単調な透過率T(x)を有する第1の光学マスクを通して透過されるように第2のレンズによって指向される、ことと、
    前記光学信号の第3の部分を検出することであって、前記光学信号の前記第3の部分は、前記x範囲内のxの1より大きい値において同一の値を有する、空間的に変動する透過率T(x)を有する第2の光学マスクを通して透過されるように第3のマスクによって指向される、ことと、
    前記検出された第1の部分および前記検出された第2の部分および前記検出された第3の部分のうちの1つを復調することにより、前記ベースバンド信号を生成することと、
    周波数ドメインの第1の振幅の複数の推定値を生成することであって、前記複数の推定値のそれぞれの推定値は、前記ベースバンド信号の複数の時間区画のうちの個別のものに対応する、ことと、
    前記複数の推定値のうちの最も一般的な値として前記第1の振幅を判定することであって、前記第1の振幅を判定することは、
    前記複数の推定値を複数のビンにビン化することであって、各ビンは、前記複数の推定値の最大振幅と前記複数の推定値の最小振幅との間の個別の間隔に対応する、ことと、
    最大数の推定値を有する前記間隔に対応する前記ビン内の推定値として、前記第1の振幅を判定することと
    によって行われる、ことと
    を含む、方法。
  8. 前記検出された第1の部分および前記検出された第2の部分および前記検出された第3の部分のうちの前記1つは、前記検出された第1の部分であり、
    前記方法は、
    前記検出された第2の部分を復調することにより、第2のベースバンド信号を生成することと、
    前記時間周波数に対応する前記周波数ドメインの第2の振幅の第2の複数の推定値を生成することであって、前記第2の複数の推定値のそれぞれは、前記第2のベースバンド信号の複数の第2の時間区画のうちの個別のものに対応する、ことと、
    前記第2の複数の推定値のうちの最も一般的な値として前記第2の振幅を判定することと、
    前記検出された第3の部分を復調することにより、第3のベースバンド信号を生成することと、
    前記時間周波数に対応する前記周波数ドメインの第3の振幅の第3の複数の推定値を生成することであって、前記第3の複数の推定値のそれぞれは、前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものに対応する、ことと、
    前記第3の複数の推定値のうちの最も一般的な値として前記第3の振幅を判定することと
    をさらに含む、請求項7に記載の方法。
  9. 前記方法は、
    前記x範囲内で、粗い推定場所xを判定することであって、前記粗い推定場所xは、前記第1の振幅によって除算された前記第2の振幅に等しい透過率を有する前記第1の光学マスク上の場所に対応する、ことと、
    前記x範囲内で、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定することであって、前記複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}は、前記第1の振幅によって除算された前記第3の振幅に等しい透過率を有する前記第2の光学マスク上の複数の場所に対応する、ことと、
    粗い推定場所xに最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定することと、
    前記精緻化された推定場所に基づいて、前記空間次元xと垂直であり、かつ、前記第1の光学マスクおよび前記第2の光学マスクに交差する平面に対する前記オブジェクトの角度を判定することと
    をさらに含む、請求項8に記載の方法。
  10. 周波数ドメイン分析器であって、前記周波数ドメイン分析器は、
    非一過性のコンピュータ読み取り可能な命令を記憶するメモリであって、前記メモリは、ベースバンド信号を記憶するように構成されており、前記ベースバンド信号は、時間周波数に対応する周波数ドメインの第1の振幅を有する、メモリと、
    第1のチャネルと第2のチャネルと第3のチャネルとを含む受信機であって、
    前記第1のチャネルは、(i)オブジェクトから光学信号の第1の部分を受信するための第1のレンズと、(ii)前記受信された第1の部分を、前記第1の振幅を有する第1の電気信号に変換するための第1の光検出器とを含み、前記光学信号は、前記時間周波数において変調され、前記光学信号は、前記ベースバンド信号を含み、
    前記第2のチャネルは、(i)空間次元xのx範囲内で厳密に単調な透過率T(x)を有する第1の光学マスクに向かって前記光学信号の第2の部分を指向するための第2のレンズと、(ii)前記第1の光学マスクを通して透過される前記第2の部分を第2の電気信号に変換するための第2の光検出器とを含み、
    前記第3のチャネルは、(i)前記x範囲内のxの1より大きい値において同一の値を有する、空間的に変動する透過率T(x)を有する第2の光学マスクに向かって前記光学信号の第3の部分を指向するための第3のレンズと、(ii)前記第2の光学マスクを通して透過される前記第3の部分を第3の電気信号に変換するための第3の光検出器とを含む、受信機と
    マイクロプロセッサと
    を備え、
    前記マイクロプロセッサは、前記命令を実行することにより、
    前記第1の振幅の複数の推定値を生成することであって、前記複数の推定値のそれぞれは、前記ベースバンド信号の複数の時間区画のうちの個別の時間区画に対応する、ことと、
    前記複数の推定値のうちの最も一般的な値として前記第1の振幅を判定することと
    を行うように適合されており、
    前記マイクロプロセッサは、前記命令を実行することにより、前記第1の振幅を判定するときに、
    前記複数の推定値を複数のビンにビン化することであって、各ビンは、前記複数の推定値の最大振幅と前記複数の推定値の最小振幅との間の個別の間隔に対応する、ことと、
    最大数の推定値を有する前記間隔に対応する前記ビン内の推定値として、前記第1の振幅を判定することと
    を行うようにさらに適合されている、周波数ドメイン分析器。
  11. 前記複数のビンは、(i)第1の複数の間隔に対応する第1の複数のビンであって、前記第1の複数の間隔のそれぞれは、個別の中心と個別の縁とを有する、第1の複数のビンと、(ii)前記第1の複数の間隔に対して偏移される第2の複数の間隔に対応する第2の複数のビンであって、前記第2の複数の間隔のそれぞれの中心は、前記第1の複数の間隔のうちの1つの縁に対応する、第2の複数のビンとを含む、請求項10に記載の周波数ドメイン分析器。
  12. 前記マイクロプロセッサは、前記命令を実行することにより、前記複数の推定値を生成することよりも前に、時間差分アルゴリズムを使用して前記ベースバンド信号を前処理するようにさらに適合されている、請求項10に記載の周波数ドメイン分析器。
  13. 前記マイクロプロセッサは、(i)前記第2の電気信号および前記第3の電気信号から、それぞれ、前記周波数ドメインの第2の振幅および前記周波数ドメインの第3の振幅を判定し、(ii)前記第1の振幅と前記第2の振幅と前記第3の振幅とを比較することによって、前記オブジェクトの場所パラメータを判定するようにさらに構成されており、
    前記マイクロプロセッサは、
    前記第2の部分を復調することにより、第2のベースバンド信号を生成することと、
    前記時間周波数に対応する前記第2の振幅の第2の複数の推定値を生成することであって、前記第2の複数の推定値のそれぞれは、前記第2のベースバンド信号の複数の第2の時間区画のうちの個別のものに対応する、ことと、
    前記第2の複数の推定値のうちの最も一般的な値として前記第2の振幅を判定することと、
    前記第3の部分を復調することにより、第3のベースバンド信号を生成することと、
    前記時間周波数に対応する前記第3の振幅の第3の複数の推定値を生成することであって、前記第3の複数の推定値のそれぞれは、前記第3のベースバンド信号の複数の第3の時間区画のうちの個別のものに対応する、ことと、
    前記第3の複数の推定値のうちの最も一般的な値として前記第3の振幅を判定することと
    を行うようにさらに構成されており、
    前記周波数ドメイン分析器は、命令をさらに備え、前記命令は、前記マイクロプロセッサによって実行されると、
    前記x範囲内で、粗い推定場所xを判定することであって、前記粗い推定場所xは、前記第1の振幅によって除算された前記第2の振幅に等しい透過率を有する前記第1の光学マスク上の位置に対応する、ことと、
    前記x範囲内で、複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}を判定することであって、前記複数の候補場所{x3,1,x3,2,x3,3,…,x3,n}は、前記第1の振幅によって除算された前記第3の振幅に等しい透過率を有する前記第2の光学マスク上の複数の位置に対応する、ことと、
    粗い推定場所xに最も近い、前記複数の候補場所のうちの精緻化された推定場所を判定することと、
    前記精緻化された推定場所に基づいて、前記空間次元xと垂直であり、かつ、前記第1の光学マスクおよび前記第2の光学マスクに交差する平面に対する前記オブジェクトの角度を判定することと
    によって、前記場所パラメータを判定することを前記マイクロプロセッサにさらに行わせる、請求項10に記載の周波数ドメイン分析器。
JP2018532692A 2015-12-23 2016-12-22 位置決めシステムおよび関連方法 Active JP7284979B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562387387P 2015-12-23 2015-12-23
US62/387,387 2015-12-23
US15/162,329 US10126114B2 (en) 2015-05-21 2016-05-23 Angular localization system, associated repositionable mechanical structure, and associated method
US15/162,329 2016-05-23
PCT/US2016/068434 WO2017112903A1 (en) 2015-12-23 2016-12-22 Localization system and associated method

Publications (3)

Publication Number Publication Date
JP2019504312A JP2019504312A (ja) 2019-02-14
JPWO2017112903A5 JPWO2017112903A5 (ja) 2022-01-12
JP7284979B2 true JP7284979B2 (ja) 2023-06-01

Family

ID=59091218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532692A Active JP7284979B2 (ja) 2015-12-23 2016-12-22 位置決めシステムおよび関連方法

Country Status (4)

Country Link
EP (1) EP3394631A1 (ja)
JP (1) JP7284979B2 (ja)
CN (1) CN108291953B (ja)
WO (1) WO2017112903A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784026B (zh) * 2023-01-18 2023-04-07 安徽送变电工程有限公司 吊钩定位用波前传感与成像复合式三维追踪系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277922A (ja) 2001-03-16 2002-09-25 Ricoh Co Ltd 自動露出制御方法、自動露出制御装置およびデジタルカメラ
JP2003004425A (ja) 2001-03-21 2003-01-08 Ricoh Co Ltd 光学的形状測定装置
JP2009002804A (ja) 2007-06-21 2009-01-08 Sanyo Electric Co Ltd ビーム照射装置およびレーザレーダ
JP2010085279A (ja) 2008-09-30 2010-04-15 Brother Ind Ltd 受信強度測定方法、受信器、および移動局測位システム
JP2010261896A (ja) 2009-05-11 2010-11-18 Ntn Corp 位置検出装置及び位置検出方法
US20140204360A1 (en) 2012-01-03 2014-07-24 Ascentia Imaging, Inc. Optical guidance systems and methods using mutually distinct signal-modifying sensors
JP2015014593A (ja) 2013-06-03 2015-01-22 株式会社デンソー レーダ装置、及びプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2631707B1 (fr) * 1988-05-20 1991-11-29 Labo Electronique Physique Echographe ultrasonore a coherence de phase controlable
US7430257B1 (en) * 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US6389068B1 (en) * 2000-05-15 2002-05-14 Motorola, Inc. Sliced bandwidth distortion prediction
EP1782094A2 (en) * 2004-07-23 2007-05-09 ANGELSEN, Bjorn A. J. Ultrasound imaging using non-linear manipulation of forward propagation properties of a pulse
US8126066B2 (en) * 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US8744009B2 (en) * 2009-09-25 2014-06-03 General Dynamics C4 Systems, Inc. Reducing transmitter-to-receiver non-linear distortion at a transmitter prior to estimating and cancelling known non-linear distortion at a receiver
US8401487B2 (en) * 2009-12-30 2013-03-19 Telefonaktiebolaget L M Ericsson (Publ) Radio channel analyzer to determine doppler shifts across multiple frequencies of a wideband signal
JP5593547B2 (ja) * 2010-02-26 2014-09-24 日産自動車株式会社 波動源位置演算方法及び波動源位置演算装置
US8995515B2 (en) * 2010-12-29 2015-03-31 Zte Wistron Telecom Ab Dynamically adjusted OFDM channel estimation filtering in OFDM communications
EP2533069A1 (en) * 2011-06-10 2012-12-12 Sony Corporation Signal processing unit and method
US9130787B2 (en) * 2011-07-18 2015-09-08 Intel Corporation Adaptive frequency-domain equalization for wireless receivers
US8824527B2 (en) * 2011-11-15 2014-09-02 Acorn Technologies, Inc. OFDM receiver with time domain channel estimation
WO2013103725A1 (en) * 2012-01-03 2013-07-11 Ascentia Imaging, Inc. Coded localization systems, methods and apparatus
EP2767847B1 (en) * 2013-02-14 2016-04-20 Semtech Corporation Ranging and positioning system
US10126114B2 (en) * 2015-05-21 2018-11-13 Ascentia Imaging, Inc. Angular localization system, associated repositionable mechanical structure, and associated method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277922A (ja) 2001-03-16 2002-09-25 Ricoh Co Ltd 自動露出制御方法、自動露出制御装置およびデジタルカメラ
JP2003004425A (ja) 2001-03-21 2003-01-08 Ricoh Co Ltd 光学的形状測定装置
JP2009002804A (ja) 2007-06-21 2009-01-08 Sanyo Electric Co Ltd ビーム照射装置およびレーザレーダ
JP2010085279A (ja) 2008-09-30 2010-04-15 Brother Ind Ltd 受信強度測定方法、受信器、および移動局測位システム
JP2010261896A (ja) 2009-05-11 2010-11-18 Ntn Corp 位置検出装置及び位置検出方法
US20140204360A1 (en) 2012-01-03 2014-07-24 Ascentia Imaging, Inc. Optical guidance systems and methods using mutually distinct signal-modifying sensors
JP2015014593A (ja) 2013-06-03 2015-01-22 株式会社デンソー レーダ装置、及びプログラム

Also Published As

Publication number Publication date
CN108291953A (zh) 2018-07-17
JP2019504312A (ja) 2019-02-14
EP3394631A1 (en) 2018-10-31
WO2017112903A1 (en) 2017-06-29
CN108291953B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US20230251383A1 (en) Efficient optical transmission in lidar systems
US11703567B2 (en) Measuring device having scanning functionality and settable receiving ranges of the receiver
US20210025997A1 (en) Lidar systems and methods with internal light calibration
US20210389467A1 (en) Virtual protective housing for bistatic lidra
US20220283269A1 (en) Systems and methods for photodiode-based detection
US20220206114A1 (en) Flash lidar having nonuniform light modulation
US20220075027A1 (en) Resonant laser driver for a lidar system
US20220229164A1 (en) Systems and methods for time-of-flight optical sensing
US20210341729A1 (en) Electrooptical systems having heating elements
US20160341540A1 (en) Angular localization system and method
US20220229161A1 (en) Electro-optical systems for scanning illumination onto a field of view and methods
US11009584B2 (en) Localization system and associated method
US20220171026A1 (en) Antireflective sticker for lidar window
JP7284979B2 (ja) 位置決めシステムおよび関連方法
WO2019234503A2 (en) Mems mirror with resistor for determining a position of the mirror
US20220404471A1 (en) Pivotable mems device having a feedback mechanism
US20220163633A1 (en) System and method for repositioning a light deflector
WO2022153126A1 (en) Synchronization of multiple lidar systems
JPWO2017112903A5 (ja)
US20230288541A1 (en) Object edge identification based on partial pulse detection
US20240134050A1 (en) Lidar systems and methods for generating a variable density point cloud
WO2024042360A1 (en) Systems and methods for updating point clouds in lidar systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210929

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7284979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150