JP7284920B2 - Method for manufacturing secondary battery - Google Patents

Method for manufacturing secondary battery Download PDF

Info

Publication number
JP7284920B2
JP7284920B2 JP2019226566A JP2019226566A JP7284920B2 JP 7284920 B2 JP7284920 B2 JP 7284920B2 JP 2019226566 A JP2019226566 A JP 2019226566A JP 2019226566 A JP2019226566 A JP 2019226566A JP 7284920 B2 JP7284920 B2 JP 7284920B2
Authority
JP
Japan
Prior art keywords
battery case
electrode body
wound electrode
electrolytic solution
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226566A
Other languages
Japanese (ja)
Other versions
JP2021096927A (en
Inventor
敦史 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019226566A priority Critical patent/JP7284920B2/en
Publication of JP2021096927A publication Critical patent/JP2021096927A/en
Application granted granted Critical
Publication of JP7284920B2 publication Critical patent/JP7284920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Description

本開示は、二次電池の製造方法に関する。 The present disclosure relates to a method for manufacturing a secondary battery.

二次電池は、パソコンや携帯端末等のポータブル電源、あるいはEV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。二次電池の一例として、捲回電極体と電解液が電池ケースに収容された二次電池がある。電解液を用いた二次電池を製造する際には、捲回電極体の内部に電解液を含浸させる必要がある。捲回電極体では、正極、負極、およびセパレータが積層されているので、従来の二次電池の製造方法では、捲回電極体の内部に電解液を含浸させるために時間を要する。 Secondary batteries are widely used as portable power sources for personal computers, mobile terminals, and the like, or as power sources for driving vehicles such as EVs (electric vehicles), HVs (hybrid vehicles), and PHVs (plug-in hybrid vehicles). As an example of a secondary battery, there is a secondary battery in which a wound electrode assembly and an electrolytic solution are housed in a battery case. When manufacturing a secondary battery using an electrolytic solution, it is necessary to impregnate the inside of the wound electrode body with the electrolytic solution. In the wound electrode body, the positive electrode, the negative electrode, and the separator are laminated, so that it takes time to impregnate the inside of the wound electrode body with the electrolytic solution in the conventional manufacturing method of the secondary battery.

例えば、特許文献1に記載の電池の製造方法では、電池ケース内の気圧を大気圧よりも減圧した状態で、電池ケース内への電解液の注液が開始される。次いで、電解液の注液を停止させて、電池ケース内の気圧を高めることで、電解液の液面が下げられる。その後、電解液の注液が再開される。以上の方法で、電解液の含浸時間の短縮が図られている。 For example, in the battery manufacturing method described in Patent Document 1, the injection of electrolyte into the battery case is started in a state in which the pressure inside the battery case is reduced below the atmospheric pressure. Next, the liquid level of the electrolytic solution is lowered by stopping the injection of the electrolytic solution and increasing the air pressure in the battery case. After that, injection of the electrolytic solution is resumed. The method described above attempts to shorten the impregnation time of the electrolytic solution.

特開2018-106816号公報JP 2018-106816 A

特許文献1に記載の製造方法では、電池ケース内の気圧を減圧状態から上昇させる際に、電解液でなく気体(例えば空気等)が差圧によって捲回電極体の内部に侵入する可能性がある。この場合、差圧を利用した電解液の含浸効果が薄れてしまうので、含浸時間を短縮することが困難となる。 In the manufacturing method described in Patent Document 1, when the atmospheric pressure inside the battery case is increased from a reduced pressure state, there is a possibility that gas (for example, air) instead of the electrolytic solution may enter the wound electrode assembly due to the differential pressure. be. In this case, the impregnation effect of the electrolytic solution using the differential pressure is weakened, making it difficult to shorten the impregnation time.

本発明の典型的な目的は、捲回電極体の内部に短時間で電解液を含浸させることが可能な二次電池の製造方法を提供することである。 A typical object of the present invention is to provide a method for manufacturing a secondary battery that can impregnate the inside of a wound electrode body with an electrolytic solution in a short period of time.

ここに開示される一態様の二次電池の製造方法は、外形が扁平形状である電池ケースと、上記電池ケース内に収容された捲回電極体のアセンブリを準備する準備工程と、上記捲回電極体が収容された上記電池ケースの内部の圧力を低下させる圧力低下工程と、上記電池ケースの内部の圧力が低下した状態で、上記捲回電極体の捲回軸方向のうち、上記捲回電極体の中央部を間に挟む2つの位置において上記電池ケースを厚み方向に圧縮することで、上記捲回電極体の内部に密閉空間を確保する空間確保工程と、上記電池ケースが圧縮された状態で、上記電池ケースの内部に電解液を注入する注入工程と、前記電解液が注入された前記電池ケースに対し、内部の圧力を上昇させる工程、および、厚み方向の圧縮を解放させる工程を実行することで、前記捲回電極体の内部への前記電解液の含浸を促進させる含浸促進工程と、を含む。 A method of manufacturing a secondary battery according to one aspect disclosed herein includes a battery case having a flat outer shape, a preparation step of preparing an assembly of a wound electrode assembly housed in the battery case, and the winding of the electrode assembly. a pressure reducing step of reducing the pressure inside the battery case in which the electrode assembly is accommodated; A space securing step of securing a sealed space inside the wound electrode body by compressing the battery case in the thickness direction at two positions sandwiching the central portion of the electrode body, and compressing the battery case. an injection step of injecting an electrolytic solution into the inside of the battery case, a step of increasing the internal pressure of the battery case into which the electrolytic solution is injected, and a step of releasing the compression in the thickness direction. and an impregnation promoting step of promoting impregnation of the electrolytic solution into the inside of the wound electrode assembly by executing the impregnation promoting step.

本開示に係る二次電池の製造方法では、電池ケースを厚み方向に圧縮し、捲回電極体の内部に密閉空間を確保した状態で、電解液が注入される。その後、電池ケースの内部の圧力を上昇させる工程(以下、「圧力上昇工程」という)、および、電池ケースに対する圧縮を解放させる工程(以下、「圧縮解放工程」という)が実行される。その結果、電池ケースの内部における、捲回電極体の内部と外部の差圧によって、捲回電極体の内部への電解液の含浸が促進される。圧力上昇工程および圧縮解放工程が実行される時点で、電池ケースの内部には既に電解液が注入されているので、電解液の代わりに気体が差圧によって捲回電極体の内部に侵入することが抑制される。よって、捲回電極体の内部に電解液を含浸させる時間が、適切に抑制される。 In the method for manufacturing a secondary battery according to the present disclosure, the battery case is compressed in the thickness direction, and the electrolytic solution is injected in a state in which a sealed space is secured inside the wound electrode body. After that, a step of increasing the pressure inside the battery case (hereinafter referred to as “pressure increasing step”) and a step of releasing the compression of the battery case (hereinafter referred to as “compression releasing step”) are performed. As a result, impregnation of the electrolytic solution into the inside of the wound electrode body is promoted by the differential pressure between the inside and outside of the wound electrode body inside the battery case. At the time when the pressure increasing process and the compression releasing process are executed, the electrolyte has already been injected into the inside of the battery case. is suppressed. Therefore, the time for impregnating the inside of the wound electrode body with the electrolytic solution is appropriately suppressed.

なお、注入工程の後に実行される圧力上昇工程および圧縮解放工程は、いずれが先に開始されてもよいし、2つの工程が同時に開始されてもよい。また、含浸促進工程(圧力上昇工程および圧縮解放工程を含む)の実行後に、電池ケースの内部に電解液を再度注入させる再注入工程が実行されてもよい。この場合、十分な量の電解液が捲回電極体の内部に含浸される。 Either of the pressure increasing process and the compression releasing process which are executed after the injection process may be started first, or the two processes may be started simultaneously. Further, after the impregnation promoting step (including the pressure increasing step and the compression releasing step) is performed, a re-injecting step of re-injecting the electrolyte into the battery case may be performed. In this case, the inside of the wound electrode body is impregnated with a sufficient amount of electrolyte.

本実施形態の二次電池1の内部構造を模式的に示す断面図である。1 is a cross-sectional view schematically showing the internal structure of a secondary battery 1 of this embodiment; FIG. 本実施形態の二次電池1の捲回電極体20の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a wound electrode assembly 20 of the secondary battery 1 of the present embodiment; 圧力が低下したチャンバー80内に配置され、且つ空間確保工程が実行された状態の、二次電池1の模式図である。FIG. 4 is a schematic diagram of the secondary battery 1 placed in a chamber 80 in which the pressure has been lowered and in which a space securing step has been performed. 注入工程において電解液10が注入され、且つ圧力上昇工程が実行された状態の、二次電池1の模式図である。FIG. 2 is a schematic diagram of secondary battery 1 in a state in which electrolytic solution 10 has been injected in an injection step and a pressure increasing step has been performed.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。 One typical embodiment of the present disclosure will be described in detail below with reference to the drawings. Matters other than those specifically referred to in this specification that are necessary for implementation can be grasped as design matters for those skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field. In the drawings below, members and portions having the same function are denoted by the same reference numerals. Also, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.

本明細書において、「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。以下、二次電池の一種である扁平角形のリチウムイオン二次電池の製造方法を例示して、本開示に係る二次電池の製造方法について詳細に説明する。ただし、本開示に係る二次電池の製造方法を、以下の実施形態に記載されたものに限定することを意図したものではない。 As used herein, the term “battery” is a general term for power storage devices from which electrical energy can be extracted, and is a concept that includes primary batteries and secondary batteries. "Secondary battery" refers to a general electricity storage device that can be repeatedly charged and discharged, and in addition to so-called storage batteries (that is, chemical batteries) such as lithium ion secondary batteries, nickel hydrogen batteries, and nickel cadmium batteries, electric double layer capacitors, etc. It contains a capacitor (ie a physical battery). Hereinafter, the method for manufacturing a secondary battery according to the present disclosure will be described in detail by exemplifying a method for manufacturing a flat prismatic lithium-ion secondary battery, which is a type of secondary battery. However, the method for manufacturing a secondary battery according to the present disclosure is not intended to be limited to those described in the following embodiments.

<二次電池の構成>
図1に示す二次電池1は、捲回電極体20、電解液(本実施形態では非水電解液)10、および電池ケース30を備えた密閉型のリチウムイオン二次電池である。電池ケース30は、捲回電極体20および電解液10を内部に密閉した状態で収容する。本実施形態における電池ケース30の形状は、扁平な角形である。電池ケース30は、一端に開口部を有する箱型の本体31と、該本体の開口部を塞ぐ板状の蓋体32を備える。電池ケース30(詳細には、電池ケース30の蓋体32)には、外部接続用の正極外部端子42および負極外部端子44と、安全弁36とが設けられている。安全弁36は、電池ケース30の内圧が所定レベル以上に上昇した場合に、該内圧を開放する。また、電池ケース30には、電解液10を内部に注入するための注入口37が設けられている。電池ケース30の材質は、軽量で熱伝導性が良い材質が望ましい。また、電池ケース30が厚み方向に圧縮された際に、圧縮された部分は内側に適度に変形する。一例として、本実施形態の電池ケース30の材質には、熱伝導性が高く且つ適度な剛性を有するアルミニウムが用いられている。しかし、電池ケースの構成を変更することも可能である。例えば、電池ケースとして、可撓性を有するラミネートが用いられてもよい。
<Configuration of secondary battery>
A secondary battery 1 shown in FIG. 1 is a sealed lithium-ion secondary battery that includes a wound electrode body 20 , an electrolytic solution (non-aqueous electrolytic solution in this embodiment) 10 , and a battery case 30 . The battery case 30 accommodates the wound electrode assembly 20 and the electrolytic solution 10 in a hermetically sealed state. The shape of the battery case 30 in this embodiment is a flat rectangular shape. The battery case 30 includes a box-shaped main body 31 having an opening at one end, and a plate-like lid 32 that closes the opening of the main body. The battery case 30 (specifically, the lid 32 of the battery case 30) is provided with a positive external terminal 42 and a negative external terminal 44 for external connection, and a safety valve 36. As shown in FIG. The safety valve 36 releases the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. Further, the battery case 30 is provided with an injection port 37 for injecting the electrolytic solution 10 therein. The battery case 30 is desirably made of a material that is lightweight and has good thermal conductivity. Further, when the battery case 30 is compressed in the thickness direction, the compressed portion is appropriately deformed inward. As an example, the battery case 30 of the present embodiment is made of aluminum, which has high thermal conductivity and moderate rigidity. However, it is also possible to change the configuration of the battery case. For example, a flexible laminate may be used as the battery case.

図2に示すように、本実施形態の捲回電極体(以下、単に「電極体」という)20では、長尺状の正極(正極シート)50、長尺状の第1セパレータ71、長尺状の負極(負極シート)60、および長尺状の第2セパレータ72が重ね合わされて捲回されている。詳細には、正極50では、長尺状の正極集電体52の片面または両面(本実施形態では両面)に、長手方向に沿って正極活物質層54が塗工されている。負極60では、長尺状の負極集電体62の片面または両面(本実施形態では両面)に、長手方向に沿って負極活物質層64が塗工されている。未塗工部52A,62Aは、捲回電極体20の捲回軸Wの方向の両端部の各々に位置する。未塗工部52Aは、正極活物質層54が塗工されずに正極集電体52が露出した部分である。未塗工部52Aには、正極集電端子43(図1参照)が接合される。正極集電端子43には、正極外部端子42(図1参照)が電気的に接続される。また、未塗工部62Aは、負極活物質層64が塗工されずに負極集電体62が露出した部分である。未塗工部62Aには、負極集電端子45(図1参照)が接合される。負極集電端子45には、負極外部端子44(図1参照)が電気的に接続される。 As shown in FIG. 2, in the wound electrode body (hereinafter simply referred to as "electrode body") 20 of the present embodiment, a long positive electrode (positive electrode sheet) 50, a long first separator 71, a long shaped negative electrode (negative electrode sheet) 60 and a long second separator 72 are superimposed and wound. Specifically, in the positive electrode 50 , a positive electrode active material layer 54 is coated along the longitudinal direction on one side or both sides (both sides in this embodiment) of a long positive electrode current collector 52 . In the negative electrode 60, a negative electrode active material layer 64 is coated on one side or both sides (both sides in this embodiment) of a long negative electrode current collector 62 along the longitudinal direction. The uncoated portions 52A and 62A are located at both ends of the wound electrode body 20 in the direction of the winding axis W, respectively. The uncoated portion 52A is a portion where the positive electrode current collector 52 is exposed without being coated with the positive electrode active material layer 54 . The positive collector terminal 43 (see FIG. 1) is joined to the uncoated portion 52A. A positive external terminal 42 (see FIG. 1) is electrically connected to the positive collector terminal 43 . An uncoated portion 62A is a portion where the negative electrode current collector 62 is exposed without being coated with the negative electrode active material layer 64 . The negative collector terminal 45 (see FIG. 1) is joined to the uncoated portion 62A. A negative external terminal 44 (see FIG. 1) is electrically connected to the negative collector terminal 45 .

電極体20の正負極を構成する材料、部材は、従来の一般的な二次電池に用いられるものと同様のものを制限なく使用可能である。例えば、正極集電体52には、この種の二次電池の正極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の正極集電体が好ましい。例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属材を正極集電体52として採用できる。本実施形態の正極集電体52にはアルミニウム箔が用いられている。正極活物質層54の正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)が挙げられる。正極活物質層54は、正極活物質と必要に応じて用いられる材料(導電材、バインダ等)とを適当な溶媒(例えばN-メチル-2-ピロリドン:NMP)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を正極集電体52の表面に塗工し、乾燥することによって形成することができる。本実施形態では、三元系の正極活物質と、導電材であるアセチレンブラック(AB)と、バインダであるポリフッ化ビニリデン(PVDF)が、正極活物質層54に含まれる。 Materials and members that constitute the positive and negative electrodes of the electrode assembly 20 can be the same as those used in conventional general secondary batteries without limitation. For example, for the positive electrode current collector 52, a material used as a positive electrode current collector for this type of secondary battery can be used without particular limitation. Typically, a positive electrode current collector made of metal with good electrical conductivity is preferred. For example, metal materials such as aluminum, nickel, titanium, and stainless steel can be used as the positive electrode current collector 52 . Aluminum foil is used for the positive electrode current collector 52 of the present embodiment. Examples of the positive electrode active material of the positive electrode active material layer 54 include lithium composite metal oxides having a layered structure or a spinel structure (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn2O4 , LiNi0.5Mn1.5O4 , LiCrMnO4 , LiFePO4 , etc. ) . The positive electrode active material layer 54 is formed by dispersing a positive electrode active material and optionally used materials (conductive materials, binders, etc.) in an appropriate solvent (eg, N-methyl-2-pyrrolidone: NMP) to form a paste (or It can be formed by preparing a slurry composition), applying an appropriate amount of the composition to the surface of the positive electrode current collector 52, and drying the composition. In this embodiment, the positive electrode active material layer 54 includes a ternary positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder.

負極集電体62には、この種の二次電池の負極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の負極集電体が好ましく、例えば、銅(例えば銅箔)や銅を主体とする合金を用いることができる。本実施形態の負極集電体62には銅箔が用いられている。負極活物質層64の負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物(例えば、LiTi12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。負極活物質層64は、負極活物質と必要に応じて用いられる材料(バインダ等)とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を負極集電体62の表面に塗工し、乾燥することによって形成することができる。本実施形態では、黒鉛系の負極活物質と、バインダであるスチレンブタジエンゴム(SBR)と、増粘剤であるカルボキシメチルセルロース(CMC)が、負極活物質層64に含まれる。 As the negative electrode current collector 62, any material used as a negative electrode current collector for this type of secondary battery can be used without particular limitation. Typically, a metal negative electrode current collector having good conductivity is preferable, and for example, copper (for example, copper foil) or an alloy mainly composed of copper can be used. Copper foil is used for the negative electrode current collector 62 of the present embodiment. As the negative electrode active material of the negative electrode active material layer 64, for example, a particulate (or spherical or scale-like) carbon material containing at least a part of a graphite structure (layered structure), a lithium transition metal composite oxide (for example, Li 4 lithium-titanium composite oxides such as Ti 5 O 12 ), lithium-transition metal composite nitrides, and the like. The negative electrode active material layer 64 is prepared by dispersing a negative electrode active material and optionally used materials (binder etc.) in an appropriate solvent (eg ion-exchanged water) to prepare a paste (or slurry) composition. can be formed by applying an appropriate amount of the composition to the surface of the negative electrode current collector 62 and drying it. In this embodiment, the negative electrode active material layer 64 includes a graphite-based negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener.

第1セパレータ71および第2セパレータ72としては、従来公知の多孔質シートからなるセパレータを特に制限なく使用することができる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂から成る多孔質シート(フィルム、不織布等)が挙げられる。かかる多孔質シートは、単層構造であってもよく、二層以上の複数構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。また、多孔質シートの片面または両面に、多孔質の耐熱層を備える構成のものであってもよい。この耐熱層は、例えば、無機フィラーとバインダとを含む層(フィラー層ともいう。)であり得る。無機フィラーとしては、例えばアルミナ、ベーマイト、シリカ等を好ましく採用し得る。 As the first separator 71 and the second separator 72, separators made of conventionally known porous sheets can be used without particular limitation. Examples thereof include porous sheets (films, non-woven fabrics, etc.) made of polyolefin resins such as polyethylene (PE) and polypropylene (PP). Such a porous sheet may have a single-layer structure or a multi-layer structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). Moreover, one side or both sides of the porous sheet may be provided with a porous heat-resistant layer. This heat-resistant layer may be, for example, a layer containing an inorganic filler and a binder (also referred to as a filler layer). As inorganic fillers, for example, alumina, boehmite, silica, etc. can be preferably employed.

電極体20とともに電池ケース30に収容される電解液10は、適当な非水溶媒に支持塩を含有するものであり、従来公知の電解液を特に制限なく採用することができる。例えば、非水溶媒として、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を用いることができる。また、支持塩としては、例えばリチウム塩(例えば、LiBOB、LiPF等)を好適に用いることができる。本実施形態では、LiBOBが採用されている。 The electrolytic solution 10 contained in the battery case 30 together with the electrode body 20 contains a supporting salt in an appropriate non-aqueous solvent, and conventionally known electrolytic solutions can be employed without particular limitations. For example, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like can be used as non-aqueous solvents. Also, as the supporting salt, for example, a lithium salt (eg, LiBOB, LiPF6, etc.) can be preferably used. LiBOB is adopted in this embodiment.

<製造方法>
次に、本実施形態の二次電池1の製造方法について説明する。本実施形態の二次電池1の製造方法は、準備工程、圧力低下工程、空間確保工程、注入工程、含浸促進工程、および再注入工程を含む。
<Manufacturing method>
Next, a method for manufacturing the secondary battery 1 of this embodiment will be described. The manufacturing method of the secondary battery 1 of the present embodiment includes a preparation step, a pressure reduction step, a space securing step, an injection step, an impregnation promotion step, and a re-injection step.

準備工程では、電池ケース30と、電池ケース30内に収容された捲回電極体20のアセンブリが準備される。準備工程には、電極体形成工程と、電極体収容工程が含まれる。 In the preparation step, an assembly of the battery case 30 and the wound electrode body 20 housed in the battery case 30 is prepared. The preparation process includes an electrode body forming process and an electrode body accommodation process.

電極体形成工程では、捲回電極体20が形成される。詳細には、図2に示すように、長尺状の正極50、長尺状の第1セパレータ71、長尺状の負極60、および長尺状の第2セパレータ72が重ね合わされて捲回されることで、扁平形状の捲回電極体20が形成される。捲回電極体20は、例えば、捲回軸Wに直交する断面が偏平な捲芯の周りに、正極50、第1セパレータ71、負極60、および第2セパレータ72が捲回されることで、扁平形状に形成されてもよい。また、捲回電極体20は、例えば、正極50、第1セパレータ71、負極60、および第2セパレータ72を円筒状に捲回した後に、側面方向から押しつぶすことで、扁平形状に形成されてもよい。 In the electrode body forming step, the wound electrode body 20 is formed. Specifically, as shown in FIG. 2, a long positive electrode 50, a first long separator 71, a long negative electrode 60, and a second long separator 72 are superimposed and wound. As a result, the flat wound electrode body 20 is formed. For example, the wound electrode body 20 is obtained by winding a positive electrode 50, a first separator 71, a negative electrode 60, and a second separator 72 around a winding core having a flat cross section perpendicular to the winding axis W, It may be formed in a flat shape. Further, the wound electrode body 20 may be formed into a flat shape by, for example, rolling the positive electrode 50, the first separator 71, the negative electrode 60, and the second separator 72 into a cylindrical shape and then crushing it from the side. good.

電極体収容工程では、電極体形成工程において形成された捲回電極体20が、電池ケース30の内部に収容される。詳細には、図1に示すように、捲回電極体20の未塗工部52Aに正極集電端子43が接合され、且つ、未塗工部62Aに負極集電端子45が接合される。正極集電端子43および負極集電端子45は、共に捲回電極体20から同一の方向に突出するように接合される。次いで、正極集電端子43および負極集電端子45が電池ケース30の蓋体32に装着されると共に、正極集電端子43と正極外部端子42、および、負極集電端子45と負極外部端子44が電気的に接続される。次いで、捲回電極体20が、蓋体32側とは反対側の端部から、電池ケース30の本体31の内部に開口を通じて収容される。蓋体32と本体31が溶接等によって接合されることで、電極体収容工程が完了する。捲回電極体20の捲回軸W(図2参照)は、電池ケース30の本体31の底面に略平行な状態となる。 In the electrode body accommodating step, the wound electrode body 20 formed in the electrode body forming step is accommodated inside the battery case 30 . Specifically, as shown in FIG. 1, the positive collector terminal 43 is joined to the uncoated portion 52A of the wound electrode body 20, and the negative collector terminal 45 is joined to the uncoated portion 62A. The positive collector terminal 43 and the negative collector terminal 45 are joined together so as to protrude in the same direction from the wound electrode assembly 20 . Next, the positive collector terminal 43 and the negative collector terminal 45 are attached to the lid 32 of the battery case 30, and the positive collector terminal 43 and the positive external terminal 42, and the negative collector terminal 45 and the negative external terminal 44 are connected. are electrically connected. Next, the wound electrode body 20 is accommodated through the opening inside the main body 31 of the battery case 30 from the end opposite to the lid body 32 side. By joining the lid 32 and the main body 31 by welding or the like, the electrode assembly step is completed. A winding axis W (see FIG. 2 ) of the wound electrode body 20 is substantially parallel to the bottom surface of the main body 31 of the battery case 30 .

圧力低下工程では、捲回電極体20が収容された電池ケース30の内部の圧力を、大気圧よりも低下させる。一例として、本実施形態では、電池ケース30をチャンバー80(図3参照)の内部に配置し、チャンバー80の内部の圧力を大気圧よりも低下させる(真空圧とする)ことで、電池ケース30の内部および周囲の圧力を共に低下させる。本実施形態では、チャンバー80内の真空度は約20kPaに設定される。ただし、電池ケース30の内部の圧力を低下させる方法を変更することも可能である。例えば、電池ケース30の内部の気体を外部に排出することで、電池ケース30の内部の圧力を大気圧よりも低下させてもよい。 In the pressure reduction step, the internal pressure of the battery case 30 in which the wound electrode body 20 is housed is reduced below the atmospheric pressure. As an example, in the present embodiment, the battery case 30 is placed inside a chamber 80 (see FIG. 3), and the pressure inside the chamber 80 is lowered below atmospheric pressure (vacuum pressure), whereby the battery case 30 reduce both the internal and ambient pressure of the In this embodiment, the degree of vacuum inside the chamber 80 is set to approximately 20 kPa. However, it is also possible to change the method of reducing the pressure inside the battery case 30 . For example, the pressure inside the battery case 30 may be lowered below the atmospheric pressure by discharging the gas inside the battery case 30 to the outside.

空間確保工程では、図3に示すように電池ケース30の内部の圧力が低下した状態で、捲回電極体20の捲回軸Wの方向(図3における左右方向)のうち、捲回電極体20の中央部を間に挟む少なくとも2つの位置において、電池ケース30を厚み方向に圧縮する。その結果、捲回電極体20の内部に密閉空間Sが確保される。電池ケース30を圧縮する方法は適宜選択できる。一例として、本実施形態では、捲回電極体20の捲回軸Wに交差(本実施形態では垂直に交差)する方向に延びる柱状(円柱状)の圧縮部材90によって、電池ケース30が厚み方向両側から圧縮されることで、密閉空間Sが確保される。圧縮部材90の長手方向の長さは、捲回電極体20のうち、捲回軸Wに垂直に交差する方向の幅(図3における上下方向の幅)よりも長い。従って、捲回電極体20が、圧縮部材90によって上下方向の全体に亘って圧縮されるので、密閉空間Sが適切に確保される。なお、圧縮部材90の形状も適宜選択できる。圧縮部材90の形状は、例えば、角柱状、板状等であってもよい。 In the space securing step, as shown in FIG. 3, in a state where the pressure inside the battery case 30 is reduced, the wound electrode body 20 is moved in the direction of the winding axis W of the wound electrode body 20 (horizontal direction in FIG. 3). The battery case 30 is compressed in the thickness direction at at least two positions sandwiching the central portion of the battery case 20 . As a result, a sealed space S is secured inside the wound electrode body 20 . A method for compressing the battery case 30 can be selected as appropriate. As an example, in the present embodiment, a columnar (cylindrical) compression member 90 extending in a direction intersecting the winding axis W of the wound electrode body 20 (perpendicularly intersecting in the present embodiment) compresses the battery case 30 in the thickness direction. A sealed space S is ensured by being compressed from both sides. The longitudinal length of the compression member 90 is longer than the width of the wound electrode body 20 in the direction perpendicular to the winding axis W (vertical width in FIG. 3). Therefore, since the wound electrode body 20 is compressed over the entire vertical direction by the compressing member 90, the closed space S is appropriately secured. The shape of the compression member 90 can also be appropriately selected. The shape of the compression member 90 may be, for example, prismatic, plate-like, or the like.

また、本実施形態では、電池ケース30のうち、正極集電端子43および負極集電端子45が接合される捲回電極体20の未塗工部52A,62Aよりも内側の2か所が、圧縮部材90によって圧縮される。従って、正極集電端子43および負極集電端子45が圧縮の障害とならない。 Further, in the present embodiment, in the battery case 30, two locations inside the uncoated portions 52A and 62A of the wound electrode assembly 20 to which the positive collector terminal 43 and the negative collector terminal 45 are joined are It is compressed by compression member 90 . Therefore, the positive collector terminal 43 and the negative collector terminal 45 do not interfere with compression.

注入工程では、電池ケース30が圧縮部材によって圧縮された状態で(つまり、密閉空間Sが確保された状態で)、電池ケース30の内部に電解液10が注入される。本実施形態では、蓋体32の注入口37にノズルが挿入され、ノズルの先端から電池ケース30の内部に電解液10が注入される。なお、本実施形態では、ノズルと注入口37の縁部の間に隙間がある状態(つまり、電池ケース30の内部と外部の圧力を同一にした状態)で電解液10が注入される。しかし、ノズルを注入口37の縁部に隙間なく接触させた状態(つまり、電池ケース30の内部を密閉した状態)で、電解液10が注入されてもよい。 In the injection step, the electrolytic solution 10 is injected into the battery case 30 while the battery case 30 is compressed by the compressing member (that is, the sealed space S is secured). In this embodiment, a nozzle is inserted into the inlet 37 of the lid 32, and the electrolytic solution 10 is injected into the battery case 30 from the tip of the nozzle. In this embodiment, the electrolytic solution 10 is injected with a gap between the nozzle and the edge of the injection port 37 (that is, with the same pressure inside and outside the battery case 30). However, the electrolyte solution 10 may be injected in a state in which the nozzle is in contact with the edge of the injection port 37 without gaps (that is, in a state in which the inside of the battery case 30 is sealed).

なお、電解液10は、捲回電極体20のうち、捲回軸Wの方向の両端部から内部に含浸する。従って、注入工程では、図4に示すように、捲回電極体20のうち、捲回軸Wの方向の両端部の全体が電解液10に浸るように、電解液10が注入されることが望ましい。この場合、後述する含浸促進工程において、電解液10の代わりに気体が捲回電極体20の内部に侵入する可能性がさらに低下する。 The electrolytic solution 10 is impregnated inside the wound electrode body 20 from both ends in the direction of the winding axis W. As shown in FIG. Therefore, in the injection step, as shown in FIG. 4 , the electrolytic solution 10 may be injected so that both ends of the wound electrode assembly 20 in the direction of the winding axis W are entirely immersed in the electrolytic solution 10 . desirable. In this case, the possibility that the gas instead of the electrolytic solution 10 penetrates into the wound electrode body 20 in the impregnation promoting step described later is further reduced.

含浸促進工程では、圧力上昇工程および圧縮解放工程が行われることで、捲回電極体20の内部への電解液10の含浸が促進される。 In the impregnation promoting step, impregnation of the electrolytic solution 10 into the inside of the wound electrode body 20 is promoted by performing the pressure increasing step and the compression releasing step.

圧力上昇工程では、電池ケース30の内部の圧力が上昇される。本実施形態では、チャンバー80の内部の圧力が大気圧に戻されることで、チャンバー80に配置された電池ケース30の内部の圧力が上昇する。その結果、図4に示すように、電池ケース30内において、捲回電極体20の内部の密閉空間Sにおける圧力は、捲回電極体20の外部(図4に示す例では空間K)の圧力よりも低い状態となる。つまり、捲回電極体20の内部の密閉空間Sと、捲回電極体20の外部空間Kの間に差圧が生じる。 In the pressure increasing step, the pressure inside the battery case 30 is increased. In the present embodiment, the pressure inside the chamber 80 is returned to the atmospheric pressure, so that the pressure inside the battery case 30 arranged in the chamber 80 rises. As a result, as shown in FIG. 4, in the battery case 30, the pressure in the closed space S inside the wound electrode body 20 is the pressure outside the wound electrode body 20 (the space K in the example shown in FIG. 4). becomes lower than That is, a differential pressure is generated between the sealed space S inside the wound electrode body 20 and the external space K of the wound electrode body 20 .

圧縮解放工程では、圧縮部材90による電池ケース30の厚み方向への圧縮が開放される。その結果、電池ケース30の内部に注入されている電解液10が、捲回電極体20の内部と外部の差圧によって、捲回電極体20の両端部から内部に短時間で含浸される。つまり、圧力上昇工程および圧縮解放工程が行われることで、捲回電極体20の内部への電解液10の含浸が、差圧によって促進される。圧力上昇工程および圧縮解放工程が行われる時点で、捲回電極体20の両端部の全体が電解液10に浸っているので、電解液10の代わりに気体が差圧によって捲回電極体20の内部に侵入し難い。よって、電解液10を捲回電極体20の内部に含浸させる時間が、適切に抑制される。 In the compression releasing step, the compression in the thickness direction of battery case 30 by compressing member 90 is released. As a result, the electrolytic solution 10 injected into the inside of the battery case 30 is impregnated from both ends of the wound electrode body 20 into the inside in a short time due to the differential pressure between the inside and outside of the wound electrode body 20 . In other words, the impregnation of the electrolytic solution 10 into the inside of the wound electrode body 20 is promoted by the differential pressure by performing the pressure increasing process and the compression releasing process. Since both ends of the wound electrode body 20 are entirely immersed in the electrolytic solution 10 at the time when the pressure increasing process and the compression releasing process are performed, the gas instead of the electrolytic solution 10 is applied to the wound electrode body 20 due to the differential pressure. Hard to get inside. Therefore, the time for impregnating the inside of the wound electrode body 20 with the electrolytic solution 10 is appropriately suppressed.

なお、含浸促進工程では、圧縮解放工程が実行された後に、圧力上昇工程が実行されてもよい。この場合でも、圧力上昇工程が実行される時点で電解液10が適切に電池ケース30の内部に注入されていれば、電解液10の含浸は十分に促進される。また、圧力上昇工程と圧縮解放工程が同時に開始されてもよい。 In addition, in the impregnation promoting process, the pressure increasing process may be performed after the compression releasing process is performed. Even in this case, the impregnation of the electrolyte solution 10 is sufficiently promoted if the electrolyte solution 10 is appropriately injected into the battery case 30 at the time the pressure increasing step is performed. Alternatively, the pressure increase step and the compression release step may be initiated at the same time.

再注入工程では、電池ケース30の内部に電解液10が再度注入される。電池ケース30に注入することが必要な電解液10の全ての量を、前述した注入工程のみによって注入する場合、電解液10が電池ケース30から溢れてしまう可能性がある。本実施形態では、含浸促進工程によって捲回電極体20の内部に電解液10が含浸されることで、電池ケース30内のスペースに余裕が生じる。従って、含浸促進工程の実行後に再注入工程が行われることで、十分な量の電解液10が、適切に電池ケース30の内部に注入される。 In the re-injection step, the electrolytic solution 10 is injected again into the battery case 30 . If the entire amount of the electrolyte solution 10 required to be injected into the battery case 30 is injected only by the above-described injection step, the electrolyte solution 10 may overflow from the battery case 30 . In the present embodiment, the wound electrode body 20 is impregnated with the electrolytic solution 10 by the impregnation promotion step, so that the space inside the battery case 30 is freed up. Therefore, a sufficient amount of the electrolytic solution 10 is appropriately injected into the battery case 30 by performing the re-injection process after the impregnation promotion process is executed.

<評価試験>
実施例および比較例を用いた評価試験の結果について説明する。第1比較例、第2比較例、および実施例の二次電池の材質、寸法等は、共に、上記実施形態で説明した二次電池1と同じである。第1比較例の二次電池の製造過程では、上記実施形態の空間確保工程および含浸促進工程を実行せずに、注入工程における注液流量を40g/minとして電解液10を電池ケース30の内部に注入した。第1比較例では、注入工程において電解液10が電池ケース30から溢れることは無かったが、電解液10の含浸に長時間を要した。第2比較例の二次電池の製造過程では、上記実施形態の空間確保工程および含浸促進工程を実行せずに、注入工程における注液流量を100g/minとして電解液10を電池ケース30の内部に注入した。第2比較例では、電解液10が含浸される速度が遅かったため注入工程において電解液10が電池ケース30から溢れた。実施例の二次電池の製造過程では、上記実施形態の製造方法に従って二次電池を製造すると共に、注入工程における注液流量を100g/minとした。実施例では、注液流量を100g/minとしたにも関わらず、注入工程において電解液10が電池ケース30から溢れなかった。以上の結果から、上記実施形態の製造方法に従って二次電池を製造することで、捲回電極体の内部に電解液を含浸させる時間が適切に短縮されることが分かる。
<Evaluation test>
The results of evaluation tests using examples and comparative examples will be described. The materials, dimensions, and the like of the secondary batteries of the first comparative example, the second comparative example, and the working example are all the same as those of the secondary battery 1 described in the above embodiment. In the manufacturing process of the secondary battery of the first comparative example, the electrolyte solution 10 was poured into the battery case 30 at an injection flow rate of 40 g/min in the injection step without executing the space securing step and the impregnation promoting step of the above embodiment. injected into. In the first comparative example, the electrolytic solution 10 did not overflow from the battery case 30 in the injection step, but impregnation with the electrolytic solution 10 took a long time. In the manufacturing process of the secondary battery of the second comparative example, the electrolyte solution 10 was poured into the battery case 30 at an injection flow rate of 100 g/min in the injection step without executing the space securing step and the impregnation promotion step of the above embodiment. injected into. In the second comparative example, the impregnation speed of the electrolytic solution 10 was slow, so the electrolytic solution 10 overflowed the battery case 30 in the injection step. In the manufacturing process of the secondary battery of the example, the secondary battery was manufactured according to the manufacturing method of the above embodiment, and the injection flow rate in the injection step was set to 100 g/min. In the example, the electrolytic solution 10 did not overflow from the battery case 30 in the injection process even though the injection flow rate was 100 g/min. From the above results, it can be seen that the time for impregnating the inside of the wound electrode body with the electrolytic solution can be appropriately shortened by manufacturing the secondary battery according to the manufacturing method of the above embodiment.

以上、具体的な実施形態を挙げて詳細な説明を行ったが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。 Although detailed descriptions have been given above with reference to specific embodiments, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the embodiments described above.

1 二次電池
10 電解液
20 捲回電極体
30 電池ケース
31 本体
32 蓋体
80 チャンバー
90 圧縮部材

1 secondary battery 10 electrolytic solution 20 wound electrode body 30 battery case 31 main body 32 lid body 80 chamber 90 compression member

Claims (1)

外形が扁平形状である電池ケースと、前記電池ケース内に収容された捲回電極体のアセンブリを準備する準備工程と、
前記捲回電極体が収容された前記電池ケースの内部の圧力を低下させる圧力低下工程と、
前記電池ケースの内部の圧力が低下した状態で、前記捲回電極体の捲回軸方向のうち、前記捲回電極体の中央部を間に挟む2つの位置において前記電池ケースを厚み方向に圧縮することで、前記捲回電極体の内部に密閉空間を確保する空間確保工程と、
前記電池ケースが圧縮された状態で、前記捲回電極体の前記捲回軸方向の両端部の全体が電解液に浸るように、前記電池ケースの内部に前記電解液を注入する注入工程と、
前記電解液が注入された前記電池ケースに対し、内部の圧力を上昇させる工程、および、厚み方向の圧縮を解放させる工程を実行することで、前記捲回電極体の内部への前記電解液の含浸を促進させる含浸促進工程と、
を含む、二次電池の製造方法。
a preparation step of preparing a battery case having a flat outer shape and a wound electrode body assembly housed in the battery case;
a pressure reduction step of reducing the pressure inside the battery case in which the wound electrode body is accommodated;
In a state where the pressure inside the battery case is reduced, the battery case is compressed in the thickness direction at two positions sandwiching the central portion of the wound electrode body in the winding axial direction of the wound electrode body. a space securing step of securing a sealed space inside the wound electrode body;
an injection step of injecting the electrolytic solution into the battery case in a state in which the battery case is compressed so that both ends of the wound electrode body in the winding axial direction are entirely immersed in the electrolytic solution;
By executing a step of increasing the internal pressure and a step of releasing the compression in the thickness direction of the battery case into which the electrolytic solution has been injected, the electrolytic solution is injected into the wound electrode body. An impregnation promotion step for promoting impregnation;
A method of manufacturing a secondary battery, comprising:
JP2019226566A 2019-12-16 2019-12-16 Method for manufacturing secondary battery Active JP7284920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226566A JP7284920B2 (en) 2019-12-16 2019-12-16 Method for manufacturing secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226566A JP7284920B2 (en) 2019-12-16 2019-12-16 Method for manufacturing secondary battery

Publications (2)

Publication Number Publication Date
JP2021096927A JP2021096927A (en) 2021-06-24
JP7284920B2 true JP7284920B2 (en) 2023-06-01

Family

ID=76432126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226566A Active JP7284920B2 (en) 2019-12-16 2019-12-16 Method for manufacturing secondary battery

Country Status (1)

Country Link
JP (1) JP7284920B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110033A (en) 2011-11-22 2013-06-06 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2015032414A (en) 2013-08-01 2015-02-16 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015079578A (en) 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2015133179A (en) 2014-01-09 2015-07-23 株式会社豊田自動織機 Method of manufacturing power storage device and electrolyte injector
JP2015232942A (en) 2014-06-09 2015-12-24 株式会社Gsユアサ Power storage element, and method for manufacturing power storage element
JP2016046178A (en) 2014-08-26 2016-04-04 日産自動車株式会社 Method for injecting electrolytic solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110033A (en) 2011-11-22 2013-06-06 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2015032414A (en) 2013-08-01 2015-02-16 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015079578A (en) 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2015133179A (en) 2014-01-09 2015-07-23 株式会社豊田自動織機 Method of manufacturing power storage device and electrolyte injector
JP2015232942A (en) 2014-06-09 2015-12-24 株式会社Gsユアサ Power storage element, and method for manufacturing power storage element
JP2016046178A (en) 2014-08-26 2016-04-04 日産自動車株式会社 Method for injecting electrolytic solution

Also Published As

Publication number Publication date
JP2021096927A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
US9859534B2 (en) Secondary battery
JP6024990B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6399380B2 (en) Power storage element, power storage system, and manufacturing method thereof
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
CN109119629B (en) Non-aqueous electrolyte secondary battery
JP7290124B2 (en) Manufacturing method and negative electrode material for lithium ion secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP7284920B2 (en) Method for manufacturing secondary battery
JP7079414B2 (en) Non-aqueous electrolyte secondary battery
JP7153193B2 (en) Non-aqueous electrolyte secondary battery
JP7365562B2 (en) Wound electrode body for secondary batteries
JP2016122635A (en) Nonaqueous electrolyte secondary battery
JP7240612B2 (en) Method for manufacturing secondary battery
JP7249988B2 (en) lithium ion secondary battery
JP7157907B2 (en) Method for judging the bonding state of terminals
JP7377827B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2018190624A (en) Nonaqueous electrolyte secondary battery
JP6994152B2 (en) Non-aqueous electrolyte secondary battery
JP2021182508A (en) Manufacturing method of secondary battery
JP2018125216A (en) Lithium ion secondary battery
WO2012086514A1 (en) Lithium-ion secondary battery
JP2021140946A (en) Secondary battery
JP2022044959A (en) Battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230503

R151 Written notification of patent or utility model registration

Ref document number: 7284920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151