JP7283560B2 - レーザセンサ、ミラー制御方法、及びプログラム - Google Patents

レーザセンサ、ミラー制御方法、及びプログラム Download PDF

Info

Publication number
JP7283560B2
JP7283560B2 JP2021550813A JP2021550813A JP7283560B2 JP 7283560 B2 JP7283560 B2 JP 7283560B2 JP 2021550813 A JP2021550813 A JP 2021550813A JP 2021550813 A JP2021550813 A JP 2021550813A JP 7283560 B2 JP7283560 B2 JP 7283560B2
Authority
JP
Japan
Prior art keywords
scanning
angle
shift
angle range
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021550813A
Other languages
English (en)
Other versions
JPWO2021064863A1 (ja
JPWO2021064863A5 (ja
Inventor
革 江尻
康祐 柳井
新一 藤吉
弘一 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2021064863A1 publication Critical patent/JPWO2021064863A1/ja
Publication of JPWO2021064863A5 publication Critical patent/JPWO2021064863A5/ja
Application granted granted Critical
Publication of JP7283560B2 publication Critical patent/JP7283560B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、レーザセンサ、ミラー制御方法、及びプログラムに関する。
レーザセンサは、レーザ光を例えば水平方向及び垂直方向に回転するミラーで反射して、測定対象を2次元的に走査することで、測定対象までの距離等を測定できる。レーザセンサの画角が固定の場合、測定対象までの距離が遠くなると、測定範囲は広くなるが解像度は低下し、測定対象までの距離が近くなると、測定範囲は狭くなるが解像度は向上する。そこで、解像度を維持して測定範囲を拡大するため、測定対象の動きに応じて画角を動的に変更して測定範囲を変更する方法が提案されている(例えば、特許文献1を参照)。
なお、フィードバックを用いてミラーの駆動信号を補正することが提案されている(例えば、特許文献2及び特許文献3を参照)。しかし、フィードバックを用いた補正では、測定範囲が垂直方向に移動した直後の1フレーム目を補正することはできない。
特開2017-181209号公報 特開2011-180294号公報 特開2013-205770号公報
例えば、ミラーの水平方向の駆動信号にはノンリニアな波形の一例である正弦波を用い、ミラーの垂直方向の駆動信号にはリニアな波形の一例である鋸波を用いる。この場合、ミラーの垂直方向の駆動信号に用いる鋸波は、鋸波の上下端の鋭角部分(山と谷の部分)において共振点励起による振動の発生を抑制するために、ローパスフィルタ(LPF:Low-Pass Filter)を通してミラーを駆動する。これにより、共振点励起による振動の発生は抑制されるが、LPFの特性により高周波成分が除去されるため、鋸波の上下端の鋭角部分が丸まった波形になる。
鋸波の上下端の鋭角部分の丸まりの程度は、上下端の鋭角部分の直前の直線部の傾きに依存する。このため、レーザセンサの画角が固定の場合は、鋸波の上下端の鋭角部分の丸まりの程度は一定である。従って、例えば鋸波の上下端の鋭角部分の丸まりの程度が一定である部分を除外した駆動信号でミラーを駆動することで、測定対象に対するレーザセンサの垂直方向の測定精度の低下を防げる。
これに対し、レーザセンサの画角が動的に変更され、測定範囲が上方又は下方に移動した場合は、移動直後の1フレーム目の上下端の鋭角部分の丸まりの程度が変化する。測定範囲が例えば下方に移動した場合、駆動信号が鋸波の下端を基準としているため、移動直後の1フレーム目の上端の鋭角部分の直前の直線部の傾きが比較的緩やかであり、駆動信号の高周波成分が比較的少ないため、上端の鋭角部分の丸まりは比較的小さい。一方、測定範囲が例えば上方に移動した場合、移動直後の1フレーム目の上端の鋭角部分の直前の直線部の傾きが急であり、駆動信号の高周波成分が多いため、上端の鋭角部分の丸まりは大きい。これは、駆動信号が鋸波の下端を基準としているため、測定範囲が上方に移動した場合は、移動直後の1フレーム目の上端の鋭角部分の直前の直線部が長くなるためである。
なお、駆動信号が鋸波の下端を基準としているため、測定範囲が上方又は下方に移動した場合、移動直後の1フレーム目の下端の鋭角部分の直前の直線部の傾きは緩やかであり、駆動信号の高周波成分が少ないため、下端の鋭角部分の丸まりは無視し得る程度に小さい。
測定範囲が垂直方向に移動した直後の1フレーム目の上端の鋭角部分の丸まりの程度が変化すると、垂直方向の測定範囲が変化してしまい、1フレーム目の画角が2フレーム目以降の画角と異なってしまう。測定範囲が垂直方向に移動した直後の1フレーム目と2フレーム目以降とで画角が異なると、1フレーム目と2フレーム目とで測定対象の垂直方向の位置及び大きさが変化してしまうので、特に移動速度が速い測定対象に対するレーザセンサの測定精度が低下してしまう。
上記の如く、測定対象の動きに応じて画角を動的に変更して測定範囲を変更するレーザセンサでは、リニアな駆動波形をLPFを通してミラーを駆動することで、駆動波形の上下端の鋭角部分(山と谷の部分)において共振点励起による振動の発生を抑制する。しかし、このようにして共振点励起による振動の発生を抑制すると、LPFの特性により高周波成分が除去されるため、駆動波形の上下端の鋭角部分が丸まった波形になる。このため、測定範囲が所定方向に移動した直後の1フレーム目の所定方向上の端の鋭角部分の丸まりの程度が変化すると、1フレーム目の画角が2フレーム目以降の画角と異なってしまう。測定範囲が移動した直後の1フレーム目と2フレーム目以降とで画角が異なると、1フレーム目と2フレーム目とで測定対象の所定方向の位置及び大きさが変化してしまうので、特に移動速度が速い測定対象に対するレーザセンサの測定精度が低下してしまう。
そこで、1つの側面では、測定範囲が所定方向に移動した直後の1フレーム目と2フレーム目以降とで画角を同等に制御することができるレーザセンサ、ミラー制御方法、及びプログラムを提供することを目的とする。
1つの案によれば、レーザ光を、互いに直交する第1の方向及び第2の方向に回転する走査ミラーで反射して走査角度範囲を走査することで、測定対象を2次元的に走査するレーザセンサであって、前記測定対象までの距離及び方位角度に基づき設定された、前記走査角度範囲と前記走査角度範囲の前記第2の方向へのシフト量とを含む画角パラメータのうち、前記シフト量に基づき画角変更を検出すると、変更直後の1フレーム目を示す信号とシフト変更量を出力する画角変更検出手段と、少なくとも前記シフト変更量を用いて、前記1フレーム目の想定ズレ量に対応するシフト修正量及び走査角度範囲修正量を生成する修正量生成手段と、前記信号に応答して、前記1フレーム目では前記シフト量を前記シフト修正量で修正した修正シフト量と、前記走査角度範囲を前記走査角度範囲修正量で修正した修正走査角度範囲とを含む修正画角パラメータを出力し、2フレーム目以降では前記シフト量と前記走査角度範囲とを含む前記画角パラメータを出力する画角パラメータ修正手段と、前記走査ミラーを前記第1の方向に回転駆動するノンリニアな波形を有する第1の駆動信号を生成して前記走査ミラーを駆動すると共に、前記画角パラメータ修正手段の出力に基づいて、前記走査ミラーを前記第2の方向に回転駆動するリニアな波形を有する第2の駆動信号を生成してローパスフィルタを通して前記走査ミラーを駆動する駆動手段と、を備えたレーザセンサが提供される。
一態様によれば、測定範囲が所定方向に移動した直後の1フレーム目と2フレーム目以降とで画角を同等に制御することができる。
一実施例におけるレーザセンサの一例を説明する図である。 図1に示す演算回路の一例を示す機能ブロック図である。 コンピュータの一例を示すブロック図である。 センサ本体の筐体の一例を示す図である。 距離測定処理の一例を説明するフローチャートである。 第1実施例における画角パラメータ修正回路の一例を示す機能ブロック図である。 第1実施例における画角パラメータ修正回路の処理の一例を説明するフローチャートである。 参照テーブルの一例を示す図である。 垂直方向の測定範囲の一例を説明する図である。 測定範囲の下方移動時の処理を説明する図である。 測定範囲の上方移動時の処理を説明する図である。 第2実施例における画角パラメータ修正回路の一例を示す機能ブロック図である。 第2実施例における画角パラメータ修正回路の処理の一例を説明するフローチャートである。 画角パラメータを修正しない場合の測定範囲の垂直方向の移動の一例を説明する図である。 画角パラメータを修正しない場合の測定範囲の下方移動時を説明する図である。 画角パラメータを修正した場合の測定範囲の垂直方向の移動の一例を説明する図である。 画角パラメータを修正した場合の測定範囲の下方移動時を説明する図である。
以下に、開示のレーザセンサ、ミラー制御方法、及びプログラムの各実施例を図面と共に説明する。
図1は、一実施例におけるレーザセンサの一例を示す図である。図1に示すレーザセンサは、センサ本体1と、コンピュータ4とを有する。センサ本体1は、投光ユニット2と、受光ユニット3と、演算回路5とを有する。
投光ユニット2は、画角パラメータ修正回路20、センサ駆動制御回路21、レーザ駆動回路22、レーザダイオード23、2軸の走査ミラー24、2軸のミラーコントローラ25、及び投光レンズ26を有する。レーザダイオード23は、レーザ光源の一例である。2軸の走査ミラー24は、例えば2次元MEMS(Micro Electro Mechanical System)ミラーで形成可能である。画角パラメータ修正回路20は、後述するように、演算回路5が出力する、走査角度範囲とシフト量を含む画角パラメータ(又は、画角制御量)を修正して、センサ駆動制御回路21に供給する。センサ駆動制御回路21は、レーザダイオード23の発光タイミングを示す発光タイミング信号をレーザ駆動回路22に供給する。
レーザ駆動回路22は、発光タイミング信号が示す発光タイミングで、レーザダイオード23を発光させる。また、センサ駆動制御回路21は、走査ミラー24を2軸で駆動する駆動制御信号をミラーコントローラ25に供給する。ミラーコントローラ25は、駆動制御信号に従って走査ミラー24を2軸で駆動する駆動信号を出力し、周知の駆動部(図示せず)で走査ミラー24を駆動する。例えば、走査ミラー24の水平方向の駆動には、ノンリニアな波形の一例である正弦波の駆動信号(例えば、駆動電流)を用い、走査ミラー24の水平方向とは直交する垂直方向の駆動には、リニアな波形の一例である鋸波の駆動信号(例えば、駆動電流)を用いる。ミラーコントローラ25は、走査ミラー24の垂直方向の駆動に用いる鋸波の駆動信号が、鋸波の上下端の鋭角部分において共振点励起による振動の発生を抑制するためのLPF250を含む。走査ミラー24の垂直方向の駆動に用いる鋸波の駆動信号は、LPF250を通して走査ミラー24を駆動する。このため、共振点励起による振動の発生は抑制され、LPF250の特性により高周波成分が除去されるので、図14と共に後述するように、鋸波の上下端の鋭角部分が丸まった波形になる。
なお、走査ミラー24の水平方向の駆動にリニアな波形の駆動信号を用い、走査ミラー24の垂直方向の駆動にノンリニアな波形の駆動信号を用いても良い。水平方向は、第1の方向の一例であり、垂直方向は、水平方向(第1の方向)とは直交する第2の方向の一例である。レーザセンサは、例えば水平面に対して任意の角度配置を有しても良い。
走査ミラー24のミラー角度は、周知の検出部(図示せず)が検出し、ミラー角度を示す角度信号をミラーコントローラ25に供給する。図1では説明の便宜上、走査ミラー24が、上記の駆動部及び検出部を含む形で図示されている。ミラーコントローラ25は、角度信号に従って、走査ミラー24のミラー角度を表すミラー角度データを生成して演算回路5に供給する。これにより、レーザダイオード23から出射されたレーザ光は、走査ミラー24で反射(又は、偏向)されて、投光レンズ26を介して走査角度範囲を走査する、例えばラスタ走査を行う。
このようなラスタ走査により、センサ本体1からある距離だけ離れた位置では、レーザ光(又は、レーザパルス)が測定範囲を走査する。この測定範囲は、レーザ光がセンサ本体1からある距離だけ離れた位置において、走査角度範囲の一端から他端までを、例えば水平面(又は、地面)と略平行に移動する距離に相当する幅を有する。また、この測定範囲は、レーザ光がセンサ本体1からある距離だけ離れた位置において、走査角度範囲の最下点から最上点までを、水平面とは直交する垂直方向に移動する距離に相当する高さを有する。つまり、測定範囲は、センサ本体1から一定距離だけ離れた位置でレーザ光により走査される領域全体のことを指す。従って、レーザ光の発光タイミングが一定であると、センサ本体1からの距離が短くなる程、測定範囲は狭くなり、測定範囲内のサンプリング密度がより密となる。これに対し、レーザ光の発光タイミングが一定であると、センサ本体1からの距離が長くなる程、測定範囲は広くなり、測定範囲内のサンプリング密度がより粗となる。
受光ユニット3は、受光レンズ31、光検出器32、及び距離計測回路33を有する。測定対象100からの反射光は、受光レンズ31を介して光検出器32で検出される。光検出器32は、検出した反射光を表す受光信号を距離計測回路33に供給する。距離計測回路33は、投光ユニット2からレーザ光を出射してから、レーザ光が測定対象100で反射されて受光ユニット3へ戻ってくるまでの往復時間(TOF:Time Of Flight)ΔTを計測する。これにより、距離計測回路33は、測定対象100までの距離を光学的に計測し、計測した距離を示す距離データを演算回路5に供給する。ここで、光速をc(約30万km/s)で表すと、測定対象100までの距離は、例えば(c×ΔT)/2から求めることができる。
図2は、図1に示す演算回路の一例を示す機能ブロック図である。演算回路5は、例えばプロセッサで形成可能である。プロセッサが、メモリに格納されたプログラムを実行することで、図2に示す各モジュール51~54の機能を実行可能である。この例では、演算回路5は、3次元データ及び距離画像生成モジュール51、距離計測モジュール52、走査角度範囲及びシフト量算出モジュール53、及び画像処理及び対象抽出モジュール54を有する。演算回路5は、測定された測定対象までの距離と検知された測定対象の方位とに応じて、サンプリング密度が一定以上となるように測定範囲を変更する変更手段の一例である。測定範囲の変更は、測定範囲の大きさを広げたり狭めたりすることを意味する。測定範囲の大きさは、走査角度範囲の幅を広げることで広がり、走査角度範囲の幅を狭めることで狭められる。
3次元データ及び距離画像生成モジュール51は、ミラー角度データと、距離データとを入力し、距離データから距離画像を生成し、距離画像とミラー角度データから3次元データを生成する、距離画像生成手段の一例である。また、3次元データ及び距離画像生成モジュール51は、ミラー角度データから、レーザ光の投光角度を示す投光角度データを生成する。距離画像は、ラスタ走査されたサンプル順に、各測距点における距離値を配列した画像である。3次元データは、距離値と投光角度データを用いて変換することで生成可能である。3次元データは、コンピュータ4に出力可能である。また同様に、距離画像もコンピュータ4に出力可能である。
画像処理及び対象抽出モジュール54は、ラスタ走査された走査角度範囲内に測定対象100が存在する場合に、この距離画像から測定対象100のデータを抽出する、対象抽出手段の一例である。距離画像から測定対象100を抽出する方法は特に限定されず、例えば周知の方法で測定対象100を抽出可能である。例えば、測定対象100が人間であれば、距離画像から人間が取り得る姿勢等の形状を検知することで、測定対象100を抽出することができる。また、対象指定の別例として、取得された距離画像又は3次元像をディスプレイに表示し、その画面の所望の位置をマウス等で指定(クリック)又は範囲を指定する抽出方法もある。画像処理及び対象抽出モジュール54は、投光角度データと、距離データと、抽出された測定対象100のデータ(以下、「対象データ」とも言う)を距離計測モジュール52に供給し、対象データを走査角度範囲及びシフト量算出モジュール53に供給する。
距離計測モジュール52は、抽出された対象データから、測定対象100の重心位置までの距離を算出し、投光角度データと抽出された対象データから、測定対象100の例えば重心位置までの方位角度を算出する、第1の算出手段(又は、第1の算出部)の一例である。測定対象100の重心を算出する方法は特に限定されず、例えば周知の方法で算出可能である。また、測定対象100までの方位角度を算出する方法は特に限定されず、例えば周知の方法で算出可能である。
走査角度範囲及びシフト量算出モジュール53は、測定対象100の重心位置までの距離及び方位角度に基づき、走査角度範囲と、走査角度範囲のシフト量の夫々の設定値を算出する。走査角度範囲と、走査角度範囲のシフト量の夫々の設定値は、予めコンピュータ4から入力している所望のサンプリング間隔(即ち、サンプリング密度)となり、測定対象100が走査角度範囲の中心付近で検知されるように算出する。走査角度範囲及びシフト量算出モジュール53は、測定対象100の重心位置までの距離と方位角度に基づき、走査角度範囲とシフト量の設定値を、測定対象100が走査角度範囲の中心付近で検知されるように算出する第2の算出手段(第2の算出部)の一例である。走査角度範囲及びシフト量算出モジュール53は、設定値をセンサ駆動制御回路21に供給して次の測定に進む。走査角度範囲をシフトすることで、走査角度範囲の中心をシフトして、走査角度範囲がカバーする領域を変更することができる。走査角度範囲及びシフト量算出モジュール53は、走査ミラー24を2軸で駆動する駆動制御信号をミラーコントローラ25に供給するためのミラー駆動条件を、画角パラメータ修正回路20を介してセンサ駆動制御回路21に設定する、設定手段の一例である。演算回路5は、上記の如き処理を繰り返すことで、測定対象100までの距離が変わっても、レーザ光によるサンプリング点(又は、測距点)の間隔(即ち、サンプリング間隔)が一定以上の計測を行うことが可能となる。サンプリング間隔は、以下「サンプリング密度」とも言う。
ただし、測定距離が短くなり、走査角度範囲が最大走査角度範囲(即ち、走査ミラー24の最大稼働角度範囲)を超える場合は、最大走査角度範囲で測定を行うことができる。また、走査角度範囲のシフト量が大きくなり、走査角度範囲の片側が最大稼働角度範囲の対応する側(即ち、稼働限界)を超える場合には、最大稼働角度範囲の稼働限界の位置を優先させてシフト量を小さくすることができる。これらの制御は、走査角度範囲及びシフト量算出モジュール53で行うことができる。これにより、過度な駆動による走査ミラー24の破損を防ぐことが可能である。
走査角度範囲内に測定対象100が存在しなくなった場合、画像処理及び対象抽出モジュール54は、対象データを出力しない。この場合、走査角度範囲及びシフト量算出モジュール53は、走査角度範囲を例えば最大走査角度範囲にリセットし、最大走査角度範囲による走査を行うようにしても良い。
コンピュータ4は、例えば図3に示す構成を有しても良い。図3は、コンピュータの一例を示すブロック図である。図3に示すコンピュータ4は、バス40を介して互いに接続されたプロセッサ41と、メモリ42と、入力装置43と、表示装置44と、インタフェース(又は、通信装置)45とを有する。プロセッサ41は、例えば中央処理装置(CPU:Central Processing Unit)等で形成可能であり、メモリ42に記憶されたプログラムを実行して、コンピュータ4全体の制御を司る。メモリ42は、例えば半導体記憶装置、磁気記録媒体、光記録媒体、光磁気記録媒体等の、非一時的な(Non-Transitory)コンピュータ読み取り可能な記憶媒体を含む、コンピュータ読み取り可能な記憶媒体で形成可能である。メモリ42は、プロセッサ41が実行する距離測定プログラムを含む各種プログラム、各種データ等を記憶する。
入力装置43は、ユーザ(又は、操作者)が操作する、例えばキーボード等で形成可能であり、プロセッサ41にコマンド及びデータを入力するのに用いられる。表示装置44は、ユーザに対するメッセージ、距離測定処理の測定結果等を表示する。インタフェース45は、コンピュータ4を他のコンピュータ等と通信可能に接続する。この例では、コンピュータ4は、インタフェース45を介して演算回路5に接続されている。
なお、コンピュータ4は、当該コンピュータ4の構成要素がバス40を介して接続されたハードウェア構成に限定されるものではない。コンピュータ4には、例えば汎用コンピュータを用いても良い。
コンピュータ4の入力装置43及び表示装置44は、省略可能である。また、コンピュータ4のインタフェース45を更に省略したモジュール、半導体チップ等の場合、センサ本体1の出力(即ち、演算回路5の出力)は、バス40に接続されても、プロセッサ41に直接接続されても良い。例えばコンピュータ4を半導体チップ等で形成した場合、半導体チップ等は、センサ本体1内に設けられていても良い。コンピュータ4は、例えば演算回路5を含んでも良い。この場合、コンピュータ4(即ち、プロセッサ41及びメモリ42)は、測定された測定対象までの距離と検知された測定対象の方位とに応じて、サンプリング密度が一定以上となるように測定範囲を変更する変更手段の一例を形成する。
レーザセンサの演算回路5の3次元データ及び距離画像生成モジュール51は、距離画像と、3次元データとを生成するので、3次元(3D:3-Dimensional)センサと呼ばれることもある。
図4は、センサ本体の筐体の一例を示す図である。図4では、説明の便宜上、距離測定装置のセンサ本体1が、パーソナルコンピュータ(PC:Personal Computer)で形成されたコンピュータ4に接続されている例を示す。センサ本体1は、筐体1Aを有し、投光ユニット2、受光ユニット3、及び演算回路5は、筐体1A内に収納されている。この例では、投光ユニット2の投光レンズ26及び受光ユニット3の受光レンズ31が、筐体1Aの1つの側面に配置されている。
なお、コンピュータ4は、レーザセンサとは別体であっても良い。この場合、レーザセンサは、センサ本体1のみを有し、コンピュータ4は、例えばクラウドコンピューティングシステム等で形成しても良い。また、画角パラメータ修正回路20、センサ駆動制御回路21、及びミラーコントローラ25の少なくとも一部は、演算回路5を形成するプロセッサで形成しても良い。
コンピュータ4は更に、演算回路5、画角パラメータ修正回路20、センサ駆動制御回路21、及びミラーコントローラ25の少なくとも一部の処理を実行しても良い。
図5は、第1実施例における距離測定処理の一例を説明するフローチャートである。図5において、ステップS1では、コンピュータ4が、距離測定処理が開始し、サンプリング間隔(サンプリング密度)を含む設定データを設定する。ステップS2では、コンピュータ4が、センサ本体1による測定を開始する。
ステップS3では、演算回路5の3次元データ及び距離画像生成モジュール51が、センサ本体1からの測定データを取得する。取得する測定データには、距離計測回路33からの距離データと、ミラーコントローラ35からのミラー角度データが含まれる。従って、ステップS3では、3次元データ及び距離画像生成モジュール51が、距離データから3次元データを生成し、3次元データから距離画像を生成し、ミラー角度データから投光角度データを生成する。3次元データは、必要に応じてコンピュータ4へ出力可能である。
ステップS4では、演算回路5の画像処理及び対象抽出モジュール54が、ラスタ走査された走査角度範囲内に測定対象100が存在するか否かを判定し、判定結果がNOであると処理はステップS5へ進み、判定結果がYESであると処理はステップS6へ進む。ラスタ走査された走査角度範囲内に測定対象100が存在するか否かは、周知の方法で判定できる。
ステップS5では、画像処理及び対象抽出モジュール54から対象データが出力されないので、演算回路5の走査角度範囲及びシフト量算出モジュール53が、走査角度範囲を最大走査角度範囲にリセットし、処理は後述するステップS9へ進む。ステップS6では、演算回路5の画像処理及び対象抽出モジュール54が、ラスタ走査された走査角度範囲内に測定対象100が存在する場合に、この距離画像から測定対象100を抽出し、抽出された測定対象100の対象データを求める。
ステップS7では、演算回路5の距離計測モジュール52が、抽出された対象データ及び投光角度データから、測定対象100の重心位置までの距離及び方位角度を算出し、必要に応じて記憶する。
ステップS8では、演算回路5の走査角度範囲及びシフト量算出モジュール53が、ステップS7で算出又は記憶された、測定対象100の重心位置までの距離及び方位角度に基づき、予めコンピュータ4から入力している所望のサンプリング密度となるように、走査角度範囲と、走査角度範囲のシフト量の夫々の設定値を算出する。ステップS9では、演算回路5の走査角度範囲及びシフト量算出モジュール53が、走査ミラー24を2軸で駆動する駆動制御信号をミラーコントローラ25に供給するためのミラー駆動条件を、センサ駆動制御回路21に設定する。具体的には、走査角度範囲及びシフト量算出モジュール53は、算出された走査角度範囲と、走査角度範囲のシフト量の夫々の設定値をセンサ駆動制御回路21に供給する。なお、ステップS5において走査角度範囲をリセットしている場合には、ステップS9では、リセットされた走査角度範囲に基づいてミラー駆動条件を設定する。
ステップS10では、コンピュータ4が、距離測定処理の終了したか否かを判定し、判定結果がNOであると処理はステップS3へ戻り、判定結果がYESであると処理は終了する。従って、ステップS10の判定結果がYESとなるまで上記の如き処理を繰り返すことで、測定対象100までの距離が変わっても、サンプリング間隔が一定以上の計測を行うことが可能となる。
本実施例によれば、測定対象までの距離が変動しても、測定範囲内で、一定、又は、一定以上のサンプリング密度で測定対象までの距離を測定できる。これにより、測定範囲を広げて高精度の測定を安定して行いたいという要求と、測定範囲内のサンプリング密度を密にして高い分解能の測定を行いたいという要求との両方を満たすことが可能となる。
図6は、第1実施例における画角パラメータ修正回路の一例を示す機能ブロック図である。図6に示す画角パラメータ修正回路20-1は、画角変更検出部201、修正量参照テーブル部202-1、切り替え回路203、及び加算回路204,205を有する。
図1に示す演算回路5からのシフト量は、画角変更検出部201及び加算回路204に入力される。また、演算回路5からの走査角度範囲は、加算回路205に入力される。画角変更検出部201は、シフト量から画角変更を検出すると、変更直後の1フレーム目(以下、「変更後1フレーム目」とも言う)を示す信号を切り替え回路203に供給すると共に、シフト変更量を修正量参照テーブル部202-1に供給する。画角変更検出部201は、測定対象100までの距離及び方位角度に基づき設定された、走査角度範囲と当該走査角度範囲のシフト量とを含む画角パラメータのうち、シフト量に基づき画角変更を検出する画角変更検出手段(又は、画角変更部)の一例である。画角変更検出手段は、変更直後の1フレーム目を示す信号とシフト変更量を出力する。この例では、走査角度範囲のシフト量は、垂直方向へのシフト量である。
修正量参照テーブル部202-1は、例えば参照テーブル及び補間部を有し、シフト変更量に基づき参照テーブルを参照し、1フレーム目の想定ズレ量dに対応するシフト修正量及び走査角度範囲修正量を読み出して切り替え回路203に供給する。修正量参照テーブル部202-1は、少なくともシフト変更量を用いて、1フレーム目の想定ズレ量dに対応するシフト修正量及び走査角度範囲修正量を生成する修正量生成手段(又は、修正量生成部)の一例である。修正量参照テーブル部202-1は、参照テーブルがシフト変更量に対応するシフト修正量及び走査角度範囲修正量を格納していない場合には、補間部が前後のシフト変更量を用いた線形補間等により対応するシフト修正量及び走査角度範囲修正量を求める。
切り替え回路203は、変更後1フレーム目を示す信号に応答して、シフト修正量を加算回路204に供給すると共に、走査角度範囲修正量を加算回路205に供給する。加算回路204は、シフト量とシフト修正量とを加算した修正シフト量を、センサ駆動制御回路21へ出力する。加算回路205は、走査角度範囲と走査角度範囲修正量とを加算した修正走査角度範囲を、図1に示すセンサ駆動制御回路21へ出力する。切り替え回路203及び加算回路204,205は、変更後1フレーム目を示す信号に応答して、1フレーム目では修正シフト量と修正走査角度範囲とを含む修正画角パラメータを出力する画角パラメータ修正手段(又は、画角パラメータ修正部)の一例である。具体的には、画角パラメータ修正手段は、1フレーム目ではシフト量をシフト修正量で修正した修正シフト量と、走査角度範囲を走査角度範囲修正量で修正した修正走査角度範囲とを含む修正画角パラメータを出力する。画角パラメータ修正手段は、2フレーム目以降ではシフト量と走査角度範囲とを含む画角パラメータを出力する。
この場合、図1に示すセンサ駆動制御回路21及びミラーコントローラ25は、走査ミラー24を水平方向に回転駆動するノンリニアな波形を有する第1の駆動信号を生成して駆動する駆動手段(又は、駆動部)の一例である。駆動手段は、画角パラメータ修正手段の出力に基づいて、走査ミラー24を垂直方向に回転駆動するリニアな波形を有する第2の駆動信号を生成してミラーコントローラ25のLPF250を通して駆動する。
図7は、第1実施例における画角パラメータ修正回路20-1、センサ駆動制御回路21、及びミラーコントローラ25の処理の一例を説明するフローチャートである。画角パラメータ修正回路20-1は、例えばプロセッサで形成可能である。プロセッサが、メモリに格納されたプログラムを実行することで、図6に示す各部201,202-1,203~205の機能を実行可能である。
図7において、ステップS21では、プロセッサが画角変更検出部201の機能を実行して、演算回路5からのシフト量が変化したか否かを判定する。ステップS21の判定結果がYESであると処理はステップS22へ進み、ステップS21の判定結果がNOであると処理は後述するステップS25へ進む。ステップS22では、プロセッサが画角変更検出部201の機能を実行して、変更後1フレーム目を示す信号を切り替え回路203に供給すると共に、変更前後のシフト量からシフト変更量を算出する。ステップS23-1では、プロセッサが修正量参照テーブル部202-1の機能を実行して、シフト変更量を用いて1フレーム目の想定ズレ量に対応するシフト修正量及び走査角度範囲修正量を参照テーブルから求める。ステップS24では、プロセッサが切り替え回路203の機能を実現して、変更後1フレーム目を示す信号に応答して、シフト修正量及び走査角度範囲修正量を加算回路204,205に供給して画角パラメータを修正する。加算回路204は、シフト量とシフト修正量とを加算した修正シフト量を出力し、加算回路205は、走査角度範囲と走査角度範囲修正量とを加算した修正走査角度範囲を出力する。
ステップS25では、センサ駆動制御回路21が加算回路204,205からの修正シフト量及び修正走査角度範囲に応じた駆動波形の駆動制御信号を生成する。ステップS26では、ミラーコントローラ25が、駆動制御信号に従って、走査ミラー24の垂直方向の駆動に用いる鋸波の駆動信号で走査ミラー24を駆動する。なお、走査ミラー24の水平方向の駆動に用いる正弦波の駆動信号については、画角パラメータ修正回路20-1による修正の対象とはならないので、説明は省略する。ステップS26の後、処理はステップS27へ進む。ステップS27では、プロセッサが画角変更検出部201の機能を実行して、演算回路5からの次のフレームのシフト量を取得し、処理はステップS21へ戻る。
図8は、参照テーブルの一例を示す図である。図8に示す例では、参照テーブルは、入力の一例であるシフト変更量(%)と、1フレーム目の想定ズレ量(%)と、出力の一例であるシフト修正量(%)及び走査角度範囲修正量(%)とを格納している。参照テーブルのシフト変更量、想定ズレ量、シフト修正量、及び走査角度範囲修正量は、例えばシフト量のみが変化し、走査角度範囲及びLPF250のカットオフ周波数はいずれも変化しないという条件下で予め算出しておくことが可能である。想定ズレ量は、LPF250のカットオフ周波数とシフト量に応じて変化する。
図9は、垂直方向の測定範囲の一例を説明する図である。この例では、測定対象100が跳馬の演技を行う体操選手であり、体操選手の動きに合わせて画角を変えている。図9中、STは、基準の画角における測定範囲を示し、STを中心として上方に移動した測定範囲をSTで示し、STを中心として下方に移動した測定範囲をSTで示す。なお、図9の例では、測定範囲STで体操選手が跳馬の演技を始め、測定範囲STで体操選手が跳馬を跳び、測定範囲STで体操選手が着地している。
図10は、測定範囲の下方移動時の処理を説明する図である。図10は、図9において例えば測定範囲をSTからSTへ移動した場合に相当する。想定ズレ量がd(deg)の場合、画角パラメータ、即ち、走査角度範囲及びシフト量を、測定範囲の移動直後の1フレーム目についてのみ図10に示すように変更する。具体的には、1フレーム目の測定範囲全体をd/2(deg)だけ下方へオフセットすると共に、上下の高さをd(deg)だけ狭める。これにより、測定範囲の移動直後の1フレーム目と、2フレーム目以降とで、画角を同等に制御することができる。
図11は、測定範囲の上方移動時の処理を説明する図である。図11は、図9において例えば測定範囲をSTからSTへ移動した場合に相当する。想定ズレ量がd(deg)の場合、画角パラメータ、即ち、走査角度範囲及びシフト量を、測定範囲の移動直後の1フレーム目についてのみ図11に示すように変更する。具体的には、1フレーム目の測定範囲全体をd/2(deg)だけ上方へオフセットすると共に、上下の高さをd(deg)だけ広げる。これにより、測定範囲の移動直後の1フレーム目と、2フレーム目以降とで、画角を同等に制御することができる。
図12は、第2実施例における画角パラメータ修正回路の一例を示す機能ブロック図である。図12中、図6と同一部分には同一符号を付す。図12に示す画角パラメータ修正回路20-2は、画角変更検出部201、修正量算出部202-2、切り替え回路203、及び加算回路204,205を有する。
図1に示す演算回路5からのシフト量は、画角変更検出部201及び加算回路204に入力される。また、演算回路5からの走査角度範囲は、修正量算出部202-2及び加算回路205に入力される。画角変更検出部201は、シフト量から画角変更を検出すると、変更後1フレーム目を示す信号を切り替え回路203に供給すると共に、シフト変更量を修正量算出部202-2に供給する。
修正量算出部202-2は、シフト変更量、走査角度範囲、及びミラーコントローラ25のLPF250のカットオフ周波数から求めた、1フレーム目の想定ズレ量dに対応するシフト修正量及び走査角度範囲修正量を算出して切り替え回路203に供給する。修正量算出部202-2は、シフト変更量、走査角度範囲、及びLPF250のカットオフ周波数を用いて1フレーム目の想定ズレ量dに対応するシフト修正量及び走査角度範囲修正量を生成する修正量生成手段の一例である。切り替え回路203は、変更後1フレーム目を示す信号に応答して、シフト修正量を加算回路204に供給すると共に、走査角度範囲修正量を加算回路205に供給する。
加算回路204は、シフト量とシフト修正量とを加算した修正シフト量を、センサ駆動制御回路21へ出力する。加算回路205は、走査角度範囲と走査角度範囲修正量とを加算した修正走査角度範囲を、図1に示すセンサ駆動制御回路21へ出力する。
上記第1実施例の場合のように、例えばシフト量のみが変化し、走査角度範囲及びミラーコントローラ25のLPF250のカットオフ周波数はいずれも変化しないという条件下では、参照テーブルの内容を予め算出しておくことが可能である。一方、走査角度範囲及びミラーコントローラ25のLPF250のカットオフ周波数が変化する場合には、本実施例のように、画角を動的に変更する際にシフト修正量及び走査角度範囲修正量を算出すれば良い。
図13は、第2実施例における画角パラメータ修正回路20-2、センサ駆動制御回路21、及びミラーコントローラ25の処理の一例を説明するフローチャートである。図13中、図7と同一ステップには同一符号を付す。画角パラメータ修正回路20-2は、例えばプロセッサで形成可能である。プロセッサが、メモリに格納されたプログラムを実行することで、図12に示す各部201,202-2,203~205の機能を実行可能である。
図13において、ステップS21では、プロセッサが画角変更検出部201の機能を実行して、演算回路5からのシフト量が変化したか否かを判定する。ステップS21の判定結果がYESであると処理はステップS22へ進み、ステップS21の判定結果がNOであると処理は後述するステップS25へ進む。ステップS22では、プロセッサが画角変更検出部201の機能を実行して、変更後1フレーム目を示す信号を切り替え回路203に供給すると共に、変更前後のシフト量からシフト変更量を算出する。ステップS23-2では、プロセッサが修正量算出部202-2の機能を実行する。具体的には、プロセッサが、シフト変更量、走査角度範囲、及びミラーコントローラ25のLPF250のカットオフ周波数から求めた、1フレーム目の想定ズレ量dに対応するシフト修正量及び走査角度範囲修正量を算出する。ステップS24では、プロセッサが切り替え回路203の機能を実現して、変更後1フレーム目を示す信号に応答して、シフト修正量及び走査角度範囲修正量を加算回路204,205に供給して画角パラメータを修正する。加算回路204は、シフト量とシフト修正量とを加算した修正シフト量を出力し、加算回路205は、走査角度範囲と走査角度範囲修正量とを加算した修正走査角度範囲を出力する。
ステップS25では、センサ駆動制御回路21が加算回路204,205からの修正シフト量及び修正走査角度範囲に応じた駆動波形の駆動制御信号を生成する。ステップS26では、ミラーコントローラ25が、駆動制御信号に従って、走査ミラー24の垂直方向の駆動に用いる鋸波の駆動信号で走査ミラー24を駆動する。なお、走査ミラー24の水平方向の駆動に用いる正弦波の駆動信号については、画角パラメータ修正回路20-2による修正の対象とはならないので、説明は省略する。ステップS26の後、処理はステップS27へ進む。ステップS27では、プロセッサが画角変更検出部201の機能を実行して、演算回路5からの次のフレームのシフト量を取得し、処理はステップS21へ戻る。
図14は、画角パラメータを修正しない場合の測定範囲の垂直方向の移動の一例を説明する図である。図14中、縦軸は走査ミラー24の垂直方向のミラー角度を度(deg)を示し、横軸は時間を秒(s)で示す。また、E1は、測定範囲を垂直方向に移動した直後の1フレーム目で発生する想定ズレ量を示す。
図15は、画角パラメータを修正しない場合の測定範囲の下方移動時を説明する図である。図15中、縦軸は走査ミラー24の垂直方向のミラー角度を度(deg)を示し、横軸は時間を秒(s)で示す。図15は、図14において太い破線で囲まれた部分R1を拡大して示す。また、F1は、測定範囲を垂直方向に移動した直後の1フレーム目だけて変化する画角を示す。
図16は、画角パラメータを修正した場合の測定範囲の垂直方向の移動の一例を説明する図である。図16中、縦軸は走査ミラー24の垂直方向のミラー角度を度(deg)を示し、横軸は時間を秒(s)で示す。図16では、測定範囲を垂直方向に移動した直後の1フレーム目で、図14に示す如き想定ズレ量E1が発生しない。
図17は、画角パラメータを修正した場合の測定範囲の下方移動時を説明する図である。図17中、縦軸は走査ミラー24の垂直方向のミラー角度を度(deg)を示し、横軸は時間を秒(s)で示す。図17は、図16において太い破線で囲まれた部分R2を拡大して示す。図17では、F2で示すように、測定範囲を垂直方向に移動した直後の1フレーム目と、2フレーム目以降とで、画角が一致している。
上記の各実施例では、3Dセンサの走査ミラーを用いた画角制御において、測定対象の位置に応じて決定された、走査角度範囲とシフト量を含む画角パラメータを取得する。取得した画角パラメータを適用した走査ミラーの制御を実施する前に、画角パラメータに基づき画角変更が行われるか否かを判定する。画角変更を行うと判定した場合、画角変更が行われる(変更直後の)1フレーム目に適用する、走査角度範囲修正量とシフト修正量を含む調整用の修正量を決定する。この場合、画角パラメータを調整用の修正量で修正した画角パラメータ、即ち、走査角度範囲とシフト量を夫々走査角度範囲修正量とシフト修正量で修正した修正走査角度範囲と修正シフト量で走査ミラーの制御を実施する。また、この場合、2フレーム目以降については、走査角度範囲とシフト量を含む画角パラメータを適用した走査ミラーの制御を実施する。一方、画角変更を行わないと判定した場合、走査角度範囲とシフト量を含む画角パラメータを適用した走査ミラーの制御を実施する。上記の各実施例によれば、測定範囲が所定方向に移動した直後の1フレーム目と2フレーム目以降とで、画角を同等に制御することができる。このため、上記の各実施例によれば、測定範囲が所定方向に移動しても、1フレーム目と2フレーム目以降とで測定対象の所定方向の位置及び大きさが変化しないので、特に移動速度が速い測定対象に対するレーザセンサの測定精度の低下を抑えることができる。
レーザセンサは、採点支援システム、車載システム等に適用可能である。採点支援システムの一例は、レーザセンサの出力に基づいて、例えば体操演技の採点を支援する。この場合、測定対象100は、体操選手であり、採点は例えば図1に示すコンピュータ4が採点プログラムを実行することにより行える。コンピュータ4は、演算回路5からの3次元データ及び距離画像に基づき、周知の方法で体操選手の骨格情報を取得すれば良い。体操選手の骨格情報には、各フレームにおける体操選手の各関節の3次元位置が含まれるので、骨格情報から体操演技の技を認識して、技の完成度から体操演技を採点することができる。
体操演技の場合、体操選手の移動速度が速く、レーザセンサの画角を体操選手の位置に応じて移動する必要がある。しかし、上記の各実施例によれば、測定範囲が垂直方向に移動しても、移動直後の1フレーム目と2フレーム目以降とで画角を同等に制御できるので、1フレーム目と2フレーム目以降とで体操選手の垂直方向の位置及び大きさが変化しない。この結果、体操選手の移動速度が速くてもレーザセンサの測定精度の低下を抑えることができ、このようなレーザセンサの出力を用いることで、体操演技の採点を高精度に行うことができ、採点支援システムの信頼性を向上できる。
車載システムの一例は、レーザセンサの出力に基づいて、例えば車両の前方の測定対象100の位置、種類等を認識する。この場合、測定対象100の種類は歩行者、他の車両等を含み、測定対象100の認識は例えば図1に示すコンピュータ4が認識プログラムを実行することで行える。コンピュータ4は、演算回路5からの3次元データ及び距離画像に基づき、周知の方法で測定対象100の形状情報を取得すれば良い。測定対象100の形状情報には、各フレームにおける測定対象100の各部の3次元位置が含まれるので、形状情報から測定対象100の位置、種類等を認識して接近の度合、危険度等を判断することができる。なお、レーザセンサを車載システムに適用した場合、レーザセンサ自体が搭載されている車両と共に移動するので、測定対象100の相対的な移動速度が速い場合がある。しかし、相対的な移動速度が速い測定対象100に対しても、上記の各実施例によれば、レーザセンサの測定精度の低下を抑えることができるので、測定対象100の位置、種類等を高精度に認識することができ、車載システムの信頼性を向上できる。
なお、上記の各実施例に付されている第1、第2等の連番は、好ましい実施例の優先順位を表すものではない。
以上、開示のレーザセンサ、ミラー制御方法、及びプログラムを実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。
1 センサ本体
1A 筐体
2 投光ユニット
3 受光ユニット
4 コンピュータ
5 演算回路
20,20-1,20-2 画角パラメータ修正回路
21 センサ駆動制御回路
22 レーザ駆動回路
23 レーザダイオード
24 走査ミラー
25 ミラーコントローラ
26 投光レンズ
31 受光レンズ
32 光検出器
33 距離計測回路
41 プロセッサ
42 メモリ
51 3次元データ及び距離画像生成モジュール
52 距離計測モジュール
53 走査角度範囲及びシフト量算出モジュール
54 画像処理及び対象抽出モジュール
55 データ出力モジュール
201 画角変更検出部
202-1 修正量参照テーブル部
202-2 修正量算出部
203 切り替え回路
204,205 加算回路
250 LPF

Claims (9)

  1. レーザ光を、互いに直交する第1の方向及び第2の方向に回転する走査ミラーで反射して走査角度範囲を走査することで、測定対象を2次元的に走査するレーザセンサであって、
    前記測定対象までの距離及び方位角度に基づき設定された、前記走査角度範囲と前記走査角度範囲の前記第2の方向へのシフト量とを含む画角パラメータのうち、前記シフト量に基づき画角変更を検出すると、変更直後の1フレーム目を示す信号とシフト変更量を出力する画角変更検出手段と、
    少なくとも前記シフト変更量を用いて、前記1フレーム目の想定ズレ量に対応するシフト修正量及び走査角度範囲修正量を生成する修正量生成手段と、
    前記信号に応答して、前記1フレーム目では前記シフト量を前記シフト修正量で修正した修正シフト量と、前記走査角度範囲を前記走査角度範囲修正量で修正した修正走査角度範囲とを含む修正画角パラメータを出力し、2フレーム目以降では前記シフト量と前記走査角度範囲とを含む前記画角パラメータを出力する画角パラメータ修正手段と、
    前記走査ミラーを前記第1の方向に回転駆動するノンリニアな波形を有する第1の駆動信号を生成して前記走査ミラーを駆動すると共に、前記画角パラメータ修正手段の出力に基づいて、前記走査ミラーを前記第2の方向に回転駆動するリニアな波形を有する第2の駆動信号を生成してローパスフィルタを通して前記走査ミラーを駆動する駆動手段と、
    を備えた、レーザセンサ。
  2. 前記修正量生成手段は、前記シフト変更量に基づき参照テーブルを参照し、前記1フレーム目の想定ズレ量に対応するシフト修正量及び走査角度範囲修正量を読み出して出力する、請求項1記載のレーザセンサ。
  3. 前記修正量生成手段は、前記シフト変更量、前記走査角度範囲、及び前記ローパスフィルタのカットオフ周波数から求めた、前記1フレーム目の想定ズレ量に対応する前記シフト修正量及び前記走査角度範囲修正量を算出して出力する、請求項1記載のレーザセンサ。
  4. 前記第1の方向は水平方向であり、
    前記第2の方向は垂直方向であり、
    前記ノンリニアな波形を有する前記第1の駆動信号は正弦波であり、
    前記リニアな波形を有する前記第2の駆動信号は鋸波である、請求項1乃至3のいずれか1項記載のレーザセンサ。
  5. 前記修正量生成手段は、
    前記レーザ光が、前記レーザセンサからある距離だけ離れた位置において、前記走査角度範囲の一端から他端までを、前記第1の方向に移動する距離に相当する幅を有し、前記走査角度範囲の最下点から最上点までを、前記第2の方向に移動する距離に相当する高さを有する測定範囲の前記垂直方向に沿った下方移動時の想定ズレ量がdの場合、前記走査角度範囲及び前記シフト量を、前記測定範囲の移動直後の1フレーム目の測定範囲全体をd/2だけ下方へオフセットすると共に、前記垂直方向に沿った上下の高さをdだけ狭めて、前記測定範囲の移動直後の1フレーム目と、2フレーム目以降とで画角を同等に制御し、
    前記測定範囲の前記垂直方向に沿った上方移動時の想定ズレ量がdの場合、前記走査角度範囲及び前記シフト量を、前記測定範囲の移動直後の1フレーム目の測定範囲全体をd/2だけ上方へオフセットすると共に、前記垂直方向に沿った上下の高さをdだけ広げて、前記測定範囲の移動直後の1フレーム目と、2フレーム目以降とで画角を同等に制御する、請求項4記載のレーザセンサ。
  6. 走査された前記走査角度範囲内に前記測定対象が存在する場合に、前記測定対象の対象データを抽出する対象抽出手段と、
    抽出された前記対象データから、前記測定対象の重心位置までの距離を算出し、前記レーザ光の投光角度を示す投光角度データと抽出された前記対象データから、前記測定対象の重心位置までの方位角度を算出する第1の算出手段と、
    前記測定対象の前記重心位置までの距離及び前記方位角度に基づき、前記走査角度範囲と前記シフト量の夫々の設定値を、前記測定対象が前記走査角度範囲の中心付近で検知されるように算出する第2の算出手段と、
    を更に備えた、請求項1乃至5のいずれか1項記載のレーザセンサ。
  7. レーザセンサにおいて、レーザ光を、互いに直交する第1の方向及び第2の方向に回転する走査ミラーで反射して走査角度範囲を走査することで、測定対象を2次元的に走査させるミラー制御方法であって、
    前記レーザセンサの投光ユニットが、
    前記測定対象までの距離及び方位角度に基づき設定された、前記走査角度範囲と前記走査角度範囲の前記第2の方向へのシフト量とを含む画角パラメータのうち、前記シフト量に基づき画角変更を検出すると、変更直後の1フレーム目を示す信号とシフト変更量を出力し、
    少なくとも前記シフト変更量を用いて、前記1フレーム目の想定ズレ量に対応するシフト修正量及び走査角度範囲修正量を生成し、
    前記信号に応答して、前記1フレーム目では前記シフト量を前記シフト修正量で修正した修正シフト量と、前記走査角度範囲を前記走査角度範囲修正量で修正した修正走査角度範囲とを含む修正画角パラメータを出力し、
    前記走査ミラーを前記第1の方向に回転駆動するノンリニアな波形を有する第1の駆動信号を生成して前記走査ミラーを駆動すると共に、前記修正画角パラメータの出力に基づいて、前記走査ミラーを前記第2の方向に回転駆動するリニアな波形を有する第2の駆動信号を生成してローパスフィルタを通して前記走査ミラーを駆動し、
    2フレーム目以降では前記シフト量と前記走査角度範囲とを含む前記画角パラメータを出力し、
    前記走査ミラーを前記第1の方向に回転駆動するノンリニアな波形を有する第3の駆動信号を生成して前記走査ミラーを駆動すると共に、前記画角パラメータの出力に基づいて、前記走査ミラーを前記第2の方向に回転駆動するリニアな波形を有する第4の駆動信号を生成して前記ローパスフィルタを通して前記走査ミラーを駆動する、
    処理を実行する、ミラー制御方法。
  8. レーザ光を、互いに直交する第1の方向及び第2の方向に回転する走査ミラーで反射して走査角度範囲を走査することで、測定対象を2次元的に走査するレーザセンサにおけるコンピュータに、
    前記測定対象までの距離及び方位角度に基づき設定された、前記走査角度範囲と前記走査角度範囲の前記第2の方向へのシフト量とを含む画角パラメータのうち、前記シフト量に基づき画角変更を検出すると、変更直後の1フレーム目を示す信号とシフト変更量を出力し、
    少なくとも前記シフト変更量を用いて、前記1フレーム目の想定ズレ量に対応するシフト修正量及び走査角度範囲修正量を生成し、
    前記信号に応答して、前記1フレーム目では前記シフト量を前記シフト修正量で修正した修正シフト量と、前記走査角度範囲を前記走査角度範囲修正量で修正した修正走査角度範囲とを含む修正画角パラメータを出力すると共に、2フレーム目以降では前記シフト量と前記走査角度範囲とを含む前記画角パラメータを出力し、
    前記走査ミラーを前記第1の方向に回転駆動するノンリニアな波形を有する第1の駆動信号を生成して前記走査ミラーを駆動させると共に、前記修正画角パラメータ又は前記画角パラメータの出力に基づいて、前記走査ミラーを前記第2の方向に回転駆動するリニアな波形を有する第2の駆動信号を生成してローパスフィルタを通して前記走査ミラーを駆動させる、
    処理を実行させるためのプログラム。
  9. 請求項記載のプログラムを格納した、コンピュータ読み取り可能な記憶媒体。
JP2021550813A 2019-10-01 2019-10-01 レーザセンサ、ミラー制御方法、及びプログラム Active JP7283560B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038759 WO2021064863A1 (ja) 2019-10-01 2019-10-01 レーザセンサ、ミラー制御方法、及びプログラム

Publications (3)

Publication Number Publication Date
JPWO2021064863A1 JPWO2021064863A1 (ja) 2021-04-08
JPWO2021064863A5 JPWO2021064863A5 (ja) 2022-05-23
JP7283560B2 true JP7283560B2 (ja) 2023-05-30

Family

ID=75337847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021550813A Active JP7283560B2 (ja) 2019-10-01 2019-10-01 レーザセンサ、ミラー制御方法、及びプログラム

Country Status (5)

Country Link
US (1) US20220206251A1 (ja)
EP (1) EP4040185A4 (ja)
JP (1) JP7283560B2 (ja)
CN (1) CN114467035A (ja)
WO (1) WO2021064863A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154312A (ja) 2010-01-28 2011-08-11 Nikon Corp レーザ走査型顕微鏡および制御方法
JP2017181209A (ja) 2016-03-29 2017-10-05 富士通株式会社 距離測定装置、距離測定方法及びプログラム
JP2017530343A (ja) 2014-08-15 2017-10-12 エイアイ インコーポレイテッドAEYE, Inc. Ladar伝送のための方法及びシステム
WO2019069369A1 (ja) 2017-10-03 2019-04-11 富士通株式会社 姿勢認識システム、画像補正プログラムおよび画像補正方法
US20190250273A1 (en) 2018-02-12 2019-08-15 Microvision, Inc. Scanning Rangefinding System with Variable Field of View

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524535B2 (ja) * 2008-09-10 2014-06-18 日本信号株式会社 アクチュエータの駆動装置
JP2011180294A (ja) 2010-02-26 2011-09-15 Shinano Kenshi Co Ltd 光走査装置の駆動制御装置
JP5769941B2 (ja) * 2010-09-10 2015-08-26 日本信号株式会社 アクチュエータの駆動装置
JP5806964B2 (ja) 2012-03-29 2015-11-10 京セラドキュメントソリューションズ株式会社 光走査装置及び画像形成装置
US10078132B2 (en) * 2013-04-11 2018-09-18 Konica Minolta, Inc. Scanning optical system and radar
KR102457029B1 (ko) * 2016-09-20 2022-10-24 이노비즈 테크놀로지스 엘티디 Lidar 시스템 및 방법
JP7011164B2 (ja) * 2018-03-15 2022-02-10 ミツミ電機株式会社 アクチュエータ及び光走査装置
CN109270515B (zh) * 2018-11-29 2020-06-16 北京理工大学 可变扫描区域同轴收发扫描激光雷达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154312A (ja) 2010-01-28 2011-08-11 Nikon Corp レーザ走査型顕微鏡および制御方法
JP2017530343A (ja) 2014-08-15 2017-10-12 エイアイ インコーポレイテッドAEYE, Inc. Ladar伝送のための方法及びシステム
JP2017181209A (ja) 2016-03-29 2017-10-05 富士通株式会社 距離測定装置、距離測定方法及びプログラム
WO2019069369A1 (ja) 2017-10-03 2019-04-11 富士通株式会社 姿勢認識システム、画像補正プログラムおよび画像補正方法
US20190250273A1 (en) 2018-02-12 2019-08-15 Microvision, Inc. Scanning Rangefinding System with Variable Field of View

Also Published As

Publication number Publication date
JPWO2021064863A1 (ja) 2021-04-08
EP4040185A1 (en) 2022-08-10
EP4040185A4 (en) 2022-09-21
WO2021064863A1 (ja) 2021-04-08
CN114467035A (zh) 2022-05-10
US20220206251A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
KR102385030B1 (ko) 해상도가 조정가능한 깊이 매핑 장치 및 방법
JP6753107B2 (ja) 距離測定装置、距離測定方法及びプログラム
US10643347B2 (en) Device for measuring position and orientation of imaging apparatus and method therefor
US20230051900A1 (en) Distance measurement apparatus, mirror control method, and computer-readable recording medium storing program
US11754682B2 (en) LIDAR system with spatial beam combining
US11169247B2 (en) Distance measuring apparatus, distance measuring method, and non-transitory computer-readable storage medium for storing distance measuring program
US10705195B2 (en) Distance measuring apparatus and distance measuring method
EP4067813A1 (en) Distance measurement device, moving device, distance measurement method, control method for moving device, and storage medium
CN116829978A (zh) 振镜控制方法、装置、计算机可读存储介质及终端设备
US11828881B2 (en) Steered LIDAR system with arrayed receiver
US11460297B2 (en) Measurement apparatus and control method of measurement apparatus
US11548432B2 (en) Apparatus for emitting road surface information and method thereof
US20220411258A1 (en) Distance measurement apparatus, angle-of-view control method, and computer-readable recording medium storing program
JP7283560B2 (ja) レーザセンサ、ミラー制御方法、及びプログラム
WO2021032298A1 (en) High resolution optical depth scanner
US11796643B2 (en) Adaptive LIDAR scanning methods
US10984539B2 (en) Image device for generating velocity maps
US11525896B2 (en) Scanning mirror system with attached magnet
US11536952B2 (en) Scanning mirror system with attached coil
CN117579793A (zh) 投影校正方法及投影设备
JP2017173258A (ja) 距離測定装置、距離測定方法及びプログラム
US9759909B1 (en) Scanning platforms for scanning laser devices
JP6723307B2 (ja) レーザ距離測定装置
US20210231804A1 (en) Distance measurement correction device, distance measurement correction system, distance measurement correction method, and computer readable medium
WO2022176679A1 (ja) 測距補正装置、測距補正方法、測距補正プログラム、および測距装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7283560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150