JP7281392B2 - LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD - Google Patents

LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD Download PDF

Info

Publication number
JP7281392B2
JP7281392B2 JP2019222191A JP2019222191A JP7281392B2 JP 7281392 B2 JP7281392 B2 JP 7281392B2 JP 2019222191 A JP2019222191 A JP 2019222191A JP 2019222191 A JP2019222191 A JP 2019222191A JP 7281392 B2 JP7281392 B2 JP 7281392B2
Authority
JP
Japan
Prior art keywords
light
transmitting member
detected
intensity
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019222191A
Other languages
Japanese (ja)
Other versions
JP2021090981A (en
Inventor
昂 武田
大岳 福岡
共則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2019222191A priority Critical patent/JP7281392B2/en
Publication of JP2021090981A publication Critical patent/JP2021090981A/en
Application granted granted Critical
Publication of JP7281392B2 publication Critical patent/JP7281392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本開示は、レーザ加工装置及びレーザ加工方法に関する。 The present disclosure relates to a laser processing apparatus and a laser processing method.

この種の分野の技術として、例えば特許文献1に記載のレーザ加工方法がある。このレーザ加工方法は、光透過性を有する第1の光透過性部材と第2の光透過性部材とを接合する方法である。この方法では、第1の光透過性部材及び第2の光透過性部材同士の接触面近傍において、これらの部材の一方の内部に集光点を合わせてレーザ光を照射し、集光点付近で多光子吸収を発生させる。この多光子吸収により、第1の光透過性部材及び第2の光透過性部材に渡る改質領域を形成し、第1の光透過性部材と第2の光透過性部材とを接合する。 As a technique in this type of field, there is a laser processing method described in Patent Document 1, for example. This laser processing method is a method of joining a first light-transmitting member and a second light-transmitting member having light-transmitting properties. In this method, in the vicinity of the contact surface between the first light-transmissive member and the second light-transmissive member, a laser beam is irradiated with the focal point aligned with the interior of one of these members. to generate multiphoton absorption. This multiphoton absorption forms a modified region extending over the first light-transmitting member and the second light-transmitting member, and joins the first light-transmitting member and the second light-transmitting member.

特開2005‐001172号公報JP-A-2005-001172

上述したようなレーザ加工方法では、加工対象物の状態やレーザ光の状態によって加工品質に変動が生じることが考えられる。加工品質が劣化する場合の例としては、クラックの発生などが挙げられるが、これらを目視で評価することは困難である。このため、加工品質の信頼性を向上させる観点から、加工品質を客観的に評価できる技術が望まれている。 In the laser processing method as described above, it is conceivable that the processing quality may vary depending on the state of the object to be processed and the state of the laser beam. An example of deterioration in processing quality is the generation of cracks, which are difficult to visually evaluate. Therefore, from the viewpoint of improving the reliability of processing quality, a technology capable of objectively evaluating processing quality is desired.

本開示は、上記課題の解決のためになされたものであり、加工品質を客観的に評価できるレーザ加工装置及びレーザ加工方法を提供することを目的とする。 An object of the present disclosure is to provide a laser processing apparatus and a laser processing method that can objectively evaluate processing quality.

上記課題の解決のため、本願発明者らは、加工対象物である光透過部材の種類や、レーザ光の照射条件、加工後の改質領域の端面観察などを鋭意研究する中で、レーザ光の照射期間中に光透過部材で発生する光の強度と、改質領域の形成状態との間に一定の相関関係があることを見出した。そこで、この相関関係を利用すれば、目視に依らずに加工品質を客観的に評価でき、加工品質の信頼性を向上できるとの知見を得て、本開示を完成させるに至った。 In order to solve the above problems, the inventors of the present application have made intensive research on the type of light-transmitting member that is the object to be processed, the irradiation conditions of the laser beam, and the observation of the end surface of the modified region after processing. It was found that there is a certain correlation between the intensity of light generated by the light-transmitting member during the irradiation period and the state of formation of the modified region. Therefore, by using this correlation, it is possible to objectively evaluate the processing quality without relying on visual observation, and the knowledge that the reliability of the processing quality can be improved has been obtained, leading to the completion of the present disclosure.

本開示の一側面に係るレーザ加工装置は、第1の光透過性部材と第2の光透過性部材とをレーザ光の照射によって接合するレーザ加工装置であって、第1の光透過性部材及び第2の光透過性部材の接触面近傍において、これらの部材の一方の内部に集光点を合わせてレーザ光を照射し、第1の光透過性部材及び第2の光透過性部材に渡る改質領域を形成する光照射部と、光照射部によるレーザ光の照射に応じて第1の光透過性部材及び第2の光透過性部材で発生する被検出光の強度を検出する光検出部と、を備える。 A laser processing apparatus according to one aspect of the present disclosure is a laser processing apparatus that joins a first light-transmitting member and a second light-transmitting member by irradiating a laser beam, wherein the first light-transmitting member and near the contact surface of the second light-transmitting member, a laser beam is irradiated with the focal point aligned with the inside of one of these members, and the first light-transmitting member and the second light-transmitting member are irradiated with laser light. a light irradiating part forming a crossing modified region; and light for detecting the intensity of the light to be detected generated by the first light transmissive member and the second light transmissive member in response to the irradiation of the laser light by the light irradiating part. and a detector.

このレーザ加工装置では、光照射部によるレーザ光の照射に応じて第1の光透過性部材及び第2の光透過性部材で発生する被検出光の強度を光検出部によって検出する。このレーザ加工装置では、レーザ光の照射期間中に光透過部材で発生する被検出光の強度と改質領域の形成状態との間に存在する一定の相関関係に基づいて、被検出光の強度を加工品質の指標として用いることができる。したがって、目視に依らずに加工品質を客観的に評価でき、加工品質の信頼性を向上できる。 In this laser processing apparatus, the light detecting section detects the intensity of the light to be detected generated by the first light transmitting member and the second light transmitting member in response to the irradiation of the laser light by the light irradiating section. In this laser processing apparatus, the intensity of the light to be detected is determined based on a certain correlation existing between the intensity of the light to be detected generated in the light transmitting member during the irradiation period of the laser light and the state of formation of the modified region. can be used as an index of processing quality. Therefore, the machining quality can be objectively evaluated without relying on visual observation, and the reliability of the machining quality can be improved.

被検出光の強度に対する閾値を保有し、レーザ光の照射期間中の被検出光の強度が閾値以上であったか否かに基づいて、第1の光透過性部材及び第2の光透過性部材の加工品質の良否を判断する判断部を更に備えていてもよい。この場合、被検出光の強度に基づいて、第1の光透過性部材及び第2の光透過性部材の加工品質の良否をより客観的に判断できる。 A threshold for the intensity of the light to be detected is stored, and the first light-transmitting member and the second light-transmitting member are selected based on whether the intensity of the light to be detected during the irradiation period of the laser beam is equal to or greater than the threshold. A judging section for judging whether the processing quality is good or bad may be further provided. In this case, based on the intensity of the light to be detected, it is possible to more objectively judge whether the processing quality of the first light-transmissive member and the second light-transmissive member is good or bad.

被検出光の強度に対する許容範囲を保有し、レーザ光の照射期間中の被検出光の強度が許容範囲から外れた場合に、被検出光の強度が許容範囲内に収まるようにレーザ光の照射条件を制御する制御部を更に備えていてもよい。この場合、被検出光の強度が許容範囲に収まる条件下でレーザ光の照射が行われるため、第1の光透過性部材及び第2の光透過性部材の加工の歩留まりを向上できる。 A permissible range for the intensity of the light to be detected is maintained, and if the intensity of the light to be detected during the irradiation period of the laser light falls outside the permissible range, the laser beam is irradiated so that the intensity of the light to be detected falls within the permissible range. A control section for controlling conditions may be further provided. In this case, since the laser beam is irradiated under the condition that the intensity of the light to be detected is within the allowable range, the processing yield of the first light-transmitting member and the second light-transmitting member can be improved.

光照射部は、レーザ光を集光する集光レンズを有し、光検出部は、被検出光を受光する受光レンズを有し、集光レンズの焦点と受光レンズの焦点とが集光点において一致していてもよい。これにより、集光点付近で発生した被検出光を効率的に検出できる。 The light irradiation section has a condensing lens for condensing the laser light, the light detecting section has a light receiving lens for receiving the light to be detected, and the focal point of the condensing lens and the focal point of the light receiving lens are the condensing points. may match. Thereby, the light to be detected generated near the condensing point can be efficiently detected.

集光レンズ及び受光レンズが一つの対物レンズによって共通化されていてもよい。これにより、構成の簡単化が図られる。 The condenser lens and the light receiving lens may be shared by one objective lens. This simplifies the configuration.

本開示の一側面に係るレーザ加工方法は、第1の光透過性部材と第2の光透過性部材とをレーザ光の照射によって接合するレーザ加工方法であって、第1の光透過性部材及び第2の光透過性部材の接触面近傍において、これらの部材の一方の内部に集光点を合わせてレーザ光を照射し、第1の光透過性部材及び第2の光透過性部材に渡る改質領域を形成する光照射ステップと、光照射部によるレーザ光の照射に応じて第1の光透過性部材及び第2の光透過性部材で発生する被検出光の強度を検出する光検出ステップと、を備える。 A laser processing method according to one aspect of the present disclosure is a laser processing method for joining a first light-transmitting member and a second light-transmitting member by irradiating a laser beam, wherein the first light-transmitting member and near the contact surface of the second light-transmitting member, a laser beam is irradiated with the focal point aligned with the inside of one of these members, and the first light-transmitting member and the second light-transmitting member are irradiated with laser light. a light irradiation step for forming a modified region across a crossing; and light for detecting the intensity of the light to be detected generated in the first light-transmitting member and the second light-transmitting member in response to the irradiation of the laser light by the light irradiation unit. and a detection step.

このレーザ加工方法では、レーザ光の照射に応じて第1の光透過性部材及び第2の光透過性部材で発生する被検出光の強度を検出する。このレーザ加工方法では、レーザ光の照射期間中に光透過部材で発生する被検出光の強度と改質領域の形成状態との間に存在する一定の相関関係に基づいて、被検出光の強度を加工品質の指標として用いる。したがって、目視に依らずに加工品質を客観的に評価でき、加工品質の信頼性を向上できる。 In this laser processing method, the intensity of the light to be detected generated by the first light-transmitting member and the second light-transmitting member in response to the irradiation of the laser light is detected. In this laser processing method, the intensity of the light to be detected is determined based on a certain correlation between the intensity of the light to be detected generated in the light transmitting member during the irradiation period of the laser light and the state of formation of the modified region. is used as an index of processing quality. Therefore, the machining quality can be objectively evaluated without relying on visual observation, and the reliability of the machining quality can be improved.

被検出光の強度に対する閾値を保有し、レーザ光の照射期間中の被検出光の強度が閾値以上であったか否かに基づいて、第1の光透過性部材及び第2の光透過性部材の加工品質の良否を判断する判断ステップを更に備えていてもよい。この場合、被検出光の強度に基づいて、第1の光透過性部材及び第2の光透過性部材の加工品質の良否をより客観的に判断できる。 A threshold for the intensity of the light to be detected is stored, and the first light-transmitting member and the second light-transmitting member are selected based on whether the intensity of the light to be detected during the irradiation period of the laser beam is equal to or greater than the threshold. A judgment step for judging whether the processing quality is good or bad may be further provided. In this case, based on the intensity of the light to be detected, it is possible to more objectively judge whether the processing quality of the first light-transmissive member and the second light-transmissive member is good or bad.

被検出光の強度に対する許容範囲を保有し、レーザ光の照射期間中の被検出光の強度が許容範囲から外れた場合に、被検出光の強度が許容範囲内に収まるようにレーザ光の照射条件を制御する制御ステップを更に備えていてもよい。この場合、被検出光の強度が許容範囲に収まる条件下でレーザ光の照射が行われるため、第1の光透過性部材及び第2の光透過性部材の加工の歩留まりを向上できる。 A permissible range for the intensity of the light to be detected is maintained, and if the intensity of the light to be detected during the irradiation period of the laser light falls outside the permissible range, the laser beam is irradiated so that the intensity of the light to be detected falls within the permissible range. It may further comprise a control step for controlling conditions. In this case, since the laser beam is irradiated under the condition that the intensity of the light to be detected is within the allowable range, the processing yield of the first light-transmitting member and the second light-transmitting member can be improved.

光照射ステップでは、レーザ光を集光レンズによって集光し、光検出ステップでは、被検出光を受光レンズによって受光し、集光レンズの焦点と受光レンズの焦点とを集光点において一致させてもよい。これにより、集光点付近で発生した被検出光を効率的に検出できる。 In the light irradiation step, the laser beam is condensed by the condensing lens, and in the light detection step, the light to be detected is received by the light receiving lens, and the focus of the condensing lens and the focus of the light receiving lens are aligned at the condensing point. good too. Thereby, the light to be detected generated near the condensing point can be efficiently detected.

集光レンズ及び受光レンズを一つの対物レンズによって共通化してもよい。これにより、構成の簡単化が図られる。 The condenser lens and the light receiving lens may be shared by one objective lens. This simplifies the configuration.

本開示によれば、加工品質を客観的に評価できる。 According to the present disclosure, processing quality can be objectively evaluated.

レーザ加工装置の一実施形態を示す概略図である。It is a schematic diagram showing one embodiment of a laser processing device. レーザ光の照射中の第1の光透過性部材及び第2の光透過性部材の状態を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing states of the first light-transmitting member and the second light-transmitting member during laser light irradiation; レーザ光の走査によって第1の光透過性部材及び第2の光透過性部材に形成される改質領域を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing modified regions formed in a first light-transmitting member and a second light-transmitting member by laser beam scanning; 図1に示したレーザ加工装置の動作を示すフローチャートである。2 is a flow chart showing the operation of the laser processing apparatus shown in FIG. 1; 改質領域の断面の観察結果の一例を示す図である。It is a figure which shows an example of the observation result of the cross section of a modified region. 検証試験におけるレーザ光の照射条件を示す図である。It is a figure which shows the irradiation conditions of the laser beam in a verification test. スライドガラスを加工した場合の被検出光のスペクトル強度を紫外域計測系にて計測した結果を示す図である。FIG. 10 is a diagram showing the result of measuring the spectral intensity of light to be detected when a slide glass is processed using an ultraviolet region measurement system; スライドガラスを加工した場合の被検出光のスペクトル強度を可視域計測系にて計測した結果を示す図である。FIG. 10 is a diagram showing the result of measuring the spectral intensity of light to be detected with a visible range measurement system when a slide glass is processed; スライドガラスの場合の被検出光の紫外域のスペクトル強度とクラックの発生の有無との相関を示す図である。FIG. 5 is a diagram showing the correlation between the spectral intensity of the light to be detected in the ultraviolet region and the presence or absence of cracks in the case of a slide glass. スライドガラスの場合の被検出光の可視域のスペクトル強度とクラックの発生の有無との相関を示す図である。FIG. 4 is a diagram showing the correlation between the spectral intensity in the visible region of the light to be detected and the presence or absence of cracks in the case of a slide glass. ホウケイ酸ガラスの場合の被検出光のスペクトル強度とクラックの発生の有無との相関を示す図である。FIG. 5 is a diagram showing the correlation between the spectral intensity of light to be detected and the presence or absence of cracks in the case of borosilicate glass. 液晶ディスプレイ用ガラスの場合の被検出光のスペクトル強度とクラックの発生の有無との相関を示す図である。FIG. 3 is a diagram showing the correlation between the spectral intensity of light to be detected and the presence or absence of cracks in the case of glass for liquid crystal displays.

以下、図面を参照しながら、本開示の一側面に係るレーザ加工装置及びレーザ加工方法の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of a laser processing apparatus and a laser processing method according to one aspect of the present disclosure will be described in detail with reference to the drawings.

図1は、レーザ加工装置の一実施形態を示す概略図である。図1に示すレーザ加工装置1は、第1の光透過性部材S1と第2の光透過性部材S2とをレーザ光L1の照射によって接合する装置である。レーザ加工装置1は、加工対象物である第1の光透過性部材S1及び第2の光透過性部材S2を載置するステージ2と、第1の光透過性部材S1及び第2の光透過性部材S2にレーザ光L1を照射する光照射部3と、第1の光透過性部材S1及び第2の光透過性部材S2で発生する被検出光L2を検出する光検出部4と、これらの構成要素を制御する制御部5とを含んで構成されている。 FIG. 1 is a schematic diagram showing one embodiment of a laser processing apparatus. A laser processing apparatus 1 shown in FIG. 1 is an apparatus that joins a first light-transmitting member S1 and a second light-transmitting member S2 by irradiating a laser beam L1. The laser processing apparatus 1 includes a stage 2 on which a first light-transmitting member S1 and a second light-transmitting member S2, which are objects to be processed, are placed, a light irradiation section 3 for irradiating a laser beam L1 onto the optical member S2; a light detection section 4 for detecting the light to be detected L2 generated by the first light transmissive member S1 and the second light transmissive member S2; and a control unit 5 for controlling the constituent elements of.

第1の光透過性部材S1及び第2の光透過性部材S2は、例えばソーダライムガラス、クリスタルガラス、ホウケイ酸ガラスなどによって構成された板状の部材である。第1の光透過性部材S1及び第2の光透過性部材S2は、透明ポリエチレンテレフタレート、透明アクリル、透明ポリカーボネイトなどによって構成された板状の部材であってもよい。 The first light-transmitting member S1 and the second light-transmitting member S2 are plate-like members made of, for example, soda lime glass, crystal glass, borosilicate glass, or the like. The first light-transmitting member S1 and the second light-transmitting member S2 may be plate-shaped members made of transparent polyethylene terephthalate, transparent acrylic, transparent polycarbonate, or the like.

ステージ2は、例えば3軸方向に移動可能なステージである。ステージ2上には、第1の光透過性部材S1及び第2の光透過性部材S2を載置するサンプル台6が設置されていてもよい。また、ステージ2上には、第1の光透過性部材S1及び第2の光透過性部材S2をサンプル台6に対して押さえる押圧板がエアシリンダ等を介して設けられていてもよい。図1の例では、サンプル台6上で第1の光透過性部材S1に第2の光透過性部材S2が重ね合わされており、レーザ光L1は、第2の光透過性部材S2側から照射されるようになっている。 The stage 2 is, for example, a stage that can move in three axial directions. A sample stage 6 on which the first light-transmitting member S1 and the second light-transmitting member S2 are placed may be installed on the stage 2 . Further, a pressing plate for pressing the first light-transmitting member S1 and the second light-transmitting member S2 against the sample table 6 may be provided on the stage 2 via an air cylinder or the like. In the example of FIG. 1, the second light-transmitting member S2 is superimposed on the first light-transmitting member S1 on the sample table 6, and the laser beam L1 is irradiated from the side of the second light-transmitting member S2. It is designed to be

光照射部3は、レーザ光L1を出射する光源11と、照明光L3を出射する照明12とを有している。光源11は、例えばモードロック再生増幅YAGレーザである。この場合、光源11から出射するレーザ光L1は、例えば繰り返し周波数50kHz/波長1030nm/パルス幅10psのパルス光である。レーザ光L1のスポット径は、例えば直径3μm程度である。当該スポット径は、使用するレンズと当該レンズに入力するビーム径とによって算出され得る。光源11から出射したレーザ光L1は、第1のダイクロイックミラー13によってステージ2上の第1の光透過性部材S1及び第2の光透過性部材S2に向けて反射する。レーザ光L1は、第2のダイクロイックミラー14を透過した後、集光レンズ15によって第1の光透過性部材S1及び第2の光透過性部材S2に照射される。 The light irradiation unit 3 has a light source 11 that emits laser light L1 and an illumination light 12 that emits illumination light L3. The light source 11 is, for example, a mode-locked regenerative amplified YAG laser. In this case, the laser light L1 emitted from the light source 11 is, for example, pulsed light with a repetition frequency of 50 kHz/wavelength of 1030 nm/pulse width of 10 ps. The spot diameter of the laser beam L1 is, for example, about 3 μm in diameter. The spot diameter can be calculated from the lens used and the beam diameter input to the lens. A laser beam L1 emitted from the light source 11 is reflected by the first dichroic mirror 13 toward the first light-transmitting member S1 and the second light-transmitting member S2 on the stage 2 . After passing through the second dichroic mirror 14 , the laser beam L<b>1 is directed through the condenser lens 15 to the first light-transmitting member S<b>1 and the second light-transmitting member S<b>2 .

照明12は、第1の光透過性部材S1及び第2の光透過性部材S2におけるレーザ光L1の照射位置(加工位置)の確認のために設置されている。照明12には、例えば赤外線ランプが用いられる。照明12から出射した照明光L3は、ハーフミラー16によってステージ2上の第1の光透過性部材S1及び第2の光透過性部材S2に向けて反射する。照明光L3は、第1のダイクロイックミラー13を透過した後、レーザ光L1と同軸に第2のダイクロイックミラー14を透過し、集光レンズ15によってレーザ光L1と共に第1の光透過性部材S1及び第2の光透過性部材S2に照射される。第1の光透過性部材S1及び第2の光透過性部材S2で反射した照明光L3は、第2のダイクロイックミラー14、第1のダイクロイックミラー13、ハーフミラー16、及び集光レンズ17を透過して後述の赤外線カメラ21に入射する。 The illumination 12 is installed for confirming the irradiation position (processing position) of the laser beam L1 on the first light-transmitting member S1 and the second light-transmitting member S2. An infrared lamp, for example, is used for the illumination 12 . The illumination light L3 emitted from the illumination 12 is reflected by the half mirror 16 toward the first light transmissive member S1 and the second light transmissive member S2 on the stage 2 . After passing through the first dichroic mirror 13, the illumination light L3 passes through the second dichroic mirror 14 coaxially with the laser light L1, and passes through the first light transmissive member S1 and the first light transmissive member S1 together with the laser light L1 through the condenser lens 15. The second light transmissive member S2 is irradiated. The illumination light L3 reflected by the first light-transmitting member S1 and the second light-transmitting member S2 is transmitted through the second dichroic mirror 14, the first dichroic mirror 13, the half mirror 16, and the condenser lens 17. and enters an infrared camera 21, which will be described later.

図2は、レーザ光の照射中の第1の光透過性部材S1及び第2の光透過性部材S2の状態を示す模式的な断面図である。同図に示すように、第1の光透過性部材S1及び第2の光透過性部材S2の内部にレーザ光L1が照射されると、レーザ光L1の集光点P及びその近傍において多光子吸収(或いは多光子吸収と同等の光吸収)が発生する。この多光子吸収により、第1の光透過性部材S1及び第2の光透過性部材S2に渡る改質領域Saが形成される。改質領域Saは、第1の光透過性部材S1及び第2の光透過性部材S2の構成材料が溶融及び凝固した溶融凝固領域と、第1の光透過性部材S1及び第2の光透過性部材S2の構成材料が炭化した変質領域とを含み得る。 FIG. 2 is a schematic cross-sectional view showing the state of the first light-transmitting member S1 and the second light-transmitting member S2 during laser light irradiation. As shown in the figure, when the inside of the first light-transmitting member S1 and the second light-transmitting member S2 is irradiated with the laser light L1, multiphotons are generated at the focal point P of the laser light L1 and its vicinity. Absorption (or light absorption equivalent to multiphoton absorption) occurs. Due to this multiphoton absorption, a modified region Sa extending over the first light-transmitting member S1 and the second light-transmitting member S2 is formed. The modified region Sa consists of a melt-solidified region in which the constituent materials of the first light-transmitting member S1 and the second light-transmitting member S2 are melted and solidified, and the first light-transmitting member S1 and the second light-transmitting member S1. It may include an altered region in which the constituent material of the structural member S2 is carbonized.

図2の例では、レーザ光L1の集光点Pは、レーザ光L1の照射側とは反対側となる第1の光透過性部材S1の内部において、第1の光透過性部材S1と第2の光透過性部材S2との接触面Cの近傍に位置している。レーザ光L1による多光子吸収は、集光点Pを起点にして発生し、改質領域Saは、第1の光透過性部材S1側の集光点Pから接触面Cを超えて第2の光透過性部材S2の内部まで達するように形成される。図3に示すように、レーザ光L1に対してステージ2を走査し、レーザ光L1の集光点Pを接合予定線Wに沿って接合開始点Waから接合終了点Wbまで移動させることにより、接合予定線Wに沿って改質領域Saが連続した状態で形成される。第1の光透過性部材S1と第2の光透過性部材S2とは、主に改質領域Saにおける溶融凝固領域によって融着し、接着剤のような中間材料を用いることなく互いに強固に接合される。レーザ光L1に対するステージ2の走査速度は、レーザ光L1の繰り返し周波数が50kHzの場合に、例えば10mm/s~30mm/sである。 In the example of FIG. 2, the focal point P of the laser light L1 is located inside the first light transmissive member S1, which is on the side opposite to the irradiation side of the laser light L1. 2 in the vicinity of the contact surface C with the optically transparent member S2. Multiphoton absorption by the laser beam L1 occurs starting from the condensing point P, and the modified region Sa extends from the condensing point P on the side of the first light transmissive member S1 across the contact surface C to the second It is formed so as to reach the inside of the light transmissive member S2. As shown in FIG. 3, by scanning the stage 2 with respect to the laser light L1 and moving the converging point P of the laser light L1 along the planned joining line W from the joining start point Wa to the joining end point Wb, The modified region Sa is formed continuously along the planned joining line W. As shown in FIG. The first light-transmitting member S1 and the second light-transmitting member S2 are fused mainly by the melt-solidified region in the modified region Sa, and are firmly joined to each other without using an intermediate material such as an adhesive. be done. The scanning speed of the stage 2 with respect to the laser beam L1 is, for example, 10 mm/s to 30 mm/s when the repetition frequency of the laser beam L1 is 50 kHz.

光検出部4は、照明光L3を検出する赤外線カメラ21と、光スペクトルを測定する分光器22とを有している。赤外線カメラ21は、検出した照明光L3に応じた画像データを生成し、制御部5に出力する。レーザ光L1の照射に応じて第1の光透過性部材S1及び第2の光透過性部材S2で発生する被検出光L2は、例えばプラズマ光であり、特異なピークを持たないホワイトスペクトルである。被検出光L2は、集光点Pにおいて集光レンズ15の焦点と一致する焦点を有する受光レンズ23によって受光される。本実施形態では、レーザ光L1を集光する集光レンズ15と、被検出光L2を受光する受光レンズ23とが一つの対物レンズ24によって共通化されている。これにより、レーザ光L1の光路の一部と被検出光L2の光路の一部とが同軸となっている。プラズマ光は、発生点から全方位に放射され、受光レンズ23に向かう一部の成分が受光レンズ23で受光される。 The light detection unit 4 has an infrared camera 21 that detects the illumination light L3 and a spectroscope 22 that measures the light spectrum. The infrared camera 21 generates image data corresponding to the detected illumination light L<b>3 and outputs the image data to the control unit 5 . The light to be detected L2 generated by the first light-transmitting member S1 and the second light-transmitting member S2 in response to the irradiation of the laser light L1 is plasma light, for example, and has a white spectrum without a specific peak. . The light to be detected L2 is received by a light receiving lens 23 having a focal point that coincides with the focal point of the condensing lens 15 at the condensing point P. As shown in FIG. In this embodiment, one objective lens 24 is used in common for the condenser lens 15 for condensing the laser beam L1 and the light receiving lens 23 for receiving the light L2 to be detected. As a result, part of the optical path of the laser beam L1 and part of the optical path of the light L2 to be detected are coaxial. The plasma light is radiated in all directions from the generation point, and a part of the components directed toward the light receiving lens 23 is received by the light receiving lens 23 .

受光レンズ23で受光された被検出光L2は、第2のダイクロイックミラー14で反射し、レーザ光L1及び照明光L3の光路から分離する。第2のダイクロイックミラー14で反射した被検出光L2は、ミラー25で反射した後、NDフィルタ26を通過してレンズ27で集光され、光ファイバ28を介して分光器22に入射する。分光器22は、被検出光L2の光スペクトルの計測データを制御部5に出力する。 The light to be detected L2 received by the light receiving lens 23 is reflected by the second dichroic mirror 14 and separated from the optical paths of the laser light L1 and the illumination light L3. The light to be detected L2 reflected by the second dichroic mirror 14 is reflected by the mirror 25, passes through the ND filter 26, is collected by the lens 27, and enters the spectroscope 22 via the optical fiber . The spectroscope 22 outputs measurement data of the optical spectrum of the light L2 to be detected to the controller 5 .

制御部5は、プロセッサ、メモリ等を含んで構成されるコンピュータシステムである。制御部5は、各種の制御機能をプロセッサによって実行する。コンピュータシステムとしては、例えばパーソナルコンピュータ、マイクロコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。制御部5は、PLC(programmable logic controller)によって構成されていてもよく、FPGA(Field-programmable gate array)等の集積回路によって構成されていてもよい。 The control unit 5 is a computer system including a processor, memory, and the like. The control unit 5 executes various control functions by means of a processor. Examples of computer systems include personal computers, microcomputers, cloud servers, and smart devices (smartphones, tablet terminals, etc.). The control unit 5 may be configured by a PLC (programmable logic controller), or may be configured by an integrated circuit such as an FPGA (Field-programmable gate array).

制御部5は、所定の入力操作を受け付け、光源11からのレーザ光L1の出力、照明12からの照明光L3の出力、ステージ2の駆動などを制御する。制御部5は、赤外線カメラ21からの画像データを受信すると、受信した画像データに基づいて、第1の光透過性部材S1及び第2の光透過性部材S2におけるレーザ光L1の照射位置を示す画像をモニタ等に表示する。また、制御部5は、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質の良否を判断する判断部31として機能する。 The control unit 5 receives a predetermined input operation, and controls the output of the laser light L1 from the light source 11, the output of the illumination light L3 from the illumination 12, the driving of the stage 2, and the like. Upon receiving the image data from the infrared camera 21, the control unit 5 indicates the irradiation position of the laser light L1 on the first light-transmitting member S1 and the second light-transmitting member S2 based on the received image data. Display the image on a monitor or the like. The control unit 5 also functions as a determination unit 31 that determines whether the processing quality of the first light-transmitting member S1 and the second light-transmitting member S2 is good or bad.

判断部31としての制御部5は、被検出光L2の強度に対する閾値を保有している。判断部31は、分光器22から受信した計測データに基づいて、レーザ光L1の照射期間中の被検出光L2の強度が閾値以上である場合には、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質が正常であると判断する。判断部31は、レーザ光L1の照射期間中の被検出光L2の強度が閾値以上である場合には、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質が異常であると判断する。 The control unit 5 as the determination unit 31 has a threshold for the intensity of the light L2 to be detected. Based on the measurement data received from the spectroscope 22, the determination unit 31 determines that the intensity of the light L2 to be detected during the irradiation period of the laser light L1 is equal to or greater than the threshold, the first light transmissive member S1 and the second It is judged that the processing quality of the second light transmitting member S2 is normal. If the intensity of the light L2 to be detected during the irradiation period of the laser light L1 is equal to or greater than the threshold value, the determination unit 31 determines that the processing quality of the first light transmissive member S1 and the second light transmissive member S2 is abnormal. We judge that it is.

また、制御部5は、被検出光L2の強度に対する許容範囲を保有していてもよい。この場合、レーザ光L1の照射期間中の被検出光L2の強度が許容範囲から外れた場合に、被検出光L2の強度が許容範囲内に収まるようにレーザ光L1の照射条件を制御する。制御する照射条件としては、例えばレーザ光L1の強度、繰り返し周波数、スポット径、走査速度などが挙げられる。判断部31が保有する閾値及び許容範囲の設定にあたっては、第1の光透過性部材S1及び第2の光透過性部材S2と同等の部材の加工を事前に複数回実施し、得られた接合体における改質領域Saの断面をそれぞれ観察する。そして、加工品質が正常であると判断された接合体を加工した際のレーザ光L1の照射期間中の被検出光L2の強度に基づいて閾値及び許容範囲を設定する。 Also, the control unit 5 may have an allowable range for the intensity of the light L2 to be detected. In this case, when the intensity of the light L2 to be detected during the irradiation period of the laser light L1 is out of the allowable range, the irradiation conditions of the laser light L1 are controlled so that the intensity of the light L2 to be detected falls within the allowable range. The irradiation conditions to be controlled include, for example, the intensity of the laser beam L1, repetition frequency, spot diameter, scanning speed, and the like. In setting the threshold value and the allowable range held by the determination unit 31, the members equivalent to the first light-transmitting member S1 and the second light-transmitting member S2 are processed a plurality of times in advance, and the obtained bonding A cross-section of the modified region Sa in the body is observed respectively. Then, the threshold value and the allowable range are set based on the intensity of the light to be detected L2 during the irradiation period of the laser light L1 when the joined body judged to have normal processing quality is processed.

図4は、レーザ加工装置1の動作を示すフローチャートである。図4に示すように、レーザ加工装置1では、まず、ステージ2上に第1の光透過性部材S1及び第2の光透過性部材S2が重ね合わされた状態でセットされる。次に、接合開始点Waにレーザ光L1の照射位置が一致し、かつレーザ光L1の集光点Pが第1の光透過性部材S1及び第2の光透過性部材S2の内部に位置するように光照射部3が制御される(ステップS01)。レーザ光L1の照射位置を接合開始点Waに一致させた後、レーザ光L1の照射及びレーザ光L1に対するステージ2の走査が開始される(ステップS02)。また、レーザ光L1の照射に応じて第1の光透過性部材S1及び第2の光透過性部材S2で発生する被検出光L2の強度の検出が行われる(ステップS03)。 FIG. 4 is a flow chart showing the operation of the laser processing apparatus 1. As shown in FIG. As shown in FIG. 4, in the laser processing apparatus 1, first, the first light-transmitting member S1 and the second light-transmitting member S2 are set on the stage 2 in a state of being superimposed. Next, the irradiation position of the laser beam L1 coincides with the joining start point Wa, and the condensing point P of the laser beam L1 is located inside the first light-transmitting member S1 and the second light-transmitting member S2. The light irradiation unit 3 is controlled as follows (step S01). After aligning the irradiation position of the laser beam L1 with the joining start point Wa, irradiation of the laser beam L1 and scanning of the stage 2 with respect to the laser beam L1 are started (step S02). Further, the intensity of the light to be detected L2 generated by the first light-transmissive member S1 and the second light-transmissive member S2 in accordance with the irradiation of the laser light L1 is detected (step S03).

レーザ光L1の照射期間中は、被検出光L2の強度が許容範囲内に収まっているか否かの判断がなされる(ステップS04)。ステップS04において、被検出光L2の強度が許容範囲内に収まっていないと判断された場合、被検出光L2の強度が許容範囲内に収まるようにレーザ光L1の照射条件が制御される(ステップS05)。レーザ光L1の照射条件を制御した後は、再びステップS03に戻り、被検出光L2の強度が許容範囲内に収まっているか否かの判断がなされる。ステップS05でのレーザ光L1の照射条件の制御を複数回繰り返してもステップS04で被検出光L2の強度が許容範囲内に収まっていないと判断された場合には、第1の光透過性部材S1及び第2の光透過性部材S2の加工を停止(レーザ光L1の出力を停止)してもよい。 During the irradiation period of the laser beam L1, it is determined whether or not the intensity of the light L2 to be detected is within the allowable range (step S04). If it is determined in step S04 that the intensity of the light L2 to be detected is not within the permissible range, the irradiation conditions of the laser beam L1 are controlled so that the intensity of the light L2 to be detected is within the permissible range (step S04). S05). After controlling the irradiation conditions of the laser beam L1, the process returns to step S03 to determine whether the intensity of the light L2 to be detected is within the allowable range. If it is determined in step S04 that the intensity of the light to be detected L2 is not within the allowable range even after repeating the control of the irradiation conditions of the laser beam L1 in step S05 a plurality of times, the first light transmissive member The processing of S1 and the second light transmissive member S2 may be stopped (the output of the laser beam L1 may be stopped).

ステップS05において、被検出光L2の強度が許容範囲内に収まっていると判断された場合、レーザ光L1の照射位置が接合終了点Wbに到達したか否かが判断される(ステップS06)。ステップS06において、レーザ光L1の照射位置が接合終了点Wbに到達していないと判断された場合には、ステップS03~ステップS05の処理が繰り返し実行される。ステップS06において、レーザ光L1の照射位置が接合終了点Wbに到達したと判断された場合には、レーザ光L1の照射及びレーザ光L1に対するステージ2の走査が終了する(ステップS07)。 If it is determined in step S05 that the intensity of the light L2 to be detected is within the allowable range, it is determined whether or not the irradiation position of the laser light L1 has reached the joining end point Wb (step S06). If it is determined in step S06 that the irradiation position of the laser beam L1 has not reached the joining end point Wb, the processes of steps S03 to S05 are repeatedly executed. If it is determined in step S06 that the irradiation position of the laser beam L1 has reached the bonding end point Wb, the irradiation of the laser beam L1 and the scanning of the stage 2 with respect to the laser beam L1 are finished (step S07).

次に、加工が終了した第1の光透過性部材S1及び第2の光透過性部材S2について、レーザ光L1の照射期間中の被検出光L2の強度が閾値以上であったか否かを判断する(ステップS08)。この判断は、レーザ光L1の照射期間中の被検出光L2の強度の時間平均と閾値との比較に基づくものであってもよく、レーザ光L1の照射期間中の被検出光L2の強度の最低値と閾値との比較に基づくものであってもよい。レーザ光L1の照射期間中の被検出光L2の強度が閾値以上であった場合、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質が正常であると判断される(ステップS09)。レーザ光L1の照射期間中の被検出光L2の強度が閾値未満であった場合、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質が異常であると判断される(ステップS10)。 Next, for the first light-transmitting member S1 and the second light-transmitting member S2 that have been processed, it is determined whether or not the intensity of the light to be detected L2 during the irradiation period of the laser light L1 is equal to or greater than the threshold. (Step S08). This determination may be based on a comparison between the time average of the intensity of the light L2 to be detected during the irradiation period of the laser light L1 and a threshold value. It may be based on a comparison of a minimum value and a threshold. When the intensity of the light L2 to be detected during the irradiation period of the laser light L1 is equal to or greater than the threshold, it is determined that the processing quality of the first light transmissive member S1 and the second light transmissive member S2 is normal. (Step S09). When the intensity of the light L2 to be detected during the irradiation period of the laser light L1 is less than the threshold, it is determined that the processing quality of the first light transmissive member S1 and the second light transmissive member S2 is abnormal. (Step S10).

第1の光透過性部材S1及び第2の光透過性部材S2の加工品質が正常であると判断された場合、更に加工品質のクラス判定を行ってもよい。この場合、例えばレーザ光L1の照射期間中の被検出光L2の理想的な強度の値との比に基づいて加工品質のクラス判定が行われる。例えば被検出光L2の理想的な強度の値を100とした場合に、レーザ光L1の照射期間中の被検出光L2の強度が90以上であればクラスA、80以上90未満であればクラスB、70以上80未満であればクラスC、といった内容でクラス判定を行うことにより、加工品質が正常と判断された第1の光透過性部材S1及び第2の光透過性部材S2を用途ごとに分類することができる。 If it is determined that the processing quality of the first light-transmitting member S1 and the second light-transmitting member S2 is normal, the processing quality may be further classified. In this case, for example, the processing quality class determination is performed based on the ratio of the ideal intensity value of the light L2 to be detected during the irradiation period of the laser light L1. For example, when the ideal intensity value of the light L2 to be detected is 100, the intensity of the light L2 to be detected during the irradiation period of the laser light L1 is 90 or more, class A, and 80 or more and less than 90 is class A. B, Class C if it is 70 or more and less than 80. By performing class determination, the first light-transmitting member S1 and the second light-transmitting member S2 that are determined to have normal processing quality are selected for each application. can be classified into

続いて、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質と、被検出光L2の強度との関係性について詳述する。 Next, the relationship between the processing quality of the first light-transmitting member S1 and the second light-transmitting member S2 and the intensity of the light L2 to be detected will be described in detail.

判断部31で判断する加工品質の項目としては、例えば改質領域Saにおけるクラックの有無が挙げられる。図4は、改質領域の断面の観察結果の一例を示す図である。図5(a)は、加工品質が正常である(クラックが無い)場合の改質領域の断面である。図5(b)は、加工品質が異常である(クラックがある)場合の改質領域の断面である。改質領域Saは、レーザ光L1のパルスが第1の光透過性部材S1及び第2の光透過性部材S2に対して時間的・空間的に狭ピッチで照射され、部材内で多光子吸収が発生することにより、第1の光透過性部材S1及び第2の光透過性部材S2の温度が局所的に融解温度に達することによって形成される。レーザ光L1がパルスである場合、スポット径、繰り返し周波数、及び走査速度の調整により、部材の同一箇所にパルスを複数回照射することができる。これにより、前パルスによる加熱が緩和される前に次パルスによる加熱がなされ、部材の温度を効率的に融解温度まで高めることが可能となる。 The processing quality items determined by the determination unit 31 include, for example, the presence or absence of cracks in the modified region Sa. FIG. 4 is a diagram showing an example of observation results of a cross section of a modified region. FIG. 5(a) is a cross section of the modified region when the processing quality is normal (no cracks). FIG. 5(b) is a cross section of the modified region when the processing quality is abnormal (there are cracks). In the modified region Sa, pulses of the laser light L1 are irradiated to the first light-transmitting member S1 and the second light-transmitting member S2 at narrow pitches temporally and spatially, and multiphoton absorption occurs in the members. is generated, the temperature of the first light-transmitting member S1 and the second light-transmitting member S2 locally reaches the melting temperature. When the laser light L1 is a pulse, it is possible to irradiate the same portion of the member with the pulse multiple times by adjusting the spot diameter, repetition frequency, and scanning speed. As a result, the heating by the next pulse is performed before the heating by the previous pulse is alleviated, and the temperature of the member can be efficiently raised to the melting temperature.

図5(a)の例では、改質領域Saは、第1の光透過性部材S1の内部におけるレーザ光L1の集光点Pから接触面Cを超えて第2の光透過性部材S2の内部まで達するように形成されている。改質領域Saは、集光点Pから第2の光透過性部材S2側に向かって徐々に幅広となり、第2の光透過性部材S2側の端部では、丸みを帯びている。改質領域Saには、やや黒ずんで見える内側領域と、内側領域を囲む外側領域とが含まれ、レーザ光L1の照射によって生じるプラズマ光は、主に内側領域において発生すると考えられる。図5(b)の例では、改質領域Saの形状自体は、図5(a)の場合と同様であるが、集光点Pの近傍においてレーザ光L1の入射側と反対側にクラックEが生じている。クラックEは、接合予定線W(図3参照)に沿って改質領域Saと共に連続的に形成され得る。このため、クラックEが生じている場合には、第1の光透過性部材S1及び第2の光透過性部材S2の接合強度が不十分となることが考えられる。 In the example of FIG. 5A, the modified region Sa extends from the focal point P of the laser beam L1 inside the first light-transmitting member S1 beyond the contact surface C to the second light-transmitting member S2. It is formed so as to reach the inside. The modified region Sa gradually widens from the condensing point P toward the second light-transmitting member S2 side, and has a rounded edge on the second light-transmitting member S2 side. The modified region Sa includes an inner region that looks slightly darkened and an outer region surrounding the inner region, and plasma light generated by irradiation with the laser beam L1 is considered to be generated mainly in the inner region. In the example of FIG. 5(b), the shape of the modified region Sa itself is the same as in the case of FIG. 5(a). is occurring. The crack E can be continuously formed along the planned joining line W (see FIG. 3) along with the modified region Sa. Therefore, when the crack E occurs, it is conceivable that the bonding strength between the first light-transmitting member S1 and the second light-transmitting member S2 becomes insufficient.

このような課題に対し、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質と、被検出光L2の強度との関係性を調べるため、以下のような検証試験を実施した。この検証試験では、一般的なスライドガラス、ホウケイ酸ガラス、及び液晶ディスプレイ用ガラスの3種類のガラスを光透過性部材として用意した。スライドガラスには、松浪硝子工業社製S1126を用い、ホウケイ酸ガラスには、ショット社製D263を用いた。また、液晶ディスプレイ用ガラスには、コーニング社製NXTを用いた。 In order to investigate the relationship between the processing quality of the first light-transmitting member S1 and the second light-transmitting member S2 and the intensity of the light L2 to be detected, the following verification test was conducted to address such problems. carried out. In this verification test, three types of glass, ie, general slide glass, borosilicate glass, and liquid crystal display glass, were prepared as light-transmissive members. S1126 manufactured by Matsunami Glass Co., Ltd. was used as the slide glass, and D263 manufactured by Schott Co., Ltd. was used as the borosilicate glass. Corning NXT was used as the liquid crystal display glass.

図6は、検証試験におけるレーザ光の照射条件を示す図である。検証試験では、3種類の異なるガラスに対して種々の照射条件でレーザ光を照射し、レーザ光の照射期間中の被検出光のスペクトル測定を行った。ここでは、No.1~No.11の計11種類の照射条件を設定した。各照射条件におけるレーザ光のエネルギー、パルス幅、収差補正、及び偏光状態は、図6に示すとおりである。 FIG. 6 is a diagram showing irradiation conditions of laser light in the verification test. In the verification test, three different types of glass were irradiated with laser light under various irradiation conditions, and the spectrum of the light to be detected during the irradiation period of the laser light was measured. Here, No. 1 to No. A total of 11 types of irradiation conditions were set. The energy, pulse width, aberration correction, and polarization state of the laser light under each irradiation condition are as shown in FIG.

図7は、スライドガラスを加工した場合の被検出光のスペクトル強度を紫外域計測系にて計測した結果を示す図である。図8は、スライドガラスを加工した場合の被検出光のスペクトル強度を可視域計測系にて計測した結果を示す図である。図7及び図8では、横軸に波長、縦軸に強度(任意単位)を示し、上記照射条件No.1~No.11の測定結果を全て重ねて示している。図7及び図8の結果から、紫外域計測系及び可視域計測系のいずれを用いた場合であっても、照射条件間で被検出光のスペクトル強度に特異なピークは見られず、被検出光のスペクトル波形を保ったまた強度のみが変動していることが分かる。したがって、判断部での加工品質の判断には、スペクトル強度の比較的高い波長を選択的に用いればよいことが分かる。 FIG. 7 is a diagram showing the result of measuring the spectral intensity of the light to be detected when the slide glass was processed by the ultraviolet region measurement system. FIG. 8 is a diagram showing the result of measuring the spectral intensity of the light to be detected when the slide glass was processed by the visible range measurement system. 7 and 8, the horizontal axis indicates wavelength and the vertical axis indicates intensity (arbitrary unit). 1 to No. All 11 measurement results are superimposed. From the results of FIGS. 7 and 8, no specific peak was observed in the spectral intensity of the light to be detected between the irradiation conditions, regardless of whether the ultraviolet range measurement system or the visible range measurement system was used. It can be seen that only the intensity fluctuates while maintaining the spectral waveform of the light. Therefore, it can be seen that a wavelength having a relatively high spectral intensity should be selectively used for the judgment of the processing quality in the judging section.

図9及び図10は、被検出光のスペクトル強度とクラックの発生の有無との相関を示す図である。図9及び図10では、横軸に照射条件のNo.を示し、縦軸左にスペクトル強度を示している。図9では、紫外域(波長430nm)のスペクトル強度を示し、図10では、可視域(波長570nm、615nm、670nm)のスペクトル強度を示している。また、図9及び図10では、縦軸右に改質領域のサイズを示している。WOUTは、外側領域を含めた改質領域の最大幅、HOUTは、外側領域を含めた改質領域の最大高さである(図4参照)。 9 and 10 are diagrams showing the correlation between the spectral intensity of the light to be detected and the presence or absence of cracks. In FIGS. 9 and 10, the horizontal axis indicates the irradiation condition number. , and the spectrum intensity is shown on the left side of the vertical axis. 9 shows spectral intensity in the ultraviolet region (wavelength 430 nm), and FIG. 10 shows spectral intensity in the visible region (wavelengths 570 nm, 615 nm, and 670 nm). 9 and 10, the size of the modified region is shown on the right side of the vertical axis. W OUT is the maximum width of the modified region including the outer region, and H OUT is the maximum height of the modified region including the outer region (see FIG. 4).

図9及び図10の結果では、破線領域で示した照射条件No.4~No.8では改質領域にクラックが発生しておらず、破線領域外の照射条件Nо.1~No.3及び照射条件Nо.9~No.11では、改質領域にクラックが発生していた。紫外域の計測では、改質領域にクラックが発生していなかった照射条件No.4~No.8では、被検出光のスペクトル強度がいずれも2500以上であり、改質領域にクラックが発生していた照射条件Nо.1~No.3及び照射条件Nо.9~No.11では、被検出光のスペクトル強度がいずれも2500未満であった。また、可視域の計測でも、改質領域にクラックが発生していなかった照射条件No.4~No.8では、改質領域にクラックが発生していた照射条件Nо.1~No.3及び照射条件Nо.9~No.11に比べて各波長での被検出光のスペクトル強度が高くなっているという結果が得られた。 In the results of FIGS. 9 and 10, the irradiation condition No. indicated by the dashed line area. 4 to No. 8, no cracks occurred in the modified region, and irradiation condition No. 8 outside the broken line region. 1 to No. 3 and irradiation condition No. 9 to No. In No. 11, cracks were generated in the modified region. In the measurement in the ultraviolet region, irradiation condition No. 1 under which no cracks occurred in the modified region. 4 to No. 8, the spectral intensity of the light to be detected was 2500 or more, and under irradiation condition No. 8 cracks were generated in the modified region. 1 to No. 3 and irradiation condition No. 9 to No. 11, the spectral intensity of the light to be detected was all less than 2500. In addition, even in the measurement in the visible range, irradiation condition No. 1 under which no cracks occurred in the modified region. 4 to No. 8, irradiation condition No. 8 under which cracks occurred in the modified region. 1 to No. 3 and irradiation condition No. 9 to No. 11, the spectral intensity of the light to be detected at each wavelength was higher.

以上のことから、被検出光のスペクトル強度が一定以上に高い場合に改質領域でのクラックの発生が抑制される傾向があることが分かる。一方、スペクトル強度と改質領域のサイズとの相関、及び改質領域のサイズとクラックの発生との相関は、確認できなかった。紫外域の計測と可視域の計測との間では、被検出光のスペクトル強度とクラックの発生の有無との相関に有意な差は見られなかった。 From the above, it can be seen that crack generation in the modified region tends to be suppressed when the spectral intensity of the light to be detected is higher than a certain level. On the other hand, the correlation between the spectral intensity and the size of the modified region and the correlation between the size of the modified region and crack generation could not be confirmed. No significant difference was found in the correlation between the spectral intensity of the detected light and the presence or absence of cracks between the measurement in the ultraviolet region and the measurement in the visible region.

図11は、ホウケイ酸ガラスの場合の相関を示す図であり、図12は、液晶ディスプレイ用ガラスの場合の相関を示す図である。図11及び図12は、いずれも可視域の計測結果である。図11の結果では、破線領域で示した照射条件No.10のみで改質領域にクラックが発生した。この照射条件No.10では、被検出光のスペクトル強度が200未満であった。改質領域にクラックが発生しなかった照射条件のうち、No.2及びNo.3は、被検出光のスペクトル強度が200未満であったが、他の照射条件では被検出光のスペクトル強度が200いずれも以上であった。また、スライドガラスの場合と比べて、スペクトル強度と改質領域のサイズとの間に一定の相関がみられた。 FIG. 11 shows the correlation for borosilicate glass, and FIG. 12 shows the correlation for liquid crystal display glass. 11 and 12 are both measurement results of the visible region. In the results of FIG. 11, irradiation condition No. 1 indicated by the dashed line area. Only No. 10 had cracks in the modified region. This irradiation condition No. 10, the spectral intensity of the detected light was less than 200. Of the irradiation conditions under which cracks did not occur in the modified region, No. 2 and No. In No. 3, the spectral intensity of the light to be detected was less than 200, but the spectral intensity of the light to be detected was 200 or more under all other irradiation conditions. In addition, a certain correlation was observed between the spectral intensity and the size of the modified region compared to the slide glass.

図12の結果では、破線領域で示した照射条件No.4~No.6では改質領域にクラックが発生しておらず、破線領域外の照射条件Nо.1~No.3及び照射条件Nо.7~No.11では、改質領域にクラックが発生していた。一方、スペクトル強度と改質領域のサイズとの相関、及び改質領域のサイズとクラックの発生との相関は、確認できなかった。 In the results of FIG. 12, the irradiation condition No. indicated by the dashed line area. 4 to No. 6, no cracks occurred in the modified region, and irradiation condition No. 6 outside the broken line region. 1 to No. 3 and irradiation condition No. 7 to No. In No. 11, cracks were generated in the modified region. On the other hand, the correlation between the spectral intensity and the size of the modified region and the correlation between the size of the modified region and crack generation could not be confirmed.

以上説明したように、レーザ加工装置1では、光照射部3によるレーザ光L1の照射に応じて第1の光透過性部材S1及び第2の光透過性部材S2で発生する被検出光L2の強度を光検出部4によって検出する。このレーザ加工装置1では、レーザ光L1の照射期間中に第1の光透過性部材S1及び第2の光透過性部材S2で発生する被検出光L2の強度と改質領域Saの形成状態との間に存在する一定の相関関係に基づいて、被検出光L2の強度を加工品質の指標として用いることができる。したがって、目視に依らずに加工品質を客観的に評価でき、加工品質の信頼性を向上できる。 As described above, in the laser processing apparatus 1, the light to be detected L2 generated by the first light-transmitting member S1 and the second light-transmitting member S2 in response to the irradiation of the laser light L1 by the light irradiation unit 3 The intensity is detected by the photodetector 4 . In this laser processing apparatus 1, the intensity of the light to be detected L2 generated by the first light-transmitting member S1 and the second light-transmitting member S2 during the irradiation period of the laser light L1 and the formation state of the modified region Sa are The intensity of the detected light L2 can be used as an index of processing quality based on a certain correlation that exists between . Therefore, the machining quality can be objectively evaluated without relying on visual observation, and the reliability of the machining quality can be improved.

また、レーザ加工装置1は、被検出光L2の強度に対する閾値を保有し、レーザ光L1の照射期間中の被検出光L2の強度が閾値以上であったか否かに基づいて、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質の良否を判断する判断部31を備えている。これにより、被検出光L2の強度に基づいて、第1の光透過性部材S1及び第2の光透過性部材S2の加工品質の良否をより客観的に判断できる。 In addition, the laser processing apparatus 1 has a threshold for the intensity of the light L2 to be detected, and determines whether the intensity of the light L2 to be detected during the irradiation period of the laser light L1 is equal to or greater than the threshold. A judging section 31 is provided for judging whether the processing quality of the optical member S1 and the second optically transparent member S2 is good or bad. Accordingly, it is possible to more objectively judge the quality of processing of the first light-transmitting member S1 and the second light-transmitting member S2 based on the intensity of the light L2 to be detected.

また、レーザ加工装置1は、被検出光L2の強度に対する許容範囲を保有し、レーザ光L1の照射期間中の被検出光L2の強度が許容範囲から外れた場合に、被検出光L2の強度が許容範囲内に収まるようにレーザ光L1の照射条件を制御する制御部5を備えている。これにより、被検出光L2の強度が許容範囲に収まる条件下でレーザ光L1の照射が行われるため、第1の光透過性部材S1及び第2の光透過性部材S2の加工の歩留まりを向上できる。 In addition, the laser processing apparatus 1 has an allowable range for the intensity of the light L2 to be detected. is within the allowable range. As a result, the irradiation of the laser beam L1 is performed under the condition that the intensity of the light L2 to be detected falls within the allowable range, so that the processing yield of the first light-transmitting member S1 and the second light-transmitting member S2 is improved. can.

また、レーザ加工装置1は、光照射部3がレーザ光L1を集光する集光レンズ15を有し、光検出部4が被検出光L2を受光する受光レンズ23を有している。そして、集光レンズ15の焦点と受光レンズ23の焦点とが集光点Pにおいて一致している。これにより、集光点P付近で発生した被検出光を効率的に検出できる。本実施形態では、集光レンズ15及び受光レンズ23が一つの対物レンズ24によって共通化されており、構成の簡単化が図られている。 In the laser processing apparatus 1, the light irradiation section 3 has a condenser lens 15 for condensing the laser light L1, and the light detection section 4 has a light receiving lens 23 for receiving the light L2 to be detected. The focal point of the condensing lens 15 and the focal point of the light receiving lens 23 coincide at the condensing point P. As shown in FIG. Thereby, the light to be detected generated near the condensing point P can be efficiently detected. In this embodiment, the condenser lens 15 and the light receiving lens 23 are shared by one objective lens 24 to simplify the configuration.

本開示は、上記実施形態に限られるものではない。上記実施形態では、光検出部4に分光器22を用い、被検出光L2における紫外域及び可視域のスペクトル強度を測定しているが、光検出部4は、単一の波長で被検出光L2のスペクトル強度を測定してもよい。この場合、分光器22に代えてフォトダイオードを用いることもできる。また、上記実施形態では、対物レンズ24によって集光レンズ15及び受光レンズ23を共通化し、レーザ光L1の光路の一部と被検出光L2の光路の一部とを同軸としているが、このようなレンズの共通化は必須ではない。例えば被検出光L2に対する光透過性を有する材料によってステージ2を構成し、ステージ2の裏側に受光レンズ23以降の光学系を配置して被検出光L2の検出を行ってもよい。 The present disclosure is not limited to the above embodiments. In the above-described embodiment, the spectroscope 22 is used in the photodetector 4 to measure the spectral intensity of the light L2 to be detected in the ultraviolet region and the visible region. The spectral intensity of L2 may be measured. In this case, a photodiode can be used instead of the spectroscope 22 . In the above-described embodiment, the objective lens 24 is used to share the condenser lens 15 and the light receiving lens 23, and part of the optical path of the laser beam L1 and part of the optical path of the light L2 to be detected are coaxial. common lens is not essential. For example, the stage 2 may be made of a material having optical transparency to the light L2 to be detected, and the optical system after the light receiving lens 23 may be arranged behind the stage 2 to detect the light L2 to be detected.

1…レーザ加工装置、3…光照射部、4…光検出部、5…制御部、15…集光レンズ、23…受光レンズ、24…対物レンズ、31…判断部、S1…第1の光透過性部材、S2…第2の光透過性部材、L1…レーザ光、L2…被検出光、C…接触面、P…集光点、Sa…改質領域。 DESCRIPTION OF SYMBOLS 1... Laser processing apparatus 3... Light irradiation part 4... Light detection part 5... Control part 15... Condensing lens 23... Light receiving lens 24... Objective lens 31... Judgment part S1... First light Transmissive member S2 Second light transmissive member L1 Laser light L2 Light to be detected C Contact surface P Condensing point Sa Modified region.

Claims (10)

第1の光透過性部材と第2の光透過性部材とをレーザ光の照射によって接合するレーザ加工装置であって、
前記第1の光透過性部材及び前記第2の光透過性部材の接触面近傍において、これらの部材の一方の内部に集光点を合わせて前記レーザ光を照射し、前記第1の光透過性部材及び前記第2の光透過性部材に渡る改質領域を形成する光照射部と、
前記光照射部による前記レーザ光の照射に応じて前記第1の光透過性部材及び前記第2の光透過性部材で発生する被検出光の強度を検出する光検出部と、を備えるレーザ加工装置。
A laser processing apparatus for joining a first light-transmitting member and a second light-transmitting member by irradiating a laser beam,
In the vicinity of the contact surface of the first light-transmitting member and the second light-transmitting member, the laser beam is irradiated with the focal point aligned with the inside of one of these members, and the first light transmission is performed. a light irradiation section forming a modified region extending over the optical member and the second light transmissive member;
a light detection unit that detects the intensity of light to be detected generated by the first light-transmitting member and the second light-transmitting member in response to irradiation of the laser light by the light irradiation unit. Device.
前記被検出光の強度に対する閾値を保有し、前記レーザ光の照射期間中の前記被検出光の強度が前記閾値以上であったか否かに基づいて、前記第1の光透過性部材及び前記第2の光透過性部材の加工品質の良否を判断する判断部を更に備える請求項1記載のレーザ加工装置。 Having a threshold value for the intensity of the light to be detected, the first light transmissive member and the second light transmitting member determine whether or not the intensity of the light to be detected during the irradiation period of the laser light is equal to or higher than the threshold value. 2. The laser processing apparatus according to claim 1, further comprising a judging section for judging whether the processing quality of said light transmissive member is good or bad. 前記被検出光の強度に対する許容範囲を保有し、前記レーザ光の照射期間中の前記被検出光の強度が前記許容範囲から外れた場合に、前記被検出光の強度が前記許容範囲内に収まるように前記レーザ光の照射条件を制御する制御部を更に備える請求項1又は2記載のレーザ加工装置。 An allowable range for the intensity of the light to be detected is provided, and when the intensity of the light to be detected during the irradiation period of the laser beam deviates from the allowable range, the intensity of the light to be detected falls within the allowable range. 3. The laser processing apparatus according to claim 1, further comprising a control section for controlling irradiation conditions of said laser beam. 前記光照射部は、前記レーザ光を集光する集光レンズを有し、
前記光検出部は、前記被検出光を受光する受光レンズを有し、
前記集光レンズの焦点と前記受光レンズの焦点とが前記集光点において一致している請求項1~3のいずれか一項記載のレーザ加工装置。
The light irradiation unit has a condenser lens for condensing the laser beam,
The light detection unit has a light receiving lens that receives the light to be detected,
4. The laser processing apparatus according to any one of claims 1 to 3, wherein the focus of said condensing lens and the focus of said light receiving lens are aligned at said condensing point.
前記集光レンズ及び前記受光レンズが一つの対物レンズによって共通化されている請求項4記載のレーザ加工装置。 5. A laser processing apparatus according to claim 4, wherein said condenser lens and said light receiving lens are shared by one objective lens. 第1の光透過性部材と第2の光透過性部材とをレーザ光の照射によって接合するレーザ加工方法であって、
前記第1の光透過性部材及び前記第2の光透過性部材の接触面近傍において、これらの部材の一方の内部に集光点を合わせて前記レーザ光を照射し、前記第1の光透過性部材及び前記第2の光透過性部材に渡る改質領域を形成する光照射ステップと、
前記光照射部による前記レーザ光の照射に応じて前記第1の光透過性部材及び前記第2の光透過性部材で発生する被検出光の強度を検出する光検出ステップと、を備えるレーザ加工方法。
A laser processing method for joining a first light-transmitting member and a second light-transmitting member by irradiating a laser beam,
In the vicinity of the contact surface of the first light-transmitting member and the second light-transmitting member, the laser beam is irradiated with the focal point aligned with the inside of one of these members, and the first light transmission is performed. a light irradiation step of forming a modified region over the optical member and the second light transmissive member;
and a light detection step of detecting the intensity of the light to be detected generated by the first light-transmitting member and the second light-transmitting member in response to the irradiation of the laser light by the light irradiation unit. Method.
前記被検出光の強度に対する閾値を保有し、前記レーザ光の照射期間中の前記被検出光の強度が前記閾値以上であったか否かに基づいて、前記第1の光透過性部材及び前記第2の光透過性部材の加工品質の良否を判断する判断ステップを更に備える請求項6記載のレーザ加工方法。 Having a threshold value for the intensity of the light to be detected, the first light transmissive member and the second light transmitting member determine whether or not the intensity of the light to be detected during the irradiation period of the laser light is equal to or higher than the threshold value. 7. The laser processing method according to claim 6, further comprising a judgment step of judging whether the processing quality of the light transmissive member is good or bad. 前記被検出光の強度に対する許容範囲を保有し、前記レーザ光の照射期間中の前記被検出光の強度が前記許容範囲から外れた場合に、前記被検出光の強度が前記許容範囲内に収まるように前記レーザ光の照射条件を制御する制御ステップを更に備える請求項6又は7記載のレーザ加工方法。 An allowable range for the intensity of the light to be detected is provided, and when the intensity of the light to be detected during the irradiation period of the laser beam deviates from the allowable range, the intensity of the light to be detected falls within the allowable range. 8. The laser processing method according to claim 6 or 7, further comprising a control step of controlling irradiation conditions of said laser light so as to control the irradiation conditions. 前記光照射ステップでは、前記レーザ光を集光レンズによって集光し、
前記光検出ステップでは、前記被検出光を受光レンズによって受光し、
前記集光レンズの焦点と前記受光レンズの焦点とを前記集光点において一致させる請求項6~8のいずれか一項記載のレーザ加工方法。
In the light irradiation step, the laser light is condensed by a condensing lens,
In the light detection step, the light to be detected is received by a light receiving lens,
9. The laser processing method according to any one of claims 6 to 8, wherein the focus of the condenser lens and the focus of the light-receiving lens are matched at the condenser point.
前記集光レンズ及び前記受光レンズを一つの対物レンズによって共通化する請求項9記載のレーザ加工方法。 10. The laser processing method according to claim 9, wherein the condenser lens and the light receiving lens are shared by one objective lens.
JP2019222191A 2019-12-09 2019-12-09 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD Active JP7281392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019222191A JP7281392B2 (en) 2019-12-09 2019-12-09 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222191A JP7281392B2 (en) 2019-12-09 2019-12-09 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Publications (2)

Publication Number Publication Date
JP2021090981A JP2021090981A (en) 2021-06-17
JP7281392B2 true JP7281392B2 (en) 2023-05-25

Family

ID=76311277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222191A Active JP7281392B2 (en) 2019-12-09 2019-12-09 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Country Status (1)

Country Link
JP (1) JP7281392B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511823B (en) * 2021-07-28 2023-03-31 西安中科光凝科技有限公司 Glass material micro-welding device and method with self-focusing function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284288A (en) 2006-04-17 2007-11-01 Seiko Epson Corp Scribing method and scribing device for substrate
WO2011115243A1 (en) 2010-03-16 2011-09-22 アイシン精機株式会社 Pulse laser device, transparent member welding method, and transparent member welding device
JP2019123015A (en) 2018-01-12 2019-07-25 株式会社リコー Optical processing apparatus, optical processing method, and method for manufacturing optically processed product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284288A (en) 2006-04-17 2007-11-01 Seiko Epson Corp Scribing method and scribing device for substrate
WO2011115243A1 (en) 2010-03-16 2011-09-22 アイシン精機株式会社 Pulse laser device, transparent member welding method, and transparent member welding device
JP2019123015A (en) 2018-01-12 2019-07-25 株式会社リコー Optical processing apparatus, optical processing method, and method for manufacturing optically processed product

Also Published As

Publication number Publication date
JP2021090981A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP6898557B2 (en) Laser processing equipment and crack detection method
JP3939205B2 (en) Laser processing apparatus, laser processing temperature measuring apparatus, laser processing method, and laser processing temperature measuring method
JP2014198345A (en) Welded portion inspection device and inspection method
KR20070092430A (en) Apparatus for reparing pixel of display device
US9239231B2 (en) Systems for and methods of characterizing the thickness profile of laminated glass structures
JP2007241274A5 (en)
JP2006247681A (en) Monitoring device for laser beam machining
KR100939679B1 (en) Apparatus and method for adjusting the focus automatically
US20210260700A1 (en) Methods and devices for monitoring a welding process for welding glass workpieces
JP7281392B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
JP2015530251A (en) Workpiece processing apparatus using laser beam
WO2018097018A1 (en) Laser processing device and laser processing method
CN104048813B (en) The recording method of a kind of damage from laser optical element process and device thereof
KR101279578B1 (en) Auto focusing apparatus for laser processing and auto focusing method using the same
US10005153B2 (en) Laser beam welding apparatus and laser beam welding method
JP2007284288A (en) Scribing method and scribing device for substrate
EP2921250B1 (en) Laser welding inspection apparatus and laser welding inspection method
TWI587957B (en) A lens assembly for use in an inspection/repair/inspection system for electrical circuits and a combiner assembly for use in an inspection/repair/inspection system for electrical circuits
WO2021054353A1 (en) Inspection device and inspection method
KR101972884B1 (en) Melting signal detection system and wafer heat treatment apparatus including the same
JP7305495B2 (en) Inspection device and inspection method
JP7212833B2 (en) Crack detection device and method
JP4808162B2 (en) Substrate inspection apparatus and substrate inspection method
JP2023129669A (en) Crack detector
JP5224344B2 (en) Fluorescence microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7281392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150