JP7281257B2 - hydrogen carbonate bath - Google Patents

hydrogen carbonate bath Download PDF

Info

Publication number
JP7281257B2
JP7281257B2 JP2018156651A JP2018156651A JP7281257B2 JP 7281257 B2 JP7281257 B2 JP 7281257B2 JP 2018156651 A JP2018156651 A JP 2018156651A JP 2018156651 A JP2018156651 A JP 2018156651A JP 7281257 B2 JP7281257 B2 JP 7281257B2
Authority
JP
Japan
Prior art keywords
hydrogen
bath
bathtub
water
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018156651A
Other languages
Japanese (ja)
Other versions
JP2020028507A (en
Inventor
剛志 前川
国彦 小池
吾一 井上
健太郎 中島
陽 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2018156651A priority Critical patent/JP7281257B2/en
Publication of JP2020028507A publication Critical patent/JP2020028507A/en
Application granted granted Critical
Publication of JP7281257B2 publication Critical patent/JP7281257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Description

この発明は、二酸化炭素に加えて水素を溶解した水を用いる水素炭酸風呂に関し、より詳しくは健康維持に貢献し得る水素炭酸風呂に関する。 TECHNICAL FIELD The present invention relates to a hydrogen carbonated bath using water in which hydrogen is dissolved in addition to carbon dioxide, and more particularly to a hydrogen carbonated bath that can contribute to health maintenance.

健康維持に資する血行促進などを行える風呂として炭酸風呂が知られている。炭酸風呂は、二酸化炭素の経皮吸収による末梢血管の拡張を通じて、血行促進や血管抵抗の減少を生じるので、保温作用や疲労回復、血圧低下作用などの効果があるとされている。 A carbonic acid bath is known as a bath that promotes blood circulation and the like that contributes to health maintenance. Carbonated baths promote blood circulation and reduce vascular resistance through percutaneous absorption of carbon dioxide through the dilation of peripheral blood vessels, so it is said to have effects such as heat retention, recovery from fatigue, and lower blood pressure.

下記特許文献1では、炭酸風呂の上記のような効果に加えて、アンチエージング効果を有する人工炭酸泉が開示されている。この人工炭酸泉は、二酸化炭素のほかに水素を溶解させて酸化還元電位を還元系の電位にしたものであって、抗酸化作用を有する。 Patent Literature 1 below discloses an artificial carbonated spring having an anti-aging effect in addition to the above effects of a carbonated bath. This artificial carbonated spring has an oxidation-reduction potential of a reduction system by dissolving hydrogen in addition to carbon dioxide, and has an antioxidant effect.

しかし、この人工炭酸泉の水素は、酸化還元電位を還元系に傾けるためのものであって、溶存水素濃度は高くなく、水素を効果的に吸収させるものではない。 However, the hydrogen in this artificial carbonated spring is for tilting the oxidation-reduction potential to the reduction system, and the dissolved hydrogen concentration is not high, and the hydrogen is not effectively absorbed.

特開2009-202113号公報Japanese Patent Application Laid-Open No. 2009-202113

この発明は、水素を効果的に吸収できるようにすることを主な目的とする。 A main object of the present invention is to make it possible to effectively absorb hydrogen.

そのための手段は、水素の溶存濃度が0.2ppm以上1.2ppm以下であり、二酸化炭素の溶存濃度が250ppm以上3000ppm以下である水素炭酸水が、浴槽に対して連続して供給される水素炭酸風呂である。 As a means for that purpose, hydrogen carbonated water having a dissolved hydrogen concentration of 0.2 ppm or more and 1.2 ppm or less and a carbon dioxide concentration of 250 ppm or more and 3000 ppm or less is continuously supplied to the bathtub. It's a bath.

この水素炭酸風呂により、炭酸水でありながらも溶存水素濃度が高い水素炭酸水で入浴可能となり、二酸化炭素による血行促進作用に合わせて水素を経皮吸収させることができる。皮膚から吸収された水素は皮膚血管やリンパ管を通って人体の各組織に作用する。 With this hydrogen carbonate bath, it is possible to bathe in hydrogen carbonate water with a high dissolved hydrogen concentration even though it is carbonated water, and hydrogen can be percutaneously absorbed in accordance with the blood circulation promoting action of carbon dioxide. Hydrogen absorbed from the skin acts on each tissue of the human body through skin blood vessels and lymph vessels.

この発明によれば、炭酸風呂としては高い溶存濃度の水素を作用させることができ、入浴によって、経口摂取する場合よりも負担が少なく、効果的な水素吸収を実現できる。 According to this invention, a high dissolved concentration of hydrogen can be applied as a carbonated bath, and by bathing, effective hydrogen absorption can be realized with less burden than in the case of oral ingestion.

水素炭酸風呂の概略構成図。Schematic configuration diagram of a hydrogen carbonate bath.

この発明を実施するための一形態を、以下図面を用いて説明する。 One mode for carrying out the present invention will be described below with reference to the drawings.

図1に、水素炭酸風呂11の概略構成図を示す。水素炭酸風呂11は、加熱された適宜温度の水素炭酸水12が浴槽13に対して連続して供給されるものであって、水素炭酸水12の溶存水素濃度は0.2ppm以上1.2ppm以下であり、溶存二酸化炭素濃度は250ppm以上3000ppm以下である。 FIG. 1 shows a schematic configuration diagram of a hydrogen carbonate bath 11. As shown in FIG. In the hydrogen carbonate bath 11, heated hydrogen carbonated water 12 at an appropriate temperature is continuously supplied to the bathtub 13, and the dissolved hydrogen concentration of the hydrogen carbonated water 12 is 0.2 ppm or more and 1.2 ppm or less. and the dissolved carbon dioxide concentration is 250 ppm or more and 3000 ppm or less.

具体的には、水素炭酸風呂11は、浴槽13を設置する浴室14と、浴室14の外に設けられて水素炭酸水12を製造する浴槽水製造装置15を有している。 Specifically, the hydrogen carbonated bath 11 has a bathroom 14 in which a bathtub 13 is installed, and a bathtub water producing device 15 provided outside the bathroom 14 for producing the hydrogen carbonated water 12 .

浴室14は、換気扇(図示せず)による換気が可能であり、また窓(図示せず)を有するものの、基本的には閉鎖された空間を形成できる構成である。浴室14内には、浴槽13のほか、給湯ライン16及び給水ライン17が接続された給水部18や、洗い場19等必要な設備を有している。 The bathroom 14 can be ventilated by a ventilation fan (not shown) and has a window (not shown), but is basically configured to form a closed space. In addition to the bathtub 13, the bathroom 14 includes a water supply section 18 to which a hot water supply line 16 and a water supply line 17 are connected, a washing area 19, and other necessary equipment.

浴槽水製造装置15は、浴槽13に貯留された浴槽水13aを循環させて、循環中に前述の範囲の濃度の水素と二酸化炭素を溶解し、浴槽13に供給するものであって、循環ポンプ21と、ガスボンベ22と、溶解装置23を備えている。 The bathtub water production device 15 circulates the bathtub water 13a stored in the bathtub 13, dissolves hydrogen and carbon dioxide in the concentration range described above during the circulation, and supplies the dissolved hydrogen and carbon dioxide to the bathtub 13. 21 , a gas cylinder 22 and a dissolving device 23 .

ガスボンベ22は、水素と二酸化炭素を適宜の割合で混合した混合ガスを貯蔵している。ガスボンベ22の開閉弁22aは、混合ガスを適宜流量で噴出する構造である。なお、ガス供給方法としては、水素と二酸化炭素の混合ガスを貯蔵したガスボンベ22を使用する以外に、水素と二酸化炭素をそれぞれのガスボンベから供給されたガスを混合して混合ガスを供給するようにしてもよい。 The gas cylinder 22 stores a mixed gas in which hydrogen and carbon dioxide are mixed at an appropriate ratio. The opening/closing valve 22a of the gas cylinder 22 has a structure for ejecting the mixed gas at an appropriate flow rate. As for the gas supply method, in addition to using the gas cylinder 22 storing the mixed gas of hydrogen and carbon dioxide, a mixed gas may be supplied by mixing the hydrogen and carbon dioxide supplied from the respective gas cylinders. may

溶解装置23は、溶解タンク24とファインバブル生成器25で構成される。ファインバブル生成器25としては、加圧溶解方式、バブルせん断方式または多孔質方式などの装置を使用できる。 The dissolving device 23 is composed of a dissolving tank 24 and a fine bubble generator 25 . As the fine bubble generator 25, devices such as pressure dissolution method, bubble shear method, or porous method can be used.

循環ポンプ21は、浴槽13に形成される吸入口26に接続されて浴槽水13aを導き出す導出路27に設けられ、循環ポンプ21の先にはファインバブル生成器25が接続されている。ファインバブル生成器25は、通過させる浴槽水13aに気体を供給する気体供給部25aと、ファインバブルを発生させるバブル発生部25bを有しており、バブル発生部25bは溶解タンク24内に収容されている。気体供給部25aには、ガスボンベ22が接続され、溶解タンク24からは浴槽水13aを浴槽13に形成される吐出口28に導く導入路29が接続されている。 The circulation pump 21 is connected to a suction port 26 formed in the bathtub 13 and provided in a lead-out passage 27 for leading out the bathtub water 13a. The fine bubble generator 25 has a gas supply section 25a that supplies gas to the bath water 13a to be passed through, and a bubble generation section 25b that generates fine bubbles. ing. The gas cylinder 22 is connected to the gas supply portion 25a, and an introduction path 29 is connected to guide the bathtub water 13a from the dissolving tank 24 to an outlet 28 formed in the bathtub 13. As shown in FIG.

このような構成の水素炭酸風呂11では、次のようにして浴槽水13aとしての水素炭酸水を生成する。 In the hydrogen carbonated bath 11 having such a configuration, hydrogen carbonated water is generated as the bathtub water 13a in the following manner.

まず、給水部18から浴槽13内に湯水を供給し湯水が貯留された状態で、浴槽水製造装置15を作動する。つまり、循環ポンプ21を駆動するとともに、循環ポンプ21の能力(流量)と目標とする溶存濃度を考慮して、ガスボンベ22から混合ガスを適宜流量で供給する。 First, in a state where hot water is supplied from the water supply unit 18 into the bathtub 13 and the hot water is stored, the bathtub water producing device 15 is operated. That is, the circulation pump 21 is driven, and the mixed gas is supplied from the gas cylinder 22 at an appropriate flow rate in consideration of the capacity (flow rate) of the circulation pump 21 and the target dissolved concentration.

すると、循環ポンプ21によって吸入口26から吸い込まれた浴槽水13aには、ファインバブル生成器25を通る際に混合ガスが混合される。通過する浴槽水13a中に発生した水素と二酸化炭素のファインバブルは、すぐに消えることなく分散して広がり、湯水又は浴槽水13aに溶解する。この結果、溶解タンク24の中で水素と二酸化炭素のファインバブルを有する水素炭酸水12となり、導入路29を通って吐出口28から浴槽13に導入される。このような動作が繰り返されることにより、浴槽13の湯水は徐々に所望の溶存水素濃度と溶存二酸化炭素濃度の水素炭酸水12となる。 Then, the bathtub water 13 a sucked from the suction port 26 by the circulation pump 21 is mixed with the mixed gas when passing through the fine bubble generator 25 . The fine bubbles of hydrogen and carbon dioxide generated in the passing bath water 13a do not disappear immediately but spread out and dissolve in hot water or bath water 13a. As a result, the hydrogen carbonated water 12 having fine bubbles of hydrogen and carbon dioxide is formed in the dissolving tank 24 , and is introduced into the bathtub 13 from the discharge port 28 through the introduction passage 29 . By repeating such operations, the hot water in the bathtub 13 gradually becomes the hydrogen carbonated water 12 having the desired dissolved hydrogen concentration and dissolved carbon dioxide concentration.

水素炭酸水12は浴槽13に連続して供給されるので、浴槽13内の人体には常に所望濃度の水素と二酸化炭素のガスが接触することになる。 Since the hydrogen carbonated water 12 is continuously supplied to the bathtub 13, the human body in the bathtub 13 is always in contact with hydrogen and carbon dioxide gas of desired concentrations.

なお、水素炭酸水12を浴槽13に対して連続して供給するためには、前述のような浴室14の外に備えた浴槽水製造装置15を用いて湯水を循環させて供給する手段を取らずに、別の手段で別途に生成した水素炭酸水12を浴槽13に供給するなど、他の方法で供給してもよい。 In order to continuously supply the hydrogen carbonated water 12 to the bathtub 13, a means for circulating and supplying hot water using the bathtub water producing device 15 provided outside the bathroom 14 as described above is taken. Alternatively, the hydrogen carbonated water 12 separately generated by another means may be supplied to the bathtub 13, or another method may be used.

以上のような構成の水素炭酸風呂11への入浴が人体にどのような作用をするのか確認すべく、試験を行った。次にその試験と結果について述べる。 A test was conducted to confirm what effect bathing in the hydrogen carbonate bath 11 having the structure described above would have on the human body. Next, the test and results will be described.

試験方法は、水素炭酸水12を用いた水素炭酸風呂11と、比較例としての炭酸水を用いた炭酸風呂に対する入浴を、所定期間ずつ行い、その前後における呼気終末水素濃度と血液検査諸量の変化を被験者10名の平均値でみた。比較評価には、個人差が大きい因子の調査に効果的なクロスオーバー法を用いた。 The test method consisted of bathing in a hydrogen carbonated bath 11 using hydrogen carbonated water 12 and in a carbonated bath using carbonated water as a comparative example for a predetermined period of time. The change was seen with the average value of 10 subjects. For comparative evaluation, we used the crossover method, which is effective in investigating factors with large individual differences.

具体的には、試験期間として3か月を設定し、成人の男性5人ずつ、合計10人を略均等に2つのグループにわけて、それぞれ入浴期間を、土曜日と日曜日を除く1か月(5日×4週間)とし、インターバルを1か月とした。つまり、一方のグループは最初に水素炭酸風呂に1か月間(20回)入浴し、その後1カ月のインターバルをおいて、炭酸風呂に1か月間(20回)入浴する。他方のグループは、最初に炭酸風呂に1か月間(20回)入浴し、その後1カ月のインターバルをおいて、水素炭酸風呂に1か月間(20回)入浴する。 Specifically, three months was set as the test period, and five adult men each, a total of 10 people, were roughly evenly divided into two groups. 5 days x 4 weeks), with an interval of 1 month. That is, one group first took a bath in a hydrogen carbonated bath for one month (20 times), and then took a bath in a carbonated bath for one month (20 times) at intervals of one month. The other group first took a bath in a carbonated bath for one month (20 times), and then, at intervals of one month, bathed in a hydrogen carbonated bath for one month (20 times).

被験者10名の身長の平均値は172cmであり、体重はおよそ73kg、胸囲はおよそ87cmであって、標準的な体格であった。また全被験者の健康状態は良好であった。 The 10 subjects had an average height of 172 cm, a weight of approximately 73 kg, and a chest circumference of approximately 87 cm, showing a standard physique. All subjects were in good health.

水素炭酸風呂11における水素炭酸水12の生成に際して水素と二酸化炭素の混合率、つまりガスボンベ22の混合ガスの構成割合は、水素濃度を8%、二酸化炭素濃度を92%とした。また、循環ポンプ21の流量は8L/minであり、混合ガスを噴出する際の流量は500cc/minであった。浴槽13及び浴室14は一人用の一般的なものであった。 The mixing ratio of hydrogen and carbon dioxide when generating the hydrogen carbonated water 12 in the hydrogen carbonated bath 11, ie, the composition ratio of the mixed gas in the gas cylinder 22, was 8% hydrogen concentration and 92% carbon dioxide concentration. Moreover, the flow rate of the circulation pump 21 was 8 L/min, and the flow rate at the time of jetting the mixed gas was 500 cc/min. The bathtub 13 and bathroom 14 were common for one person.

炭酸風呂には、水素炭酸風呂11と同じ風呂を用い、前述のガスボンベ22に代えて二酸化炭素100%のガスボンベを用いた以外は、水素炭酸風呂11の場合と同じである。 The carbonated bath is the same as the hydrogen carbonated bath 11 except that the same bath as the hydrogen carbonated bath 11 is used and a 100% carbon dioxide gas cylinder is used in place of the gas cylinder 22 described above.

前述の条件で製造された水素炭酸風呂11における水素炭酸水12からなる浴槽水13aの溶存水素濃度は最大で0.5ppmであった。具体的には、運転開始から5分で0.2ppm、10分で0.3ppm、15分で0.35ppm、20分で0.4ppm、25分で0.5ppmとなった。溶存二酸化炭素濃度については、900ppmであった。入浴は、運転開始から25分以上経ってから行わせた。 The maximum dissolved hydrogen concentration of the bath water 13a composed of the hydrogen carbonated water 12 in the hydrogen carbonated bath 11 manufactured under the above conditions was 0.5 ppm. Specifically, it was 0.2 ppm after 5 minutes, 0.3 ppm after 10 minutes, 0.35 ppm after 15 minutes, 0.4 ppm after 20 minutes, and 0.5 ppm after 25 minutes. The dissolved carbon dioxide concentration was 900 ppm. Bathing was performed after 25 minutes or more from the start of operation.

また、浴槽13を開放した状態での浴槽水製造装置15の運転中に、浴室14内のガス濃度を測定したところ、炭酸ガス濃度は0.1~0.2%で、水素ガス濃度は0.1%未満、酸素ガス濃度は21%であった。入浴中におけるある時点で、浴室14内の水素ガス濃度を3カ所(浴槽水13aの水面付近と、浴室14の天井付近と、浴室14の高さと幅と奥行のそれぞれの中間である浴室空間の中央(高さでは水面より上で天井より下)) において測定したところ、いずれの測定点でも25ppm未満であった。なお、水素ガス濃度の測定には、新コスモス電機株式会社製の高感度可燃性ガス検知器「XP-3160」を用いた。 Further, when the gas concentration in the bathroom 14 was measured while the bathtub water production device 15 was in operation with the bathtub 13 open, the carbon dioxide concentration was 0.1 to 0.2%, and the hydrogen gas concentration was 0. less than .1% and the oxygen gas concentration was 21%. At a certain time during bathing, the concentration of hydrogen gas in the bathroom 14 was changed at three locations (near the surface of the bathtub water 13a, near the ceiling of the bathroom 14, and in the bathroom space between the height, width, and depth of the bathroom 14). When measured at the center (above the water surface and below the ceiling in height), it was less than 25 ppm at any measurement point. A highly sensitive combustible gas detector "XP-3160" manufactured by New Cosmos Electric Co., Ltd. was used to measure the hydrogen gas concentration.

入浴は、浴槽13内に10分以上、浴室14内には20分以上30分以下の滞在とし、呼気終末水素濃度と、血液生化学検査の測定と、血圧や脈拍などの検査を行った。 Bathing consisted of staying in the bathtub 13 for 10 minutes or more and staying in the bathroom 14 for 20 minutes or more and 30 minutes or less.

呼気終末水素濃度とは、息を吐き切った状態から更にもう一吐きした呼気中の水素濃度であり、血中のガス濃度を反映したものである。試験では、終末呼気をアルミニウムバッグに採取してから測定した。測定には、新コスモス電機株式会社製のポータブルガス分析装置「XG-100H」を用いた。 The end-expiratory hydrogen concentration is the hydrogen concentration in the exhaled breath after the last exhalation, and reflects the gas concentration in the blood. In the test, end-expiratory breath was collected in an aluminum bag and then measured. For the measurement, a portable gas analyzer "XG-100H" manufactured by New Cosmos Electric Co., Ltd. was used.

試験の結果、呼気終末水素濃度については表1の結果が得られ、水素炭酸風呂11への入浴により、水素が血中に取り込まれていることが判る。 As a result of the test, the results shown in Table 1 were obtained for end-expiratory hydrogen concentration, and it can be seen that hydrogen is taken into the blood by bathing in the hydrogen carbonate bath 11 .

Figure 0007281257000001
表1では、水素炭酸風呂入浴と炭酸風呂入浴のそれぞれについて、20回のうちの1回目の入浴(1回目入浴)と、1か月の試験期間の最終回である20回目の入浴(20回目入浴)について、入浴前と入浴後の値を示した。単位はppmである。
Figure 0007281257000001
In Table 1, for each of the hydrogen carbonate bath bathing and the carbonated bath bathing, the first bathing out of 20 (1st bathing) and the 20th bathing (20th bathing), which is the final bathing of the one-month test period, are shown. bathing), the values before and after bathing are shown. The unit is ppm.

表1から判るように、水素炭酸風呂と炭酸風呂の1回目入浴の入浴前には、呼気終末水素濃度は水素炭酸風呂で6.0、炭酸風呂で7.7であったが、1回の入浴で、水素炭酸風呂では29.6に上昇し、炭酸風呂では3.7に低下した。水素炭酸風呂では23.6も水素濃度が増加しているのに対して、炭酸風呂では4.1減少している。このことから、水素炭酸風呂に入浴することで、効果的に水素が血中に取り込まれていることがわかる。 As can be seen from Table 1, the end-tidal hydrogen concentration was 6.0 in the hydrogen carbonate bath and 7.7 in the carbonate bath before the first bathing of the hydrogen carbonate bath and the carbonate bath. In bathing, it increased to 29.6 in the hydrogen carbonate bath and decreased to 3.7 in the carbonated bath. While the hydrogen concentration increased by 23.6 in the hydrogen carbonated bath, it decreased by 4.1 in the carbonated bath. From this, it can be seen that hydrogen is effectively taken into the blood by taking a hydrogen carbonate bath.

また、20回目入浴になると、水素炭酸風呂では入浴前の呼気終末水素濃度が11.4と高くなり、入浴後の数値も46.0となって、前後差は34.6であり、1回目入浴のときと比較して、入浴前後での水素ガス濃度の差が増していることが判る。一方、炭酸風呂では20回目入浴でも入浴後の水素濃度が、入浴前の12.5から9.7へと低下している。これらのことから、水素炭酸風呂への入浴を継続することにより、血中への水素の取り込み量が多くなっていると考えられる。 In the 20th bath, the end-tidal hydrogen concentration before bathing in the hydrogen carbonate bath increased to 11.4, and the value after bathing also increased to 46.0, the difference between before and after bathing being 34.6. It can be seen that the difference in hydrogen gas concentration before and after bathing is greater than that during bathing. On the other hand, in the carbonated bath, even after the 20th bath, the hydrogen concentration after bathing decreased from 12.5 before bathing to 9.7. From these facts, it is considered that the amount of hydrogen taken into the blood increases by continuing to bathe in the hydrogen carbonate bath.

血液生化学検査の結果は、表2のとおりである。 The results of blood biochemical tests are shown in Table 2.

Figure 0007281257000002
検査項目はT-Bil、Total Protein 、A/G、Albumin、AST、ALT、LD、ALP、γ-GT、CHE、NH3であり、Total Protein以下のすべての検査項目においては水素炭酸風呂入浴と炭酸風呂入浴において顕著な差は見られなかった。
Figure 0007281257000002
Test items are T-Bil, Total Protein, A/G, Albumin, AST, ALT, LD, ALP, γ-GT, CHE, NH3. No significant difference was observed in bathing.

しかし、T-Bilにおいては、水素炭酸風呂の1回目入浴が1.05であるのに対して20回目入浴が0.89と数値が低下しているのに対し、炭酸風呂の場合には、1回目入浴が0.93で20回目入浴が1.05であった。この数値変化については統計処理による検証も行ったところ、水素炭酸風呂への継続した入浴により、T-Bilが有意に低下したことが確認され、肝機能の改善を示唆していると考えられる。 However, in T-Bil, the first bath in the hydrogen carbonate bath was 1.05, while the 20th bath was 0.89, which is a decrease in the numerical value. It was 0.93 for the first bathing and 1.05 for the 20th bathing. Statistical verification of this numerical value change confirmed that T-Bil decreased significantly due to continued bathing in the hydrogen carbonate bath, suggesting an improvement in liver function.

また、併せて測定した被験者の血圧と脈拍とSpOと、舌下温は、表3のとおりである。なお、表3中「開始前」は、1回目入浴の前であり、「終了時」は、20回目入浴の後である。 Table 3 shows the blood pressure, pulse rate, SpO2 , and sublingual temperature of the subject, which were also measured. In Table 3, "before start" is before the first bathing, and "at the end" is after the 20th bathing.

Figure 0007281257000003
表3に示したように、血圧、脈拍、経皮的動脈血酸素飽和度(SpO)、舌下温において、水素炭酸風呂への入浴と炭酸風呂への入浴による違いはなく、同等の結果が見られた。
Figure 0007281257000003
As shown in Table 3, there was no difference in blood pressure, pulse rate, percutaneous arterial oxygen saturation (SpO 2 ), and sublingual temperature between bathing in a hydrogen carbonated bath and bathing in a carbonated bath, and similar results were obtained. seen.

表2に示した血液生化学検査の結果と、表3の脈拍等の結果からは、水素炭酸風呂への入浴はT‐Bilの数値を除き、炭酸風呂とほぼ同等であり人体への悪影響は認められない。 From the blood biochemical test results shown in Table 2 and the pulse and other results shown in Table 3, bathing in a hydrogen carbonated bath is almost equivalent to a carbonated bath except for the T-Bil value, and there is no adverse effect on the human body. unacceptable.

以上のように、水素炭酸水を連続して導入した浴槽を有する風呂に入浴して、少なくとも水素炭酸水の最大溶存水素濃度が0.5ppmであり、溶存二酸化炭素濃度が250ppm以上1000ppm未満、好適には900ppmであって、1回の入浴で浴槽内に10分以上入浴する場合には、前述のように血中に水素を効果的に取り込むことができ、その結果T-Bilの値が改善することが判る。 As described above, when bathing in a bath having a bathtub into which hydrogen carbonated water is continuously introduced, at least the hydrogen carbonated water has a maximum dissolved hydrogen concentration of 0.5 ppm and a dissolved carbon dioxide concentration of 250 ppm or more and less than 1000 ppm. When bathing in the bathtub for 10 minutes or more in one bath, hydrogen can be effectively taken into the blood as described above, and as a result, the T-Bil value is improved. It turns out that

水素炭酸水は、炭酸水でありながらも溶存水素濃度が高い水素炭酸水であるため、入浴によって人体の皮膚に接すると、二酸化炭素による血行促進作用ながされ、同時に水素も経皮吸収される。皮膚から吸収された水素は皮膚血管やリンパ管を通って人体の各組織に作用した結果、前述のような肝機能の改善を示唆する結果が得られたものと考えられる。 Although hydrogen carbonated water is carbonated water, it has a high concentration of dissolved hydrogen, so when it comes into contact with the skin of the human body by bathing, the carbon dioxide promotes blood circulation, and at the same time, hydrogen is absorbed through the skin. . It is thought that hydrogen absorbed from the skin acts on each tissue of the human body through skin blood vessels and lymphatic vessels, and as a result, the above-mentioned results suggestive of improvement in liver function were obtained.

このように、水素炭酸風呂を用いた入浴方法によって、二酸化炭素との協働とも相まって人体への効果的な水素吸収・水素摂取を実現できる。入浴によって自然に吸収されるので、経口摂取の場合のような、一定量以上飲まなければならないという負担はない。 In this way, the bathing method using the hydrogen carbonate bath can realize effective hydrogen absorption and hydrogen uptake by the human body in cooperation with carbon dioxide. Since it is naturally absorbed by bathing, there is no burden of having to drink more than a certain amount as in the case of oral intake.

水素炭酸水の溶存水素濃度は、0.2ppmから1.2ppmまで適宜設定できるが、0.35ppm以上、または0.4ppm以上、好ましくは前述の0.5ppm前後の値か、0.5ppmが最大値となるようにするとよい。 The dissolved hydrogen concentration of hydrogen carbonated water can be appropriately set from 0.2 ppm to 1.2 ppm, but is 0.35 ppm or more, or 0.4 ppm or more, preferably the above-mentioned value of around 0.5 ppm, or 0.5 ppm is the maximum. value.

水素炭酸水の溶存二酸化炭素濃度は、250ppmから3000ppmまで、好みに応じて適宜設定することができるが、水素の吸収を主にするので、炭酸泉として必要な250ppm以上であれば、高濃度とされる1000ppmに満たない値であってもよく、前述の900ppm前後の値か、900ppmが最大値となるようにするとよい。 The concentration of dissolved carbon dioxide in hydrogen carbonated water can be set appropriately from 250 ppm to 3000 ppm according to taste, but since it mainly absorbs hydrogen, it is considered high concentration if it is 250 ppm or more, which is necessary for carbonated springs. The value may be less than 1000 ppm, and it is preferable to set the value around 900 ppm or 900 ppm as the maximum value.

11…水素炭酸風呂
12…水素炭酸水
13…浴槽
14…浴室
15…浴槽水製造装置
22…ガスボンベ
23…溶解装置
REFERENCE SIGNS LIST 11: Hydrogen carbonated bath 12: Hydrogen carbonated water 13: Bathtub 14: Bathroom 15: Bathtub water production device 22: Gas cylinder 23: Dissolving device

Claims (4)

水素炭酸水が供給される浴槽を備えた水素炭酸風呂であって、
前記浴槽内の浴槽水を吸引して水素と二酸化炭素を同時に溶解させて前記浴槽内に戻す浴槽水製造装置が用いられ、
前記浴槽水製造装置が、浴槽水を導入し導出する溶解タンクと、前記溶解タンク内の浴槽水にファインバブルを供給するファインバブル生成器を備え
前記溶解タンクに接続される導入路が前記浴槽に接続されて浴槽水のみを前記溶解タンクに導入し、浴槽水を前記溶解タンクおよび前記浴槽の間で循環させて、
前記浴槽に、水素の溶存濃度が0.2ppm以上1.2ppm以下であり、二酸化炭素の溶存濃度が250ppm以上3000ppm以下である水素炭酸水を連続して供給する
水素炭酸風呂。
A hydrogen carbonated bath having a bathtub to which hydrogen carbonated water is supplied,
A bathtub water manufacturing device is used that sucks the bathtub water in the bathtub, dissolves hydrogen and carbon dioxide at the same time, and returns it to the bathtub,
The bathtub water production device comprises a dissolution tank for introducing and discharging bathtub water, and a fine bubble generator for supplying fine bubbles to the bathtub water in the dissolution tank ,
An introduction path connected to the dissolution tank is connected to the bathtub to introduce only bathtub water into the dissolution tank, and circulate the bathtub water between the dissolution tank and the bathtub,
A hydrogen carbonated bath in which hydrogen carbonated water having a dissolved hydrogen concentration of 0.2 ppm or more and 1.2 ppm or less and a carbon dioxide concentration of 250 ppm or more and 3000 ppm or less is continuously supplied to the bathtub.
前記導入路の前記浴槽水製造装置がわの端が前記ファインバブル生成器の気体供給部に接続された
請求項1に記載の水素炭酸風呂。
The hydrogen carbonate bath according to claim 1, wherein the end of the bathtub water producing device of the introduction path is connected to the gas supply portion of the fine bubble generator.
前記浴槽水製造装置が前記浴槽を有する浴室の外に設けられた
請求項1または請求項2に記載の水素炭酸風呂。
3. The hydrogen carbonate bath according to claim 1, wherein said bath water producing device is provided outside a bathroom having said bath.
前記浴槽水製造装置の運転中における開放状態にある前記浴槽内の浴槽水の最大溶存水素濃度が0.5ppmであり、
室内の水素ガス濃度が25ppm未満である
請求項1から請求項のうちいずれか一項に記載の水素炭酸風呂。
a maximum dissolved hydrogen concentration of the bath water in the bath in an open state during operation of the bath water production apparatus is 0.5 ppm;
4. The hydrogen carbonate bath according to any one of claims 1 to 3 , wherein the hydrogen gas concentration in the bath is less than 25 ppm.
JP2018156651A 2018-08-23 2018-08-23 hydrogen carbonate bath Active JP7281257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018156651A JP7281257B2 (en) 2018-08-23 2018-08-23 hydrogen carbonate bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156651A JP7281257B2 (en) 2018-08-23 2018-08-23 hydrogen carbonate bath

Publications (2)

Publication Number Publication Date
JP2020028507A JP2020028507A (en) 2020-02-27
JP7281257B2 true JP7281257B2 (en) 2023-05-25

Family

ID=69623134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156651A Active JP7281257B2 (en) 2018-08-23 2018-08-23 hydrogen carbonate bath

Country Status (1)

Country Link
JP (1) JP7281257B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137452A (en) 2003-11-04 2005-06-02 Shimadzu Corp Artificial carbonated spring manufacturing apparatus
JP2008005973A (en) 2006-06-28 2008-01-17 Kawakuriin:Kk Bathroom apparatus using hydrogen water
JP2009202113A (en) 2008-02-28 2009-09-10 Aqua Science:Kk Method for converting artificial carbonate spring or carbonated beverage into hydrogen-containing reducing carbonated water
JP2015188789A (en) 2014-03-27 2015-11-02 岩谷産業株式会社 Method and apparatus for manufacturing hydrogen-containing water, and hydrogen water
JP2015213569A (en) 2014-05-08 2015-12-03 株式会社熊本アイディーエム Multipurpose bathing/therapy device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137452A (en) 2003-11-04 2005-06-02 Shimadzu Corp Artificial carbonated spring manufacturing apparatus
JP2008005973A (en) 2006-06-28 2008-01-17 Kawakuriin:Kk Bathroom apparatus using hydrogen water
JP2009202113A (en) 2008-02-28 2009-09-10 Aqua Science:Kk Method for converting artificial carbonate spring or carbonated beverage into hydrogen-containing reducing carbonated water
JP2015188789A (en) 2014-03-27 2015-11-02 岩谷産業株式会社 Method and apparatus for manufacturing hydrogen-containing water, and hydrogen water
JP2015213569A (en) 2014-05-08 2015-12-03 株式会社熊本アイディーエム Multipurpose bathing/therapy device

Also Published As

Publication number Publication date
JP2020028507A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
Barger et al. Regulation of the circulation during exercise: Cardiac output (direct Fick) and metabolic adjustments in the normal dog
JP5600098B2 (en) Mobile device for the dispersion and transdermal administration of drugs, medical or purified carbon dioxide
Craig Jr et al. Effect of immersion in water on vital capacity and residual volume of the lungs.
Otis et al. Alveolar gas changes during breath holding
Carroll et al. Pulmonary function in mitral valvular disease: distribution and diffusion characteristics in resting patients
JP7281257B2 (en) hydrogen carbonate bath
Iwasaki et al. Cardiovascular regulation response to hypoxia during stepwise decreases from 21% to 15% inhaled oxygen
WO2012086635A1 (en) Carbon dioxide gas mist pressure bath method and carbon dioxide gas mist pressure bath apparatus for preventing, improving and treating myocardial infarctions
Drogovoz et al. Mechanisms of action carboxytherapy
JP2009285420A (en) Apparatus for producing artificial carbonated water
EP2586418A1 (en) Carbon dioxide gas mist pressure bath method and carbon dioxide gas mist pressure bath apparatus for improving and promoting circulation of blood in ischemic region of organism
Cheng et al. A physiological/model study on the effects of deep breathing on the respiration rate, oxygen saturation, and cerebral oxygen delivery in humans
Mark et al. Adrenergic control of the peripheral circulation in cardiomyopathic hamsters with heart failure
Himwich et al. STUDIES IN THE PHYSIOLOGY OF MUSCULAR EXERCISE. V. OXYGEN RELATIONSHIPS IN THE ARTERIAL BLOOD.
Falls et al. The effects of pre-exercise conditions on heart rate and oxygen uptake during exercise and recovery
Kylstra et al. Gas exchange in saline-filled lungs of man.
US11820682B2 (en) Systems and methods for producing saturated oxygen water
DE1808201A1 (en) Device for treatment of the human body
JPH10277122A (en) Hot water controller and bath equipment using the controller
JP2022036074A (en) Icing method
RU2494719C2 (en) Physiotherapeutic bath
JP2005328943A (en) Oxygen enriched hot-water supply apparatus
Harrison et al. The effects of changes in hydrogen ion concentration on the blood flow of morphinized dogs
JP6846192B2 (en) Bathtub equipment that dissolves microbubbles of hydrogen-oxygen mixed gas in hot water
HU220349B (en) Device for production of carbondioxid-bath and a mobil carbondioxid-bath

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7281257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150