JP7280906B2 - Secondary battery and manufacturing method thereof - Google Patents

Secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP7280906B2
JP7280906B2 JP2021038404A JP2021038404A JP7280906B2 JP 7280906 B2 JP7280906 B2 JP 7280906B2 JP 2021038404 A JP2021038404 A JP 2021038404A JP 2021038404 A JP2021038404 A JP 2021038404A JP 7280906 B2 JP7280906 B2 JP 7280906B2
Authority
JP
Japan
Prior art keywords
injection hole
wall portion
secondary battery
electrode
battery according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021038404A
Other languages
Japanese (ja)
Other versions
JP2022138491A (en
Inventor
健介 渡邊
太貴 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2021038404A priority Critical patent/JP7280906B2/en
Publication of JP2022138491A publication Critical patent/JP2022138491A/en
Application granted granted Critical
Publication of JP7280906B2 publication Critical patent/JP7280906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本技術は、二次電池およびその製造方法に関する。 The present technology relates to a secondary battery and a manufacturing method thereof.

たとえば、特開2018-163858号公報(特許文献1)には、完成後に膨張しにくい角形二次電池を提供するために、電解液を注液した後、電池ケース内のガスの一部を電解液注液孔から電池ケース外に排出する工程を設けることが開示されている。 For example, in Japanese Unexamined Patent Application Publication No. 2018-163858 (Patent Document 1), in order to provide a prismatic secondary battery that does not easily expand after completion, after injecting an electrolytic solution, part of the gas in the battery case is electrolyzed. It is disclosed to provide a step of discharging the liquid from the liquid injection hole to the outside of the battery case.

特開2018-163858号公報JP 2018-163858 A

特許文献1に記載の技術のように、電解液注液孔を介したガス排出工程を実施する場合、ガスとともに電解液が漏出する場合がある。注液孔から漏出した電解液は、ガス排出装置などの製造設備の耐久性を低下させ得る。異なる観点では、完成後の二次電池における電解液の量が安定せず、電池の性能にも影響を与え得る。従来の二次電池は、上記の観点から必ずしも十分な構成を備えていない。 As in the technique described in Patent Literature 1, when performing the gas discharging step through the electrolyte injection hole, the electrolyte may leak out together with the gas. The electrolyte leaking from the injection hole can reduce the durability of manufacturing equipment such as a gas discharge device. From a different point of view, the amount of electrolyte in the completed secondary battery is not stable, which may affect the performance of the battery. Conventional secondary batteries do not necessarily have a sufficient configuration from the above viewpoint.

本技術の目的は、電解液注液孔を介したガス排出工程における意図しない電解液の漏出が抑制された二次電池およびその製造方法を提供することにある。 An object of the present technology is to provide a secondary battery in which unintended electrolyte leakage is suppressed in a gas discharge process through an electrolyte injection hole, and a method for manufacturing the same.

本技術に係る二次電池は、電極体と、壁部を含み、電極体を収納する外装缶と、電極体とともに外装缶に収納される電解液と、外装缶の壁部の内面と対向するように外装缶に収納された内部部材とを備える。壁部に電解液用の注液孔が設けられ、注液孔は封止部材により封止される。壁部と内部部材との間に、壁部の延在方向に沿って延び、注液孔に通じる隙間が形成され、隙間に面する位置において、壁部の内面および内部部材の表面の少なくとも一方に凹部が形成されている。 A secondary battery according to the present technology includes an electrode assembly and a wall portion, and has an outer can housing the electrode assembly, an electrolytic solution stored in the outer can together with the electrode assembly, and an inner surface of the wall of the outer can. and an internal member housed in an outer can. The wall portion is provided with an injection hole for an electrolytic solution, and the injection hole is sealed with a sealing member. Between the wall portion and the internal member, a gap extending along the extending direction of the wall portion and communicating with the injection hole is formed, and at a position facing the gap, at least one of the inner surface of the wall portion and the surface of the internal member. is formed with a recess.

本技術に係る二次電池の製造方法は、上記の二次電池の製造方法であって、外装缶に電極体を挿入する工程と、電極体が挿入された外装缶に注液孔を介して電解液を注液する工程と、注液孔を介して外装缶内のガスを排出する工程と、注液孔を封止部材により封止する工程とを備える。 A method for manufacturing a secondary battery according to the present technology is the above-described method for manufacturing a secondary battery, and includes a step of inserting an electrode assembly into an outer can; The method includes a step of injecting an electrolytic solution, a step of discharging gas in the outer can through an injection hole, and a step of sealing the injection hole with a sealing member.

本技術によれば、電解液注液孔を介したガス排出工程における意図しない電解液の漏出が抑制された二次電池およびその製造方法を提供することができる。 Advantageous Effects of Invention According to the present technology, it is possible to provide a secondary battery in which unintended leakage of electrolyte is suppressed in a gas discharge process through an electrolyte injection hole, and a method of manufacturing the same.

角形二次電池の斜視図である。1 is a perspective view of a prismatic secondary battery; FIG. 図1におけるII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1; 電極体を構成する正極板の平面図である。FIG. 3 is a plan view of a positive electrode plate that constitutes the electrode body; 電極体を構成する負極板の平面図である。FIG. 3 is a plan view of a negative electrode plate that constitutes the electrode body; 正極板および負極板からなる電極体を示す平面図である。FIG. 2 is a plan view showing an electrode body consisting of a positive electrode plate and a negative electrode plate; 電極体と正極集電部材および負極集電部材との接続構造を示す図である。FIG. 3 is a diagram showing a connection structure between an electrode body, a positive collector member, and a negative collector member. 封口板への正極集電部材および負極集電部材の取付構造を示す図である。FIG. 4 is a diagram showing a mounting structure of a positive electrode current collecting member and a negative electrode current collecting member to a sealing plate; 図7におけるVIII-VIII断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7; 図7におけるIX-IX断面図である。FIG. 8 is a cross-sectional view taken along line IX-IX in FIG. 7; 封口板と電極体とが接続された状態を示す図である。It is a figure which shows the state where the sealing board and the electrode body were connected. 角形二次電池の構造を模式的に示す断面図である。1 is a cross-sectional view schematically showing the structure of a prismatic secondary battery; FIG. 封口板に絶縁部材と集電部材とを設けた状態を示す平面図である。FIG. 4 is a plan view showing a state in which an insulating member and a current collecting member are provided on a sealing plate; 封口板の一例を示す平面図である。It is a top view which shows an example of a sealing board. 封口板の上に設けられる絶縁部材の一例を示す図である。It is a figure which shows an example of the insulating member provided on a sealing board. 封口板と絶縁部材との隙間の構造の一例を模式的に示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view schematically showing an example of the structure of the gap between the sealing plate and the insulating member; 封口板と絶縁部材との隙間の構造の他の例を模式的に示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing another example of the structure of the gap between the sealing plate and the insulating member; 凹部の断面形状の一例を示す断面図である。It is a sectional view showing an example of the section shape of a crevice. 凹部の断面形状の他の例を示す断面図である。FIG. 10 is a cross-sectional view showing another example of the cross-sectional shape of the recess; 凹部の断面形状の他の例を示す断面図である。FIG. 10 is a cross-sectional view showing another example of the cross-sectional shape of the recess; 凹部の平面形状の他の例を示す平面図である。FIG. 10 is a plan view showing another example of the planar shape of the recess;

以下に、本技術の実施の形態について説明する。なお、同一または相当する部分に同一の参照符号を付し、その説明を繰返さない場合がある。 Embodiments of the present technology will be described below. In some cases, the same reference numerals are given to the same or corresponding parts, and the description thereof will not be repeated.

なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本技術の範囲は必ずしもその個数、量などに限定されない。また、以下の実施の形態において、各々の構成要素は、特に記載がある場合を除き、本技術にとって必ずしも必須のものではない。 In the embodiments described below, when referring to the number, amount, etc., the scope of the present technology is not necessarily limited to the number, amount, etc., unless otherwise specified. Also, in the following embodiments, each component is not necessarily essential for the present technology unless otherwise specified.

なお、本明細書において、「備える(comprise)」および「含む(include)」、「有する(have)」の記載は、オープンエンド形式である。すなわち、ある構成を含む場合に、当該構成以外の他の構成を含んでもよいし、含まなくてもよい。また、本技術は、本実施の形態において言及する作用効果を必ずしもすべて奏するものに限定されない。 In this specification, the descriptions of "comprise," "include," and "have" are open-ended. That is, when a certain configuration is included, other configurations may or may not be included. In addition, the present technology is not necessarily limited to one that exhibits all of the effects referred to in the present embodiment.

本明細書において、「電池」は、リチウムイオン電池に限定されず、ニッケル水素電池など他の電池を含み得る。本明細書において、「電極」は正極および負極を総称し得る。また、「電極板」は正極板および負極板を総称し得る。 As used herein, "battery" is not limited to lithium-ion batteries, but may include other batteries such as nickel-metal hydride batteries. As used herein, "electrode" may collectively refer to positive and negative electrodes. Also, the term "electrode plate" may collectively refer to a positive electrode plate and a negative electrode plate.

図1は、角形二次電池1の斜視図である。図2は、図1におけるII-II断面図である。 FIG. 1 is a perspective view of a prismatic secondary battery 1. FIG. FIG. 2 is a cross-sectional view taken along line II--II in FIG.

図1,図2に示すように、角形二次電池1は、電池ケース100と、電極体200と、絶縁シート300と、正極端子400と、負極端子500と、正極集電部材600と、負極集電部材700と、カバー部材800とを含む。 As shown in FIGS. 1 and 2, the prismatic secondary battery 1 includes a battery case 100, an electrode body 200, an insulating sheet 300, a positive electrode terminal 400, a negative electrode terminal 500, a positive current collecting member 600, and a negative electrode. A collector member 700 and a cover member 800 are included.

電池ケース100は、開口を有する有底角筒状の角形外装体110と、角形外装体110の開口を封口する封口板120とからなる。角形外装体110および封口板120は、それぞれ金属製であることが好ましく、アルミニウムまたはアルミニウム合金製とすることが好ましい。 The battery case 100 is composed of a bottomed prismatic rectangular outer body 110 having an opening and a sealing plate 120 that seals the opening of the rectangular outer body 110 . Rectangular exterior body 110 and sealing plate 120 are preferably made of metal, preferably aluminum or an aluminum alloy.

封口板120には、電解液注液孔121が設けられる。電解液注液孔121から電池ケース100内に電解液が注液された後、電解液注液孔121は、封止部材122により封止される。封止部材122としては、たとえばブラインドリベットおよびその他の金属部材を用いることができる。 The sealing plate 120 is provided with an electrolyte injection hole 121 . After the electrolyte is injected into the battery case 100 through the electrolyte injection hole 121 , the electrolyte injection hole 121 is sealed by the sealing member 122 . For example, blind rivets and other metal members can be used as the sealing member 122 .

封口板120には、ガス排出弁123が設けられる。ガス排出弁123は、電池ケース100内の圧力が所定値以上となった際に破断する。これにより、電池ケース100内のガスが電池ケース100外に排出される。 A gas exhaust valve 123 is provided on the sealing plate 120 . The gas exhaust valve 123 breaks when the pressure inside the battery case 100 exceeds a predetermined value. As a result, the gas inside the battery case 100 is discharged to the outside of the battery case 100 .

電極体200は、電解液とともに電池ケース100内に収容されている。電極体200は、正極板と負極板がセパレータを介して積層されたものである。電極体200と角形外装体110の間には樹脂製の絶縁シート300が配置されている。 The electrode body 200 is accommodated in the battery case 100 together with the electrolyte. The electrode body 200 is formed by stacking a positive electrode plate and a negative electrode plate with a separator interposed therebetween. An insulating sheet 300 made of resin is arranged between the electrode body 200 and the rectangular outer body 110 .

電極体200の封口板120側の端部には、正極タブ210Aおよび負極タブ210Bが設けられている。 A positive electrode tab 210A and a negative electrode tab 210B are provided at the end of the electrode body 200 on the side of the sealing plate 120 .

正極タブ210Aと正極端子400とは、正極集電部材600を介して電気的に接続されている。正極集電部材600は、第1正極集電体610および第2正極集電体620を含む。なお、正極集電部材600は、1つの部品から構成されてもよい。正極集電部材600は、金属製であることが好ましく、アルミニウムまたはアルミニウム合金製とすることがより好ましい。 The positive electrode tab 210A and the positive electrode terminal 400 are electrically connected via the positive current collecting member 600 . The positive current collector 600 includes a first positive current collector 610 and a second positive current collector 620 . In addition, the positive electrode current collecting member 600 may be composed of one component. The positive electrode current collecting member 600 is preferably made of metal, and more preferably made of aluminum or an aluminum alloy.

負極タブ210Bと負極端子500とは、負極集電部材700を介して電気的に接続されている。負極集電部材700は、第1負極集電体710および第2負極集電体720を含む。なお、負極集電部材700は、1つの部品から構成されてもよい。負極集電部材700は、金属製であることが好ましく、銅または銅合金製であることがより好ましい。 The negative electrode tab 210B and the negative electrode terminal 500 are electrically connected via the negative current collecting member 700 . The negative electrode current collector 700 includes a first negative electrode current collector 710 and a second negative electrode current collector 720 . Note that the negative electrode current collecting member 700 may be composed of one component. The negative electrode current collecting member 700 is preferably made of metal, and more preferably made of copper or a copper alloy.

正極端子400は、樹脂製の外部側絶縁部材410を介して封口板120に固定されている。負極端子500は、樹脂製の外部側絶縁部材510を介して封口板120に固定されている。 The positive electrode terminal 400 is fixed to the sealing plate 120 via an external insulating member 410 made of resin. The negative electrode terminal 500 is fixed to the sealing plate 120 via an external insulating member 510 made of resin.

正極端子400は金属製であることが好ましく、アルミニウムまたはアルミニウム合金製であることがより好ましい。負極端子500は金属製であることが好ましく、銅または銅合金製であることがより好ましい。負極端子500が、電池ケース100の内部側に配置される銅または銅合金からなる領域と、電池ケース100の外部側に配置されるアルミニウムまたはアルミニウム合金からなる領域を有するようにしてもよい。 The positive electrode terminal 400 is preferably made of metal, and more preferably made of aluminum or an aluminum alloy. The negative electrode terminal 500 is preferably made of metal, and more preferably made of copper or a copper alloy. Negative electrode terminal 500 may have a region made of copper or a copper alloy located inside battery case 100 and a region made of aluminum or an aluminum alloy located outside battery case 100 .

カバー部材800は、第1正極集電体610と電極体200との間に位置する。カバー部材800は、負極集電体側に設けられてもよい。また、カバー部材800は必須の部材ではなく、適宜省略が可能である。 The cover member 800 is positioned between the first positive current collector 610 and the electrode body 200 . The cover member 800 may be provided on the negative electrode current collector side. Also, the cover member 800 is not an essential member and can be omitted as appropriate.

図3は、電極体200を構成する正極板200Aの平面図である。正極板200Aは、矩形状のアルミニウム箔からなる正極芯体の両面に正極活物質(たとえばリチウムニッケルコバルトマンガン複合酸化物等)、結着材(ポリフッ化ビニリデン(PVdF)等)、および導電材(たとえば炭素材料等)を含む正極活物質合剤層が形成された本体部220Aを有する。本体部の端辺から正極芯体が突出しており、この突出した正極芯体が正極タブ210Aを構成する。正極タブ210Aにおける本体部の220Aと隣接する部分には、アルミナ粒子、結着材、および導電材を含む正極保護層230Aが設けられている。正極保護層230Aは、正極活物質合剤層の電気抵抗よりも大きな電気抵抗を有する。正極活物質合剤層は導電材を含まなくてもよい。正極保護層230Aは必ずしも設けられなくてもよい。 FIG. 3 is a plan view of a positive electrode plate 200A that constitutes the electrode assembly 200. FIG. The positive electrode plate 200A includes a positive electrode active material (for example, lithium-nickel-cobalt-manganese composite oxide, etc.), a binder (polyvinylidene fluoride (PVdF), etc.), and a conductive material ( For example, it has a main body portion 220A on which a positive electrode active material mixture layer containing a carbon material or the like is formed. A positive electrode core protrudes from the edge of the main body, and the protruding positive electrode core constitutes the positive electrode tab 210A. A positive electrode protective layer 230A containing alumina particles, a binder, and a conductive material is provided on a portion of the positive electrode tab 210A adjacent to the body portion 220A. The positive electrode protective layer 230A has an electrical resistance greater than that of the positive electrode active material mixture layer. The positive electrode active material mixture layer may not contain a conductive material. The positive electrode protection layer 230A does not necessarily have to be provided.

図4は、電極体200を構成する負極板200Bの平面図である。負極板200Bは、矩形状の銅箔からなる負極芯体の両面に負極活物質合剤層が形成された本体部220Bを有する。本体部220Bの端辺から負極芯体が突出しており、この突出した負極芯体が負極タブ210Bを構成する。 FIG. 4 is a plan view of the negative electrode plate 200B that constitutes the electrode body 200. FIG. The negative electrode plate 200B has a main body portion 220B in which negative electrode active material mixture layers are formed on both sides of a negative electrode core made of rectangular copper foil. A negative electrode core protrudes from an end side of the main body portion 220B, and the protruding negative electrode core constitutes the negative electrode tab 210B.

図5は、正極板200Aおよび負極板200Bからなる電極体200を示す平面図である。図5に示すように、電極体200は、一方の端部において各々の正極板200Aの正極タブ210Aが積層され、各々の負極板200Bの負極タブ210Bが積層されるように作製される。正極板200Aおよび負極板200Bは、たとえば各々50枚程度ずつ重ねられる。正極板200Aと負極板200Bとは、ポリオレフィン製の矩形状のセパレータを介して交互に積層される。なお、長尺のセパレータをつづら折りして用いてもよい。 FIG. 5 is a plan view showing an electrode body 200 consisting of a positive electrode plate 200A and a negative electrode plate 200B. As shown in FIG. 5, the electrode body 200 is manufactured so that the positive tabs 210A of each positive plate 200A are laminated at one end, and the negative tabs 210B of each negative plate 200B are laminated. The positive electrode plates 200A and the negative electrode plates 200B are stacked, for example, by about 50 sheets each. The positive electrode plates 200A and the negative electrode plates 200B are alternately laminated with rectangular separators made of polyolefin interposed therebetween. Note that a long separator may be zigzagged and used.

図6は、電極体200と正極集電部材600および負極集電部材700との接続構造を示す図である。図6に示すように、電極体200は、第1電極体要素201(第1積層群)および第2電極体要素202(第2積層群)により構成される。第1電極体要素201および第2電極体要素202の外面にもセパレータが各々配置される。 FIG. 6 is a diagram showing a connection structure between the electrode body 200 and the positive current collecting member 600 and the negative current collecting member 700. As shown in FIG. As shown in FIG. 6, the electrode body 200 is composed of a first electrode body element 201 (first lamination group) and a second electrode body element 202 (second lamination group). Separators are also disposed on the outer surfaces of the first electrode element 201 and the second electrode element 202, respectively.

第1電極体要素201の複数枚の正極タブ210Aが第1正極タブ群211Aを構成する。第1電極体要素201の複数枚の負極タブ210Bが第1負極タブ群211Bを構成する。第2電極体要素202の複数枚の正極タブ210Aが第2正極タブ群212Aを構成する。第2電極体要素202の複数枚の負極タブ210Bが第2負極タブ群212Bを構成する。 A plurality of positive electrode tabs 210A of the first electrode element 201 constitute a first positive electrode tab group 211A. A plurality of negative electrode tabs 210B of the first electrode element 201 constitute a first negative electrode tab group 211B. A plurality of positive electrode tabs 210A of the second electrode body element 202 constitute a second positive electrode tab group 212A. A plurality of negative electrode tabs 210B of the second electrode element 202 constitute a second negative electrode tab group 212B.

第1電極体要素201と第2電極体要素202の間に、第2正極集電体620と第2負極集電体720とが配置される。第2正極集電体620は、第1開口620Aおよび第2開口620Bを有する。第1正極タブ群211Aおよび第2正極タブ群212Aが、第2正極集電体620上に溶接接続され、溶接接続部213が形成される。第1負極タブ群211Bおよび第2負極タブ群212Bが、第2負極集電体720上に溶接接続され、溶接接続部213が形成される。溶接接続部213は、たとえば、超音波溶接、抵抗溶接、レーザ溶接等により形成し得る。 A second positive current collector 620 and a second negative current collector 720 are arranged between the first electrode body element 201 and the second electrode body element 202 . The second positive electrode current collector 620 has a first opening 620A and a second opening 620B. The first positive electrode tab group 211A and the second positive electrode tab group 212A are welded onto the second positive electrode current collector 620 to form the weld connection portion 213 . The first negative electrode tab group 211B and the second negative electrode tab group 212B are welded onto the second negative electrode current collector 720 to form the weld connection portion 213 . Weld connection 213 may be formed, for example, by ultrasonic welding, resistance welding, laser welding, or the like.

図7は、封口板120への正極集電部材600および負極集電部材700の取付構造を示す図である。図8は、図7におけるVIII-VIII断面を示す。図9は、図7におけるIX-IX断面を示す。 7A and 7B are diagrams showing a mounting structure of the positive collector member 600 and the negative collector member 700 to the sealing plate 120. FIG. FIG. 8 shows the VIII-VIII cross section in FIG. FIG. 9 shows the IX-IX section in FIG.

まず、図7,図8を参照して、封口板120への正極集電部材600の取付について説明する。 First, with reference to FIGS. 7 and 8, the attachment of the positive collector member 600 to the sealing plate 120 will be described.

封口板120の外面側に樹脂製の外部側絶縁部材410が配置される。封口板120の内面側に第1正極集電体610、および樹脂製の絶縁部材630(正極集電体ホルダ)が配置される。次に、正極端子400が、外部側絶縁部材410の貫通孔、封口板120の正極端子取り付け孔、第1正極集電体610の貫通孔、および絶縁部材630の貫通孔に挿入される。そして、正極端子400の先端に位置するカシメ部400Aが第1正極集電体610上にカシメ接続される。これにより、正極端子400、外部側絶縁部材410、封口板120、第1正極集電体610、および絶縁部材630が固定される。なお、正極端子400および第1正極集電体610のカシメ接続された部分は、レーザ溶接等により溶接接続されることが好ましい。なお、第1正極集電体610はザグリ穴610Aを有し、カシメ部400Aはザグリ穴610A内に設けられる。 An external insulating member 410 made of resin is arranged on the outer surface side of the sealing plate 120 . A first positive electrode current collector 610 and a resin insulating member 630 (positive electrode current collector holder) are arranged on the inner surface side of the sealing plate 120 . Next, the positive electrode terminal 400 is inserted into the through hole of the external insulating member 410 , the positive electrode terminal mounting hole of the sealing plate 120 , the through hole of the first positive electrode current collector 610 , and the through hole of the insulating member 630 . Then, the crimped portion 400A positioned at the tip of the positive electrode terminal 400 is crimped onto the first positive electrode current collector 610 . Thereby, the positive electrode terminal 400, the external insulating member 410, the sealing plate 120, the first positive electrode current collector 610, and the insulating member 630 are fixed. It should be noted that the caulking-connected portions of the positive electrode terminal 400 and the first positive current collector 610 are preferably weld-connected by laser welding or the like. The first positive electrode current collector 610 has a counterbore hole 610A, and the caulking portion 400A is provided in the counterbore hole 610A.

さらに、第2正極集電体620の一部が第1正極集電体610と重なるように、第2正極集電体620が絶縁部材630上に配置される。第2正極集電体620に設けられた第1開口620Aにおいて、第2正極集電体620は第1正極集電体610にレーザ溶接等により溶接接続される。 Furthermore, the second positive electrode current collector 620 is arranged on the insulating member 630 such that the second positive electrode current collector 620 partially overlaps the first positive electrode current collector 610 . The second positive electrode current collector 620 is welded to the first positive electrode current collector 610 by laser welding or the like at the first opening 620A provided in the second positive electrode current collector 620 .

図8に示すように、絶縁部材630は、電極体200側に突出する筒状部630Aを有する。筒状部630Aは、第2正極集電体620の第2開口620Bを貫通し、電解液注液孔121と連通する孔部630Bを規定する。 As shown in FIG. 8, the insulating member 630 has a tubular portion 630A protruding toward the electrode body 200 side. Cylindrical portion 630</b>A penetrates second opening 620</b>B of second positive electrode current collector 620 and defines hole portion 630</b>B communicating with electrolyte injection hole 121 .

封口板120に正極集電部材600を取り付ける際は、まず、第1正極集電体610が封口板120上の絶縁部材630に接続される。続いて、電極体200に接続された第2正極集電体620が第1正極集電体610に取り付けられる。このとき、第2正極集電体620の一部が第1正極集電体610と重なるように第2正極集電体620が絶縁部材630上に配置される。続いて、第2正極集電体620に設けられた第1開口620Aの周囲が、レーザ溶接等により第1正極集電体610に溶接接続される。 When attaching the positive electrode current collector 600 to the sealing plate 120 , first, the first positive electrode current collector 610 is connected to the insulating member 630 on the sealing plate 120 . Subsequently, the second positive current collector 620 connected to the electrode assembly 200 is attached to the first positive current collector 610 . At this time, the second positive current collector 620 is arranged on the insulating member 630 such that the second positive current collector 620 partially overlaps the first positive current collector 610 . Subsequently, the periphery of the first opening 620A provided in the second positive electrode current collector 620 is weld-connected to the first positive electrode current collector 610 by laser welding or the like.

次に、図7および図9を参照して、封口板120への負極集電部材700の取付について説明する。 Next, attachment of the negative electrode current collecting member 700 to the sealing plate 120 will be described with reference to FIGS. 7 and 9. FIG.

封口板120の外面側に樹脂製の外部側絶縁部材510が配置される。封口板120の内面側に第1負極集電体710、および樹脂製の絶縁部材730(負極集電体ホルダ)が配置される。次に、負極端子500が、外部側絶縁部材510の貫通孔、封口板120の負極端子取り付け孔、第1負極集電体710の貫通孔、および絶縁部材730の貫通孔に挿入される。そして、負極端子500の先端に位置するカシメ部500Aが第1負極集電体710上にカシメ接続される。これにより、負極端子500、外部側絶縁部材510、封口板120、第1負極集電体710、および絶縁部材730が固定される。なお、負極端子500および第1負極集電体710のカシメ接続された部分は、レーザ溶接等により溶接接続されることが好ましい。 An external insulating member 510 made of resin is arranged on the outer surface side of the sealing plate 120 . A first negative electrode current collector 710 and a resin insulating member 730 (negative electrode current collector holder) are arranged on the inner surface side of the sealing plate 120 . Next, the negative terminal 500 is inserted into the through hole of the external insulating member 510 , the negative terminal mounting hole of the sealing plate 120 , the through hole of the first negative current collector 710 , and the through hole of the insulating member 730 . Then, the crimped portion 500A positioned at the tip of the negative electrode terminal 500 is crimped onto the first negative electrode current collector 710 . Thereby, the negative electrode terminal 500, the external insulating member 510, the sealing plate 120, the first negative electrode current collector 710, and the insulating member 730 are fixed. It should be noted that the caulking-connected portions of the negative electrode terminal 500 and the first negative electrode current collector 710 are preferably weld-connected by laser welding or the like.

さらに、第2負極集電体720の一部が第1負極集電体710と重なるように、第2負極集電体720が絶縁部材730上に配置される。第2負極集電体720に設けられた第1開口720Aにおいて、第2負極集電体720は第1負極集電体710にレーザ溶接等により溶接接続される。 Furthermore, the second negative electrode current collector 720 is arranged on the insulating member 730 such that a portion of the second negative electrode current collector 720 overlaps with the first negative electrode current collector 710 . The second negative electrode current collector 720 is welded to the first negative electrode current collector 710 by laser welding or the like at the first opening 720A provided in the second negative electrode current collector 720 .

封口板120に負極集電部材700を取り付ける際は、まず、第1負極集電体710が封口板120上の絶縁部材730に接続される。続いて、電極体200に接続された第2負極集電体720が第1負極集電体710に取り付けられる。このとき、第2負極集電体720の一部が第1負極集電体710と重なるように第2負極集電体720が絶縁部材730上に配置される。続いて、第2負極集電体720に設けられた第1開口720Aの周囲が、レーザ溶接等により第1負極集電体710に溶接接続される。 When attaching the negative electrode current collector 700 to the sealing plate 120 , first, the first negative electrode current collector 710 is connected to the insulating member 730 on the sealing plate 120 . Subsequently, the second negative current collector 720 connected to the electrode assembly 200 is attached to the first negative current collector 710 . At this time, the second negative current collector 720 is arranged on the insulating member 730 such that the second negative current collector 720 partially overlaps the first negative current collector 710 . Subsequently, the periphery of the first opening 720A provided in the second negative electrode current collector 720 is welded to the first negative electrode current collector 710 by laser welding or the like.

図10は、封口板120と電極体200とが接続された状態を示す図である。上述したように、正極集電部材600および負極集電部材700を介して第1電極体要素201および第2電極体要素202が封口板120に取り付けられる。これにより、図10に示すように、第1電極体要素201および第2電極体要素202が封口板120に接続され、電極体200と正極端子400および負極端子500とが電気的に接続される。 FIG. 10 is a diagram showing a state in which the sealing plate 120 and the electrode body 200 are connected. As described above, the first electrode body element 201 and the second electrode body element 202 are attached to the sealing plate 120 via the positive electrode current collecting member 600 and the negative electrode current collecting member 700 . Thereby, as shown in FIG. 10, the first electrode body element 201 and the second electrode body element 202 are connected to the sealing plate 120, and the electrode body 200 is electrically connected to the positive electrode terminal 400 and the negative electrode terminal 500. .

図10に示す状態から、第1電極体要素201と第2電極体要素202とが1つに纏められる。このとき、第1正極タブ群211Aと第2正極タブ群212Aとが互いに異なる方向に湾曲させられる。第1負極タブ群211Bと第2負極タブ群212Bとが互いに異なる方向に湾曲させられる。 From the state shown in FIG. 10, the first electrode body element 201 and the second electrode body element 202 are combined into one. At this time, the first positive electrode tab group 211A and the second positive electrode tab group 212A are bent in different directions. The first negative electrode tab group 211B and the second negative electrode tab group 212B are curved in different directions.

第1電極体要素201と第2電極体要素202とは、テープ等により1つに纏められ得る。代替的に、第1電極体要素201と第2電極体要素202とを、箱状ないし袋状に成形した絶縁シート内に配置することで1つに纏めることができる。さらに、第1電極体要素201と第2電極体要素202とを接着により固定することができる。 The first electrode body element 201 and the second electrode body element 202 can be put together by tape or the like. Alternatively, the first electrode body element 201 and the second electrode body element 202 can be integrated by arranging them in an insulating sheet molded into a box-like or bag-like shape. Furthermore, the first electrode body element 201 and the second electrode body element 202 can be fixed by adhesion.

1つに纏められた第1電極体要素201と第2電極体要素202とが絶縁シート300で包まれ、角形外装体110に挿入される。その後、封口板120が角形外装体110に溶接接続され、角形外装体110の開口が封口板120により封口され、密閉された電池ケース100が形成される。 The first electrode body element 201 and the second electrode body element 202 combined into one are wrapped with an insulating sheet 300 and inserted into the rectangular outer body 110 . After that, the sealing plate 120 is welded to the rectangular outer body 110 and the opening of the rectangular outer body 110 is sealed with the sealing plate 120 to form the sealed battery case 100 .

その後、封口板120に設けられた電解液注液孔121から非水電解液が電池ケース100に注液される。非水電解液としては、たとえば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、およびジメチルカーボネート(DMC)を含むものが用いられる。 After that, a non-aqueous electrolyte is injected into the battery case 100 through an electrolyte injection hole 121 provided in the sealing plate 120 . As the non-aqueous electrolyte, for example, one containing ethylene carbonate (EC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) is used.

非水電解液が注液された後、電解液注液孔121は封止部材122により封止される。以上の工程の実施により、角形二次電池1は完成する。 After the non-aqueous electrolyte is injected, the electrolyte injection hole 121 is sealed with a sealing member 122 . The prismatic secondary battery 1 is completed by performing the above steps.

図11は、角形二次電池1の構造を模式的に示す断面図である。図11に示すように、板状の絶縁部材630,730(内部部材)は、電池ケース100(外装缶)の封口板120(壁部)の内面と対向するように電池ケース100に収納される。封口板120の内面に凹部10が形成され、絶縁部材630の表面に凹部20が形成されている。封口板120と絶縁部材630,730との間に隙間30が形成されている。凹部10,20は、隙間30に面する位置に設けられている。 FIG. 11 is a cross-sectional view schematically showing the structure of the prismatic secondary battery 1. As shown in FIG. As shown in FIG. 11, plate-like insulating members 630 and 730 (internal members) are housed in battery case 100 so as to face the inner surface of sealing plate 120 (wall portion) of battery case 100 (external can). . A recess 10 is formed in the inner surface of the sealing plate 120 and a recess 20 is formed in the surface of the insulating member 630 . A gap 30 is formed between the sealing plate 120 and the insulating members 630 and 730 . The recesses 10 and 20 are provided at positions facing the gap 30 .

角形二次電池1を製造するときは、まず、電池ケース100に電極体200が挿入される。次に、電極体200が挿入された電池ケース100に電解液注液孔121を介して電解液が注液される。その後、電解液注液孔121を介して電池ケース100内のガスが排出され、電池ケース100内が減圧される。このとき、電池ケース100内の圧力は、好ましくは大気圧以下に減圧される。より好ましくは、電池ケース100内の圧力は、大気圧-0.030MPa以下程度にまで減圧され、さらに好ましくは、電池ケース100内の圧力は、大気圧-0.070MPa以下程度にまで減圧される。電池ケース100内の圧力を減圧した状態で、封止部材122により電解液注液孔121が封止される。 When manufacturing the prismatic secondary battery 1 , first, the electrode body 200 is inserted into the battery case 100 . Next, an electrolytic solution is injected through the electrolytic solution injection hole 121 into the battery case 100 in which the electrode body 200 is inserted. After that, the gas inside the battery case 100 is discharged through the electrolyte injection hole 121, and the pressure inside the battery case 100 is reduced. At this time, the pressure in battery case 100 is preferably reduced to atmospheric pressure or lower. More preferably, the pressure in battery case 100 is reduced to about atmospheric pressure -0.030 MPa or less, and more preferably, the pressure in battery case 100 is reduced to about atmospheric pressure -0.070 MPa or less. . While the pressure inside the battery case 100 is reduced, the sealing member 122 seals the electrolyte injection hole 121 .

隙間30は、封口板120の延在方向に沿って延び、電解液注液孔121に通じる。隙間30は、ガスを排出して電池ケース100内の圧力を減圧する工程において、ガスの流路となる。 The gap 30 extends along the extending direction of the sealing plate 120 and communicates with the electrolyte injection hole 121 . The gap 30 serves as a gas flow path in the process of discharging the gas to reduce the pressure in the battery case 100 .

電解液注液孔121を介したガス排出工程を実施する場合、ガスとともに電解液が排出され得る。電解液注液孔121から漏れ出た電解液は、ガス排出装置などの製造設備の耐久性を低下させ得る。また、完成後の角形二次電池1において電解液の量が安定せず、電池の性能にも影響を与え得る。 When performing the gas discharge process through the electrolyte injection hole 121, the electrolyte can be discharged together with the gas. The electrolyte leaking out from the electrolyte injection hole 121 can reduce the durability of the manufacturing equipment such as the gas discharge device. In addition, the amount of electrolyte in the completed prismatic secondary battery 1 is not stable, which may affect the performance of the battery.

本実施の形態においては、ガスの流路となる隙間30に面する位置に凹部10,20が設けられ、凹部10,20が電解液注液孔121に向かうガスに含まれる電解液を捕捉(トラップ)するため、電解液注液孔121からガスとともに電解液が漏れ出ることを抑制することができる。 In the present embodiment, recesses 10 and 20 are provided at positions facing gap 30 that serves as a flow path for gas, and recesses 10 and 20 trap electrolyte contained in gas flowing toward electrolyte injection hole 121 ( Therefore, it is possible to suppress leakage of the electrolyte together with the gas from the electrolyte injection hole 121 .

図12は、封口板120に絶縁部材630,730と正極集電部材600および負極集電部材700とを設けた状態を示す平面図である。図13は、封口板120の一例を示す平面図であり、図14は、封口板120の上に設けられる絶縁部材630,730の一例を示す図である。 FIG. 12 is a plan view showing a state in which insulating members 630 and 730, a positive collector member 600, and a negative collector member 700 are provided on the sealing plate 120. FIG. 13 is a plan view showing an example of the sealing plate 120, and FIG. 14 is a view showing an example of insulating members 630 and 730 provided on the sealing plate 120. FIG.

図12~図14に示すように、絶縁部材630は、封口板120の電解液注液孔121と対向する部分に孔部630B(貫通孔)を有する。図13,図14に示すように、凹部10,20は、X軸方向(第2方向)に延びるように帯状に形成される。凹部10,20は、Y軸方向(第1方向)に延びるように形成されてもよい。 As shown in FIGS. 12 to 14, the insulating member 630 has a hole portion 630B (through hole) in a portion facing the electrolyte injection hole 121 of the sealing plate 120. As shown in FIGS. As shown in FIGS. 13 and 14, the recesses 10 and 20 are band-shaped so as to extend in the X-axis direction (second direction) . The recesses 10 and 20 may be formed to extend in the Y-axis direction (first direction) .

図11に示す例では、負極側においては封口板120に凹部10が設けられ、正極側においては絶縁部材630に凹部20が設けられているが、図13,図14の例では、正極側および負極側ともに、封口板120に凹部10が形成され、かつ、絶縁部材630,730に凹部20が形成されている。 In the example shown in FIG. 11, the recess 10 is provided in the sealing plate 120 on the negative electrode side, and the recess 20 is provided in the insulating member 630 on the positive electrode side. A concave portion 10 is formed in the sealing plate 120 and a concave portion 20 is formed in the insulating members 630 and 730 on both the negative electrode sides.

凹部10,20の深さは2mm以下程度であることが好ましく、1mm以下程度であることがより好ましく、0.5mm以下程度または0.1mm以下程度であることがさらに好ましい。凹部10,20の深さを上述の値以下とすることで、封口板120および絶縁部材630の強度等に与える影響を抑制しながら、凹部10,20による電解液のトラップ効果を得ることができる。 The depth of the recesses 10 and 20 is preferably about 2 mm or less, more preferably about 1 mm or less, and even more preferably about 0.5 mm or less or about 0.1 mm or less. By setting the depth of the recesses 10 and 20 to the above value or less, the effect of trapping the electrolytic solution by the recesses 10 and 20 can be obtained while suppressing the influence on the strength of the sealing plate 120 and the insulating member 630. .

一例として、封口板120の厚みは2mm程度であり、絶縁部材630,730の厚みは0.6mm程度である。 As an example, the thickness of the sealing plate 120 is approximately 2 mm, and the thickness of the insulating members 630 and 730 is approximately 0.6 mm.

X軸方向に沿う凹部10,20の長さは、30mm以上50mm以下程度であることが好ましく、45mm以上50mm以下程度であることがさらに好ましい。Y軸方向に沿う凹部10,20の長さは、15mm以上25mm以下程度であることが好ましく、20mm以上25mm以下程度であることがさらに好ましい。Y軸方向に沿う凹部10,20の長さは、X軸方向に沿う凹部10,20の長さの30パーセント以上程度であることが好ましい。 The length of the concave portions 10 and 20 along the X-axis direction is preferably about 30 mm or more and 50 mm or less, more preferably about 45 mm or more and 50 mm or less. The length of the concave portions 10 and 20 along the Y-axis direction is preferably about 15 mm or more and 25 mm or less, more preferably about 20 mm or more and 25 mm or less. The length of the recesses 10, 20 along the Y-axis direction is preferably about 30% or more of the length of the recesses 10, 20 along the X-axis direction.

一例として、封口板120のX軸方向に沿う長さは150mm程度であり、封口板120のY軸方向に沿う長さは25mm程度である。 As an example, the length of the sealing plate 120 along the X-axis direction is about 150 mm, and the length of the sealing plate 120 along the Y-axis direction is about 25 mm.

図15は、封口板と絶縁部材との隙間の構造の一例を模式的に示す拡大断面図であり、図16は、その変形例を模式的に示す拡大断面図である。図15に示す例では、絶縁部材730に対向する封口板120の内面に凹部10が形成され、図16に示す例では、封口板120に対向する絶縁部材730の表面に凹部20が形成されている。 FIG. 15 is an enlarged cross-sectional view schematically showing an example of the structure of the gap between the sealing plate and the insulating member, and FIG. 16 is an enlarged cross-sectional view schematically showing a modification thereof. In the example shown in FIG. 15, the recess 10 is formed in the inner surface of the sealing plate 120 facing the insulating member 730, and in the example shown in FIG. there is

Z軸方向に沿った隙間30の高さ(H)は、2mm以下程度であることが好ましく、1mm以下であることがより好ましく、0.5mm以下程度であることがさらに好ましい。 The height (H) of the gap 30 along the Z-axis direction is preferably approximately 2 mm or less, more preferably 1 mm or less, and even more preferably approximately 0.5 mm or less.

Z軸方向からみた隙間30の面積は、5cm2以上程度であることが好ましく、15cm2以上40cm2以下程度であることがより好ましく、35cm2以上40cm2以下程度であることがさらに好ましい。 The area of the gap 30 when viewed in the Z-axis direction is preferably about 5 cm 2 or more, more preferably about 15 cm 2 or more and 40 cm 2 or less, and even more preferably about 35 cm 2 or more and 40 cm 2 or less.

隙間30の長さは、20mm以上程度であることが好ましく、30mm以上程度、または50mm以上程度であることがより好ましい。さらに好ましくは、X軸方向(長手方向)に沿った隙間30の長さは、110mm以上150mm以下程度、または、140mm以上150mm以下程度であり、Y軸方向(短手方向)に沿った隙間30の長さは、10mm以上30mm以下程度、または、20mm以上30mm以下程度である。 The length of the gap 30 is preferably about 20 mm or longer, more preferably about 30 mm or longer, or about 50 mm or longer. More preferably, the length of the gap 30 along the X-axis direction (longitudinal direction) is about 110 mm or more and 150 mm or less, or about 140 mm or more and 150 mm or less, and the length of the gap 30 along the Y-axis direction (lateral direction) is about The length of is about 10 mm or more and 30 mm or less, or about 20 mm or more and 30 mm or less.

隙間30の高さおよび平面寸法(面積)を上述の範囲に設定することにより、凹部10,20による電解液のトラップ効果を向上させることができる。 By setting the height and planar dimension (area) of the gap 30 within the ranges described above, the effect of trapping the electrolytic solution by the concave portions 10 and 20 can be improved.

図17~図20は、凹部10,20の断面形状の変形例を示す断面図である。図17の例では、凹部10と凹部20とがX軸方向に交互に並んで形成されている。図18の例では、X軸方向に延びる凹部10と凹部20とが対向するように形成されている。図19の例では、X軸方向に延びる凹部10の底面に凹凸部分11が形成されている。いずれの例においても、隙間30を流れるガスに乱流が生じやすくなり、凹部10,20による電解液のトラップ効果を高めることができる。 17 to 20 are cross-sectional views showing modifications of the cross-sectional shapes of the recesses 10 and 20. FIG. In the example of FIG. 17, recesses 10 and recesses 20 are alternately formed in the X-axis direction. In the example of FIG. 18, the concave portion 10 and the concave portion 20 extending in the X-axis direction are formed so as to face each other. In the example of FIG. 19, the uneven portion 11 is formed on the bottom surface of the concave portion 10 extending in the X-axis direction. In either example, turbulence is likely to occur in the gas flowing through the gap 30, and the effect of trapping the electrolytic solution by the concave portions 10 and 20 can be enhanced.

図20の例では、電解液注液孔121の周囲を取り囲むように、円周状の凹部10が封口板120に形成されている。このようにすることで、電解液注液孔121の周囲において電解液のトラップ効果を得ることができ、電解液の意図しない漏出を効果的に抑制することが可能である。 In the example of FIG. 20 , a circular concave portion 10 is formed in the sealing plate 120 so as to surround the electrolyte injection hole 121 . By doing so, it is possible to obtain the effect of trapping the electrolyte around the electrolyte injection hole 121, and to effectively suppress the unintended leakage of the electrolyte.

本技術において、「電極体」の形態は特に限定されず、巻回型の電極体であってもよいし、積層型の電極体であってもよい。積層型の電極体を用いる場合、セパレータは枚葉式のセパレータであってもよいし、九十九折や巻回式のセパレータであってもよい。 In the present technology, the form of the "electrode body" is not particularly limited, and may be a wound electrode body or a laminated electrode body. When a laminated electrode body is used, the separator may be a sheet type separator, or may be a folded or wound type separator.

本技術において、「電解液」の種類は特に限定されない。好ましい「電解液」として、塩と非水溶媒を含む非水電解液が用いられ得る。 In the present technology, the type of "electrolyte" is not particularly limited. A non-aqueous electrolyte containing a salt and a non-aqueous solvent can be used as a preferred "electrolyte".

本技術において、「電解液注液孔」は「封口板」に設けられてもよいし、「外装缶」の他の壁面に設けられてもよい。 In the present technology, the "electrolyte injection hole" may be provided in the "sealing plate", or may be provided in another wall surface of the "armored can".

本技術において、「外装缶」の「壁部」とともにガスの流路となる隙間を形成する「流路形成部材」としての「内部部材」は、「絶縁部材」により構成されることが好ましく、典型的には「樹脂部材」により構成される。「樹脂部材」の材質は特に限定されない。例として、PP(ポリプロピレン)、PPS(ポリフェニレンサルファイド)、PFA(パーフルオロアルコキシアルカン)などを用いることができる。 In the present technology, it is preferable that the "internal member" as the "flow path forming member" that forms a gap serving as a gas flow path together with the "wall portion" of the "armored can" be composed of an "insulating member." Typically, it is composed of a "resin member". The material of the "resin member" is not particularly limited. As examples, PP (polypropylene), PPS (polyphenylene sulfide), PFA (perfluoroalkoxyalkane), etc. can be used.

本技術において、「凹部」の縁部は、スロープ状ではなく、上述の各例のように、段差状の角張った形状を有することが好ましい。このようにすることで、凹部において電解液をトラップしやすくすることができる。 In the present technology, it is preferable that the edges of the “recessed portion” have a stepped, angular shape as in the above-described examples, instead of a sloped shape. By doing so, it is possible to easily trap the electrolytic solution in the concave portion.

以上、本技術の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本技術の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present technology have been described above, the embodiments disclosed this time should be considered as examples and not restrictive in all respects. The scope of the present technology is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope of equivalence to the scope of the claims.

1 角形二次電池、10 凹部、11 凹凸部分、20 凹部、30 隙間、100 電池ケース、110 角形外装体、120 封口板、121 電解液注液孔、122 封止部材、123 ガス排出弁、200 電極体、200A 正極板、200B 負極板、201 第1電極体要素、202 第2電極体要素、210A 正極タブ、210B 負極タブ、211A 第1正極タブ群、211B 第1負極タブ群、212A 第2正極タブ群、212B 第2負極タブ群、213 溶接接続部、220A,220B 本体部、230A 正極保護層、300 絶縁シート、400 正極端子、400A カシメ部、410 外部側絶縁部材、500 負極端子、500A カシメ部、510 外部側絶縁部材、600 正極集電部材、610 第1正極集電体、610A ザグリ穴、620 第2正極集電体、620A 第1開口、620B 第2開口、630 絶縁部材、630A 筒状部、630B 孔部、700 負極集電部材、710 第1負極集電体、720 第2負極集電体、720A 第1開口、730 絶縁部材、800 カバー部材。 1 prismatic secondary battery, 10 recessed portion, 11 uneven portion, 20 recessed portion, 30 gap, 100 battery case, 110 prismatic exterior body, 120 sealing plate, 121 electrolyte injection hole, 122 sealing member, 123 gas discharge valve, 200 Electrode body 200A positive electrode plate 200B negative electrode plate 201 first electrode body element 202 second electrode body element 210A positive electrode tab 210B negative electrode tab 211A first positive electrode tab group 211B first negative electrode tab group 212A second Positive electrode tab group 212B Second negative electrode tab group 213 Welded connection portion 220A, 220B Body portion 230A Positive electrode protective layer 300 Insulating sheet 400 Positive electrode terminal 400A Crimped portion 410 External side insulating member 500 Negative electrode terminal 500A Crimped portion 510 External side insulating member 600 Positive electrode collector 610 First positive collector 610A Counterbore 620 Second positive collector 620A First opening 620B Second opening 630 Insulating member 630A Cylindrical part 630B Hole 700 Negative collector 710 First negative collector 720 Second negative collector 720A First opening 730 Insulating member 800 Cover member.

Claims (11)

電極体と、
壁部を含み、前記電極体を収納する外装缶と、
前記電極体とともに前記外装缶に収納される電解液と、
前記外装缶の前記壁部の内面と対向するように前記外装缶に収納された内部部材とを備え、
前記壁部に前記電解液用の注液孔が設けられ、
前記注液孔は封止部材により封止され、
前記壁部と前記内部部材との間に、前記壁部の延在方向に沿って延び、前記注液孔に通じる隙間が形成され、
前記隙間に面する位置において、前記壁部の前記内面および前記内部部材の表面の少なくとも一方に凹部が形成され、
前記内部部材は、前記注液孔と対向する部分に貫通孔を有し、
前記壁部は、短辺と長辺とを含む略長方形の平面形状を有し、
前記凹部は、前記短辺に沿う第1方向または前記長辺に沿う第2方向に延びる帯状部分を有し、前記帯状部分の延在方向の両端の縁部は、段差状の角張った形状を有する、二次電池。
an electrode body;
an outer can containing a wall portion and housing the electrode body;
an electrolytic solution housed in the outer can together with the electrode body;
an internal member housed in the outer can so as to face the inner surface of the wall of the outer can,
The wall portion is provided with an injection hole for the electrolytic solution,
The injection hole is sealed with a sealing member,
A gap extending along the extending direction of the wall portion and communicating with the injection hole is formed between the wall portion and the internal member,
a recess is formed in at least one of the inner surface of the wall portion and the surface of the internal member at a position facing the gap ;
The internal member has a through hole in a portion facing the injection hole,
The wall portion has a substantially rectangular planar shape including short sides and long sides,
The concave portion has a strip-shaped portion extending in a first direction along the short side or a second direction along the long side. secondary battery.
前記外装缶は、開口を有する本体と、前記本体の前記開口を封口する封口板とを含み、
前記壁部は前記封口板により構成される、請求項1に記載の二次電池。
The outer can includes a main body having an opening and a sealing plate that seals the opening of the main body,
2. The secondary battery according to claim 1, wherein said wall portion is configured by said sealing plate.
前記内部部材は、板状の絶縁部材により構成される、請求項1または請求項2に記載の二次電池。 3. The secondary battery according to claim 1, wherein said internal member is composed of a plate-shaped insulating member. 前記壁部の延在方向に対して直交する方向に沿った前記隙間の高さは2mm以下である、請求項1から請求項3のいずれか1項に記載の二次電池。 4. The secondary battery according to any one of claims 1 to 3 , wherein the height of said gap along the direction orthogonal to the extending direction of said wall is 2 mm or less. 前記壁部の延在方向に対して直交する方向からみた前記隙間の面積は、5cm2以上で
ある、請求項1から請求項4のいずれか1項に記載の二次電池。
5. The secondary battery according to any one of claims 1 to 4 , wherein said gap has an area of 5 cm<2> or more when viewed in a direction orthogonal to the extending direction of said wall.
前記凹部の深さは2mm以下である、請求項1から請求項5のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 5, wherein the recess has a depth of 2 mm or less. 前記第1方向に沿う前記凹部の長さは、前記第2方向に沿う前記凹部の長さの30パーセント以上である、請求項1から請求項6のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 6 , wherein the length of the recess along the first direction is 30% or more of the length of the recess along the second direction. 電極タブを有する電極体と、an electrode body having an electrode tab;
前記電極タブと電気的に接続される集電部材と、a collector member electrically connected to the electrode tab;
壁部を含み、前記電極体および前記集電部材を収納する外装缶と、an outer can containing a wall portion and housing the electrode body and the current collecting member;
前記電極体および前記集電部材とともに前記外装缶に収納される電解液と、an electrolytic solution housed in the outer can together with the electrode body and the current collecting member;
前記外装缶の前記壁部の内面と対向するように前記外装缶に収納された内部部材とを備え、an internal member housed in the outer can so as to face the inner surface of the wall of the outer can,
前記壁部に前記電解液用の注液孔が設けられ、The wall portion is provided with an injection hole for the electrolytic solution,
前記注液孔は封止部材により封止され、The injection hole is sealed with a sealing member,
前記壁部と前記内部部材との間に、前記壁部の延在方向に沿って延び、前記注液孔に通じる隙間が形成され、A gap extending along the extending direction of the wall portion and communicating with the injection hole is formed between the wall portion and the internal member,
前記隙間に面する位置において、前記壁部の前記内面および前記内部部材の表面の少なくとも一方に凹部が形成され、a recess is formed in at least one of the inner surface of the wall portion and the surface of the internal member at a position facing the gap;
前記内部部材は、前記壁部と前記集電部材との間に設けられ、前記壁部と前記集電部材とを電気的に絶縁する絶縁部材により構成される、二次電池。The secondary battery, wherein the internal member is provided between the wall portion and the current collecting member, and is composed of an insulating member that electrically insulates the wall portion from the current collecting member.
前記内部部材は、前記注液孔と対向する部分に貫通孔を有する、請求項8に記載の二次電池。9. The secondary battery according to claim 8, wherein said internal member has a through hole in a portion facing said injection hole. 請求項1から請求項9のいずれか1項に記載の二次電池の製造方法であって、
前記外装缶に前記電極体を挿入する工程と、
前記電極体が挿入された前記外装缶に前記注液孔を介して前記電解液を注液する工程と、
前記注液孔を介して前記外装缶内のガスを排出する工程と、
前記注液孔を前記封止部材により封止する工程とを備えた、二次電池の製造方法。
A method for manufacturing a secondary battery according to any one of claims 1 to 9,
a step of inserting the electrode assembly into the outer can;
a step of injecting the electrolytic solution through the injection hole into the outer can into which the electrode assembly is inserted;
a step of discharging the gas in the outer can through the liquid injection hole;
and sealing the liquid injection hole with the sealing member.
前記注液孔を前記封止部材により封止する工程において、前記外装缶内の圧力が大気圧以下である、請求項10に記載の二次電池の製造方法。 11. The method of manufacturing a secondary battery according to claim 10, wherein in the step of sealing said liquid injection hole with said sealing member, the pressure inside said outer can is equal to or lower than atmospheric pressure.
JP2021038404A 2021-03-10 2021-03-10 Secondary battery and manufacturing method thereof Active JP7280906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021038404A JP7280906B2 (en) 2021-03-10 2021-03-10 Secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021038404A JP7280906B2 (en) 2021-03-10 2021-03-10 Secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2022138491A JP2022138491A (en) 2022-09-26
JP7280906B2 true JP7280906B2 (en) 2023-05-24

Family

ID=83400288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021038404A Active JP7280906B2 (en) 2021-03-10 2021-03-10 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7280906B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579597B (en) 2022-11-11 2023-03-24 深圳海润新能源科技有限公司 Energy storage device and electric equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147422A (en) 2004-11-22 2006-06-08 Nec Access Technica Ltd Cell and cell pack
JP2007188711A (en) 2006-01-12 2007-07-26 Nec Tokin Corp Sealed battery
JP2012054236A (en) 2010-09-01 2012-03-15 Sb Limotive Co Ltd Secondary battery
JP2013257951A (en) 2012-06-11 2013-12-26 Hitachi Vehicle Energy Ltd Square secondary battery
WO2017222039A1 (en) 2016-06-24 2017-12-28 株式会社Gsユアサ Electricity storage element
JP2018198163A (en) 2017-05-24 2018-12-13 トヨタ自動車株式会社 Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147422A (en) 2004-11-22 2006-06-08 Nec Access Technica Ltd Cell and cell pack
JP2007188711A (en) 2006-01-12 2007-07-26 Nec Tokin Corp Sealed battery
JP2012054236A (en) 2010-09-01 2012-03-15 Sb Limotive Co Ltd Secondary battery
JP2013257951A (en) 2012-06-11 2013-12-26 Hitachi Vehicle Energy Ltd Square secondary battery
WO2017222039A1 (en) 2016-06-24 2017-12-28 株式会社Gsユアサ Electricity storage element
JP2018198163A (en) 2017-05-24 2018-12-13 トヨタ自動車株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2022138491A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
EP2709187B1 (en) Vibration and impact resistant battery
JP7500678B2 (en) Prismatic secondary battery
KR101821488B1 (en) Battery
JP7280906B2 (en) Secondary battery and manufacturing method thereof
CN116315117A (en) Secondary battery
JP6750438B2 (en) Prismatic secondary battery
JP6949181B2 (en) Square secondary battery
JP7067362B2 (en) Manufacturing method of power storage module, power storage device and power storage device
JP2022095179A (en) Battery and manufacturing method therefor
JP7014171B2 (en) Manufacturing method of square secondary battery
JP7249984B2 (en) battery
JP7157789B2 (en) prismatic battery
JP7340568B2 (en) battery
JP7262433B2 (en) battery
JP7333299B2 (en) BATTERY, BATTERY BATTERY, AND BATTERY MANUFACTURING METHOD
JP7236422B2 (en) BATTERY AND MANUFACTURING METHOD THEREOF
JP7405687B2 (en) Energy storage element
US11664525B2 (en) Method for manufacturing energy storage device and energy storage device
JP7202407B2 (en) secondary battery
JP7216750B2 (en) BATTERY AND MANUFACTURING METHOD THEREOF
JP7269212B2 (en) BATTERY AND MANUFACTURING METHOD THEREOF
JP7322872B2 (en) Storage element
US20200313153A1 (en) Secondary battery
JP6944653B2 (en) Power storage element
CN114649652A (en) Battery and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

R150 Certificate of patent or registration of utility model

Ref document number: 7280906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150