JP7275144B2 - Increasing radio frequency to generate unpadded unipolar loops - Google Patents

Increasing radio frequency to generate unpadded unipolar loops Download PDF

Info

Publication number
JP7275144B2
JP7275144B2 JP2020535634A JP2020535634A JP7275144B2 JP 7275144 B2 JP7275144 B2 JP 7275144B2 JP 2020535634 A JP2020535634 A JP 2020535634A JP 2020535634 A JP2020535634 A JP 2020535634A JP 7275144 B2 JP7275144 B2 JP 7275144B2
Authority
JP
Japan
Prior art keywords
surgical
generator
sensor
monopolar
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535634A
Other languages
Japanese (ja)
Other versions
JP2021509325A (en
Inventor
イェイツ・デビッド・シー
シェルトン・ザ・フォース・フレデリック・イー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon LLC
Original Assignee
Ethicon LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/115,256 external-priority patent/US11253315B2/en
Application filed by Ethicon LLC filed Critical Ethicon LLC
Publication of JP2021509325A publication Critical patent/JP2021509325A/en
Application granted granted Critical
Publication of JP7275144B2 publication Critical patent/JP7275144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • A61B2018/00178Electrical connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00672Sensing and controlling the application of energy using a threshold value lower
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00732Frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • A61B2218/008Aspiration for smoke evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots

Description

(関連出願の相互参照)
本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION」と題する2018年8月23日出願の米国仮特許出願第62/721,995号に対する優先権を主張する。
(Cross reference to related applications)
This application was filed on Aug. 23, 2018 under 35 U.S.C. No. 62/721,995 of US Provisional Patent Application No. 62/721,995.

本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS」と題する2018年8月23日出願の米国仮特許出願第62/721,998号に対する優先権を主張する。 This application is filed under 35 U.S.C. Priority is claimed to Application No. 62/721,998.

本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING」と題する2018年8月23日出願の米国仮特許出願第62/721,999号に対する優先権を主張する。 This application is filed on Aug. 23, 2018, entitled "INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING" under 35 U.S.C. Priority is claimed to US Provisional Patent Application No. 62/721,999.

本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY」と題する2018年8月23日出願の米国仮特許出願第62/721,994号に対する優先権を主張する。 This application is filed under 35 U.S.C. Priority is claimed to US Provisional Patent Application No. 62/721,994, filed on May 1, 2004.

本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS」と題する2018年8月23日出願の米国仮特許出願第62/721,996号に対する優先権を主張する。 This application is filed on Aug. 23, 2018 under 35 U.S.C. No. 62/721,996 of US Provisional Patent Application No. 62/721,996.

本出願は更に、米国特許法第119条(e)の下で、各開示の全体が参照により本明細書に組み込まれる、「SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE」と題する2018年6月30日出願の米国仮特許出願第62/692,747号、「SMART ENERGY ARCHITECTURE」と題する2018年6月30日出願の米国仮特許出願第62/692,748号、及び「SMART ENERGY DEVICES」と題する2018年6月30日出願の米国仮特許出願第62/692,768号に対する優先権を主張する。 This application is further filed under 35 U.S.C. U.S. Provisional Patent Application No. 62/692,747, filed on June 20, 2018; Priority is claimed to U.S. Provisional Patent Application No. 62/692,768, filed June 30, 2018.

本出願は更に、米国特許法第119条(e)の下で、各開示の全体が参照により本明細書に組み込まれる、「CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS」と題する2018年3月30日出願の米国仮特許出願第62/650,898号、「SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES」と題する2018年3月30日出願の米国仮特許出願第62/650,887号、「SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する2018年3月30日出願の米国仮特許出願第62/650,882号、及び「SURGICAL SMOKE EVACUATION SENSING AND CONTROLS」と題する2018年3月30日出願の米国仮特許出願第62/650,877号の優先権の利益を主張する。 This application is further filed under 35 U.S.C. U.S. Provisional Patent Application No. 62/650,898, filed on Jan. 1, 2018, entitled "SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES," U.S. Provisional Patent Application No. 62/650,887, filed March 30, 2018, entitled "SMOKE EVACUATION MODULE FOR U.S. Provisional Patent Application No. 62/650,882, filed March 30, 2018, entitled "INTERACTIVE SURGICAL PLATFORM" and U.S. Provisional Patent Application No. 62/650,882, filed March 30, 2018, entitled "SURGICAL SMOKE EVACUATION SENSING AND CONTROLS." Claims priority benefit of 62/650,877.

本出願は更に、米国特許法第119条(e)の下で、各開示の全体が参照により本明細書に組み込まれる、「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号、「CLOUD-BASED MEDICAL ANALYTICS」と題する2017年12月28日出願の米国仮特許出願第62/611,340号、及び「ROBOT ASSISTED SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,339号の優先権の利益を主張する。 This application is further subject to U.S. provisional patent application entitled "INTERACTIVE SURGICAL PLATFORM," filed Dec. 28, 2017, under 35 U.S.C. Application No. 62/611,341, U.S. Provisional Patent Application No. 62/611,340, filed Dec. 28, 2017, entitled "CLOUD-BASED MEDICAL ANALYTICS," and U.S. Provisional Patent Application No. 62/611,340, entitled "ROBOT ASSISTED SURGICAL PLATFORM," Dec. 12, 2017. It claims the benefit of priority from US Provisional Patent Application No. 62/611,339, filed May 28.

本開示は、一般的に及び様々な態様において、電気外科手術で無線周波数(RF)エネルギーを利用する外科システムに関する。 The present disclosure relates generally and in various aspects to surgical systems that utilize radio frequency (RF) energy in electrosurgery.

電気外科システムは、典型的には、発生器を利用して、患者の身体の手術部位に電気外科エネルギー(例えば、高周波レベルの交流電流)を印加する活性電極に電気外科エネルギーを供給する。外科用器具は、必要に応じて、組織の切断又は組織の凝固などの様々な種類の手術を実施するためにエネルギーを利用し得る。単極電気外科手術は、単一の活性電極を使用して外科用器具を患者組織に適用し、患者リターン電極によって患者を通して電気回路を完成させることを伴う。このリターン電極は、典型的には、単極エネルギー発生器に接続されている。しかしながら、容量結合は、このシステムでは絶えず存在する問題であり、患者の身体上の初めは未知の場所に望ましくない火傷を負わせる可能性がある。意図しない患者の損傷を最小化又は排除するために、容量結合を考慮に入れることが望ましい。 Electrosurgical systems typically utilize a generator to supply electrosurgical energy to active electrodes that apply electrosurgical energy (eg, alternating current at high frequency levels) to a surgical site on a patient's body. Surgical instruments may utilize energy to perform various types of surgery, such as tissue cutting or tissue coagulation, as desired. Monopolar electrosurgery involves applying surgical instruments to patient tissue using a single active electrode and completing an electrical circuit through the patient with a patient return electrode. This return electrode is typically connected to a monopolar energy generator. However, capacitive coupling is a constant problem with this system and can cause unwanted burns to initially unknown locations on the patient's body. To minimize or eliminate unintended patient damage, it is desirable to take capacitive coupling into account.

いくつかの態様において、外科システムが提示される。外科システムは、単極エネルギー発生器と、電極を備える単極エネルギー発生器に電気的に連結され、手術部位で患者の組織に電極を通して電気外科エネルギーを伝達するように構成された外科用器具と、少なくとも1つの検出回路であって、電気外科エネルギーのリターンパスにおける導電性の量を測定し、リターンパスにおける導電性の量が所定の閾値を下回っていると判定し、単極発生器に電気外科エネルギー発生での交流周波数を増加させることによって外科システム内の電流漏れを増加させる信号を送信するように構成された、少なくとも1つの検出回路と、を含むことができ、単極エネルギー発生器は、電流漏れが単極エネルギー発生器内の接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定するように構成されたセンサを備える。 In some aspects, a surgical system is presented. The surgical system includes a monopolar energy generator and a surgical instrument electrically coupled to the monopolar energy generator comprising electrodes and configured to transmit electrosurgical energy through the electrodes to patient tissue at a surgical site. , at least one detection circuit for measuring an amount of conductivity in a return path of electrosurgical energy, determining that the amount of conductivity in the return path is below a predetermined threshold, and supplying electricity to the monopolar generator; at least one detection circuit configured to transmit a signal that increases current leakage in the surgical system by increasing the AC frequency in the surgical energy generation, wherein the monopolar energy generator is , a sensor configured to determine that the monopolar energy circuit is complete by detecting that current leakage reaches a ground terminal within the monopolar energy generator.

外科システムのいくつかの態様では、電流漏れを増加させることにより、外科用器具を使用して患者の単極電気外科手術を実施することが可能になる。 In some aspects of the surgical system, the increased current leakage allows the surgical instrument to be used to perform monopolar electrosurgery on a patient.

外科システムのいくつかの態様では、単極エネルギー発生器は、電流漏れが単極エネルギー発生器内の接地端子にまだ到達していないという指示をセンサから受信し、指示に応答して、交流周波数を更に増加させるように構成された制御回路を更に備える。 In some aspects of the surgical system, the monopolar energy generator receives an indication from the sensor that the current leakage has not yet reached a ground terminal within the monopolar energy generator; further comprising a control circuit configured to further increase the .

外科システムのいくつかの態様では、制御回路は、交流周波数の更なる増加に応答して、電流漏れが単極エネルギー発生器内の接地端子に到達したという第2の指示をセンサから受信し、第2の指示に応答して、交流周波数の増加を停止するように更に構成されている。 In some aspects of the surgical system, the control circuit receives a second indication from the sensor that the current leakage has reached a ground terminal within the monopolar energy generator in response to the further increase in the alternating frequency; It is further configured to stop increasing the AC frequency in response to the second indication.

外科システムのいくつかの態様では、外科システムは、リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意のリターンパスパッドを外科システムから絶縁する命令を提供するように更に構成されている。 In some aspects of the surgical system, the surgical system provides instructions to isolate any return path pads from the surgical system to minimize conductivity flowing through any of the return path pads. It is further configured as

外科システムのいくつかの態様では、周波数を増加させることは、周波数を500KHz~4MHzの範囲に増加させることを含む。 In some aspects of the surgical system, increasing the frequency includes increasing the frequency to a range of 500 KHz to 4 MHz.

様々な態様の特徴が、添付された特許請求の範囲で詳細に説明される。ただし、機構、及び動作の方法の両方についての様々な態様は、それらの更なる目的及び利点と共に、以降の添付図面と併せて、以下の説明を参照することにより最もよく理解することができる。
本開示の少なくとも1つの態様による、コンピュータ実装インタラクティブ外科システムのブロック図である。 本開示の少なくとも1つの態様による、手術室内で外科処置を行うために使用される外科システムである。 本開示の少なくとも1つの態様による可視化システム、ロボットシステム、及びインテリジェント器具とペアリングされた外科用ハブである。 本開示の少なくとも1つの態様による、外科用ハブ筐体、及び外科用ハブ筐体のドロアー内に摺動可能に受容可能な組み合わせ生成器モジュールの部分斜視図である。 本開示の少なくとも1つの態様による、双極、超音波、及び単極接点、並びに排煙構成要素を備える組み合わせ生成器モジュールの斜視図である。 本開示の少なくとも1つの態様による、複数のモジュールを受容するように構成された横方向モジュール式ハウジングの複数の横方向ドッキングポートの個々の電力バスアタッチメントを示す。 本開示の少なくとも1つの態様による、複数のモジュールを受容するように構成された垂直モジュール式ハウジングを示す。 本開示の少なくとも1つの態様による、医療施設の1つ又は2つ以上の手術室、又は外科処置のための専門設備を備えた医療施設内の任意の部屋に配置されたモジュール式装置をクラウドに接続するように構成されたモジュール式通信ハブを備える外科用データネットワークを示す。 本開示の少なくとも1つの態様による、コンピュータ実装インタラクティブ外科システムを示す。 本開示の少なくとも1つの態様による、モジュール式制御タワーに連結された複数のモジュールを備える外科用ハブを示す。 本開示の少なくとも1つの態様による、ユニバーサルシリアルバス(USB)ネットワークハブ装置の一態様を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの制御システムの論理図を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの態様を制御するように構成された制御回路を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの態様を制御するように構成された組み合わせ論理回路を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの態様を制御するように構成された順序論理回路を示す。 本開示の少なくとも1つの態様による、様々な機能を実行するために起動され得る複数のモータを備える外科用器具又はツールを示す。 本開示の少なくとも1つの態様による、本明細書で説明される外科用ツールを操作するように構成されたロボット外科用器具の回路図である。 本開示の少なくとも1つの態様による、変位部材の遠位並進を制御するようにプログラムされた外科用器具のブロック図を示す。 本開示の少なくとも1つの態様による、様々な機能を制御するように構成された外科用器具の回路図である。 本開示の少なくとも1つの態様による、モジュール式通信ハブを備える外科用データネットワーク内で適応型超音波ブレード制御アルゴリズムを実行するように構成されたシステムである。 本開示の少なくとも1つの態様による、発生器の一実施例を示す。 本開示の少なくとも1つの態様による、発生器及び発生器と共に使用可能な様々な外科用器具を備える外科システムである。 本開示の少なくとも1つの態様によるエンドエフェクタである。 本開示の少なくとも1つの態様による、図22の外科システムの図である。 本開示の少なくとも1つの態様による、動作ブランチ電流を示すモデルである。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの構造図である。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの機能図である。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの機能図である。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの機能図である。 本開示の少なくとも1つの態様による、発生器の構造的及び機能的態様である。 本開示の少なくとも1つの態様による、発生器の構造的及び機能的態様である。 本開示の少なくとも1つの態様による、容量結合を検出するための手段を有する例示的なシステムを示す図を提供する。 本開示の少なくとも1つの態様により開示される、外科システムにおける容量結合の影響を制限するための例示的な方法論の制御プログラム又は論理構成を示す論理フロー図である。 本開示の少なくとも1つの態様による、寄生容量結合を利用するかどうかを判定するために、単極エネルギー発生を使用する外科システムによって実行され得る例示的な方法論の制御プログラム又は論理構成を示す論理フロー図である。 本開示の少なくとも1つの態様による、ハブの状況認識を示す時間線である。
Features of various aspects are set forth with particularity in the appended claims. The various aspects, both as to organization and method of operation, however, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings, which follow.
1 is a block diagram of a computer-implemented interactive surgical system, according to at least one aspect of the present disclosure; FIG. A surgical system used to perform a surgical procedure in an operating room, according to at least one aspect of the present disclosure. 1 is a surgical hub paired with a visualization system, a robotic system, and an intelligent instrument according to at least one aspect of the present disclosure; FIG. 122 is a partial perspective view of a surgical hub housing and a combination generator module slidably receivable within a drawer of the surgical hub housing in accordance with at least one aspect of the present disclosure; 3 is a perspective view of a combination generator module comprising bipolar, ultrasonic, and monopolar contacts and smoke evacuation components in accordance with at least one aspect of the present disclosure; FIG. 4 illustrates individual power bus attachments for multiple lateral docking ports of a lateral modular housing configured to receive multiple modules, in accordance with at least one aspect of the present disclosure; 1 illustrates a vertical modular housing configured to receive multiple modules, according to at least one aspect of the present disclosure; Cloud modular devices located in one or more operating rooms of a healthcare facility, or any room within a healthcare facility with specialized equipment for surgical procedures, according to at least one aspect of the present disclosure. 1 illustrates a surgical data network with modular communication hubs configured to connect; 1 illustrates a computer-implemented interactive surgical system, according to at least one aspect of the present disclosure; 4 illustrates a surgical hub comprising multiple modules coupled to a modular control tower, according to at least one aspect of the present disclosure; 1 illustrates one aspect of a universal serial bus (USB) network hub device, in accordance with at least one aspect of the present disclosure; 1 illustrates a logic diagram of a control system for a surgical instrument or tool, according to at least one aspect of the present disclosure; FIG. 1 illustrates a control circuit configured to control aspects of a surgical instrument or tool, according to at least one aspect of the present disclosure; FIG. 11 illustrates a combinational logic circuit configured to control aspects of a surgical instrument or tool, according to at least one aspect of the present disclosure; FIG. 4 illustrates a sequential logic circuit configured to control aspects of a surgical instrument or tool, according to at least one aspect of the present disclosure; 1 illustrates a surgical instrument or tool comprising multiple motors that can be activated to perform various functions, in accordance with at least one aspect of the present disclosure; 1 is a schematic diagram of a robotic surgical instrument configured to operate a surgical tool described herein, according to at least one aspect of the present disclosure; FIG. FIG. 10 illustrates a block diagram of a surgical instrument programmed to control distal translation of a displacement member, according to at least one aspect of the present disclosure; 1 is a circuit diagram of a surgical instrument configured to control various functions in accordance with at least one aspect of the present disclosure; FIG. A system configured to execute an adaptive ultrasonic blade control algorithm within a surgical data network comprising a modular communication hub, according to at least one aspect of the present disclosure. 1 illustrates one example of a generator, in accordance with at least one aspect of the present disclosure; A surgical system comprising a generator and various surgical instruments usable with the generator, according to at least one aspect of the present disclosure. An end effector according to at least one aspect of the present disclosure. 23 is a diagram of the surgical system of FIG. 22 in accordance with at least one aspect of the present disclosure; FIG. 4 is a model illustrating operating branch currents, in accordance with at least one aspect of the present disclosure; 2 is a structural diagram of a generator architecture, according to at least one aspect of the present disclosure; FIG. FIG. 4 is a functional diagram of a generator architecture, in accordance with at least one aspect of the present disclosure; FIG. 4 is a functional diagram of a generator architecture, in accordance with at least one aspect of the present disclosure; FIG. 4 is a functional diagram of a generator architecture, in accordance with at least one aspect of the present disclosure; 4A-4B are structural and functional aspects of a generator, in accordance with at least one aspect of the present disclosure; 4A-4B are structural and functional aspects of a generator, in accordance with at least one aspect of the present disclosure; FIG. 2 provides a diagram illustrating an exemplary system having means for detecting capacitive coupling, according to at least one aspect of the present disclosure; FIG. FIG. 3 is a logic flow diagram illustrating a control program or logic configuration of an exemplary methodology for limiting capacitive coupling effects in a surgical system disclosed according to at least one aspect of the present disclosure; 4 is a logic flow illustrating a control program or logic configuration of an exemplary methodology that may be executed by a surgical system using monopolar energy generation to determine whether to utilize parasitic capacitive coupling, in accordance with at least one aspect of the present disclosure; It is a diagram. 4 is a timeline illustrating hub situational awareness, in accordance with at least one aspect of the present disclosure;

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年8月28日出願の以下の米国特許出願を所有する。
・「ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR」と題する米国特許出願整理番号END8536USNP2/180107-2号、
・「TEMPERATURE CONTROL OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR」と題する米国特許出願整理番号END8560USNP2/180106-2号、
・「RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS」と題する米国特許出願整理番号END8561USNP1/180144-1号、
・「CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION」と題する米国特許出願整理番号END8563USNP1/180139-1号、
・「CONTROLLING ACTIVATION OF AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO THE PRESENCE OF TISSUE」と題する米国特許出願整理番号END8563USNP2/180139-2号、
・「DETERMINING TISSUE COMPOSITION VIA AN ULTRASONIC SYSTEM」と題する米国特許出願整理番号END8563USNP3/180139-3号、
・「DETERMINING THE STATE OF AN ULTRASONIC ELECTROMECHANICAL SYSTEM ACCORDING TO FREQUENCY SHIFT」と題する米国特許出願整理番号END8563USNP4/180139-4号、
・「DETERMINING THE STATE OF AN ULTRASONIC END EFFECTOR」と題する米国特許出願整理番号END8563USNP5/180139-5号、
・「SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS」と題する米国特許出願整理番号END8564USNP1/180140-1号、
・「MECHANISMS FOR CONTROLLING DIFFERENT ELECTROMECHANICAL SYSTEMS OF AN ELECTROSURGICAL INSTRUMENT」と題する米国特許出願整理番号END8564USNP2/180140-2号、
・「DETECTION OF END EFFECTOR IMMERSION IN LIQUID」と題する米国特許出願整理番号END8564USNP3/180140-3号、
・「INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING」と題する米国特許出願整理番号END8565USNP1/180142-1号、
・「BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY」と題する米国特許出願整理番号END8566USNP1/180143-1号、及び
・「ACTIVATION OF ENERGY DEVICES」と題する米国特許出願整理番号END8573USNP1/180145-1号。
The applicant of this application owns the following US patent applications filed Aug. 28, 2018, the entire disclosures of each of which are incorporated herein by reference:
U.S. Patent Application Serial No. END8536USNP2/180107-2 entitled "ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR";
U.S. Patent Application Serial No. END8560USNP2/180106-2 entitled "TEMPERATURE CONTROL OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR";
U.S. Patent Application Serial No. END8561USNP1/180144-1 entitled "RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED COMBINED ELECTRICAL SIGNALS";
U.S. Patent Application Serial No. END8563USNP1/180139-1 entitled "CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION";
U.S. patent application serial number END8563USNP2/180139-2, entitled "CONTROLLING ACTIVATION OF AN ULTRASONIC SURGICAL INSTRUMENT ACCOORDING TO THE PRESENCE OF TISSUE";
U.S. Patent Application Serial No. END8563USNP3/180139-3 entitled "DETERMINING TISSUE COMPOSITION VIA AN ULTRASONIC SYSTEM";
U.S. Patent Application Serial No. END8563USNP4/180139-4, entitled "DETERMINING THE STATE OF AN ULTRASONIC ELECTROMECHANICAL SYSTEM ACCORDING TO FREQUENCY SHIFT";
U.S. Patent Application Docket No. END8563USNP5/180139-5 entitled "DETERMINING THE STATE OF AN ULTRASONIC END EFFECTOR";
- U.S. Patent Application Serial No. END8564USNP1/180140-1 entitled "SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS";
U.S. Patent Application Serial No. END8564USNP2/180140-2, entitled "MECHANISMS FOR CONTROLLING DIFFERENT ELECTROMECHANICAL SYSTEMS OF AN ELECTROSURGICAL INSTRUMENT";
- U.S. Patent Application Docket No. END8564USNP3/180140-3 entitled "DETECTION OF END EFFECTOR IMMERSION IN LIQUID";
U.S. Patent Application Docket No. END8565USNP1/180142-1 entitled "INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING";
U.S. Patent Application Docket No. END8566USNP1/180143-1 entitled "BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY";ICES", docket number END8573USNP1/180145-1.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年8月23日出願の以下の米国特許出願を所有する。
・「CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION」と題する米国仮特許出願第62/721,995号、
・「SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS」と題する米国仮特許出願第62/721,998号、
・「INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING」と題する米国仮特許出願第62/721,999号、
・「BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY」と題する米国仮特許出願第62/721,994号、及び
・「RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS」と題する米国仮特許出願第62/721,996号。
The applicant of this application owns the following US patent applications filed Aug. 23, 2018, the entire disclosures of each of which are incorporated herein by reference:
U.S. Provisional Patent Application No. 62/721,995 entitled "CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION";
- U.S. Provisional Patent Application No. 62/721,998, entitled "SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS";
U.S. Provisional Patent Application No. 62/721,999 entitled "INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING";
U.S. Provisional Patent Application No. 62/721,994 entitled "BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY"; U.S. Provisional Patent Application Serial No. 62, entitled ELIVERING COMBINED ELECTRICAL SIGNALS 721,996.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年6月30日出願の以下の米国特許出願を所有する。
・「SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE」と題する米国仮特許出願第62/692,747号、
・「SMART ENERGY ARCHITECTURE」と題する米国仮特許出願第62/692,748号、及び
・「SMART ENERGY DEVICES」と題する米国仮特許出願第62/692,768号。
The applicant of this application owns the following US patent applications filed June 30, 2018, the entire disclosures of each of which are incorporated herein by reference:
- U.S. Provisional Patent Application No. 62/692,747 entitled "SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE";
• US Provisional Patent Application No. 62/692,748, entitled "SMART ENERGY ARCHITECTURE"; and • US Provisional Patent Application No. 62/692,768, entitled "SMART ENERGY DEVICES."

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年6月29日出願の以下の米国特許出願を所有する。
・「CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS」と題する米国特許出願第16/024,090号、
・「CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS」と題する米国特許出願第16/024,057号、
・「SYSTEMS FOR ADJUSTING END EFFECTOR PARAMETERS BASED ON PERIOPERATIVE INFORMATION」と題する米国特許出願第16/024,067号、
・「SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING」と題する米国特許出願第16/024,075号、
・「SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING」と題する米国特許出願第16/024,083号、
・「SURGICAL SYSTEMS FOR DETECTING END EFFECTOR TISSUE DISTRIBUTION IRREGULARITIES」と題する米国特許出願第16/024,094号、
・「SYSTEMS FOR DETECTING PROXIMITY OF SURGICAL END EFFECTOR TO CANCEROUS TISSUE」と題する米国特許出願第16/024,138号、
・「SURGICAL INSTRUMENT CARTRIDGE SENSOR ASSEMBLIES」と題する米国特許出願第16/024,150号、
・「VARIABLE OUTPUT CARTRIDGE SENSOR ASSEMBLY」と題する米国特許出願第16/024,160号、
・「SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE」と題する米国特許出願第16/024,124号、
・「SURGICAL INSTRUMENT HAVING A FLEXIBLE CIRCUIT」と題する米国特許出願第16/024,132号、
・「SURGICAL INSTRUMENT WITH A TISSUE MARKING ASSEMBLY」と題する米国特許出願第16/024,141号、
・「SURGICAL SYSTEMS WITH PRIORITIZED DATA TRANSMISSION CAPABILITIES」と題する米国特許出願第16/024,162号、
・「SURGICAL EVACUATION SENSING AND MOTOR CONTROL」と題する米国特許出願第16/024,066号、
・「SURGICAL EVACUATION SENSOR ARRANGEMENTS」と題する米国特許出願第16/024,096号、
・「SURGICAL EVACUATION FLOW PATHS」と題する米国特許出願第16/024,116号、
・「SURGICAL EVACUATION SENSING AND GENERATOR CONTROL」と題する米国特許出願第16/024,149号、
・「SURGICAL EVACUATION SENSING AND DISPLAY」と題する米国特許出願第16/024,180号、
・「COMMUNICATION OF SMOKE EVACUATION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する米国特許出願第16/024,245号、
・「SMOKE EVACUATION SYSTEM INCLUDING A SEGMENTED CONTROL CIRCUIT FOR INTERACTIVE SURGICAL PLATFORM」と題する米国特許出願第16/024,258号、
・「SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE」と題する米国特許出願第16/024,265号、及び
・「DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS」と題する米国特許出願第16/024,273号。
The applicant of this application owns the following US patent applications filed June 29, 2018, the entire disclosures of each of which are incorporated herein by reference:
- U.S. Patent Application No. 16/024,090 entitled "CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS";
- U.S. patent application Ser.
U.S. patent application Ser.
U.S. Patent Application No. 16/024,075 entitled "SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING";
- U.S. Patent Application No. 16/024,083 entitled "SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING";
- U.S. Patent Application No. 16/024,094 entitled "SURGICAL SYSTEMS FOR DETECTING END EFFECTOR TISSUE DISTRIBUTION IRREGULARITIES"
U.S. patent application Ser.
U.S. Patent Application No. 16/024,150 entitled "SURGICAL INSTRUMENT CARTRIDGE SENSOR ASSEMBLIES";
- U.S. Patent Application No. 16/024,160 entitled "VARIABLE OUTPUT CARTRIDGE SENSOR ASSEMBLY";
- U.S. Patent Application No. 16/024,124 entitled "SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE";
- U.S. Patent Application No. 16/024,132 entitled "SURGICAL INSTRUMENT HAVING A FLEXIBLE CIRCUIT";
- U.S. Patent Application No. 16/024,141 entitled "SURGICAL INSTRUMENT WITH A TISSUE MARKING ASSEMBLY";
- U.S. Patent Application No. 16/024,162 entitled "SURGICAL SYSTEMS WITH PRIORITIZED DATA TRANSMISSION CAPABILITIES";
- U.S. Patent Application No. 16/024,066 entitled "SURGICAL EVACUATION SENSING AND MOTOR CONTROL";
- U.S. Patent Application No. 16/024,096 entitled "SURGICAL EVACUATION SENSOR ARRANGEMENTS";
- U.S. Patent Application No. 16/024,116 entitled "SURGICAL EVACUATION FLOW PATHS";
U.S. Patent Application No. 16/024,149 entitled "SURGICAL EVACUATION SENSING AND GENERATOR CONTROL";
- U.S. Patent Application No. 16/024,180 entitled "SURGICAL EVACUATION SENSING AND DISPLAY";
- U.S. patent application Ser.
- U.S. patent application Ser.
- U.S. patent application Ser. L IN-SERIES LARGE AND SMALL DROPLET FILTERS. Application Serial No. 16/024,273.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年6月28日出願の以下の米国仮特許出願を所有する。
・「A METHOD OF USING REINFORCED FLEX CIRCUITS WITH MULTIPLE SENSORS WITH ELECTROSURGICAL DEVICES」と題する米国仮特許出願第62/691,228号、
・「CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS」と題する米国仮特許出願第62/691,227号、
・「SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE」と題する米国仮特許出願第62/691,230号、
・「SURGICAL EVACUATION SENSING AND MOTOR CONTROL」と題する米国仮特許出願第62/691,219号、
・「COMMUNICATION OF SMOKE EVACUATION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/691,257号、
・「SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE」と題する米国仮特許出願第62/691,262号、及び
・「DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS」と題する米国仮特許出願第62/691,251号。
The applicant of this application owns the following US provisional patent applications, filed June 28, 2018, the entire disclosures of each of which are incorporated herein by reference:
U.S. Provisional Patent Application No. 62/691,228 entitled "A METHOD OF USING REINFORCED FLEX CIRCUITS WITH MULTIPLE SENSORS WITH ELECTROSURGICAL DEVICES";
- U.S. Provisional Patent Application No. 62/691,227, entitled "CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS";
U.S. Provisional Patent Application No. 62/691,230 entitled "SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE";
U.S. Provisional Patent Application No. 62/691,219 entitled "SURGICAL EVACUATION SENSING AND MOTOR CONTROL";
"Communication OF SMOKE Evacutations to Hub or Cloud IN SMOKE EVACUATION MODULE FORGIVE SURGICAL SURGICAL PLATFORM "US temporary patent application No. 62/691, 257,
U.S. Provisional Patent Application No. 62/691,262 entitled "SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE"; AL IN-SERIES LARGE AND SMALL DROPLET FILTERS Provisional Patent Application No. 62/691,251.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年4月19日出願の以下の米国仮特許出願を所有する。
・「METHOD OF HUB COMMUNICATION」と題する米国仮特許出願第62/659,900号。
The applicant of this application owns the following US provisional patent applications, filed April 19, 2018, the entire disclosures of each of which are incorporated herein by reference:
• US Provisional Patent Application No. 62/659,900, entitled "METHOD OF HUB COMMUNICATION."

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月30日出願の以下の米国仮特許出願を所有する。
・「CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS」と題する2018年3月30日出願の米国仮特許出願第62/650,898号、
・「SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES」と題する米国仮特許出願第62/650,887号、
・「SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/650,882号、及び
・「SURGICAL SMOKE EVACUATION SENSING AND CONTROLS」と題する米国仮特許出願第62/650,877号。
The applicant of this application owns the following US provisional patent applications filed March 30, 2018, the entire disclosures of each of which are incorporated herein by reference:
U.S. Provisional Patent Application No. 62/650,898, filed March 30, 2018, entitled "CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS";
U.S. Provisional Patent Application No. 62/650,887 entitled "SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES";
U.S. Provisional Patent Application No. 62/650,882, entitled "SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM," and U.S. Provisional Patent Application No. 62/650, entitled "SURGICAL SMOKE EVACUATION SENSING AND CONTROLS." , 877.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月29日出願の以下の米国特許出願を所有する。
・「INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES」と題する米国特許出願第15/940,641号、
・「INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES」と題する米国特許出願第15/940,648号、
・「SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES」と題する米国特許出願第15/940,656号、
・「SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS」と題する米国特許出願第15/940,666号、
・「COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS」と題する米国特許出願第15/940,670号、
・「SURGICAL HUB CONTROL ARRANGEMENTS」と題する米国特許出願第15/940,677号、
・「DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD」と題する米国特許出願第15/940,632号、
・「COMMUNICATION HUB AND STORAGE DEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS」と題する米国特許出願第15/940,640号、
・「SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT」と題する米国特許出願第15/940,645号、
・「DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME」と題する米国特許出願第15/940,649号、
・「SURGICAL HUB SITUATIONAL AWARENESS」と題する米国特許出願第15/940,654号、
・「SURGICAL SYSTEM DISTRIBUTED PROCESSING」と題する米国特許出願第15/940,663号、
・「AGGREGATION AND REPORTING OF SURGICAL HUB DATA」と題する米国特許出願第15/940,668号、
・「SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER」と題する米国特許出願第15/940,671号、
・「DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE」と題する米国特許出願第15/940,686号、
・「STERILE FIELD INTERACTIVE CONTROL DISPLAYS」と題する米国特許出願第15/940,700号、
・「COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS」と題する米国特許出願第15/940,629号、
・「USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT」と題する米国特許出願第15/940,704号、
・「CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY」と題する米国特許出願第15/940,722号、及び
・「DUAL CMOS ARRAY IMAGING」と題する米国特許出願第15/940,742号。
・「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES」と題する米国特許出願第15/940,636号、
・「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS」と題する米国特許出願第15/940,653号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER」と題する米国特許出願第15/940,660号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OF LARGER DATA SET」と題する米国特許出願第15/940,679号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITY SEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION」と題する米国特許出願第15/940,694号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES」と題する米国特許出願第15/940,634号、
・「DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK」と題する米国特許出願第15/940,706号、及び
・「CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES」と題する米国特許出願第15/940,675号。
・「DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,627号、
・「COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,637号、
・「CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,642号、
・「AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,676号、
・「CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,680号、
・「COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,683号、
・「DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,690号、及び
・「SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,711号。
The applicant of this application owns the following US patent applications filed March 29, 2018, the entire disclosures of each of which are incorporated herein by reference:
U.S. Patent Application No. 15/940,641 entitled "INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES";
- U.S. patent application Ser.
U.S. Patent Application No. 15/940,656 entitled "SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES";
- U.S. patent application Ser.
U.S. Patent Application No. 15/940,670 entitled "COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS";
- U.S. Patent Application No. 15/940,677 entitled "SURGICAL HUB CONTROL ARRANGEMENTS";
- U.S. patent application Ser.
- U.S. Patent Application No. entitled "COMMUNICATION HUB AND STORAGE DEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS" 15/940,640,
U.S. Patent Application No. 15/940,645, entitled "SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT"
U.S. Patent Application No. 15/940,649, entitled "DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME";
- U.S. Patent Application No. 15/940,654 entitled "SURGICAL HUB SITUATIONAL AWARENESS";
- U.S. Patent Application No. 15/940,663 entitled "SURGICAL SYSTEM DISTRIBUTED PROCESSING";
- U.S. Patent Application No. 15/940,668, entitled "AGGREGATION AND REPORTING OF SURGICAL HUB DATA";
- U.S. Patent Application No. 15/940,671 entitled "SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER"
U.S. Patent Application No. 15/940,686, entitled "DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINE STAPLE LINE";
U.S. Patent Application No. 15/940,700, entitled "STERILE FIELD INTERACTIVE CONTROL DISPLAYS";
U.S. Patent Application No. 15/940,629 entitled "COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS";
- U.S. patent application Ser.
U.S. Patent Application No. 15/940,722, entitled "CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY," and U.S. Patent Application No. 15/940, entitled "DUAL CMOS ARRAY IMAGING." , 742.
U.S. patent application Ser. No. 15/940,636 entitled "ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES";
U.S. patent application Ser. No. 15/940,653 entitled "ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS";
- U.S. Patent Application No. 15/940,660 entitled "CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER"
- U.S. patent application Ser.
U.S. patent application Ser.
U.S. patent application Ser.
U.S. Patent Application No. 15/940,706, entitled "DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK"; No. 675.
- US patent application Ser.
- U.S. Patent Application No. 15/940,637, entitled "COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS";
- US patent application Ser.
- US patent application Ser.
- US patent application Ser.
U.S. patent application Ser.
U.S. Patent Application No. 15/940,690, entitled "DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS," and US patent application Ser. No. 15/940,711.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月28日出願の以下の米国仮特許出願を所有する。
・「INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES」と題する米国仮特許出願第62/649,302号、
・「DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD」と題する米国仮特許出願第62/649,294号、
・「SURGICAL HUB SITUATIONAL AWARENESS」と題する米国仮特許出願第62/649,300号、
・「SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER」と題する米国仮特許出願第62/649,309号、
・「COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS」と題する米国仮特許出願第62/649,310号、
・「USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT」と題する米国仮特許出願第62/649,291号、
・「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES」と題する米国仮特許出願第62/649,296号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER」と題する米国仮特許出願第62/649,333号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES」と題する米国仮特許出願第62/649,327号、
・「DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK」と題する米国仮特許出願第62/649,315号、
・「CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES」と題する米国仮特許出願第62/649,313号、
・「DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国仮特許出願第62/649,320号、
・「AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国仮特許出願第62/649,307号、及び
・「SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国仮特許出願第62/649,323号。
The applicant of this application owns the following US provisional patent applications filed March 28, 2018, the entire disclosures of each of which are incorporated herein by reference:
U.S. Provisional Patent Application No. 62/649,302 entitled "INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES";
U.S. Provisional Patent Application No. 62/649,294 entitled "DATA STRIPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD";
U.S. Provisional Patent Application No. 62/649,300 entitled "SURGICAL HUB SITUATIONAL AWARENESS";
U.S. Provisional Patent Application No. 62/649,309 entitled "SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER";
U.S. Provisional Patent Application No. 62/649,310 entitled "COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS";
U.S. Provisional Patent Application No. 62/649,291 entitled "USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT";
U.S. Provisional Patent Application No. 62/649,296 entitled "ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES";
- U.S. Provisional Patent Application No. 62/649,333 entitled "CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER";
U.S. Provisional Patent Application No. 62/649,327 entitled "CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES";
U.S. Provisional Patent Application No. 62/649,315 entitled "DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK";
- U.S. Provisional Patent Application No. 62/649,313 entitled "CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES";
U.S. Provisional Patent Application No. 62/649,320, entitled "DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS";
- U.S. Provisional Patent Application No. 62/649,307 entitled "AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT - ASSISTED SURGICAL PLATFORMS"; U.S. Provisional Patent Application No. 62/649,323 entitled "ORMS" issue.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月8日出願の以下の米国仮特許出願を所有する。
・「TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR」と題する米国仮特許出願第62/640,417号、及び
・「ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR」と題する米国仮特許出願第62/640,415号。
The applicant of this application owns the following US provisional patent applications filed March 8, 2018, the entire disclosures of each of which are incorporated herein by reference:
U.S. Provisional Patent Application No. 62/640,417, entitled "TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR"; and "ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM" U.S. Provisional Patent Application No. 62/640 entitled EM THEREFOR , No. 415.

本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2017年12月28日出願の以下の米国仮特許出願を所有する。
・「INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願番号米国仮特許出願第62/611,341号、
・「CLOUD-BASED MEDICAL ANALYTICS」と題する米国仮特許出願第62/611,340号、及び
・「ROBOT ASSISTED SURGICAL PLATFORM」と題する米国仮特許出願第62/611,339号。
The applicant of this application owns the following US provisional patent applications filed December 28, 2017, the entire disclosures of each of which are incorporated herein by reference:
- U.S. Provisional Patent Application No. U.S. Provisional Patent Application No. 62/611,341 entitled "INTERACTIVE SURGICAL PLATFORM";
• US Provisional Patent Application No. 62/611,340, entitled "CLOUD-BASED MEDICAL ANALYTICS," and • US Provisional Patent Application No. 62/611,339, entitled "ROBOT ASSISTED SURGICAL PLATFORM."

外科用装置及び発生器の様々な態様を詳細に説明する前に、例示される実施例は、適用又は用途において、添付の図面及び説明で示される部品の構造及び配置の詳細に限定されないことに留意すべきである。例示的な実施例は、他の態様、変形形態、及び修正で実施されるか、又はそれらに組み込まれてもよく、様々な方法で実施又は実行されてもよい。更に、特に明記しない限り、本明細書で用いられる用語及び表現は、読者の便宜のために例示的な実施例を説明する目的で選択されたものであり、それらを限定するためのものではない。更に、以下に記述される態様、態様の具現、及び/又は実施例のうち1つ又は2つ以上を、以下に記述される他の態様、態様の具現、及び/又は実施例のうち任意の1つ又は2つ以上と組み合わせることができるものと理解されたい。 Before describing various aspects of surgical devices and generators in detail, it is noted that the illustrated embodiments are not limited in application or use to the details of construction and arrangement of parts set forth in the accompanying drawings and description. It should be noted. Example embodiments may be practiced with or incorporated in other aspects, variations, and modifications, and may be practiced or carried out in various ways. Further, unless otherwise stated, the terms and expressions used herein have been chosen for the convenience of the reader for the purpose of describing example embodiments and not for purposes of limitation thereof. . Further, one or more of the aspects, implementations of aspects and/or examples described below may be combined with any of the other aspects, implementations of aspects and/or examples described below. It should be understood that one or more can be combined.

様々な態様が、改善された超音波外科用装置、電気外科用装置、及びこれと共に使用するための発生器を対象とする。超音波外科用装置の態様は、例えば、外科処置中に組織を横切開及び/又は凝固するように構成され得る。電気外科用装置の態様は、例えば、外科処置中に、組織を横切開、凝固、スケーリング、溶接及び/又は乾燥させるように構成され得る。 Various aspects are directed to improved ultrasonic surgical devices, electrosurgical devices, and generators for use therewith. Aspects of ultrasonic surgical devices may be configured, for example, to transect and/or coagulate tissue during a surgical procedure. Aspects of electrosurgical devices may be configured to transect, coagulate, scale, weld and/or desiccate tissue during a surgical procedure, for example.

図1を参照すると、コンピュータ実装インタラクティブ外科システム100は、1つ又は2つ以上の外科システム102と、クラウドベースのシステム(例えば、ストレージ装置105に連結されたリモートサーバ113を含み得るクラウド104)と、を含む。各外科システム102は、リモートサーバ113を含み得るクラウド104と通信する少なくとも1つの外科用ハブ106を含む。一実施例では、図1に示すように、外科システム102は、互いに、及び/又はハブ106と通信するように構成された、可視化システム108と、ロボットシステム110と、ハンドヘルド式インテリジェント外科用器具112と、を含む。いくつかの態様では、外科システム102は、M個のハブ106と、N個の可視化システム108と、O個のロボットシステム110と、P個のハンドヘルド式インテリジェント外科用器具112と、を含んでもよく、ここでM、N、O、及びPは1以上の整数である。 Referring to FIG. 1, a computer-implemented interactive surgical system 100 includes one or more surgical systems 102, a cloud-based system (e.g., cloud 104 that may include a remote server 113 coupled to a storage device 105), and a ,including. Each surgical system 102 includes at least one surgical hub 106 that communicates with cloud 104 that may include remote servers 113 . In one example, as shown in FIG. 1, surgical system 102 includes visualization system 108, robotic system 110, and handheld intelligent surgical instrument 112 configured to communicate with each other and/or hub 106. and including. In some aspects, the surgical system 102 may include M hubs 106, N visualization systems 108, O robotic systems 110, and P handheld intelligent surgical instruments 112. , where M, N, O, and P are integers of 1 or greater.

図3は、外科手術室116内の手術台114上に横たわる患者に対して外科処置を実施するために使用される外科システム102の一例を示す。ロボットシステム110は、外科処置において外科システム102の一部として使用される。ロボットシステム110は、外科医のコンソール118と、患者側カート120(外科用ロボット)と、外科用ロボットハブ122と、を含む。患者側カート120は、患者の身体の低侵襲切開中に、外科医が外科医のコンソール118を介して手術部位を見る間、少なくとも1つの取り外し可能に連結された外科用ツール117を操作することができる。手術部位の画像は医療用撮像装置124によって得ることができ、医療用撮像装置124は撮像装置124を配向するために患者側カート120によって操作され得る。ロボットハブ122は、外科医のコンソール118を介して外科医に対するその後の表示のために、手術部位の画像を処理するよう用いることができる。 FIG. 3 shows an example of surgical system 102 used to perform a surgical procedure on a patient lying on operating table 114 in surgical operating room 116 . Robotic system 110 is used as part of surgical system 102 in a surgical procedure. Robotic system 110 includes a surgeon's console 118 , a patient-side cart 120 (surgical robot), and a surgical robot hub 122 . The patient-side cart 120 is capable of manipulating at least one releasably coupled surgical tool 117 while the surgeon views the surgical site via the surgeon's console 118 during minimally invasive incisions in the patient's body. . Images of the surgical site may be obtained by a medical imaging device 124 , which may be manipulated by the patient-side cart 120 to orient the imaging device 124 . The robotic hub 122 can be used to process images of the surgical site for subsequent display to the surgeon via the surgeon's console 118 .

他のタイプのロボットシステムを、外科システム102と共に使用するために容易に適合させることができる。本開示と共に使用するのに好適なロボットシステム及び外科用ツールの様々な例は、その開示全体が参照により本明細書に組み込まれる、2017年12月28日出願の「ROBOT ASSISTED SURGICAL PLATFORM」と題する米国仮特許出願第62/611,339号に記載されている。 Other types of robotic systems can be readily adapted for use with surgical system 102 . Various examples of robotic systems and surgical tools suitable for use with the present disclosure are entitled "ROBOT ASSISTED SURGICAL PLATFORM," filed Dec. 28, 2017, the disclosure of which is incorporated herein by reference in its entirety. See US Provisional Patent Application No. 62/611,339.

クラウド104によって実施され、本開示と共に使用するのに好適なクラウドベース分析の様々な例は、その開示全体が参照により本明細書に組み込まれる、2017年12月28日出願の「CLOUD-BASED MEDICAL ANALYTICS」と題する米国仮特許出願第62/611,340号に記載されている。 Various examples of cloud-based analytics performed by the cloud 104 and suitable for use with the present disclosure are described in "CLOUD-BASED MEDICAL US Provisional Patent Application No. 62/611,340 entitled ANALYTICS.

様々な態様では、撮像装置124は、少なくとも1つの画像センサと1つ又は2つ以上の光学構成要素とを含む。好適な画像センサとしては、電荷結合素子(CCD)センサ及び相補型金属酸化膜半導体(CMOS)センサが挙げられるが、これらに限定されない。 In various aspects, imaging device 124 includes at least one image sensor and one or more optical components. Suitable image sensors include, but are not limited to, charge coupled device (CCD) sensors and complementary metal oxide semiconductor (CMOS) sensors.

撮像装置124の光学構成要素は、1つ若しくは2つ以上の照明光源及び/又は1つ若しくは2つ以上のレンズを含んでもよい。1つ又は2つ以上の照明光源は、手術野の一部を照明するように方向付けられてもよい。1つ又は2つ以上の画像センサは、組織及び/又は外科用器具から反射又は屈折された光を含む、手術野から反射又は屈折された光を受信することができる。 The optical components of imaging device 124 may include one or more illumination sources and/or one or more lenses. One or more illumination sources may be directed to illuminate a portion of the surgical field. One or more image sensors can receive light reflected or refracted from the surgical field, including light reflected or refracted from tissue and/or surgical instruments.

1つ又は2つ以上の照明光源は、可視スペクトル及び不可視スペクトル内の電磁エネルギーを放射するように構成され得る。光学スペクトル又は発光スペクトルと呼ばれることもある可視スペクトルは、人間の目に可視の(すなわち、人間の目で検出可能な)電磁スペクトルの一部分であり、可視光、又は単に光と呼ばれることがある。典型的な人間の目は、空気中の約380nm~約750nmの波長に反応する。 One or more illumination sources may be configured to emit electromagnetic energy within the visible and invisible spectrums. The visible spectrum, sometimes referred to as the optical spectrum or emission spectrum, is the portion of the electromagnetic spectrum that is visible (i.e., detectable by the human eye) to the human eye and is sometimes referred to as visible light, or simply light. A typical human eye responds to wavelengths in air from about 380 nm to about 750 nm.

不可視スペクトル(すなわち、非発光スペクトル)は、可視スペクトルの下方及び上方に位置する電磁スペクトルの一部分である(すなわち、約380nm未満及び約750nm超の波長)。不可視スペクトルは、人間の目で検出可能ではない。約750nmを超える波長は、赤色可視スペクトルよりも長く、これらは不可視赤外線(IR)、マイクロ波、及び無線電磁放射線になる。約380nm未満の波長は、紫色スペクトルよりも短く、これらは不可視紫外線、X線、及びガンマ線電磁放射線になる。 The invisible spectrum (ie, non-emissive spectrum) is the portion of the electromagnetic spectrum that lies below and above the visible spectrum (ie, wavelengths below about 380 nm and above about 750 nm). The invisible spectrum is not detectable by the human eye. Wavelengths above about 750 nm are longer than the red visible spectrum and these become invisible infrared (IR), microwave and radio electromagnetic radiation. Wavelengths less than about 380 nm are shorter than the violet spectrum and become invisible ultraviolet, X-ray, and gamma-ray electromagnetic radiation.

様々な態様では、撮像装置124は、低侵襲性手術で使用するように構成されている。本開示と共に使用するのに好適な撮像装置の例としては、関節鏡、血管鏡、気管支鏡、胆道鏡、結腸鏡、サイトスコープ(cytoscope)、十二指腸鏡、腸鏡、食道胃十二指腸鏡(胃鏡)、内視鏡、喉頭鏡、鼻咽喉-腎盂鏡(nasopharyngo-neproscope)、S状結腸鏡、胸腔鏡、及び尿管鏡が挙げられるが、これらに限定されない。 In various aspects, imaging device 124 is configured for use in minimally invasive surgery. Examples of imaging devices suitable for use with the present disclosure include arthroscopes, angioscopes, bronchoscopes, cholangoscopes, colonoscopes, cytoscopes, duodenoscopes, enteroscopes, esophagogastroduodenoscopes (gastroscopes) , endoscopes, laryngoscopes, nasopharyngo-neproscopes, sigmoidoscopes, thoracoscopes, and ureteroscopes.

一態様では、撮像装置は、トポグラフィーと下層構造とを区別するためにマルチスペクトルモニタリングを用いる。マルチスペクトル画像は、電磁スペクトルにわたって特定の波長範囲内の画像データを取り込むものである。波長は、フィルタによって、又は可視光範囲を超える周波数、例えば、IR及び紫外光を含む特定の波長からの光に感受性の器具を使用することによって分離することができる。スペクトル撮像法は、人間の目がその赤色、緑色、及び青色の受容体で捕捉することのできない追加情報の抽出を可能にすることができる。マルチスペクトル撮像法の使用は、その開示全体が参照により本明細書に組み込まれる2017年12月28日出願の「INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/611,341号の「Advanced Imaging Acquisition Module」の項で詳細に説明されている。マルチスペクトルモニタリングは、1つの手術作業が完了した後に、処置された組織上で上述の試験の1つ又は2つ以上を実施するために手術野を再配置するのに有用なツールであり得る。 In one aspect, the imaging device uses multispectral monitoring to distinguish between topography and underlying structure. Multispectral imaging captures image data within specific wavelength ranges across the electromagnetic spectrum. Wavelengths can be separated by filters or by using instruments that are sensitive to light from specific wavelengths, including frequencies above the visible light range, such as IR and ultraviolet light. Spectral imaging can allow the extraction of additional information that the human eye cannot capture with its red, green, and blue receptors. The use of multispectral imaging is described in US Provisional Patent Application No. 62/611,341, entitled "INTERACTIVE SURGICAL PLATFORM," filed Dec. 28, 2017, the entire disclosure of which is incorporated herein by reference. Acquisition Module" section. Multispectral monitoring can be a useful tool for repositioning the surgical field to perform one or more of the above-described tests on the treated tissue after one surgical task is completed.

いかなる外科手術においても手術室及び外科用器具の厳格な滅菌が必要であることは自明である。「手術現場(surgical theater)」、すなわち手術室又は処置室に必要とされる厳格な衛生及び滅菌条件は、全ての医療装置及び機器の最大級の滅菌性を必要とする。その滅菌プロセスの一部は、撮像装置124並びにその付属品及び構成要素を含む、患者と接触する、又は滅菌野に侵入するあらゆるものを滅菌する必要性である。滅菌野は、トレイ内又は滅菌タオル上などの、微生物を含まないと見なされる特定の領域と見なされ得ること、又は滅菌野は、外科処置のために準備された患者のすぐ周囲の領域と見なされ得ることは理解されよう。滅菌野は、適切な衣類を着用した洗浄済みのチーム構成員、並びにその領域内の全ての備品及び固定具を含み得る。 It is self-evident that any surgical procedure requires rigorous sterilization of the operating room and surgical instruments. The stringent hygiene and sterilization conditions required in the "surgical theater", ie operating room or procedure room, require maximum sterility of all medical devices and equipment. Part of that sterilization process is the need to sterilize anything that comes in contact with the patient or enters the sterile field, including imaging device 124 and its accessories and components. A sterile field may be considered a specific area considered free of microorganisms, such as in a tray or on a sterile towel, or a sterile field may be considered an area immediately surrounding a patient prepared for a surgical procedure. It will be appreciated what can be done. A sterile field may include clean team members in appropriate clothing and all equipment and fixtures within the area.

様々な態様では、可視化システム108は、図2に示されるように、滅菌野に対して戦略的に配置された1つ又は2つ以上の撮像センサと、1つ又は2つ以上の画像処理ユニットと、1つ又は2つ以上のストレージアレイと、1つ又は2つ以上のディスプレイと、を含む。一態様では、可視化システム108は、HL7、PACS、及びEMRのインターフェースを含む。可視化システム108の様々な構成要素については、その開示全体が参照により本明細書に組み込まれる2017年12月28日出願の「INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/611,341号の「Advanced Imaging Acquisition Module」の項で説明されている。 In various aspects, the visualization system 108 includes one or more imaging sensors strategically placed relative to the sterile field and one or more image processing units, as shown in FIG. , one or more storage arrays, and one or more displays. In one aspect, the visualization system 108 includes HL7, PACS, and EMR interfaces. The various components of visualization system 108 are described in U.S. Provisional Patent Application No. 62/611,341, entitled "INTERACTIVE SURGICAL PLATFORM," filed Dec. 28, 2017, the entire disclosure of which is incorporated herein by reference. It is described in the section "Advanced Imaging Acquisition Module".

図2に示すように、一次ディスプレイ119は、手術台114に位置する操作者に可視であるように、滅菌野内に配置される。加えて、可視化タワー111は、滅菌野の外に位置付けられる。可視化タワー111は、互いに離れる方に面する第1の非滅菌ディスプレイ107及び第2の非滅菌ディスプレイ109を含む。ハブ106によって誘導される可視化システム108は、ディスプレイ107、109、及び119を使用して、滅菌野の内側及び外部の操作者に対する情報フローを調整するように構成されている。例えば、ハブ106は、可視化システム108に、一次ディスプレイ119上の手術部位のライブ映像を維持させながら、撮像装置124によって記録される手術部位のスナップショットを非滅菌ディスプレイ107又は109上に表示させることができる。非滅菌ディスプレイ107又は109上のスナップショットは、例えば、非滅菌操作者が外科処置に関連する診断工程を実施することを可能にすることができる。 As shown in FIG. 2, primary display 119 is positioned within the sterile field so as to be visible to an operator positioned at operating table 114 . Additionally, the visualization tower 111 is positioned outside the sterile field. The visualization tower 111 includes a first non-sterile display 107 and a second non-sterile display 109 facing away from each other. A visualization system 108 guided by hub 106 is configured to coordinate information flow to operators inside and outside the sterile field using displays 107, 109, and 119. FIG. For example, hub 106 may cause visualization system 108 to display a snapshot of the surgical site recorded by imaging device 124 on non-sterile display 107 or 109 while maintaining a live image of the surgical site on primary display 119. can be done. A snapshot on a non-sterile display 107 or 109 can, for example, allow a non-sterile operator to perform diagnostic steps related to a surgical procedure.

一態様では、ハブ106は、滅菌野内で、可視化タワー111に位置する非滅菌操作者によって入力された診断入力又はフィードバックを滅菌領域内の一次ディスプレイ119に送り、これを手術台に位置する滅菌操作者が見ることができるようにも構成される。一実施例では、入力は、ハブ106によって一次ディスプレイ119に送ることのできる、非滅菌ディスプレイ107又は109上に表示されるスナップショットに対する修正の形態であってもよい。 In one aspect, the hub 106 transmits diagnostic input or feedback entered by a non-sterile operator located at the visualization tower 111 within the sterile field to the primary display 119 within the sterile field, which directs it to the sterile operator located at the operating table. It is also configured so that it can be viewed by In one example, the input may be in the form of modifications to the snapshot displayed on non-sterile display 107 or 109 that can be sent by hub 106 to primary display 119 .

図2を参照すると、外科用器具112は、外科処置において外科システム102の一部として使用されている。ハブ106はまた、外科用器具112のディスプレイへの情報フローを調整するようにも構成されている。例えば、その開示全体が参照により本明細書に組み込まれる、「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号における。可視化タワー111の位置で非滅菌操作者によって入力される診断入力又はフィードバックは、滅菌野内でハブ106によって外科用器具ディスプレイ115に送られてもよく、ここで診断入力又はフィードバックは外科用器具112の操作者によって見られてもよい。外科システム102と共に用いるのに好適な例示的外科用器具については、例えば、その開示全体が参照により本明細書に組み込まれる、「Surgical Instrument Hardware」の項目、及び「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号で説明されている。 Referring to FIG. 2, surgical instrument 112 is used as part of surgical system 102 in a surgical procedure. Hub 106 is also configured to coordinate information flow to the display of surgical instrument 112 . For example, in US Provisional Patent Application No. 62/611,341, filed December 28, 2017, entitled "INTERACTIVE SURGICAL PLATFORM," the entire disclosure of which is incorporated herein by reference. Diagnostic input or feedback entered by a non-sterile operator at visualization tower 111 may be sent by hub 106 to surgical instrument display 115 within the sterile field, where the diagnostic input or feedback is input to surgical instrument 112 . It may be viewed by an operator. Exemplary surgical instruments suitable for use with the surgical system 102 are described, for example, in the "Surgical Instrument Hardware" section and the 2017 publication entitled "INTERACTIVE SURGICAL PLATFORM", the entire disclosures of which are incorporated herein by reference. No. 62/611,341, filed Dec. 28.

ここで図3を参照すると、ハブ106が、可視化システム108、ロボットシステム110、及びハンドヘルド式インテリジェント外科用器具112と通信している状態で示されている。ハブ106は、ハブディスプレイ135、撮像モジュール138、発生器モジュール140、通信モジュール130、プロセッサモジュール132、及びストレージアレイ134を含む。特定の態様では、図3に示すように、ハブ106は、排煙モジュール126及び/又は吸引/灌注モジュール128を更に含む。 Referring now to FIG. 3 , hub 106 is shown in communication with visualization system 108 , robotic system 110 and handheld intelligent surgical instrument 112 . Hub 106 includes hub display 135 , imaging module 138 , generator module 140 , communication module 130 , processor module 132 and storage array 134 . In certain aspects, the hub 106 further includes a smoke evacuation module 126 and/or an aspiration/irrigation module 128, as shown in FIG.

外科処置中、封止及び/又は切断のため組織へのエネルギー印加は、一般に、排煙、過剰な流体の吸引、及び/又は組織の灌注を伴う。異なる供給源からの流体、電力、及び/又はデータラインは、外科処置中に絡まり合うことが多い。外科処置中にこの問題に対処することで貴重な時間が失われる場合がある。ラインの絡まりをほどくには、それらの対応するモジュールからラインを抜くことが必要となる場合があり、そのためにはモジュールをリセットすることが必要となる場合がある。ハブのモジュール式筐体136は、電力、データ、及び流体ラインを管理するための統一環境を提供し、このようなライン間の絡まりの頻度を低減させる。 During surgical procedures, the application of energy to tissue for sealing and/or cutting is generally accompanied by evacuation of smoke, aspiration of excess fluid, and/or irrigation of tissue. Fluid, power, and/or data lines from different sources often become entangled during surgical procedures. Valuable time may be lost in addressing this issue during a surgical procedure. Untangling the lines may require uncoupling the lines from their corresponding modules, which may require the modules to be reset. The hub's modular housing 136 provides a unified environment for managing power, data, and fluid lines, reducing the frequency of tangling between such lines.

本開示の態様は、手術部位における組織へのエネルギー印加を伴う外科処置において使用するための外科用ハブを提示する。外科用ハブは、ハブ筐体と、ハブ筐体のドッキングステーション内に摺動可能に受容可能な組み合わせ生成器モジュールと、を含む。ドッキングステーションはデータ及び電力接点を含む。組み合わせ生成器モジュールは、単一ユニット内に収容された、超音波エネルギー発生器構成要素、双極RFエネルギー発生器構成要素、及び単極RFエネルギー発生器構成要素のうちの2つ以上を含む。一態様では、組み合わせ生成器モジュールは、更に、排煙構成要素と、組み合わせ生成器モジュールを外科用器具に接続するための少なくとも1つのエネルギー供給ケーブルと、組織への治療エネルギーの印加によって発生した煙、流体、及び/又は微粒子を排出するように構成された少なくとも1つの排煙構成要素と、遠隔手術部位から排煙構成要素まで延在する流体ラインと、を含む。 Aspects of the present disclosure present a surgical hub for use in surgical procedures involving the application of energy to tissue at a surgical site. The surgical hub includes a hub housing and a combination generator module slidably receivable within a docking station of the hub housing. The docking station contains data and power contacts. A combination generator module includes two or more of an ultrasonic energy generator component, a bipolar RF energy generator component, and a unipolar RF energy generator component housed within a single unit. In one aspect, the combination generator module further comprises a smoke evacuation component, at least one energy delivery cable for connecting the combination generator module to a surgical instrument, and smoke generated by application of therapeutic energy to tissue. , at least one smoke evacuation component configured to evacuate fluids and/or particulates, and a fluid line extending from the remote surgical site to the smoke evacuation component.

一態様では、流体ラインは第1の流体ラインであり、第2の流体ラインは、遠隔手術部位から、ハブ筐体内に摺動可能に受容される吸引及び灌注モジュールまで延在する。一態様では、ハブ筐体は、流体インターフェースを備える。 In one aspect, the fluid line is a first fluid line and a second fluid line extends from a remote surgical site to an aspiration and irrigation module slidably received within the hub housing. In one aspect, the hub housing includes a fluidic interface.

特定の外科処置は、2つ以上のエネルギータイプを組織に印加することを必要とする場合がある。1つのエネルギータイプは、組織を切断するのにより有益であり得るが、別の異なるエネルギータイプは、組織を封止するのにより有益であり得る。例えば、双極発生器は組織を封止するために使用することができ、一方で、超音波発生器は封止された組織を切断するために使用することができる。本開示の態様は、ハブのモジュール式筐体136が様々な発生器を収容して、これらの間の双方向通信を促進するように構成される解決法を提示する。ハブのモジュール式筐体136の利点の1つは、様々なモジュールの迅速な取り外し及び/又は交換を可能にすることである。 Certain surgical procedures may require the application of more than one energy type to tissue. One energy type may be more beneficial for cutting tissue, while another different energy type may be more beneficial for sealing tissue. For example, a bipolar generator can be used to seal tissue, while an ultrasonic generator can be used to cut the sealed tissue. Aspects of the present disclosure present a solution in which the hub's modular housing 136 is configured to house various generators and facilitate two-way communication therebetween. One advantage of the hub's modular housing 136 is that it allows for quick removal and/or replacement of various modules.

本開示の態様は、組織へのエネルギー印加を伴う外科処置で使用するためのモジュール式外科用筐体を提示する。モジュール式外科用筐体は、組織に印加するための第1のエネルギーを発生させるように構成された第1のエネルギー発生器モジュールと、第1のデータ及び電力接点を含む第1のドッキングポートを備える第1のドッキングステーションと、を含み、第1のエネルギー発生器モジュールは、電力及びデータ接点と電気係合するように摺動可能に移動可能であり、また第1のエネルギー発生器モジュールは、第1の電力及びデータ接点との電気係合から外れるように摺動可能に移動可能である。 Aspects of the present disclosure present a modular surgical housing for use in surgical procedures involving the application of energy to tissue. A modular surgical housing includes a first energy generator module configured to generate a first energy for application to tissue and a first docking port including first data and power contacts. a first docking station comprising: a first energy generator module slidably moveable into electrical engagement with the power and data contacts; and the first energy generator module comprising: Slidably moveable out of electrical engagement with the first power and data contact.

上記に加えて、モジュール式外科用筐体は、第1のエネルギーとは異なる、組織に印加するための第2のエネルギーを発生させるように構成された第2のエネルギー発生器モジュールと、第2のデータ及び電力接点を含む第2のドッキングポートを備える第2のドッキングステーションと、を更に含み、第2のエネルギー発生器モジュールは、電力及びデータ接点と電気係合するように摺動可能に移動可能であり、また第2のエネルギー発生器モジュールは、第2の電力及びデータ接点との電気係合から外れるように摺動可能に移動可能である。 Further to the above, the modular surgical enclosure includes a second energy generator module configured to generate a second energy for application to tissue, different from the first energy; a second docking station comprising a second docking port including data and power contacts of the second energy generator module slidably moved into electrical engagement with the power and data contacts; Yes, and the second energy generator module is slidably moveable out of electrical engagement with the second power and data contacts.

更に、モジュール式外科用筐体は、第1のエネルギー発生器モジュールと第2のエネルギー発生器モジュールとの間の通信を容易にするように構成された、第1のドッキングポートと第2のドッキングポートとの間の通信バスを更に含む。 Additionally, the modular surgical enclosure includes a first docking port and a second docking port configured to facilitate communication between the first energy generator module and the second energy generator module. Further includes a communication bus to and from the port.

図3~図7を参照すると、発生器モジュール140と、排煙モジュール126と、吸引/灌注モジュール128と、のモジュール式統合を可能にするハブのモジュール式筐体136に関する本開示の態様が提示される。ハブのモジュール式筐体136は、モジュール140、126、128間の双方向通信を更に促進する。図5に示すように、発生器モジュール140は、ハブのモジュール式筐体136に摺動可能に挿入可能な単一のハウジングユニット139内に支持される、統合された単極、双極、及び超音波構成要素を備える発生器モジュールであってもよい。図5に示すように、発生器モジュール140は、単極装置146、双極装置147、及び超音波装置148に接続するように構成され得る。あるいは、発生器モジュール140は、ハブのモジュール式筐体136を介して相互作用する一連の単極、双極、及び/又は超音波発生器モジュールを備えてもよい。ハブのモジュール式筐体136は、複数の発生器が単一の発生器として機能するように、複数の発生器の挿入と、ハブのモジュール式筐体136にドッキングされた発生器間の双方向通信と、を促進するように構成されてもよい。 Referring to FIGS. 3-7, aspects of the present disclosure are presented for a hub modular housing 136 that allows for modular integration of the generator module 140, the smoke evacuation module 126, and the aspiration/irrigation module 128. be done. The modular housing 136 of the hub further facilitates two-way communication between the modules 140,126,128. As shown in FIG. 5, the generator module 140 is an integrated monopolar, bipolar, and ultra polar generator supported within a single housing unit 139 that is slidably insertable into the hub's modular housing 136 . It may be a generator module comprising an acoustic wave component. As shown in FIG. 5, the generator module 140 can be configured to connect to a monopolar device 146, a bipolar device 147, and an ultrasound device 148. FIG. Alternatively, the generator module 140 may comprise a series of monopolar, bipolar, and/or ultrasonic generator modules interacting through the hub modular housing 136 . The modular housing 136 of the hub provides bi-directional switching between insertion of multiple generators and generators docked to the modular housing 136 of the hub so that the generators function as a single generator. may be configured to facilitate communication.

一態様では、ハブのモジュール式筐体136は、モジュール140、126、128の取り外し可能な取り付け及びそれらの間の双方向通信を可能にするために、外部及び無線通信ヘッダを備えるモジュール式電力及び通信バックプレーン149を備える。 In one aspect, the hub modular housing 136 is a modular power and A communications backplane 149 is provided.

一態様では、ハブのモジュール式筐体136は、モジュール140、126、128を摺動可能に受容するように構成された、本明細書ではドロアーとも称されるドッキングステーション又はドロアー151を含む。図4は、外科用ハブ筐体136、及び外科用ハブ筐体136のドッキングステーション151に摺動可能に受容可能な組み合わせ生成器モジュール145の部分斜視図を示す。組み合わせ生成器モジュール145の後側に電力及びデータ接点を有するドッキングポート152は、組み合わせ生成器モジュール145がハブのモジュール式筐体136の対応するドッキングステーション151内の位置へと摺動されると、対応するドッキングポート150をハブのモジュール式筐体136の対応するドッキングステーション151の電力及びデータ接点と係合するように構成される。一態様では、組み合わせ生成器モジュール145は、図5に示すように、双極、超音波、及び単極モジュールと、単一のハウジングユニット139と共に一体化された排煙モジュールと、を含む。 In one aspect, the hub modular housing 136 includes a docking station or drawer 151, also referred to herein as a drawer, configured to slidably receive the modules 140,126,128. FIG. 4 shows a partial perspective view of surgical hub housing 136 and combination generator module 145 slidably receivable in docking station 151 of surgical hub housing 136 . A docking port 152 with power and data contacts on the rear side of the combination generator module 145 is slid into position within the corresponding docking station 151 of the hub modular housing 136. Corresponding docking ports 150 are configured to engage power and data contacts of corresponding docking stations 151 of hub modular housing 136 . In one aspect, the combination generator module 145 includes bipolar, ultrasonic, and monopolar modules and a smoke evacuation module integrated with a single housing unit 139, as shown in FIG.

様々な態様では、排煙モジュール126は、捕捉/回収された煙及び/又は流体を手術部位から遠ざけて、例えば、排煙モジュール126へと搬送する流体ライン154を含む。排煙モジュール126から発生する真空吸引は、煙を手術部位のユーティリティ導管の開口部に引き込むことができる。流体ラインに連結されたユーティリティ導管は、排煙モジュール126で終端する可撓管の形態であってもよい。ユーティリティ導管及び流体ラインは、ハブ筐体136内に受容される排煙モジュール126に向かって延在する流体経路を画定する。 In various aspects, the smoke evacuation module 126 includes a fluid line 154 that carries captured/collected smoke and/or fluid away from the surgical site, eg, to the smoke evacuation module 126 . The vacuum suction generated by the smoke evacuation module 126 can draw smoke into the openings of utility conduits at the surgical site. A utility conduit coupled to the fluid line may be in the form of flexible tubing that terminates in the smoke evacuation module 126 . The utility conduits and fluid lines define fluid pathways that extend toward the smoke extraction module 126 received within the hub housing 136 .

様々な態様では、吸引/灌注モジュール128は、吸い込み(aspiration)流体ライン及び吸引(suction)流体ラインを含む外科用ツールに連結される。一実施例では、吸い込み及び吸引流体ラインは、手術部位から吸引/灌注モジュール128に向かって延在する可撓管の形態である。1つ又は2つ以上の駆動システムは、手術部位への、及び手術部位からの流体の灌注及び吸い込みを引き起こすように構成され得る。 In various aspects, aspiration/irrigation module 128 is coupled to a surgical tool including an aspiration fluid line and a suction fluid line. In one example, the aspiration and aspiration fluid lines are in the form of flexible tubing that extends from the surgical site toward aspiration/irrigation module 128 . One or more drive systems may be configured to cause irrigation and aspiration of fluid to and from the surgical site.

一態様では、外科用ツールは、その遠位端にエンドエフェクタを有するシャフトと、エンドエフェクタに関連付けられた少なくとも1つのエネルギー処置部と、吸い込み管と、灌注管と、を含む。吸い込み管は、その遠位端に入口ポートを有することができ、吸い込み管はシャフトを通って延在する。同様に、灌注管はシャフトを通って延在することができ、かつ、エネルギー送達器具に近接した入口ポートを有することができる。エネルギー送達器具は、超音波及び/又はRFエネルギーを手術部位に送達するように構成され、最初にシャフトを通って延在するケーブルによって発生器モジュール140に連結される。 In one aspect, a surgical tool includes a shaft having an end effector at its distal end, at least one energy treatment portion associated with the end effector, a suction tube, and an irrigation tube. A suction tube can have an inlet port at its distal end and the suction tube extends through the shaft. Similarly, an irrigation tube can extend through the shaft and have an inlet port proximate to the energy delivery device. The energy delivery instrument is configured to deliver ultrasonic and/or RF energy to the surgical site and is initially connected to generator module 140 by a cable extending through the shaft.

灌注管は流体源と流体連通することができ、吸い込み管は真空源と流体連通することができる。流体源及び/又は真空源は、吸引/灌注モジュール128内に収容され得る。一実施例では、流体源及び/又は真空源は、吸引/灌注モジュール128とは別にハブ筐体136内に収容され得る。このような実施例では、流体インターフェースは、吸引/灌注モジュール128を流体源及び/又は真空源に接続するように構成され得る。 The irrigation tube can be in fluid communication with a fluid source and the suction tube can be in fluid communication with a vacuum source. A fluid source and/or a vacuum source may be housed within the aspiration/irrigation module 128 . In one example, the fluid and/or vacuum source may be housed within hub housing 136 separately from aspiration/irrigation module 128 . In such examples, the fluid interface may be configured to connect the aspiration/irrigation module 128 to a fluid source and/or a vacuum source.

一態様では、モジュール140、126、128及び/又はハブのモジュール式筐体136上のそれらの対応するドッキングステーションは、モジュールのドッキングポートを位置合わせして、ハブのモジュール式筐体136のドッキングステーション内でこれらの対応部品と係合させるように構成された位置合わせ機構を含み得る。例えば、図4に示すように、組み合わせ生成器モジュール145は、ハブのモジュール式筐体136の対応するドッキングステーション151の対応するブラケット156と摺動可能に係合するように構成された側部ブラケット155を含む。ブラケットは協働して、組み合わせ生成器モジュール145のドッキングポート接点をハブのモジュール式筐体136のドッキングポート接点と電気係合させるように誘導する。 In one aspect, the modules 140, 126, 128 and/or their corresponding docking stations on the hub modular housing 136 align the docking ports of the modules to the docking stations of the hub modular housing 136. Alignment features configured to engage their counterparts therein may be included. For example, as shown in FIG. 4, combination generator module 145 includes side brackets configured to slidably engage corresponding brackets 156 of corresponding docking stations 151 of hub modular housing 136 . 155 included. The brackets cooperate to guide the docking port contacts of the combination generator module 145 into electrical engagement with the docking port contacts of the hub modular housing 136 .

いくつかの態様では、ハブのモジュール式筐体136のドロアー151はサイズが同じ又は実質的に同じであり、モジュールはドロアー151内に受容されるサイズに調整される。例えば、側部ブラケット155及び/又は156は、モジュールのサイズに応じてより大きくなっても小さくなってもよい。他の態様では、ドロアー151はサイズが異なり、それぞれ特定のモジュールを収容するように設計される。 In some aspects, the drawers 151 of the hub modular housing 136 are the same or substantially the same size, and the modules are sized to be received within the drawers 151 . For example, side brackets 155 and/or 156 may be larger or smaller depending on the size of the module. In other aspects, drawers 151 vary in size, each designed to accommodate a particular module.

更に、適合しない接点を備えるドロアーにモジュールを挿入することを避けるために、特定のモジュールの接点を、特定のドロアーの接点と係合するように鍵付きにしてもよい。 Additionally, the contacts of a particular module may be keyed to engage the contacts of a particular drawer to avoid inserting a module into a drawer with incompatible contacts.

図4に示されるように、1つのドロアー151のドッキングポート150は、通信リンク157を介して別のドロアー151のドッキングポート150に連結されて、ハブのモジュール式筐体136内に収容されたモジュール間の双方向通信を容易にすることができる。あるいは又は更に、ハブのモジュール式筐体136のドッキングポート150は、ハブのモジュール式筐体136内に収容されたモジュール間の無線双方向通信を容易にしてもよい。例えば、Air Titan-Bluetoothなどの任意の好適な無線通信を用いてもよい。 As shown in FIG. 4, the docking port 150 of one drawer 151 is coupled to the docking port 150 of another drawer 151 via a communication link 157 to accommodate modules housed within the modular housing 136 of the hub. can facilitate two-way communication between Alternatively or additionally, docking ports 150 of hub modular housing 136 may facilitate wireless two-way communication between modules housed within hub modular housing 136 . Any suitable wireless communication may be used, such as, for example, Air Titan-Bluetooth.

図6は、外科用ハブ206の複数のモジュールを受容するように構成された横方向モジュール式ハウジング160の複数の横方向ドッキングポートの個々の電力バスアタッチメントを示す。横方向モジュール式ハウジング160は、モジュール161を横方向に受容して相互接続するように構成される。モジュール161は、モジュール161を相互接続するためのバックプレーンを含む横方向モジュール式ハウジング160のドッキングステーション162内に摺動可能に挿入される。図6に示すように、モジュール161は、横方向モジュール式ハウジング160内で横方向に配置される。あるいは、モジュール161は、横方向モジュール式ハウジング内で垂直方向に配置されてもよい。 FIG. 6 illustrates individual power bus attachments of multiple lateral docking ports of lateral modular housing 160 configured to receive multiple modules of surgical hub 206 . Lateral modular housing 160 is configured to laterally receive and interconnect modules 161 . Modules 161 are slidably inserted into docking stations 162 of lateral modular housings 160 that contain backplanes for interconnecting modules 161 . As shown in FIG. 6, the modules 161 are laterally arranged within the lateral modular housing 160 . Alternatively, modules 161 may be arranged vertically within a lateral modular housing.

図7は、外科用ハブ106の複数のモジュール165を受容するように構成された垂直モジュール式ハウジング164を示す。モジュール165は、モジュール165を相互接続するためのバックプレーンを含む垂直モジュール式ハウジング164のドッキングステーション又はドロアー167内に摺動可能に挿入される。垂直モジュール式ハウジング164のドロアー167は垂直方向に配置されているが、特定の場合では、垂直モジュール式ハウジング164は、横方向に配置されたドロアーを含んでもよい。更に、モジュール165は、垂直モジュール式ハウジング164のドッキングポートを介して互いに相互作用し得る。図7の実施例では、モジュール165の動作に関連するデータを表示するためのディスプレイ177が提供される。加えて、垂直モジュール式ハウジング164は、マスタモジュール178内に摺動可能に受容される複数のサブモジュールを収容するマスタモジュール178を含む。 FIG. 7 shows a vertical modular housing 164 configured to receive multiple modules 165 of surgical hub 106 . Modules 165 are slidably inserted into docking stations or drawers 167 of vertical modular housings 164 that contain backplanes for interconnecting modules 165 . Although the drawers 167 of the vertical modular housing 164 are vertically oriented, in certain cases the vertical modular housing 164 may include laterally oriented drawers. Additionally, modules 165 may interact with each other via docking ports in vertical modular housing 164 . In the embodiment of FIG. 7, a display 177 is provided for displaying data related to the operation of module 165 . Additionally, vertical modular housing 164 includes master module 178 that houses a plurality of sub-modules that are slidably received within master module 178 .

様々な態様では、撮像モジュール138は、内蔵型のビデオプロセッサ及びモジュール式光源を備え、様々な撮像装置と共に使用するように適合されている。一態様では、撮像装置は、光源モジュール及びカメラモジュールと共に組み立てることが可能なモジュール式ハウジングで構成される。ハウジングは、使い捨て式ハウジングであってもよい。少なくとも1つの実施例では、使い捨て式ハウジングは、再利用可能なコントローラ、光源モジュール、及びカメラモジュールと取り外し可能に連結される。光源モジュール及び/又はカメラモジュールは、外科処置の種類に応じて選択的に選択することができる。一態様では、カメラモジュールはCCDセンサを含む。別の態様では、カメラモジュールはCMOSセンサを含む。別の態様では、カメラモジュールは走査されたビームの撮像用に構成される。同様に、光源モジュールは、外科処置に応じて白色光又は異なる光を送達するように構成することができる。 In various aspects, the imaging module 138 includes a built-in video processor and modular light sources and is adapted for use with various imaging devices. In one aspect, the imaging device consists of a modular housing that can be assembled with a light source module and a camera module. The housing may be a disposable housing. In at least one embodiment, the disposable housing is removably coupled with the reusable controller, light source module, and camera module. The light source module and/or camera module can be selectively selected depending on the type of surgical procedure. In one aspect, the camera module includes a CCD sensor. In another aspect, the camera module includes a CMOS sensor. In another aspect, the camera module is configured for scanning beam imaging. Similarly, the light source module can be configured to deliver white light or different light depending on the surgical procedure.

外科処置中に、手術野から外科用装置を除去して異なるカメラ又は異なる光源を含む別の外科用装置と交換することは非効率的であり得る。手術野の視野を一時的に喪失することは、望ましからぬ結果をもたらし得る。本開示のモジュール撮像装置は、手術野から撮像装置を除去する必要なく、外科処置中に光源モジュール又はカメラモジュール中間体(midstream)の交換を可能にするように構成される。 During a surgical procedure, it can be inefficient to remove a surgical device from the surgical field and replace it with another surgical device that includes a different camera or different light source. Temporary loss of vision in the surgical field can have undesirable consequences. The modular imaging device of the present disclosure is configured to allow replacement of a light source module or camera module midstream during a surgical procedure without having to remove the imaging device from the surgical field.

一態様では、撮像装置は、複数のチャネルを含む管状ハウジングを備える。第1のチャネルは、第1のチャネルとスナップ嵌め係合するように構成され得るカメラモジュールを摺動可能に受容するように構成されている。第2のチャネルは、第2のチャネルとスナップ嵌め係合するように構成され得る光源モジュールを摺動可能に受容するように構成されている。別の実施例では、カメラモジュール及び/又は光源モジュールは、これらの対応するチャネル内の最終位置へと回転させることができる。スナップ嵌め係合の代わりにねじ係合が採用されてもよい。 In one aspect, an imaging device comprises a tubular housing containing a plurality of channels. The first channel is configured to slidably receive a camera module that may be configured for snap fit engagement with the first channel. The second channel is configured to slidably receive a light source module that may be configured for snap fit engagement with the second channel. In another example, the camera modules and/or light source modules can be rotated to their final positions within their corresponding channels. A threaded engagement may be employed instead of a snap-fit engagement.

様々な実施例で、複数の撮像装置が、複数の視野を提供するために手術野内の様々な位置に位置決めされる。撮像モジュール138は、最適な視野を提供するために撮像装置間を切り替えるように構成することができる。様々な態様では、撮像モジュール138は、異なる撮像装置からの画像を統合するように構成することができる。 In various embodiments, multiple imaging devices are positioned at various locations within the surgical field to provide multiple views. Imaging module 138 may be configured to switch between imaging devices to provide an optimal field of view. In various aspects, imaging module 138 can be configured to integrate images from different imaging devices.

本開示と共に使用するのに好適な様々な画像プロセッサ及び撮像装置は、その全体が参照により本明細書に組み込まれる「COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR」と題する2011年8月9日発行の米国特許第7,995,045号に記載されている。更に、その全体が参照により本明細書に組み込まれる「SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD」と題する2011年7月19日発行の米国特許第7,982,776号は、画像データからモーションアーチファクトを除去するための様々なシステムについて記載している。こうしたシステムは、撮像モジュール138と一体化され得る。更に、「CONTROLLABLE MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPARATUS」と題する2011年12月15日公開の米国特許出願公開第2011/0306840号、及び「SYSTEM FOR PERFORMING A MINIMALLY INVASIVE SURGICAL PROCEDURE」と題する2014年8月28日公開の米国特許出願公開第2014/0243597号は、それぞれその全体が参照により本明細書に組み込まれる。 Various image processors and imagers suitable for use with the present disclosure are described in U.S. Patent No. 1, issued Aug. 9, 2011, entitled "COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR," which is incorporated herein by reference in its entirety. 7,995,045. Further, U.S. Patent No. 7,982,776, issued July 19, 2011, entitled "SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD," which is incorporated herein by reference in its entirety, removes motion artifacts from image data. Various systems for doing so are described. Such systems may be integrated with imaging module 138 . See also U.S. Patent Application Publication No. 2011/0306840, published Dec. 15, 2011, entitled "CONTROLLABLE MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPARATUS" and "SYSTEM FOR PERFORMING A MINIMALLY INVASIVE August 28, 2014 entitled "SURGICAL PROCEDURE" Published US Patent Application Publication No. 2014/0243597 is each incorporated herein by reference in its entirety.

図8は、医療施設の1つ又は2つ以上の手術室、又は外科処置のための専門設備を備えた医療施設内の任意の部屋に配置されたモジュール式装置をクラウドベースのシステム(例えばストレージ装置205に連結されたリモートサーバ213を含み得るクラウド204)に接続するように構成されたモジュール式通信ハブ203を備える外科用データネットワーク201を示す。一態様では、モジュール式通信ハブ203は、ネットワークルータと通信するネットワークハブ207及び/又はネットワークスイッチ209を備える。モジュール式通信ハブ203は更に、ローカルコンピュータ処理及びデータ操作を提供するために、ローカルコンピュータシステム210に連結することができる。外科用データネットワーク201は、受動的、インテリジェント、又は切替式として構成されてもよい。受動的外科用データネットワークはデータの導管として機能し、データが1つの装置(又はセグメント)から別の装置(又はセグメント)に、及びクラウドコンピューティングリソースに行くことを可能にする。インテリジェントな外科用データネットワークは、トラフィックが監視対象の外科用データネットワークを通過することを可能にし、ネットワークハブ207又はネットワークスイッチ209内の各ポートを構成する追加の機構を含む。インテリジェントな外科用データネットワークは、管理可能なハブ又はスイッチと称され得る。スイッチングハブは、各パケットの宛先アドレスを読み取り、次いでパケットを正しいポートに転送する。 FIG. 8 illustrates a cloud-based system (e.g., storage) of modular equipment located in one or more operating rooms of a medical facility, or any room within a medical facility with specialized equipment for surgical procedures. A surgical data network 201 is shown comprising a modular communication hub 203 configured to connect to a cloud 204 ), which may include a remote server 213 coupled to devices 205 . In one aspect, modular communication hub 203 comprises network hub 207 and/or network switch 209 that communicate with network routers. Modular communication hub 203 can also be coupled to local computer system 210 to provide local computer processing and data manipulation. Surgical data network 201 may be configured as passive, intelligent, or switched. A passive surgical data network acts as a conduit for data, allowing data to go from one device (or segment) to another and to cloud computing resources. The intelligent surgical data network includes additional mechanisms that allow traffic to pass through the monitored surgical data network and configure each port within network hub 207 or network switch 209 . An intelligent surgical data network may be referred to as a manageable hub or switch. The switching hub reads the destination address of each packet and then forwards the packet to the correct port.

手術室に配置されるモジュール式装置1a~1nは、モジュール式通信ハブ203に連結されてもよい。ネットワークハブ207及び/又はネットワークスイッチ209は、ネットワークルータ211に連結されて、装置1a~1nをクラウド204又はローカルコンピュータシステム210に接続することができる。装置1a~1nに関連付けられたデータは、遠隔データ処理及び操作のためにルータを介してクラウドベースのコンピュータに転送されてもよい。装置1a~1nに関連付けられたデータはまた、ローカルでのデータ処理及び操作のためにローカルコンピュータシステム210に転送されてもよい。同じ手術室に位置するモジュール式装置2a~2mもまた、ネットワークスイッチ209に連結されてもよい。ネットワークスイッチ209は、ネットワークハブ207及び/又はネットワークルータ211に連結されて、装置2a~2mをクラウド204に接続することができる。装置2a~2nに関連付けられたデータは、データ処理及び操作のためにネットワークルータ211を介してクラウド204に転送されてもよい。装置2a~2mに関連付けられたデータはまた、ローカルでのデータ処理及び操作のためにローカルコンピュータシステム210に転送されてもよい。 Modular devices 1 a - 1 n located in the operating room may be coupled to modular communication hub 203 . Network hub 207 and/or network switch 209 may be coupled to network router 211 to connect devices 1 a - 1 n to cloud 204 or local computer system 210 . Data associated with the devices 1a-1n may be transferred via routers to cloud-based computers for remote data processing and manipulation. Data associated with devices 1a-1n may also be transferred to local computer system 210 for local data processing and manipulation. Modular devices 2 a - 2 m located in the same operating room may also be coupled to network switch 209 . Network switch 209 may be coupled to network hub 207 and/or network router 211 to connect devices 2 a - 2 m to cloud 204 . Data associated with devices 2a-2n may be transferred to cloud 204 via network router 211 for data processing and manipulation. Data associated with devices 2a-2m may also be transferred to local computer system 210 for local data processing and manipulation.

複数のネットワークハブ207及び/又は複数のネットワークスイッチ209を複数のネットワークルータ211と相互接続することによって、外科用データネットワーク201が拡張され得ることが理解されるであろう。モジュール式通信ハブ203は、複数の装置1a~1n/2a~2mを受容するように構成されたモジュール式制御タワー内に収容され得る。ローカルコンピュータシステム210もまた、モジュール式制御タワーに収容されてもよい。モジュール式通信ハブ203は、ディスプレイ212に接続されて、例えば外科処置中に、装置1a~1n/2a~2mのうちのいくつかによって取得された画像を表示する。様々な態様では、装置1a~1n/2a~2mとしては、外科用データネットワーク201のモジュール式通信ハブ203に接続され得るモジュール式装置の中でもとりわけ、例えば、内視鏡に連結された撮像モジュール138、エネルギーベースの外科用装置に連結された発生器モジュール140、排煙モジュール126、吸引/灌注モジュール128、通信モジュール130、プロセッサモジュール132、ストレージアレイ134、ディスプレイに連結された外科用装置、及び/又は非接触センサモジュールなどの様々なモジュールが挙げられ得る。 It will be appreciated that surgical data network 201 may be expanded by interconnecting multiple network hubs 207 and/or multiple network switches 209 with multiple network routers 211 . Modular communication hub 203 may be housed in a modular control tower configured to receive multiple devices 1a-1n/2a-2m. A local computer system 210 may also be housed in the modular control tower. Modular communication hub 203 is connected to display 212 to display images acquired by some of devices 1a-1n/2a-2m, eg, during a surgical procedure. In various aspects, the devices 1a-1n/2a-2m include, among other modular devices that can be connected to the modular communication hub 203 of the surgical data network 201, an imaging module 138 coupled to, for example, an endoscope. , a generator module 140 coupled to an energy-based surgical device, a smoke evacuation module 126, an aspiration/irrigation module 128, a communication module 130, a processor module 132, a storage array 134, a surgical device coupled to a display, and/or Or various modules such as a non-contact sensor module.

一態様では、外科用データネットワーク201は、装置1a~1n/2a~2mをクラウドに接続する、ネットワークハブ(複数可)、ネットワークスイッチ(複数可)、及びネットワークルータ(複数可)との組み合わせを含んでもよい。ネットワークハブ又はネットワークスイッチに連結された装置1a~1n/2a~2mのいずれか1つ又は全ては、リアルタイムでデータを収集し、データ処理及び操作のためにデータをクラウドコンピュータに転送することができる。クラウドコンピューティングは、ソフトウェアアプリケーションを取り扱うために、ローカルサーバ又はパーソナル装置を有するのではなく、共有コンピューティングリソースに依存することは理解されるであろう。用語「クラウド」は「インターネット」の隠喩として用いられ得るが、この用語はそのように限定はされない。したがって、用語「クラウドコンピューティング」は、本明細書では「インターネットベースのコンピューティングの一種」を指すために用いることができ、この場合、サーバ、ストレージ、及びアプリケーションなどの様々なサービスは、手術現場(例えば、固定式、移動式、一時的、又は現場の手術室又は空間)に位置するモジュール式通信ハブ203及び/又はコンピュータシステム210に、かつインターネットを介してモジュール式通信ハブ203及び/又はコンピュータシステム210に接続された装置に送達される。クラウドインフラストラクチャは、クラウドサービスプロバイダによって維持され得る。この文脈において、クラウドサービスプロバイダは、1つ又は2つ以上の手術室内に位置する装置1a~1n/2a~2mの使用及び制御を調整する事業体であり得る。クラウドコンピューティングサービスは、スマート外科用器具、ロボット、及び手術室内に位置する他のコンピュータ化装置によって収集されたデータに基づいて、多数の計算を実行することができる。ハブハードウェアは、複数の装置又は接続部がクラウドコンピューティングリソース及びストレージと通信するコンピュータに接続することを可能にする。 In one aspect, the surgical data network 201 comprises a combination of network hub(s), network switch(es), and network router(s) that connect the devices 1a-1n/2a-2m to the cloud. may contain. Any one or all of the devices 1a-1n/2a-2m coupled to a network hub or network switch can collect data in real time and transfer the data to a cloud computer for data processing and manipulation. . It will be appreciated that cloud computing relies on shared computing resources to handle software applications rather than having local servers or personal devices. Although the term "cloud" can be used as a metaphor for "Internet," the term is not so limited. Accordingly, the term “cloud computing” can be used herein to refer to “a type of internet-based computing” in which various services such as servers, storage, and applications are to modular communication hub 203 and/or computer system 210 located (e.g., fixed, mobile, temporary, or on-site operating room or space) and via the Internet to modular communication hub 203 and/or computer It is delivered to devices connected to system 210 . A cloud infrastructure may be maintained by a cloud service provider. In this context, a cloud service provider may be an entity that coordinates the use and control of devices 1a-1n/2a-2m located in one or more operating rooms. Cloud computing services can perform numerous calculations based on data collected by smart surgical instruments, robots, and other computerized devices located in the operating room. Hub hardware allows multiple devices or connections to connect to a computer that communicates with cloud computing resources and storage.

装置1a~1n/2a~2mによって収集されたデータにクラウドコンピュータデータ処理技術を適用することで、外科用データネットワークは、外科的成果の改善、コスト低減、及び患者満足度の改善を提供する。組織の封止及び切断処置後に、組織の状態を観察して封止された組織の漏出又は灌流を評価するために、装置1a~1n/2a~2mのうちの少なくともいくつかを用いることができる。クラウドベースのコンピューティングを使用して、身体組織の試料の画像を含むデータを診断目的で検査して疾患の影響などの病状を特定するために、装置1a~1n/2a~2mのうちの少なくともいくつかを用いることができる。これは、組織及び表現型の位置特定及びマージン確認を含む。撮像装置と一体化された様々なセンサ、及び複数の撮像装置によってキャプチャされた画像をオーバーレイするなどの技術を使用して、身体の解剖学的構造を特定するために、装置1a~1n/2a~2mのうちの少なくともいくつかを用いることができる。画像データを含む、装置1a~1n/2a~2mによって収集されたデータは、画像処理及び操作を含むデータ処理及び操作のために、クラウド204若しくはローカルコンピュータシステム210又はその両方に転送されてもよい。データは、組織特異的部位及び状態に対する内視鏡的介入、新興技術、標的化放射線、標的化介入、及び精密ロボットの適用などの更なる治療を遂行できるかを判定することによって、外科処置の結果を改善するために分析することができる。こうしたデータ分析は、予後分析処理を更に採用してもよく、標準化されたアプローチを使用することは、外科治療及び外科医の挙動を確認するか、又は外科治療及び外科医の挙動に対する修正を提案するかのいずれかのために有益なフィードバックを提供することができる。 By applying cloud computer data processing techniques to data collected by devices 1a-1n/2a-2m, surgical data networks provide improved surgical outcomes, reduced costs, and improved patient satisfaction. At least some of the devices 1a-1n/2a-2m can be used to monitor the condition of the tissue after the tissue sealing and cutting procedure to assess leakage or perfusion of the sealed tissue. . at least one of the devices 1a-1n/2a-2m for diagnostic examination of data comprising images of body tissue samples to identify medical conditions such as disease effects using cloud-based computing; Several can be used. This includes tissue and phenotype localization and margin confirmation. Devices 1a-1n/2a for identifying body anatomy using various sensors integrated with imaging devices and techniques such as overlaying images captured by multiple imaging devices. At least some of ~2 m can be used. Data collected by devices 1a-1n/2a-2m, including image data, may be transferred to cloud 204 or local computer system 210, or both, for data processing and manipulation, including image processing and manipulation. . The data will help guide surgical interventions by determining whether additional therapies such as endoscopic interventions, emerging technologies, targeted radiation, targeted interventions, and precision robotic applications for tissue-specific sites and conditions can be performed. Can be analyzed to improve results. Such data analysis may further employ prognostic analysis processing, using a standardized approach to confirm surgical intervention and surgeon behavior, or suggest modifications to surgical intervention and surgeon behavior. You can provide useful feedback for any of the

一実装態様では、手術室装置1a~1nは、ネットワークハブに対する装置1a~1nの構成に応じて、有線チャネル又は無線チャネルを介してモジュール式通信ハブ203に接続されてもよい。ネットワークハブ207は、一態様では、開放型システム間相互接続(OSI)モデルの物理層上で機能するローカルネットワークブロードキャスト装置として実装されてもよい。ネットワークハブは、同じ手術室ネットワーク内に位置する装置1a~1nに接続性を提供する。ネットワークハブ207は、パケット形態のデータを収集し、それらを半二重モードでルータに送信する。ネットワークハブ207は、装置データを転送するための任意の媒体アクセス制御/インターネットプロトコル(MAC/IP)は記憶しない。装置1a~1nのうちの1つのみが、ネットワークハブ207を介して一度にデータを送信することができる。ネットワークハブ207は、情報の送信先に関する経路選択テーブル又はインテリジェンスを有さず、全てのネットワークデータを各コネクション全体、及びクラウド204上のリモートサーバ213(図9)にブロードキャストする。ネットワークハブ207は、コリジョンなどの基本的なネットワークエラーを検出することができるが、全ての情報を複数のポートにブロードキャストすることは、セキュリティリスクとなりボトルネックを引き起こすおそれがある。 In one implementation, the operating room devices 1a-1n may be connected to the modular communication hub 203 via wired or wireless channels, depending on the configuration of the devices 1a-1n relative to the network hub. Network hub 207 may, in one aspect, be implemented as a local network broadcast device that functions above the physical layer of the Open Systems Interconnection (OSI) model. A network hub provides connectivity to devices 1a-1n located within the same operating room network. Network hub 207 collects the data in packet form and sends them to the router in half-duplex mode. Network hub 207 does not store any Media Access Control/Internet Protocol (MAC/IP) for transferring device data. Only one of the devices 1a-1n can transmit data through the network hub 207 at a time. Network hub 207 does not have routing tables or intelligence about where to send information, it broadcasts all network data across each connection and to remote server 213 (FIG. 9) on cloud 204 . While the network hub 207 can detect basic network errors such as collisions, broadcasting all information to multiple ports can be a security risk and create bottlenecks.

別の実装形態では、手術室装置2a~2mは、有線チャネル又は無線チャネルを介してネットワークスイッチ209に接続されてもよい。ネットワークスイッチ209は、OSIモデルのデータリンク層内で機能する。ネットワークスイッチ209は、同じ手術室内に位置する装置2a~2mをネットワークに接続するためのマルチキャスト装置である。ネットワークスイッチ209は、フレームの形態のデータをネットワークルータ211に送信し、全二重モードで機能する。複数の装置2a~2mは、ネットワークスイッチ209を介して同時にデータを送信することができる。ネットワークスイッチ209は、データを転送するために装置2a~2mのMACアドレスを記憶かつ使用する。 In another implementation, the operating room devices 2a-2m may be connected to the network switch 209 via wired or wireless channels. Network switch 209 functions within the data link layer of the OSI model. A network switch 209 is a multicast device for connecting the devices 2a to 2m located in the same operating room to the network. Network switch 209 sends data in the form of frames to network router 211 and functions in full-duplex mode. Multiple devices 2 a - 2 m can transmit data simultaneously through network switch 209 . Network switch 209 stores and uses the MAC addresses of devices 2a-2m to transfer data.

ネットワークハブ207及び/又はネットワークスイッチ209は、クラウド204に接続するためにネットワークルータ211に連結される。ネットワークルータ211は、OSIモデルのネットワーク層内で機能する。ネットワークルータ211は、装置1a~1n/2a~2mのいずれか1つ又は全てによって収集されたデータを更に処理及び操作するために、ネットワークハブ207及び/又はネットワークスイッチ211から受信したデータパケットをクラウドベースのコンピュータリソースに送信するための経路を作成する。ネットワークルータ211は、例えば、同じ医療施設の異なる手術室、又は異なる医療施設の異なる手術室に位置する異なるネットワークなどの、異なる位置に位置する2つ以上の異なるネットワークを接続するために用いられてもよい。ネットワークルータ211は、パケット形態のデータをクラウド204に送信し、全二重モードで機能する。複数の装置が同時にデータを送信することができる。ネットワークルータ211は、データを転送するためにIPアドレスを使用する。 Network hub 207 and/or network switch 209 are coupled to network router 211 to connect to cloud 204 . Network router 211 functions within the network layer of the OSI model. Network router 211 may cloud data packets received from network hub 207 and/or network switch 211 for further processing and manipulation of data collected by any one or all of devices 1a-1n/2a-2m. Create a route to send to the base computer resource. Network router 211 is used to connect two or more different networks located at different locations, such as different operating rooms in the same medical facility, or different networks located in different operating rooms in different medical facilities. good too. Network router 211 sends data in packet form to cloud 204 and functions in full-duplex mode. Multiple devices can transmit data simultaneously. Network routers 211 use IP addresses to transfer data.

一実施例では、ネットワークハブ207は、複数のUSB装置をホストコンピュータに接続することを可能にするUSBハブとして実装されてもよい。USBハブは、装置をホストシステムコンピュータに接続するために利用可能なポートが多くなるように、単一のUSBポートをいくつかの階層に拡張することができる。ネットワークハブ207は、有線チャネル又は無線チャネルを介して情報を受信するための有線又は無線能力を含むことができる。一態様では、無線USB短距離高帯域無線通信プロトコルが、手術室内に位置する装置1a~1nと装置2a~2mとの間の通信のために使用されてもよい。 In one embodiment, network hub 207 may be implemented as a USB hub that allows multiple USB devices to be connected to a host computer. A USB hub can expand a single USB port into several layers so that there are many ports available for connecting devices to a host system computer. Network hub 207 may include wired or wireless capabilities for receiving information over wired or wireless channels. In one aspect, a wireless USB short range high band wireless communication protocol may be used for communication between devices 1a-1n and devices 2a-2m located in the operating room.

他の実施例では、手術室装置1a~1n/2a~2mは、固定及びモバイル装置から短距離にわたってデータを交換し(2.4~2.485GHzのISM帯域における短波長UHF電波を使用して)、かつパーソナルエリアネットワーク(PAN)を構築するために、Bluetooth無線技術規格を介してモジュール式通信ハブ203と通信することができる。他の態様では、手術室装置1a~1n/2a~2mは、Wi-Fi(IEEE802.11ファミリー)、WiMAX(IEEE802.16ファミリー)、IEEE802.20、ロング・ターム・エボリューション(LTE)、並びにEv-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、及びこれらのイーサネット派生物、のみならず3G、4G、5G、及びそれ以降と指定される任意の他の無線及び有線プロトコルが挙げられるがこれらに限定されない数多くの無線又は有線通信規格又はプロトコルを介してモジュール式通信ハブ203と通信することができる。コンピューティングモジュールは、複数の通信モジュールを含んでもよい。例えば、第1の通信モジュールは、Wi-Fi及びBluetoothなどの短距離無線通信専用であってもよく、第2の通信モジュールは、GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DOなどの長距離無線通信専用であってもよい。 In another embodiment, operating room devices 1a-1n/2a-2m exchange data from fixed and mobile devices over short distances (using short wavelength UHF radio waves in the 2.4-2.485 GHz ISM band). ), and can communicate with the modular communication hub 203 via the Bluetooth wireless technology standard to build a personal area network (PAN). In other aspects, the operating room devices 1a-1n/2a-2m support Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, Long Term Evolution (LTE), and Ev - DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT and their Ethernet derivatives, as well as any other radio designated 3G, 4G, 5G and beyond, and It is possible to communicate with modular communication hub 203 via numerous wireless or wired communication standards or protocols, including but not limited to wired protocols. A computing module may include multiple communication modules. For example, a first communication module may be dedicated to short-range wireless communication such as Wi-Fi and Bluetooth, and a second communication module may be dedicated to GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, etc. may be dedicated to long-range wireless communication.

モジュール式通信ハブ203は、手術室装置1a~1n/2a~2mの1つ又は全ての中央接続部として機能することができ、フレームとして知られるデータ型を取り扱う。フレームは、装置1a~1n/2a~2mによって生成されたデータを搬送する。フレームがモジュール式通信ハブ203によって受信されると、フレームは増幅されてネットワークルータ211へ送信され、ネットワークルータ211は本明細書に記載される数多くの無線又は有線通信規格又はプロトコルを使用することによってこのデータをクラウドコンピューティングリソースに転送する。 The modular communication hub 203 can serve as a central connection for one or all of the operating room devices 1a-1n/2a-2m and handles data types known as frames. The frames carry data generated by the devices 1a-1n/2a-2m. As frames are received by modular communication hub 203, the frames are amplified and transmitted to network router 211, which uses a number of wireless or wired communication standards or protocols described herein to transmit the frames. Transfer this data to cloud computing resources.

モジュール式通信ハブ203は、スタンドアロンの装置として使用されてもよく、又はより大きなネットワークを形成するために互換性のあるネットワークハブ及びネットワークスイッチに接続されてもよい。モジュール式通信ハブ203は、一般に据え付け、構成、及び維持が容易であるため、モジュール式通信ハブ203は手術室装置1a~1n/2a~2mをネットワーク接続するための良好な選択肢となる。 Modular communication hub 203 may be used as a stand-alone device or may be connected to compatible network hubs and network switches to form a larger network. Modular communication hubs 203 are generally easy to install, configure, and maintain, making them a good choice for networking operating room devices 1a-1n/2a-2m.

図9は、コンピュータ実装インタラクティブ外科システム200を示す。コンピュータ実装インタラクティブ外科システム200は、多くの点で、コンピュータ実装インタラクティブ外科システム100と類似している。例えば、コンピュータ実装インタラクティブ外科システム200は、多くの点で外科システム102と類似する1つ又は2つ以上の外科システム202を含む。各外科システム202は、リモートサーバ213を含み得るクラウド204と通信する少なくとも1つの外科用ハブ206を含む。一態様では、コンピュータ実装インタラクティブ外科システム200は、例えば、インテリジェント外科用器具、ロボット、及び手術室内に位置する他のコンピュータ化装置などの複数の手術室装置に接続されたモジュール式制御タワー236を備える。図10に示されるように、モジュール式制御タワー236は、コンピュータシステム210に連結されたモジュール式通信ハブ203を備える。図9の実施例に例示するように、モジュール式制御タワー236は、内視鏡239に連結された撮像モジュール238、エネルギー装置241に連結された発生器モジュール240、排煙器モジュール226、吸引/灌注モジュール228、通信モジュール230、プロセッサモジュール232、ストレージアレイ234、任意でディスプレイ237に連結されたスマート装置/器具235、及び非接触センサモジュール242に連結される。手術室装置は、モジュール式制御タワー236を介してクラウドコンピューティングリソース及びデータストレージに連結される。ロボットハブ222もまた、モジュール式制御タワー236及びクラウドコンピューティングリソースに接続されてもよい。中でもとりわけ、装置/器具235、可視化システム208が、本明細書に記載される有線又は無線通信規格又はプロトコルを介してモジュール式制御タワー236に連結されてもよい。モジュール式制御タワー236は、撮像モジュール、装置/器具ディスプレイ、及び/又は他の可視化システム208から受信した画像を表示及びオーバーレイするためにハブディスプレイ215(例えば、モニタ、スクリーン)に連結されてもよい。ハブディスプレイはまた、画像及びオーバーレイ画像と共にモジュール式制御タワーに接続された装置から受信したデータを表示してもよい。 FIG. 9 shows a computer-implemented interactive surgical system 200 . Computer-implemented interactive surgical system 200 is similar in many respects to computer-implemented interactive surgical system 100 . For example, computer-implemented interactive surgical system 200 includes one or more surgical systems 202 that are similar in many respects to surgical system 102 . Each surgical system 202 includes at least one surgical hub 206 that communicates with cloud 204 that may include remote servers 213 . In one aspect, the computer-implemented interactive surgical system 200 comprises a modular control tower 236 connected to multiple operating room devices such as, for example, intelligent surgical instruments, robots, and other computerized devices located within the operating room. . As shown in FIG. 10, modular control tower 236 comprises modular communication hub 203 coupled to computer system 210 . As illustrated in the embodiment of FIG. 9, modular control tower 236 includes imaging module 238 coupled to endoscope 239, generator module 240 coupled to energy device 241, smoke evacuator module 226, aspiration/ Coupled to an irrigation module 228 , a communications module 230 , a processor module 232 , a storage array 234 , a smart device/instrument 235 optionally coupled to a display 237 , and a contactless sensor module 242 . Operating room equipment is linked to cloud computing resources and data storage via modular control towers 236 . Robot hub 222 may also be connected to modular control tower 236 and cloud computing resources. Devices/instruments 235, visualization system 208, among others, may be coupled to modular control tower 236 via wired or wireless communication standards or protocols described herein. Modular control tower 236 may be coupled to hub display 215 (e.g., monitor, screen) for displaying and overlaying images received from imaging modules, device/instrument displays, and/or other visualization systems 208. . The hub display may also display data received from devices connected to the modular control tower along with images and overlay images.

図10は、モジュール式制御タワー236に連結された複数のモジュールを備える外科用ハブ206を示す。モジュール式制御タワー236は、例えばネットワーク接続装置などのモジュール式通信ハブ203と、例えば局所処理、可視化、及び撮像を提供するためのコンピュータシステム210と、を備える。図10に示すように、モジュール式通信ハブ203は、モジュール式通信ハブ203に接続できるモジュール(例えば、装置)の数を拡張するために階層化構成で接続されて、モジュールに関連付けられたデータをコンピュータシステム210、クラウドコンピューティングリソース、又はその両方に転送することができる。図10に示すように、モジュール式通信ハブ203内のネットワークハブ/スイッチのそれぞれは、3つの下流ポート及び1つの上流ポートを含む。上流のネットワークハブ/スイッチは、クラウドコンピューティングリソース及びローカルディスプレイ217への通信接続を提供するためにプロセッサに接続される。クラウド204への通信は、有線又は無線通信チャネルのいずれかを介して行うことができる。 FIG. 10 shows surgical hub 206 comprising multiple modules coupled to modular control tower 236 . Modular control tower 236 includes a modular communication hub 203, eg, a network connection device, and a computer system 210, eg, for providing local processing, visualization, and imaging. As shown in FIG. 10, modular communication hubs 203 are connected in a hierarchical configuration to expand the number of modules (e.g., devices) that can be connected to modular communication hub 203 to store data associated with the modules. It can be transferred to computer system 210, cloud computing resources, or both. As shown in FIG. 10, each of the network hubs/switches within modular communication hub 203 includes three downstream ports and one upstream port. An upstream network hub/switch is connected to the processor to provide communication connections to cloud computing resources and local displays 217 . Communication to cloud 204 can be via either wired or wireless communication channels.

外科用ハブ206は、非接触センサモジュール242を使用して、手術室の寸法を測定し、また超音波又はレーザ型非接触測定装置のいずれかを使用して手術現場のマップを生成する。その全体が参照により本明細書に組み込まれる「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号中の「Surgical Hub Spatial Awareness Within an Operating Room」の項で説明されるように、超音波ベースの非接触センサモジュールは、超音波のバーストを送信し、超音波のバーストが手術室の外壁に反射したときのエコーを受信することによって手術室を走査し、ここでセンサモジュールが、手術室のサイズを判定し、かつBluetoothペアリングの距離限界を調整するように構成される。レーザベースの非接触センサモジュールは、例えば、レーザ光パルスを送信し、手術室の外壁に反射するレーザ光パルスを受信し、送信されたパルスの位相を受信したパルスと比較して、手術室のサイズを判定し、かつBluetoothペアリング距離限界を調整することによって手術室を走査する。 Surgical hub 206 uses non-contact sensor module 242 to measure the dimensions of the operating room and to generate a map of the surgical field using either ultrasonic or laser-based non-contact measurement devices. "Surgical Hub Spatial Awareness Within an Operating Room," in U.S. Provisional Patent Application No. 62/611,341, filed Dec. 28, 2017, entitled "INTERACTIVE SURGICAL PLATFORM," which is hereby incorporated by reference in its entirety. The ultrasonic-based non-contact sensor module scans the operating room by transmitting bursts of ultrasonic waves and receiving echoes when the bursts of ultrasonic waves reflect off the outer wall of the operating room. and where the sensor module is configured to determine the size of the operating room and adjust the distance limit of the Bluetooth pairing. A laser-based non-contact sensor module, for example, transmits a laser light pulse, receives a laser light pulse that reflects off the outer wall of an operating room, compares the phase of the transmitted pulse with the received pulse, and compares the phase of the operating room. Scan the operating room by determining the size and adjusting the Bluetooth pairing distance limit.

コンピュータシステム210は、プロセッサ244とネットワークインターフェース245とを備える。プロセッサ244は、システムバスを介して、通信モジュール247、ストレージ248、メモリ249、不揮発性メモリ250、及び入力/出力インターフェース251に連結される。システムバスは、9ビットバス、業界標準アーキテクチャ(ISA)、マイクロチャネルアーキテクチャ(MSA)、拡張ISA(EISA)、インテリジェントドライブエレクトロニクス(IDE)、VESAローカルバス(VLB)、周辺装置相互接続(PCI)、USB、アドバンスドグラフィックスポート(AGP)、パーソナルコンピュータメモリカード国際協会バス(PCMCIA)、小型計算機システム・インターフェース(SCSI)、又は任意の他の独自バス(proprietary bus)が挙げられるがこれらに限定されない任意の様々なバスアーキテクチャを用いる、メモリバス若しくはメモリコントローラ、ペリフェラルバス若しくは外部バス、及び/又はローカルバスを含むいくつかのタイプのバス構造(複数可)のうちのいずれかであっってもよい。 Computer system 210 includes processor 244 and network interface 245 . Processor 244 is coupled to communication module 247, storage 248, memory 249, nonvolatile memory 250, and input/output interface 251 via a system bus. The system bus includes a 9-bit bus, Industry Standard Architecture (ISA), Micro Channel Architecture (MSA), Enhanced ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Device Interconnect (PCI), Any, including but not limited to USB, Advanced Graphics Port (AGP), Personal Computer Memory Card International Association Bus (PCMCIA), Small Computer Systems Interface (SCSI), or any other proprietary bus. It may be any of several types of bus structure(s) including a memory bus or memory controller, a peripheral or external bus, and/or a local bus using various bus architectures.

プロセッサ244は、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。一態様では、プロセッサは、例えば、その詳細が製品データシートで入手可能である、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルシリアルランダムアクセスメモリ(SRAM)、StellarisWare(登録商標)ソフトウェアを搭載した内部読み出し専用メモリ(ROM)、2KBの電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、及び/又は、1つ若しくは2つ以上のパルス幅変調(PWM)モジュール、1つ若しくは2つ以上の直交エンコーダ入力(QEI)アナログ、12個のアナログ入力チャネルを備える1つ若しくは2つ以上の12ビットアナログ-デジタル変換器(ADC)を含む、Texas Instrumentsから入手可能なLM4F230H5QR ARM Cortex-M4Fプロセッサコアであってもよい。 Processor 244 may be any single-core or multi-core processor, such as those known under the trade name ARM Cortex manufactured by Texas Instruments. In one aspect, the processor has on-chip memory, e.g., 256 KB of single-cycle flash memory or other non-volatile memory at up to 40 MHz, details of which are available in the product datasheet, to improve performance beyond 40 MHz. a prefetch buffer, 32 KB of single-cycle serial random access memory (SRAM), internal read-only memory (ROM) with StellarisWare® software, 2 KB of electrically erasable programmable read-only memory (EEPROM), and/or One or more pulse width modulation (PWM) modules, one or more quadrature encoder input (QEI) analog, one or more 12-bit analog-to-digital with 12 analog input channels It may be a LM4F230H5QR ARM Cortex-M4F processor core available from Texas Instruments, including a converter (ADC).

一態様では、プロセッサ244は、同じくTexas Instruments製のHercules ARM Cortex R4の商品名で知られるTMS570及びRM4xなどの2つのコントローラ系ファミリーを含む安全コントローラを含んでもよい。安全コントローラは、拡張性のある性能、接続性、及びメモリの選択肢を提供しながら、高度な集積型安全機構を提供するために、中でも特に、IEC61508及びISO26262の安全限界用途専用に構成されてもよい。 In one aspect, processor 244 may include a safety controller that includes two controller family families, such as TMS570 and RM4x, also known by the trade designation Hercules ARM Cortex R4, also manufactured by Texas Instruments. Safety controllers may be configured specifically for IEC61508 and ISO26262 safety limit applications to provide advanced integrated safety mechanisms while offering scalable performance, connectivity, and memory options. good.

システムメモリとしては、揮発性メモリ及び不揮発性メモリが挙げられる。起動中などにコンピュータシステム内の要素間で情報を転送するための基本ルーチンを含む基本入出力システム(BIOS)は、不揮発性メモリに記憶される。例えば、不揮発性メモリとしては、ROM、プログラマブルROM(PROM)、電気的プログラマブルROM(EPROM)、EEPROM、又はフラッシュメモリが挙げられ得る。揮発性メモリとしては、外部キャッシュメモリとして機能するランダムアクセスメモリ(RAM)が挙げられる。更に、RAMは、SRAM、ダイナミックRAM(DRAM)、シンクロナスDRAM(SDRAM)、ダブルデータレートSDRAM(DDR SDRAM)、エンハンスドSDRAM(ESDRAM)、シンクリンクDRAM(SLDRAM)、及びダイレクトランバスRAM(DRRAM)などの多くの形態で利用可能である。 System memory includes both volatile and nonvolatile memory. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer system, such as during start-up, is stored in nonvolatile memory. For example, non-volatile memory may include ROM, programmable ROM (PROM), electrically programmable ROM (EPROM), EEPROM, or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. Further, RAM includes SRAM, dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), sync link DRAM (SLDRAM), and direct RAM bus RAM (DRRAM). available in many forms.

コンピュータシステム210はまた、取り外し可能/取り外し不可能な揮発性/不揮発性コンピュータストレージ媒体、例えばディスクストレージなどを含む。ディスクストレージとしては、磁気ディスクドライブ、フロッピーディスクドライブ、テープドライブ、Jazドライブ、Zipドライブ、LS-60ドライブ、フラッシュメモリカード、又はメモリスティックのようなデバイスが挙げられるが、これらに限定されない。加えて、ディスクストレージは、ストレージ媒体を、独立して、又はコンパクトディスクROM装置(CD-ROM)、コンパクトディスク記録可能ドライブ(CD-Rドライブ)、コンパクトディスク書き換え可能ドライブ(CD-RWドライブ)、若しくはデジタル多用途ディスクROMドライブ(DVD-ROM)などの光ディスクドライブが挙げられるがこれらに限定されない他のストレージ媒体との組み合わせで含むことができる。ディスクストレージ装置のシステムバスへの接続を容易にするために、取り外し可能な又は取り外し不可能なインターフェースが用いられてもよい。 Computer system 210 also includes removable/non-removable, volatile/non-volatile computer storage media such as disk storage. Disk storage includes, but is not limited to, devices such as magnetic disk drives, floppy disk drives, tape drives, Jaz drives, Zip drives, LS-60 drives, flash memory cards, or memory sticks. In addition, disc storage may refer to a storage medium, either independently or as a compact disc ROM device (CD-ROM), a compact disc recordable drive (CD-R drive), a compact disc rewritable drive (CD-RW drive), Or it may be included in combination with other storage media including, but not limited to, an optical disk drive such as a Digital Versatile Disk ROM Drive (DVD-ROM). A removable or non-removable interface may be used to facilitate connection of the disk storage device to the system bus.

コンピュータシステム210は、好適な動作環境で説明されるユーザと基本コンピュータリソースとの間で媒介として機能するソフトウェアを含むことを理解されたい。このようなソフトウェアとしてはオペレーティングシステムが挙げられる。ディスクストレージ上に記憶され得るオペレーティングシステムは、コンピュータシステムのリソースを制御及び割り当てするように機能する。システムアプリケーションは、システムメモリ内又はディスクストレージ上のいずれかに記憶されたプログラムモジュール及びプログラムデータを介して、オペレーティングシステムによるリソース管理を活用する。本明細書に記載される様々な構成要素は、様々なオペレーティングシステム又はオペレーティングシステムの組み合わせで実装することができることを理解されたい。 It should be appreciated that computer system 210 includes software that acts as an intermediary between users and basic computer resources as described in the preferred operating environment. Such software includes an operating system. An operating system, which may be stored on disk storage, functions to control and allocate the computer system's resources. System applications take advantage of resource management by the operating system through program modules and program data stored either in system memory or on disk storage. It should be appreciated that the various components described herein can be implemented on various operating systems or combinations of operating systems.

ユーザは、I/Oインターフェース251に連結された入力装置(複数可)を介してコンピュータシステム210にコマンド又は情報を入力する。入力装置としては、マウス、トラックボール、スタイラス、タッチパッドなどのポインティングデバイス、キーボード、マイクロフォン、ジョイスティック、ゲームパッド、サテライト・ディッシュ、スキャナ、TVチューナカード、デジタルカメラ、デジタルビデオカメラ、ウェブカメラなどが挙げられるが、これらに限定されない。これら及び他の入力装置は、インターフェースポート(複数可)を介し、システムバスを通してプロセッサに接続する。インターフェースポート(複数可)としては、例えば、シリアルポート、パラレルポート、ゲームポート、及びUSBが挙げられる。出力装置(複数可)は、入力装置(複数可)と同じ種類のポートのうちのいくつかを使用する。したがって、例えば、USBポートを使用して、コンピュータシステムに入力を提供し、またコンピュータシステムからの情報を出力装置に出力してもよい。出力アダプタは、特別なアダプタを必要とする出力装置の中でもとりわけ、モニタ、ディスプレイ、スピーカ、及びプリンタなどのいくつかの出力装置が存在することを示すために提供される。出力アダプタとしては、例示としてのものであり限定するものではないが、出力装置とシステムバスとの間の接続手段を提供するビデオ及びサウンドカードが挙げられる。遠隔コンピュータ(複数可)などの他の装置及び/又は装置のシステムは、入力及び出力機能の両方を提供することに留意されたい。 A user enters commands or information into computer system 210 through input device(s) coupled to I/O interface 251 . Input devices include pointing devices such as mice, trackballs, styluses, and touch pads, keyboards, microphones, joysticks, gamepads, satellite dishes, scanners, TV tuner cards, digital cameras, digital video cameras, and webcams. include but are not limited to: These and other input devices connect to the processor through the system bus via the interface port(s). Interface port(s) include, for example, serial port, parallel port, game port, and USB. Output device(s) use some of the same types of ports as input device(s). Thus, for example, a USB port may be used to provide input to the computer system and output information from the computer system to an output device. Output adapters are provided to illustrate that there are some output devices such as monitors, displays, speakers, and printers, among other output devices that require special adapters. Output adapters include, by way of example and not limitation, video and sound cards that provide a means of connection between output devices and the system bus. Note that other devices and/or systems of devices, such as remote computer(s), provide both input and output functionality.

コンピュータシステム210は、クラウドコンピュータ(複数可)などの1つ若しくは2つ以上の遠隔コンピュータ又はローカルコンピュータへの論理接続を使用するネットワーク化環境で動作することができる。遠隔クラウドコンピュータ(複数可)は、パーソナルコンピュータ、サーバ、ルータ、ネットワークPC、ワークステーション、マイクロプロセッサベースの機器、ピア装置、又は他の一般的なネットワークノードなどであり得、典型的には、コンピュータシステムに関して説明される要素の多く又は全てを含む。簡潔にするために、遠隔コンピュータ(複数可)と共にメモリストレージ装置のみが示される。遠隔コンピュータ(複数可)は、ネットワークインターフェースを介してコンピュータシステムに論理的に接続され、続いて、通信接続を介して物理的に接続される。ネットワークインターフェースは、ローカルエリアネットワーク(LAN)及びワイドエリアネットワーク(WAN)などの通信ネットワークを包含する。LAN技術としては、光ファイバ分散データインターフェース(FDDI)、銅線分散データインターフェース(CDDI)、Ethernet/IEEE802.3、Token Ring/IEEE802.5などが挙げられる。WAN技術としては、ポイントツーポイントリンク、統合サービスデジタルネットワーク(ISDN)及びその変形などの回路交換ネットワーク、パケット交換ネットワーク、並びにデジタル加入者回線(DSL)が挙げられるがこれらに限定されない。 Computer system 210 can operate in a networked environment using logical connections to one or more remote or local computers, such as cloud computer(s). The remote cloud computer(s) may be personal computers, servers, routers, network PCs, workstations, microprocessor-based appliances, peer devices, or other general network nodes, etc., and are typically computers Includes many or all of the elements described for the system. For simplicity, only the memory storage device is shown along with the remote computer(s). Remote computer(s) are logically connected to the computer system through a network interface and then physically connected via a communications connection. The network interface encompasses communication networks such as local area networks (LAN) and wide area networks (WAN). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token Ring/IEEE 802.5, and the like. WAN technologies include, but are not limited to, point-to-point links, circuit-switched networks such as Integrated Services Digital Networks (ISDN) and variations thereof, packet-switched networks, and Digital Subscriber Lines (DSL).

様々な態様では、図10のコンピュータシステム210、図9~図10の撮像モジュール238、及び/又は可視化システム208、及び/又はプロセッサモジュール232は、画像プロセッサ、画像処理エンジン、メディアプロセッサ、又はデジタル画像の処理に使用される任意の専用デジタル信号プロセッサ(DSP)を含んでもよい。画像プロセッサは、単一命令複数データ(SIMD)、又は複数命令複数データ(MIMD)技術を用いた並列コンピューティングを使用して速度及び効率を高めることができる。デジタル画像処理エンジンは、様々なタスクを実行することができる。画像プロセッサは、マルチコアプロセッサアーキテクチャを備えるチップ上のシステムであってもよい。 In various aspects, the computer system 210 of FIG. 10, the imaging module 238 of FIGS. 9-10, and/or the visualization system 208, and/or the processor module 232 are image processors, image processing engines, media processors, or digital image processors. may include any dedicated digital signal processor (DSP) used to process the Image processors can use parallel computing with single instruction multiple data (SIMD) or multiple instruction multiple data (MIMD) techniques to increase speed and efficiency. A digital image processing engine can perform a variety of tasks. The image processor may be a system on chip with a multi-core processor architecture.

通信接続(複数可)とは、ネットワークインターフェースをバスに接続するために用いられるハードウェア/ソフトウェアを指す。例示の明瞭さのために通信接続はコンピュータシステム内部に示されているが、通信接続はコンピュータシステム210の外部にあってもよい。例示のみを目的として、ネットワークインターフェースへの接続に必要なハードウェア/ソフトウェアとしては、通常の電話グレードモデム、ケーブルモデム、及びDSLモデムを含むモデム、ISDNアダプタ、並びにイーサネットカードなどの内部及び外部技術が挙げられる。 Communication connection(s) refers to hardware/software used to connect a network interface to a bus. Although communication connections are shown internal to the computer system for clarity of illustration, the communication connections may be external to computer system 210 . By way of example only, the hardware/software required to connect to the network interface includes internal and external technologies such as modems, including regular telephone grade modems, cable modems, and DSL modems, ISDN adapters, and Ethernet cards. mentioned.

図11は、本開示の少なくとも1つの態様による、USBネットワークハブ300装置の一態様の機能ブロック図を示す。図示した態様では、USBネットワークハブ装置300は、Texas Instruments製TUSB2036集積回路ハブを採用する。USBネットワークハブ300は、USB2.0規格に準拠する、上流USB送受信ポート302及び最大3つの下流USB送受信ポート304、306、308を提供するCMOS装置である。上流USB送受信ポート302は、差動データプラス(DP0)入力とペアリングされた差動データマイナス(DM0)入力を含む差動ルートデータポートである。3つの下流USB送受信ポート304、306、308は、各ポートが差動データマイナス(DM1~DM3)出力とペアリングした差動データプラス(DP1~DP3)出力を含む差動データポートである。 FIG. 11 illustrates a functional block diagram of one aspect of a USB network hub 300 device, in accordance with at least one aspect of the present disclosure. In the illustrated embodiment, USB network hub device 300 employs a TUSB2036 integrated circuit hub manufactured by Texas Instruments. The USB network hub 300 is a CMOS device that provides an upstream USB transmit/receive port 302 and up to three downstream USB transmit/receive ports 304, 306, 308 conforming to the USB 2.0 standard. The upstream USB transmit/receive port 302 is a differential root data port that includes a differential data minus (DM0) input paired with a differential data plus (DP0) input. The three downstream USB transmit/receive ports 304, 306, 308 are differential data ports, each port including differential data plus (DP1-DP3) outputs paired with differential data minus (DM1-DM3) outputs.

USBネットワークハブ300装置は、マイクロコントローラの代わりにデジタル状態マシンを備えて実装され、ファームウェアのプログラミングを必要としない。完全準拠したUSB送受信機が、上流USB送受信ポート302及び全ての下流USB送受信ポート304、306、308の回路に統合される。下流USB送受信ポート304、306、308は、ポートに取り付けられた装置の速度に応じてスルーレートを自動的に設定することによって、最高速度及び低速の装置の両方をサポートする。USBネットワークハブ300装置は、バスパワーモード又はセルフパワーモードのいずれかで構成されてもよく、電力を管理するためのハブパワー論理312を含む。 The USB network hub 300 device is implemented with a digital state machine instead of a microcontroller and does not require firmware programming. A fully compliant USB transceiver is integrated into the circuitry of the upstream USB transmit/receive port 302 and all downstream USB transmit/receive ports 304 , 306 , 308 . Downstream USB transmit/receive ports 304, 306, 308 support both high speed and low speed devices by automatically setting the slew rate according to the speed of the device attached to the port. The USB network hub 300 device may be configured in either bus-powered mode or self-powered mode and includes hub power logic 312 for managing power.

USBネットワークハブ300装置は、シリアルインターフェースエンジン310(SIE)を含む。SIE310は、USBネットワークハブ300ハードウェアのフロントエンドであり、USB仕様書の第8章に記載されているプロトコルの大部分を取り扱う。SIE310は、典型的には、トランザクションレベルまでのシグナリングを理解する。これが取り扱う機能としては、パケット認識、トランザクションの並べ替え、SOP、EOP、RESET、及びRESUME信号の検出/生成、クロック/データ分離、非ゼロ復帰逆転(NRZI)データ符号化/復号及びビットスタッフィング、CRC生成及びチェック(トークン及びデータ)、パケットID(PID)の生成、及びチェック/復号、並びに/又はシリアル・パラレル/パラレル・シリアル変換が挙げられ得る。310はクロック入力314を受信し、ポート論理回路320、322、324を介して上流USB送受信ポート302と下流USB送受信ポート304、306、308との間の通信を制御するためにサスペンド/レジューム論理並びにフレームタイマー316回路及びハブリピータ回路318に連結される。SIE310は、シリアルEEPROMインターフェース330を介してシリアルEEPROMからコマンドを制御するためのインターフェース論理を介してコマンドデコーダ326に連結される。 The USB network hub 300 device includes a serial interface engine 310 (SIE). The SIE 310 is the front end of the USB network hub 300 hardware and handles most of the protocols described in Chapter 8 of the USB specification. SIE 310 typically understands signaling down to the transaction level. The functions it handles include packet recognition, transaction reordering, detection/generation of SOP, EOP, RESET and RESUME signals, clock/data separation, non-return to zero inversion (NRZI) data encoding/decoding and bit stuffing, CRC Generation and checking (tokens and data), packet ID (PID) generation and checking/decoding, and/or serial-parallel-parallel-serial conversion may be included. 310 receives a clock input 314 and suspend/resume logic to control communication between the upstream USB transmit/receive port 302 and the downstream USB transmit/receive ports 304 , 306 , 308 via port logic circuits 320 , 322 , 324 . It is coupled to frame timer 316 circuitry and hub repeater circuitry 318 . SIE 310 is coupled to command decoder 326 via interface logic for controlling commands from the serial EEPROM via serial EEPROM interface 330 .

様々な態様では、USBネットワークハブ300は、最大6つの論理層(階層)内に構成された127個の機能を単一のコンピュータに接続することができる。更に、USBネットワークハブ300は、通信及び電力分配の両方を提供する標準化された4本のワイヤケーブルを使用して全ての周辺機器に接続することができる。電力構成は、バスパワーモード及びセルフパワーモードである。USBネットワークハブ300は、個々のポート電力管理又は連動ポート電力管理のいずれかを備えるバスパワーハブ、及び個々のポート電力管理又は連動ポート電力管理のいずれかを備えるセルフパワーハブの、電力管理の4つのモードをサポートするように構成されてもよい。一態様では、USBケーブル、USBネットワークハブ300を使用して、上流USB送受信ポート302はUSBホストコントローラにプラグ接続され、下流USB送受信ポート304、306、308はUSBに互換性のある装置を接続するために露出される、といった具合である。 In various aspects, the USB network hub 300 can connect 127 functions organized in up to 6 logical layers (hierarchies) to a single computer. Additionally, the USB network hub 300 can connect to all peripherals using a standardized four wire cable that provides both communication and power distribution. The power configurations are bus power mode and self power mode. USB network hub 300 has four power management capabilities: a bus-powered hub with either individual port power management or ganged port power management, and a self-powered hub with either individual port power management or ganged port power management. It may be configured to support two modes. In one aspect, using a USB cable, USB network hub 300, the upstream USB transmit/receive port 302 plugs into a USB host controller and the downstream USB transmit/receive ports 304, 306, 308 connect USB compatible devices. and so on.

外科用器具のハードウェア
図12は、本開示の1つ又は2つ以上の態様による、外科用器具又はツールの制御システム470の論理図を示す。システム470は制御回路を備える。制御回路は、プロセッサ462及びメモリ468を備えるマイクロコントローラ461を含む。例えば、センサ472、474、476のうちの1つ又は2つ以上が、プロセッサ462にリアルタイムなフィードバックを提供する。モータ駆動器492によって駆動されるモータ482は、長手方向に移動可能な変位部材を動作可能に連結して、クランプアーム閉鎖部材を駆動する。追跡システム480は、長手方向に移動可能な変位部材の位置を決定するように構成されている。位置情報は、長手方向に移動可能な駆動部材の位置及び閉鎖部材の位置を決定するようにプログラム又は構成可能なプロセッサ462に提供される。閉鎖管の移動、シャフトの回転、関節運動、若しくはクランプアームの閉鎖、又は上記の組み合わせを制御するために、ツールドライバインターフェースに追加のモータが提供されてもよい。ディスプレイ473は、器具の様々な動作条件を表示し、データ入力のためのタッチスクリーン機能を含んでもよい。ディスプレイ473上に表示された情報は、内視鏡撮像モジュールを介して取得された画像とオーバーレイさせることができる。
Surgical Instrument Hardware FIG. 12 illustrates a logic diagram of a surgical instrument or tool control system 470, in accordance with one or more aspects of the present disclosure. System 470 includes control circuitry. The control circuitry includes a microcontroller 461 with a processor 462 and memory 468 . For example, one or more of sensors 472 , 474 , 476 provide real-time feedback to processor 462 . A motor 482 driven by motor driver 492 operatively couples the longitudinally movable displacement member to drive the clamp arm closure member. Tracking system 480 is configured to determine the position of the longitudinally moveable displacement member. The positional information is provided to a processor 462 that can be programmed or configured to determine the position of the longitudinally movable drive member and the position of the closure member. Additional motors may be provided in the tool driver interface to control movement of the closure tube, rotation of the shaft, articulation, or closure of the clamp arm, or a combination of the above. The display 473 displays various operating conditions of the instrument and may include touch screen functionality for data entry. Information displayed on display 473 may be overlaid with images acquired via the endoscopic imaging module.

一態様では、マイクロコントローラ461は、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。一態様では、主マイクロコントローラ461は、例えば、その詳細が製品データシートで入手可能である、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルSRAM、StellarisWare(登録商標)ソフトウェアを搭載した内部ROM、2KBのEEPROM、1つ若しくは2つ以上のPWMモジュール、1つ若しくは2つ以上のQEIアナログ、及び/又は12個のアナログ入力チャネルを備える1つ若しくは2つ以上の12ビットADCを含む、Texas Instrumentsから入手可能なLM4F230H5QR ARM Cortex-M4Fプロセッサコアであってもよい。 In one aspect, microcontroller 461 may be any single-core or multi-core processor, such as those known under the trade name ARM Cortex manufactured by Texas Instruments. In one aspect, the main microcontroller 461 has on-chip memory of 256 KB of single-cycle flash memory or other non-volatile memory at up to 40 MHz, for example, details of which are available in the product datasheet, improving performance beyond 40 MHz. 32 KB of single-cycle SRAM, internal ROM with StellarisWare software, 2 KB of EEPROM, one or more PWM modules, one or more QEI analogs, and/or or an LM4F230H5QR ARM Cortex-M4F processor core available from Texas Instruments that includes one or more 12-bit ADCs with 12 analog input channels.

一態様では、マイクロコントローラ461は、同じくTexas Instruments製のHercules ARM Cortex R4の商品名で知られるTMS570及びRM4xなどの2つのコントローラ系ファミリーを含む安全コントローラを含んでもよい。安全コントローラは、拡張性のある性能、接続性、及びメモリの選択肢を提供しながら、高度な集積型安全機構を提供するために、中でも特に、IEC61508及びISO26262の安全限界用途専用に構成されてもよい。 In one aspect, microcontroller 461 may include a safety controller that includes two controller family families, such as TMS570 and RM4x, also known by the trade designation Hercules ARM Cortex R4, also manufactured by Texas Instruments. Safety controllers may be specifically configured for IEC61508 and ISO26262 safety limit applications to provide advanced integrated safety mechanisms while offering scalable performance, connectivity, and memory options. good.

マイクロコントローラ461は、ナイフ、関節運動システム、クランプアーム、又は上記の組み合わせの速度及び位置の正確な制御などの様々な機能を実行するようにプログラムされてもよい。一態様では、マイクロコントローラ461は、プロセッサ462及びメモリ468を含む。電動モータ482は、ギアボックス、及び関節運動又はナイフシステムへの機械的連結部を備えたブラシ付き直流(DC)モータであってもよい。一態様では、モータ駆動器492は、Allegro Microsystems,Incから入手可能なA3941であってもよい。他のモータ駆動器を、絶対位置決めシステムを備える追跡システム480で使用するために容易に置き換えることができる。絶対位置決めシステムの詳細な説明は、その全体が参照により本明細書に組み込まれる「SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT」と題する2017年10月19日公開の米国特許出願公開第2017/0296213号に記載されている。 Microcontroller 461 may be programmed to perform various functions such as precise control of the speed and position of the knife, articulation system, clamp arm, or combination of the above. In one aspect, microcontroller 461 includes processor 462 and memory 468 . The electric motor 482 may be a brushed direct current (DC) motor with a gearbox and a mechanical connection to the articulation or knife system. In one aspect, motor driver 492 may be an A3941 available from Allegro Microsystems, Inc. Other motor drives can be easily substituted for use in tracking system 480 with an absolute positioning system. A detailed description of absolute positioning systems can be found in U.S. Patent Application Publication No. 2017, published October 19, 2017, entitled "SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT," which is hereby incorporated by reference in its entirety. 0296213.

マイクロコントローラ461は、変位部材及び関節運動システムの速度及び位置に対する正確な制御を提供するようにプログラムされてもよい。マイクロコントローラ461は、マイクロコントローラ461のソフトウェア内で応答を計算するように構成されてもよい。計算された応答は、実際のシステムの測定された応答と比較されて「観測された」応答が得られ、これが実際のフィードバックの判定に用いられる。観測された応答は、シミュレーションによる応答の滑らかで連続的な性質と、測定による応答とのバランスを取る好適な調整された値であり、これはシステムに及ぼす外部の影響を検出することができる。 Microcontroller 461 may be programmed to provide precise control over the velocity and position of the displacement members and articulation system. The microcontroller 461 may be configured to calculate the response within the microcontroller 461 software. The calculated response is compared with the measured response of the actual system to obtain the "observed" response, which is used to determine the actual feedback. The observed response is a well-tuned value that balances the smooth, continuous nature of the simulated response with the measured response, which can detect external influences on the system.

一態様では、モータ482は、モータ駆動器492によって制御されてもよく、外科用器具又はツールの発射システムによって使用され得る。様々な形態において、モータ482は、例えば、約25,000RPMの最大回転速度を有するブラシ付きDC駆動モータであってもよい。別の構成において、モータ482は、ブラシレスモータ、コードレスモータ、同期モータ、ステッパモータ、又は任意の他の好適な電気モータを含んでよい。モータ駆動器492は、例えば、電界効果トランジスタ(FET)を含むHブリッジ駆動器を備えてもよい。モータ482は、外科用器具又はツールに制御電力を供給するために、ハンドルアセンブリ又はツールハウジングに解除可能に装着された電源アセンブリによって給電され得る。電源アセンブリは、外科用器具又はツールに給電するための電源として使用され得る、直列に接続された多数の電池セルを含み得る電池を含んでもよい。特定の状況下では、電源アセンブリの電池セルは、交換可能及び/又は再充電可能な電池セルであってよい。少なくとも1つの例では、電池セルは、電源アセンブリに連結可能かつ電源アセンブリから分離可能であり得るリチウムイオン電池であり得る。 In one aspect, motor 482 may be controlled by motor driver 492 and may be used by the firing system of a surgical instrument or tool. In various forms, motor 482 may be, for example, a brushed DC drive motor having a maximum rotational speed of approximately 25,000 RPM. In alternative configurations, motor 482 may include a brushless motor, cordless motor, synchronous motor, stepper motor, or any other suitable electric motor. Motor driver 492 may comprise, for example, an H-bridge driver including field effect transistors (FETs). Motor 482 may be powered by a power assembly releasably attached to the handle assembly or tool housing to provide control power to the surgical instrument or tool. The power assembly may include a battery that may include multiple battery cells connected in series that may be used as a power source to power a surgical instrument or tool. Under certain circumstances, the battery cells of the power assembly may be replaceable and/or rechargeable battery cells. In at least one example, the battery cells may be lithium ion batteries that may be connectable to and separable from the power assembly.

モータ駆動器492は、Allegro Microsystems,Incから入手可能なA3941であってもよい。A3941 492は、特にブラシ付きDCモータなどの誘導負荷を目的として設計された外部Nチャネルパワー金属酸化膜半導体電界効果トランジスタ(MOSFET)と共に使用するためのフルブリッジコントローラである。駆動器492は、固有の電荷ポンプレギュレータを備え、これは、完全(>10V)ゲート駆動を7Vまでの電池電圧に提供し、A3941が5.5Vまでの低減ゲート駆動で動作することを可能にする。NチャネルMOSFETに必要な上記の電池供給電圧を与えるために、ブートストラップコンデンサが用いられてもよい。ハイサイド駆動用の内部電荷ポンプにより、DC(100%デューティサイクル)動作が可能となる。フルブリッジは、ダイオード又は同期整流を用いて高速又は低速減衰モードで駆動され得る。低速減衰モードでは、電流の再循環は、ハイサイドのFETによっても、ローサイドのFETによっても可能である。電力FETは、レジスタで調節可能なデッドタイムによって、シュートスルーから保護される。統合診断は、低電圧、温度過昇、及びパワーブリッジの異常を指示するものであり、ほとんどの短絡状態下でパワーMOSFETを保護するように構成され得る。他のモータ駆動器を、絶対位置決めシステムを備えた追跡システム480で使用するために容易に置換することができる。 Motor driver 492 may be an A3941 available from Allegro Microsystems, Inc. The A3941 492 is a full-bridge controller for use with external N-channel power metal oxide semiconductor field effect transistors (MOSFETs) specifically designed for inductive loads such as brushed DC motors. Driver 492 includes an inherent charge pump regulator that provides full (>10V) gate drive for battery voltages up to 7V and allows the A3941 to operate with reduced gate drive down to 5.5V. do. Bootstrap capacitors may be used to provide the necessary battery supply voltages for the N-channel MOSFETs. An internal charge pump for the high side drive allows DC (100% duty cycle) operation. The full bridge can be driven in fast or slow decay mode using diodes or synchronous rectification. In slow decay mode, current recirculation is possible through either the high-side FETs or the low-side FETs. The power FETs are protected from shoot-through by a resistor adjustable dead time. Integrated diagnostics indicate undervoltage, overtemperature, and power bridge faults and can be configured to protect power MOSFETs under most short circuit conditions. Other motor drives can be easily substituted for use in tracking system 480 with an absolute positioning system.

追跡システム480は、本開示の一態様による位置センサ472を備える制御されたモータ駆動回路構成を備える。絶対位置決めシステム用の位置センサ472は、変位部材の位置に対応する固有の位置信号を提供する。一態様では、変位部材は、ギア減速機アセンブリの対応する駆動ギアと噛合係合するための駆動歯のラックを備える長手方向に移動可能な駆動部材を表す。他の態様では、変位部材は、駆動歯のラックを含むように適合及び構成され得る発射部材を表す。更に別の態様では、変位部材は、クランプアームを開閉するための長手方向変位部材を表し、これは駆動歯のラックを含むように適合及び構成され得る。他の態様では、変位部材は、ステープラ、超音波、若しくは電気外科用装置のクランプアーム、又は上記の組み合わせを開閉するように構成されたクランプアーム閉鎖部材を表す。したがって、本明細書で使用するとき、変位部材という用語は、一般的に、駆動部材、クランプアーム、又は変位され得る任意の要素など、外科用器具又はツールの任意の可動部材を指すために使用される。したがって、絶対位置決めシステムは、実際には、長手方向に移動可能な駆動部材の直線変位を追跡することによって、クランプアームの変位を追跡することができる。 Tracking system 480 comprises controlled motor drive circuitry comprising position sensor 472 according to one aspect of the present disclosure. A position sensor 472 for the absolute positioning system provides a unique position signal corresponding to the position of the displacement member. In one aspect, the displacement member represents a longitudinally movable drive member comprising a rack of drive teeth for meshing engagement with a corresponding drive gear of the gear reducer assembly. In other aspects, the displacement member represents a firing member that may be adapted and configured to include a rack of drive teeth. In yet another aspect, the displacement member represents a longitudinal displacement member for opening and closing the clamp arm, which may be adapted and configured to include a rack of drive teeth. In other aspects, the displacement member represents a clamp arm closure member configured to open and close a clamp arm of a stapler, ultrasonic, or electrosurgical device, or a combination of the above. Accordingly, as used herein, the term displacement member is used generically to refer to any movable member of a surgical instrument or tool, such as a drive member, clamp arm, or any element that can be displaced. be done. Thus, the absolute positioning system can actually track the displacement of the clamp arm by tracking the linear displacement of the longitudinally movable drive member.

他の態様では、絶対位置決めシステムは、開閉プロセスにおけるクランプアームの位置を追跡するように構成され得る。様々な他の態様では、変位部材は、直線変位を測定するのに好適な任意の位置センサ472に連結されてもよい。したがって、長手方向に移動可能な駆動部材、若しくはクランプアーム、又はこれらの組み合わせは、任意の好適な直線変位センサに連結されてもよい。直線変位センサは、接触式又は非接触式変位センサを含んでよい。直線変位センサは、線形可変差動変圧器(linear variable differential transformers、LVDT)、差動可変磁気抵抗型変換器(differential variable reluctance transducers、DVRT)、スライドポテンショメータ、移動可能な磁石及び一連の直線上に配置されたホール効果センサを備える磁気感知システム、固定された磁石及び一連の移動可能な直線上に配置されたホール効果センサを備える磁気感知システム、移動可能な光源及び一連の直線上に配置された光ダイオード若しくは光検出器を備える光学検出システム、固定された光源及び一連の移動可能な直線上に配置された光ダイオード若しくは光検出器を備える光学検出システム、又はこれらの任意の組み合わせを含んでもよい。 In other aspects, the absolute positioning system may be configured to track the position of the clamp arm during the opening and closing process. In various other aspects, the displacement member may be coupled to any position sensor 472 suitable for measuring linear displacement. Accordingly, the longitudinally movable drive member, or clamp arm, or combination thereof, may be coupled to any suitable linear displacement sensor. Linear displacement sensors may include contact or non-contact displacement sensors. Linear displacement sensors include linear variable differential transformers (LVDTs), differential variable reluctance transducers (DVRTs), sliding potentiometers, movable magnets and a series of linear A magnetic sensing system comprising an arranged Hall effect sensor, a magnetic sensing system comprising a fixed magnet and Hall effect sensors arranged in a series of movable lines, a movable light source and a series of linearly arranged magnetic sensing systems It may comprise an optical detection system comprising a photodiode or photodetector, an optical detection system comprising a fixed light source and a series of movable linearly arranged photodiodes or photodetectors, or any combination thereof. .

電動モータ482は、変位部材上の駆動歯のセット又はラックと噛合係合で装着されるギアアセンブリと動作可能にインターフェースする回転式シャフトを含んでもよい。センサ素子は、位置センサ472素子の1回転が、変位部材のいくらかの直線長手方向並進に対応するように、ギアアセンブリに動作可能に連結されてもよい。ギアリング及びセンサ機構を、ラックピニオン機構によって直線アクチュエータに、又はスパーギア若しくは他の接続によって回転アクチュエータに接続することができる。電源は、絶対位置決めシステムに電力を供給し、出力インジケータは、絶対位置決めシステムの出力を表示することができる。変位部材は、ギア減速機アセンブリの対応する駆動ギアと噛合係合するために、その上に形成された駆動歯のラックを備える長手方向に移動可能な駆動部材を表す。変位部材は、クランプアームを開閉する長手方向に移動可能な発射部材を表す。 The electric motor 482 may include a rotatable shaft that operably interfaces with a gear assembly that is mounted in meshing engagement with a set or rack of drive teeth on the displacement member. The sensor element may be operably coupled to the gear assembly such that one rotation of the position sensor 472 element corresponds to some linear longitudinal translation of the displacement member. The gearing and sensor mechanism can be connected to the linear actuator by a rack and pinion mechanism or to the rotary actuator by spur gears or other connections. A power supply can power the absolute positioning system and an output indicator can display the output of the absolute positioning system. The displacement member represents a longitudinally movable drive member having a rack of drive teeth formed thereon for meshing engagement with a corresponding drive gear of the gear reducer assembly. The displacement member represents a longitudinally movable firing member that opens and closes the clamp arm.

位置センサ472に付随するセンサ素子の1回転は、変位部材の長手方向直線変位dに相当し、dは、変位部材に連結したセンサ素子の1回転した後で、変位部材が点「a」から点「b」まで移動する長手方向の直線距離である。センサ機構は、位置センサ472が変位部材のフルストロークに対して1回以上の回転を完了する結果をもたらすギアの減速を介して接続されてもよい。位置センサ472は、変位部材のフルストロークに対して複数回の回転を完了することができる。 One rotation of the sensor element associated with the position sensor 472 corresponds to the longitudinal linear displacement d1 of the displacement member, which is the distance after one rotation of the sensor element coupled to the displacement member that the displacement member reaches the point "a ” to point “b”. The sensor mechanism may be connected via a gear reduction that results in the position sensor 472 completing one or more revolutions for a full stroke of the displacement member. The position sensor 472 can complete multiple revolutions for a full stroke of the displacement member.

位置センサ472の2回以上の回転に対する固有の位置信号を提供するために、一連のスイッチ(ここでnは1より大きい整数である)が、単独で用いられても、ギアの減速との組み合わせで用いられてもよい。スイッチの状態はマイクロコントローラ461にフィードバックされ、マイクロコントローラ461は論理を適用して、変位部材の長手方向の直線変位d+d+...dに対応する固有の位置信号を判定する。位置センサ472の出力はマイクロコントローラ461に提供される。センサ機構の位置センサ472は、位置信号又は値の固有の組み合わせを出力する、磁気センサ、電位差計などのアナログ回転センサ、又はアナログホール効果素子のアレイを備えてもよい。 A series of switches (where n is an integer greater than 1) may be used alone or in combination with gear reduction to provide a unique position signal for two or more revolutions of the position sensor 472. may be used in The state of the switch is fed back to the microcontroller 461, which applies logic to determine the longitudinal linear displacement of the displacement member d 1 +d 2 + . . . Determine the unique position signal corresponding to dn . The output of position sensor 472 is provided to microcontroller 461 . The position sensor 472 of the sensor mechanism may comprise a magnetic sensor, an analog rotary sensor such as a potentiometer, or an array of analog Hall effect elements that output a unique combination of position signals or values.

位置センサ472は、例えば、磁界の全磁界又はベクトル成分を測定するか否かに基づいて分類される磁気センサなどの、任意の数の磁気感知素子を備えてもよい。両タイプの磁気センサを生産するために用いられる技術は、物理学及び電子工学の多数の側面を含んでいる。磁界の感知に用いられる技術としては、とりわけ、探りコイル、フラックスゲート、光ポンピング、核摂動(nuclear precession)、SQUID、ホール効果、異方性磁気抵抗、巨大磁気抵抗、磁気トンネル接合、巨大磁気インピーダンス、磁歪/圧電複合材、磁気ダイオード、磁気トランジスタ、光ファイバ、磁気光学、及び微小電気機械システムベースの磁気センサが挙げられる。 Position sensor 472 may comprise any number of magnetic sensing elements, such as, for example, magnetic sensors classified based on whether they measure the total magnetic field or vector component of the magnetic field. The techniques used to produce both types of magnetic sensors involve many aspects of physics and electronics. Techniques used for sensing magnetic fields include, inter alia, searcher coils, fluxgates, optical pumping, nuclear precession, SQUIDs, Hall effect, anisotropic magnetoresistance, giant magnetoresistance, magnetic tunnel junctions, giant magnetoimpedance. , magnetostrictive/piezoelectric composites, magnetic diodes, magnetic transistors, optical fibers, magneto-optics, and micro-electromechanical systems-based magnetic sensors.

一態様では、絶対位置決めシステムを備える追跡システム480の位置センサ472は、磁気回転絶対位置決めシステムを備える。位置センサ472は、Austria Microsystems,AGから入手可能なAS5055EQFTシングルチップ磁気回転位置センサとして実装されてもよい。位置センサ472は、マイクロコントローラ461と連携して絶対位置決めシステムを提供する。位置センサ472は、低電圧低電力の構成要素であり、磁石の上方に位置する位置センサ472の領域に、4つのホール効果素子を含む。更に、高解像度ADC及びスマート電力管理コントローラがチップ上に設けられている。加算、減算、ビットシフト、及びテーブル参照演算のみを必要とする、双曲線関数及び三角関数を計算する簡潔かつ効率的なアルゴリズムを実装するために、桁毎法(digit-by-digit method)及びボルダーアルゴリズム(Volder's algorithm)としても知られる、座標回転デジタルコンピュータ(CORDIC)プロセッサが設けられる。角度位置、アラームビット、及び磁界情報は、シリアル周辺インターフェース(SPI)インターフェースなどの標準的なシリアル通信インターフェースを介してマイクロコントローラ461に伝送される。位置センサ472は、12ビット又は14ビットの解像度を提供する。位置センサ472は、小型のQFN16ピン4×4×0.85mmパッケージで提供されるAS5055チップであってもよい。 In one aspect, position sensor 472 of tracking system 480 comprising an absolute positioning system comprises a gyromagnetic absolute positioning system. Position sensor 472 may be implemented as an AS5055EQFT single-chip gyromagnetic position sensor available from Austria Microsystems, AG. Position sensor 472 cooperates with microcontroller 461 to provide an absolute positioning system. The position sensor 472 is a low voltage, low power component and includes four Hall effect elements in the area of the position sensor 472 located above the magnets. Additionally, a high resolution ADC and a smart power management controller are provided on-chip. To implement simple and efficient algorithms for computing hyperbolic and trigonometric functions, requiring only addition, subtraction, bit shift, and table lookup operations, digit-by-digit method and boulder A coordinate rotation digital computer (CORDIC) processor, also known as Volder's algorithm, is provided. Angular position, alarm bits, and magnetic field information are transmitted to microcontroller 461 via a standard serial communication interface, such as a serial peripheral interface (SPI) interface. Position sensor 472 provides 12-bit or 14-bit resolution. The position sensor 472 may be an AS5055 chip provided in a small QFN 16-pin 4x4x0.85mm package.

絶対位置決めシステムを備える追跡システム480は、PID、状態フィードバック、及び適応コントローラなどのフィードバックコントローラを備えてもよく、かつ/又はこれを実装するようにプログラムされてもよい。電源が、フィードバックコントローラからの信号を、システムへの物理的入力、この場合は電圧へと変換する。他の例としては、電圧、電流、及び力のPWMが挙げられる。位置センサ472によって測定される位置に加えて、物理的システムの物理パラメータを測定するために、他のセンサ(複数化)が設けられてもよい。いくつかの態様では、他のセンサ(複数可)としては、その全体が参照により本明細書に組み込まれる、「STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM」と題する2016年5月24日発行の米国特許第9,345,481号、その全体が参照により本明細書に組み込まれる、「STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM」と題する2014年9月18日公開の米国特許出願公開第2014/0263552号、及びその全体が参照により本明細書に組み込まれる、「TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT」と題する2017年6月20日出願の米国特許出願第15/628,175号に記載されているものなどのセンサ機構を挙げることができる。デジタル信号処理システムでは、絶対位置決めシステムはデジタルデータ取得システムに連結され、ここで絶対位置決めシステムの出力は有限の解像度及びサンプリング周波数を有する。絶対位置決めシステムは、計算された応答を測定された応答に向けて駆動する加重平均及び理論制御ループなどのアルゴリズムを用いて、計算された応答を測定された応答と組み合わせるために、比較及び組み合わせ回路を備え得る。入力を知ることによって物理的システムの状態及び出力がどうなるかを予測するために、物理的システムの計算された応答は、質量、慣性、粘性摩擦、誘導抵抗などの特性を考慮に入れる。 Tracking system 480, which includes an absolute positioning system, may include and/or be programmed to implement feedback controllers such as PID, state feedback, and adaptive controllers. A power supply converts the signal from the feedback controller into a physical input to the system, in this case voltage. Other examples include voltage, current and force PWM. In addition to the position measured by position sensor 472, other sensor(s) may be provided to measure physical parameters of the physical system. In some aspects, the other sensor(s) includes US Pat. , 345,481, U.S. Patent Application Publication No. 2014/0263552, published September 18, 2014, entitled "STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM," which is incorporated herein by reference in its entirety; US patent application Ser. Sensor mechanisms such as objects can be mentioned. In a digital signal processing system, an absolute positioning system is coupled to a digital data acquisition system, where the output of the absolute positioning system has finite resolution and sampling frequency. Absolute positioning systems use algorithms such as weighted averages and theoretical control loops to drive the calculated response towards the measured response, and compare and combine circuits to combine the calculated response with the measured response. can be provided. The calculated response of a physical system takes into account properties such as mass, inertia, viscous friction, and induced drag in order to predict what the state and output of the physical system will be given the inputs.

絶対位置決めシステムは、モータ482が単に前方又は後方に経たステップの数をカウントして装置アクチュエータ、駆動バー、ナイフなどの位置を推定する従来の回転エンコーダで必要となり得るような、変位部材をリセット(ゼロ又はホーム)位置へ後退又は前進させることなしに、器具の電源投入時に変位部材の絶対位置を提供する。 The absolute positioning system resets the displacement members, such as might be required with a conventional rotary encoder where the motor 482 simply counts the number of steps taken forward or backward to estimate the position of machine actuators, drive bars, knives, etc. It provides the absolute position of the displacement member at power up of the instrument without retraction or advancement to the zero (or home) position.

例えば歪みゲージ又は微小歪みゲージなどのセンサ474は、例えば、アンビルに適用される閉鎖力を示すことができる、クランプ動作中にアンビルに及ぼされる歪みの振幅などのエンドエフェクタの1つ又は2つ以上のパラメータを測定するように構成される。測定された歪みは、デジタル信号に変換されて、プロセッサ462に提供される。センサ474の代わりに、又はこれに加えて、例えば、負荷センサなどのセンサ476が、閉鎖駆動システムが超音波又は電気外科用器具内のステープラ又はクランプアーム内のアンビルに加える閉鎖力を測定することができる。例えば、負荷センサなどのセンサ476は、外科用器具若しくはツールのクランプアームに連結された閉鎖部材に加えられる発射力、又はクランプアームによって超音波若しくは電気外科用器具のジョー内に位置する組織に加えられる力を測定することができる。あるいは、モータ482による電流引き込みを測定するために、電流センサ478を用いることができる。変位部材はまた、クランプアームに係合してクランプアームを開閉するように構成されてもよい。力センサは、組織上のクランプ力を測定するように構成されてもよい。変位部材を前進させるのに必要な力は、例えば、モータ482によって引き込まれる電流に相当し得る。測定された力は、デジタル信号に変換されて、プロセッサ462に提供される。 A sensor 474, such as a strain gauge or microstrain gauge, can, for example, indicate the closing force applied to the anvil, which can indicate one or more of the end effectors, such as the amplitude of strain exerted on the anvil during the clamping operation. configured to measure parameters of The measured distortion is converted to a digital signal and provided to processor 462 . Alternatively, or in addition to sensor 474, sensor 476, such as, for example, a load sensor, measures the closure force applied by the closure drive system to the anvil in the stapler or clamp arm in the ultrasonic or electrosurgical instrument. can be done. For example, a sensor 476, such as a load sensor, can detect the force applied to a closure member coupled to a clamp arm of a surgical instrument or tool, or to tissue positioned within the jaws of an ultrasonic or electrosurgical instrument by the clamp arm. The force applied can be measured. Alternatively, current sensor 478 can be used to measure the current drawn by motor 482 . The displacement member may also be configured to engage the clamp arm to open and close the clamp arm. The force sensor may be configured to measure clamping force on tissue. The force required to advance the displacement member may correspond to the current drawn by motor 482, for example. The measured force is converted to a digital signal and provided to processor 462 .

一形態では、歪みゲージセンサ474を使用して、エンドエフェクタによって組織に加えられる力を測定することができる。治療される組織に対するエンドエフェクタによる力を測定するために、歪みゲージをエンドエフェクタに連結することができる。エンドエフェクタによって把持された組織に印加される力を測定するためのシステムは、例えば、エンドエフェクタの1つ又は2つ以上のパラメータを測定するように構成された微小歪みゲージなどの歪みゲージセンサ474を備える。一態様では、歪みゲージセンサ474は、把持動作中にエンドエフェクタのジョー部材に及ぼされる歪みの振幅又は大きさを測定することができ、これは組織の圧縮を示すことができる。測定された歪みはデジタル信号に変換されて、マイクロコントローラ461のプロセッサ462に提供される。負荷センサ476は、例えば、アンビルとステープルカートリッジとの間に捕捉された組織を切断するために、ナイフ要素を操作するのに用いられる力を測定することができる。負荷センサ476は、例えば、クランプアームと超音波ブレードとの間に組織を捕捉するために、又はクランプアームと電気外科用器具のジョーとの間に組織を捕捉するために、クランプアーム要素を操作するのに使用される力を測定することができる。磁界センサは、捕捉された組織の厚さを測定するために用いることができる。磁界センサの測定値もデジタル信号に変換されて、プロセッサ462に提供され得る。 In one form, a strain gauge sensor 474 can be used to measure the force exerted on tissue by the end effector. A strain gauge can be coupled to the end effector to measure the force exerted by the end effector on the tissue being treated. A system for measuring the force applied to the tissue grasped by the end effector includes strain gauge sensors 474, eg, micro strain gauges configured to measure one or more parameters of the end effector. Prepare. In one aspect, the strain gauge sensor 474 can measure the amplitude or magnitude of strain exerted on the jaw members of the end effector during a grasping motion, which can be indicative of tissue compression. The measured strain is converted to a digital signal and provided to processor 462 of microcontroller 461 . Load sensor 476 can measure the force used to operate the knife element, for example, to cut tissue captured between the anvil and the staple cartridge. The load sensor 476 manipulates the clamp arm elements, for example, to capture tissue between the clamp arm and the ultrasonic blade or between the clamp arm and the jaws of the electrosurgical instrument. The force used to do so can be measured. A magnetic field sensor can be used to measure the thickness of the captured tissue. Magnetic field sensor measurements may also be converted to digital signals and provided to processor 462 .

センサ474、476によってそれぞれ測定される、組織の圧縮、組織の厚さ、及び/又はエンドエフェクタを組織上で閉鎖するのに必要な力の測定値は、発射部材の選択された位置、及び/又は発射部材の速度の対応する値を特性決定するために、マイクロコントローラ461によって使用することができる。一例では、メモリ468は、評価の際にマイクロコントローラ461によって用いることができる技術、等式及び/又はルックアップテーブルを記憶することができる。 Measurements of tissue compression, tissue thickness, and/or force required to close the end effector on tissue, as measured by sensors 474, 476, respectively, are determined by the selected position of the firing member, and/or Or it can be used by the microcontroller 461 to characterize the corresponding value of the velocity of the firing member. In one example, memory 468 can store techniques, equations and/or lookup tables that can be used by microcontroller 461 in evaluation.

外科用器具又はツールの制御システム470はまた、図8~図11に示されるようにモジュール式通信ハブと通信するための有線又は無線通信回路を備えてもよい。 The surgical instrument or tool control system 470 may also include wired or wireless communication circuitry for communicating with the modular communication hubs as shown in FIGS. 8-11.

図13は、本開示の一態様による、外科用器具又はツールの態様を制御するように構成された制御回路500を示す。制御回路500は、本明細書に説明される様々なプロセスを実装するように構成することができる。制御回路500は、少なくとも1つのメモリ回路504に連結された1つ又は2つ以上のプロセッサ502(例えば、マイクロプロセッサ、マイクロコントローラ)を備えるマイクロコントローラを備えることができる。メモリ回路504は、プロセッサ502によって実行されると、本明細書に記載される様々なプロセスを実装するための機械命令をプロセッサ502に実行させる、機械実行可能命令を記憶する。プロセッサ502は、当該技術分野で既知の多数のシングル又はマルチコアプロセッサのうち任意の1つであってもよい。メモリ回路504は、揮発性及び不揮発性のストレージ媒体を含むことができる。プロセッサ502は、命令処理ユニット506及び演算ユニット508を含んでよい。命令処理ユニットは、本開示のメモリ回路504から命令を受信するように構成されてもよい。 FIG. 13 illustrates a control circuit 500 configured to control aspects of a surgical instrument or tool, according to one aspect of the present disclosure. Control circuitry 500 may be configured to implement various processes described herein. Control circuitry 500 may comprise a microcontroller comprising one or more processors 502 (eg, microprocessors, microcontrollers) coupled to at least one memory circuit 504 . Memory circuitry 504 stores machine-executable instructions that, when executed by processor 502, cause processor 502 to execute machine instructions to implement various processes described herein. Processor 502 may be any one of numerous single or multi-core processors known in the art. Memory circuit 504 can include volatile and non-volatile storage media. Processor 502 may include an instruction processing unit 506 and an arithmetic unit 508 . The instruction processing unit may be configured to receive instructions from the memory circuit 504 of the present disclosure.

図14は、本開示の一態様による、外科用器具又はツールの態様を制御するように構成された組み合わせ論理回路510を示す。組み合わせ論理回路510は、本明細書に記載される様々なプロセスを実装するように構成することができる。組み合わせ論理回路510は、入力514で外科用器具又はツールと関連付けられたデータを受信し、組み合わせ論理512によってデータを処理し、出力516を提供するように構成された組み合わせ論理512を含む有限状態マシンを含み得る。 FIG. 14 illustrates combinatorial logic 510 configured to control aspects of a surgical instrument or tool, according to one aspect of the present disclosure. Combinatorial logic 510 can be configured to implement various processes described herein. Combinatorial logic 510 is a finite state machine including combinatorial logic 512 configured to receive data associated with a surgical instrument or tool at input 514 , process the data through combinatorial logic 512 , and provide output 516 . can include

図15は、本開示の一態様による、外科用器具又はツールの態様を制御するように構成された順序論理回路520を示す。順序論理回路520又は組み合わせ論理522は、本明細書に記載される様々なプロセスを実装するように構成することができる。順序論理回路520は有限状態マシンを含んでもよい。順序論理回路520は、例えば、組み合わせ論理522、少なくとも1つのメモリ回路524、及びクロック529を含んでもよい。少なくとも1つのメモリ回路524は、有限状態マシンの現在の状態を記憶することができる。特定の例では、順序論理回路520は、同期式又は非同期式であってもよい。組み合わせ論理522は、入力526から外科用器具又はツールと関連付けられたデータを受信し、組み合わせ論理522によってデータを処理し、出力528を提供するように構成される。他の態様では、回路は、プロセッサ(例えば、図13のプロセッサ502)と、本明細書の様々なプロセスを実装する有限状態マシンと、の組み合わせを含んでもよい。他の態様では、有限状態マシンは、組み合わせ論理回路(例えば図14の組み合わせ論理回路510)と順序論理回路520の組み合わせを含むことができる。 FIG. 15 illustrates a sequential logic circuit 520 configured to control aspects of a surgical instrument or tool, according to one aspect of the present disclosure. Sequential logic 520 or combinatorial logic 522 may be configured to implement various processes described herein. Sequential logic 520 may include a finite state machine. Sequential logic 520 may include, for example, combinatorial logic 522 , at least one memory circuit 524 , and clock 529 . At least one memory circuit 524 can store the current state of the finite state machine. In particular examples, sequential logic 520 may be synchronous or asynchronous. Combinatorial logic 522 is configured to receive data associated with a surgical instrument or tool from input 526 , process the data by combinatorial logic 522 , and provide output 528 . In other aspects, a circuit may include a combination of a processor (eg, processor 502 of FIG. 13) and a finite state machine implementing various processes herein. In other aspects, the finite state machine can include a combination of combinatorial logic (eg, combinatorial logic 510 of FIG. 14) and sequential logic 520 .

図16は、様々な機能を実行するために起動され得る複数のモータを備える外科用器具又はツールを示す。特定の例では、第1のモータを起動させて第1の機能を実行することができ、第2のモータを起動させて第2の機能を実行することができ、第3のモータを起動させて第3の機能を実行することができ、第4のモータを起動させて第4の機能を実行することができる、といった具合である。特定の例では、ロボット外科用器具600の複数のモータは個々に起動されて、エンドエフェクタにおいて発射運動、閉鎖運動、及び/又は関節運動を生じさせることができる。発射運動、閉鎖運動、及び/又は関節運動は、例えばシャフトアセンブリを介してエンドエフェクタに伝達することができる。 FIG. 16 shows a surgical instrument or tool with multiple motors that can be activated to perform various functions. In certain examples, a first motor can be activated to perform a first function, a second motor can be activated to perform a second function, and a third motor can be activated. A third motor can be activated to perform a third function, a fourth motor can be activated to perform a fourth function, and so on. In certain examples, multiple motors of robotic surgical instrument 600 can be individually activated to produce firing motion, closing motion, and/or articulation motion at the end effector. Firing motion, closing motion, and/or articulation motion can be transmitted to the end effector via, for example, a shaft assembly.

特定の例では、外科用器具システム又はツールは発射モータ602を含んでもよい。発射モータ602は、具体的にはクランプアーム閉鎖部材を変位させるために、モータ602によって生成された発射運動をエンドエフェクタに伝達するように構成することができる、発射モータ駆動アセンブリ604に動作可能に連結されてもよい。閉鎖部材は、モータ602の方向を逆転させることによって後退させられて、それによって更にクランプアームを開放させてもよい。 In certain examples, a surgical instrument system or tool may include firing motor 602 . Firing motor 602 is operatively coupled to a firing motor drive assembly 604, which can be configured to transmit the firing motion generated by motor 602 to the end effector, specifically to displace the clamp arm closure member. may be concatenated. The closure member may be retracted by reversing the direction of motor 602, thereby further opening the clamp arms.

特定の例では、外科用器具又はツールは閉鎖モータ603を含んでもよい。閉鎖モータ603は、具体的には閉鎖管を変位させてアンビルを閉鎖し、アンビルとステープルカートリッジとの間で組織を圧縮するためにモータ603によって生成された閉鎖運動をエンドエフェクタに伝達するように構成され得る、閉鎖モータ駆動アセンブリ605と動作可能に連結されてもよい。閉鎖モータ603は、具体的には閉鎖管を変位させてクランプアームを閉鎖し、クランプアームと、電気外科用装置の超音波ブレード又はジョー部材のいずれかと、の間で組織を圧縮するためにモータ603によって生成された閉鎖運動をエンドエフェクタに伝達するように構成され得る、閉鎖モータ駆動アセンブリ605と動作可能に連結されてもよい。閉鎖運動によって、例えば、エンドエフェクタが開放構成から接近構成へと遷移して組織を捕捉することができる。エンドエフェクタは、モータ603の方向を逆転させることによって開放位置に遷移され得る。 In certain examples, a surgical instrument or tool may include a closure motor 603. Closure motor 603 is configured to transmit the closing motion generated by motor 603 to the end effector, specifically to displace the closure tube to close the anvil and compress tissue between the anvil and staple cartridge. It may be operatively connected with a closure motor drive assembly 605, which may be configured. Closure motor 603 specifically displaces the closure tube to close the clamp arms and compress tissue between the clamp arms and either the ultrasonic blades or jaw members of the electrosurgical device. 603 may be operatively coupled with a closure motor drive assembly 605, which may be configured to transmit the closure motion generated by 603 to the end effector. The closing motion may cause the end effector to transition from an open configuration to an approximated configuration to capture tissue, for example. The end effector can be transitioned to the open position by reversing the direction of motor 603 .

特定の例では、外科用器具又はツールは、例えば、1つ又は2つ以上の関節運動モータ606a、606bを含んでもよい。モータ606a、606bは、モータ606a、606bによって生成された関節運動をエンドエフェクタに伝達するように構成され得る、対応する関節運動モータ駆動アセンブリ608a、608bに動作可能に連結され得る。特定の例では、関節運動によって、例えば、エンドエフェクタがシャフトに対して関節運動することができる。 In certain examples, a surgical instrument or tool may include, for example, one or more articulation motors 606a, 606b. The motors 606a, 606b can be operably coupled to corresponding articulation motor drive assemblies 608a, 608b that can be configured to transmit articulation motion generated by the motors 606a, 606b to the end effector. In certain examples, the articulation may, for example, articulate the end effector with respect to the shaft.

上述したように、外科用器具又はツールは、様々な独立した機能を実施するように構成され得る複数のモータを含んでもよい。特定の例では、外科用器具又はツールの複数のモータは、他のモータが停止した状態を維持している間に、独立して又は別個に起動させて、1つ又は2つ以上の機能を実施することができる。例えば、関節運動モータ606a、606bを起動させて、発射モータ602が停止した状態を維持している間に、エンドエフェクタを関節運動させることができる。あるいは、発射モータ602を起動させて、関節運動モータ606が停止している間に、複数のステープルを発射させ、及び/又は刃先を前進させることができる。更に、閉鎖モータ603は、本明細書の以下でより詳細に説明されるとおり、閉鎖管又は閉鎖部材を遠位に前進させるために、発射モータ602と同時に起動させてもよい。 As noted above, a surgical instrument or tool may include multiple motors that may be configured to perform various independent functions. In certain examples, multiple motors of a surgical instrument or tool are activated independently or separately to perform one or more functions while other motors remain deactivated. can be implemented. For example, articulation motors 606a, 606b can be activated to articulate the end effector while firing motor 602 remains stopped. Alternatively, firing motor 602 can be activated to fire multiple staples and/or advance the cutting edge while articulation motor 606 is deactivated. Additionally, closure motor 603 may be activated simultaneously with firing motor 602 to distally advance a closure tube or closure member, as described in greater detail herein below.

特定の例では、外科用器具又はツールは、外科用器具又はツールの複数のモータと共に用いることができる、共通の制御モジュール610を含んでもよい。特定の例では、共通の制御モジュール610は、一度に複数のモータのうちの1つに対応することができる。例えば、共通の制御モジュール610は、ロボット外科用器具の複数のモータ対して個々に連結及び分離が可能であってもよい。特定の例では、外科用器具又はツールの複数のモータは、共通の制御モジュール610などの1つ又は2つ以上の共通の制御モジュールを共有してもよい。特定の例では、外科用器具又はツールの複数のモータは、共通の制御モジュール610に独立してかつ選択的に係合することができる。特定の例では、共通の制御モジュール610は、外科用器具又はツールの複数のモータのうち一方との連携から、外科用器具又はツールの複数のモータのうちもう一方との連携へと選択的に切り替えることができる。 In certain examples, a surgical instrument or tool may include a common control module 610 that can be used with multiple motors of the surgical instrument or tool. In certain examples, a common control module 610 can serve one of multiple motors at a time. For example, a common control module 610 may be individually connectable and disconnectable to multiple motors of the robotic surgical instrument. In certain examples, multiple motors of a surgical instrument or tool may share one or more common control modules, such as common control module 610 . In certain examples, multiple motors of a surgical instrument or tool can independently and selectively engage a common control module 610 . In certain examples, the common control module 610 is configured to selectively communicate with one of the motors of the surgical instrument or tool to the other of the motors of the surgical instrument or tool. You can switch.

少なくとも1つの例では、共通の制御モジュール610は、関節運動モータ606a、606bとの動作可能な係合と、発射モータ602又は閉鎖モータ603のいずれかとの動作可能な係合と、の間で選択的に切り替えることができる。少なくとも1つの実施例では、図16に示すように、スイッチ614は、複数の位置及び/又は状態間を移動又は遷移させることができる。例えば、第1の位置616では、スイッチ614は、共通の制御モジュール610を発射モータ602と電気的に連結してもよく、第2の位置617では、スイッチ614は、共通の制御モジュール610を閉鎖モータ603と電気的に連結してもよく、第3の位置618aでは、スイッチ614は、共通の制御モジュール610を第1の関節運動モータ606aと電気的に連結してもよく、第4の位置618bでは、スイッチ614は、共通の制御モジュール610を第2の関節運動モータ606bと電気的に連結してもよい。特定の例では、同時に、別個の共通の制御モジュール610を、発射モータ602、閉鎖モータ603、及び関節運動モータ606a、606bと電気的に連結してもよい。特定の例では、スイッチ614は、機械的スイッチ、電気機械的スイッチ、固体スイッチ、又は任意の好適な切り替え機構であってもよい。 In at least one example, common control module 610 selects between operable engagement with articulation motors 606a, 606b and operable engagement with either firing motor 602 or closing motor 603. can be switched. In at least one embodiment, as shown in FIG. 16, switch 614 can move or transition between multiple positions and/or states. For example, in a first position 616 the switch 614 may electrically couple the common control module 610 with the firing motor 602, and in a second position 617 the switch 614 may close the common control module 610. In a third position 618a the switch 614 may electrically couple the common control module 610 with the first articulation motor 606a and in a fourth position the switch 614 may be in electrical communication with the motor 603. At 618b, a switch 614 may electrically couple the common control module 610 with the second articulation motor 606b. In certain examples, a separate common control module 610 may be electrically coupled to firing motor 602, closing motor 603, and articulation motors 606a, 606b at the same time. In particular examples, switch 614 may be a mechanical switch, an electromechanical switch, a solid state switch, or any suitable switching mechanism.

モータ602、603、606a、606bのそれぞれは、モータのシャフト上の出力トルクを測定するためのトルクセンサを備えてもよい。エンドエフェクタ上の力は、ジョーの外側の力センサによって、又はジョーを作動させるモータのトルクセンサなどによって、任意の従来の方法で感知されてもよい。 Each of the motors 602, 603, 606a, 606b may include a torque sensor for measuring the output torque on the shaft of the motor. The force on the end effector may be sensed in any conventional manner, such as by a force sensor outside the jaws or by a torque sensor on the motor that actuates the jaws.

様々な例では、図16に示されるように、共通の制御モジュール610は、1つ又は2つ以上のHブリッジFETを備え得るモータ駆動器626を備えてもよい。モータ駆動器626は、例えば、マイクロコントローラ620(「コントローラ」)からの入力に基づいて、電源628から共通の制御モジュール610に連結されたモータへと伝達された電力を変調してもよい。特定の例では、上述したように、例えば、モータが共通の制御モジュール610に連結されている間にマイクロコントローラ620を用いて、モータによって引き込まれる電流を判定することができる。 In various examples, as shown in FIG. 16, common control module 610 may include motor driver 626, which may include one or more H-bridge FETs. Motor drivers 626 may modulate power transferred from power supply 628 to motors coupled to common control module 610 based on, for example, input from microcontroller 620 (“controller”). In a particular example, as described above, the current drawn by the motors can be determined using, for example, the microcontroller 620 while the motors are coupled to the common control module 610 .

特定の例では、マイクロコントローラ620は、マイクロプロセッサ622(「プロセッサ」)と、1つ又は2つ以上の非一時的コンピュータ可読媒体又はメモリユニット624(「メモリ」)と、を含んでもよい。特定の例では、メモリ624は、様々なプログラム命令を記憶することができ、それが実行されると、プロセッサ622に、本明細書に記載される複数の機能及び/又は計算を実施させることができる。特定の例では、メモリユニット624の1つ又は2つ以上が、例えば、プロセッサ622に連結されてもよい。様々な態様では、マイクロコントローラ620は、有線若しくは無線チャネル、又はこれらの組み合わせを介して通信してもよい。 In particular examples, microcontroller 620 may include a microprocessor 622 (“processor”) and one or more non-transitory computer-readable media or memory units 624 (“memory”). In particular examples, memory 624 may store various program instructions that, when executed, may cause processor 622 to perform a number of functions and/or calculations described herein. can. In particular examples, one or more of memory units 624 may be coupled to processor 622, for example. In various aspects, microcontroller 620 may communicate via wired or wireless channels, or a combination thereof.

特定の例では、電源628を用いて、例えばマイクロコントローラ620に電力を供給してもよい。特定の例では、電源628は、例えばリチウムイオン電池などの電池(又は「電池パック」若しくは「パワーパック」)を含んでもよい。特定の例では、電池パックは、外科用器具600に電力を供給するため、ハンドルに解除可能に装着されるように構成されてもよい。直列で接続された多数の電池セルを、電源628として使用してもよい。特定の例では、電源628は、例えば、交換可能及び/又は再充電可能であってもよい。 In particular examples, power supply 628 may be used to power microcontroller 620, for example. In certain examples, power source 628 may include a battery (or “battery pack” or “power pack”), such as a lithium-ion battery. In certain examples, the battery pack may be configured to be releasably attached to the handle to power surgical instrument 600 . Multiple battery cells connected in series may be used as power source 628 . In certain examples, power source 628 may be replaceable and/or rechargeable, for example.

様々な例では、プロセッサ622は、モータ駆動器626を制御して、共通の制御モジュール610に連結されたモータの位置、回転方向、及び/又は速度を制御することができる。特定の例では、プロセッサ622は、モータ駆動器626に信号伝達して、共通の制御モジュール610に連結されたモータを停止及び/又は使用不能にすることができる。用語「プロセッサ」は、本明細書で使用されるとき、任意の好適なマイクロプロセッサ、マイクロコントローラ、又は、コンピュータの中央処理装置(CPU)の機能を1つの集積回路又は最大で数個の集積回路上で統合したその他の基本コンピューティング装置を含むと理解されるべきである。プロセッサ622は、デジタルデータを入力として受理し、メモリに記憶された命令に従ってそのデータを処理し、結果を出力として提供する、多目的のプログラム可能装置である。これは、内部メモリを有するので、逐次的デジタル論理の一例である。プロセッサは、二進数法で表される数字及び記号で動作する。 In various examples, processor 622 can control motor drivers 626 to control the position, direction of rotation, and/or speed of motors coupled to common control module 610 . In certain examples, processor 622 may signal motor drivers 626 to stop and/or disable motors coupled to common control module 610 . The term "processor," as used herein, means any suitable microprocessor, microcontroller, or computer central processing unit (CPU) function integrated into one integrated circuit or up to several integrated circuits. It should be understood to include other basic computing devices integrated above. Processor 622 is a general-purpose programmable device that accepts digital data as input, processes that data according to instructions stored in memory, and provides the results as output. This is an example of sequential digital logic since it has internal memory. Processors work with numbers and symbols represented in a binary number system.

一例では、プロセッサ622は、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。特定の例では、マイクロコントローラ620は、例えばTexas Instrumentsから入手可能なLM 4F230H5QRであってもよい。少なくとも1つの実施例では、Texas InstrumentsのLM4F230H5QRは、製品データシートで容易に利用可能な特性の中でもとりわけ、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルSRAM、StellarisWare(登録商標)ソフトウェアを搭載した内部ROM、2KBのEEPROM、1つ又は2つ以上のPWMモジュール、1つ又は2つ以上のQEIアナログ、12個のアナログ入力チャネルを備える1つ又は2つ以上の12ビットADCを含むARM Cortex-M4Fプロセッサコアである。他のマイクロコントローラが、モジュール4410と共に使用するのに容易に代用されてもよい。したがって、本開示は、この文脈に限定されるべきではない。 In one example, processor 622 may be any single-core or multi-core processor, such as those known under the trade name ARM Cortex manufactured by Texas Instruments. In a particular example, microcontroller 620 may be, for example, the LM 4F230H5QR available from Texas Instruments. In at least one embodiment, Texas Instruments' LM4F230H5QR has 256 KB of single-cycle flash memory or other non-volatile memory on-chip memory up to 40 MHz, performance up to 40 MHz, among other features readily available in product datasheets. 32 KB single-cycle SRAM, internal ROM with StellarisWare software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog , ARM Cortex-M4F processor cores containing one or more 12-bit ADCs with 12 analog input channels. Other microcontrollers may be readily substituted for use with module 4410 . Accordingly, the present disclosure should not be limited in this context.

特定の例では、メモリ624は、共通の制御モジュール610に連結可能な外科用器具600のモータをそれぞれ制御するためのプログラム命令を含んでもよい。例えば、メモリ624は、発射モータ602、閉鎖モータ603、及び関節運動モータ606a、606bを制御するためのプログラム命令を含んでもよい。このようなプログラム命令は、プロセッサ622に、外科用器具又はツールのアルゴリズム又は制御プログラムからの入力に従って、発射機能、閉鎖機能、及び関節運動機能を制御させることができる。 In particular examples, memory 624 may contain program instructions for controlling each of the motors of surgical instrument 600 coupleable to a common control module 610 . For example, memory 624 may contain program instructions for controlling firing motor 602, closing motor 603, and articulation motors 606a, 606b. Such program instructions may cause processor 622 to control the firing, closing, and articulating functions according to inputs from an algorithm or control program of the surgical instrument or tool.

特定の例では、例えば、センサ630などの1つ又は2つ以上の機構及び/又はセンサを用いて、特定の設定で使用すべきプログラム命令をプロセッサ622に警告することができる。例えば、センサ630は、エンドエフェクタの発射、閉鎖、及び関節運動に関連するプログラム命令を使用するようにプロセッサ622に警告することができる。特定の例では、センサ630は、例えば、スイッチ614の位置を感知するために用いることができる位置センサを備えてもよい。したがって、プロセッサ622は、例えば、センサ630を介してスイッチ614が第1の位置616にあることを検出すると、エンドエフェクタのクランプアームに連結された閉鎖部材の発射と関連付けられたプログラム命令を使用することができ、プロセッサ622は、例えば、センサ630を介してスイッチ614が第2の位置617にあることを検出すると、アンビルの閉鎖と関連付けられたプログラム命令を使用することができ、プロセッサ622は、例えば、センサ630を介してスイッチ614が第3の位置618a又は第4の位置618bにあることを検出すると、エンドエフェクタの関節運動と関連付けられたプログラム命令を使用することができる。 In particular examples, one or more mechanisms and/or sensors, such as sensor 630, may be used to alert processor 622 of program instructions to use in a particular setting. For example, sensor 630 can alert processor 622 to use program instructions related to end effector firing, closing, and articulation. In particular examples, sensor 630 may comprise a position sensor that may be used to sense the position of switch 614, for example. Thus, upon detecting switch 614 in first position 616, for example, via sensor 630, processor 622 uses program instructions associated with firing a closure member coupled to the end effector clamp arm. processor 622 can employ program instructions associated with closing the anvil upon detecting, for example, via sensor 630 that switch 614 is in second position 617, processor 622: For example, upon detecting via sensor 630 that switch 614 is in third position 618a or fourth position 618b, programmed instructions associated with end effector articulation may be used.

図17は、本開示の一態様による、本明細書で説明される外科用ツールを操作するように構成されたロボット外科用器具700の回路図である。ロボット外科用器具700は、単一又は複数の関節運動駆動連結部のいずれかを用いて、変位部材の遠位/近位並進、閉鎖管の遠位/近位変位、シャフトの回転、及び関節運動を制御するようにプログラム又は構成されてもよい。一態様では、外科用器具700は、発射部材、閉鎖部材、シャフト部材、若しくは1つ若しくは2つ以上の関節運動部材、又はこれらの組み合わせを個別に制御するようにプログラム又は構成されてもよい。外科用器具700は、モータ駆動式の発射部材、閉鎖部材、シャフト部材、若しくは1つ若しくは2つ以上の関節運動部材、又はこれらの組み合わせを制御するように構成された制御回路710を備える。 FIG. 17 is a schematic diagram of a robotic surgical instrument 700 configured to operate the surgical tools described herein, according to one aspect of the present disclosure. Robotic surgical instrument 700 uses either single or multiple articulation drive connections to perform distal/proximal translation of displacement members, distal/proximal displacement of obturator tubes, rotation of shafts, and articulation. It may be programmed or configured to control movement. In one aspect, surgical instrument 700 may be programmed or configured to individually control the firing member, closure member, shaft member, or one or more articulation members, or combinations thereof. Surgical instrument 700 includes a control circuit 710 configured to control a motorized firing member, closure member, shaft member, or one or more articulation members, or combinations thereof.

一態様では、ロボット外科用器具700は、複数のモータ704a~704eを介して、エンドエフェクタ702のクランプアーム716及び閉鎖部材714部分と、超音波発生器721によって励起される超音波変換器719に連結された超音波ブレード718と、シャフト740と、1つ又は2つ以上の関節運動部材742a、742bと、を制御するように構成された制御回路710を備える。位置センサ734は、閉鎖部材714の位置フィードバックを制御回路710に提供するように構成されてもよい。他のセンサ738は、制御回路710にフィードバックを提供するように構成されてもよい。タイマー/カウンタ731は、制御回路710にタイミング及びカウント情報を提供する。モータ704a~704eを動作させるためにエネルギー源712が設けられてもよく、電流センサ736はモータ電流フィードバックを制御回路710に提供する。モータ704a~704eは、開ループ又は閉ループフィードバック制御において制御回路710によって個別に操作することができる。 In one aspect, robotic surgical instrument 700 is coupled to clamp arm 716 and closure member 714 portions of end effector 702 and ultrasonic transducer 719 excited by ultrasonic generator 721 via a plurality of motors 704a-704e. A control circuit 710 is provided that is configured to control the coupled ultrasonic blade 718, shaft 740, and one or more articulation members 742a, 742b. Position sensor 734 may be configured to provide position feedback of closure member 714 to control circuit 710 . Other sensors 738 may be configured to provide feedback to control circuit 710 . Timer/counter 731 provides timing and counting information to control circuit 710 . An energy source 712 may be provided to operate the motors 704 a - 704 e , and a current sensor 736 provides motor current feedback to the control circuit 710 . Motors 704a-704e can be individually operated by control circuit 710 in open-loop or closed-loop feedback control.

一態様では、制御回路710は、1つ又は2つ以上のマイクロコントローラ、マイクロプロセッサ、又はプロセッサ若しくは複数のプロセッサに1つ又は2つ以上のタスクを実施させる命令を実行するための他の好適なプロセッサを備えてもよい。一態様では、タイマー/カウンタ731は、経過時間又はデジタルカウントなどの出力信号を制御回路710に提供して位置センサ734によって判定された閉鎖部材714の位置をタイマー/カウンタ731の出力と相関させ、その結果、制御回路710は、閉鎖部材714が開始位置に対して特定の位置にある時の、開始位置又は時間(t)に対する特定の時間(t)における閉鎖部材714の位置を判定することができる。タイマー/カウンタ731は、経過時間を測定するか、外部イベントを計数するか、又は外部イベントの時間を測定するように構成されてよい。 In one aspect, the control circuit 710 comprises one or more microcontrollers, microprocessors, or processors or other suitable devices for executing instructions that cause one or more processors to perform one or more tasks. A processor may be provided. In one aspect, timer/counter 731 provides an output signal, such as elapsed time or a digital count, to control circuit 710 to correlate the position of closure member 714 determined by position sensor 734 with the output of timer/counter 731; As a result, the control circuit 710 can determine the position of the closure member 714 at a particular time (t) relative to the start position or time (t) when the closure member 714 is at a particular position relative to the start position. can. Timer/counter 731 may be configured to measure elapsed time, count external events, or time external events.

一態様では、制御回路710は、1つ又は2つ以上の組織状態に基づいてエンドエフェクタ702の機能を制御するようにプログラムされてもよい。制御回路710は、本明細書に説明されるように、直接的又は間接的のいずれかで厚さなどの組織状態を感知するようにプログラムされてもよい。制御回路710は、組織状態に基づいて発射制御プログラム又は閉鎖制御プログラムを選択するようにプログラムされてもよい。発射制御プログラムは、変位部材の遠位運動を記述することができる。様々な組織状態をより良好に処理するために様々な発射制御プログラムを選択することができる。例えば、より厚い組織が存在する場合、制御回路710は、変位部材をより低速で、かつ/又はより低電力で並進させるようにプログラムされてもよい。より薄い組織が存在する場合、制御回路710は、変位部材をより高速で、かつ/又はより高電力で並進させるようにプログラムされてもよい。閉鎖制御プログラムは、クランプアーム716によって組織に適用される閉鎖力を制御し得る。その他の制御プログラムは、シャフト740及び関節運動部材742a、742bの回転を制御する。 In one aspect, control circuit 710 may be programmed to control the function of end effector 702 based on one or more tissue conditions. Control circuitry 710 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. Control circuit 710 may be programmed to select a firing control program or a closing control program based on tissue condition. A firing control program can describe the distal movement of the displacement member. Different firing control programs can be selected to better treat different tissue conditions. For example, if thicker tissue is present, control circuitry 710 may be programmed to translate the displacement member at a slower speed and/or with less power. If thinner tissue is present, the control circuit 710 may be programmed to translate the displacement member at a higher speed and/or with a higher power. A closure control program may control the closure force applied to tissue by clamp arm 716 . Other control programs control the rotation of shaft 740 and articulation members 742a, 742b.

一態様では、制御回路710は、モータ設定値信号を生成することができる。モータ設定値信号は、様々なモータコントローラ708a~708eに提供されてもよい。モータコントローラ708a~708eは、本明細書で説明するように、モータ704a~704eにモータ駆動信号を提供してモータ704a~704eを駆動するように構成された1つ又は2つ以上の回路を備えてもよい。いくつかの実施例では、モータ704a~704eはブラシ付きDC電動モータであってもよい。例えば、モータ704a~704eの速度は、それぞれのモータ駆動信号に比例してもよい。いくつかの実施例では、モータ704a~704eはブラシレスDC電動モータであってもよく、それぞれのモータ駆動信号は、モータ704a~704eの1つ又は2つ以上の固定子巻線に提供されるPWM信号を含んでもよい。また、いくつかの実施例では、モータコントローラ708a~708eは省略されてもよく、制御回路710がモータ駆動信号を直接生成してもよい。 In one aspect, control circuit 710 may generate a motor setpoint signal. Motor setpoint signals may be provided to various motor controllers 708a-708e. The motor controllers 708a-708e comprise one or more circuits configured to provide motor drive signals to the motors 704a-704e to drive the motors 704a-704e, as described herein. may In some embodiments, motors 704a-704e may be brushed DC electric motors. For example, the speed of motors 704a-704e may be proportional to their respective motor drive signals. In some embodiments, motors 704a-704e may be brushless DC electric motors, with respective motor drive signals provided to one or more stator windings of motors 704a-704e using PWM may include a signal. Also, in some embodiments, the motor controllers 708a-708e may be omitted and the control circuit 710 may directly generate the motor drive signals.

一態様では、制御回路710は、最初に、モータ704a~704eのそれぞれを、変位部材のストロークの第1の開ループ部分では開ループ構成で動作させてもよい。ストロークの開ループ部分の間のロボット外科用器具700の応答に基づいて、制御回路710は、閉ループ構成の発射制御プログラムを選択してもよい。器具の応答としては、開ループ部分の間の変位部材の並進距離、開ループ部分の間に経過する時間、開ループ部分の間にモータ704a~704eのうちの1つに提供されるエネルギー、モータ駆動信号のパルス幅の合計などが挙げられ得る。開ループ部分の後で、制御回路710は、変位部材ストロークの第2の部分に対して選択された発射制御プログラムを実施してもよい。例えば、ストロークの閉ループ部分の間、制御回路710は、変位部材の位置を記述する並進データに基づいてモータ704a~704eのうちの1つを閉ループ式に変調して、変位部材を一定速度で並進させてもよい。 In one aspect, the control circuit 710 may initially operate each of the motors 704a-704e in an open loop configuration for a first open loop portion of the stroke of the displacement member. Based on the response of robotic surgical instrument 700 during the open-loop portion of the stroke, control circuit 710 may select a closed-loop configuration firing control program. The response of the instrument includes the translational distance of the displacement member during the open loop portion, the time elapsed during the open loop portion, the energy provided to one of the motors 704a-704e during the open loop portion, the motor For example, the total pulse width of the drive signal may be mentioned. After the open loop portion, control circuit 710 may implement the selected firing control program for the second portion of the displacement member stroke. For example, during the closed-loop portion of the stroke, control circuit 710 modulates one of motors 704a-704e in a closed-loop manner based on translational data describing the position of the displacement member to translate the displacement member at a constant velocity. You may let

一態様では、モータ704a~704eは、エネルギー源712から電力を受け取ることができる。エネルギー源712は、主交流電源、電池、超コンデンサ、又は任意の他の好適なエネルギー源によって駆動されるDC電源であってもよい。モータ704a~704eは、それぞれの伝達装置706a~706eを介して、閉鎖部材714、クランプアーム716、シャフト740、関節742a、及び関節742bなどの個々の可動機械的要素に機械的に連結されてもよい。伝達装置706a~706eは、モータ704a~704eを可動機械的要素に連結するための1つ又は2つ以上のギア又は他の連結構成要素を含んでもよい。位置センサ734は、閉鎖部材714の位置を感知し得る。位置センサ734は、閉鎖部材714の位置を示す位置データを生成することができる任意の種類のセンサであってもよく、又はそれを含んでもよい。いくつかの例では、位置センサ734は、閉鎖部材714が遠位方向及び近位方向に並進すると一連のパルスを制御回路710に提供するように構成されたエンコーダを含んでもよい。制御回路710は、パルスを追跡して閉鎖部材714の位置を判定してもよい。例えば近接センサを含む他の好適な位置センサが使用されてもよい。他の種類の位置センサは、閉鎖部材714の動きを示す他の信号を提供することができる。また、一部の実施例では、位置センサ734は省略されてもよい。モータ704a~704eのいずれかがステップモータである場合、制御回路710は、モータ704が実行するように指示されたステップの数及び方向を合計することによって、閉鎖部材714の位置を追跡することができる。位置センサ734は、エンドエフェクタ702内、又は器具の任意の他の部分に位置することができる。モータ704a~704eのそれぞれの出力は、力を感知するためのトルクセンサ744a~744eを含み、駆動シャフトの回転を感知するエンコーダを有する。 In one aspect, the motors 704a-704e may receive power from the energy source 712. Energy source 712 may be a DC power source powered by mains AC power, batteries, supercapacitors, or any other suitable energy source. Motors 704a-704e may be mechanically coupled to respective movable mechanical elements such as closure member 714, clamp arm 716, shaft 740, joint 742a, and joint 742b via respective transmissions 706a-706e. good. The transmissions 706a-706e may include one or more gears or other coupling components for coupling the motors 704a-704e to the movable mechanical elements. A position sensor 734 may sense the position of the closure member 714 . Position sensor 734 may be or include any type of sensor capable of generating position data indicative of the position of closure member 714 . In some examples, position sensor 734 may include an encoder configured to provide a series of pulses to control circuit 710 as closure member 714 translates distally and proximally. Control circuit 710 may track the pulses to determine the position of closure member 714 . Other suitable position sensors may be used including, for example, proximity sensors. Other types of position sensors can provide other signals indicative of movement of closure member 714 . Also, in some implementations, the position sensor 734 may be omitted. If any of motors 704a-704e are stepper motors, control circuit 710 may track the position of closure member 714 by summing the number and direction of steps that motor 704 is instructed to perform. can. The position sensor 734 can be located within the end effector 702 or any other portion of the instrument. Each output of the motors 704a-704e includes a torque sensor 744a-744e for sensing force and has an encoder for sensing rotation of the drive shaft.

一態様では、制御回路710は、エンドエフェクタ702の閉鎖部材714部分などの発射部材を駆動するように構成される。制御回路710はモータ制御部708aにモータ設定値を提供し、モータ制御部708aはモータ704aに駆動信号を提供する。モータ704aの出力シャフトは、トルクセンサ744aに連結される。トルクセンサ744aは、閉鎖部材714に連結された伝達装置706aに連結される。伝達装置706aは、エンドエフェクタ702の長手方向軸線に沿って遠位方向及び近位方向への閉鎖部材714の移動を制御するための回転要素及び発射部材などの可動機械的要素を備える。一態様では、モータ704aは、第1のナイフ駆動ギア及び第2のナイフ駆動ギアを含むナイフギア減速セットを含むナイフギアアセンブリに連結されてもよい。トルクセンサ744aは、制御回路710に発射力フィードバック信号を提供する。発射力信号は、閉鎖部材714を発射又は変位させるのに必要な力を表す。位置センサ734は、発射ストロークに沿った閉鎖部材714の位置又は発射部材の位置を、フィードバック信号として制御回路710に提供するように構成されてもよい。エンドエフェクタ702は、制御回路710にフィードバック信号を提供するように構成された追加のセンサ738を含んでもよい。使用準備が整ったら、制御回路710は、モータ制御部708aに発射信号を提供することができる。発射信号に応答して、モータ704aは、発射部材をエンドエフェクタ702の長手方向軸線に沿って、近位のストローク開始位置からストローク開始位置の遠位にあるストローク終了位置まで遠位方向に駆動することができる。閉鎖部材714が遠位方向に並進すると、クランプアーム716は超音波ブレード718に向かって閉鎖する。 In one aspect, control circuit 710 is configured to drive a firing member, such as closure member 714 portion of end effector 702 . Control circuit 710 provides motor settings to motor control 708a, and motor control 708a provides drive signals to motor 704a. The output shaft of motor 704a is coupled to torque sensor 744a. Torque sensor 744 a is coupled to transmission 706 a which is coupled to closure member 714 . Transmission device 706a includes moveable mechanical elements, such as rotating and firing members, for controlling movement of closure member 714 distally and proximally along the longitudinal axis of end effector 702. FIG. In one aspect, motor 704a may be coupled to a knife gear assembly that includes a knife gear reduction set that includes a first knife drive gear and a second knife drive gear. Torque sensor 744 a provides a firing force feedback signal to control circuit 710 . The firing force signal represents the force required to fire or displace closure member 714 . Position sensor 734 may be configured to provide the position of closure member 714 along the firing stroke or the position of the firing member as a feedback signal to control circuit 710 . End effector 702 may include additional sensors 738 configured to provide feedback signals to control circuitry 710 . When ready for use, control circuit 710 can provide a fire signal to motor control 708a. In response to the firing signal, motor 704a drives the firing member distally along the longitudinal axis of end effector 702 from a proximal stroke start position to a stroke end position distal to the stroke start position. be able to. As closure member 714 is translated distally, clamp arm 716 closes toward ultrasonic blade 718 .

一態様では、制御回路710は、エンドエフェクタ702のクランプアーム716などの閉鎖部材を駆動するように構成される。制御回路710は、モータ704bに駆動信号を提供するモータ制御部708bにモータ設定値を提供する。モータ704bの出力シャフトは、トルクセンサ744bに連結される。トルクセンサ744bは、クランプアーム716に連結された伝達装置706bに連結される。伝達装置706bは、開放位置及び閉鎖位置からのクランプアーム716の移動を制御するための回転要素及び閉鎖部材などの可動機械的要素を含む。一態様では、モータ704bは、閉鎖スパーギアと噛合係合して支持される閉鎖減速ギアセットを含む閉鎖ギアアセンブリに連結される。トルクセンサ744bは、制御回路710に閉鎖力フィードバック信号を提供する。閉鎖力フィードバック信号は、クランプアーム716に適用される閉鎖力を表す。位置センサ734は、閉鎖部材の位置をフィードバック信号として制御回路710に提供するように構成されてもよい。エンドエフェクタ702内の追加のセンサ738は、閉鎖力フィードバック信号を制御回路710に提供することができる。枢動可能なクランプアーム716は、超音波ブレード718の反対側に位置決めされる。使用準備が整うと、制御回路710は、モータ制御部708bに閉鎖信号を提供することができる。閉鎖信号に応答して、モータ704bは閉鎖部材を前進させて、クランプアーム716と超音波ブレード718との間で組織を把持する。 In one aspect, control circuit 710 is configured to drive a closure member, such as clamp arm 716 of end effector 702 . Control circuit 710 provides motor settings to motor control 708b, which provides drive signals to motor 704b. The output shaft of motor 704b is coupled to torque sensor 744b. Torque sensor 744b is coupled to transmission device 706b which is coupled to clamp arm 716 . Transmission device 706b includes moveable mechanical elements such as rotating elements and closing members for controlling movement of clamp arm 716 from open and closed positions. In one aspect, the motor 704b is coupled to a closure gear assembly that includes a closure reduction gear set supported in meshing engagement with a closure spur gear. Torque sensor 744 b provides a closing force feedback signal to control circuit 710 . The closing force feedback signal represents the closing force applied to clamp arm 716 . Position sensor 734 may be configured to provide the position of the closure member as a feedback signal to control circuit 710 . An additional sensor 738 in end effector 702 can provide a closure force feedback signal to control circuit 710 . A pivotable clamp arm 716 is positioned opposite the ultrasonic blade 718 . When ready for use, control circuit 710 can provide a close signal to motor control 708b. In response to the closure signal, motor 704 b advances the closure member to grasp tissue between clamp arm 716 and ultrasonic blade 718 .

一態様では、制御回路710は、エンドエフェクタ702を回転させるためにシャフト740などのシャフト部材を回転させるように構成されている。制御回路710は、モータ704cに駆動信号を提供するモータ制御部708cにモータ設定値を提供する。モータ704cの出力シャフトは、トルクセンサ744cに連結される。トルクセンサ744cは、シャフト740に連結された伝達装置706cに連結される。伝達機構706cは、シャフト740の時計回り又は反時計回りの回転を360度まで及びそれを超えて制御するために回転要素などの可動機械的要素を含む。一態様では、モータ704cは、ツール装着プレート上に動作可能に支持された回転ギアアセンブリによって動作可能に係合されるように、近位閉鎖管の近位端上に形成された(又はこれに取り付けられた)管状ギアセグメントを含む回転伝達装置アセンブリに連結される。トルクセンサ744cは、制御回路710に回転力フィードバック信号を提供する。回転力フィードバック信号は、シャフト740に加えられる回転力を表す。位置センサ734は、閉鎖部材の位置をフィードバック信号として制御回路710に提供するように構成されてもよい。シャフトエンコーダなどの追加のセンサ738が、シャフト740の回転位置を制御回路710に提供してもよい。 In one aspect, control circuit 710 is configured to rotate a shaft member, such as shaft 740 , to rotate end effector 702 . Control circuit 710 provides motor settings to motor control 708c, which provides drive signals to motor 704c. The output shaft of motor 704c is coupled to torque sensor 744c. Torque sensor 744 c is coupled to transmission 706 c which is coupled to shaft 740 . Transmission mechanism 706c includes moveable mechanical elements, such as rotating elements, to control clockwise or counterclockwise rotation of shaft 740 through 360 degrees and beyond. In one aspect, the motor 704c was formed on (or attached to) the proximal end of the proximal closure tube to be operably engaged by a rotating gear assembly operably supported on the tool mounting plate. attached) to a rotary transmission assembly including a tubular gear segment. Torque sensor 744 c provides a rotational force feedback signal to control circuit 710 . The rotational force feedback signal is representative of the rotational force applied to shaft 740 . Position sensor 734 may be configured to provide the position of the closure member as a feedback signal to control circuit 710 . Additional sensors 738 , such as shaft encoders, may provide the rotational position of shaft 740 to control circuit 710 .

一態様では、制御回路710は、エンドエフェクタ702を関節運動させるように構成されている。制御回路710は、モータ704dに駆動信号を提供するモータ制御部708dにモータ設定値を提供する。モータ704dの出力シャフトは、トルクセンサ744dに連結される。トルクセンサ744dは、関節運動部材742aに連結された伝達装置706dに連結される。伝達機構706dは、エンドエフェクタ702の±65°の関節運動を制御するための関節運動要素などの可動機械的要素を含む。一態様では、モータ704dは、関節運動ナットに連結され、関節運動ナットは、遠位スパイン部分の近位端部分上で回転可能に軸支され、遠位スパイン部分の近位端部分上で関節運動ギアアセンブリによって回転可能に駆動される。トルクセンサ744dは、制御回路710に関節運動力フィードバック信号を提供する。関節運動力フィードバック信号は、エンドエフェクタ702に適用される関節運動力を表す。関節運動エンコーダなどのセンサ738は、エンドエフェクタ702の関節運動位置を制御回路710に提供してもよい。 In one aspect, control circuit 710 is configured to articulate end effector 702 . Control circuit 710 provides motor settings to motor control 708d, which provides drive signals to motor 704d. The output shaft of motor 704d is coupled to torque sensor 744d. Torque sensor 744d is coupled to transmission 706d that is coupled to articulation member 742a. Transmission mechanism 706d includes moveable mechanical elements, such as articulation elements for controlling ±65° articulation of end effector 702 . In one aspect, the motor 704d is coupled to an articulation nut that is rotatably journalled on the proximal end portion of the distal spine portion and articulated on the proximal end portion of the distal spine portion. It is rotatably driven by a motion gear assembly. Torque sensor 744 d provides an articulation force feedback signal to control circuit 710 . The articulation force feedback signal represents the articulation force applied to the end effector 702 . A sensor 738 , such as an articulation encoder, may provide the articulation position of end effector 702 to control circuit 710 .

別の態様では、ロボット外科システム700の関節運動機能は、2つの関節運動部材、又は連結部742a、742bを含んでもよい。これらの関節運動部材742a、742bは、2つのモータ708d、708eによって駆動されるロボットインターフェース(ラック)上の個別のディスクによって駆動される。個別の発射モータ704aが提供されると、ヘッドが運動していないときにヘッドに抵抗保持運動及び負荷を提供するために、かつヘッドが関節運動しているときに関節運動を提供するために、関節運動連結部742a、742bのそれぞれは他の連結部に対して拮抗的に駆動され得る。関節運動部材742a、742bは、ヘッドが回転するときに固定された半径でヘッドに取り付けられる。したがって、ヘッドが回転すると、プッシュプル連結部の機械効率は変化する。この機械効率の変化は、他の関節運動連結部の駆動システムでより顕著であり得る。 In another aspect, the articulation features of the robotic surgical system 700 may include two articulation members, or connections 742a, 742b. These articulation members 742a, 742b are driven by separate discs on a robot interface (rack) driven by two motors 708d, 708e. When separate firing motors 704a are provided, to provide resistive holding motion and load to the head when the head is not moving, and to provide articulation when the head is articulating: Each of the articulation links 742a, 742b can be driven antagonistically with respect to the other link. Articulation members 742a, 742b are attached to the head at a fixed radius as the head rotates. Therefore, as the head rotates, the mechanical efficiency of the push-pull connection changes. This change in mechanical efficiency may be more pronounced in other articulating joint drive systems.

一態様では、1つ又は2つ以上のモータ704a~704eは、ギアボックス、及び発射部材、閉鎖部材、又は関節運動部材への機械的連結部を備えるブラシ付きDCモータを備えてもよい。別の例としては、変位部材、関節運動連結部、閉鎖管、及びシャフトなどの可動機械的要素を動作させる電動モータ704a~704eが挙げられる。外部影響とは、組織、周囲体、及び物理系上の摩擦などのものの、測定されていない予測不可能な影響である。こうした外部影響は、電動モータ704a~704eの1つに反して作用する障害(drag)と呼ばれることがある。障害などの外部影響は、物理系の動作を物理系の所望の動作から逸脱させることがある。 In one aspect, one or more of the motors 704a-704e may comprise brushed DC motors with gearboxes and mechanical connections to the firing, closing, or articulating members. Another example includes electric motors 704a-704e that operate movable mechanical elements such as displacement members, articulation connections, closed tubes, and shafts. External influences are unmeasured and unpredictable influences such as friction on tissues, surroundings, and physical systems. Such an external influence is sometimes referred to as a drag acting against one of the electric motors 704a-704e. External influences, such as disturbances, can cause the behavior of a physical system to deviate from the desired behavior of the physical system.

一態様では、位置センサ734は、絶対位置決めシステムとして実装されてもよい。一態様では、位置センサ734は、Austria Microsystems,AGから入手可能なAS5055EQFTシングルチップ磁気回転位置センサとして実装される磁気回転絶対位置決めシステムを備えてもよい。位置センサ734は、制御回路710と連係して絶対位置決めシステムを提供することができる。位置は、磁石の上方に位置し、加算、減算、ビットシフト、及びテーブル参照演算のみを必要とする、双曲線関数及び三角関数を計算する簡潔かつ効率的なアルゴリズムを実装するために設けられた、桁毎法及びボルダーアルゴリズムとしても知られるCORDICプロセッサに連結された、複数のホール効果素子を含み得る。 In one aspect, position sensor 734 may be implemented as an absolute positioning system. In one aspect, the position sensor 734 may comprise a gyromagnetic absolute positioning system implemented as an AS5055EQFT single-chip gyromagnetic position sensor available from Austria Microsystems, AG. Position sensor 734 may cooperate with control circuit 710 to provide an absolute positioning system. The position is located above the magnet and provided to implement simple and efficient algorithms for computing hyperbolic and trigonometric functions, requiring only addition, subtraction, bit-shifting, and table lookup operations. It may include multiple Hall effect elements coupled to the CORDIC processor, also known as the digit-by-digit method and the Boulder algorithm.

一態様では、制御回路710は、1つ又は2つ以上のセンサ738と通信してもよい。センサ738は、エンドエフェクタ702上に位置付けられ、ロボット外科用器具700と共に動作して、間隙距離対時間、組織圧縮対時間、及びアンビル歪み対時間などの様々な導出パラメータを測定するように適合されてもよい。センサ738は、磁気センサ、磁界センサ、歪みゲージ、ロードセル、圧力センサ、力センサ、トルクセンサ、渦電流センサなどの誘導センサ、抵抗センサ、容量センサ、光学センサ、及び/又はエンドエフェクタ702の1つ又は2つ以上のパラメータを測定するための任意の他の好適なセンサを備えてもよい。センサ738は、1つ又は2つ以上のセンサを含み得る。センサ738は、分割された電極を使用して組織の位置を判定するために、クランプアーム716上に配置されてもよい。トルクセンサ744a~744eは、とりわけ、発射力、閉鎖力、及び/又は関節運動力などの力を感知するように構成されてもよい。したがって、制御回路710は、(1)遠位閉鎖管によって経験される閉鎖負荷及びその位置、(2)ラックにある発射部材及びその位置、(3)超音波ブレード718のどの部分がその上に組織を有しているか、及び(4)両方の関節運動ロッド上の負荷及び位置を感知することができる。 In one aspect, control circuitry 710 may communicate with one or more sensors 738 . Sensors 738 are positioned on end effector 702 and adapted to operate with robotic surgical instrument 700 to measure various derived parameters such as gap distance vs. time, tissue compression vs. time, and anvil strain vs. time. may Sensors 738 may be magnetic sensors, magnetic field sensors, strain gauges, load cells, pressure sensors, force sensors, torque sensors, inductive sensors such as eddy current sensors, resistive sensors, capacitive sensors, optical sensors, and/or one of end effector 702. or any other suitable sensor for measuring two or more parameters. Sensor 738 may include one or more sensors. A sensor 738 may be positioned on the clamp arm 716 to determine tissue position using segmented electrodes. Torque sensors 744a-744e may be configured to sense forces such as firing forces, closing forces, and/or articulation forces, among others. Thus, the control circuit 710 determines (1) the closure load experienced by the distal obturator tube and its position, (2) the firing member in the rack and its position, and (3) which portion of the ultrasonic blade 718 is placed thereon. (4) can sense load and position on both articulation rods;

一態様では、1つ又は2つ以上のセンサ738は、クランプ状態の間のクランプアーム716における歪みの大きさを測定するように構成された、微小歪みゲージなどの歪みゲージを備えてもよい。歪みゲージは、歪みの大きさに伴って振幅が変動する電気信号を提供する。センサ738は、クランプアーム716と超音波ブレード718との間に圧縮された組織の存在によって生成された圧力を検出するように構成された圧力センサを備えてもよい。センサ738は、クランプアーム716と超音波ブレード718との間に位置する組織部分のインピーダンスを検出するように構成されてもよく、このインピーダンスは、それらの間に位置する組織の厚さ及び/又は充満度を示す。 In one aspect, the one or more sensors 738 may comprise strain gauges, such as micro strain gauges, configured to measure the amount of strain in the clamp arm 716 during clamping conditions. A strain gauge provides an electrical signal whose amplitude varies with the amount of strain. Sensor 738 may comprise a pressure sensor configured to detect pressure created by the presence of compressed tissue between clamp arm 716 and ultrasonic blade 718 . The sensor 738 may be configured to detect the impedance of the tissue portion located between the clamp arm 716 and the ultrasonic blade 718, which impedance is the thickness and/or the thickness of the tissue located between them. Indicates fullness.

一態様では、センサ738は、とりわけ、1つ又は2つ以上のリミットスイッチ、電気機械装置、固体スイッチ、ホール効果装置、磁気抵抗(MR)装置、巨大磁気抵抗(GMR)装置、磁力計として実装されてもよい。他の実装形態では、センサ738は、とりわけ光センサ、IRセンサ、紫外線センサなどの光の影響下で動作する固体スイッチとして実装されてもよい。更に、スイッチは、トランジスタ(例えば、FET、接合FET、MOSFET、双極など)などの固体装置であってもよい。他の実装形態では、センサ738は、とりわけ、導電体非含有スイッチ、超音波スイッチ、加速度計、及び慣性センサを含んでもよい。 In one aspect, sensor 738 is implemented as one or more limit switches, electromechanical devices, solid state switches, Hall effect devices, magnetoresistive (MR) devices, giant magnetoresistive (GMR) devices, magnetometers, among others. may be In other implementations, sensor 738 may be implemented as a solid-state switch that operates under the influence of light, such as an optical sensor, an IR sensor, an ultraviolet sensor, among others. Additionally, the switch may be a solid state device such as a transistor (eg, FET, junction FET, MOSFET, bipolar, etc.). In other implementations, sensors 738 may include conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.

一態様では、センサ738は、閉鎖駆動システムによってクランプアーム716に及ぼされる力を測定するように構成され得る。例えば、1つ又は2つ以上のセンサ738は、閉鎖管によってクランプアーム716に適用される閉鎖力を検出するために、閉鎖管とクランプアーム716との間の相互作用点に位置してもよい。クランプアーム716に対して及ぼされる力は、クランプアーム716と超音波ブレード718との間に捕捉された組織切片によって経験される組織圧縮を表すものであり得る。1つ又は2つ以上のセンサ738は、閉鎖駆動システムに沿った様々な相互作用点に配置されて、閉鎖駆動システムによってクランプアーム716に適用される閉鎖力を検出することができる。1つ又は2つ以上のセンサ738は、制御回路710のプロセッサによるクランプ動作中にリアルタイムでサンプリングされてもよい。制御回路710は、リアルタイムのサンプル測定値を受信して時間ベースの情報を提供及び分析し、クランプアーム716に適用される閉鎖力をリアルタイムで評価する。 In one aspect, sensor 738 may be configured to measure the force exerted on clamp arm 716 by the closure drive system. For example, one or more sensors 738 may be located at the point of interaction between the closure tube and clamp arm 716 to detect the closure force applied to clamp arm 716 by the closure tube. . The force exerted on clamp arm 716 may represent tissue compression experienced by a tissue section captured between clamp arm 716 and ultrasonic blade 718 . One or more sensors 738 may be positioned at various interaction points along the closure drive system to detect the closure force applied to clamp arm 716 by the closure drive system. One or more sensors 738 may be sampled in real-time during clamping operations by the processor of control circuit 710 . The control circuit 710 receives real-time sample measurements to provide and analyze time-based information to assess the closing force applied to the clamp arm 716 in real-time.

一態様では、電流センサ736を用いて、モータ704a~704eのそれぞれによって引き込まれる電流を測定することができる。閉鎖部材714などの可動機械的要素のいずれかを前進させるのに必要な力は、モータ704a~704eのうちの1つによって引き込まれる電流に対応する。力はデジタル信号に変換されて、制御回路710に提供される。制御回路710は、器具の実際のシステムの応答をコントローラのソフトウェアでシミュレートするように構成され得る。変位部材を作動させて、エンドエフェクタ702内の閉鎖部材714を目標速度又はその付近で移動させることができる。ロボット外科用器具700は、フィードバックコントローラを含むことができ、フィードバックコントローラは、例えば、PID、状態フィードバック、線形二次(LQR)、及び/又は適応コントローラが挙げられるがこれらに限定されない任意のフィードバックコントローラのうちのいずれか1つであってもよい。ロボット外科用器具700は、フィードバックコントローラからの信号を、例えば、ケース電圧、PWM電圧、周波数変調電圧、電流、トルク、及び/又は力などの物理的入力に変換するための電源を含むことができる。更なる詳細は、その全体が参照により本明細書に組み込まれる、2017年6月29日出願の「CLOSED LOOP VELOCITY CONTROL TECHNIQUES FOR ROBOTIC SURGICAL INSTRUMENT」と題する米国特許出願第15/636,829号に開示されている。 In one aspect, a current sensor 736 can be used to measure the current drawn by each of the motors 704a-704e. The force required to advance any of the movable mechanical elements, such as closure member 714, corresponds to the current drawn by one of motors 704a-704e. The force is converted to a digital signal and provided to control circuit 710 . The control circuit 710 may be configured to simulate the actual system response of the instrument in the controller software. The displacement member can be actuated to move the closure member 714 within the end effector 702 at or near the target velocity. The robotic surgical instrument 700 can include a feedback controller, for example, any feedback controller including, but not limited to, PID, state feedback, linear-quadratic (LQR), and/or adaptive controllers. may be any one of Robotic surgical instrument 700 can include a power supply for converting signals from the feedback controller into physical inputs such as, for example, case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force. . Further details are disclosed in U.S. patent application Ser. No. 15/636,829, entitled "CLOSED LOOP VELOCITY CONTROL TECHNIQUES FOR ROBOTIC SURGICAL INSTRUMENT," filed Jun. 29, 2017, which is incorporated herein by reference in its entirety. It is

図18は、本開示の一態様による、変位部材の遠位並進を制御するように構成された外科用器具750の回路図を示す。一態様では、外科用器具750は、閉鎖部材764などの変位部材の遠位並進を制御するようにプログラムされる。外科用器具750は、クランプアーム766と、閉鎖部材764と、超音波発生器771によって駆動される超音波変換器769に連結された超音波ブレード768と、を備え得るエンドエフェクタ752を備える。 FIG. 18 shows a circuit diagram of a surgical instrument 750 configured to control distal translation of a displacement member, according to one aspect of the present disclosure. In one aspect, surgical instrument 750 is programmed to control distal translation of a displacement member, such as closure member 764 . Surgical instrument 750 comprises an end effector 752 which may comprise a clamp arm 766 , a closure member 764 and an ultrasonic blade 768 coupled to an ultrasonic transducer 769 driven by an ultrasonic generator 771 .

閉鎖部材764などの直線変位部材の位置、移動、変位、及び/又は並進は、絶対位置決めシステム、センサ機構、及び位置センサ784によって測定することができる。閉鎖部材764が長手方向に移動可能な駆動部材に連結されているため、閉鎖部材764の位置は、位置センサ784を使用する長手方向に移動可能な駆動部材の位置を測定することによって判定することができる。したがって、以下の説明では、閉鎖部材764の位置、変位、及び/又は並進は、本明細書に記載される位置センサ784によって達成され得る。制御回路760は、閉鎖部材764などの変位部材の並進を制御するようにプログラムされてもよい。いくつかの実施例では、制御回路760は、1つ若しくは2つ以上のマイクロコントローラ、マイクロプロセッサ、又はプロセッサ若しくは複数のプロセッサに、記載される方法で変位部材、例えば閉鎖部材764を制御させる命令を実行するための他の好適なプロセッサを備えてもよい。一態様では、タイマー/カウンタ781は、経過時間又はデジタルカウントなどの出力信号を制御回路760に提供して、位置センサ784によって判定された閉鎖部材764の位置をタイマー/カウンタ781の出力と相関させ、その結果、制御回路760は、開始位置に対する特定の時間(t)における閉鎖部材764の位置を判定することができる。タイマー/カウンタ781は、経過時間を測定するか、外部イベントを計数するか、又は外部イベントの時間を測定するように構成されてよい。 The position, movement, displacement and/or translation of a linear displacement member such as closure member 764 can be measured by absolute positioning system, sensor mechanism and position sensor 784 . Since the closure member 764 is coupled to the longitudinally movable drive member, the position of the closure member 764 can be determined by measuring the position of the longitudinally movable drive member using the position sensor 784. can be done. Accordingly, in the discussion below, the position, displacement, and/or translation of closure member 764 may be accomplished by position sensor 784 as described herein. Control circuitry 760 may be programmed to control translation of a displacement member, such as closure member 764 . In some embodiments, the control circuit 760 commands one or more microcontrollers, microprocessors, or processors or processors to control the displacement member, such as the closure member 764, in the manner described. Other suitable processors may be provided for execution. In one aspect, timer/counter 781 provides an output signal, such as elapsed time or a digital count, to control circuit 760 to correlate the position of closure member 764 determined by position sensor 784 with the output of timer/counter 781. , so that the control circuit 760 can determine the position of the closure member 764 at a particular time (t) relative to the starting position. Timer/counter 781 may be configured to measure elapsed time, count external events, or time external events.

制御回路760は、モータ設定値信号772を生成してもよい。モータ設定値信号772は、モータコントローラ758に提供されてもよい。モータコントローラ758は、本明細書で説明するように、モータ754にモータ駆動信号774を提供してモータ754を駆動するように構成された1つ又は2つ以上の回路を備えてもよい。いくつかの実施例では、モータ754は、ブラシ付きDC電動モータであってもよい。例えば、モータ754の速度は、モータ駆動信号774に比例してもよい。いくつかの例では、モータ754はブラシレスDC電動モータであってもよく、モータ駆動信号774は、モータ754の1つ又は2つ以上の固定子巻線に提供されるPWM信号を含んでもよい。また、いくつかの実施例では、モータコントローラ758は省略されてもよく、制御回路760がモータ駆動信号774を直接生成してもよい。 Control circuit 760 may generate motor setpoint signal 772 . Motor setpoint signal 772 may be provided to motor controller 758 . Motor controller 758 may comprise one or more circuits configured to provide motor drive signal 774 to motor 754 to drive motor 754 as described herein. In some embodiments, motor 754 may be a brushed DC electric motor. For example, the speed of motor 754 may be proportional to motor drive signal 774 . In some examples, motor 754 may be a brushless DC electric motor, and motor drive signal 774 may include a PWM signal provided to one or more stator windings of motor 754 . Also, in some embodiments, motor controller 758 may be omitted and control circuit 760 may generate motor drive signal 774 directly.

モータ754は、エネルギー源762から電力を受け取ることができる。エネルギー源762は、電池、超コンデンサ、又は任意の他の好適なエネルギー源であってもよく、あるいはそれを含んでもよい。モータ754は、伝達装置756を介して閉鎖部材764に機械的に連結され得る。伝達装置756は、モータ754を閉鎖部材764に連結するための1つ又は2つ以上のギア又は他の連結構成要素を含んでもよい。位置センサ784は、閉鎖部材764の位置を感知し得る。位置センサ784は、閉鎖部材764の位置を示す位置データを生成することができる任意の種類のセンサであってもよく、又はそれを含んでもよい。いくつかの例では、位置センサ784は、閉鎖部材764が遠位方向及び近位方向に並進すると一連のパルスを制御回路760に提供するように構成されたエンコーダを含んでもよい。制御回路760は、パルスを追跡して閉鎖部材764の位置を判定してもよい。例えば近接センサを含む他の好適な位置センサが使用されてもよい。他の種類の位置センサは、閉鎖部材764の動きを示す他の信号を提供することができる。また、一部の実施例では、位置センサ784は省略されてもよい。モータ754がステップモータである場合、制御回路760は、モータ754が実行するように指示されたステップの数及び方向を合計することによって、閉鎖部材764の位置を追跡することができる。位置センサ784は、エンドエフェクタ752内、又は器具の任意の他の部分に位置することができる。 Motor 754 may receive power from energy source 762 . Energy source 762 may be or include a battery, supercapacitor, or any other suitable energy source. Motor 754 may be mechanically coupled to closure member 764 via transmission 756 . Transmission 756 may include one or more gears or other coupling components for coupling motor 754 to closure member 764 . A position sensor 784 may sense the position of the closure member 764 . Position sensor 784 may be or include any type of sensor capable of generating position data indicative of the position of closure member 764 . In some examples, position sensor 784 may include an encoder configured to provide a series of pulses to control circuit 760 as closure member 764 translates distally and proximally. Control circuit 760 may track the pulses to determine the position of closure member 764 . Other suitable position sensors may be used including, for example, proximity sensors. Other types of position sensors can provide other signals indicative of movement of closure member 764 . Also, in some implementations, the position sensor 784 may be omitted. If motor 754 is a stepper motor, control circuit 760 can track the position of closure member 764 by summing the number and direction of steps that motor 754 is instructed to perform. The position sensor 784 can be located within the end effector 752 or any other portion of the instrument.

制御回路760は、1つ又は2つ以上のセンサ788と通信することができる。センサ788は、エンドエフェクタ752上に位置付けられ、外科用器具750と共に動作して、間隙距離対時間、組織圧縮対時間、及びアンビル歪み対時間などの様々な導出パラメータを測定するように適合され得る。センサ788は、磁気センサ、磁界センサ、歪みゲージ、圧力センサ、力センサ、渦電流センサなどの誘導センサ、抵抗センサ、容量センサ、光学センサ、及び/又はエンドエフェクタ752の1つ若しくは2つ以上のパラメータを測定するための任意の他の好適なセンサを備え得る。センサ788は、1つ又は2つ以上のセンサを含み得る。 Control circuitry 760 may communicate with one or more sensors 788 . A sensor 788 may be positioned on the end effector 752 and adapted to work with the surgical instrument 750 to measure various derived parameters such as gap distance vs. time, tissue compression vs. time, and anvil strain vs. time. . Sensor 788 may include one or more of magnetic sensors, magnetic field sensors, strain gauges, pressure sensors, force sensors, inductive sensors such as eddy current sensors, resistive sensors, capacitive sensors, optical sensors, and/or end effector 752 . Any other suitable sensor for measuring parameters may be provided. Sensor 788 may include one or more sensors.

1つ又は2つ以上のセンサ788は、クランプ状態の間のクランプアーム766における歪みの大きさを測定するように構成された、微小歪みゲージなどの歪みゲージを備えてもよい。歪みゲージは、歪みの大きさに伴って振幅が変動する電気信号を提供する。センサ788は、クランプアーム766と超音波ブレード768との間に圧縮された組織の存在によって生成された圧力を検出するように構成された圧力センサを備えてもよい。センサ788は、クランプアーム766と超音波ブレード768との間に位置する組織部分のインピーダンスを検出するように構成されてもよく、このインピーダンスは、それらの間に位置する組織の厚さ及び/又は充満度を示す。 The one or more sensors 788 may comprise strain gauges, such as micro strain gauges, configured to measure the amount of strain in the clamp arm 766 during clamping conditions. A strain gauge provides an electrical signal whose amplitude varies with the amount of strain. Sensor 788 may comprise a pressure sensor configured to detect pressure created by the presence of compressed tissue between clamp arm 766 and ultrasonic blade 768 . The sensor 788 may be configured to detect the impedance of the tissue portion located between the clamp arm 766 and the ultrasonic blade 768, which impedance may vary depending on the thickness and/or thickness of the tissue located between them. Indicates fullness.

センサ788は、閉鎖駆動システムによってクランプアーム766に及ぼされる力を測定するように構成され得る。例えば、1つ又は2つ以上のセンサ788は、閉鎖管によってクランプアーム766に適用される閉鎖力を検出するために、閉鎖管とクランプアーム766との間の相互作用点に位置してもよい。クランプアーム766に対して及ぼされる力は、クランプアーム766と超音波ブレード768との間に捕捉された組織切片によって経験される組織圧縮を表すものであり得る。1つ又は2つ以上のセンサ788は、閉鎖駆動システムに沿った様々な相互作用点に配置されて、閉鎖駆動システムによってクランプアーム766に適用される閉鎖力を検出することができる。1つ又は2つ以上のセンサ788は、制御回路760のプロセッサによるクランプ動作中にリアルタイムでサンプリングされてもよい。制御回路760は、リアルタイムのサンプル測定値を受信して時間ベースの情報を提供及び分析し、クランプアーム766に適用される閉鎖力をリアルタイムで評価する。 Sensor 788 may be configured to measure the force exerted on clamp arm 766 by the closure drive system. For example, one or more sensors 788 may be located at the point of interaction between the closure tube and the clamp arm 766 to detect the closure force applied by the closure tube to the clamp arm 766. . The force exerted on clamp arm 766 may represent tissue compression experienced by a tissue section captured between clamp arm 766 and ultrasonic blade 768 . One or more sensors 788 may be positioned at various interaction points along the closure drive system to detect the closure force applied to clamp arm 766 by the closure drive system. One or more sensors 788 may be sampled in real-time during clamping operations by the processor of control circuit 760 . The control circuit 760 receives real-time sample measurements to provide and analyze time-based information to evaluate the closing force applied to the clamp arm 766 in real-time.

モータ754によって引き込まれる電流を測定するために、電流センサ786を用いることができる。閉鎖部材764を前進させるのに必要な力は、モータ754によって引き込まれる電流に相当する。力はデジタル信号に変換されて、制御回路760に提供される。 A current sensor 786 can be used to measure the current drawn by the motor 754 . The force required to advance closure member 764 corresponds to the current drawn by motor 754 . The force is converted to a digital signal and provided to control circuit 760 .

制御回路760は、器具の実際のシステムの応答をコントローラのソフトウェアでシミュレートするように構成され得る。変位部材を作動させて、エンドエフェクタ752内の閉鎖部材764を目標速度又はその付近で移動させることができる。外科用器具750は、フィードバックコントローラを含むことができ、フィードバックコントローラは、例えば、PID、状態フィードバック、LQR、及び/又は適応コントローラが挙げられるがこれらに限定されない任意のフィードバックコントローラのうちのいずれか1つであってもよい。外科用器具750は、フィードバックコントローラからの信号を、例えば、ケース電圧、PWM電圧、周波数変調電圧、電流、トルク、及び/又は力などの物理的入力に変換するための電源を含むことができる。 The control circuit 760 may be configured to simulate the actual system response of the instrument in the controller software. The displacement member can be actuated to move the closure member 764 within the end effector 752 at or near the target velocity. Surgical instrument 750 may include a feedback controller, for example, any one of any feedback controller including, but not limited to, PID, state feedback, LQR, and/or adaptive controllers. can be one. Surgical instrument 750 can include a power supply to convert signals from feedback controllers into physical inputs such as, for example, case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force.

外科用器具750の実際の駆動システムは、ギアボックス、並びに関節運動及び/又はナイフシステムへの機械的連結部を備えるブラシ付きDCモータによって、変位部材、切断部材、又は閉鎖部材764を駆動するように構成されている。別の例は、交換式シャフト組立体の、例えば変位部材及び関節運動ドライバを操作する電気モータ754である。外部影響とは、組織、周囲体、及び物理系上の摩擦などのものの、測定されていない予測不可能な影響である。こうした外部影響は、電気モータ754に反して作用する障害と呼ばれることがある。障害などの外部影響は、物理系の動作を物理系の所望の動作から逸脱させることがある。 The actual drive system of surgical instrument 750 is such that the displacement member, cutting member, or closure member 764 is driven by a gearbox and brushed DC motor with mechanical connection to the articulation and/or knife system. is configured to Another example is an electric motor 754 that operates, eg, a displacement member and an articulation driver of an interchangeable shaft assembly. External influences are unmeasured and unpredictable influences such as friction on tissues, surroundings and physical systems. Such external influences are sometimes referred to as disturbances acting against electric motor 754 . External influences, such as disturbances, can cause the behavior of a physical system to deviate from the desired behavior of the physical system.

様々な例示的態様が、モータ駆動の外科用封止及び切断器具を有するエンドエフェクタ752を備える外科用器具750に関する。例えば、モータ754は、エンドエフェクタ752の長手方向軸線に沿って遠位方向及び近位方向に変位部材を駆動してもよい。エンドエフェクタ752は、枢動可能なクランプアーム766と、使用のために構成されるときは、クランプアーム766の反対側に位置付けられた超音波ブレード768と、を備えてもよい。臨床医は、本明細書に記載されるように、クランプアーム766と超音波ブレード768との間に組織を把持してもよい。器具750を使用する準備が整った場合、臨床医は、例えば器具750のトリガを押すことによって発射信号を提供してもよい。発射信号に応答して、モータ754は、変位部材をエンドエフェクタ752の長手方向軸線に沿って、近位のストローク開始位置からストローク開始位置の遠位にあるストローク終了位置まで遠位方向に駆動することができる。変位部材が遠位方向に並進すると、遠位端に位置付けられた切断要素を備える閉鎖部材764は、超音波ブレード768とクランプアーム766との間の組織を切断することができる。 Various exemplary aspects relate to a surgical instrument 750 that includes an end effector 752 having a motorized surgical sealing and cutting instrument. For example, motor 754 may drive the displacement member distally and proximally along the longitudinal axis of end effector 752 . The end effector 752 may comprise a pivotable clamp arm 766 and an ultrasonic blade 768 positioned opposite the clamp arm 766 when configured for use. A clinician may grasp tissue between the clamp arm 766 and the ultrasonic blade 768 as described herein. When instrument 750 is ready for use, the clinician may provide a firing signal, for example, by pressing the trigger of instrument 750 . In response to the firing signal, motor 754 drives the displacement member distally along the longitudinal axis of end effector 752 from a proximal stroke start position to a stroke end position distal to the stroke start position. be able to. As the displacement member translates distally, a closure member 764 with a cutting element positioned at its distal end can cut tissue between the ultrasonic blade 768 and the clamp arm 766 .

様々な実施例で、外科用器具750は、1つ又は2つ以上の組織状態に基づいて、例えば閉鎖部材764などの変位部材の遠位並進を制御するようにプログラムされた制御回路760を備えてもよい。制御回路760は、本明細書に説明されるように、直接的又は間接的のいずれかで厚さなどの組織状態を感知するようにプログラムされてもよい。制御回路760は、組織状態に基づいて制御プログラムを選択するようにプログラムされてもよい。制御プログラムは、変位部材の遠位運動を記述することができる。様々な組織状態をより良好に処理するために様々な制御プログラムを選択することができる。例えば、より厚い組織が存在する場合、制御回路760は、変位部材をより低速で、かつ/又はより低電力で並進させるようにプログラムされてもよい。より薄い組織が存在する場合、制御回路760は、変位部材をより高速で、かつ/又はより高電力で並進させるようにプログラムされてもよい。 In various embodiments, surgical instrument 750 includes control circuitry 760 programmed to control distal translation of a displacement member, such as closure member 764, based on one or more tissue conditions. may Control circuitry 760 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. Control circuitry 760 may be programmed to select a control program based on tissue status. A control program can describe the distal movement of the displacement member. Different control programs can be selected to better handle different tissue conditions. For example, if thicker tissue is present, control circuitry 760 may be programmed to translate the displacement member at a slower speed and/or with less power. If thinner tissue is present, the control circuit 760 may be programmed to translate the displacement member at a higher speed and/or with a higher power.

いつくかの実施例では、制御回路760は、最初に、モータ754を、変位部材のストロークの第1の開ループ部分に対する開ループ構成で動作させてもよい。ストロークの開ループ部分の間の器具750の応答に基づいて、制御回路760は、発射制御プログラムを選択してもよい。器具の応答としては、開ループ部分の間の変位部材の並進距離、開ループ部分の間に経過する時間、開ループ部分の間にモータ754に提供されるエネルギー、モータ駆動信号のパルス幅の合計などが挙げられ得る。開ループ部分の後、制御回路760は、変位部材ストロークの第2の部分に対して、選択された発射制御プログラムを実施してもよい。例えば、ストロークの閉ループ部分の間、制御回路760は、変位部材の位置を記述する並進データに基づいてモータ754を閉ループ式に変調して、変位部材を一定速度で並進させてもよい。更なる詳細は、その全体が参照により本明細書に組み込まれる、2017年9月29日出願の「SYSTEM AND METHODS FOR CONTROLLING A DISPLAY OF A SURGICAL INSTRUMENT」と題する米国特許出願第15/720,852号に開示されている。 In some embodiments, control circuit 760 may initially operate motor 754 in an open loop configuration for a first open loop portion of the stroke of the displacement member. Based on the response of instrument 750 during the open-loop portion of the stroke, control circuit 760 may select a firing control program. The response of the instrument includes the translational distance of the displacement member during the open loop portion, the time elapsed during the open loop portion, the energy provided to the motor 754 during the open loop portion, and the total pulse width of the motor drive signal. etc. can be mentioned. After the open loop portion, control circuit 760 may implement the selected firing control program for the second portion of the displacement member stroke. For example, during the closed-loop portion of the stroke, control circuit 760 may closed-loop modulate motor 754 based on translation data describing the position of the displacement member to translate the displacement member at a constant velocity. Further details can be found in U.S. patent application Ser. disclosed in

図19は、本開示の一態様に従った、様々な機能を制御するように構成された外科用器具790の概略図である。一態様では、外科用器具790は、閉鎖部材764などの変位部材の遠位並進を制御するようにプログラムされる。外科用器具790は、クランプアーム766と、閉鎖部材764と、1つ又は2つ以上のRF電極796(破線で示される)と交換されるか、又はそれと連動して動作し得る超音波ブレード768とを備え得るエンドエフェクタ792を備える。超音波ブレード768は、超音波発生器771によって駆動される超音波変換器769に連結されている。 FIG. 19 is a schematic illustration of a surgical instrument 790 configured to control various functions according to one aspect of the present disclosure. In one aspect, surgical instrument 790 is programmed to control distal translation of a displacement member, such as closure member 764 . Surgical instrument 790 may replace or work in conjunction with clamp arm 766, closure member 764, and one or more RF electrodes 796 (shown in dashed lines) and ultrasonic blade 768. and an end effector 792 that may include: Ultrasonic blade 768 is coupled to ultrasonic transducer 769 driven by ultrasonic generator 771 .

一態様では、センサ788は、とりわけ、リミットスイッチ、電気機械装置、固体スイッチ、ホール効果装置、MR装置、GMR装置、磁力計として実装されてもよい。他の実装形態では、センサ638は、とりわけ光センサ、IRセンサ、紫外線センサなどの光の影響下で動作する固体スイッチであってもよい。更に、スイッチは、トランジスタ(例えば、FET、接合FET、MOSFET、双極など)などの固体装置であってもよい。他の実装形態では、センサ788は、とりわけ、導電体非含有スイッチ、超音波スイッチ、加速度計、及び慣性センサを含んでもよい。 In one aspect, sensor 788 may be implemented as a limit switch, electromechanical device, solid state switch, Hall effect device, MR device, GMR device, magnetometer, among others. In other implementations, sensor 638 may be a solid-state switch that operates under the influence of light, such as a light sensor, IR sensor, UV sensor, among others. Additionally, the switch may be a solid state device such as a transistor (eg, FET, junction FET, MOSFET, bipolar, etc.). In other implementations, sensors 788 may include conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.

一態様では、位置センサ784は、Austria Microsystems,AGから入手可能なAS5055EQFTシングルチップ磁気回転位置センサとして実装される磁気回転絶対位置決めシステムを備える絶対位置決めシステムとして実装されてもよい。位置センサ784は、制御回路760と連係して絶対位置決めシステムを提供することができる。位置は、磁石の上方に位置し、加算、減算、ビットシフト、及びテーブル参照演算のみを必要とする、双曲線関数及び三角関数を計算する簡潔かつ効率的なアルゴリズムを実装するために設けられた、桁毎法及びボルダーアルゴリズムとしても知られるCORDICプロセッサに連結された、複数のホール効果素子を含み得る。 In one aspect, the position sensor 784 may be implemented as an absolute positioning system comprising a gyromagnetic absolute positioning system implemented as an AS5055EQFT single-chip gyromagnetic position sensor available from Austria Microsystems, AG. Position sensor 784 may cooperate with control circuitry 760 to provide an absolute positioning system. The position is located above the magnet and provided to implement simple and efficient algorithms for computing hyperbolic and trigonometric functions, requiring only addition, subtraction, bit-shifting, and table lookup operations. It may include multiple Hall effect elements coupled to the CORDIC processor, also known as the digit-by-digit method and the Boulder algorithm.

一部の実施例では、位置センサ784は省略されてもよい。モータ754がステップモータである場合、制御回路760は、モータが実行するように指示されたステップの数及び方向を合計することによって、閉鎖部材764の位置を追跡することができる。位置センサ784は、エンドエフェクタ792内、又は器具の任意の他の部分に位置することができる。 In some embodiments, position sensor 784 may be omitted. If the motor 754 is a stepper motor, the control circuit 760 can track the position of the closure member 764 by summing the number and direction of steps the motor is instructed to perform. The position sensor 784 can be located within the end effector 792 or any other portion of the instrument.

制御回路760は、1つ又は2つ以上のセンサ788と通信することができる。センサ788は、エンドエフェクタ792上に位置付けられ、外科用器具790と共に動作して、間隙距離対時間、組織圧縮対時間、及びアンビル歪み対時間などの様々な導出パラメータを測定するように適合され得る。センサ788は、磁気センサ、磁界センサ、歪みゲージ、圧力センサ、力センサ、渦電流センサなどの誘導センサ、抵抗センサ、容量センサ、光学センサ、及び/又はエンドエフェクタ792の1つ若しくは2つ以上のパラメータを測定するための任意の他の好適なセンサを備え得る。センサ788は、1つ又は2つ以上のセンサを含み得る。 Control circuitry 760 may communicate with one or more sensors 788 . A sensor 788 may be positioned on the end effector 792 and adapted to work with the surgical instrument 790 to measure various derived parameters such as gap distance vs. time, tissue compression vs. time, and anvil strain vs. time. . Sensors 788 may include one or more of magnetic sensors, magnetic field sensors, strain gauges, pressure sensors, force sensors, inductive sensors such as eddy current sensors, resistive sensors, capacitive sensors, optical sensors, and/or end effector 792 . Any other suitable sensor for measuring parameters may be provided. Sensor 788 may include one or more sensors.

RFエネルギー源794は、エンドエフェクタ792に連結され、RF電極796が超音波ブレード768の代わりにエンドエフェクタ792内に提供されるとき、又は超音波ブレード768と連動して動作するように提供されるとき、RF電極796に印加される。例えば、超音波ブレードは、導電性金属で作製され、電気外科用RF電流のリターンパスとして使用されてもよい。制御回路760は、RF電極796へのRFエネルギーの送達を制御する。 An RF energy source 794 is coupled to the end effector 792 and is provided to work in conjunction with or when RF electrodes 796 are provided within the end effector 792 in place of the ultrasonic blade 768 . , is applied to RF electrode 796 . For example, an ultrasonic blade may be made of a conductive metal and used as a return path for electrosurgical RF current. Control circuitry 760 controls delivery of RF energy to RF electrode 796 .

更なる詳細は、その全体が参照により本明細書に組み込まれる、2017年6月28日出願の「SURGICAL SYSTEM COUPLABLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE,AND METHOD OF USING SAME」と題する米国特許出願第15/636,096号に開示されている。 Further details can be found in U.S. Patent Application No. 15, entitled "SURGICAL SYSTEM COUPLABLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE, AND METHOD OF USING SAME," filed June 28, 2017, which is incorporated herein by reference in its entirety. /636,096.

発生器ハードウェア
適応型超音波ブレード制御アルゴリズム
様々な態様では、スマート超音波エネルギー装置は、超音波ブレードの動作を制御するための適応アルゴリズムを含んでもよい。一態様では、超音波ブレード適応制御アルゴリズムは、組織の種類を特定し、装置パラメータを調整するように構成される。一態様では、超音波ブレード制御アルゴリズムは、組織の種類をパラメータ化するように構成される。超音波ブレードの遠位先端の振幅を調整するために組織のコラーゲン/弾性比を検出するためのアルゴリズムが、本開示の以下の項で説明される。スマート超音波エネルギー装置の様々な態様が、例えば図1~図94に関連して本明細書で説明される。したがって、適応型超音波ブレード制御アルゴリズムの以下の説明は、図1~図94及びこれらに関連する説明と併せて読まれるべきである。
Generator Hardware Adaptive Ultrasonic Blade Control Algorithm In various aspects, the smart ultrasonic energy device may include an adaptive algorithm for controlling the operation of the ultrasonic blade. In one aspect, the ultrasonic blade adaptive control algorithm is configured to identify tissue type and adjust device parameters. In one aspect, the ultrasonic blade control algorithm is configured to parameterize the tissue type. Algorithms for detecting the collagen/elasticity ratio of tissue for adjusting the amplitude of the distal tip of the ultrasonic blade are described in the following sections of this disclosure. Various aspects of smart ultrasonic energy devices are described herein, for example, in connection with FIGS. 1-94. Accordingly, the following description of adaptive ultrasonic blade control algorithms should be read in conjunction with FIGS. 1-94 and their associated descriptions.

組織種類の識別及び装置パラメータの調節
特定の外科処置では、適応型超音波ブレード制御アルゴリズムを用いることが望ましい。一態様では、超音波ブレードと接触する組織の種類に基づいて、超音波装置のパラメータを調節するために、適応型超音波ブレード制御アルゴリズムを用いてもよい。一態様では、超音波装置のパラメータは、超音波エンドエフェクタのジョー内の組織の位置、例えば、クランプアームと超音波ブレードとの間の組織の位置に基づいて調節されてもよい。超音波変換器のインピーダンスは、組織のどの割合がエンドエフェクタの遠位端又は近位端に位置するかを識別するために用いられてもよい。超音波装置の反応は、組織の種類又は組織の圧縮率に基づき得る。別の態様では、超音波装置のパラメータは、識別された組織の種類又はパラメータ化に基づいて調節されてもよい。例えば、超音波ブレードの遠位先端の機械的変位振幅は、組織識別手順中に検出されたエラスチン組織に対するコラーゲンの割当量(ration)に基づいて調整されてもよい。コラーゲンとエラスチン組織との比は、赤外線(IR)表面反射率及び放射率を含む様々な技術を使用して検出され得る。クランプアーム及び/又はクランプアームのストロークによって組織に加えられて間隙及び圧縮を生じさせる力。電極を備えたジョー全体の電気的導通を用いて、ジョーのどの割合が組織で覆われているかを判定することができる。
Tissue Type Identification and Device Parameter Adjustment In certain surgical procedures, it is desirable to use adaptive ultrasonic blade control algorithms. In one aspect, an adaptive ultrasonic blade control algorithm may be used to adjust the parameters of the ultrasonic device based on the type of tissue in contact with the ultrasonic blade. In one aspect, the parameters of the ultrasonic device may be adjusted based on the position of the tissue within the jaws of the ultrasonic end effector, eg, the position of the tissue between the clamp arm and the ultrasonic blade. The impedance of the ultrasound transducer may be used to identify which percentage of tissue is located at the distal or proximal end of the end effector. The response of the ultrasound device can be based on tissue type or tissue compressibility. In another aspect, ultrasound system parameters may be adjusted based on the identified tissue type or parameterization. For example, the mechanical displacement amplitude of the distal tip of the ultrasonic blade may be adjusted based on the ratio of collagen to elastin tissue detected during the tissue identification procedure. The ratio of collagen to elastin tissue can be detected using various techniques, including infrared (IR) surface reflectance and emissivity. The force exerted on tissue by the clamping arm and/or the stroke of the clamping arm to create gaps and compression. Electrical continuity across the electroded jaws can be used to determine what percentage of the jaws is covered with tissue.

図20は、本開示の少なくとも1つの態様による、モジュール式通信ハブを備える外科用データネットワーク内で適応型超音波ブレード制御アルゴリズムを実行するように構成されたシステム800である。一態様では、発生器モジュール240は、図53~図105を参照して本明細書に記載される適応型超音波ブレード制御アルゴリズム(複数可)802を実行するように構成される。別の態様では、装置/器具235が、図53~図105を参照して本明細書に記載される適応型超音波ブレード制御アルゴリズム(複数可)804を実行するように構成される。別の態様では、装置/器具235及び装置/器具235の両方が、図53~図105を参照して本明細書に記載される適応型超音波ブレード制御アルゴリズム802、804を実行するように構成される。 FIG. 20 is a system 800 configured to execute adaptive ultrasonic blade control algorithms within a surgical data network comprising a modular communication hub, according to at least one aspect of the present disclosure. In one aspect, the generator module 240 is configured to execute the adaptive ultrasonic blade control algorithm(s) 802 described herein with reference to FIGS. In another aspect, the device/instrument 235 is configured to execute the adaptive ultrasonic blade control algorithm(s) 804 described herein with reference to FIGS. 53-105. In another aspect, both the device/instrument 235 and the device/instrument 235 are configured to execute the adaptive ultrasonic blade control algorithms 802, 804 described herein with reference to FIGS. be done.

発生器モジュール240は、電力変圧器を介して非絶縁段階と通信する患者絶縁段階を備えてもよい。電力変圧器の二次巻線は、絶縁段階内に収容され、例えば、超音波外科用器具、RF電気外科用器具、並びに単独又は同時に送達可能な超音波及びRFエネルギーモードを含む多機能型外科用器具などの様々な外科用器具に駆動信号を送達するために駆動信号出力部を画定するためのタップ構成(例えば、センタタップ又は非センタタップ構成)を備え得る。具体的には、駆動信号出力部は、超音波駆動信号(例えば、420Vの二乗平均平方根(RMS)駆動信号)を超音波外科用器具241に出力することができ、駆動信号出力部は、RF電気外科駆動信号(例えば、100VのRMS駆動信号)をRF電気外科用器具241に出力することができる。発生器モジュール240の態様は、図21~図28Bを参照して本明細書で説明される。 Generator module 240 may comprise a patient-isolated stage communicating with a non-isolated stage via a power transformer. The secondary winding of the power transformer is housed within the isolation stage and is used, for example, in ultrasonic surgical instruments, RF electrosurgical instruments, and multifunctional surgical instruments including ultrasonic and RF energy modes that can be delivered singly or simultaneously. A tap configuration (eg, center-tap or non-center-tap configuration) may be provided for defining a drive signal output for delivering drive signals to various surgical instruments, such as surgical instruments. Specifically, the drive signal output can output an ultrasonic drive signal (eg, a 420V root mean square (RMS) drive signal) to the ultrasonic surgical instrument 241, and the drive signal output can output an RF An electrosurgical drive signal (eg, a 100V RMS drive signal) can be output to RF electrosurgical instrument 241 . Aspects of the generator module 240 are described herein with reference to FIGS. 21-28B.

発生器モジュール240、若しくは装置/器具235、又はその両方は、例えば、図8~図11を参照して説明されている、例えば、インテリジェント外科用器具、ロボット、及び手術室内に位置する他のコンピュータ化装置などの複数の手術室装置に接続されたモジュール式制御タワー236に連結されている。 The generator module 240, or the device/instrument 235, or both, may be used, for example, in intelligent surgical instruments, robots, and other computers located in the operating room, such as those described with reference to FIGS. It is connected to a modular control tower 236 that is connected to a number of operating room equipment, such as a compositor.

図21は、超音波器具と連結するように構成され、かつ、図20に示すモジュール式通信ハブを備える外科用データネットワーク内で適応型超音波ブレード制御アルゴリズムを実行するように更に構成された発生器の一形態である、発生器900の一実施例を示す。発生器900は、複数のエネルギーモダリティを外科用器具に送達するように構成されている。発生器900は、エネルギーを外科用器具に送達するためのRF信号及び超音波信号を単独で又は同時にのいずれかで提供する。RF信号及び超音波信号は、単独で、又は組み合わせて提供されてもよく、また同時に提供されてもよい。上述したように、少なくとも1つの発生器出力部は、単一のポートを通して複数のエネルギーモダリティ(例えば、とりわけ超音波、双極若しくは単極RF、不可逆及び/若しくは可逆電気穿孔法、並びに/又はマイクロ波エネルギー)を送達することができ、これらの信号は、組織を治療するために個別に又は同時にエンドエフェクタに送達することができる。発生器900は、波形発生器904に連結されたプロセッサ902を備える。プロセッサ902及び波形発生器904は、プロセッサ902に連結されたメモリに記憶された情報(開示を明瞭にするために示されず)に基づいて、様々な信号波形を発生するように構成されている。波形に関連するデジタル情報は、デジタル入力をアナログ出力に変換するために1つ又は2つ以上のDAC回路を含む波形発生器904に提供される。アナログ出力は、信号調節及び増幅のために、増幅器1106に供給される。増幅器906の調節され増幅された出力は、電力変圧器908に連結される。信号は、電力変圧器908を横断して患者絶縁側にある二次側に連結される。第1のエネルギーモダリティの第1の信号は、外科用器具のENERGY及びRETURNとラベルされた端子間に提供される。第2のエネルギーモダリティの第2の信号は、コンデンサ910にわたって連結され、外科用器具のENERGY及びRETURNとラベルされた端子間に提供される。2つを超えるエネルギーモダリティが出力されてもよく、したがって添え字「n」は、最大n個のENERGY端子が提供され得ることを示すために使用することができ、ここでnは、1超の正の整数であることが理解されよう。最大「n」個のリターンパス(RETURN)が、本開示の範囲から逸脱することなく提供されてもよいことも理解されよう。 FIG. 21 is a generation configured to interface with an ultrasonic instrument and further configured to execute an adaptive ultrasonic blade control algorithm within a surgical data network comprising the modular communication hub shown in FIG. 9 shows an example of a generator 900, which is one form of generator. Generator 900 is configured to deliver multiple energy modalities to a surgical instrument. Generator 900 either singly or simultaneously provides RF and ultrasound signals for delivering energy to the surgical instrument. RF and ultrasound signals may be provided alone, in combination, or may be provided simultaneously. As noted above, at least one generator output may transmit multiple energy modalities (e.g., ultrasound, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave, among others) through a single port. energy) can be delivered, and these signals can be delivered to the end effector individually or simultaneously to treat the tissue. Generator 900 comprises a processor 902 coupled to a waveform generator 904 . Processor 902 and waveform generator 904 are configured to generate various signal waveforms based on information (not shown for clarity of disclosure) stored in memory coupled to processor 902. Digital information associated with the waveform is provided to waveform generator 904, which includes one or more DAC circuits to convert the digital input to analog output. The analog output is provided to amplifier 1106 for signal conditioning and amplification. The conditioned and amplified output of amplifier 906 is coupled to power transformer 908 . The signal is coupled across power transformer 908 to the secondary on the patient-isolated side. A first signal of a first energy modality is provided between terminals labeled ENERGY 1 and RETURN of the surgical instrument. A second signal of the second energy modality is coupled across capacitor 910 and provided between terminals labeled ENERGY 2 and RETURN of the surgical instrument. More than two energy modalities may be output, so the subscript "n" can be used to indicate that up to n ENERGY n- terminals can be provided, where n is greater than one. is a positive integer of . It will also be appreciated that up to 'n' return paths (RETURN n ) may be provided without departing from the scope of the present disclosure.

第1の電圧感知回路912は、ENERGY及びRETURNパスとラベルされた端子にわたって連結され、それらの間の出力電圧を測定する。第2の電圧感知回路924は、ENERGY及びRETURNパスとラベルされた端子にわたって連結され、それらの間の出力電圧を測定する。電流感知回路914は、いずれかのエネルギーモダリティの出力電流を測定するために、図示される電力変圧器908の二次側のRETURN区間と直列に配設される。異なるリターンパスが各エネルギーモダリティに対して提供される場合、別個の電流感知回路が、各リターン区間で提供されねばならない。第1の電圧感知回路912及び第2の電圧感知回路924の出力が対応の絶縁変圧器916、922に提供され、電流感知回路914の出力は、別の絶縁変圧器918に提供される。電力変圧器908の一次側(非患者絶縁側)上における絶縁変圧器916、928、922の出力は、1つ又は2つ以上のADC回路926に提供される。ADC回路926のデジタル化された出力は、更なる処理及び計算のためにプロセッサ902に提供される。出力電圧及び出力電流のフィードバック情報は、外科用器具に提供される出力電圧及び電流を調整するために、またいくつかあるパラメータの中で出力インピーダンスを計算するために使用することができる。プロセッサ902と患者絶縁回路との間の入力/出力通信は、インターフェース回路920を通して提供される。センサもまた、インターフェース回路920を介してプロセッサ902と電気通信してもよい。 A first voltage sensing circuit 912 is coupled across terminals labeled ENERGY 1 and the RETURN path to measure the output voltage therebetween. A second voltage sensing circuit 924 is coupled across terminals labeled ENERGY 2 and the RETURN path to measure the output voltage therebetween. A current sensing circuit 914 is arranged in series with the RETURN leg of the secondary side of the illustrated power transformer 908 to measure the output current of either energy modality. If different return paths are provided for each energy modality, separate current sensing circuits must be provided for each return leg. The outputs of the first voltage sensing circuit 912 and the second voltage sensing circuit 924 are provided to corresponding isolation transformers 916 , 922 and the output of the current sensing circuit 914 is provided to another isolation transformer 918 . The outputs of isolation transformers 916 , 928 , 922 on the primary side (non-patient isolated side) of power transformer 908 are provided to one or more ADC circuits 926 . The digitized output of ADC circuitry 926 is provided to processor 902 for further processing and calculations. Output voltage and output current feedback information can be used to adjust the output voltage and current provided to the surgical instrument and to calculate the output impedance, among other parameters. Input/output communication between processor 902 and patient isolation circuitry is provided through interface circuitry 920 . Sensors may also be in electrical communication with processor 902 via interface circuitry 920 .

一態様では、インピーダンスは、ENERGY/RETURNとラベルされた端子にわたって連結された第1の電圧感知回路912又はENERGY/RETURNとラベルされた端子にわたって連結された第2の電圧感知回路924のいずれかの出力を、電力変圧器908の二次側のRETURN区間と直列に配置された電流感知回路914の出力で割ることによって、プロセッサ902により判定され得る。第1の電圧感知回路912及び第2の電圧感知回路924の出力は、個別の絶縁変圧器916、922に提供され、電流感知回路914の出力は、別の絶縁変圧器916に提供される。ADC回路926からのデジタル化された電圧及び電流感知測定値は、インピーダンスを計算するためにプロセッサ902に提供される。一例として、第1のエネルギーモダリティENERGYは超音波エネルギーであってもよく、第2のエネルギーモダリティENERGYはRFエネルギーであってもよい。それでも、超音波エネルギーモダリティ及び双極又は単極RFエネルギーモダリティに加えて、他のエネルギーモダリティには、数ある中でも不可逆並びに/又は可逆電気穿孔法及び/若しくはマイクロ波エネルギーが挙げられる。また、図21に例示された例は、単一のリターンパス(RETURN)が2つ以上のエネルギーモダリティに提供され得ることを示しているが、他の態様では、複数のリターンパスRETURNが、各エネルギーモダリティENERGYに提供されてもよい。したがって、本明細書に記載されるように、超音波変換器のインピーダンスは、第1の電圧感知回路912の出力を電流感知回路914で割ることによって測定されてもよく、組織のインピーダンスは、第2の電圧感知回路924の出力を電流感知回路914で割ることによって測定されてもよい。 In one aspect, the impedance is controlled by either the first voltage sensing circuit 912 coupled across the terminals labeled ENERGY 1 /RETURN or the second voltage sensing circuit 924 coupled across the terminals labeled ENERGY 2 /RETURN. This output may be determined by processor 902 by dividing by the output of current sensing circuit 914 placed in series with the RETURN leg of the secondary of power transformer 908 . The outputs of the first voltage sensing circuit 912 and the second voltage sensing circuit 924 are provided to separate isolation transformers 916 , 922 and the output of the current sensing circuit 914 is provided to another isolation transformer 916 . Digitized voltage and current sensing measurements from ADC circuitry 926 are provided to processor 902 for calculating impedance. As an example, the first energy modality ENERGY 1 may be ultrasonic energy and the second energy modality ENERGY 2 may be RF energy. Yet, in addition to ultrasound energy modalities and bipolar or monopolar RF energy modalities, other energy modalities include irreversible and/or reversible electroporation and/or microwave energy, among others. Also, while the example illustrated in FIG. 21 shows that a single return path (RETURN) may be provided to more than one energy modality, in other aspects multiple return paths RETURN n may May be provided for each energy modality ENERGY n . Thus, as described herein, the impedance of the ultrasound transducer may be measured by dividing the output of the first voltage sensing circuit 912 by the current sensing circuit 914, and the tissue impedance is the second It may be measured by dividing the voltage sensing circuit 924 output by 2 by the current sensing circuit 914 .

図21に示すように、少なくとも1つの出力ポートを含む発生器900は、実行される組織の処置の種類に応じて、電力を、例えば、とりわけ、超音波、双極若しくは単極RF、不可逆及び/若しくは可逆電気穿孔法、並びに/又はマイクロ波エネルギーなどの1つ又は2つ以上のエネルギーモダリティの形態でエンドエフェクタに提供するために単一の出力部を有し、かつ複数のタップを有する電力変圧器908を含むことができる。例えば、発生器900は、単極又は双極RF電気外科用電極のいずれかを用いて、超音波変換器を駆動するために高電圧かつ低電流で、組織封止のためのRF電極を駆動するために低電圧かつ高電流で、又はスポット凝固のための凝固波形で、エネルギーを送達することができる。発生器900からの出力波形は、周波数を外科用器具のエンドエフェクタに提供するために、誘導、切り替え、又はフィルタリングされ得る。超音波変換器の発生器900出力部への接続部は、好ましくは、図21に示すようにENERGYとラベルされた出力部とRETURNとの間に位置するであろう。一実施例では、RF双極電極の発生器900の出力部への接続部は、好ましくは、ENERGYとラベルされた出力部とRETURNとの間に位置するであろう。単極出力部の場合、好ましい接続部は、ENERGY出力部及びRETURN出力部に接続された好適なリターンパッドへの活性電極(例えば、ペンシル型又は他のプローブ)であろう。 As shown in FIG. 21, the generator 900, including at least one output port, provides power, e.g., ultrasound, bipolar or monopolar RF, irreversible and/or or reversible electroporation, and/or a power transformer having a single output and having multiple taps to provide an end effector in the form of one or more energy modalities such as microwave energy. A device 908 can be included. For example, the generator 900 drives RF electrodes for tissue sealing using either monopolar or bipolar RF electrosurgical electrodes with high voltage and low current to drive the ultrasonic transducer. Energy can be delivered at low voltage and high current for spot coagulation, or in a coagulation waveform for spot coagulation. The output waveform from generator 900 may be induced, switched, or filtered to provide frequencies to the end effector of the surgical instrument. The connection of the ultrasonic transducer to the generator 900 output will preferably be located between the output labeled ENERGY 1 and RETURN as shown in FIG. In one embodiment, the connection to the output of the RF bipolar electrode generator 900 will preferably be located between the output labeled ENERGY 2 and RETURN. For unipolar outputs, the preferred connections would be active electrodes (eg pencil or other probes) to suitable return pads connected to the ENERGY 2 and RETURN outputs.

更なる詳細は、その全体が参照により本明細書に組み込まれる、「TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS」と題する2017年3月30日公開の米国特許出願公開第2017/0086914号に開示されている。 Further details can be found in the U.S. Patent, published Mar. 30, 2017, entitled "TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS," which is hereby incorporated by reference in its entirety. Application Publication No. 2017/0086914 disclosed in No.

本説明全体で使用される用語「無線」及びその派生語は、非固体媒体を介して変調電磁放射線の使用を通じてデータを通信し得る回路、装置、システム、方法、技術、通信チャネルなどを説明するために使用されてもよい。この用語は、関連する装置がいかなる有線も含まないことを意味するものではないが、一部の態様では、それらは存在しない可能性がある。通信モジュールは、Wi-Fi(IEEE802.11ファミリー)、WiMAX(IEEE802.16ファミリー)、IEEE802.20、ロング・ターム・エボリューション(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、Bluetooth、これらのイーサネット派生物、のみならず3G、4G、5G、及びそれ以降と指定される任意の他の無線及び有線プロトコルが挙げられるがこれらに限定されない多数の無線又は有線通信規格又はプロトコルのうちのいずれかを実装してもよい。コンピューティングモジュールは、複数の通信モジュールを含んでもよい。例えば、第1の通信モジュールは、Wi-Fi及びBluetoothなどの短距離無線通信専用であってもよく、第2の通信モジュールは、GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DOなどの長距離無線通信専用であってもよい。 As used throughout this description, the term "wireless" and its derivatives describe circuits, devices, systems, methods, techniques, communication channels, etc. that can communicate data through the use of modulated electromagnetic radiation over non-solid media. may be used for This term does not imply that the associated device does not contain any wires, although in some aspects they may not be present. Communication modules include Wi-Fi (IEEE802.11 family), WiMAX (IEEE802.16 family), IEEE802.20, Long Term Evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS , CDMA, TDMA, DECT, Bluetooth, their Ethernet derivatives, as well as any other wireless and wired protocols designated 3G, 4G, 5G, and beyond. Or it may implement any of the wired communication standards or protocols. A computing module may include multiple communication modules. For example, a first communication module may be dedicated to short-range wireless communication such as Wi-Fi and Bluetooth, and a second communication module may be dedicated to GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, etc. may be dedicated to long-range wireless communication.

本明細書で使用するとき、プロセッサ又は処理ユニットは、いくつかの外部データソース、通常はメモリ又は何らかの他のデータストリーム上で動作を実行する電子回路である。この用語は、本明細書では、多くの専用「プロセッサ」を組み合わせたシステム又はコンピュータシステム(特にシステムオンチップ(SoC))内の中央プロセッサ(中央処理ユニット)を指すために使用される。 As used herein, a processor or processing unit is an electronic circuit that performs operations on some external data source, usually memory or some other data stream. The term is used herein to refer to a central processor (central processing unit) within a system or computer system (particularly a system-on-chip (SoC)) that combines many dedicated "processors".

本明細書で使用するとき、チップ上のシステム又はシステムオンチップ(SoC又はSOC)は、コンピュータ又は他の電子システムの全ての構成要素を統合する集積回路(「IC」又は「チップ」としても知られる)である。これは、デジタル、アナログ、混合信号、及び多くの場合は高周波数機能を、全て単一の基材上に含むことができる。SoCは、マイクロコントローラ(又はマイクロプロセッサ)を、グラフィックス処理ユニット(GPU)、Wi-Fiモジュール、又はコプロセッサなどの最新の周辺装置と統合する。SoCは、内蔵メモリを含んでもよく、含まなくてもよい。 As used herein, a system-on-a-chip or system-on-chip (SoC or SOC) is an integrated circuit (also known as an "IC" or "chip" that integrates all the components of a computer or other electronic system). is available). It can include digital, analog, mixed signal, and often high frequency functions all on a single substrate. SoCs integrate microcontrollers (or microprocessors) with modern peripherals such as graphics processing units (GPUs), Wi-Fi modules, or co-processors. The SoC may or may not include embedded memory.

本明細書で使用するとき、マイクロコントローラ又はコントローラは、マイクロプロセッサを周辺回路及びメモリと統合するシステムである。マイクロコントローラ(又はマイクロコントローラユニットのMCU)は、単一の集積回路上の小型コンピュータとして実装されてもよい。これはSoCと同様であってもよく、SoCは、その構成要素の1つとしてマイクロコントローラを含み得る。マイクロコントローラは、1つ又は2つ以上のコア処理ユニット(CPU)と共にメモリ及びプログラム可能な入力/出力周辺機器を収容することができる。強誘電性のRAM、NORフラッシュ、又はOTP ROMの形態のプログラムメモリ、及び少量のRAMもまた、チップ上にしばしば含まれる。マイクロコントローラは、パーソナルコンピュータ又は様々な個別のチップで構成された他の汎用用途で使用されるマイクロプロセッサとは対照的に、組み込み型用途用に採用され得る。 As used herein, a microcontroller or controller is a system that integrates a microprocessor with peripheral circuits and memory. A microcontroller (or microcontroller unit MCU) may be implemented as a small computer on a single integrated circuit. This may be similar to a SoC, which may include a microcontroller as one of its components. A microcontroller may house memory and programmable input/output peripherals along with one or more core processing units (CPUs). Program memory in the form of ferroelectric RAM, NOR flash, or OTP ROM, and small amounts of RAM are also often included on the chip. Microcontrollers may be employed for embedded applications, as opposed to microprocessors used in personal computers or other general purpose applications made up of various discrete chips.

本明細書で使用するとき、コントローラ又はマイクロコントローラという用語は、周辺装置とインターフェースするスタンドアロンIC又はチップ装置であってもよい。これは、その装置の動作(及び装置との接続)を管理する外部装置上のコンピュータ又はコントローラの2つの部分間の連結部であってもよい。 As used herein, the term controller or microcontroller may be a standalone IC or chip device that interfaces with peripheral devices. This may be the link between the two parts of the computer or controller on the external device that manages the operation of that device (and the connection with the device).

本明細書で説明されるプロセッサ又はマイクロコントローラはいずれも、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。一態様では、プロセッサは、例えば、その詳細が製品データシートで入手可能である、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルシリアルランダムアクセスメモリ(SRAM)、StellarisWare(登録商標)ソフトウェアを搭載した内部読み出し専用メモリ(ROM)、2KBの電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、1つ又は2つ以上のパルス幅変調(PWM)モジュール、1つ又は2つ以上の直交エンコーダ入力(QEI)アナログ、12個のアナログ入力チャネルを備える1つ又は2つ以上の12ビットアナログ-デジタル変換器(ADC)を含む、Texas Instrumentsから入手可能なLM4F230H5QR ARM Cortex-M4Fプロセッサコアであってもよい。 Any processor or microcontroller described herein may be any single-core or multi-core processor, such as those known under the trade name ARM Cortex manufactured by Texas Instruments. In one aspect, the processor has on-chip memory, e.g., 256 KB of single-cycle flash memory or other non-volatile memory at up to 40 MHz, details of which are available in the product datasheet, to improve performance beyond 40 MHz. 1 or 2 prefetch buffers, 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM) One or more pulse width modulation (PWM) modules, one or more quadrature encoder input (QEI) analog, one or more 12-bit analog-to-digital converters (ADC) with 12 analog input channels ), including the LM4F230H5QR ARM Cortex-M4F processor core available from Texas Instruments.

一態様では、プロセッサは、同じくTexas Instruments製のHercules ARM Cortex R4の商品名で知られるTMS570及びRM4xなどの2つのコントローラ系ファミリーを含む安全コントローラを含んでもよい。安全コントローラは、拡張性のある性能、接続性、及びメモリの選択肢を提供しながら、高度な集積型安全機構を提供するために、中でも特に、IEC61508及びISO26262の安全限界用途専用に構成されてもよい。 In one aspect, the processor may include a safety controller that includes two controller family families, such as the TMS570 and RM4x, also known by the trade name Hercules ARM Cortex R4, also manufactured by Texas Instruments. Safety controllers may be configured specifically for IEC61508 and ISO26262 safety limit applications to provide advanced integrated safety mechanisms while offering scalable performance, connectivity, and memory options. good.

モジュール式装置は、外科用ハブ内に受容可能な(例えば図3及び図9に関連して説明される)モジュールと、対応する外科用ハブと接続又はペアリングするために様々なモジュールに接続され得る外科用装置又は器具と、を含む。モジュール式装置としては、例えば、インテリジェント外科用器具、医療用撮像装置、吸引/灌注装置、排煙器、エネルギー発生器、ベンチレータ、吸入器、及びディスプレイが挙げられる。本明細書に記載されるモジュール式装置は、制御アルゴリズムによって制御することができる。制御アルゴリズムは、モジュール式装置自体上で、特定のモジュール式装置がペアリングされる外科用ハブ上で、又はモジュール式装置及び外科用ハブの両方の上で(例えば、分散コンピューティングアーキテクチャを介して)、実行され得る。いくつかの例示では、モジュール式装置の制御アルゴリズムは、モジュール式装置自体によって(すなわち、モジュール式装置内の、モジュール式装置上の、又はモジュール式装置に接続されたセンサによって)感知されたデータに基づいて装置を制御する。このデータは、手術中の患者(例えば、組織特性又は注入圧)又はモジュール式装置自体(例えば、前進するナイフの速度、モータ電流、又はエネルギーレベル)に関連し得る。例えば、外科用ステープル留め及び切断器具の制御アルゴリズムは、ナイフが前進する際にナイフが遭遇する抵抗に基づき、器具のモータが組織を貫いてそのナイフを駆動させる速度を制御することができる。 Modular devices are connected to various modules for connection or pairing with corresponding surgical hubs (e.g., described in connection with FIGS. 3 and 9) receivable within a surgical hub. a surgical device or instrument to obtain. Modular devices include, for example, intelligent surgical instruments, medical imaging devices, suction/irrigation devices, smoke evacuators, energy generators, ventilators, inhalers, and displays. The modular devices described herein can be controlled by control algorithms. Control algorithms may be implemented on the modular device itself, on the surgical hub with which the particular modular device is paired, or on both the modular device and the surgical hub (e.g., via a distributed computing architecture). ), can be executed. In some examples, the control algorithm for the modular device is based on data sensed by the modular device itself (i.e., by sensors within, on, or connected to the modular device). control the device based on This data may relate to the patient (eg, tissue properties or injection pressure) during surgery or the modular device itself (eg, advancing knife speed, motor current, or energy level). For example, a control algorithm for a surgical stapling and severing instrument can control the speed at which the instrument's motor drives the knife through tissue based on the resistance encountered by the knife as it advances.

図22は、発生器1100と、これと共に使用可能な様々な外科用器具1104、1106、1108と、を備える外科システム1000の一形態を示し、外科用器具1104は超音波外科用器具であり、外科用器具1106はRF電気外科用器具であり、多機能型外科用器具1108は組み合わせ超音波/RF電気外科用器具である。発生器1100は、様々な外科用器具と共に使用するように構成可能である。様々な形態によれば、発生器1100は、例えば、超音波外科用器具1104、RF電気外科用器具1106、並びに発生器1100から同時に送達されるRFエネルギー及び超音波エネルギーを統合する多機能型外科用器具1108を含む様々な種類の様々な外科用装置と共に使用するように構成可能であり得る。図22の形態では、発生器1100は、外科用器具1104、1106、1108とは別個に示されているが、一形態では、発生器1100は、外科用器具1104、1106、1108のうちのいずれかと一体的に形成されて、一体型外科システムを形成してもよい。発生器1100は、発生器1100のコンソールの前側パネル上に位置する入力装置1110を含む。入力装置1110は、発生器1100の動作をプログラムするのに適した信号を生成する任意の適切な装置を含むことができる。発生器1100は、有線又は無線通信用に構成されてもよい。 FIG. 22 shows one form of surgical system 1000 comprising a generator 1100 and various surgical instruments 1104, 1106, 1108 usable therewith, wherein surgical instrument 1104 is an ultrasonic surgical instrument; Surgical instrument 1106 is an RF electrosurgical instrument and multi-function surgical instrument 1108 is a combined ultrasonic/RF electrosurgical instrument. Generator 1100 is configurable for use with various surgical instruments. According to various aspects, the generator 1100 is, for example, an ultrasonic surgical instrument 1104, an RF electrosurgical instrument 1106, and a multi-function surgical instrument that integrates RF and ultrasonic energy simultaneously delivered from the generator 1100. The surgical instrument 1108 may be configurable for use with various types of various surgical devices. In the form of FIG. 22, generator 1100 is shown separate from surgical instruments 1104, 1106, 1108, but in one form, generator 1100 is attached to any of surgical instruments 1104, 1106, 1108. It may be formed integrally with the same to form an integrated surgical system. The generator 1100 includes an input device 1110 located on the front panel of the console of the generator 1100 . Input device 1110 may include any suitable device that generates signals suitable for programming the operation of generator 1100 . Generator 1100 may be configured for wired or wireless communication.

発生器1100は、複数の外科用器具1104、1106、1108を駆動するように構成される。第1の外科用器具は超音波外科用器具1104であり、ハンドピース1105(HP)、超音波変換器1120、シャフト1126、及びエンドエフェクタ1122を備える。エンドエフェクタ1122は、超音波変換器1120と音響的に連結された超音波ブレード1128及びクランプアーム1140を備える。ハンドピース1105は、クランプアーム1140を動作させるトリガ1143と、超音波ブレード1128又は他の機能に通電し、駆動するためのトグルボタン1134a、1134b、1134cの組み合わせと、を備える。トグルボタン1134a、1134b、1134cは、発生器1100を用いて超音波変換器1120に通電するように構成することができる。 Generator 1100 is configured to drive multiple surgical instruments 1104 , 1106 , 1108 . A first surgical instrument is an ultrasonic surgical instrument 1104 , comprising a handpiece 1105 (HP), an ultrasonic transducer 1120 , a shaft 1126 and an end effector 1122 . End effector 1122 comprises an ultrasonic blade 1128 and a clamp arm 1140 acoustically coupled to ultrasonic transducer 1120 . Handpiece 1105 includes a trigger 1143 to operate clamp arm 1140 and a combination of toggle buttons 1134a, 1134b, 1134c to energize and drive ultrasonic blade 1128 or other functions. Toggle buttons 1134 a , 1134 b , 1134 c can be configured to energize ultrasonic transducer 1120 with generator 1100 .

発生器1100はまた、第2の外科用器具1106を駆動するようにも構成される。第2の外科用器具1106は、RF電気外科用器具であり、ハンドピース1107(HP)、シャフト1127、及びエンドエフェクタ1124を備える。エンドエフェクタ1124は、クランプアーム1142a、1142b内に電極を備え、シャフト1127の導電体部分を通って戻る。電極は、発生器1100内の双極エネルギー源に連結され、双極エネルギー源によって通電される。ハンドピース1107は、クランプアーム1142a、1142bを動作させるためのトリガ1145と、エンドエフェクタ1124内の電極に通電するためのエネルギースイッチを作動するためのエネルギーボタン1135と、を備える。 Generator 1100 is also configured to drive a second surgical instrument 1106 . Second surgical instrument 1106 is an RF electrosurgical instrument and includes handpiece 1107 (HP), shaft 1127 and end effector 1124 . End effector 1124 includes electrodes in clamp arms 1142 a , 1142 b and returns through the conductive portion of shaft 1127 . The electrodes are coupled to and energized by a bipolar energy source within generator 1100 . Handpiece 1107 includes a trigger 1145 for operating clamp arms 1142 a , 1142 b and an energy button 1135 for activating an energy switch for energizing electrodes in end effector 1124 .

発生器1100はまた、多機能型外科用器具1108を駆動するようにも構成される。多機能型外科用器具1108は、ハンドピース1109(HP)、シャフト1129、及びエンドエフェクタ1125を備える。エンドエフェクタ1125は、超音波ブレード1149及びクランプアーム1146を備える。超音波ブレード1149は、超音波変換器1120と音響的に連結される。ハンドピース1109は、クランプアーム1146を動作させるトリガ1147と、超音波ブレード1149又は他の機能に通電し、駆動するためのトグルボタン1137a、1137b、1137cの組み合わせと、を備える。トグルボタン1137a、1137b、1137cは、発生器1100を用いて超音波変換器1120に通電し、かつ同様に発生器1100内に収容された双極エネルギー源を用いて超音波ブレード1149に通電するように構成することができる。 Generator 1100 is also configured to drive multi-function surgical instrument 1108 . Multi-function surgical instrument 1108 includes handpiece 1109 (HP), shaft 1129 and end effector 1125 . End effector 1125 includes ultrasonic blade 1149 and clamp arm 1146 . Ultrasonic blade 1149 is acoustically coupled with ultrasonic transducer 1120 . Handpiece 1109 includes a trigger 1147 to operate clamp arm 1146 and a combination of toggle buttons 1137a, 1137b, 1137c to energize and drive ultrasonic blade 1149 or other functions. Toggle buttons 1137a, 1137b, 1137c are used to energize the ultrasonic transducer 1120 with the generator 1100 and to energize the ultrasonic blade 1149 with the bipolar energy source also contained within the generator 1100. Can be configured.

発生器1100は、様々な外科用器具と共に使用するように構成可能である。様々な形態によれば、発生器1100は、例えば、超音波外科用器具1104、RF電気外科用器具1106、並びに発生器1100から同時に送達されるRFエネルギー及び超音波エネルギーを統合する多機能型外科用器具1108を含む様々な種類の様々な外科用装置と共に使用するように構成可能であり得る。図22の形態では、発生器1100は、外科用器具1104、1106、1108とは別個に示されているが、別の形態では、発生器1100は、外科用器具1104、1106、1108のうちのいずれか1つと一体的に形成されて、一体型外科システムを形成してもよい。上述したように、発生器1100は、発生器1100のコンソールの前側パネル上に位置する入力装置1110を含む。入力装置1110は、発生器1100の動作をプログラムするのに適した信号を生成する任意の適切な装置を含むことができる。発生器1100はまた、1つ又は2つ以上の出力装置1112を含んでもよい。電気信号波形をデジタル的に生成するための発生器、及び外科用器具の更なる態様は、その全体が参照により本明細書に組み込まれる米国特許出願公開第2017-0086914-A1号に記載されている。 Generator 1100 is configurable for use with various surgical instruments. According to various aspects, the generator 1100 is, for example, an ultrasonic surgical instrument 1104, an RF electrosurgical instrument 1106, and a multi-function surgical instrument that integrates RF and ultrasonic energy simultaneously delivered from the generator 1100. The surgical instrument 1108 may be configurable for use with various types of various surgical devices. 22, the generator 1100 is shown separate from the surgical instruments 1104, 1106, 1108; Either one may be integrally formed to form an integrated surgical system. As mentioned above, the generator 1100 includes an input device 1110 located on the front panel of the console of the generator 1100 . Input device 1110 may include any suitable device that generates signals suitable for programming the operation of generator 1100 . Generator 1100 may also include one or more output devices 1112 . Further aspects of a generator for digitally generating electrical signal waveforms and surgical instruments are described in US Patent Application Publication No. 2017-0086914-A1, which is incorporated herein by reference in its entirety. there is

図23は、本開示の少なくとも1つの態様による、例示の超音波装置1104のエンドエフェクタ1122である。エンドエフェクタ1122は、導波管を介して超音波変換器1120に連結され得るブレード1128を含み得る。本明細書で説明されるように、超音波変換器1120によって駆動されると、ブレード1128は振動することができ、組織と接触すると、組織を切断及び/又は凝固することができる。様々な態様によると、かつ図23に例示するように、エンドエフェクタ1122はまた、エンドエフェクタ1122のブレード1128と協働作用するように構成され得るクランプアーム1140を含み得る。ブレード1128と共に、クランプアーム1140は、一連のジョーを含み得る。クランプアーム1140は、器具部分1104のシャフト1126の遠位端に枢動可能に接続され得る。クランプアーム1140は、TEFLON(登録商標)又は他の好適な低摩擦材料から形成され得るクランプアーム組織パッド1163を含み得る。パッド1163は、ブレード1128と協働するように装着されて、クランプアーム1140の枢動運動が、クランプパッド1163をブレード1128と実質的に平行な関係で、かつこれと接触するように位置決めすることができる。この構成により、クランプされる組織片は、組織パッド1163とブレード1128との間に把持され得る。組織パッド1163は、ブレード1128と協働して組織の把持を改善するために、軸方向に離間して近位方向に延在する複数の把持歯1161含む鋸歯様構成を備えてもよい。クランプアーム1140は、図23に示される開放位置から、閉鎖位置(クランプアーム1140がブレード1128と接触するか又は近接する)まで、任意の好適な様式で移行し得る。例えば、ハンドピース1105は、ジョー閉鎖トリガを含み得る。臨床医によって作動されると、ジョー閉鎖トリガはクランプアーム1140を任意の好適な様式で枢動させ得る。 FIG. 23 is an end effector 1122 of an exemplary ultrasound device 1104, according to at least one aspect of the present disclosure. End effector 1122 may include blade 1128 that may be coupled to ultrasonic transducer 1120 via a waveguide. As described herein, the blade 1128 can vibrate when driven by the ultrasonic transducer 1120 and can cut and/or coagulate tissue upon contact with the tissue. According to various aspects, and as illustrated in FIG. 23, the end effector 1122 can also include a clamp arm 1140 that can be configured to cooperate with the blade 1128 of the end effector 1122. As shown in FIG. Along with blade 1128, clamp arm 1140 may include a series of jaws. Clamp arm 1140 may be pivotally connected to the distal end of shaft 1126 of instrument portion 1104 . Clamp arm 1140 may include clamp arm tissue pad 1163, which may be formed from TEFLON® or other suitable low friction material. Pad 1163 is cooperatively mounted with blade 1128 such that pivotal movement of clamp arm 1140 positions clamp pad 1163 in substantially parallel relationship with and in contact with blade 1128. can be done. With this configuration, the piece of tissue to be clamped can be grasped between tissue pad 1163 and blade 1128 . Tissue pad 1163 may comprise a sawtooth-like configuration including a plurality of axially-spaced proximally-extending grasping teeth 1161 to cooperate with blade 1128 to improve tissue grasping. Clamp arm 1140 may transition in any suitable manner from the open position shown in FIG. For example, handpiece 1105 may include a jaw closure trigger. When actuated by a clinician, the jaw closure trigger may pivot clamp arm 1140 in any suitable manner.

発生器1100は、駆動信号を任意の好適な方法で超音波変換器1120に提供するように起動され得る。例えば、発生器1100は、フットスイッチケーブル1432を介して発生器1100に連結されたフットスイッチ1430(図24)を含んでもよい。臨床医は、フットスイッチ1430を押し下げることにより、超音波変換器1120を起動させ、またそれによって超音波変換器1120及びブレード1128を起動させ得る。フットスイッチ1430に加えて、又はこの代わりに、装置1104のいくつかの態様は、ハンドピース1105上に位置付けられた1つ又は2つ以上のスイッチを用いてもよく、これは、起動されると、発生器1100に超音波変換器1120を作動させることができる。一態様では、例えば、1つ又は2つ以上のスイッチは、例えば、装置1104の動作モードを決定するために、一対のトグルボタン1134a、1134b、1134cを含んでもよい(図22)。例えば、トグルボタン1134aが押し下げられると、超音波発生器1100は、最大駆動信号を超音波変換器1120に提供して、超音波変換器1120に最大超音波エネルギー出力を生成させることができる。トグルボタン1134bを押すことにより、超音波発生器1100がユーザ選択可能な駆動信号を超音波変換器1120に提供して、超音波変換器1120に最大未満の超音波エネルギー出力を生成させることができる。装置1104は、追加的に又は代替的に、例えば、エンドエフェクタ1122のクランプアーム1140を介してジョーを操作するために、ジョー閉鎖トリガの位置を指示するための第2のスイッチを含んでもよい。また、いくつかの態様では、超音波発生器1100は、ジョー閉鎖トリガの位置に基づいて起動することができる(例えば、臨床医がジョー閉鎖トリガを押し下げてクランプアーム1140を介してジョーを閉鎖すると、超音波エネルギーを印加することができる)。 Generator 1100 may be activated to provide drive signals to ultrasonic transducer 1120 in any suitable manner. For example, generator 1100 may include footswitch 1430 (FIG. 24) coupled to generator 1100 via footswitch cable 1432 . The clinician may activate the ultrasound transducer 1120 by depressing the footswitch 1430 and thereby activate the ultrasound transducer 1120 and the blade 1128 . In addition to or in lieu of footswitch 1430, some versions of device 1104 may employ one or more switches located on handpiece 1105 that, when activated, , the generator 1100 can activate the ultrasonic transducer 1120 . In one aspect, for example, one or more switches may include a pair of toggle buttons 1134a, 1134b, 1134c (FIG. 22), for example, to determine the operational mode of device 1104. FIG. For example, when toggle button 1134a is depressed, ultrasonic generator 1100 may provide a maximum drive signal to ultrasonic transducer 1120, causing ultrasonic transducer 1120 to produce maximum ultrasonic energy output. Pressing toggle button 1134b causes ultrasonic generator 1100 to provide a user-selectable drive signal to ultrasonic transducer 1120 to cause ultrasonic transducer 1120 to produce less than maximum ultrasonic energy output. . Device 1104 may additionally or alternatively include a second switch for indicating the position of a jaw closure trigger, for example to manipulate the jaws via clamp arm 1140 of end effector 1122 . Also, in some aspects, the ultrasonic generator 1100 can be activated based on the position of the jaw closure trigger (eg, when the clinician depresses the jaw closure trigger to close the jaws via the clamp arm 1140). , ultrasonic energy can be applied).

更に又はあるいは、1つ又は2つ以上のスイッチは、押し下げられると、発生器1100にパルス出力を提供させるトグルボタン1134cを含むことができる(図22)。パルスは、例えば、任意の好適な周波数及び分類で提供されてもよい。ある特定の態様では、パルスの電力レベルは、例えば、トグルボタン1134a、1134bに関連付けられた電力レベル(最大、最大未満)であってもよい。 Additionally or alternatively, one or more of the switches may include a toggle button 1134c that, when depressed, causes the generator 1100 to provide a pulse output (FIG. 22). Pulses may be provided at any suitable frequency and classification, for example. In certain aspects, the power level of the pulse may be, for example, the power level (maximum, less than maximum) associated with toggle buttons 1134a, 1134b.

装置1104は、トグルボタン1134a、1134b、1134cの任意の組み合わせを含み得ることが理解されよう(図22)。例えば、装置1104は、最大超音波エネルギー出力を生成するためのトグルボタン1134a、及び1回毎に最大又は最大未満の電力レベルのいずれかでパルス出力を生成するトグルボタン1134cの2つのトグルボタンのみを有するように構成され得る。このように、発生器1100の駆動信号出力構成は、5つの連続信号、又は任意の個別の数の個々のパルス信号(1、2、3、4、又は5回)であってもよい。特定の態様では、特定の駆動信号構成は、例えば、発生器1100のEEPROM設定、及び/又はユーザの電力レベル選択(複数可)、に基づき制御され得る。 It will be appreciated that device 1104 may include any combination of toggle buttons 1134a, 1134b, 1134c (FIG. 22). For example, device 1104 has only two toggle buttons, toggle button 1134a to produce maximum ultrasonic energy output, and toggle button 1134c to produce pulsed output at either maximum or less than maximum power levels each time. can be configured to have Thus, the drive signal output configuration of generator 1100 may be five continuous signals, or any discrete number of individual pulse signals (1, 2, 3, 4, or 5 times). In certain aspects, a particular drive signal configuration may be controlled based on, for example, EEPROM settings of generator 1100 and/or user power level selection(s).

特定の態様では、トグルボタン1134cの代替として2位置スイッチが提供され得る(図22)。例えば、装置1104は、最大電力レベルで連続出力を発生させるためのトグルボタン1134aと、2位置トグルボタン1134bと、を含んでもよい。第1の戻り止め位置では、トグルボタン1134bは最大電力レベル未満で連続出力を発生させてもよく、第2の戻り止め位置では、トグルボタン1134bは(例えば、EEPROM設定に応じて、最大又は最大未満のいずれかの出力レベルで)パルス出力を発生させてもよい。 In certain aspects, a two-position switch may be provided as an alternative to toggle button 1134c (FIG. 22). For example, the device 1104 may include a toggle button 1134a and a two-position toggle button 1134b for generating continuous output at maximum power level. In the first detent position, toggle button 1134b may generate continuous output at less than the maximum power level, and in the second detent position, toggle button 1134b may generate (e.g., maximum or maximum power output depending on EEPROM settings). A pulsed output may be generated at any output level below).

いくつかの態様では、RF電気外科用エンドエフェクタ1124、1125(図22)はまた、一対の電極を備えてもよい。電極は、例えばケーブルを介して、発生器1100と通信し得る。電極は、例えば、クランプアーム1142a、1146とブレード1142b、1149との間に存在する組織片のインピーダンスを測定するために使用され得る。発生器1100は、電極に信号(例えば、非治療的信号)を提供し得る。組織片のインピーダンスは例えば、信号の電流、電圧などをモニタリングすることによって見出され得る。 In some variations, RF electrosurgical end effectors 1124, 1125 (FIG. 22) may also include a pair of electrodes. The electrodes may communicate with the generator 1100 via cables, for example. Electrodes can be used, for example, to measure the impedance of a piece of tissue present between clamp arms 1142a, 1146 and blades 1142b, 1149. FIG. Generator 1100 may provide signals (eg, non-therapeutic signals) to the electrodes. The impedance of the piece of tissue can be found, for example, by monitoring the current, voltage, etc. of the signal.

様々な態様では、発生器1100は、図22の外科システム1000の略図である図24に示すモジュール及び/又はブロックなどのいくつかの別個の機能的要素を備えてもよい。様々な機能要素又はモジュールが、様々な種類の外科用装置1104、1106、1108を駆動するように構成され得る。例えば、超音波発生器モジュールは、超音波装置1104などの超音波装置を駆動し得る。電気外科/RF発生器モジュールは、電気外科用装置1106を駆動し得る。モジュールは、外科用装置1104、1106、1108を駆動するために対応する駆動信号を生成することができる。様々な態様では、超音波発生器モジュール及び/又は電気外科/RF発生器モジュールはそれぞれ、発生器1100と一体的に形成されてもよい。あるいは、モジュールのうち1つ又は2つ以上が、発生器1100と電気的に連結された個別の回路モジュールとして提供されてもよい。(モジュールはこの選択肢を例示するために仮想線で示されている)。また、いくつかの態様では、電気外科/RF発生器モジュールは、超音波発生器モジュールと一体的に形成されてもよく、又はその逆であってもよい。 In various aspects, the generator 1100 may comprise several separate functional elements such as the modules and/or blocks shown in FIG. 24, which is a schematic representation of the surgical system 1000 of FIG. Various functional elements or modules may be configured to drive various types of surgical devices 1104 , 1106 , 1108 . For example, an ultrasound generator module may drive an ultrasound device, such as ultrasound device 1104 . Electrosurgical/RF generator module may drive electrosurgical device 1106 . The modules can generate corresponding drive signals to drive the surgical devices 1104 , 1106 , 1108 . In various aspects, the ultrasound generator module and/or the electrosurgical/RF generator module may each be integrally formed with the generator 1100 . Alternatively, one or more of the modules may be provided as separate circuit modules electrically coupled to generator 1100 . (The module is shown in phantom to illustrate this option). Also, in some aspects, the electrosurgical/RF generator module may be integrally formed with the ultrasound generator module or vice versa.

記載される態様によれば、超音波発生器モジュールは、特定の電圧、電流、及び周波数(例えば、55,500サイクル/秒、又はHz)の駆動信号又は複数の駆動信号を生成し得る。駆動信号又は複数の駆動信号は、超音波装置1104、特に、例えば上記のように動作し得る変換器1120に提供され得る。一態様では、発生器1100は、高い分解能、精度、及び再現性を備え得る(stepped with)特定の電圧、電流、及び/又は周波数出力信号の駆動信号を生成するように構成することができる。 According to the described aspects, the ultrasonic generator module can generate a drive signal or multiple drive signals of a particular voltage, current, and frequency (eg, 55,500 cycles/second, or Hz). A drive signal or signals may be provided to the ultrasound device 1104, and in particular the transducer 1120, which may operate, for example, as described above. In one aspect, the generator 1100 can be configured to generate drive signals of specific voltage, current, and/or frequency output signals that can be stepped with high resolution, accuracy, and repeatability.

記載される態様によれば、電気外科/RF発生器モジュールは、無線周波数(RF)エネルギーを使用して、双極電気外科処置を実施するのに十分な出力電力で駆動信号又は複数の駆動信号を生成し得る。双極電気外科用途では、例えば、駆動信号は、上述したように、例えば電気外科用装置1106の電極に提供されてもよい。したがって、発生器1100は、組織を治療するのに十分な電気エネルギーを組織に適用することにより、治療目的のために構成され得る(例えば、凝固、焼灼、組織溶接など)。 According to the described aspects, an electrosurgical/RF generator module uses radio frequency (RF) energy to generate a drive signal or signals with sufficient output power to perform a bipolar electrosurgical procedure. can be generated. In bipolar electrosurgical applications, for example, drive signals may be provided, for example, to the electrodes of electrosurgical device 1106, as described above. Thus, the generator 1100 may be configured for therapeutic purposes (eg, coagulation, ablation, tissue welding, etc.) by applying electrical energy to tissue sufficient to treat the tissue.

発生器1100は、例えば、発生器1100のコンソールの前側パネル上に位置する入力装置2150(図27B)を備えることができる。入力装置2150は、発生器1100の動作をプログラムするのに適した信号を生成する任意の適切な装置を含むことができる。動作中、ユーザは、入力装置2150を使用して発生器1100の動作をプログラムする、ないしは別の方法で制御することができる。入力装置2150は、発生器1100の動作(例えば、超音波発生器モジュール及び/又は電気外科/RF発生器モジュールの動作)を制御するために、発生器によって(例えば、発生器内に収容される1つ又は2つ以上のプロセッサによって)使用され得る信号を生成する、任意の好適な装置を含み得る。様々な態様では、入力装置2150は、ボタン、スイッチ、サムホイール、キーボード、キーパッド、タッチスクリーンモニタ、ポインティング装置、汎用又は専用のコンピュータへの遠隔接続のうちの1つ又は2つ以上を含む。他の態様では、入力装置2150は、例えば、タッチスクリーンモニタ上に表示される1つ又は2つ以上のユーザインターフェーススクリーンなどの好適なユーザインターフェースを含んでもよい。したがって、入力装置2150により、ユーザは、例えば、超音波発生器モジュール及び/又は電気外科/RF発生器モジュールによって生成される駆動信号又は複数の駆動信号の、電流(I)、電圧(V)、周波数(f)、及び/又は期間(T)などの、発生器の様々な動作パラメータを設定又はプログラミングすることができる。 The generator 1100 can include an input device 2150 (FIG. 27B) located, for example, on the front panel of the console of the generator 1100 . Input device 2150 may include any suitable device that generates signals suitable for programming the operation of generator 1100 . In operation, a user can use input device 2150 to program or otherwise control the operation of generator 1100 . An input device 2150 may be housed by (eg, within) the generator 1100 (eg, operating the ultrasound generator module and/or the electrosurgical/RF generator module) to control the operation of the generator 1100 . It may include any suitable device that generates a signal that can be used (by one or more processors). In various aspects, the input devices 2150 include one or more of buttons, switches, thumbwheels, keyboards, keypads, touch screen monitors, pointing devices, remote connections to general purpose or special purpose computers. In other aspects, input device 2150 may include a suitable user interface such as, for example, one or more user interface screens displayed on a touch screen monitor. Thus, the input device 2150 allows the user, for example, to specify the current (I), voltage (V), Various operating parameters of the generator can be set or programmed, such as frequency (f), and/or period (T).

発生器1100はまた、例えば、発生器1100のコンソールの前側パネル上に位置する出力装置2140(図27B)を含み得る。出力装置2140は、ユーザに感覚フィードバックを提供するための1つ又は2つ以上の装置を含む。このような装置は、例えば、視覚的フィードバック装置(例えば、LCD表示画面、LEDインジケータ)、可聴フィードバック装置(例えば、スピーカー、ブザー)又は触覚フィードバック装置(例えば、触覚作動装置)を含んでもよい。 The generator 1100 may also include an output device 2140 (FIG. 27B) located, for example, on the front panel of the console of the generator 1100 . Output device 2140 includes one or more devices for providing sensory feedback to the user. Such devices may include, for example, visual feedback devices (eg, LCD display screens, LED indicators), audible feedback devices (eg, speakers, buzzers) or tactile feedback devices (eg, tactile actuators).

発生器1100の特定のモジュール及び/又はブロックが例として記載され得るが、より多くの又はより少ない数のモジュール及び/又はブロックが使用されてもよく、これは依然として態様の範囲内にあることが理解できよう。更に、説明を容易にするために、モジュール及び/又はブロックに関して様々な態様が記載され得るが、そのようなモジュール及び/又はブロックは、1つ又は2つ以上のハードウェア構成要素、例えば、プロセッサ、デジタル信号プロセッサ(DSP)、プログラム可能な論理機構(PLD)、特定用途向け集積回路(ASIC)、回路、レジスタ並びに/又はソフトウェア構成要素、例えば、プログラム、サブルーチン、論理及び/若しくはハードウェア構成要素とソフトウェア構成要素との組み合わせによって実装されてもよい。 Although specific modules and/or blocks of generator 1100 may be described as examples, a greater or lesser number of modules and/or blocks may be used and still be within the scope of the embodiments. I understand. Further, to facilitate explanation, various aspects may be described in terms of modules and/or blocks, where such modules and/or blocks may refer to one or more hardware components, e.g. , digital signal processors (DSPs), programmable logic units (PLDs), application specific integrated circuits (ASICs), circuits, registers and/or software components such as programs, subroutines, logic and/or hardware components and software components.

一態様では、超音波発生器駆動モジュール及び電気外科/RF駆動モジュール1110(図22)は、ファームウェア、ソフトウェア、ハードウェア、又はそれらの任意の組み合わせとして実装される1つ又は2つ以上の埋め込みアプリケーションを含んでもよい。モジュールは、ソフトウェア、プログラム、データ、ドライバ、アプリケーションプログラムインターフェース(API)などのような様々な実行可能なモジュールを備えることができる。ファームウェアは、ビットマスクされた読み出し専用メモリ(ROM)又はフラッシュメモリのような不揮発性メモリ(NVM)に記憶することができる。様々な実装形態では、ファームウェアをROMに記憶することにより、フラッシュメモリが保存され得る。NVMは、例えば、プログラマブルROM(PROM)、消去可能プログラマブルROM(EPROM)、電気的消去可能プログラマブルROM(EEPROM)、又はダイナミックRAM(DRAM)、ダブルデータレートDRAM(DDRAM)、及び/若しくは同期DRAM(SDRAM)のような電池バックアップ式ランダムアクセスメモリ(RAM)を含む、他のタイプのメモリを含んでもよい。 In one aspect, the ultrasound generator drive module and electrosurgical/RF drive module 1110 (FIG. 22) are one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. may include Modules may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so on. The firmware can be stored in bit-masked read-only memory (ROM) or non-volatile memory (NVM) such as flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. NVM can be, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or dynamic RAM (DRAM), double data rate DRAM (DDRAM), and/or synchronous DRAM ( Other types of memory may be included, including battery-backed random access memory (RAM) such as SDRAM).

一態様では、モジュールは、装置1104、1106、1108の様々な測定可能な特性をモニタリングするためのプログラム命令を実行し、装置1104、1106、1108を動作させるための対応する出力駆動信号又は複数の出力駆動信号を生成するためのプロセッサとして実施されるハードウェア構成要素を含む。発生器1100が装置1104と共に使用される態様では、駆動信号は、切断及び/又は凝固動作モードにおいて、超音波変換器1120を駆動し得る。装置1104及び/又は組織の電気的特性は、発生器1100の動作態様を制御するために測定及び使用され、かつ/又はユーザにフィードバックとして提供されてもよい。発生器1100が装置1106と共に使用される態様では、駆動信号は、切断、凝固及び/又は乾燥モードにおいて、エンドエフェクタ1124に電気エネルギー(例えば、RFエネルギー)を供給し得る。装置1106及び/又は組織の電気的特性は、発生器1100の動作態様を制御するために測定及び使用され、かつ/又はユーザにフィードバックとして提供されてもよい。様々な態様では、上述したように、ハードウェア構成要素はDSP、PLD、ASIC、回路、及び/又はレジスタとして実施され得る。一態様では、プロセッサは、コンピュータソフトウェアプログラム命令を記憶及び実行して、超音波変換器1120及びエンドエフェクタ1122、1124、1125などの装置1104、1106、1108の様々な構成要素を駆動するための階段関数出力信号を生成するように構成されてもよい。 In one aspect, the module executes program instructions to monitor various measurable characteristics of the devices 1104, 1106, 1108 and corresponding output drive signals or multiple outputs to operate the devices 1104, 1106, 1108 It includes a hardware component implemented as a processor for generating output drive signals. In aspects in which the generator 1100 is used with the device 1104, the drive signal may drive the ultrasonic transducer 1120 in cutting and/or coagulating modes of operation. Electrical properties of the device 1104 and/or tissue may be measured and used to control operational aspects of the generator 1100 and/or provided as feedback to the user. In aspects where the generator 1100 is used with the device 1106, the drive signal may supply electrical energy (eg, RF energy) to the end effector 1124 in cutting, coagulating and/or drying modes. Electrical properties of the device 1106 and/or tissue may be measured and used to control operational aspects of the generator 1100 and/or provided as feedback to the user. In various aspects, as described above, hardware components may be implemented as DSPs, PLDs, ASICs, circuits, and/or registers. In one aspect, the processor stores and executes computer software program instructions for driving various components of the devices 1104, 1106, 1108, such as the ultrasonic transducer 1120 and the end effectors 1122, 1124, 1125. It may be configured to generate a function output signal.

電気機械的超音波システムは、超音波変換器、導波管、及び超音波ブレードを含む。電気機械的超音波システムは、超音波変換器、導波管、及び超音波ブレードの物理的特性によって定義される初期共振周波数を有する。超音波変換器は、電気機械的超音波システムの共振周波数と等しい交流電圧V(t)及び電流I(t)信号によって励起される。電気機械的超音波システムが共振するとき、電圧V(t)信号と電流I(t)信号との間の位相差はゼロである。換言すると、共振時、誘導性インピーダンスは容量性インピーダンスと等しい。超音波ブレードが加熱すると、超音波ブレード(等価静電容量としてモデル化される)のコンプライアンスによって、電気機械的超音波システムの共振周波数が変化する。したがって、誘導性インピーダンスは容量性インピーダンスともはや等しくなく、それにより電気機械的超音波システムの駆動周波数と共振周波数との間に不整合が引き起こされる。ここでシステムは、「オフレゾナンス(off-resonance)」を動作させる。駆動周波数と共振周波数との間の不整合は、超音波変換器に印加される電圧V(t)信号と電流I(t)信号との間の位相差として現れる。発生器電子機器は、電圧V(t)信号と電流I(t)信号との間の位相差を容易に監視することができ、位相差が再びゼロになるまで駆動周波数を連続的に調整することができる。この時点で、新しい駆動周波数は、電気機械的超音波システムの新しい共振周波数に等しい。位相及び/又は周波数の変化は、超音波ブレード温度の間接的測定値として使用することができる。 Electromechanical ultrasonic systems include ultrasonic transducers, waveguides, and ultrasonic blades. An electromechanical ultrasonic system has an initial resonant frequency defined by the physical properties of the ultrasonic transducer, waveguide, and ultrasonic blade. The ultrasonic transducer is excited by alternating voltage V g (t) and current I g (t) signals equal to the resonant frequency of the electromechanical ultrasonic system. When the electromechanical ultrasound system is at resonance, the phase difference between the voltage V g (t) and current I g (t) signals is zero. In other words, at resonance, the inductive impedance equals the capacitive impedance. As the ultrasonic blade heats up, the compliance of the ultrasonic blade (modeled as an equivalent capacitance) changes the resonant frequency of the electromechanical ultrasonic system. Therefore, the inductive impedance is no longer equal to the capacitive impedance, which causes a mismatch between the driving frequency and the resonant frequency of the electromechanical ultrasound system. Here the system operates "off-resonance". A mismatch between the drive frequency and the resonant frequency appears as a phase difference between the voltage V g (t) and current I g (t) signals applied to the ultrasonic transducer. The generator electronics can easily monitor the phase difference between the voltage V g (t) and current I g (t) signals and continuously adjust the drive frequency until the phase difference becomes zero again. can be adjusted. At this point, the new drive frequency equals the new resonant frequency of the electromechanical ultrasound system. Changes in phase and/or frequency can be used as an indirect measure of ultrasonic blade temperature.

図25に示すように、超音波変換器の電気機械特性は、静電容量を有する第1ブランチと、共振器の電気機械特性を規定する直列接続されたインダクタンス、抵抗、及び容量を有する第2「動作」ブランチと、を含む等価回路としてモデル化されてもよい。既知の超音波発生器は、発生器駆動信号電流の実質的に全部が動作ブランチ内に流れるように、ある共振周波数において静電容量をチューンアウトするための調整インダクタを含み得る。したがって、調整インダクタを使用することにより、発生器の駆動信号電流は、動作ブランチ電流を表し、したがって発生器はその駆動信号を制御して超音波変換器の共振周波数を維持することができる。調整インダクタはまた、発生器の周波数固定能力を改善するために、超音波変換器の相インピーダンスプロットを変換することができる。しかしながら、調整インダクタは、動作共振周波数において、超音波変換器の特定の静電容量と適合しなくてはならない。換言すると、異なる静電容量を有する異なる超音波変換器は、異なる調整インダクタを必要とする。 As shown in FIG. 25, the electromechanical properties of the ultrasonic transducer consist of a first branch with capacitance and a second branch with series connected inductance, resistance and capacitance that define the electromechanical properties of the resonator. It may be modeled as an equivalent circuit including the "operation" branch and Known ultrasonic generators may include tuning inductors for tuning out the capacitance at a certain resonant frequency such that substantially all of the generator drive signal current flows into the operating branch. Therefore, by using tuning inductors, the drive signal current of the generator represents the operating branch current, and thus the generator can control its drive signal to maintain the resonant frequency of the ultrasonic transducer. The tuning inductor can also transform the phase impedance plot of the ultrasonic transducer to improve the frequency locking ability of the generator. However, the tuning inductor must match the specific capacitance of the ultrasonic transducer at the operating resonant frequency. In other words, different ultrasonic transducers with different capacitances require different tuning inductors.

図25は、一態様による、超音波変換器1120などの超音波変換器の等価回路1500を示す。回路1500は、共振器の電気機械特性を規定する、直列接続されたインダクタンスL、抵抗R、及び容量Cを有する第1の「動作」ブランチと、静電容量Cを有する第2の容量性ブランチと、を含む。動作電流I(t)が第1ブランチを通って流れ、電流I(t)~I(t)が容量性ブランチを通って流れる状態で、駆動電流I(t)は、発生器から駆動電圧V(t)で受信されてもよい。超音波変換器の電気機械特性の制御は、I(t)及びV(t)を好適に制御することによって達成されてもよい。上述のように、既知の発生器アーキテクチャは、発生器の電流出力I(t)の実質的に全てが動作ブランチを通って流れるように、並列共振回路内で共振周波数において静電容量Cをチューンアウトするための調整インダクタL(図25に仮想線で示される)を含むことができる。この方法では、動作ブランチ電流I(t)の制御は、発生器の電流出力I(t)を制御することによって達成される。調整インダクタLは、超音波変換器の静電容量Cに特有であるが、異なる静的静電容量を有する異なる超音波変換器は、異なる調整インダクタLを必要とする。また、調整インダクタLは、単一の共振周波数で静電容量Cの公称値と一致するため、動作ブランチ電流I(t)の正確な制御は、その周波数でのみ保証される。周波数が変換器の温度によって低下すると、動作ブランチ電流の正確な制御が損なわれる。 FIG. 25 shows an equivalent circuit 1500 of an ultrasonic transducer, such as ultrasonic transducer 1120, according to one aspect. Circuit 1500 includes a first "working" branch having series-connected inductance L s , resistance R s and capacitance C s and a second branch having capacitance C 0 that defines the electromechanical properties of the resonator. and a capacitive branch of . With the operating current I m (t) flowing through the first branch and the currents I g (t)-I m (t) flowing through the capacitive branches, the driving current I g (t) is the generator may be received at a drive voltage V g (t) from . Control of the electromechanical properties of an ultrasonic transducer may be achieved by suitably controlling I g (t) and V g (t). As noted above, known generator architectures require a capacitance C 0 in the parallel resonant circuit at the resonant frequency such that substantially all of the current output I g (t) of the generator flows through the active branch. A tuning inductor L t (shown in phantom in FIG. 25) may be included to tune out the . In this method, control of the operating branch current I m (t) is achieved by controlling the current output I g (t) of the generator. The tuning inductor Lt is specific to the capacitance C0 of the ultrasonic transducer, but different ultrasonic transducers with different static capacitances require different tuning inductors Lt. Also, since the tuning inductor L t matches the nominal value of the capacitance C 0 at a single resonant frequency, accurate control of the operating branch current Im (t) is guaranteed only at that frequency. Accurate control of the operating branch currents is compromised as the frequency drops with the temperature of the converter.

発生器1100の様々な態様が、調整インダクタLに頼ることなく動作ブランチ電流I(t)を監視することができる。むしろ、発生器1100は、動的及び進行中ベースで(例えば、リアルタイムで)動作ブランチ電流I(t)の値を判定するために、特定の超音波外科用装置1104のための電力の印加間の静電容量Cの測定値を使用し得る(駆動信号の電圧及び電流フィードバックデータと共に)。したがって、発生器1100のこうした態様は、静電容量Cの公称値によって決定される単一の共振周波数のみにおいてではなく、任意の周波数で静電容量Cの任意の値と調整される又は共振するシステムをシミュレートするために、仮想調整を提供することが可能である。 Various aspects of generator 1100 can monitor operating branch currents Im (t) without resorting to tuning inductor Lt. Rather, generator 1100 applies power for a particular ultrasonic surgical device 1104 to determine the value of operating branch current I m (t) on a dynamic and ongoing basis (eg, in real-time). A measurement of the capacitance C 0 between can be used (along with the drive signal voltage and current feedback data). Thus, such aspects of the generator 1100 can be tuned with any value of capacitance C0 at any frequency, not just at a single resonant frequency determined by the nominal value of capacitance C0 , or Virtual adjustments can be provided to simulate resonant systems.

図26は、利点の中でもとりわけ、上述のインダクタレス調整を提供するための発生器1100の一態様の簡略化ブロック図である。図27A~図27Cは、一態様による図26の発生器1100のアーキテクチャを示す。図26を参照すると、発生器1100は、電力変圧器1560を介して非絶縁段階1540と通信する患者絶縁段階1520を含んでもよい。電力変圧器1560の二次巻線1580は、絶縁段階1520に含まれ、かつタップ構成を含んでもよく(例えば、センタタップ又は非センタタップ構成)、例えば、超音波外科用装置1104及び電気外科用装置1106などの様々な外科用装置に駆動信号を出力するための、駆動信号出力部1600a、1600b、1600cを画定する。特に、駆動信号出力部1600a、1600b、1600cは、超音波外科用装置1104に駆動信号(例えば、420VのRMS駆動信号)を出力してもよく、駆動信号出力部1600a、1600b、1600cは、電気外科用装置1106に駆動信号(例えば、100VのRMS駆動信号)を出力してもよく、ここで出力部1600bは電力変圧器1560のセンタタップに対応する。非絶縁段階1540は、電力変圧器1560の一次巻線1640に接続された出力部を有する電力増幅器1620を含むことができる。特定の態様では、電力増幅器1620は、例えば、プッシュプル増幅器を含み得る。非絶縁段階1540は、デジタル出力をデジタル/アナログ変換器(DAC)1680に供給するための、プログラム可能な論理機構1660を更に含んでもよく、続いてデジタル/アナログ変換器(DAC)1680は、対応するアナログ信号を電力増幅器1620の入力部に供給する。特定の態様では、プログラム可能な論理機構1660は、例えば、フィールドプログラマブルゲートアレイ(FPGA)を含むことができる。プログラム可能な論理機構1660は、DAC1680を介して電力増幅器1620の入力を制御することにより、その結果、駆動信号出力部1600a、1600b、1600cに現れる駆動信号の多数のパラメータ(例えば、周波数、波形形状、波形振幅)のいずれかを制御することができる。特定の態様では、また以下で説明するように、プログラム可能な論理機構1660、プロセッサ(例えば、以下で説明するプロセッサ1740)と共に、多くのデジタル信号処理(DSP)ベースの及び/又はその他の制御アルゴリズムを実行して、発生器1100によって出力される駆動信号のパラメータを制御することができる。 FIG. 26 is a simplified block diagram of one aspect of a generator 1100 for providing, among other advantages, inductorless regulation as described above. 27A-27C illustrate the architecture of the generator 1100 of FIG. 26 according to one aspect. Referring to FIG. 26, generator 1100 may include patient isolation stage 1520 in communication with non-isolation stage 1540 via power transformer 1560 . A secondary winding 1580 of the power transformer 1560 is included in the isolation stage 1520 and may include a tapped configuration (eg, center-tapped or non-center-tapped configuration), such as for ultrasonic surgical device 1104 and electrosurgical devices. Drive signal outputs 1600 a , 1600 b , 1600 c are defined for outputting drive signals to various surgical devices such as device 1106 . In particular, drive signal outputs 1600a, 1600b, 1600c may output drive signals (eg, 420V RMS drive signals) to ultrasonic surgical device 1104, and drive signal outputs 1600a, 1600b, 1600c may A drive signal (eg, a 100 V RMS drive signal) may be output to surgical device 1106 , where output 1600 b corresponds to the center tap of power transformer 1560 . Non-isolated stage 1540 may include a power amplifier 1620 having an output connected to primary winding 1640 of power transformer 1560 . In certain aspects, power amplifier 1620 may include, for example, a push-pull amplifier. Non-isolated stage 1540 may further include programmable logic 1660 for providing a digital output to a digital-to-analog converter (DAC) 1680, which in turn converts the corresponding An analog signal is provided to the input of power amplifier 1620 . In particular aspects, programmable logic 1660 may include, for example, a field programmable gate array (FPGA). Programmable logic 1660 controls the input of power amplifier 1620 via DAC 1680, resulting in a number of parameters (e.g., frequency, waveform shape) of the drive signal appearing at drive signal outputs 1600a, 1600b, 1600c. , waveform amplitude) can be controlled. In certain aspects, and as described below, programmable logic 1660, a processor (eg, processor 1740, described below), along with many digital signal processing (DSP)-based and/or other control algorithms may be performed to control the parameters of the drive signal output by generator 1100 .

電力は、スイッチモードレギュレータ1700によって電力増幅器1620の母線に供給することができる。特定の態様では、スイッチモードレギュレータ1700は、例えば調節可能なバックレギュレータを含むことができる。上述したように、非絶縁段階1540はプロセッサ1740を更に含むことができ、これは、一態様では、例えば、Analog Devices(Norwood,Mass.)から入手可能なADSP-21469 SHARC DSPなどのDSPプロセッサを含むことができる。特定の態様では、プロセッサ1740は、アナログデジタル変換器(ADC)1760を介してプロセッサ1740が電力増幅器1620から受信した電圧フィードバックデータに応答して、スイッチモード電力変換器1700の動作を制御することができる。例えば、一態様では、プロセッサ1740は、電力増幅器1620によって増幅される信号(例えば、RF信号)の波形エンベロープを、ADC1760を介して入力として受信することができる。プロセッサ1740は、続いて、電力増幅器1620に供給されるレール電圧が増幅信号の波形エンベロープを追跡するように、スイッチモードレギュレータ1700を(例えば、パルス幅変調(PWM)出力を介して)制御することができる。波形エンベロープに基づいて、電力増幅器1620のレール電圧を動的に変調することにより、電力増幅器1620の効率は、固定レール電圧増幅器スキームと比較して顕著に改善され得る。プロセッサ1740は、有線又は無線通信用に構成されてもよい。 Power may be supplied to the bus of power amplifier 1620 by switch mode regulator 1700 . In certain aspects, switch mode regulator 1700 may include, for example, an adjustable buck regulator. As noted above, the non-isolated stage 1540 can further include a processor 1740, which in one aspect is a DSP processor such as, for example, the ADSP-21469 SHARC DSP available from Analog Devices (Norwood, Mass.). can contain. In certain aspects, processor 1740 can control operation of switch mode power converter 1700 in response to voltage feedback data that processor 1740 receives from power amplifier 1620 via analog-to-digital converter (ADC) 1760 . can. For example, in one aspect, processor 1740 can receive as input via ADC 1760 a waveform envelope of a signal (eg, an RF signal) to be amplified by power amplifier 1620 . Processor 1740 then controls switch mode regulator 1700 (eg, via a pulse width modulated (PWM) output) such that the rail voltage supplied to power amplifier 1620 tracks the waveform envelope of the amplified signal. can be done. By dynamically modulating the rail voltage of power amplifier 1620 based on the waveform envelope, the efficiency of power amplifier 1620 can be significantly improved compared to fixed rail voltage amplifier schemes. Processor 1740 may be configured for wired or wireless communication.

特定の態様では、かつ図28A~図28Bに関連して更に詳細に記載されるように、プログラム可能な論理機構1660は、プロセッサ1740と共に、直接デジタルシンセサイザ(DDS)制御スキームを実行して、発生器1100によって出力された駆動信号の波形形状、周波数、及び/又は振幅を制御し得る。一態様では、例えば、プログラム可能な論理機構1660は、FPGAに内蔵され得る、RAM LUTなどの動的に更新されるルックアップテーブル(LUT)内に記憶された波形サンプルを呼び出すことによって、DDS制御アルゴリズム2680(図28A)を実行し得る。この制御アルゴリズムは、超音波変換器1120などの超音波変換器が、その共振周波数における明瞭な正弦波電流によって駆動され得る超音波用途で特に有用である。他の周波数が寄生共振を励起し得るため、動作分岐電流の全歪みの最小化又は低減は、これに対応して望ましくない共振効果を最小化又は低減することができる。発生器1100によって出力される駆動信号の波形形状は、出力駆動回路内に存在する様々な歪み源(例えば、電力変圧器1560、電力増幅器1620)によって影響され得るため、駆動信号に基づく電圧及び電流フィードバックデータを、プロセッサ1740によって実行される誤差制御アルゴリズムなどのアルゴリズムに入力することができ、このアルゴリズムは、動的な、進行中ベースで(例えば、リアルタイムで)、LUTに記憶された波形サンプルを適切に予歪みさせるか又は修正することによって、歪みを補償する。一態様では、LUTサンプルに加えられる予歪みの量又は程度は、計算された動作ブランチ電流と所望の電流波形形状との間の誤差に基づいてもよく、誤差は、サンプル毎に判定される。このようにして、予め歪ませたLUTサンプルは、駆動回路により処理される場合、超音波変換器を最適に駆動するために、所望の波形形状(例えば、正弦波)を有する動作ブランチ駆動信号を生じ得る。したがって、そのような態様では、LUT波形サンプルは、駆動信号の所望の波形形状ではなく、むしろ歪み効果を考慮した際の、所望の波形の動作ブランチ駆動信号を最終的に生成するのに必要な波形形状を表す。 In certain aspects, and as described in further detail in connection with FIGS. 28A-28B, programmable logic 1660 in conjunction with processor 1740 implements a direct digital synthesizer (DDS) control scheme to The waveform shape, frequency, and/or amplitude of the drive signal output by device 1100 may be controlled. In one aspect, for example, programmable logic 1660 implements DDS control by calling waveform samples stored in a dynamically updated lookup table (LUT), such as a RAM LUT, which may be embedded in an FPGA. Algorithm 2680 (FIG. 28A) may be executed. This control algorithm is particularly useful in ultrasonic applications where an ultrasonic transducer, such as ultrasonic transducer 1120, can be driven by a distinct sinusoidal current at its resonant frequency. Since other frequencies can excite parasitic resonances, minimizing or reducing the total distortion of the operating branch currents can correspondingly minimize or reduce undesirable resonance effects. Since the waveform shape of the drive signal output by generator 1100 can be affected by various distortion sources present in the output drive circuit (eg, power transformer 1560, power amplifier 1620), the voltage and current based on the drive signal The feedback data can be input to an algorithm, such as an error control algorithm executed by processor 1740, which, on a dynamic, ongoing basis (e.g., in real time), feeds waveform samples stored in the LUT. Compensate for the distortion by appropriately predistorting or modifying it. In one aspect, the amount or degree of predistortion applied to the LUT samples may be based on the error between the calculated operating branch current and the desired current waveform shape, the error being determined on a sample-by-sample basis. In this way, the pre-distorted LUT samples, when processed by the drive circuit, produce an operating branch drive signal having the desired waveform shape (e.g., sinusoidal) to optimally drive the ultrasonic transducer. can occur. Thus, in such an aspect, the LUT waveform samples are not the desired waveform shape of the drive signal, but rather the desired waveform required to ultimately produce the desired waveform of the operating branch drive signal when distortion effects are taken into account. Represents waveform shape.

非絶縁段階1540は、発生器1100によって出力された駆動信号の電圧及び電流をそれぞれサンプリングするために、それぞれの絶縁変圧器1820、1840を介して電力変圧器1560の出力部に連結されたADC1780及びADC1800を更に含むことができる。特定の態様では、ADC1780、1800は、駆動信号のオーバーサンプリングを可能にするために高速(例えば、80Msps)でサンプリングするように構成することができる。一態様では、例えば、ADC1780、1800のサンプリング速度は、駆動信号の約200倍(駆動周波数に応じて)のオーバーサンプリングを可能にすることができる。特定の態様では、ADC1780、1800のサンプリング動作は、双方向マルチプレクサを介し、入力電圧及び電流信号を受信する単一のADCによって行われ得る。発生器1100の態様における高速サンプリングの使用は、とりわけ、動作ブランチを流れる複素電流の計算(これは、特定の態様で上述したDDSベースの波形形状制御を実施するために使用され得る)、サンプリングされた信号の正確なデジタルフィルタリング、及び高精度な実消費電力の計算を可能にすることができる。ADC1780、1800によって出力される電圧及び電流フィードバックデータは、プログラム可能な論理機構1660によって受信され、かつ処理されてもよく(例えば、FIFOバッファリング、マルチプレクシング)、例えばプロセッサ1740による以後の読み出しのために、データメモリに記憶されてもよい。上記のように、電圧及び電流のフィードバックデータは、動的及び進行に応じたベースで、LUT波形サンプルを予め歪ませるか又は修正するための、アルゴリズムへの入力として使用され得る。特定の態様では、これは、電圧及び電流フィードバックデータのペアが取得されたときに、各記憶された電圧及び電流フィードバックデータのペアが、プログラム可能な論理機構1660によって出力された対応するLUTサンプルに基づいてインデックス付けされる、又は他の方法でこれと関連付けされることを必要とする場合がある。この方法によるLUTサンプルと電圧及び電流のフィードバックデータとの同期は、予歪みアルゴリズムの正確なタイミング及び安定性に寄与する。 A non-isolated stage 1540 includes an ADC 1780 and an ADC 1780 coupled to the output of power transformer 1560 via respective isolation transformers 1820, 1840 to sample the voltage and current, respectively, of the drive signal output by generator 1100. An ADC 1800 may also be included. In certain aspects, the ADCs 1780, 1800 can be configured to sample at high speeds (eg, 80 Msps) to allow oversampling of the drive signal. In one aspect, for example, the sampling rate of the ADCs 1780, 1800 can allow oversampling of the drive signal by approximately 200 times (depending on the drive frequency). In certain aspects, the sampling operations of ADCs 1780, 1800 may be performed by a single ADC receiving input voltage and current signals via a bi-directional multiplexer. The use of high-speed sampling in aspects of generator 1100 is useful, among other things, in calculating the complex current through the operating branch (which can be used to implement the DDS-based waveform shape control described above in certain aspects), It can enable accurate digital filtering of the signal and accurate calculation of real power consumption. Voltage and current feedback data output by ADCs 1780, 1800 may be received and processed (eg, FIFO buffering, multiplexing) by programmable logic 1660, eg, for subsequent readout by processor 1740. may be stored in data memory. As noted above, voltage and current feedback data can be used as inputs to algorithms to pre-distort or modify LUT waveform samples on a dynamic and progressive basis. In particular aspects, this means that each stored voltage and current feedback data pair is converted to a corresponding LUT sample output by programmable logic 1660 when the voltage and current feedback data pair is acquired. may need to be indexed based on or otherwise associated with it. Synchronization of LUT samples with voltage and current feedback data in this manner contributes to the precise timing and stability of the predistortion algorithm.

特定の態様では、電圧及び電流フィードバックデータは、駆動信号の周波数及び/又は振幅(例えば、電流振幅)を制御するために使用することができる。一態様では、例えば、電圧及び電流フィードバックデータを使用して、インピーダンス位相、例えば、電圧駆動信号と電流駆動信号との間の位相差を判定することができる。続いて、駆動信号の周波数を制御して、判定されたインピーダンス位相とインピーダンス位相設定値(例えば、0°)との間の差を最小化又は低減し、それによって高調波歪みの影響を最小化又は低減し、それに対応してインピーダンス位相の測定精度を向上させることができる。位相インピーダンス及び周波数制御信号の判定は、例えばプロセッサ1740で実行されてもよく、周波数制御信号は、プログラム可能な論理機構1660によって実行されるDDS制御アルゴリズムへの入力として供給される。 In certain aspects, voltage and current feedback data can be used to control the frequency and/or amplitude (eg, current amplitude) of the drive signal. In one aspect, for example, voltage and current feedback data can be used to determine the impedance phase, eg, the phase difference between the voltage and current drive signals. Subsequently, the frequency of the drive signal is controlled to minimize or reduce the difference between the determined impedance phase and the impedance phase setting (e.g., 0°), thereby minimizing the effects of harmonic distortion. or reduced, with a corresponding improvement in impedance phase measurement accuracy. The phase impedance and frequency control signal determinations may be performed, for example, by processor 1740 , with the frequency control signal provided as an input to the DDS control algorithm executed by programmable logic 1660 .

インピーダンス位相は、フーリエ解析によって判定され得る。一態様では、発生器電圧V(t)駆動信号と発生器電流I(t)駆動信号との間の位相差は、以下のように高速フーリエ変換(FFT)又は離散フーリエ変換(DFT)を使用して決定され得る。 Impedance phase can be determined by Fourier analysis. In one aspect, the phase difference between the generator voltage V g (t) drive signal and the generator current I g (t) drive signal is determined by Fast Fourier Transform (FFT) or Discrete Fourier Transform (DFT) as follows: can be determined using

Figure 0007275144000001
Figure 0007275144000001

正弦波の周波数でのフーリエ変換を評価することで、以下が得られる。 Evaluating the Fourier transform at the frequency of the sinusoid gives

Figure 0007275144000002
Figure 0007275144000002

他のアプローチとしては、加重最小二乗推定法、カルマンフィルタ処理法、及び空間ベクトルベース技術が挙げられる。FFT又はDFT技術における処理の実質的に全てが、例えば、2チャネル高速ADC1780、1800を用いてデジタル領域内で実行されてもよい。1つの技術では、電圧信号及び電流信号のデジタル信号サンプルは、FFT又はDFTでフーリエ変換される。任意の時点における位相角φは、以下の式によって計算することができ: Other approaches include weighted least squares estimation, Kalman filtering, and space vector-based techniques. Substantially all of the processing in the FFT or DFT technique may be performed in the digital domain using, for example, 2-channel high speed ADCs 1780, 1800. In one technique, digital signal samples of the voltage and current signals are Fourier transformed with an FFT or DFT. The phase angle φ at any point in time can be calculated by the following formula:

Figure 0007275144000003
式中、φは位相角であり、fは周波数であり、tは時間であり、φは、t=0における位相である。
Figure 0007275144000003
where φ is the phase angle, f is the frequency, t is the time, and φ 0 is the phase at t=0.

電圧V(t)信号と電流I(t)信号との間の位相差を判定するための別の技術はゼロ交差法であり、これは高精度な結果を生成する。同じ周波数を有する電圧V(t)信号及び電流I(t)信号の場合、電圧信号V(t)の各負から正のゼロ交差はパルスの開始をトリガし、一方で、電流信号I(t)の各負から正のゼロ交差はパルスの終了をトリガする。結果は、電圧信号と電流信号との間の位相角に比例するパルス幅を有するパルス列である。一態様では、パルス列を平均化フィルタに通して、位相差の測定値を得ることができる。更に、正から負のゼロ交差も、同様の方法で使用され、結果が平均化されると、DC及び高調波成分の任意の効果が低減され得る。一実装形態では、アナログ電圧V(t)信号及び電流I(t)信号は、アナログ信号が正である場合には高く、アナログ信号が負である場合には低いデジタル信号に変換される。高精度な位相評価は、高低間の急激な移行を必要とする。一態様では、RC安定化ネットワークと共にシュミットトリガを用いて、アナログ信号をデジタル信号に変換することができる。他の態様では、エッジトリガ型RSフリップフロップ及び補助回路が用いられてもよい。更に別の態様では、ゼロ交差技術は、eXclusive OR(XOR)ゲートを用いてもよい。 Another technique for determining the phase difference between the voltage V g (t) and current I g (t) signals is the zero-crossing method, which produces highly accurate results. For voltage V g (t) and current I g (t) signals with the same frequency, each negative to positive zero crossing of the voltage signal V g (t) triggers the start of a pulse, while the current signal Each negative to positive zero crossing of I g (t) triggers the end of the pulse. The result is a pulse train with a pulse width proportional to the phase angle between the voltage and current signals. In one aspect, the pulse train can be passed through an averaging filter to obtain a measure of the phase difference. Additionally, positive to negative zero crossings can be used in a similar manner, and any effects of DC and harmonic content can be reduced when the results are averaged. In one implementation, the analog voltage V g (t) and current I g (t) signals are converted to digital signals that are high when the analog signal is positive and low when the analog signal is negative. . Accurate phase estimation requires sharp transitions between highs and lows. In one aspect, a Schmidt trigger can be used in conjunction with an RC stabilization network to convert an analog signal to a digital signal. In other aspects, an edge-triggered RS flip-flop and ancillary circuitry may be used. In yet another aspect, the zero-crossing technique may employ eXclusive OR (XOR) gates.

電圧信号と電流信号との間の位相差を判定するための他の技術としては、リサージュ図形及び画像の監視;3電圧計法、交差コイル法、ベクトル電圧計及びベクトルインピーダンス法などの方法;並びに位相標準器具の使用、位相同期ループ、及び参照により本明細書に組み込まれるPhase Measurement,Peter O’Shea,2000 CRC Press LLC,<http://www.engnetbase.com>に記載の他の技術が挙げられる。 Other techniques for determining the phase difference between voltage and current signals include monitoring Lissajous figures and images; methods such as the three voltmeter method, the crossed coil method, the vector voltmeter method and the vector impedance method; Phase Measurement, Peter O'Shea, 2000 CRC Press LLC, <http://www. engnetbase. com>.

別の態様では、例えば、電流のフィードバックデータは、駆動信号の電流振幅を電流振幅設定値に維持するために監視することができる。電流振幅設定値は、直接指定されてもよく、又は指定された電圧振幅及び電力設定値に基づいて間接的に判定されてもよい。特定の態様では、電流振幅の制御は、例えば、プロセッサ1740内の比例積分微分(PID)制御アルゴリズムなどの制御アルゴリズムによって実行され得る。駆動信号の電流振幅を適切に制御するために制御アルゴリズムによって制御される変数としては、例えば、プログラム可能な論理機構1660に記憶されるLUT波形サンプルのスケーリング、及び/又はDAC1860を介したDAC1680(これは電力増幅器1620に入力を供給する)のフルスケール出力電圧を挙げることができる。 In another aspect, for example, current feedback data can be monitored to maintain the current amplitude of the drive signal at the current amplitude setpoint. The current amplitude setting may be specified directly or indirectly determined based on the specified voltage amplitude and power settings. In certain aspects, control of current amplitude may be performed by a control algorithm, such as, for example, a proportional-integral-derivative (PID) control algorithm within processor 1740 . Variables controlled by the control algorithm to properly control the current amplitude of the drive signal include, for example, scaling of LUT waveform samples stored in programmable logic 1660 and/or DAC 1680 via DAC 1860 (which supplies the input to power amplifier 1620).

非絶縁段階1540は、とりわけ、ユーザインターフェース(UI)機能を提供するために、プロセッサ1900を更に含むことができる。一態様では、プロセッサ1900は、例えば、Atmel Corporation(San Jose,Calif.)から入手可能なARM926EJ-Sコアを有するAtmel AT91 SAM9263プロセッサを含むことができる。プロセッサ1900によってサポートされるUI機能の例としては、聴覚的及び視覚的なユーザフィードバック、周辺装置との通信(例えば、ユニバーサルシリアルバス(USB)インターフェースを介して)、フットスイッチ1430との通信、入力装置2150(例えば、タッチスクリーンディスプレイ)との通信、並びに出力装置2140(例えば、スピーカ)との通信を挙げることができる。プロセッサ1900は、プロセッサ1740及びプログラム可能な論理機構と通信することができる(例えば、シリアル周辺インターフェース(SPI)バスを介して)。プロセッサ1900は、主にUI機能をサポートすることができるが、これはまた、特定の態様ではプロセッサ1740と協働して危険の緩和を実現することができる。例えば、プロセッサ1900は、ユーザ入力及び/又は他の入力(例えば、タッチスクリーン入力2150、フットスイッチ1430入力、温度センサ入力2160)の様々な態様を監視するようにプログラムされてもよく、かつ誤った状態が検出された場合は発生器1100の駆動出力を無効化することができる。 The unisolated stage 1540 can further include a processor 1900 to provide user interface (UI) functionality, among other things. In one aspect, processor 1900 can include, for example, an Atmel AT91 SAM9263 processor with an ARM926EJ-S core available from Atmel Corporation (San Jose, Calif.). Examples of UI features supported by processor 1900 include audible and visual user feedback, communication with peripherals (e.g., via a Universal Serial Bus (USB) interface), communication with footswitch 1430, input Communication with a device 2150 (eg, a touch screen display) as well as communication with an output device 2140 (eg, speakers) can be mentioned. Processor 1900 can communicate with processor 1740 and programmable logic (eg, via a serial peripheral interface (SPI) bus). Processor 1900 may primarily support UI functionality, but it may also cooperate with processor 1740 in certain aspects to provide risk mitigation. For example, processor 1900 may be programmed to monitor various aspects of user input and/or other input (eg, touch screen input 2150, footswitch 1430 input, temperature sensor input 2160) and detect errors. If a condition is detected, the drive output of generator 1100 can be disabled.

特定の態様では、プロセッサ1740(図26、図27A)及びプロセッサ1900(図26、図27B)の両方が、発生器1100の動作状態を判定し、監視することができる。プロセッサ1740の場合は、発生器1100の動作状態は、例えば、どちらの制御及び/又は診断プロセスがプロセッサ1740によって実行されるかを決定することができる。プロセッサ1900の場合は、発生器1100の動作状態は、例えば、ユーザインターフェース(例えば、ディスプレイスクリーン、音)のどの要素がユーザに提供されるかを決定することができる。プロセッサ1740、1900は、発生器1100の現在の動作状態を別個に維持し、現在の動作状態からの可能な遷移を認識及び評価することができる。プロセッサ1740は、この関係におけるマスタとして機能し、動作状態間の遷移がいつ生じるかを判定することができる。プロセッサ1900は、動作状態間の有効な遷移を認識することができ、かつ特定の遷移が適切であるかを確認することができる。例えば、プロセッサ1740がプロセッサ1900に特定の状態に遷移するように命令すると、プロセッサ1900は要求される遷移が有効であることを確認することができる。プロセッサ1900によって要求される状態間の遷移が無効であると判定された場合、プロセッサ1900は発生器1100を故障モードにすることができる。 In certain aspects, both processor 1740 (FIGS. 26, 27A) and processor 1900 (FIGS. 26, 27B) can determine and monitor the operational state of generator 1100 . In the case of processor 1740 , the operating state of generator 1100 can determine which control and/or diagnostic processes are performed by processor 1740 , for example. In the case of processor 1900, the operating state of generator 1100 can, for example, determine which elements of a user interface (eg, display screen, sounds) are presented to the user. The processors 1740, 1900 can separately maintain the current operating state of the generator 1100 and recognize and evaluate possible transitions from the current operating state. Processor 1740 acts as the master in this relationship and can determine when transitions between operating states occur. Processor 1900 can recognize valid transitions between operating states and can verify whether a particular transition is appropriate. For example, when processor 1740 directs processor 1900 to transition to a particular state, processor 1900 can ensure that the requested transition is valid. The processor 1900 may place the generator 1100 into failure mode if the transition between states requested by the processor 1900 is determined to be invalid.

非絶縁段階1540は、入力装置2150(例えば、発生器1100をオン及びオフするために使用される静電容量式タッチセンサ、静電容量式タッチスクリーン)を監視するためのコントローラ1960(図26、図27B)を更に含むことができる。特定の態様では、コントローラ1960は、プロセッサ1900と通信する少なくとも1つのプロセッサ及び/又は他のコントローラ装置を備えることができる。一態様では、例えば、コントローラ1960は、1つ又は2つ以上の静電容量式タッチセンサを介して提供されるユーザ入力を監視するように構成されたプロセッサ(例えば、Atmelから入手可能なMega168 8ビットコントローラ)を備えることができる。一態様では、コントローラ1960は、静電容量式タッチスクリーンからのタッチデータの取得を制御及び管理するためのタッチスクリーンコントローラ(例えば、Atmelから入手可能なQT5480タッチスクリーンコントローラ)を備えることができる。 The non-isolated stage 1540 includes a controller 1960 (FIG. 26, FIG. 27B) can also be included. In certain aspects, controller 1960 may comprise at least one processor and/or other controller device in communication with processor 1900 . In one aspect, for example, the controller 1960 is a processor (eg, Mega1688 available from Atmel) configured to monitor user input provided via one or more capacitive touch sensors. bit controller). In one aspect, controller 1960 can comprise a touchscreen controller (eg, QT5480 touchscreen controller available from Atmel) for controlling and managing acquisition of touch data from a capacitive touchscreen.

特定の態様では、発生器1100が「電源オフ」状態にあるとき、コントローラ1960は(例えば、後述する電源2110(図26)などの、発生器1100の電源からのラインを介して)動作電力を受信し続けることができる。このようにして、コントローラ1960は、発生器1100をオンオフするための入力装置2150(例えば、発生器1100の前側パネルに配置された静電容量式タッチセンサ)を監視し続けることができる。発生器1100が「電源オフ」状態にあるときに、コントローラ1960は、ユーザによる「オン/オフ」入力装置2150の起動が検出されると、電源を起動することができる(例えば、電源2110の1つ又は2つ以上のDC/DC電圧変換器2130(図26)の動作を有効化する)。その結果、コントローラ1960は、発生器1100を「電源オン」状態に移行させるためのシーケンスを開始することができる。逆に、発生器1100が「電源オン」状態にあるときに「オン/オフ」入力装置2150の起動が検出されると、コントローラ1960は発生器1100を「電源オフ」状態に移行させるためのシーケンスを開始することができる。特定の態様では、例えば、コントローラ1960は、「オン/オフ」入力装置2150の起動をプロセッサ1900に報告することができ、続いてプロセッサ1900は、発生器1100を「電源オフ」状態に移行させるために必要な処理シーケンスを実行する。こうした態様では、コントローラ1960は、その「電源オン」状態が確立された後に、発生器1100から電力の除去を引き起こすための独立した能力を有さない場合がある。 In certain aspects, when the generator 1100 is in a “powered off” state, the controller 1960 supplies operating power (eg, via a line from a power source of the generator 1100, such as the power source 2110 (FIG. 26) described below). can continue to receive In this manner, controller 1960 can continue to monitor input device 2150 (eg, a capacitive touch sensor located on the front panel of generator 1100) for turning generator 1100 on and off. When the generator 1100 is in the "power off" state, the controller 1960 can activate the power supply (e.g., one of the power supplies 2110) upon detecting activation of the "on/off" input device 2150 by the user. enable operation of one or more DC/DC voltage converters 2130 (FIG. 26)). As a result, controller 1960 can initiate a sequence for transitioning generator 1100 to a "power on" state. Conversely, when activation of the "on/off" input device 2150 is detected while the generator 1100 is in the "power on" state, the controller 1960 causes the sequence to transition the generator 1100 to the "power off" state. can be started. In certain aspects, for example, the controller 1960 can report activation of the “on/off” input device 2150 to the processor 1900, which then causes the generator 1100 to transition to the “power off” state. Executes the processing sequence required for In such aspects, the controller 1960 may not have the independent ability to cause removal of power from the generator 1100 after its "power on" state has been established.

特定の態様では、コントローラ1960は、「電源オン」又は「電源オフ」シーケンスが開始されたことをユーザに警告するために、発生器1100に聴覚又は他の感覚フィードバックを提供させることができる。こうした警告は、「電源オン」又は「電源オフ」シーケンスの開始時、及びシーケンスと関連する他のプロセスの開始前に提供されてもよい。 In certain aspects, the controller 1960 can cause the generator 1100 to provide auditory or other sensory feedback to alert the user that a "power on" or "power off" sequence has been initiated. Such warnings may be provided at the beginning of a "power on" or "power off" sequence and prior to the initiation of other processes associated with the sequence.

特定の態様では、絶縁段階1520は、例えば、外科用装置の制御回路(例えば、ハンドピーススイッチを備える制御回路)と、非絶縁段階1540の構成要素(例えば、プログラム可能な論理機構1660、プロセッサ1740、及び/又はプロセッサ1900など)との間の通信インターフェースを提供するために、器具インターフェース回路1980を含むことができる。器具インターフェース回路1980は、例えば赤外線(IR)ベースの通信リンクなどの、段階1520、1540間の適切な程度の電気的絶縁を維持する通信リンクを介して、非絶縁段階1540の構成要素と情報を交換することができる。例えば、非絶縁段階1540から駆動される絶縁変圧器によって電力供給される低ドロップアウト電圧レギュレータを使用して、器具インターフェース回路1980に電力を供給することができる。 In certain aspects, isolation stage 1520 includes, for example, surgical device control circuitry (eg, control circuitry comprising handpiece switches) and components of non-isolation stage 1540 (eg, programmable logic 1660, processor 1740). , and/or processor 1900). Instrument interface circuitry 1980 communicates information with the components of non-isolated stage 1540 via a communication link that maintains an appropriate degree of electrical isolation between stages 1520, 1540, such as an infrared (IR)-based communication link. can be replaced. For example, a low dropout voltage regulator powered by an isolation transformer driven from the non-isolation stage 1540 can be used to power the instrument interface circuit 1980 .

一態様では、器具インターフェース回路1980は、信号調整回路2020(図26及び図27C)と通信するプログラム可能な論理機構2000(例えば、FPGA)を備えることができる。信号調整回路2020は、プログラム可能な論理機構2000から周期信号(例えば、2kHzの方形波)を受信して同一の周波数を有する双極呼掛け信号を生成するように構成することができる。呼掛け信号は、例えば、差動増幅器によって供給される双極電流源を使用して発生させることができる。呼掛け信号は、(例えば、発生器1100を外科用装置に接続するケーブル内の導電性のペア(conductive pair)を使用することによって)外科用装置制御回路に伝達され、制御回路の状態又は構成を判定するために監視され得る。例えば、制御回路は、制御回路の状態又は構成が1つ又は2つ以上の特性に基づいて個別に識別可能であるように、呼掛け信号の1つ又は2つ以上の特性(例えば、振幅、整流)を修正するために、多数のスイッチ、レジスタ、及び/又はダイオードを含んでもよい。例えば、一態様では、信号調整回路2020は、呼掛け信号が通過することによって生じる制御回路の入力間に現れる電圧信号のサンプルを生成するためのADCを備えることができる。プログラム可能な論理機構2000(又は非絶縁段階1540の一構成要素)は、続いて、ADCサンプルに基づく制御回路の状態又は構成を判定することができる。 In one aspect, instrument interface circuitry 1980 can comprise programmable logic 2000 (eg, FPGA) in communication with signal conditioning circuitry 2020 (FIGS. 26 and 27C). Signal conditioning circuit 2020 may be configured to receive a periodic signal (eg, a 2 kHz square wave) from programmable logic 2000 and generate a bipolar interrogation signal having the same frequency. The interrogation signal can be generated using, for example, a bipolar current source fed by a differential amplifier. The interrogation signal is communicated to the surgical device control circuitry (eg, by using a conductive pair in the cable connecting the generator 1100 to the surgical device) to indicate the state or configuration of the control circuitry. can be monitored to determine the For example, the control circuit may use one or more characteristics of the interrogation signal (e.g., amplitude, A number of switches, resistors, and/or diodes may be included to modify rectification. For example, in one aspect, the signal conditioning circuit 2020 may comprise an ADC for generating samples of the voltage signal appearing across the inputs of the control circuit caused by the interrogation signal passing through it. Programmable logic 2000 (or a component of non-isolation stage 1540) can then determine the state or configuration of the control circuitry based on the ADC samples.

一態様では、器具インターフェース回路1980は、プログラム可能な論理機構2000(又は器具インターフェース回路1980の他の要素)と、外科用装置の内部に配置された、又は別の方法で外科用装置と関連付けられた第1のデータ回路との間の情報交換を可能にする第1のデータ回路インターフェース2040を備えることができる。特定の態様では、例えば、第1のデータ回路2060は、外科用装置のハンドピースに一体的に取り付けられたケーブル内、又は特定の外科用装置タイプ又はモデルを発生器1100とインターフェースさせるためのアダプタ内に配置されてもよい。特定の態様では、第1のデータ回路は、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)装置などの、不揮発性記憶装置を備えることができる。特定の態様では、また図26を再び参照すると、第1のデータ回路インターフェース2040は、プログラム可能な論理機構2000とは別に実装することができ、プログラム可能な論理機構2000と第1のデータ回路との間の通信を可能にする好適な回路(例えば、個別論理機構、プロセッサ)を備えることができる。他の態様では、第1のデータ回路インターフェース2040はプログラム可能な論理機構2000と一体的であってもよい。 In one aspect, the instrument interface circuit 1980 includes programmable logic 2000 (or other elements of the instrument interface circuit 1980) located within or otherwise associated with the surgical device. A first data circuit interface 2040 may be provided to allow information exchange with the first data circuit. In certain aspects, for example, the first data circuit 2060 may reside within a cable integrally attached to the handpiece of a surgical device or within an adapter for interfacing a particular surgical device type or model with the generator 1100 . may be placed within In certain aspects, the first data circuit may comprise a non-volatile storage device, such as an electrically erasable programmable read only memory (EEPROM) device. In certain aspects, and referring again to FIG. 26, the first data circuit interface 2040 can be implemented separately from the programmable logic 2000 and can be implemented separately from the programmable logic 2000 and the first data circuit. Any suitable circuitry (eg, discrete logic, processor) may be provided to enable communication between the . In other aspects, first data circuit interface 2040 may be integral with programmable logic 2000 .

特定の態様では、第1のデータ回路2060は、第1のデータ回路2060が関連付けられる特定の外科用装置に関する情報を記憶することができる。そのような情報は、例えば、モデル番号、シリアル番号、外科用装置が使用された動作数、及び/又は他のタイプの情報を含むことができる。この情報は、器具インターフェース回路1980によって(例えば、プログラム可能な論理機構2000によって)読み取られて、出力装置2140を介してユーザに提示するために、及び/又は発生器1100の機能若しくは動作を制御するために、非絶縁段階1540の構成要素(例えば、プログラム可能な論理機構1660、プロセッサ1740、及び/又はプロセッサ1900)に転送され得る。更に、任意の種類の情報を、第1のデータ回路2060内に記憶するために、第1のデータ回路インターフェース2040を介して第1のデータ回路2060に伝達することができる(例えば、プログラム可能な論理機構2000を使用して)。そのような情報は例えば、外科用装置が使用された最新の動作数、並びに/又は、その使用の日付及び/若しくは時間を含むことができる。 In certain aspects, first data circuit 2060 can store information regarding the particular surgical device with which first data circuit 2060 is associated. Such information can include, for example, model number, serial number, number of operations in which the surgical device has been used, and/or other types of information. This information is read by instrument interface circuit 1980 (eg, by programmable logic 2000) for presentation to a user via output device 2140 and/or to control the function or operation of generator 1100. 1540 (eg, programmable logic 1660, processor 1740, and/or processor 1900). Additionally, any type of information can be communicated to the first data circuit 2060 via the first data circuit interface 2040 for storage in the first data circuit 2060 (e.g., programmable using logic 2000). Such information may include, for example, the number of most recent operations in which the surgical device was used and/or the date and/or time of its use.

上記のように、外科用器具は、器具の互換性及び/又は廃棄性を促進するために、ハンドピースから取り外し可能であってもよい(例えば、器具1106は、ハンドピース1107から取り外し可能であってもよい)。そのような場合、既知の発生器は、使用されている特定の器具構成を認識し、これに対応して制御及び診断プロセスを最適化する能力を制限されている場合がある。しかしながら、この問題に対処するために、外科用装置器具に読み取り可能なデータ回路を追加することは、適合性の観点から問題がある。例えば、必要なデータ読み取り機能を欠く発生器との下位互換性を保つように、外科用装置を設計することは、例えば、異なる信号スキーム、設計の複雑さ、及び費用のために、実用的でない場合がある。器具の他の態様は、既存の外科用器具に実装され得るデータ回路を経済的に使用し、外科用装置と最新の発生器プラットフォームとの互換性を維持するために設計変更を最小限にすることによってこれらの懸念に対処する。 As noted above, the surgical instruments may be removable from the handpiece (eg, instrument 1106 may be removable from handpiece 1107 to facilitate interchangeability and/or disposability of the instruments). may be used). In such cases, known generators may be limited in their ability to recognize the particular instrument configuration being used and correspondingly optimize the control and diagnostic processes. However, adding a readable data circuit to the surgical instrumentation to address this issue is problematic from a compatibility standpoint. For example, it is impractical to design a surgical device to be backward compatible with generators that lack the necessary data readout capabilities, due to, for example, different signal schemes, design complexity, and cost. Sometimes. Other aspects of the instrument economically use data circuitry that can be implemented in existing surgical instruments and minimize design changes to maintain compatibility between surgical devices and modern generator platforms. address these concerns by

更に、発生器1100の態様は、器具ベースのデータ回路との通信を可能にすることができる。例えば、発生器1100は、外科用装置の器具(例えば、器具1104、1106、又は1108)内に収容される第2のデータ回路(例えば、データ回路)と通信するように構成され得る。器具インターフェース回路1980は、この通信を可能にする第2のデータ回路インターフェース2100を含むことができる。一態様では、第2のデータ回路インターフェース2100は、トライステートデジタルインターフェースを含み得るが、他のインターフェースも使用され得る。特定の態様では、第2のデータ回路は、概して、データを送信及び/又は受信するための任意の回路であることができる。一態様では、例えば、第2のデータ回路は、この回路が関連付けられる特定の外科用器具に関する情報を記憶してもよい。そのような情報は、例えば、モデル番号、シリアル番号、外科用器具が使用された動作数、及び/又は任意の他のタイプの情報を含むことができる。更に又はあるいは、任意の種類の情報を、第2のデータ回路内に記憶するために、第2のデータ回路インターフェース2100を介して第2のデータ回路に伝達することができる(例えば、プログラム可能な論理機構2000を使用して)。そのような情報は例えば、器具が使用された最新の動作数、並びに/又は、その使用の日付及び/若しくは時間を含んでもよい。特定の態様では、第2のデータ回路は、1つ又は2つ以上のセンサ(例えば、器具ベースの温度センサ)によって取得されたデータを送信することができる。特定の態様では、第2のデータ回路は、発生器1100からデータを受信して、受信したデータに基づきユーザに表示(例えば、LED表示又は他の可視表示)を提供することができる。 Additionally, aspects of the generator 1100 can enable communication with instrument-based data circuits. For example, generator 1100 can be configured to communicate with a second data circuit (eg, data circuit) contained within an instrument (eg, instrument 1104, 1106, or 1108) of a surgical device. The instrument interface circuit 1980 can include a second data circuit interface 2100 to enable this communication. In one aspect, the second data circuit interface 2100 may include a tri-state digital interface, although other interfaces may also be used. In certain aspects, the second data circuit can generally be any circuit for transmitting and/or receiving data. In one aspect, for example, the second data circuit may store information regarding the particular surgical instrument with which the circuit is associated. Such information may include, for example, model number, serial number, number of operations in which the surgical instrument was used, and/or any other type of information. Additionally or alternatively, any type of information can be communicated to the second data circuit via the second data circuit interface 2100 for storage in the second data circuit (e.g., programmable using logic 2000). Such information may include, for example, the number of most recent actions in which the device was used and/or the date and/or time of its use. In certain aspects, the second data circuit can transmit data acquired by one or more sensors (eg, instrument-based temperature sensors). In certain aspects, the second data circuit can receive data from the generator 1100 and provide an indication (eg, an LED indication or other visual indication) to the user based on the received data.

特定の態様では、第2のデータ回路及び第2のデータ回路インターフェース2100は、この目的のために追加の導体(例えば、ハンドピースを発生器1100に接続するケーブルの専用導体)を設ける必要なしにプログラム可能な論理機構2000と第2のデータ回路との間の通信を達成できるように構成することができる。一態様では、例えば、使用される導体のうちの1つが、信号調整回路2020からハンドピース内の制御回路へ呼掛け信号を送信するなど、既存のケーブル配線上に実装されたワンワイヤバス通信方式を使用して、第2のデータ回路との間で情報を伝達することができる。このようにして、元来必要であり得る外科用装置の設計変更又は修正が最小化又は低減される。更に、様々な種類の通信が(周波数帯域分離を伴うか又は伴わないかのいずれかで)一般的な物理チャネルを介して実施され得るため、第2のデータ回路の存在は、必要なデータ読み取り機能を有さない発生器にとっては「不可視」であり、したがって、外科用装置器具の下位互換性を可能にすることができる。 In certain aspects, the second data circuit and second data circuit interface 2100 can be configured without the need to provide additional conductors for this purpose (eg, dedicated conductors of the cable connecting the handpiece to the generator 1100). It can be configured to enable communication between programmable logic 2000 and a second data circuit. In one aspect, a one-wire bus communication scheme implemented over existing cabling, e.g., one of the conductors used carries an interrogation signal from the signal conditioning circuitry 2020 to the control circuitry in the handpiece. can be used to communicate information to and from the second data circuit. In this manner, design changes or modifications to the surgical device that may otherwise be required are minimized or reduced. Furthermore, since various types of communication can be carried out over common physical channels (either with or without frequency band separation), the presence of the second data circuit reduces the necessary data reading It is "invisible" to non-functional generators, thus allowing backward compatibility of surgical device instruments.

特定の態様では、絶縁段階1520は、患者にDC電流が通電するのを防ぐために駆動信号出力部1600bに接続された少なくとも1つのブロッキングコンデンサ2960-1(図27C)を含むことができる。単一のブロッキングコンデンサは、例えば、医学的規制又は基準に準拠することが必要とされる場合がある。単一コンデンサ設計における故障は比較的稀であるが、それでもなおそのような故障は否定的な結果をもたらす恐れがある。一態様では、第2のブロッキングコンデンサ2960-2をブロッキングコンデンサ2960-1と直列に設けて、ブロッキングコンデンサ2960-1、2960-2の間の点からの電流漏れを、例えば、漏れ電流によって誘起された電圧をサンプリングするためのADC2980によって監視することができる。サンプルは、例えば、プログラム可能な論理機構2000によって受信され得る。漏れ電流(図26の態様で電圧サンプルによって示される)の変化に基づいて、発生器1100は、ブロッキングコンデンサ2960-1、2960-2のうちの少なくとも1つが故障したときを判定することができる。したがって、図26の態様は、単一の故障点を有する単一コンデンサ設計に対して利益を提供することができる。 In certain aspects, the isolation stage 1520 can include at least one blocking capacitor 2960-1 (FIG. 27C) connected to the drive signal output 1600b to prevent DC current from passing through the patient. A single blocking capacitor may, for example, be required to comply with medical regulations or standards. Although failures in single-capacitor designs are relatively rare, such failures can nonetheless have negative consequences. In one aspect, a second blocking capacitor 2960-2 is provided in series with blocking capacitor 2960-1 to prevent current leakage from a point between blocking capacitors 2960-1, 2960-2, e.g. can be monitored by an ADC 2980 for sampling the applied voltage. The samples may be received by programmable logic 2000, for example. Based on changes in leakage current (indicated by voltage samples in the manner of FIG. 26), generator 1100 can determine when at least one of blocking capacitors 2960-1, 2960-2 has failed. Thus, the embodiment of FIG. 26 can provide benefits over single capacitor designs with a single point of failure.

特定の態様では、非絶縁段階1540は、好適な電圧及び電流でDC電力を出力するための電源2110を備えることができる。電源は、例えば、48VDCシステム電圧を出力するための、400W電源を備えることができる。上述したように、電源2110は、電源の出力を受信して、発生器1100の様々な構成要素によって必要とされる電圧及び電流でDC出力を生成するための、1つ又は2つ以上のDC/DC電圧変換器2130を更に備えることができる。コントローラ1960と関連して上述したように、DC/DC電圧変換器2130のうちの1つ又は2つ以上は、ユーザによる「オン/オフ」入力装置2150の起動がコントローラ1960によって検出されたときにコントローラ1960から入力を受信し、DC/DC電圧変換器2130の動作又は起動を可能にしてもよい。 In certain aspects, the non-isolated stage 1540 can comprise a power supply 2110 for outputting DC power at a suitable voltage and current. The power supply may comprise, for example, a 400W power supply for outputting a 48VDC system voltage. As noted above, power supply 2110 includes one or more DC generators for receiving the output of the power supply and producing DC outputs at the voltages and currents required by the various components of generator 1100 . A /DC voltage converter 2130 may also be included. As described above in connection with controller 1960 , one or more of DC/DC voltage converters 2130 are switched off when user activation of “on/off” input device 2150 is detected by controller 1960 . Input may be received from controller 1960 to enable operation or activation of DC/DC voltage converter 2130 .

図28A~図28Bは、発生器1100の一態様の特定の機能的及び構造的態様を示す。電力変圧器1560の二次巻線1580から出力される電流及び電圧を示すフィードバックは、それぞれADC1780、1800によって受信される。示されるように、ADC1780、1800は、2チャンネルADCとして実装することができ、また、駆動信号のオーバーサンプリング(例えば、およそ200倍のオーバーサンプリング)を可能にするように高速(例えば、80Msps)でフィードバック信号をサンプリングすることができる。電流及び電圧フィードバック信号は、ADC1780、1800による処理の前に、アナログ領域で適切に調整され得る(例えば、増幅、フィルタリング)。ADC1780、1800からの電流及び電圧フィードバックサンプルは、個別にバッファリングされ、その後、プログラム可能な論理機構1660のブロック2120内の単一データストリーム内に、多重化又はインターリーブされ得る。図28A~図28Bの態様では、プログラム可能な論理機構1660はFPGAを備える。 28A-28B illustrate certain functional and structural aspects of one aspect of generator 1100. FIG. Feedback indicative of the current and voltage output from secondary winding 1580 of power transformer 1560 is received by ADCs 1780, 1800, respectively. As shown, the ADCs 1780, 1800 can be implemented as 2-channel ADCs and can be implemented at high speed (e.g., 80 Msps) to allow oversampling of the drive signal (e.g., approximately 200 times oversampling). A feedback signal can be sampled. Current and voltage feedback signals may be appropriately conditioned (eg, amplified, filtered) in the analog domain prior to processing by ADCs 1780, 1800. Current and voltage feedback samples from ADCs 1780 , 1800 may be individually buffered and then multiplexed or interleaved into a single data stream within block 2120 of programmable logic 1660 . In the embodiment of Figures 28A-28B, programmable logic 1660 comprises an FPGA.

多重化された電流及び電圧フィードバックサンプルは、プロセッサ1740のブロック2144内に実装される並列データ収集ポート(PDAP)によって受信され得る。PDAPは、多重化フィードバックサンプルとメモリアドレスを相関付けるための多くの方法のいずれかを実施するためのパッキングユニットを含むことができる。一態様では、例えば、プログラム可能な論理機構1660によって出力される特定のLUTサンプルに対応するフィードバックサンプルは、LUTサンプルのLUTアドレスと関連付けられるか又はインデックス付けされる1つ又は2つ以上のメモリアドレスで記憶され得る。別の態様では、プログラム可能な論理機構1660によって出力される特定のLUTサンプルに対応するフィードバックサンプルは、LUTサンプルのLUTアドレスと共に、共通の記憶場所で記憶され得る。いずれにせよ、フィードバックサンプルの特定のセットが由来するLUTサンプルのアドレスがその後確認され得るように、フィードバックサンプルは記憶され得る。上記のように、LUTサンプルアドレス及びフィードバックサンプルの同期が、このようにして、予歪みアルゴリズムの正確なタイミング及び安定性に寄与する。プロセッサ1740のブロック2166で実装されるダイレクトメモリアクセス(DMA)コントローラは、プロセッサ1740の指定された記憶場所2180(例えば、内部RAM)でフィードバックサンプル(及び適用可能な場合は任意のLUTサンプルアドレスデータ)を記憶することができる。 Multiplexed current and voltage feedback samples may be received by a parallel data acquisition port (PDAP) implemented within block 2144 of processor 1740 . A PDAP can include a packing unit to implement any of a number of methods for correlating multiplexed feedback samples and memory addresses. In one aspect, for example, feedback samples corresponding to a particular LUT sample output by programmable logic 1660 are stored at one or more memory addresses associated or indexed with the LUT address of the LUT sample. can be stored with In another aspect, the feedback samples corresponding to a particular LUT sample output by programmable logic 1660 may be stored in a common memory location along with the LUT address of the LUT sample. In any event, the feedback samples can be stored so that the address of the LUT samples from which a particular set of feedback samples came can then be ascertained. Synchronization of the LUT sample addresses and feedback samples, as described above, thus contributes to the precise timing and stability of the predistortion algorithm. A direct memory access (DMA) controller implemented in block 2166 of processor 1740 sends the feedback samples (and any LUT sample address data, if applicable) in designated memory locations 2180 (e.g., internal RAM) of processor 1740. can be stored.

プロセッサ1740のブロック2200は、プログラム可能な論理機構1660に記憶されたLUTサンプルを、動的な進行中ベースで予め歪ませ、又は修正するために、予歪みアルゴリズムを実施することができる。上記のように、LUTサンプルの予歪みは、発生器1100の出力駆動回路に存在する様々な歪み源を補償することができる。予め歪ませたLUTサンプルはしたがって、駆動回路により処理される場合、超音波変換器を最適に駆動するために、所望の波形形状(例えば、正弦波)を有する駆動信号を生じる。 Block 2200 of processor 1740 can implement a pre-distortion algorithm to pre-distort or modify the LUT samples stored in programmable logic 1660 on a dynamic, ongoing basis. As noted above, predistortion of the LUT samples can compensate for various sources of distortion present in the output driver circuitry of generator 1100 . The pre-distorted LUT samples thus, when processed by the drive circuit, yield a drive signal having the desired waveform shape (eg, sinusoidal) to optimally drive the ultrasonic transducer.

予歪みアルゴリズムのブロック2220において、超音波変換器の動作ブランチを流れる電流が判定される。動作ブランチ電流は、例えば、記憶場所2180に記憶された電流及び電圧フィードバックサンプル(これは、好適にスケーリングされると、上記の図25のモデルのI及びVを表わし得る)、超音波変換器静電容量Cの値(測定されるか又は先験的に既知である)、及び駆動周波数の既知の値に基づき、キルヒホッフの電流則を使用して判定され得る。LUTサンプルと関連する、記憶された電流及び電圧フィードバックサンプルの各セットにおける、動作ブランチ電流サンプルが判定され得る。 At block 2220 of the predistortion algorithm, the current through the working branch of the ultrasound transducer is determined. The operating branch currents are, for example, current and voltage feedback samples stored in memory location 2180 (which, when scaled appropriately, may represent the I g and V g of the model of FIG. 25 above), ultrasound conversion Based on the value of the device capacitance C0 (measured or known a priori) and the known value of the drive frequency, it can be determined using Kirchhoff's current law. An operating branch current sample may be determined for each set of stored current and voltage feedback samples associated with a LUT sample.

予歪みアルゴリズムのブロック2240では、ブロック2220で判定された各動作ブランチ電流サンプルは、所望の電流波形形状のサンプルと比較されて、比較されるサンプル間の差又はサンプル振幅誤差を判定する。この判定のために、電流波形形状のサンプルが、例えば、所望の電流波形形状の1サイクルに関する振幅サンプルを含む波形形状LUT2260から供給され得る。比較のために使用される、LUT2260からの所望の電流波形形状の特定のサンプルは、比較に使用される動作ブランチ電流サンプルと関連付けられたLUTサンプルアドレスによって決定され得る。したがって、動作ブランチ電流のブロック2240への入力は、その関連するLUTサンプルアドレスのブロック2240への入力と同期され得る。したがって、プログラム可能な論理機構1660に記憶されるLUTサンプルと、波形形状LUT2260に記憶されるLUTサンプルは、同等の数値であることができる。特定の態様では、波形形状LUT2260に記憶されたLUTサンプルによって表される所望の電流波形形状は、基本正弦波であることができる。他の波形形状が望ましい場合がある。例えば、横方向又は他の様式の有益な振動のために、少なくとも2つの機械的共振を駆動するための3次高調波などの他の波長における1つ又は2つ以上の他の駆動信号と重なり合った超音波変換器の主要な長手方向の運動を駆動するための、基本的な正弦波が使用され得ることが想到される。 At block 2240 of the predistortion algorithm, each operating branch current sample determined at block 2220 is compared to samples of the desired current waveform shape to determine the difference or sample amplitude error between the compared samples. For this determination, current waveform shape samples may be provided, for example, from a waveform shape LUT 2260 containing amplitude samples for one cycle of the desired current waveform shape. The particular sample of the desired current waveform shape from LUT 2260 used for comparison may be determined by the LUT sample address associated with the operating branch current sample used for comparison. Thus, the input to block 2240 of operation branch currents can be synchronized with the input to block 2240 of its associated LUT sample address. Therefore, the LUT samples stored in programmable logic 1660 and the LUT samples stored in waveform shape LUT 2260 can be of equivalent numerical value. In certain aspects, the desired current waveform shape represented by the LUT samples stored in waveform shape LUT 2260 can be a fundamental sine wave. Other corrugation shapes may be desirable. Overlap with one or more other drive signals at other wavelengths, such as the third harmonic to drive at least two mechanical resonances, for example, for lateral or other modes of beneficial vibration. It is envisioned that a fundamental sine wave could be used to drive the primary longitudinal motion of the ultrasonic transducer.

ブロック2240で判定されるサンプル振幅誤差の各値は、その関連付けられたLUTアドレスの指標と共に、プログラム可能な論理機構1660のLUT(図28Aのブロック2280に示される)に伝達することができる。サンプル振幅誤差の値、及びその関連付けされたアドレス(並びに、任意により、先に受信された同じLUTアドレスに関するサンプル振幅誤差の値)に基づき、LUT2280(又はプログラム可能な論理機構1660の他の制御ブロック)は、LUTアドレスに記憶されるLUTサンプルの値を予め歪ませるか又は修正することができ、それによってサンプル振幅誤差は低減又は最小化される。LUTアドレスの全範囲にわたる反復的な方法での各LUTサンプルのそのような予歪み又は修正が、発生器の出力電流の波形形状を、波形形状LUT2260のサンプルによって表される所望の電流波形形状と一致又は適合させることは理解されよう。 Each value of sample amplitude error determined in block 2240, along with its associated LUT address index, can be communicated to the LUT of programmable logic 1660 (shown in block 2280 of FIG. 28A). Based on the sample amplitude error value and its associated address (and optionally the sample amplitude error value for the same previously received LUT address), LUT 2280 (or other control block of programmable logic 1660) ) can pre-distort or modify the values of the LUT samples stored at the LUT addresses, thereby reducing or minimizing the sample amplitude error. Such predistortion or modification of each LUT sample in an iterative manner over the range of LUT addresses causes the waveform shape of the generator's output current to match the desired current waveform shape represented by the samples of waveform shape LUT 2260. Matching or matching is understood.

電流及び電圧振幅測定値、電力測定値、及びインピーダンス測定値が、記憶場所2180に記憶される電流及び電圧フィードバックサンプルに基づいて、プロセッサ1740のブロック2300で判定され得る。これらの数値の判定の前に、フィードバックサンプルを適切にスケーリングして、特定の態様では、適切なフィルタ2320を通じて処理して、例えば、データ取得プロセスにより生じるノイズ及び誘発された高調波成分を除去することができる。フィルタリングされた電圧及び電流サンプルはしたがって、発生器の駆動出力信号の基本周波数を実質的に表し得る。特定の態様では、フィルタ2320は周波数領域において適用される有限インパルス応答(FIR)フィルタであってよい。こうした態様は、出力駆動信号電流及び電圧信号の高速フーリエ変換(FFT)を使用することができる。特定の態様では、生じる周波数スペクトルは、追加的な発生器機能を提供するために使用することができる。一態様では、例えば、基本周波数成分に対する第2次及び/又は第3次高調波成分の比率を、診断指標として使用することができる。 Current and voltage amplitude measurements, power measurements, and impedance measurements may be determined at block 2300 of processor 1740 based on current and voltage feedback samples stored in memory location 2180 . Prior to determination of these values, the feedback samples are appropriately scaled and, in certain aspects, processed through a suitable filter 2320 to remove, for example, noise and induced harmonic content caused by the data acquisition process. be able to. The filtered voltage and current samples can thus substantially represent the fundamental frequency of the generator's drive output signal. In certain aspects, filter 2320 may be a finite impulse response (FIR) filter applied in the frequency domain. Such aspects may use a Fast Fourier Transform (FFT) of the output drive signal current and voltage signals. In certain aspects, the resulting frequency spectrum can be used to provide additional generator functionality. In one aspect, for example, the ratio of second and/or third harmonic components to fundamental frequency components can be used as a diagnostic index.

ブロック2340(図28B)では、駆動信号出力電流を表す測定値Irmsを生成するために、駆動信号のサイクルの整数を表す電流フィードバックサンプルのサンプルサイズに、二乗平均平方根(RMS)計算が適用され得る。 At block 2340 (FIG. 28B), a root mean square (RMS) calculation is applied to the sample size of the current feedback samples representing an integer number of cycles of the drive signal to produce a measurement I rms representing the drive signal output current. obtain.

ブロック2360では、駆動信号出力電圧を表す測定値Vrmsを判定するために、駆動信号のサイクルの整数を表す電圧フィードバックサンプルのサンプルサイズに、二乗平均平方根(RMS)計算が適用され得る。 At block 2360, a root mean square (RMS) calculation may be applied to the sample size of the voltage feedback samples representing an integer number of cycles of the drive signal to determine a measurement V rms representing the drive signal output voltage.

ブロック2380では、電流及び電圧フィードバックサンプルは逐一乗算されてもよく、平均計算が駆動信号のサイクルの整数を表すサンプルに適用されて、発生器の実際の出力電力の測定値Pが判定される。 At block 2380, the current and voltage feedback samples may be point-by-point multiplied, and an averaging calculation applied to samples representing an integer number of cycles of the drive signal to determine the generator's actual output power measurement Pr . .

ブロック2400では、発生器の皮相出力電力の測定値Pは、積Vrms・Irmsとして判定され得る。 At block 2400, the generator apparent output power measurement P a may be determined as the product V rms ·I rms .

ブロック2420では、負荷インピーダンスの大きさの測定値Zは、商Vrms/Irmsとして判定され得る。 At block 2420, the load impedance magnitude measurement Z m may be determined as the quotient V rms /I rms .

特定の態様では、ブロック2340、2360、2380、2400、及び2420において判定される数値Irms、Vrms、P、P、及びZは、多数の制御及び/又は診断プロセスのうちのいずれかを実施するために発生器1100により使用され得る。特定の態様では、これらの数値のいずれかを、例えば、発生器1100と一体の出力装置2140、又は発生器1100と接続された出力装置2140を介して、適切な通信インターフェース(例えば、USBインターフェース)を通じてユーザに伝達することができる。様々な診断プロセスとしては、例えば、ハンドピース一体性、器具一体性、器具取り付け一体性、器具オーバーロード、器具オーバーロード接近、周波数固定不良、過電圧状態、過電流状態、過電力状態、電圧感知不良、電流感知不良、可聴指標不良、視覚指標不良、短絡回路状態、電力供給不良、又はブロッキングコンデンサ不良が挙げられ得るが、これらに限定されない。 In certain aspects, the numerical values I rms , V rms , P r , P a , and Z m determined in blocks 2340, 2360, 2380, 2400, and 2420 are controlled by any of a number of control and/or diagnostic processes. can be used by generator 1100 to implement: In certain aspects, any of these values can be transmitted, for example, via an output device 2140 integral with the generator 1100 or connected to the generator 1100 via a suitable communication interface (eg, a USB interface). can be communicated to the user through Various diagnostic processes include, for example, handpiece integrity, instrument integrity, instrument mount integrity, instrument overload, instrument overload approaching, frequency locking failure, over voltage condition, over current condition, over power condition, voltage sensing failure. , current sensing failure, audible indication failure, visual indication failure, short circuit condition, power supply failure, or blocking capacitor failure.

プロセッサ1740のブロック2440は、発生器1100によって駆動される電気負荷(例えば、超音波変換器)のインピーダンス位相を判定及び制御するための位相制御アルゴリズムを実施することができる。上述のように、駆動信号の周波数を制御して、判定されたインピーダンス位相とインピーダンス位相設定値(例えば、0°)との間の差を最小化又は低減することによって、高調波歪みの影響を最小化又は低減し、位相測定の精度を向上させることができる。 Block 2440 of processor 1740 may implement a phase control algorithm to determine and control the impedance phase of an electrical load (eg, an ultrasonic transducer) driven by generator 1100 . As noted above, the effects of harmonic distortion can be reduced by controlling the frequency of the drive signal to minimize or reduce the difference between the determined impedance phase and the impedance phase setting (e.g., 0°). can be minimized or reduced to improve the accuracy of the phase measurement.

位相制御アルゴリズムは、記憶場所2180に記憶された電流及び電圧フィードバックサンプルを、入力として受信する。位相制御アルゴリズムでこれらを使用する前に、フィードバックサンプルが適切にスケーリングされ、特定の態様では、例えば、データ取得プロセス及び誘発された高調波成分から生じるノイズを除去するために、適切なフィルタ2460(フィルタ2320と同一でもよい)を通して処理されてもよい。フィルタリングされた電圧及び電流サンプルはしたがって、発生器の駆動出力信号の基本周波数を実質的に表し得る。 The phase control algorithm receives as input current and voltage feedback samples stored in memory location 2180 . Before using them in the phase control algorithm, the feedback samples are appropriately scaled and, in certain aspects, an appropriate filter 2460 ( may be processed through a filter 2320). The filtered voltage and current samples can thus substantially represent the fundamental frequency of the generator's drive output signal.

位相制御アルゴリズムのブロック2480で、超音波変換器の動作ブランチを流れる電流が判定される。この判定は、予歪みアルゴリズムのブロック2220と関連して上記で説明されたものと同一であってもよい。したがって、ブロック2480の出力は、LUTサンプルと関連する記憶された電流及び電圧フィードバックサンプルの各セットに関して、動作ブランチ電流サンプルであることができる。 At block 2480 of the phase control algorithm, the current through the working branch of the ultrasonic transducer is determined. This determination may be the same as described above in connection with block 2220 of the predistortion algorithm. Accordingly, the output of block 2480 can be an operating branch current sample for each set of stored current and voltage feedback samples associated with a LUT sample.

位相制御アルゴリズムのブロック2500では、インピーダンス位相は、ブロック2480で判定された動作ブランチ電流サンプル及び対応する電圧フィードバックサンプルの同期された入力に基づいて判定される。特定の態様では、インピーダンス位相は、波形の立ち上がりエッジで測定されたインピーダンス位相と波形の立ち下がりエッジで測定されたインピーダンス位相の平均として判定される。 At block 2500 of the phase control algorithm, the impedance phase is determined based on the synchronized inputs of the operating branch current samples determined at block 2480 and the corresponding voltage feedback samples. In certain aspects, the impedance phase is determined as the average of the impedance phase measured at the rising edge of the waveform and the impedance phase measured at the falling edge of the waveform.

位相制御アルゴリズムのブロック2520では、ブロック2220で判定されたインピーダンス位相の値は位相設定値2540と比較されて、比較される値の間の差異又は位相誤差が判定される。 At block 2520 of the phase control algorithm, the impedance phase value determined at block 2220 is compared to the phase setpoint 2540 to determine the difference or phase error between the compared values.

位相制御アルゴリズムのブロック2560(図28A)では、ブロック2520で判定された位相誤差の値、及びブロック2420で判定されたインピーダンスの大きさに基づいて、駆動信号の周波数を制御するための周波数出力が判定される。ブロック2500において判定されたインピーダンス位相を位相設定値(例えば、ゼロ位相誤差)に維持するため、周波数出力値は、ブロック2560によって連続的に調節されてDDS制御ブロック2680(後述)に転送され得る。特定の態様では、インピーダンス位相は、0°位相設定値に調節され得る。このようにして、なんらかの高調波歪み量があれば電圧波形の頂部周囲で中央に合わせられ、相インピーダンス決定の正確性を向上させる。 In block 2560 (FIG. 28A) of the phase control algorithm, based on the phase error value determined in block 2520 and the impedance magnitude determined in block 2420, the frequency output for controlling the frequency of the drive signal is determined. be judged. To maintain the impedance phase determined in block 2500 at the phase setpoint (e.g., zero phase error), the frequency output value may be continuously adjusted by block 2560 and forwarded to DDS control block 2680 (discussed below). In certain aspects, the impedance phase may be adjusted to a 0° phase setting. In this way, any amount of harmonic distortion is centered around the top of the voltage waveform, improving the accuracy of the phase impedance determination.

プロセッサ1740のブロック2580は、ユーザが指定する設定値に従って、又は発生器1100によって実施される他のプロセス若しくはアルゴリズムによって指定される要件に従って、駆動信号電流、電圧、及び電力を制御するために、駆動信号の電流振幅を変調するためのアルゴリズムを実施することができる。これらの数値の制御は、例えば、LUT2280のLUTサンプルのスケーリングによって、及び/又はDAC1860を介したDAC1680(電力増幅器1620に入力を供給する)のフルスケール出力電圧を調節することによって、実現することができる。ブロック2600(特定の態様では、PIDコントローラとして実装され得る)は、記憶場所2180から入力として電流フィードバックサンプル(適切にスケーリング及びフィルタリングされ得る)を受信することができる。電流フィードバックサンプルは、駆動信号が必要な電流を供給しているかどうかを判定するために、制御された変数(例えば、電流、電圧、又は電力)によって決定される「電流需要」I値と比較され得る。駆動信号電流が制御変数である態様では、電流需要Iは、電流設定値2620A(Isp)によって直接指定され得る。例えば、電流フィードバックデータのRMS値(ブロック2340で判定される)は、適切なコントローラ作用を判定するために、ユーザ指定のRMS電流設定値Ispと比較され得る。例えば、電流フィードバックデータが電流設定値Ispよりも低いRMS値を示す場合、LUTスケーリング及び/又はDAC1680のフルスケール出力電圧は、駆動信号電流が増加するようにブロック2600によって調節されてもよい。逆に、電流フィードバックデータが電流設定値Ispよりも高いRMS値を示す場合、ブロック2600は、駆動信号電流を低減させるように、LUTスケーリング及び/又はDAC1680のフルスケール出力電圧を調節してもよい。 Block 2580 of processor 1740 controls the drive signal current, voltage, and power according to user-specified settings or according to requirements specified by other processes or algorithms implemented by generator 1100 . Algorithms can be implemented to modulate the current amplitude of the signal. Control of these values can be achieved, for example, by scaling the LUT samples of LUT 2280 and/or by adjusting the full-scale output voltage of DAC 1680 (providing the input to power amplifier 1620) via DAC 1860. can. Block 2600 (which may be implemented as a PID controller in certain aspects) may receive current feedback samples (which may be appropriately scaled and filtered) from memory location 2180 as inputs. Current feedback samples are compared to a "current demand" Id value determined by a controlled variable (e.g., current, voltage, or power) to determine if the drive signal is delivering the required current. can be In aspects where the drive signal current is the controlled variable, the current demand I d may be specified directly by the current setpoint 2620A (I sp ). For example, the RMS value of the current feedback data (determined at block 2340) can be compared to the user-specified RMS current setpoint I sp to determine appropriate controller action. For example, if the current feedback data indicates an RMS value lower than the current setpoint Isp , the LUT scaling and/or full-scale output voltage of DAC 1680 may be adjusted by block 2600 such that the drive signal current is increased. Conversely, if the current feedback data indicates a higher RMS value than the current setpoint Isp , block 2600 may adjust the LUT scaling and/or the full-scale output voltage of DAC 1680 to reduce the drive signal current. good.

駆動信号電圧が制御変数である態様では、電流需要Iは、例えば、ブロック2420で測定された負荷インピーダンスの大きさZが与えられた場合に所望の電圧設定値2620B(Vsp)を維持するのに必要な電流に基づいて間接的に指定され得る(例えば、I=Vsp/Z)。同様に、駆動信号電力が制御変数である態様では、電流需要Iは、例えばブロック2360で測定された電圧Vrmsを与えられた場合に所望の電力設定値2620C(Psp)を維持するのに必要な電流に基づいて間接的に指定され得る(例えばI=Psp/Vrms)。 In aspects where the drive signal voltage is the controlled variable, the current demand I d maintains the desired voltage set point 2620B (V sp ) given the load impedance magnitude Z m measured at block 2420, for example. can be indirectly specified based on the current required to do so (eg, I d =V sp /Z m ). Similarly, in aspects where the drive signal power is the controlled variable, the current demand I d will maintain the desired power setpoint 2620C (P sp ) given the voltage V rms measured at block 2360, for example. can be indirectly specified based on the current required for (eg, I d =P sp /V rms ).

ブロック2680(図28A)は、LUT2280に記憶されたLUTサンプルを再呼び出しすることによって駆動信号を制御するために、DDS制御アルゴリズムを実施することができる。特定の態様では、DDS制御アルゴリズムは、ポイント(記憶場所)スキップ技術を使用して固定クロックレートで波形のサンプルを生成するための数値制御発振器(NCO)アルゴリズムであってよい。NCOアルゴリズムは、LUT2280からLUTサンプルを再呼び出しするためのアドレスポインタとして機能する、位相アキュムレータ、又は周波数/位相変換器を実装することができる。一態様では、位相アキュムレータは、Dステップサイズ、モジュロN位相アキュムレータであることができ、ここでDは周波数制御値を表す正の整数であり、NはLUT2280内のLUTサンプルの数である。例えば、D=1の周波数制御値により、例えば、位相アキュムレータにLUT2280の全てのアドレスを連続的に指定させ、LUT2280に記憶された波形を複製する波形出力を生じさせることができる。D>1である場合、位相アキュムレータは、LUT2280のアドレスをスキップして、より高い周波数を有する波形出力を生じさせることができる。これにより、DDS制御アルゴリズムによって生成される波形の周波数がしたがって、周波数制御値を適切に変化させることによって制御され得る。特定の態様では、周波数制御値は、ブロック2440で実施された位相制御アルゴリズムの出力に基づいて判定され得る。ブロック2680の出力は、DAC1680の入力を供給することができ、これが次に対応するアナログ信号を電力増幅器1620の入力に供給する。 Block 2680 (FIG. 28A) can implement a DDS control algorithm to control the drive signal by recalling the LUT samples stored in LUT 2280 . In certain aspects, the DDS control algorithm may be a numerically controlled oscillator (NCO) algorithm for generating waveform samples at a fixed clock rate using point skipping techniques. The NCO algorithm can implement a phase accumulator or frequency/phase converter that acts as an address pointer to recall LUT samples from LUT 2280 . In one aspect, the phase accumulator can be a D step size, modulo-N phase accumulator, where D is a positive integer representing the frequency control value and N is the number of LUT samples in LUT 2280 . For example, a frequency control value of D=1 may, for example, cause the phase accumulator to sequentially address all addresses of LUT 2280 to produce a waveform output replicating the waveform stored in LUT 2280 . If D>1, the phase accumulator can skip addresses in LUT 2280 to produce waveform outputs with higher frequencies. Thereby, the frequency of the waveform generated by the DDS control algorithm can therefore be controlled by appropriately varying the frequency control value. In certain aspects, the frequency control value may be determined based on the output of the phase control algorithm implemented at block 2440. The output of block 2680 can provide the input of DAC 1680 which in turn provides a corresponding analog signal to the input of power amplifier 1620 .

プロセッサ1740のブロック2700は、増幅されている信号の波形エンベロープに基づいて電力増幅器1620のレール電圧を動的に変調し、それによって電力増幅器1620の効率を改善するための、スイッチモード変換器制御アルゴリズムを実施することができる。特定の態様では、波形エンベロープの特性は、電力増幅器1620に含まれる1つ又は2つ以上の信号を監視することによって判定することができる。一態様では、例えば、波形エンベロープの特性は、増幅信号のエンベロープに従って変調されるドレイン電圧(例えば、MOSFETドレイン電圧)の最小値を監視することによって判定することができる。最小電圧信号は、例えば、ドレイン電圧に連結された電圧最小検出器によって生成され得る。最小電圧信号は、ADC1760よってサンプリングされ、出力最小電圧サンプルは、スイッチモード変換器制御アルゴリズムのブロック2720で受信されてもよい。最小電圧サンプルの値に基づき、ブロック2740は、PWM発生器2760によって出力されるPWM信号を制御してもよく、これが続いて、スイッチモードレギュレータ1700によって電力増幅器1620に供給されるレール電圧を制御する。特定の態様では、最小電圧サンプルの値がブロック2720に入力される最小ターゲット2780未満である限り、レール電圧は、最小電圧サンプルによって特徴付けられる波形エンベロープに従って変調され得る。例えば、最小電圧サンプルが低いエンベロープ電力レベルを示すときは、ブロック2740によって低いレール電圧が電力増幅器1620に供給され、完全なレール電圧は、最小電圧サンプルが最大エンベロープ電力レベルを示すときにのみ供給されてもよい。最小電圧サンプルが最小ターゲット2780を下回るときは、ブロック2740によって、レール電圧が電力増幅器1620の適切な動作を確実にするのに好適な最小値に維持されてもよい。 Block 2700 of processor 1740 implements a switch mode converter control algorithm for dynamically modulating the rail voltage of power amplifier 1620 based on the waveform envelope of the signal being amplified, thereby improving the efficiency of power amplifier 1620. can be implemented. In certain aspects, characteristics of the waveform envelope can be determined by monitoring one or more signals included in power amplifier 1620 . In one aspect, for example, the characteristics of the waveform envelope can be determined by monitoring the minimum value of the drain voltage (eg, MOSFET drain voltage) that is modulated according to the envelope of the amplified signal. A minimum voltage signal may be generated, for example, by a voltage minimum detector coupled to the drain voltage. The minimum voltage signal is sampled by ADC 1760 and the output minimum voltage sample may be received at block 2720 of the switch mode converter control algorithm. Based on the value of the minimum voltage sample, block 2740 may control the PWM signal output by PWM generator 2760, which in turn controls the rail voltage supplied by switch mode regulator 1700 to power amplifier 1620. . In certain aspects, as long as the value of the minimum voltage sample is less than the minimum target 2780 input to block 2720, the rail voltage may be modulated according to the waveform envelope characterized by the minimum voltage sample. For example, when the minimum voltage sample indicates a low envelope power level, a low rail voltage is provided to power amplifier 1620 by block 2740, and the full rail voltage is provided only when the minimum voltage sample indicates a maximum envelope power level. may When the minimum voltage sample is below minimum target 2780 , block 2740 may maintain the rail voltage at a suitable minimum value to ensure proper operation of power amplifier 1620 .

容量結合及びその影響の制限
本開示の態様は、望ましくない操作の副作用を低減するために改善された装置能力を有する外科用器具のために提示される。具体的には、外科用器具は、独立して、又は別の先進エネルギーモダリティと協働して使用するための単極絶縁を改善するために、容量結合を制限するための手段を含み得る。容量結合は、一般に、電界によって誘導される、ノード間のエネルギーの伝達が存在する場合に発生する。手術中、2つ又は3つ以上の電気外科用器具が患者内又は患者の周囲で使用されている場合に、容量結合が発生し得る。場合によっては、容量結合によって追加の装置が誘導的に給電され得るため、容量結合が望ましい場合があるが、手術中に又は患者の周囲で偶発的に容量結合が発生することは、一般に非常に有害な結果をもたらすことがある。寄生又は偶発的容量結合は、未知の場所又は予測不可能な場所で発生し、エネルギーを意図しない領域に印加させることがある。患者が麻酔下にあり、いずれの応答もすることができない場合、寄生容量結合は、外科医がその発生さえ知らない間に患者を火傷させることがある。したがって、外科用器具において、一般的には手術中に、寄生又は偶発的容量結合を制限することが望ましい。
Capacitive Coupling and Limiting Its Effects Aspects of the present disclosure are presented for surgical instruments with improved device capabilities to reduce undesirable operational side effects. Specifically, the surgical instrument may include means for limiting capacitive coupling to improve monopolar isolation for use independently or in conjunction with another advanced energy modality. Capacitive coupling generally occurs when there is a transfer of energy between nodes induced by an electric field. Capacitive coupling can occur when two or more electrosurgical instruments are used in or around a patient during surgery. In some cases, capacitive coupling may be desirable because additional devices can be inductively powered by capacitive coupling, but inadvertent occurrence of capacitive coupling during surgery or around the patient is generally very May have harmful consequences. Parasitic or accidental capacitive coupling can occur in unknown or unpredictable locations and cause energy to be applied to unintended areas. If the patient is under anesthesia and unable to make any response, parasitic capacitive coupling can burn the patient without the surgeon even knowing it has occurred. Therefore, it is desirable to limit parasitic or inadvertent capacitive coupling in surgical instruments, typically during surgery.

いくつかの態様では、外科用器具及び発生器を含むシステムは、容量結合が検出されたときに発生器から外科用器具へのエネルギーの伝達を遮断するように構成され得る。これらのシナリオにおいて発生器の遮断を自動的にトリガするために、1つ又は2つ以上の安全ヒューズ、センサ、制御部、及び/又はアルゴリズムが適所に存在してもよい。音響信号、振動、及び視覚メッセージを含む警告を発して、容量結合の検出により発生器が遮断されたことを手術チームに通知してもよい。 In some aspects, a system that includes a surgical instrument and a generator can be configured to interrupt transmission of energy from the generator to the surgical instrument when capacitive coupling is detected. One or more safety fuses, sensors, controls, and/or algorithms may be in place to automatically trigger shutdown of the generator in these scenarios. An alert, including an audible signal, vibration, and visual message, may be issued to notify the surgical team that the generator has been shut off due to detection of capacitive coupling.

いくつかの態様では、システムは、容量結合事象が発生したことを検出するための手段を含む。例えば、システムの周囲の事象を監視するための1つ又は2つ以上のセンサからの入力を含むアルゴリズムは、状況認識及び他のプログラム手段を適用して、システム内のどこかで容量結合が発生していると結論付け、それに応じて反応することができる。状況認識を有するシステムは、システムが、現在の環境データ及びシステムデータに基づいて生じ得るシナリオを予測して、現在の状況が予測可能な次の工程を生じるパターンに従うと判定するように構成され得ることを意味する。一例として、システムは、様々なセンサデータが検出される同様の状況の手術での例を呼び出すことによって、容量結合事象を処理する背景に状況認識を適用することができる。センサデータは、閉ループ電気外科システムに沿った2点の特定位置での電流増加を示してもよく、これは、同様の状況の手術の以前のデータに基づいて、容量結合事象が差し迫っている可能性が高いことを示す。 In some aspects, the system includes means for detecting that a capacitive coupling event has occurred. For example, an algorithm involving inputs from one or more sensors to monitor events in the environment of the system may apply situational awareness and other programmatic means to allow capacitive coupling to occur elsewhere in the system. can conclude that they are and react accordingly. A system with situational awareness may be configured such that the system predicts possible scenarios based on current environmental and system data and determines that the current situation follows a pattern that produces a predictable next step. means that As an example, the system can apply situational awareness in the context of processing capacitive coupling events by recalling surgical examples of similar situations in which various sensor data are detected. Sensor data may indicate current increases at two specific locations along the closed-loop electrosurgical system, which, based on previous data from surgeries in similar situations, may indicate an imminent capacitive coupling event. This indicates that the

いくつかの態様では、外科用器具は、容量結合の発生を制限するか、又は他の場合には容量結合によって生じる付帯的損害を低減するための構造に修正されてもよい。例えば、外科用器具内又はその周囲に戦略的に配置された追加の絶縁材は、容量結合の発生を制限するのに役立ち得る。他の場合には、外科用器具のエンドエフェクタは、電流変位の発生を低減する修正された構造を含んでもよく、例えば、エンドエフェクタの先端を丸くするか、又は特にエンドエフェクタのブレードを整形して、依然として双極装置として動作するがより単極ブレードのように挙動させてもよい。 In some aspects, the surgical instrument may be modified in structure to limit the occurrence of capacitive coupling or otherwise reduce collateral damage caused by capacitive coupling. For example, additional insulation strategically placed within or around the surgical instrument can help limit the occurrence of capacitive coupling. In other cases, the end effector of the surgical instrument may include modified structures that reduce the generation of current displacement, such as by rounding the tip of the end effector or shaping the blade of the end effector, among other things. may be made to behave more like a unipolar blade while still operating as a bipolar device.

いくつかの態様では、システムは、容量結合の影響を緩和又は制限するための受動的手段を含んでもよい。例えば、システムは、導電性受動部品を介して中性ノードにエネルギーを分流することができるリードを含んでもよい。一般に、これらの態様のいずれか及び全ては、患者の手術中に容量結合を生じやすい複数の電気部品によってもたらされる課題に対処するために、単一のシステム内に組み合わされるか、又は含まれてもよい。 In some aspects, the system may include passive means for mitigating or limiting the effects of capacitive coupling. For example, the system may include leads capable of shunting energy to neutral nodes through conductive passive components. Generally, any and all of these aspects are combined or included within a single system to address the challenges posed by multiple electrical components prone to capacitive coupling during surgery on a patient. good too.

図29は、本開示の少なくとも1つの態様による、容量結合を検出するための手段を有する例示的なシステム134000を示す図を提供する。システム134000は、外科用器具134008。に電気的に連結された単極ESU発生器134002を含む。外科用器具134008は、患者に手術を行うために使用され、患者組織134016は、手術が行われている患者の手術部位を表すように示されている。外科用器具134008は、電気外科又は超音波エネルギーをエンドエフェクタに印加するための手段を含んでもよく、場合によっては、組織を把持又はクランプするためのブレード及び/又は一対のジョーを含んでもよい。ESU発生器134002によって給電されたエネルギーは、エンドエフェクタを通って、エンドエフェクタの可能な様々な部品のいずれかを介して、患者に及び得る。患者の少なくとも一部分は、外科用器具134008が患者に触れて電気外科エネルギーを印加するときに患者から過剰なエネルギーを逸らすように構成された、例えば、Smart Megasoft Pad(商標)などのリターンパスパッド134014上に置かれてもよい。 FIG. 29 provides a diagram illustrating an exemplary system 134000 having means for detecting capacitive coupling, in accordance with at least one aspect of the present disclosure. System 134000 is surgical instrument 134008 . includes a unipolar ESU generator 134002 electrically coupled to the . Surgical instruments 134008 are used to perform surgery on a patient, and patient tissue 134016 is shown representing the surgical site of the patient on which surgery is being performed. Surgical instrument 134008 may include means for applying electrosurgical or ultrasonic energy to the end effector and may optionally include a blade and/or a pair of jaws for grasping or clamping tissue. The energy delivered by the ESU generator 134002 may pass through the end effector to the patient via any of a variety of possible components of the end effector. At least a portion of the patient has a return path pad 134014, such as, for example, a Smart Megasoft Pad™, configured to divert excess energy away from the patient when the surgical instrument 134008 touches the patient to apply electrosurgical energy. may be placed on top.

患者の付近にある複数の電源のために、寄生容量結合が絶えず存在し、手術中に常に患者に危害を及ぼす危険性がある。手術中に患者がいずれかの反応を示すことは期待できないため、未知の又は予測されない容量結合が発生した場合、患者は結果的に意図しない場所で火傷を負うことがある。一般に、容量結合のようなエネルギー異常は、患者の安全性を改善するために最小化されるか、ないしは別の方法で是正されるべきである。容量結合又は他の種類のエネルギー異常の発生を制限するために、CT1(134006)、CT2(134010)、及びCT3(134012)スマートセンサなどの複数のスマートセンサ又はモニタをインジケータとして電気外科システムに統合して、過剰又は誘導エネルギーが1つ又は2つ以上の電源の外部に放出されているかどうかを判定してもよい。図29に示すように、スマートセンサCT1(134006)、CT2(134010)、及びCT3(134012)は、エネルギーが誘導的に放出され得る可能性の高い場所に配置される。センサ又はモニタは、静電容量を検出するように構成されてもよく、システム内の戦略的な位置に配置される場合、静電容量の読み取りは、容量漏れがセンサ又はモニタ付近で発生していることを意味し得る。システム付近又はシステム全体の他のセンサが静電容量の読み取りを示していないという認識と併せて、正の示度を提供しているセンサ又はモニタにごく近接して容量漏れが発生していると結論付けることができる。容量漏れモニタ又は検出器などの、他のセンサを使用してもよい。これらのセンサは、点灯、又はノイズの放出、又は最終的なディスプレイモニタへの信号の送信などの、警告を提供するように構成されてもよい。加えて、単極ESU134002は、エネルギー発生の遮断を自動的にトリガして、任意の更なる容量結合が発生するのを停止するように構成されてもよい。 Due to the multiple power sources in the vicinity of the patient, parasitic capacitive coupling is constantly present and poses a constant risk of harm to the patient during surgery. Since the patient cannot be expected to show any reaction during surgery, the patient may end up being burned in unintended locations if an unknown or unforeseen capacitive coupling occurs. In general, energy anomalies such as capacitive coupling should be minimized or otherwise corrected to improve patient safety. Multiple smart sensors or monitors such as CT1 (134006), CT2 (134010), and CT3 (134012) smart sensors are integrated into the electrosurgical system as indicators to limit the occurrence of capacitive coupling or other types of energy anomalies. may be used to determine if excess or inductive energy is being dumped outside of one or more power sources. As shown in FIG. 29, smart sensors CT1 (134006), CT2 (134010), and CT3 (134012) are placed at locations where energy is likely to be released inductively. The sensor or monitor may be configured to detect capacitance, and when placed at strategic locations within the system, the capacitance reading indicates that capacitive leakage has occurred near the sensor or monitor. can mean that there is The presence of capacitive leakage in close proximity to a sensor or monitor that is providing a positive can conclude. Other sensors may be used, such as capacitive leak monitors or detectors. These sensors may be configured to provide warnings such as lighting up or emitting noise or sending a signal to an eventual display monitor. Additionally, the unipolar ESU 134002 may be configured to automatically trigger a cutoff of energy generation to stop any further capacitive coupling from occurring.

いくつかの態様では、容量結合を低減するための別の解決策として、中性電極134004が単極ESU1340002に含まれてもよく、例えば、Smart Megasoft Pad(登録商標)などのリターンパスパッド134014に電気的に連結されてもよい。電気外科用器具134008が患者に触れ、患者がリターンパスパッド134014に触れていて、かつパッドが中性電極134004に導電接続されているとき、エネルギーは中性ノード134004に導電的に到達し得る。したがって、エネルギーは、単極ESU134002又は外科用器具134008から中性ノード134004に逸らされ、それによって容量結合の発生を低減することができる。 In some aspects, as another solution to reduce capacitive coupling, a neutral electrode 134004 may be included in the unipolar ESU 1340002, e.g. may be electrically coupled. When the electrosurgical instrument 134008 touches the patient, the patient touches the return path pad 134014, and the pad is conductively connected to the neutral electrode 134004, energy can reach the neutral node 134004 conductively. Thus, energy can be diverted from the monopolar ESU 134002 or surgical instrument 134008 to the neutral node 134004, thereby reducing the occurrence of capacitive coupling.

いくつかの態様では、医療ハブなどを通じて単極ESUに通信可能に連結されたクラウド分析システムは、手術中にいつ容量結合が発生し得るかを予測するのに役立ち得る状況認識を用いるように構成されてもよい。クラウド分析システム及び/又は医療ハブは、容量結合アルゴリズムを利用して、外科システムを流れるエネルギーの発生を監視することができ、同様の状況の処置のためのシステム内のエネルギー状態に関する以前のデータに基づいて、更なる動作が行われない場合に容量結合が発生し得る可能性があると結論付けることができる。例えば、手術の特定の工程時に使用すべき外科用器具の方法及び電力量に関して規定の方法を伴う手術中に、クラウド分析モジュールは、以前の同じ手術から引き出して、その手術の特定の工程後に容量結合が発生する可能性がより強いことを注意することができる。手術の工程の監視中、容量結合を誘発する傾向があると予想される工程中又はその工程の直前に同じ又は非常に類似したエネルギープロファイルが生じたとき、クラウド分析システムは、容量結合を生じる可能性があることを示す警告を出すことができる。外科医は、外科用器具134008におけるピーク電圧を低減するか、若しくは単極ESU134002による発電を遮断するオプションを与えられてもよく、又はクラウド分析モジュールが、自動的に医療ハブにこれらの対策を取らせてもよい。これにより、発生する可能性がある前に容量結合の可能性を排除することができ、又は少なくとも容量結合の瞬間的な発生によって引き起こされる任意の意図しない影響を制限することができる。 In some aspects, a cloud analytics system communicatively coupled to a unipolar ESU, such as through a medical hub, is configured to use situational awareness that can help predict when capacitive coupling may occur during surgery. may be The cloud analytics system and/or the medical hub can utilize capacitive coupling algorithms to monitor the generation of energy flowing through the surgical system and integrate previous data regarding the energy state within the system for treatment of similar situations. Based on this, it can be concluded that capacitive coupling may occur if no further action is taken. For example, during a surgery involving a prescribed method regarding the method and amount of power of surgical instruments to be used during a particular step of surgery, the cloud analytics module may pull from the same previous surgery to determine the capacity after that particular step of surgery. It can be noted that binding is more likely to occur. During monitoring of surgical steps, the cloud analysis system can generate capacitive coupling when the same or very similar energy profiles occur during or immediately prior to a step that would be expected to induce capacitive coupling. A warning can be issued to indicate that The surgeon may be given the option to reduce the peak voltage on the surgical instrument 134008 or cut off the power generation by the unipolar ESU 134002, or the cloud analytics module will automatically let the medical hub take these measures. may This can eliminate the possibility of capacitive coupling before it can occur, or at least limit any unintended effects caused by the momentary onset of capacitive coupling.

いくつかの態様では、図29に示す外科用器具は、容量結合を低減又は防止するための構造的手段を含んでもよい。例えば、外科用器具134008のシャフト内の絶縁材は、インダクタンスの発生を低減することができる。他の場合には、単極ESU134002を外科用器具134008に接続する単極ワイヤを遮蔽してもよい。別の例として、シャフト内に遮断プラスチック要素を断続的に存在させて、シャフト内で容量結合が長距離を伝達されるのを防止することができる。他の絶縁体型要素を使用して、同様の効果を達成してもよい。いくつかの態様では、外科用器具134008を発生器134002に電気的に接続する単極ワイヤは、容量結合の発生を低減するためにも遮蔽されてよい。 In some aspects, the surgical instrument shown in FIG. 29 may include structural means to reduce or prevent capacitive coupling. For example, insulation in the shaft of the surgical instrument 134008 can reduce the generation of inductance. In other cases, the monopolar wire connecting the monopolar ESU 134002 to the surgical instrument 134008 may be shielded. As another example, interrupting plastic elements can be intermittently present within the shaft to prevent capacitive coupling from being transmitted over long distances within the shaft. Other insulator-type elements may be used to achieve a similar effect. In some aspects, the monopolar wires electrically connecting the surgical instrument 134008 to the generator 134002 may also be shielded to reduce the occurrence of capacitive coupling.

いくつかの態様では、エンドエフェクタの構造は、エンドエフェクタが患者と接触する際に容量結合の影響を低減するように修正され得る。一例として、エンドエフェクタのジョーは、各ジョーの片側のみがエネルギーの送達に割り当てられるように設計されてもよく、それによってエンドエフェクタを単極ブレードのように動作させる一方で、依然として実際には機能的に双極装置として構造化されている。この一例では、エンドエフェクタの端部又は先端は、尖った端部から生じ得る任意の電圧ピークを低減するために、丸い端部を有するダックビルのような形状であってもよい。エンドエフェクタ内のエネルギーの方向は、依然としてダックビル状端部に沿った領域又は点に向けられ得るが、ダックビル状端部によって任意の過剰なエネルギーの分散が鈍化され得る。別の例として、ブレードは、三角形の断面積を有するように、片側でわずかに厚くなり、反対側で薄い直立上部ブレード要素を有するように構造化されてもよい。これにより、ブレードに送達される任意のエネルギーが点に集束されることができ、これは、外科用器具が依然として双極装置である一方で、単極ブレードのように動作するのに役立ち得る。この方法では、エネルギーは、外科用器具が容量結合をより生じやすくなる分散状態にならないであろう。最後の例として、外科用器具のジョーは、エンドエフェクタの内側に配置された電極を有してもよく、エンドエフェクタの外側部分は、容量結合を避けるための遮蔽部のように作用することができる。電極は、依然として手術中に患者の組織に十分に接触するように配置されるが、エンドエフェクタの1つ又は2つ以上の縁部は、エネルギーが集束された手術領域を越えて分散するのを遮蔽し得る。 In some aspects, the structure of the end effector may be modified to reduce capacitive coupling effects as the end effector contacts the patient. As an example, the jaws of an end effector may be designed such that only one side of each jaw is dedicated to delivering energy, thereby causing the end effector to behave like a monopolar blade while still actually functioning. typically structured as a bipolar device. In one example of this, the end or tip of the end effector may be shaped like a duckbill with rounded ends to reduce any voltage peaks that may result from sharp ends. Energy within the end effector may still be directed to areas or points along the duckbill end, but the duckbill end may dampen the dispersion of any excess energy. As another example, the blade may be structured with an upstanding upper blade element that is slightly thicker on one side and thinner on the other side so as to have a triangular cross-sectional area. This allows any energy delivered to the blade to be focused to a point, which can help the surgical instrument behave like a monopolar blade while still being a bipolar device. In this way, the energy will not become dispersed, making the surgical instrument more susceptible to capacitive coupling. As a final example, the jaws of a surgical instrument may have electrodes positioned inside the end effector, with the outer portion of the end effector acting like a shield to avoid capacitive coupling. can. Although the electrodes are still positioned to make good contact with the patient's tissue during surgery, one or more edges of the end effector prevent the energy from dispersing beyond the focused surgical field. can be shielded.

図30は、いくつかの態様により開示される、外科システムにおける容量結合の影響を制限するための例示的な方法論の制御プログラム又は論理構成を示す論理フロー図134100である。例示的な方法論は、1つ又は2つ以上の外科用器具を使用する手術中の容量結合の制限又はその影響の緩和のためのいくつかの列挙された手段に関する上記の説明と一致し得る。 FIG. 30 is a logic flow diagram 134100 illustrating a control program or logic configuration of an exemplary methodology for limiting capacitive coupling effects in a surgical system disclosed according to some aspects. Exemplary methodologies may be consistent with the above description of some enumerated means for limiting or mitigating the effects of capacitive coupling during surgery using one or more surgical instruments.

図示したように、かつ上記の例と一致して、方法論134100は、エネルギー発生を監視(134102)するように構成された外科システムを用いて開始することができる。例えば、複数のセンサは、容量結合を引き起こし得る、エネルギーをより漏洩しやすい潜在的な脆弱点に戦略的に配置されてもよい。これらのセンサは、エネルギー異常が発生したときに警告を送信するように構成され得る。 As shown, and consistent with the examples above, methodology 134100 can begin with a surgical system configured to monitor (134102) energy generation. For example, multiple sensors may be strategically placed at potential weak points that are more prone to leaking energy that can cause capacitive coupling. These sensors may be configured to send alerts when energy anomalies occur.

続いて、センサ又は他の検出手段は、通常はそのようなエネルギー生成を生じるとは予測されない外科システムに沿った1つ又は2つ以上の位置において、電圧ピーク又は電圧スパイクなどの電圧異常を検出(134104)し得る。システムは、これらのシナリオが寄生容量結合を生じさせることがあり、いずれかの警告がなければ手術チームが気付かないうちに患者を火傷させる可能性があると結論付けるように構成され得る。その結果、エネルギー異常及び容量結合の発生の危険性を示す警告又はメッセージが送信され得る。 Subsequently, sensors or other detection means detect voltage anomalies, such as voltage peaks or voltage spikes, at one or more locations along the surgical system that would not normally be expected to produce such energy. (134104) can. The system may be configured to conclude that these scenarios may cause parasitic capacitive coupling and, without any warning, may burn the patient without the surgical team's knowledge. As a result, a warning or message may be sent indicating the danger of energy anomalies and capacitive coupling occurring.

いくつかの態様では、状況認識も使用して、手術の通常の過程中でいつ容量結合がより起こりやすいかを予測(134106)してもよい。状況認識を使用して、過去の同様の種類又は状況の外科手術を参照し、容量結合が発生したと判定されたときにどの変数が存在し得るかを特定することができる。容量結合をより生じやすい処置に特定の工程が存在する場合、システムは、特にこれらの時点でセンサを監視することにより、及び/又は容量結合の発生を低減するように事前に対策を取ることにより、これらの状況を予測することができる。 In some embodiments, situational awareness may also be used to predict when capacitive coupling is more likely during the normal course of surgery (134106). Situational awareness can be used to reference past surgeries of similar type or situation to identify what variables may be present when capacitive coupling is determined to have occurred. If there are certain steps in the procedure that are more prone to capacitive coupling, the system may specifically monitor sensors at these times and/or take proactive measures to reduce the occurrence of capacitive coupling. , can predict these situations.

外科システムによって実行される上記の方法論134100に基づいて、容量結合が差し迫っていると検出されるか又は考えられる場合、容量結合の影響を低減、排除、又は緩和するために取られる対策としては、いくつかの態様により、単極エネルギー発生器でエネルギー発生を自動的に遮断(134108)することが挙げられ得る。この遮断が有効になった時点で、外科手術におけるいくらかの損失が瞬間的に生じ得るが、患者に対する意図しない損傷を防止することがいずれの場合にも最重要であろうことに留意されたい。手術は、短時間の遮断後に計画どおりに継続することができる。 Based on the above methodology 134100 performed by the surgical system, if capacitive coupling is detected or believed to be imminent, measures taken to reduce, eliminate, or mitigate the effects of capacitive coupling include: Some aspects may include automatically shutting off energy generation (134108) in a monopolar energy generator. Note that some loss in surgery may occur momentarily once this block is effective, but prevention of unintended injury to the patient will be paramount in any case. Surgery can continue as planned after a brief interruption.

入力エネルギーに対する出力エネルギーを測定し、寄生漏れを利用してパッドの接触を改善するか、又は電源をオフにすると、発生器が発生させる電流量が分かり、出力されるエネルギーが測定される。 By measuring the output energy relative to the input energy, using parasitic leakage to improve pad contact, or turning off the power, the amount of current the generator produces is known and the energy output is measured.

容量結合の存在下での周波数の増加
いくつかの態様では、寄生容量結合の存在を利用して、エネルギー凝固又はエネルギー焼灼を行うことができる。特定の例では、患者の身体を通して、単極回路を駆動して接地するために、電気外科用器具のエネルギー発生を増加させることが望ましい場合がある。Smart Megasoft Pad134014(登録商標)などの導電性リターンパッド(図29参照)によって引き込まれた導電性を介して単極回路が完成される多数の例が存在し得るが、場合によっては、パッドが不良であるか又は摩耗していることがあり、その結果、パッド134014の導電性は、患者の身体を通して電気外科用器具(例えば、134008)の電流を引き込むのに十分ではない。このような場合、電流は、エネルギーが移動するのに十分な接地が不足して、事実上、患者の身体を短絡のように働かせることがある。これにより、外科用器具134008によって送達されるエネルギーが患者の組織を通過せず、したがって意図したように組織を加熱しないため、電気外科手術が無効になることがある。リターンパッドが全く存在しない場合、同様の状況が生じ得る。すなわち、広い導電性リターンパスを提供するための、Smart Megasoft Pad134014(登録商標)などの導電性リターンパッドがない場合、患者に接続された有効な接地が存在しないことがある。これはまた、外科用器具からのエネルギーが患者に印加された場合に、患者が短絡の役割を果たすことにもつながり得る。
Increasing Frequency in the Presence of Capacitive Coupling In some aspects, the presence of parasitic capacitive coupling can be exploited to effect energy coagulation or energy ablation. In certain instances, it may be desirable to increase the energy production of the electrosurgical instrument to drive a monopolar circuit through the patient's body to ground. There can be numerous instances in which a unipolar circuit is completed via conductivity drawn by a conductive return pad (see FIG. 29) such as the Smart Megasoft Pad 134014®, but in some cases the pad is defective. or worn out so that the conductivity of the pads 134014 is not sufficient to draw the current of the electrosurgical instrument (eg, 134008) through the patient's body. In such cases, the current may effectively act like a short circuit through the patient's body, lacking sufficient ground for the energy to be transferred. This may render electrosurgery ineffective because the energy delivered by the surgical instrument 134008 does not pass through the patient's tissue and thus does not heat the tissue as intended. A similar situation can occur if there is no return pad at all. That is, without a conductive return pad, such as the Smart Megasoft Pad 134014®, to provide a wide conductive return path, there may not be an effective ground connected to the patient. This can also lead to the patient acting as a short circuit when energy from the surgical instrument is applied to the patient.

これらの状況を調節するために、いくつかの態様では、単極エネルギー発生を500Khz~3、4Mhzなどの非常に高い周波数に増加させて、寄生患者漏れを利用して、パッドなしの電気外科手術(又はパッド内の導電性が不十分な電気外科手術)を行うことができる。交流周波数を増加させることにより、寄生漏れ電流が増加するであろう。次いで、より強い漏れ電流は、より効率的に患者の身体を放射状に横断することができる。患者の身体を通って到達した後、容量結合の漏れ電流は、結果としてより効率的に放射状に接地状態に結合され、接地の役割を果たす別の物体内に効率的に電流を放射状に駆動させ得る。例えば、AC周波数が十分に高い場合、電流漏れは、単極発生器の接地端子に到達し得る。これは、患者の短絡効果を排除するのに役立ち、それによってエネルギー凝固を行うことができる。したがって、パッドのないシステム、又はパッドの導電性が低いシステムが存在する状況では、使用し得るより高い漏れリターンを利用して単極回路を完成させるために、電流漏れを増加させることが望ましい場合がある。すなわち、場合によっては、リターンパスは、容量結合によって生じる放射性電流漏れによって形成され得る。放射性リターンパスが接地板に到達することを確実にするために、外科用器具のエネルギーを非常に高い周波数に増加させてもよい。 To accommodate these situations, in some embodiments, the monopolar energy generation is increased to very high frequencies, such as 500 Khz to 3.4 Mhz, to take advantage of parasitic patient leakage for padless electrosurgery. (or electrosurgery with poor conductivity in the pad) can be performed. Increasing the AC frequency will increase the parasitic leakage current. The stronger leakage current can then traverse the patient's body radially more efficiently. After arriving through the patient's body, the capacitively coupled leakage current is consequently more efficiently radially coupled to ground, effectively driving the current radially into another body that serves as the ground. obtain. For example, if the AC frequency is high enough, current leakage can reach the ground terminal of a monopolar generator. This helps eliminate the patient's short-circuit effect, thereby allowing energy coagulation to occur. Therefore, in situations where there are systems with no pads or pads with poor conductivity, it may be desirable to increase the current leakage to complete a unipolar circuit with the higher leakage return available. There is That is, in some cases the return path may be formed by radiative current leakage caused by capacitive coupling. The energy of the surgical instrument may be increased to very high frequencies to ensure that the radiative return path reaches the ground plane.

場合によっては、低導電性のリターンパッドを、アース接地、又はテーブル、又は最も近い支持表面に意図的に接続してもよく、その一方で発生器のリターンコネクタも同様にアース接地に接続してもよい。これは、患者に火傷を負わせる恐れがある、低導電性のリターンパッドを通って発生器に戻る任意のエネルギー試行を有するのではなく、放射性リターンパスを通って流れるように回路を迂回させるであろう。 In some cases, the low-conductivity return pad may be intentionally connected to earth ground or to the table or nearest supporting surface, while the return connector of the generator is likewise connected to earth ground. good too. This allows the circuit to be diverted to flow through a radioactive return path, rather than having any energy attempts back to the generator through the low-conductivity return pad, which could burn the patient. be.

パッドを有するシステムが存在し、パッドが患者の下で十分な導電性を提供する場合、身体を通してリターンパッドに電流を駆動する典型的な単極回路は、好ましい方法であり得ることに留意されたい。これらの場合、エネルギー発生器134002(図29参照)などの外部接続された電源に絶縁バリアを構築することが有用であり得る。あるいは、電池式器具は、導電性リターンパッドを通るエネルギー経路を絶縁するのに役立つであろう漏れ電流の低減にとってより理想的なシステムであり得る。 Note that if a system with pads exists and the pads provide sufficient conductivity under the patient, a typical monopolar circuit driving current through the body to the return pad may be the preferred method. . In these cases, it may be useful to build an isolation barrier to an externally connected power source such as the energy generator 134002 (see FIG. 29). Alternatively, a battery-powered instrument may be a more ideal system for reducing leakage currents that would help isolate the energy path through the conductive return pads.

いくつかの態様では、外科システムは、リターンパスパッドの能力を判定するように構成された検出回路を含み得る。次いで、検出回路は、低導電性のリターンパスパッドに依存するか又は単にパッドに全く依存しないように試みるよりも、放射性電流漏れを利用して回路を完成させることがより良いかどうかに関する情報を提供してもよい。検出回路は、リターンパスパッドにおける導電性の量を測定することができる。導電性の測定値が所定の閾値を満たす場合、システムは、リターンパスパッドを使用して手術を実施し、単極エネルギーのリターンパスを提供し得ると判定することができる。導電性が閾値を下回る場合、検出回路は、外科用ハブ内のプロセッサ又は単極発生器などにおいて、単極エネルギーの周波数を大幅に増加すべきであり、かつリターンパスパッドを考慮から排除するか又は少なくとも隔離すべきであるという信号をシステムに送信するように構成されてもよい。周波数を増加させると、放射性リターンパスの生成によって単極回路が完成するであろう。 In some aspects, a surgical system may include a detection circuit configured to determine capabilities of a return path pad. The detection circuit then provides information as to whether it is better to use radiative current leakage to complete the circuit rather than relying on low-conductivity return-path pads or simply trying not to rely on pads at all. may provide. A detection circuit can measure the amount of conductivity in the return path pad. If the conductivity measurement meets a predetermined threshold, the system can determine that the return path pad can be used to perform surgery and provide a monopolar energy return path. If the conductivity is below the threshold, the detection circuitry should significantly increase the frequency of the monopolar energy, such as in a processor or monopolar generator in the surgical hub, and eliminate the return path pad from consideration. Or at least it may be configured to send a signal to the system that it should be quarantined. Increasing the frequency will complete a unipolar circuit by creating a radiative return path.

いくつかの態様では、単極発生器は、電流漏れが単極発生器の接地端子に到達したかどうかを判定するように構成された1つ又は2つ以上のセンサに連結された1つ又は2つ以上の制御回路を含み得る。検出回路及び単極発生器の制御回路と組み合わされたセンサを使用して、高い漏れ電流に基づいて十分なリターンパスを生成するために周波数を自動的に調節し得る、閉じたフィードバックループシステムを生成してもよい。例えば、検出回路は、リターンパスパッドに十分な導電性があるかどうかを判定することができる。そうでない場合、単極発生器の制御回路は、エネルギーを発生させてAC周波数を増加させることができる。単極発生器におけるセンサは、増加した周波数に基づいて、任意の放射性電流漏れが単極発生器の接地端子に到達したかどうかを連続的に監視してもよい。制御回路は、放射性電流漏れが接地端子に到達したことが検出されるまで、周波数を徐々に増加させてもよい。したがって、外科システムは、リターンパスパッドがないか若しくはパッド内の導電性が不十分であると判定するかどうかを所定の周波数閾値に依存してもよく、又は閉じたフィードバックシステムを使用して、放射性結合を通してリターンパスを生成し得る十分に高い周波数を見出してもよい。 In some aspects, the monopolar generator has one or more sensors coupled to one or more sensors configured to determine whether a current leakage reaches the ground terminal of the monopolar generator. More than one control circuit may be included. A closed feedback loop system that can automatically adjust the frequency to create a sufficient return path based on high leakage currents using a sensor combined with a detection circuit and a control circuit for the unipolar generator. may be generated. For example, the detection circuit can determine whether the return path pad has sufficient conductivity. Otherwise, the control circuit of the unipolar generator can generate energy to increase the AC frequency. A sensor in the unipolar generator may continuously monitor whether any radiative current leakage reaches the ground terminal of the unipolar generator based on the increased frequency. The control circuit may gradually increase the frequency until radiative current leakage is detected reaching the ground terminal. Therefore, the surgical system may rely on a predetermined frequency threshold to determine whether there is no return path pad or insufficient conductivity in the pad, or use a closed feedback system to A sufficiently high frequency may be found that can create a return path through radiative coupling.

図31は、寄生容量結合を利用するかどうかを判定するために、単極エネルギー発生を利用する外科システムによって実行され得る例示的な方法論の制御プログラム又は論理構成を示す論理フロー図134200である。上記の説明と一致して、外科システムの一部としての検出回路は、単極電気外科手術セットアップのリターンパスにおける導電性のレベルを測定(134202)するように構成され得る。リターンパスは、本来、Soft Megasoft Pad(登録商標)又は他のリターンパス導電性パッドなどの導電性パッドを通過するように特定され得る。場合によっては、パッド内の導電性は、低導電性を提供してもよい。他の場合には、手術セットアップの一部としてパッドは存在しなくてもよい。これにより、患者の身体が単極回路の短絡の役割を果たすことがあり、これは、患者の手術部位に単極エネルギーを適用しようと試みる有効性を低減又は排除するであろう。 FIG. 31 is a logic flow diagram 134200 showing a control program or logic configuration of an exemplary methodology that may be executed by a surgical system utilizing monopolar energy generation to determine whether to utilize parasitic capacitive coupling. Consistent with the discussion above, a detection circuit as part of a surgical system may be configured to measure (134202) the level of conductivity in the return path of a monopolar electrosurgical setup. A return path may be specified by itself through a conductive pad such as a Soft Megasoft Pad® or other return path conductive pad. In some cases, the conductivity within the pad may provide low conductivity. In other cases, pads may not be present as part of the surgical setup. This may cause the patient's body to act as a short circuit for the monopolar circuit, which would reduce or eliminate the effectiveness of attempting to apply monopolar energy to the patient's surgical site.

検出回路は、導電性の測定値が所定の閾値を下回っていると判定(134204)することがあり、これは、リターンパスにおける導電性のレベルが十分に低く、単極回路の完成を妨げることを示す。その結果、外科システムは、単極発生器で交流電流の周波数を増加させることにより、発生器に電流漏れを増加(134206)させ得る。外科システムは、代わりに放射性電流漏れを利用して、リターンパスを生成してもよい。周波数が増加すると、電流漏れも増加し、それによって接地板に到達する放射性電流漏れの到達が増加し、回路を完成させる。したがって、周波数を増加させることにより、低導電性のリターンパスパッド、又は更にはパッドが全くないことが、覆され得る。場合によっては、放射性電流漏れが単極発生器で接地端子に到達したと判定されるまで周波数を調節する閉じたフィードバックセンサシステムに基づいて、漏れの増加を決定してもよい。 The detection circuit may determine (134204) that the measured conductivity is below a predetermined threshold, which means that the level of conductivity in the return path is sufficiently low to prevent completion of a unipolar circuit. indicate. As a result, the surgical system may cause the generator to increase current leakage (134206) by increasing the frequency of the alternating current in the monopolar generator. Surgical systems may alternatively utilize radioactive current leakage to create a return path. As the frequency increases, the current leakage also increases, thereby increasing the reach of the radiative current leakage reaching the ground plane, completing the circuit. Thus, by increasing the frequency, low conductivity return path pads, or even no pads at all, can be reversed. In some cases, an increase in leakage may be determined based on a closed feedback sensor system that adjusts the frequency until it is determined that radioactive current leakage has reached the ground terminal at the monopolar generator.

いくつかの態様では、外科システムはまた、リターンパスパッドのうちの任意のものを絶縁(134208)するように、かつ単極発生器のリターンコネクタをアース接地に取り付けるように命令を提供してもよい。これらの対策は、不注意で患者の望ましくない場所に火傷を負わせる恐れがある他の代替的なリターンパスを排除するために取られ得る。 In some aspects, the surgical system may also provide instructions to insulate (134208) any of the return path pads and to attach the return connector of the monopolar generator to earth ground. good. These measures can be taken to eliminate other alternative return paths that could inadvertently cause burns to unwanted locations on the patient.

状況認識
ここで図32を参照すると、例えば、外科用ハブ106又は206などのハブの状況認識を示す時間線5200が示されている。時間線5200は例示的な外科処置、及び外科用ハブ106、206が、外科処置の各工程でデータソースから受信したデータから導き出すことができるコンテキスト情報である。時間線5200は、手術室を設置することから開始し、患者を術後回復室に移送することで終了する肺区域切除手術の過程で、看護師、外科医、及び他の医療関係者によって取られるであろう典型的な工程を示す。
Situational Awareness Referring now to FIG. 32, a timeline 5200 illustrating the situational awareness of a hub, eg, surgical hub 106 or 206, is shown. Timeline 5200 is an exemplary surgical procedure and contextual information that surgical hubs 106, 206 can derive from data received from data sources at each step of the surgical procedure. Timeline 5200 is taken by nurses, surgeons, and other medical personnel during the course of a segmentectomy surgery, beginning with setting up the operating room and ending with transferring the patient to the post-operative recovery room. A typical process that might be followed is shown.

状況認識外科用ハブ106、206は、外科処置の過程全体にわたって、医療関係者が外科用ハブ106、206とペアリングされたモジュール式装置を使用する度に生成されるデータを含むデータをデータソースから受信する。外科用ハブ106、206は、ペアリングされたモジュール式装置及び他のデータソースからこのデータを受信して、任意の所与の時間に処置のどの工程が実施されているかなどの新しいデータが受信されると、進行中の処置に関する推定(すなわち、コンテキスト情報)を継続的に導出することができる。外科用ハブ106、206の状況認識システムは、例えば、レポートを生成するために処置に関するデータを記録する、医療関係者によって取られている工程を検証する、特定の処置工程に関連し得るデータ又はプロンプトを(例えば、ディスプレイスクリーンを介して)提供する、コンテキストに基づいてモジュール式装置を調節する(例えば、モニタを起動する、医療用撮像装置の視界(FOV)を調節する、又は超音波外科用器具若しくはRF電気外科用器具のエネルギーレベルを変更するなど)、及び上記の任意の他のこうした動作を行うことが可能である。 The situational awareness surgical hub 106, 206 sources data throughout the course of a surgical procedure, including data generated each time a modular device paired with the surgical hub 106, 206 is used. receive from The surgical hubs 106, 206 receive this data from paired modular devices and other data sources to receive new data such as what steps of the procedure are being performed at any given time. Once done, inferences (ie, contextual information) about the ongoing procedure can be continuously derived. The situational awareness system of the surgical hub 106, 206 may, for example, record data regarding procedures to generate reports, verify steps being taken by medical personnel, collect data that may be relevant to specific procedure steps, or Provide prompts (e.g., via a display screen), adjust modular devices based on context (e.g., activate a monitor, adjust the field of view (FOV) of a medical imaging device, or perform ultrasound surgical changing the energy level of the instrument or RF electrosurgical instrument), and any other such actions described above.

この例示的な処置における第1の工程5202として、病院職員は、病院のEMRデータベースから患者のEMRを読み出す。EMRにおける選択された患者データに基づいて、外科用ハブ106、206は、実行される処置が胸郭処置であることを判定する。 As a first step 5202 in this exemplary procedure, hospital personnel retrieve the patient's EMR from the hospital's EMR database. Based on selected patient data in the EMR, surgical hub 106, 206 determines that the procedure to be performed is a thoracic procedure.

第2の工程5204では、職員は、処置のために入来する医療用品をスキャンする。外科用ハブ106、206は、スキャンされた用品を様々な種類の処置で利用される用品のリストと相互参照し、用品の組み合わせ(mix of supplies)が胸郭処置に対応することを確認する。更に、外科用ハブ106、206はまた、処置が楔形処置ではないと判定することができる(入来する用品が、胸郭楔形処置に必要な特定の用品を含まないか、又は別の点で胸郭楔形処置に対応していないかのいずれかであるため)。 In a second step 5204, personnel scan incoming medical supplies for treatment. The surgical hub 106, 206 cross-references the scanned supplies with lists of supplies utilized in various types of procedures to confirm that the mix of supplies corresponds to the thoracic procedure. Additionally, the surgical hub 106, 206 can also determine that the procedure is not a wedge procedure (either the incoming product does not include the specific product required for a thoracic wedge procedure or the otherwise thoracic wedge procedure). either because it does not correspond to the wedge treatment).

第3の工程5206では、医療関係者は、外科用ハブ106、206に通信可能に接続されたスキャナを介して患者のバンドをスキャンする。続いて、外科用ハブ106、206は、スキャンされたデータに基づいて患者の識別情報を確認することができる。 In a third step 5206, medical personnel scan the patient's band via a scanner communicatively connected to the surgical hub 106,206. The surgical hub 106, 206 can then verify the patient's identity based on the scanned data.

第4の工程5208では、医療スタッフが補助装置をオンにする。利用される補助装置は、外科処置の種類及び外科医によって使用される技術に従って変わり得るが、この例示的な場合では、これらとしては、排煙器、吸入器、及び医療用撮像装置が挙げられる。起動されると、モジュール式装置である補助装置は、その初期化プロセスの一部として、モジュール式装置の特定の近傍内に位置する外科用ハブ106、206と自動的にペアリングすることができる。続いて、外科用ハブ106、206は、この術前又は初期化段階中にそれとペアリングされるモジュール式装置の種類を検出することによって、外科処置に関するコンテキスト情報を導出することができる。この特定の実施例では、外科用ハブ106、206は、ペアリングされたモジュール式装置のこの特定の組み合わせに基づいて、外科処置がVATS手術であると判定する。患者のEMRからのデータの組み合わせ、手術に用いられる医療用品のリスト、及びハブに接続するモジュール式装置の種類に基づいて、外科用ハブ106、206は、外科チームが実施する特定の処置を概ね推定することができる。外科用ハブ106、206が、何の特定の処置が実施されているかを知ると、続いて外科用ハブ106、206は、メモリから、又はクラウドからその処置の工程を読み出して、次に接続されたデータソース(例えば、モジュール式装置及び患者監視装置)からその後受信したデータを相互参照して、外科処置のどの工程を外科チームが実行しているかを推定することができる。 In a fourth step 5208, the medical staff turns on the assistive device. The auxiliary devices utilized may vary according to the type of surgical procedure and the technique used by the surgeon, but in this exemplary case they include smoke evacuators, inhalers, and medical imaging equipment. When activated, an auxiliary device that is a modular device can automatically pair with surgical hubs 106, 206 located within a particular proximity of the modular device as part of its initialization process. . The surgical hub 106, 206 can then derive contextual information about the surgical procedure by detecting the type of modular device paired with it during this preoperative or initialization phase. In this particular example, surgical hubs 106, 206 determine that the surgical procedure is a VATS procedure based on this particular combination of paired modular devices. Based on the combination of data from the patient's EMR, the list of medical supplies used in the surgery, and the type of modular device that connects to the hub, the surgical hub 106, 206 can approximate the specific procedure to be performed by the surgical team. can be estimated. Once the surgical hub 106, 206 knows what particular procedure is being performed, then the surgical hub 106, 206 retrieves the procedures for that procedure from memory or from the cloud and then connects. Data subsequently received from other data sources (eg, modular devices and patient monitors) can be cross-referenced to deduce which steps of the surgical procedure the surgical team is performing.

第5の工程5210では、職員は、EKG電極及び他の患者監視装置を患者に取り付ける。EKG電極及び他の患者監視装置は、外科用ハブ106、206とペアリングすることができる。外科用ハブ106、206が患者監視装置からデータの受信を開始すると、外科用ハブ106、206は患者が手術室にいることを確認する。 In a fifth step 5210, personnel attach EKG electrodes and other patient monitoring devices to the patient. EKG electrodes and other patient monitoring devices can be paired with the surgical hub 106,206. Once the surgical hub 106, 206 begins receiving data from the patient monitor, the surgical hub 106, 206 confirms that the patient is in the operating room.

第6の工程5212では、医療関係者は患者に麻酔を誘発する。外科用ハブ106、206は、例えば、EKGデータ、血圧データ、ベンチレータデータ、又はこれらの組み合わせを含む、モジュール式装置及び/又は患者監視装置からのデータに基づいて、患者が麻酔下にあることを推定することができる。第6の工程5212が完了すると、肺区域切除手術の術前部分が完了し、手術部分が開始する。 In a sixth step 5212, medical personnel induce anesthesia in the patient. The surgical hub 106, 206 determines that the patient is under anesthesia based on data from the modular device and/or patient monitor including, for example, EKG data, blood pressure data, ventilator data, or combinations thereof. can be estimated. Completion of the sixth step 5212 completes the preoperative portion of the segmentectomy surgery and begins the surgical portion.

第7の工程5214では、操作されている患者の肺が虚脱される(換気が対側肺に切り替えられる間に)。外科用ハブ106、206は、例えば、患者の肺が虚脱されたことをベンチレータデータから推定することができる。外科用ハブ106、206は、患者の肺が虚脱したのを検出したことを、処置の予期される工程(事前にアクセス又は読み出すことができる)と比較することができるため、処置の手術部分が開始したことを推定して、それによって肺を虚脱させることがこの特定の処置における第1の手術工程であると判定することができる。 In a seventh step 5214, the lung of the patient being manipulated is collapsed (while ventilation is switched to the contralateral lung). The surgical hub 106, 206 can, for example, deduce from the ventilator data that the patient's lung has collapsed. The surgical hub 106, 206 can compare the detection of the patient's lung collapse to the expected steps of the procedure (which can be accessed or read out in advance) so that the surgical portion of the procedure is Assuming it has started, it can be determined that collapsing the lung is the first surgical step in this particular procedure.

第8の工程5216では、医療用撮像装置(例えば、スコープ)が挿入され、医療用撮像装置からのビデオ映像が開始される。外科用ハブ106、206は、医療用撮像装置への接続を通じて医療用撮像装置データ(すなわち、ビデオ又は画像データ)を受信する。医療用撮像装置データを受信すると、外科用ハブ106、206は、外科処置の腹腔鏡部分が開始したことを判定することができる。更に、外科用ハブ106、206は、実施されている特定の処置が、肺葉切除とは対照的に区域切除術であると判定することができる(処置の第2の工程5204で受信したデータに基づいて、楔形処置は外科用ハブ106、206によって既に割り引かれていることに留意されたい)。医療用撮像装置124(図2)からのデータは、患者の解剖学的構造の可視化に関して配向されている医療用撮像装置の角度を判定することによる、用いられている(すなわち、起動されており、外科用ハブ106、206とペアリングされている)数又は医療用撮像装置を監視することによる、及び用いられている可視化装置の種類を監視することによる、ことを含む多くの異なる方法の中から実施されている処置の種類に関するコンテキスト情報を判定するために用いられ得る。例えば、VATS肺葉切除術を実施するための1つの技術は、カメラを患者の胸腔の前下方角部の横隔膜上方に配置し、一方、VATS区域切除術を実施するための1つの技術は、カメラを、区域裂に対して前肋間位置に配置する。例えば、パターン認識又は機械学習技術を使用して、状況認識システムは、患者の解剖学的構造の可視化に基づいて、医療用撮像装置の位置を認識するように訓練され得る。別の例として、VATS肺葉切除術を実施するための1つの技術は単一の医療用撮像装置を利用するが、VATS区域切除術を実施するための別の技術は複数のカメラを利用する。更に別の例として、VATS区域切除術を実施するための1つの技術は、区域裂を可視化するために赤外線光源(可視化システムの一部として外科用ハブに通信可能に連結され得る)を使用し、これはVATS肺葉切除術では使用されない。医療用撮像装置からのこのデータのいずれか又は全てを追跡することによって、外科用ハブ106、206は、実行中の特定の種類の外科処置、及び/又は特定の種類の外科処置に使用されている技術を判定することができる。 In an eighth step 5216, a medical imaging device (eg, scope) is inserted and video footage from the medical imaging device is initiated. Surgical hubs 106, 206 receive medical imaging device data (ie, video or image data) through connections to medical imaging devices. Upon receiving the medical imaging device data, the surgical hub 106, 206 can determine that the laparoscopic portion of the surgical procedure has begun. Additionally, the surgical hub 106, 206 can determine that the particular procedure being performed is a segmentectomy as opposed to a lobectomy (based on the data received in the second step 5204 of the procedure). Note that the wedge procedure is already discounted by the surgical hubs 106, 206). Data from the medical imaging device 124 (FIG. 2) is used (i.e., activated) by determining the angle of the medical imaging device oriented with respect to visualization of the patient's anatomy. , by monitoring the number or medical imaging devices paired with the surgical hub 106, 206), and by monitoring the type of visualization device being used, among many different methods. can be used to determine contextual information about the type of treatment being performed from. For example, one technique for performing a VATS lobectomy places the camera above the diaphragm in the anterior inferior corner of the patient's thoracic cavity, while one technique for performing a VATS segmentectomy is to place the camera above the diaphragm. is placed in the anterior intercostal position relative to the segmental cleft. For example, using pattern recognition or machine learning techniques, a situational awareness system can be trained to recognize the location of medical imaging devices based on visualizations of patient anatomy. As another example, one technique for performing VATS lobectomy utilizes a single medical imaging device, while another technique for performing VATS segmentectomy utilizes multiple cameras. As yet another example, one technique for performing a VATS segmentectomy uses an infrared light source (which may be communicatively coupled to the surgical hub as part of the visualization system) to visualize the segmental cleft. , which is not used in VATS lobectomy. By tracking any or all of this data from the medical imaging device, the surgical hub 106, 206 can be used for the particular type of surgical procedure being performed and/or the type of surgical procedure being performed. technology can be determined.

第9の工程5218で、外科チームは、処置の切開工程を開始する。外科用ハブ106、206は、エネルギー器具が発射されていることを示すRF又は超音波発生器からのデータを受信するため、外科医が患者の肺を切開して分離するプロセスにあると推定することができる。外科用ハブ106、206は、受信されたデータを外科処置の読み出しされた工程と相互参照して、プロセスのこの時点(すなわち、上述された処置の工程が完了した後)で発射されているエネルギー器具が切開工程に対応していると判定することができる。特定の例では、エネルギー器具は、ロボット外科システムのロボットアームに取り付けられたエネルギーツールであり得る。 At a ninth step 5218, the surgical team begins the incision step of the procedure. The surgical hub 106, 206 receives data from the RF or ultrasound generator indicating that the energy device is being fired, so presuming that the surgeon is in the process of cutting and separating the patient's lungs. can be done. The surgical hub 106, 206 cross-references the received data with the readout steps of the surgical procedure to determine the energy being delivered at this point in the process (i.e., after the steps of the procedure described above have been completed). It can be determined that the instrument is compatible with the lancing process. In certain examples, the energy instrument can be an energy tool attached to a robotic arm of a robotic surgical system.

第10の工程5220で、外科チームは、処置の結紮工程に進む。外科用ハブ106、206は、器具が発射されていることを示す外科用ステープル留め及び切断器具からのデータを受信するため、外科医が動脈及び静脈を結紮していると推定することができる。前工程と同様に、外科用ハブ106、206は、外科用ステープル留め及び切断器具からのデータの受信を、読み出しされたプロセス内の工程と相互参照することによって、この推定を導出することができる。特定の例では、外科用器具は、ロボット外科システムのロボットアームに取り付けられた外科用ツールであり得る。 At a tenth step 5220, the surgical team proceeds to the ligation step of the procedure. The surgical hub 106, 206 receives data from the surgical stapling and severing instrument indicating that the instrument has been fired, so it can be inferred that the surgeon is ligating the artery and vein. Similar to the previous step, the surgical hub 106, 206 can derive this estimate by cross-referencing the receipt of data from the surgical stapling and severing instrument with the read out steps in the process. . In certain examples, the surgical instrument may be a surgical tool attached to a robotic arm of a robotic surgical system.

第11の工程5222では、処置の区域切除部分が実施される。外科用ハブ106、206は、そのカートリッジからのデータを含む外科用ステープル留め及び切断器具からのデータに基づいて、外科医が実質組織を横切開していると推定することができる。カートリッジのデータは、例えば、器具によって発射されるステープルのサイズ又は種類に対応することができる。異なる種類のステープルが異なる種類の組織に利用されているため、カートリッジのデータは、ステープル留め及び/又は横切開されている組織の種類を示すことができる。この場合、発射されるステープルの種類は実質組織(又は他の同様の組織種)に用いられ、これにより、外科用ハブ106、206は、処置の区域切除部分が実行されていると推定することができる。 In an eleventh step 5222, the segmental excision portion of the treatment is performed. The surgical hub 106, 206 can infer that the surgeon is transsecting parenchyma based on data from the surgical stapling and cutting instrument, including data from its cartridge. The cartridge data can correspond, for example, to the size or type of staples fired by the instrument. Since different types of staples are utilized on different types of tissue, the cartridge data can indicate the type of tissue being stapled and/or transected. In this case, the types of staples fired are applied to parenchymal tissue (or other similar tissue types) so that the surgical hub 106, 206 assumes that the segmentectomy portion of the procedure is being performed. can be done.

続いて第12の工程5224で、結節切開工程が実行される。外科用ハブ106、206は、RF又は超音波器具が発射されていることを示す発生器から受信したデータに基づいて、外科チームが結節を切開し、漏れ試験を実施していると推定することができる。この特定の処置の場合、実質組織が横切開された後に用いられるRF又は超音波器具は結節切開工程に対応しており、この結節切開工程により外科用ハブ106、206がこの推定を行うことが可能となる。異なる器具が特定の作業に対してより良好に適合するため、外科医は、処置中の特定の工程に応じて、定期的に外科用ステープル留め/切断器具と外科用エネルギー(すなわち、RF又は超音波)器具との間で交互に切り替えることに留意されたい。したがって、ステープル留め/切断器具及び外科用エネルギー器具が使用される特定のシーケンスは、外科医が処置のどの工程を実施中であるかを示すことができる。更に、特定の例では、外科処置中の1つ又は2つ以上の工程にロボットツールを使用することができ、かつ/又は外科処置中の1つ又は2つ以上の工程にハンドヘルド外科用器具を使用することができる。外科医(複数可)は、例えば、ロボットツールとハンドヘルド外科用器具とを順に交代させることができ、かつ/又は、例えば、装置を同時に使用することができる。第12の工程5224が完了すると、切開部が閉鎖され、処置の術後部分が開始する。 Subsequently, in a twelfth step 5224, a knot dissection step is performed. The surgical hub 106, 206 infers that the surgical team is incising the nodule and performing a leak test based on data received from the generator indicating RF or ultrasonic instruments are being fired. can be done. For this particular procedure, the RF or ultrasonic instruments used after the parenchymal tissue is transected correspond to the knototomy process that allows the surgical hub 106, 206 to make this estimate. It becomes possible. Surgeons routinely combine surgical stapling/cutting instruments and surgical energy (i.e., RF or ultrasonic) depending on the particular step in the procedure, as different instruments are better suited to specific tasks. ) instruments. Thus, the particular sequence in which stapling/cutting instruments and surgical energy instruments are used can indicate which step of the procedure the surgeon is performing. Additionally, in certain instances, robotic tools may be used for one or more steps during a surgical procedure and/or hand-held surgical instruments may be used for one or more steps during a surgical procedure. can be used. The surgeon(s) may, for example, alternate between robotic tools and handheld surgical instruments and/or may use the devices simultaneously, for example. Upon completion of the twelfth step 5224, the incision is closed and the post-operative portion of the procedure begins.

第13の工程5226では、患者の麻酔が逆転される。外科用ハブ106、206は、例えば、ベンチレータデータに基づいて(すなわち、患者の呼吸速度が増加し始める)、患者が麻酔から覚醒しつつあると推定することができる。 In a thirteenth step 5226, the patient's anesthesia is reversed. The surgical hub 106, 206 can deduce that the patient is emerging from anesthesia, for example, based on ventilator data (ie, the patient's breathing rate begins to increase).

最後に、第14の工程5228は、医療関係者が患者から様々な患者監視装置を除去することである。したがって、外科用ハブ106、206は、ハブがEKG、BP、及び患者監視装置からの他のデータを喪失したとき、患者が回復室に移送されていると推定することができる。この例示的な処置の説明から分かるように、外科用ハブ106、206と通信可能に連結された各種データソースから受信されたデータに基づいて、外科用ハブ106、206は、所与の外科処置の各工程が発生しているときを判定又は推定することができる。 Finally, a fourteenth step 5228 is for medical personnel to remove various patient monitors from the patient. Therefore, the surgical hub 106, 206 can assume that the patient is being transported to the recovery room when the hub loses EKG, BP, and other data from the patient monitor. As can be seen from this exemplary procedure description, surgical hubs 106, 206 can perform a given surgical procedure based on data received from various data sources communicatively coupled with surgical hubs 106, 206. can be determined or estimated when each step of is occurring.

状況認識については、その全体が参照により本明細書に組み込まれる、「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号で更に説明されている。特定の例では、例えば本明細書で開示される様々なロボット外科システムを含むロボット外科システムの動作は、その状況認識、及び/若しくはその構成要素からのフィードバックに基づいて、並びに/又はクラウド102からの情報に基づいて、ハブ106、206によって制御され得る。 Situational awareness is further described in US Provisional Patent Application No. 62/611,341, filed December 28, 2017, entitled "INTERACTIVE SURGICAL PLATFORM," which is incorporated herein by reference in its entirety. In certain examples, operation of a robotic surgical system, including, for example, various robotic surgical systems disclosed herein, is based on its situational awareness and/or feedback from its components and/or from cloud 102. can be controlled by the hub 106, 206 based on the information in the

いくつかの形態が例示され説明されてきたが、添付の「特許請求の範囲」をそのような詳述に制限又は限定することは、本出願人が意図するところではない。多数の修正、変形、変化、置換、組み合わせ及びこれらの形態の等価物を実装することができ、本開示の範囲から逸脱することなく当業者により想到されるであろう。更に、記述する形態に関連した各要素の構造は、その要素によって行われる機能を提供するための手段として代替的に説明することができる。また、材料が特定の構成要素に関して開示されているが、他の材料が使用されてもよい。したがって、上記の説明文及び添付の特許請求の範囲は、全てのそのような修正、組み合わせ、及び変形を、開示される形態の範囲に含まれるものとして網羅することを意図としたものである点を理解されたい。添付の特許請求の範囲は、全てのそのような修正、変形、変化、置換、修正、及び等価物を網羅することを意図する。 Although several forms have been illustrated and described, it is not the applicant's intention to limit or limit the appended claims to such recitations. Numerous modifications, variations, changes, permutations, combinations and equivalents of these forms can be implemented and will occur to those skilled in the art without departing from the scope of this disclosure. Further, the structure of each element associated with the described form can be alternatively described as a means for providing the function performed by that element. Also, although materials are disclosed for particular components, other materials may be used. Accordingly, the above description and appended claims are intended to cover all such modifications, combinations, and variations as included within the scope of the disclosed forms. Please understand. The appended claims are intended to cover all such modifications, variations, variations, substitutions, modifications and equivalents.

上記の詳細な説明は、ブロック図、フローチャート、及び/又は実施例を用いて装置及び/又はプロセスの様々な形態について記載してきた。そのようなブロック図、フローチャート、及び/又は実施例が1つ若しくは2つ以上の機能及び/又は動作を含む限り、当業者に理解されたいこととして、そのようなブロック図、フローチャート、及び/又は実施例に含まれる各機能及び/又は動作は、多様なハードウェア、ソフトウェア、ファームウェア、又はこれらの事実上の任意の組み合わせによって、個々にかつ/又は集合的に実装することができる。当業者には、本明細書で開示される形態のうちのいくつかの態様の全部又は一部が、1台以上のコンピュータ上で稼働する1つ又は2つ以上のコンピュータプログラムとして(例えば、1台以上のコンピュータシステム上で稼働する1つ又は2つ以上のプログラムとして)、1つ又は2つ以上のプロセッサ上で稼働する1つ又は2つ以上のプログラムとして(例えば、1つ又は2つ以上のマイクロプロセッサ上で稼働する1つ又は2つ以上のプログラムとして)、ファームウェアとして、又はこれらの実質的に任意の組み合わせとして集積回路上で等価に実現することができ、また、回路を設計すること、並びに/又はソフトウェア及び/若しくはファームウェアのコードを記述することは、本開示を鑑みれば当業者の技能の範囲内に含まれることが理解されよう。更に、当業者には理解されることとして、本明細書に記載した主題の機構は、多様な形式で1つ又は2つ以上のプログラム製品として配布されることが可能であり、本明細書に記載した主題の具体的な形態は、配布を実際に行うために使用される信号搬送媒体の特定の種類にかかわらず用いられる。 The foregoing detailed description has described various aspects of apparatus and/or processes using block diagrams, flowcharts, and/or examples. To the extent such block diagrams, flowcharts, and/or embodiments include one or more functions and/or operations, it should be understood by those skilled in the art that such block diagrams, flowcharts, and/or examples Each function and/or operation included in the embodiments may be implemented individually and/or collectively by various hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will appreciate that all or part of some aspects of the forms disclosed herein can be understood as one or more computer programs (e.g., one or more computer programs) running on one or more computers. as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., one or more as one or more programs running on a microprocessor), as firmware, or substantially any combination thereof, equivalently embodied on an integrated circuit; , and/or writing software and/or firmware code is within the skill of one of ordinary skill in the art in view of the present disclosure. Moreover, those skilled in the art will appreciate that the subject matter described herein may be distributed in a variety of forms as one or more program products, and is incorporated herein by reference. The specific forms of subject matter described are used regardless of the particular type of signal-bearing medium used to implement the distribution.

様々な開示された態様を実行するように論理をプログラムするために使用される命令は、ダイナミックランダムアクセスメモリ(DRAM)、キャッシュ、フラッシュメモリ、又は他のストレージなどのシステム内メモリに記憶され得る。更に、命令は、ネットワークを介して、又は他のコンピュータ可読媒体によって分配され得る。したがって、機械可読媒体としては、機械(例えば、コンピュータ)によって読み出し可能な形態で情報を記憶又は送信するための任意の機構が挙げられ得るが、フロッピーディスケット、光ディスク、コンパクトディスク、読み出し専用メモリ(CD-ROM)、並びに磁気光学ディスク、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、磁気若しくは光カード、フラッシュメモリ、又は、電気的、光学的、音響的、若しくは他の形態の伝播信号(例えば、搬送波、赤外線信号、デジタル信号など)を介してインターネットを介した情報の送信に使用される有形機械可読ストレージに限定されない。したがって、非一時的コンピュータ可読媒体としては、機械(例えば、コンピュータ)によって読み出し可能な形態で電子命令又は情報を記憶又は送信するのに好適な任意の種類の有形機械可読媒体が挙げられる。 Instructions used to program logic to perform various disclosed aspects may be stored in system memory such as dynamic random access memory (DRAM), cache, flash memory, or other storage. Additionally, the instructions may be distributed over a network or by other computer-readable media. Thus, a machine-readable medium can include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), including floppy diskettes, optical discs, compact discs, read-only memories (CDs), -ROM), as well as magneto-optical disks, read-only memory (ROM), random-access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, Any tangible, machine-readable material used to transmit information over the Internet via flash memory or electrical, optical, acoustic, or other form of propagated signal (e.g., carrier wave, infrared signal, digital signal, etc.) Not limited to storage. Accordingly, non-transitory computer-readable media include any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (eg, a computer).

本説明全体で使用される用語「無線」及びその派生語は、非固体媒体を介して変調電磁放射線の使用を通じてデータを通信し得る回路、装置、システム、方法、技術、通信チャネルなどを説明するために使用されてもよい。この用語は、関連する装置がいかなる有線も含まないことを意味するものではないが、一部の態様では、それらは存在しない可能性がある。通信モジュールは、Wi-Fi(IEEE802.11ファミリー)、WiMAX(IEEE802.16ファミリー)、IEEE802.20、ロング・ターム・エボリューション(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、Bluetooth、これらのイーサネット派生物、のみならず3G、4G、5G、及びそれ以降と指定される任意の他の無線及び有線プロトコルが挙げられるがこれらに限定されない多数の無線又は有線通信規格又はプロトコルのうちのいずれかを実装してもよい。コンピューティングモジュールは、複数の通信モジュールを含んでもよい。例えば、第1の通信モジュールは、Wi-Fi及びBluetoothなどの短距離無線通信専用であってもよく、第2の通信モジュールは、GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DOなどの長距離無線通信専用であってもよい。 As used throughout this description, the term "wireless" and its derivatives describe circuits, devices, systems, methods, techniques, communication channels, etc. that can communicate data through the use of modulated electromagnetic radiation over non-solid media. may be used for This term does not imply that the associated device does not contain any wires, although in some aspects they may not be present. Communication modules include Wi-Fi (IEEE802.11 family), WiMAX (IEEE802.16 family), IEEE802.20, Long Term Evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS , CDMA, TDMA, DECT, Bluetooth, their Ethernet derivatives, as well as any other wireless and wired protocols designated 3G, 4G, 5G, and beyond. Or it may implement any of the wired communication standards or protocols. A computing module may include multiple communication modules. For example, a first communication module may be dedicated to short-range wireless communication such as Wi-Fi and Bluetooth, and a second communication module may be dedicated to GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, etc. may be dedicated to long-range wireless communication.

本明細書の任意の態様で使用されるとき、用語「制御回路」は、例えば、ハードワイヤード回路、プログラマブル回路(例えば、1つ又は2つ以上の個々の命令処理コアを含むコンピュータプロセッサ、処理ユニット、プロセッサ、マイクロコントローラ、マイクロコントローラユニット、コントローラ、デジタル信号プロセッサ(DSP)、プログラマブル論理機構(PLD)、プログラマブル論理アレイ(PLA)、又はフィールドプログラマブルゲートアレイ(FPGA))、状態機械回路、プログラマブル回路によって実行される命令を記憶するファームウェア、及びこれらの任意の組み合わせを指すことができる。制御回路は、集合的に又は個別に、例えば、集積回路(IC)、特定用途向け集積回路(ASIC)、システムオンチップ(SoC)、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、サーバ、スマートフォンなどの、より大きなシステムの一部を形成する回路として具現化され得る。したがって、本明細書で使用するとき、「制御回路」としては、少なくとも1つの個別の電気回路を有する電気回路、少なくとも1つの集積回路を有する電気回路、少なくとも1つの特定用途向け集積回路を有する電気回路、コンピュータプログラムによって構成された汎用コンピューティング装置(例えば、本明細書で説明したプロセス及び/若しくは装置を少なくとも部分的に実行するコンピュータプログラムによって構成された汎用コンピュータ、又は本明細書で説明したプロセス及び/若しくは装置を少なくとも部分的に実行するコンピュータプログラムによって構成されたマイクロプロセッサ)を形成する電気回路、メモリ装置(例えば、ランダムアクセスメモリの形態)を形成する電気回路、及び/又は通信装置(例えばモデム、通信スイッチ、又は光-電気設備)を形成する電気回路が挙げられるが、これらに限定されない。当業者は、本明細書で述べた主題が、アナログ若しくはデジタルの形式又はこれらのいくつかの組み合わせで実現されてもよいことを認識するであろう。 As used in any aspect herein, the term "control circuitry" includes, for example, hardwired circuits, programmable circuits (e.g., computer processors including one or more individual instruction processing cores, processing units , processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic unit (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuit, programmable circuit It can refer to firmware that stores instructions to be executed, and any combination thereof. Control circuits, collectively or individually, can be, for example, integrated circuits (ICs), application-specific integrated circuits (ASICs), systems-on-chips (SoCs), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. , may be embodied as circuits forming part of a larger system. Thus, as used herein, the term “control circuit” includes an electrical circuit having at least one discrete electrical circuit, an electrical circuit having at least one integrated circuit, an electrical circuit having at least one application specific integrated circuit, A circuit, a general-purpose computing device configured with a computer program (e.g., a general-purpose computer configured with a computer program that executes, at least in part, a process and/or apparatus described herein, or a process described herein) and/or a microprocessor configured by a computer program that at least partially executes the device); an electrical circuit forming a memory device (e.g., in the form of a random access memory); (modems, communications switches, or optical-to-electrical equipment). Those skilled in the art will recognize that the subject matter described herein may be implemented in analog or digital form, or some combination thereof.

本明細書で使用するとき、プロセッサ又は処理ユニットは、いくつかの外部データソース、通常はメモリ又は何らかの他のデータストリーム上で動作を実行する電子回路である。この用語は、本明細書では、多くの専用「プロセッサ」を組み合わせたシステム又はコンピュータシステム(特にシステムオンチップ(SoC))内の中央プロセッサ(中央処理ユニット)を指すために使用される。 As used herein, a processor or processing unit is an electronic circuit that performs operations on some external data source, usually memory or some other data stream. The term is used herein to refer to a central processor (central processing unit) within a system or computer system (particularly a system-on-chip (SoC)) that combines many dedicated "processors".

本明細書で使用するとき、チップ上のシステム又はシステムオンチップ(SoC又はSOC)は、コンピュータ又は他の電子システムの全ての構成要素を統合する集積回路(「IC」又は「チップ」としても知られる)である。これは、デジタル、アナログ、混合信号、及び多くの場合は高周波数機能を、全て単一の基材上に含むことができる。SoCは、マイクロコントローラ(又はマイクロプロセッサ)を、グラフィックス処理ユニット(GPU)、Wi-Fiモジュール、又はコプロセッサなどの最新の周辺装置と統合する。SoCは、内蔵メモリを含んでもよく、含まなくてもよい。 As used herein, a system-on-a-chip or system-on-chip (SoC or SOC) is an integrated circuit (also known as an "IC" or "chip" that integrates all the components of a computer or other electronic system). is available). It can include digital, analog, mixed signal, and often high frequency functions all on a single substrate. SoCs integrate microcontrollers (or microprocessors) with modern peripherals such as graphics processing units (GPUs), Wi-Fi modules, or co-processors. The SoC may or may not include embedded memory.

本明細書で使用するとき、マイクロコントローラ又はコントローラは、マイクロプロセッサを周辺回路及びメモリと統合するシステムである。マイクロコントローラ(又はマイクロコントローラユニットのMCU)は、単一の集積回路上の小型コンピュータとして実装されてもよい。これはSoCと同様であってもよく、SoCは、その構成要素の1つとしてマイクロコントローラを含み得る。マイクロコントローラは、1つ又は2つ以上のコア処理ユニット(CPU)と共にメモリ及びプログラム可能な入力/出力周辺機器を収容することができる。強誘電性のRAM、NORフラッシュ、又はOTP ROMの形態のプログラムメモリ、及び少量のRAMもまた、チップ上にしばしば含まれる。マイクロコントローラは、パーソナルコンピュータ又は様々な個別のチップで構成された他の汎用用途で使用されるマイクロプロセッサとは対照的に、組み込み型用途用に採用され得る。 As used herein, a microcontroller or controller is a system that integrates a microprocessor with peripheral circuits and memory. A microcontroller (or microcontroller unit MCU) may be implemented as a small computer on a single integrated circuit. This may be similar to a SoC, which may include a microcontroller as one of its components. A microcontroller can house memory and programmable input/output peripherals along with one or more core processing units (CPUs). Program memory in the form of ferroelectric RAM, NOR flash, or OTP ROM, and small amounts of RAM are also often included on the chip. Microcontrollers may be employed for embedded applications, as opposed to microprocessors used in personal computers or other general purpose applications made up of various discrete chips.

本明細書で使用するとき、コントローラ又はマイクロコントローラという用語は、周辺装置とインターフェースするスタンドアロンIC又はチップ装置であってもよい。これは、その装置の動作(及び装置との接続)を管理する外部装置上のコンピュータ又はコントローラの2つの部分間の連結部であってもよい。 As used herein, the term controller or microcontroller may be a standalone IC or chip device that interfaces with peripheral devices. This may be the link between the two parts of the computer or controller on the external device that manages the operation of that device (and the connection with the device).

本明細書で説明されるプロセッサ又はマイクロコントローラはいずれも、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。一態様では、プロセッサは、例えば、その詳細が製品データシートで入手可能である、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルシリアルランダムアクセスメモリ(SRAM)、StellarisWare(登録商標)ソフトウェアを搭載した内部読み出し専用メモリ(ROM)、2KBの電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、1つ又は2つ以上のパルス幅変調(PWM)モジュール、1つ又は2つ以上の直交エンコーダ入力(QEI)アナログ、12個のアナログ入力チャネルを備える1つ又は2つ以上の12ビットアナログ-デジタル変換器(ADC)を含む、Texas Instrumentsから入手可能なLM4F230H5QR ARM Cortex-M4Fプロセッサコアであってもよい。 Any processor or microcontroller described herein may be any single-core or multi-core processor, such as those known under the trade name ARM Cortex manufactured by Texas Instruments. In one aspect, the processor has on-chip memory, e.g., 256 KB of single-cycle flash memory or other non-volatile memory at up to 40 MHz, details of which are available in the product datasheet, to improve performance beyond 40 MHz. 1 or 2 prefetch buffers, 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM) One or more pulse width modulation (PWM) modules, one or more quadrature encoder input (QEI) analog, one or more 12-bit analog-to-digital converters (ADC) with 12 analog input channels ), including the LM4F230H5QR ARM Cortex-M4F processor core available from Texas Instruments.

一態様では、プロセッサは、同じくTexas Instruments製のHercules ARM Cortex R4の商品名で知られるTMS570及びRM4xなどの2つのコントローラ系ファミリーを含む安全コントローラを含んでもよい。安全コントローラは、拡張性のある性能、接続性、及びメモリの選択肢を提供しながら、高度な集積型安全機構を提供するために、中でも特に、IEC61508及びISO26262の安全限界用途専用に構成されてもよい。 In one aspect, the processor may include a safety controller that includes two controller family families, such as the TMS570 and RM4x, also known by the trade designation Hercules ARM Cortex R4, also manufactured by Texas Instruments. Safety controllers may be specifically configured for IEC61508 and ISO26262 safety limit applications to provide advanced integrated safety mechanisms while offering scalable performance, connectivity, and memory options. good.

本明細書の任意の態様で使用される場合、用語「論理」は、前述の動作のいずれかを実行するように構成されたアプリケーション、ソフトウェア、ファームウェア、及び/又は回路を指し得る。ソフトウェアは、非一時的コンピュータ可読記憶媒体上に記録されたソフトウェアパッケージ、コード、命令、命令セット、及び/又はデータとして具現化されてもよい。ファームウェアは、メモリ装置内のコード、命令、若しくは命令セット、及び/又はハードコードされた(例えば、不揮発性の)データとして具現化されてもよい。 As used in any aspect herein, the term "logic" may refer to applications, software, firmware, and/or circuitry configured to perform any of the operations described above. Software may be embodied as software packages, code, instructions, instruction sets, and/or data recorded on a non-transitory computer-readable storage medium. Firmware may be embodied as code, instructions, or sets of instructions in a memory device and/or hard-coded (eg, non-volatile) data.

本明細書の任意の態様で使用するとき、用語「構成要素」、「システム」、「モジュール」などは、ハードウェア、ハードウェアとソフトウェアとの組み合わせ、ソフトウェア、又は実行中のソフトウェアのどちらかであるコンピュータ関連エンティティを指すことができる。 As used in any aspect of this specification, the terms “component,” “system,” “module,” etc. may be implemented in either hardware, a combination of hardware and software, software, or software in execution. It can refer to some computer-related entity.

本明細書の任意の態様で使用するとき、「アルゴリズム」とは、所望の結果につながる工程の自己無撞着シーケンスを指し、「工程」とは、必ずしも必要ではないが、記憶、転送、結合、比較、及び別様に操作されることが可能な電気又は磁気信号の形態をなすことができる物理量及び/又は論理状態の操作を指す。これらの信号を、ビット、値、要素、記号、文字、用語、番号などとして言及することが一般的な扱い方である。これらの及び類似の用語は、適切な物理量と関連付けられてもよく、また単に、これらの量及び/又は状態に適用される便利なラベルである。 As used in any aspect herein, "algorithm" refers to a self-consistent sequence of steps leading to a desired result; Refers to the comparison and manipulation of physical quantities and/or logical states, which may take the form of electrical or magnetic signals capable of being otherwise manipulated. It is common practice to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.

ネットワークとしては、パケット交換ネットワークが挙げられ得る。通信装置は、選択されたパケット交換ネットワーク通信プロトコルを使用して、互いに通信することができる。1つの例示的な通信プロトコルとしては、伝送制御プロトコル/インターネットプロトコル(TCP/IP)を使用して通信を可能にすることができるイーサネット通信プロトコルを挙げることができる。イーサネットプロトコルは、Institute of Electrical and Electronics Engineers(IEEE)によって発行された2008年12月発行の表題「IEEE802.3 Standard」、及び/又は本規格の後のバージョンのイーサネット規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、通信装置は、X.25通信プロトコルを使用して互いに通信することができる。X.25通信プロトコルは、International Telecommunication Union-Telecommunication Standardization Sector(ITU-T)によって公布された規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、通信装置は、フレームリレー通信プロトコルを使用して互いに通信することができる。フレームリレー通信プロトコルは、Consultative Committee for International Telegraph and Telephone(CCITT)及び/又はthe American National Standards Institute(ANSI)によって公布された規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、送受信機は、非同期転送モード(ATM)通信プロトコルを使用して互いに通信することが可能であり得る。ATM通信プロトコルは、ATM Forumによって「ATM-MPLS Network Interworking2.0」という題で2001年8月に公開されたATM規格及び/又は本規格の後のバージョンに準拠するか、又は互換性があり得る。当然のことながら、異なる及び/又は後に開発されたコネクション型ネットワーク通信プロトコルは、本明細書で等しく企図される。 The network may include packet switched networks. The communication devices can communicate with each other using a selected packet-switched network communication protocol. One exemplary communication protocol may include the Ethernet communication protocol, which may use Transmission Control Protocol/Internet Protocol (TCP/IP) to enable communication. The Ethernet protocol conforms to or is compatible with the Ethernet standard entitled "IEEE 802.3 Standard" published December 2008 by the Institute of Electrical and Electronics Engineers (IEEE) and/or later versions of this standard. possible. Alternatively or additionally, the communication device may V.25 communication protocol can be used to communicate with each other. X. The V.25 communication protocol may conform to or be compatible with standards promulgated by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices can communicate with each other using a frame relay communication protocol. The frame relay communication protocol may conform to or be compatible with standards promulgated by the Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be able to communicate with each other using the Asynchronous Transfer Mode (ATM) communication protocol. The ATM communication protocol may conform to or be compatible with the ATM standard published in August 2001 by the ATM Forum under the title "ATM-MPLS Network Interworking 2.0" and/or later versions of this standard. . Of course, different and/or later developed connection-oriented network communication protocols are equally contemplated herein.

別段の明確な定めがない限り、前述の開示から明らかなように、前述の開示全体を通じて、「処理する」、「計算する」、「算出する」、「決定する」、「表示する」などの用語を使用する議論は、コンピュータシステムのレジスタ及びメモリ内で物理(電子的)量として表現されるデータを、コンピュータシステムのメモリ若しくはレジスタ又はそのような情報記憶、伝送、若しくは表示装置内で物理量として同様に表現される他のデータへと操作し変換する、コンピュータシステム又は類似の電子計算装置の動作及び処理を指していることが理解されよう。 Unless expressly specified otherwise, terms such as "process", "calculate", "calculate", "determine", "display", etc. are used throughout the foregoing disclosure as is apparent from the foregoing disclosure. Discussions using the term refer to data represented as physical (electronic) quantities in computer system registers and memory as physical quantities in computer system memory or registers or in any such information storage, transmission, or display device. It will be understood to refer to the actions and processes of a computer system or similar electronic computing device that manipulates and transforms other data that may be similarly represented.

1つ又は2つ以上の構成要素が、本明細書中で、「ように構成される(configured to)」、「ように構成可能である(configurable to)」、「動作可能である/ように動作する(operable/operative to)」、「適合される/適合可能である(adapted/adaptable)」、「ことが可能である(able to)」、「準拠可能である/準拠する(conformable/conformed to)」などと言及され得る。当業者は、「ように構成される」は、一般に、文脈上他の意味に解釈すべき場合を除き、アクティブ状態の構成要素及び/又は非アクティブ状態の構成要素及び/又はスタンドバイ状態の構成要素を包含し得ることを理解するであろう。 As used herein, one or more components are “configured to,” “configurable to,” “operable/to operable/operative to, adapted/adaptable, capable to, conformable/conformed to)”, etc. Those skilled in the art will understand that "configured to" generally refers to active components and/or inactive components and/or standby configurations, unless the context requires otherwise. It will be understood that it may contain elements.

「近位」及び「遠位」という用語は、本明細書では、外科用器具のハンドル部分を操作する臨床医を基準として使用される。「近位」という用語は、臨床医に最も近い部分を指し、「遠位」という用語は、臨床医から離れた位置にある部分を指す。便宜上また明瞭化のため、「垂直」、「水平」、「上」、「下」、「左」及び「右」などの空間用語は図面に関して本明細書では使用されてよいことが更に理解されるであろう。しかしながら、外科用器具は、多くの向き及び位置で使用されるものであり、これらの用語は限定的及び/又は絶対的であることを意図したものではない。 The terms "proximal" and "distal" are used herein with reference to the clinician manipulating the handle portion of the surgical instrument. The term "proximal" refers to the portion closest to the clinician and the term "distal" refers to the portion located farther from the clinician. It is further understood that for convenience and clarity, spatial terms such as "vertical", "horizontal", "top", "bottom", "left" and "right" may be used herein with respect to the drawings. would be However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.

モジュール式装置は、外科用ハブ内に受容可能な(例えば図3及び図9に関連して説明される)モジュールと、対応する外科用ハブと接続又はペアリングするために様々なモジュールに接続され得る外科用装置又は器具と、を含む。モジュール式装置としては、例えば、インテリジェント外科用器具、医療用撮像装置、吸引/灌注装置、排煙器、エネルギー発生器、ベンチレータ、吸入器、及びディスプレイが挙げられる。本明細書に記載されるモジュール式装置は、制御アルゴリズムによって制御することができる。制御アルゴリズムは、モジュール式装置自体上で、特定のモジュール式装置がペアリングされる外科用ハブ上で、又はモジュール式装置及び外科用ハブの両方の上で(例えば、分散コンピューティングアーキテクチャを介して)、実行され得る。いくつかの例示では、モジュール式装置の制御アルゴリズムは、モジュール式装置自体によって(すなわち、モジュール式装置内の、モジュール式装置上の、又はモジュール式装置に接続されたセンサによって)感知されたデータに基づいて装置を制御する。このデータは、手術中の患者(例えば、組織特性又は注入圧)又はモジュール式装置自体(例えば、前進するナイフの速度、モータ電流、又はエネルギーレベル)に関連し得る。例えば、外科用ステープル留め及び切断器具の制御アルゴリズムは、ナイフが前進する際にナイフが遭遇する抵抗に基づき、器具のモータが組織を貫いてそのナイフを駆動させる速度を制御することができる。 Modular devices are connected to various modules for connection or pairing with corresponding surgical hubs (e.g., described in connection with FIGS. 3 and 9) receivable within a surgical hub. a surgical device or instrument to obtain. Modular devices include, for example, intelligent surgical instruments, medical imaging devices, suction/irrigation devices, smoke evacuators, energy generators, ventilators, inhalers, and displays. The modular devices described herein can be controlled by control algorithms. Control algorithms may be implemented on the modular device itself, on the surgical hub with which the particular modular device is paired, or on both the modular device and the surgical hub (e.g., via a distributed computing architecture). ), can be executed. In some examples, the control algorithm for the modular device is based on data sensed by the modular device itself (i.e., by sensors within, on, or connected to the modular device). control the device based on This data may relate to the patient (eg, tissue properties or injection pressure) during surgery or the modular device itself (eg, advancing knife speed, motor current, or energy level). For example, a control algorithm for a surgical stapling and severing instrument can control the speed at which the instrument's motor drives the knife through tissue based on the resistance encountered by the knife as it advances.

当業者は、一般に、本明細書で使用され、かつ特に添付の特許請求の範囲(例えば、添付の特許請求の範囲の本文)で使用される用語は、概して「オープンな」用語として意図されるものである(例えば、「含む(including)」という用語は、「~を含むが、それらに限定されない(including but not limited to)」と解釈されるべきであり、「有する(having)」という用語は「~を少なくとも有する(having at least)」と解釈されるべきであり、「含む(includes)」という用語は「~を含むが、それらに限定されない(includes but is not limited to)」と解釈されるべきであるなど)ことを理解するであろう。更に、導入された請求項記載(introduced claim recitation)において特定の数が意図される場合、かかる意図は当該請求項中に明確に記載され、またかかる記載がない場合は、かかる意図は存在しないことが、当業者には理解されるであろう。例えば、理解を助けるものとして、後続の添付の特許請求の範囲は、「少なくとも1つの(at least one)」及び「1つ以上の(one or more)」という導入句を、請求項記載を導入するために含むことがある。しかしながら、かかる句の使用は、「a」又は「an」という不定冠詞によって請求項記載を導入した場合に、たとえ同一の請求項内に「1つ以上の」又は「少なくとも1つの」といった導入句及び「a」又は「an」という不定冠詞が含まれる場合であっても、かかる導入された請求項記載を含むいかなる特定の請求項も、かかる記載事項を1つのみ含む請求項に限定されると示唆されるものと解釈されるべきではない(例えば、「a」及び/又は「an」は通常、「少なくとも1つの」又は「1つ以上の」を意味するものと解釈されるべきである)。定冠詞を使用して請求項記載を導入する場合にも、同様のことが当てはまる。 Those skilled in the art will appreciate that the terms used herein generally, and particularly in the appended claims (e.g., the appended claim text), are generally intended as "open" terms. (e.g., the term "including" is to be interpreted as "including but not limited to"; the term "having" is to be interpreted as "including but not limited to"); should be interpreted as "having at least" and the term "includes" should be interpreted as "includes but is not limited to" should be done, etc.). Moreover, where a particular number is intended in an introduced claim recitation, such intent is expressly recited in the claim; and in the absence of such a statement, such intent does not exist. will be understood by those skilled in the art. For example, as an aid to understanding, the following appended claims use the introductory phrases "at least one" and "one or more" to introduce claim recitations. may be included to However, the use of such phrases when introducing claim recitations by the indefinite article "a" or "an" may be used even if the introductory phrases "one or more" or "at least one" are used within the same claim. and any particular claim containing such an introduced claim recitation is limited to the claim containing only one such recitation, even if the indefinite articles "a" or "an" are included. (e.g., "a" and/or "an" should generally be construed to mean "at least one" or "one or more ). the same holds true where the definite article is used to introduce claim recitations.

更に、導入された請求項記載において特定の数が明示されている場合であっても、かかる記載は、典型的には、少なくとも記載された数を意味するものと解釈されるべきであることが、当業者には認識されるであろう(例えば、他に修飾語のない、単なる「2つの記載事項」という記載がある場合、一般的に、少なくとも2つの記載事項、又は2つ以上の記載事項を意味する)。更に、「A、B、及びCなどのうちの少なくとも1つ」に類する表記が用いられる場合、一般に、かかる構文は、当業者がその表記を理解するであろう意味で意図されている(例えば、「A、B、及びCのうちの少なくとも1つを有するシステム」は、限定するものではないが、Aのみ、Bのみ、Cのみ、AとBの両方、AとCの両方、BとCの両方、及び/又はAとBとCの全てなどを有するシステムを含む)。「A、B、又はCなどのうちの少なくとも1つ」に類する表記が用いられる場合、一般に、かかる構文は、当業者がその表記を理解するであろう意味で意図されている(例えば、「A、B、又はCのうちの少なくとも1つを有するシステム」は、限定するものではないが、Aのみ、Bのみ、Cのみ、AとBの両方、AとCの両方、BとCの両方、及び/又はAとBとCの全てなどを有するシステムを含む)。更に、典型的には、2つ若しくは3つ以上の選択的な用語を表わすあらゆる選言的な語及び/又は句は、文脈上他の意味に解釈すべき場合を除いて、明細書内であろうと、請求の範囲内であろうと、あるいは図面内であろうと、それら用語のうちの1つ、それらの用語のうちのいずれか、又はそれらの用語の両方を含む可能性を意図すると理解されるべきであることが、当業者には理解されよう。例えば、「A又はB」という句は、典型的には、「A」又は「B」又は「A及びB」の可能性を含むものと理解されよう。 Moreover, even if a specific number is specified in the introduced claim statement, such statement should typically be construed to mean at least the stated number. , as will be recognized by those skilled in the art (e.g., where there is simply a statement "two statements" without other modifiers, generally there are at least two statements, or two or more statements matter). Further, where notations like "at least one of A, B, and C, etc." are used, such syntax is generally intended in the sense that one skilled in the art would understand the notation (e.g. , "a system having at least one of A, B, and C" includes, but is not limited to, A only, B only, C only, both A and B, both A and C, B and C, and/or all of A and B and C, etc.). Where notations like "at least one of A, B, or C, etc." are used, such syntax is generally intended in the sense that one skilled in the art would understand the notation (e.g., " A system having at least one of A, B, or C" includes, but is not limited to, A only, B only, C only, both A and B, both A and C, B and C (including systems having both, and/or all of A and B and C, etc.). Further, typically any disjunctive word and/or phrase representing two or more alternative terms is used in the specification unless the context requires otherwise. It is understood to be intended to include one of the terms, either of the terms, or both terms, whether in the claims, or in the drawings. Those skilled in the art will understand that it should. For example, the phrase "A or B" will typically be understood to include the possibilities of "A" or "B" or "A and B."

添付の特許請求の範囲に関して、当業者は、本明細書における引用した動作は一般に、任意の順序で実施され得ることを理解するであろう。また、様々な動作のフロー図がシーケンス(複数可)で示されているが、様々な動作は、例示されたもの以外の順序で行われてもよく、又は同時に行われてもよいことが理解されるべきである。かかる代替の順序付けの例は、文脈上他の意味に解釈すべき場合を除いて、重複、交互配置、割り込み、再順序付け、増加的、予備的、追加的、同時、逆、又は他の異なる順序付けを含んでもよい。更に、「~に応答する」、「~に関連する」といった用語、又は他の過去時制の形容詞は、一般に、文脈上他の意味に解釈すべき場合を除き、かかる変化形を除外することが意図されるものではない。 With regard to the appended claims, those skilled in the art will understand that the operations recited herein can generally be performed in any order. Additionally, while the flow diagrams of various acts are depicted in sequence(s), it is understood that the various acts may occur in orders other than those illustrated, or may occur simultaneously. It should be. Examples of such alternative orderings include overlapping, interleaving, interrupting, reordering, incremental, preliminary, additional, simultaneous, reverse, or other different orderings, unless the context requires otherwise. may include Further, terms such as "response to", "related to", or other past tense adjectives generally exclude such variations unless the context dictates otherwise. not intended.

「一態様」、「態様」、「例示」、「一例示」などへの任意の参照は、その態様に関連して記載される特定の機構、構造、又は特性が少なくとも1つの態様に含まれると意味することは特記に値する。したがって、本明細書の全体を通じて様々な場所に見られる語句「一態様では」、「態様では」、「例示では」、及び「一例示では」は、必ずしも全てが同じ態様を指すものではない。更に、特定の特徴、構造、又は特性は、1つ又は2つ以上の態様において任意の好適な様態で組み合わせることができる。 Any reference to "an aspect", "an aspect", "exemplary", "an example", etc., includes in at least one aspect the particular feature, structure, or property described in connection with that aspect. It is worth noting that it means Thus, the appearances of the phrases "in one aspect," "in an aspect," "in an example," and "in an example" in various places throughout this specification do not necessarily all refer to the same aspect. Moreover, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.

本明細書で参照され、かつ/又は任意の出願データシートに列挙される任意の特許出願、特許、非特許刊行物、又は他の開示資料は、組み込まれる資料が本明細書と矛盾しない範囲で、参照により本明細書に組み込まれる。それ自体、また必要な範囲で、本明細書に明瞭に記載される開示内容は、参考として本明細書に組み込まれているあらゆる矛盾する記載に優先するものとする。現行の定義、見解、又は本明細書に記載されるその他の開示内容と矛盾する任意の内容、又はそれらの部分は本明細書に参考として組み込まれるものとするが、参照内容と現行の開示内容との間に矛盾が生じない範囲においてのみ、参照されるものとする。 Any patent applications, patents, non-patent publications, or other disclosure material referenced herein and/or listed in any application data sheet is, to the extent the material incorporated herein, is not inconsistent with this specification. , incorporated herein by reference. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting statements incorporated herein by reference. Any content, or portion thereof, that is inconsistent with the current definitions, opinions, or other disclosures set forth herein, is hereby incorporated by reference, but the reference content and the current disclosure are hereby incorporated by reference. References shall be made only to the extent that there is no inconsistency between

要約すると、本明細書に記載した構想を用いる結果として得られる多くの利益が記載されてきた。1つ又は2つ以上の形態の上述の記載は、例示及び説明を目的として提示されているものである。包括的であることも、開示された厳密な形態に限定することも意図されていない。上記の教示を鑑みて、修正又は変形が可能である。1つ又は2つ以上の形態は、原理及び実際の応用について例示し、それによって、様々な形態を様々な修正例と共に、想到される特定の用途に適するものとして当業者が利用できるようにするために、選択され記載されたものである。本明細書と共に提示される特許請求の範囲が全体的な範囲を定義することが意図される。 In summary, a number of benefits have been described that result from using the concepts described herein. The foregoing description of one or more aspects has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to be limited to the precise forms disclosed. Modifications or variations are possible in light of the above teachings. One or more embodiments illustrate principles and practical applications, thereby making the various forms, with various modifications, available to those skilled in the art as suitable for the particular use envisioned. It is selected and described for the purpose. It is intended that the claims presented herewith define the overall scope.

本明細書に記載される主題の様々な態様は、以下の番号付けされた実施例において説明される。 Various aspects of the subject matter described herein are illustrated in the following numbered examples.

実施例1.外科システムであって、単極エネルギー発生器と、電極を備える単極エネルギー発生器に電気的に連結され、手術部位で患者の組織に電極を通して電気外科エネルギーを伝達するように構成された外科用器具と、少なくとも1つの検出回路であって、電気外科エネルギーのリターンパスにおける導電性の量を測定し、リターンパスにおける導電性の量が所定の閾値を下回っていると判定し、単極発生器に電気外科エネルギー発生での交流周波数を増加させることによって外科システム内の電流漏れを増加させる信号を送信するように構成された、少なくとも1つの検出回路と、を備え、単極エネルギー発生器が、電流漏れが単極エネルギー発生器内の接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定するように構成されたセンサを備える、外科システム。 Example 1. A surgical system electrically coupled to a monopolar energy generator and a monopolar energy generator comprising an electrode and configured to transmit electrosurgical energy through the electrode to tissue of a patient at a surgical site. an instrument and at least one detection circuit for measuring an amount of conductivity in a return path of electrosurgical energy and determining that the amount of conductivity in the return path is below a predetermined threshold; at least one detection circuit configured to transmit a signal that increases current leakage in the surgical system by increasing the alternating frequency in the electrosurgical energy generation to the monopolar energy generator; A surgical system comprising a sensor configured to determine that a monopolar energy circuit is complete by detecting that current leakage reaches a ground terminal within the monopolar energy generator.

実施例2.電流漏れを増加させることにより、外科用器具を使用して患者の単極電気外科手術を実施することが可能になる、実施例1に記載の外科システム。 Example 2. The surgical system of Example 1, wherein the increased current leakage allows the surgical instrument to be used to perform monopolar electrosurgery on a patient.

実施例3.単極エネルギー発生器が、電流漏れが単極エネルギー発生器内の接地端子にまだ到達していないという指示をセンサから受信し、指示に応答して、交流周波数を更に増加させるように構成された制御回路を更に備える、実施例1又は2に記載の外科システム。 Example 3. The monopolar energy generator is configured to receive an indication from the sensor that the current leakage has not yet reached a ground terminal within the monopolar energy generator and, in response to the indication, further increase the AC frequency. 3. The surgical system of example 1 or 2, further comprising control circuitry.

実施例4.制御回路が、交流周波数の更なる増加に応答して、電流漏れが単極エネルギー発生器内の接地端子に到達したという第2の指示をセンサから受信し、第2の指示に応答して、交流周波数の増加を停止するように更に構成されている、実施例3に記載の外科システム。 Example 4. the control circuit, in response to the further increase in the AC frequency, receiving a second indication from the sensor that the current leakage has reached the ground terminal within the monopolar energy generator; in response to the second indication, 4. The surgical system of Example 3, further configured to stop increasing the AC frequency.

実施例5.外科システムが、リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意のリターンパスパッドを外科システムから絶縁する命令を提供するように更に構成されている、実施例1~4のいずれか1つに記載の外科システム。 Example 5. The surgical system is further configured to provide instructions to isolate any return path pads from the surgical system to minimize conductivity flowing through any of the return path pads. A surgical system according to any one of Examples 1-4.

実施例6.周波数を増加させることが、周波数を500KHz~4MHzの範囲に増加させることを含む、実施例1~5のいずれか1つに記載の外科システム。 Example 6. The surgical system of any one of Examples 1-5, wherein increasing the frequency comprises increasing the frequency to a range of 500 KHz to 4 MHz.

実施例7.手術部位で患者の組織に電気外科エネルギーを伝達するように構成された外科用器具に連結された外科システムの単極エネルギー発生器であって、エネルギー発生器が、単極電気外科エネルギーを発生させるように構成された電源と、完成回路センサと、制御回路と、接地端子と、を備え、制御回路が、単極電気外科エネルギーのリターンパスにおける導電性の量が所定の閾値を下回っているという信号を検出回路から受信し、信号に応答して、電源に交流周波数を増加させることによって電流漏れを増加させるように構成されており、完成回路センサが、電流漏れが接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定するように構成されている、単極エネルギー発生器。 Example 7. A surgical system monopolar energy generator coupled to a surgical instrument configured to transmit electrosurgical energy to patient tissue at a surgical site, the energy generator generating monopolar electrosurgical energy. a power supply, a complete circuit sensor, a control circuit, and a ground terminal, wherein the control circuit determines that the amount of conductivity in the return path of monopolar electrosurgical energy is below a predetermined threshold. A signal is received from the detection circuit and, in response to the signal, is configured to increase the current leakage by increasing the AC frequency in the power supply, the complete circuit sensor indicating that the current leakage has reached the ground terminal. A monopolar energy generator configured to determine completion of a monopolar energy circuit by detecting.

実施例8.電流漏れを増加させることにより、外科用器具を使用して患者の単極電気外科手術を実施することが可能になる、実施例7に記載の単極エネルギー発生器。 Example 8. 8. The monopolar energy generator of example 7, wherein the increased current leakage allows the surgical instrument to be used to perform monopolar electrosurgery on a patient.

実施例9.制御回路が、電流漏れが接地端子にまだ到達していないという指示を完成回路センサから受信し、指示に応答して、交流周波数を更に増加させるように更に構成されている、実施例7又は8に記載の単極エネルギー発生器。 Example 9. Embodiment 7 or 8, wherein the control circuit is further configured to receive an indication from the complete circuit sensor that the current leakage has not yet reached the ground terminal and, in response to the indication, further increase the AC frequency. A monopolar energy generator as described in .

実施例10.制御回路が、交流周波数の更なる増加に応答して、電流漏れが単極エネルギー発生器内の接地端子に到達したという第2の指示をセンサから受信し、第2の指示に応答して、交流周波数の増加を停止するように更に構成されている、実施例9に記載の単極エネルギー発生器。 Example 10. the control circuit, in response to the further increase in the AC frequency, receiving a second indication from the sensor that the current leakage has reached the ground terminal within the monopolar energy generator; in response to the second indication, 10. The monopolar energy generator of example 9 further configured to stop increasing the alternating frequency.

実施例11.リターンパスパッドうちの任意のものを通って流れる導電性を最小化するために、任意のリターンパスパッドを外科システムから絶縁する命令を提供するように更に構成されている、実施例7~10のいずれか1つに記載の単極エネルギー発生器。 Example 11. The method of Examples 7-10, further configured to provide instructions to isolate any of the return-path pads from the surgical system to minimize conductivity flowing through any of the return-path pads. A monopolar energy generator according to any one of the preceding claims.

実施例12.周波数を増加させることが、周波数を500KHz~4MHzの範囲に増加させることを含む、実施例7~10のいずれか1つに記載の単極エネルギー発生器。 Example 12. A monopolar energy generator according to any one of examples 7-10, wherein increasing the frequency comprises increasing the frequency to a range of 500 KHz to 4 MHz.

実施例13.外科システムの閉ループ方法であって、外科システムが、単極エネルギー発生器と、エネルギー発生器に連結された外科用器具と、エネルギー発生器に通信可能に連結された検出回路と、を備え、方法が、エネルギー発生器によって、外科用器具への電気外科エネルギーを発生させることと、外科用器具によって、手術部位で患者の組織に電極を通して電気外科エネルギーを伝達することと、検出回路によって、電気外科エネルギーのリターンパスにおける導電性の量を測定することと、検出回路によって、リターンパスにおける導電性の量が所定の閾値を下回っていると判定することと、検出回路によって、エネルギー発生器に電気外科エネルギー発生での交流周波数を増加させることによって外科システム内の電流漏れを増加させる信号を単極エネルギー発生器に送信することと、単極エネルギー発生器内のセンサによって、電流漏れが単極エネルギー発生器内の接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定することと、を含む、方法。 Example 13. A closed loop method for a surgical system, the surgical system comprising a monopolar energy generator, a surgical instrument coupled to the energy generator, and a detection circuit communicatively coupled to the energy generator, the method comprising: generating electrosurgical energy to the surgical instrument by the energy generator; transmitting the electrosurgical energy to the tissue of the patient at the surgical site through the electrodes at the surgical site; measuring an amount of conductivity in the energy return path; determining, by the detection circuit, that the amount of conductivity in the return path is below a predetermined threshold; sending a signal to the monopolar energy generator that increases current leakage in the surgical system by increasing the alternating frequency at the energy generation; determining that the monopolar energy circuit is complete by detecting reaching a ground terminal in the vessel.

実施例14.電流漏れを増加させることにより、外科用器具を使用して患者の単極電気外科手術を実施することが可能になる、実施例13に記載の方法。 Example 14. 14. The method of Example 13, wherein increasing current leakage enables the surgical instrument to be used to perform monopolar electrosurgery on a patient.

実施例15.電流漏れが単極エネルギー発生器内の接地端子にまだ到達していないという指示をセンサから受信することと、指示に応答して、交流周波数を更に増加させることと、を更に含む、実施例13又は14に記載の方法。 Example 15. Example 13, further comprising receiving an indication from the sensor that the current leakage has not yet reached a ground terminal within the monopolar energy generator; and further increasing the AC frequency in response to the indication. Or the method according to 14.

実施例16.交流周波数の更なる増加に応答して、電流漏れが単極エネルギー発生器内の接地端子に到達したという第2の指示をセンサから受信することと、第2の指示に応答して、交流周波数の増加を停止することと、を更に含む、実施例15に記載の方法。 Example 16. receiving a second indication from the sensor that the current leakage has reached the ground terminal within the monopolar energy generator in response to the further increase in the AC frequency; 16. The method of example 15, further comprising ceasing to increase the .

実施例17.リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意のリターンパスパッドを外科システムから絶縁する命令を提供することを更に含む、実施例13~16のいずれか1つに記載の方法。 Example 17. 17. Any of Examples 13-16, further comprising providing instructions to isolate any return-path pads from the surgical system to minimize conductivity flowing through any of the return-path pads. The method described in 1.

実施例18.周波数を増加させることが、周波数を500KHz~4MHzの範囲に増加させることを含む、実施例13~17のいずれか1つに記載の方法。 Example 18. The method of any one of Examples 13-17, wherein increasing the frequency comprises increasing the frequency to a range of 500 KHz to 4 MHz.

〔実施の態様〕
(1) 外科システムであって、
単極エネルギー発生器と、
電極を備える前記単極エネルギー発生器に電気的に連結され、手術部位で患者の組織に前記電極を通して電気外科エネルギーを伝達するように構成された外科用器具と、
少なくとも1つの検出回路であって、
前記電気外科エネルギーのリターンパスにおける導電性の量を測定し、
前記リターンパスにおける前記導電性の量が所定の閾値を下回っていると判定し、
前記単極発生器に、前記電気外科エネルギー発生での交流周波数を増加させることによって前記外科システム内の電流漏れを増加させる信号を送信する、ように構成された、少なくとも1つの検出回路と、を備え、
前記単極エネルギー発生器は、前記電流漏れが前記単極エネルギー発生器内の接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定するように構成されたセンサを備える、外科システム。
(2) 前記電流漏れを増加させることにより、前記外科用器具を使用して前記患者の単極電気外科手術を実施することが可能になる、実施態様1に記載の外科システム。
(3) 前記単極エネルギー発生器が、
前記電流漏れが前記単極エネルギー発生器内の前記接地端子にまだ到達していないという指示を前記センサから受信し、
前記指示に応答して、前記交流周波数を更に増加させる、ように構成された、制御回路を更に備える、実施態様1に記載の外科システム。
(4) 前記制御回路が、
前記交流周波数の更なる増加に応答して、前記電流漏れが前記単極エネルギー発生器内の前記接地端子に到達したという第2の指示を前記センサから受信し、
前記第2の指示に応答して、前記交流周波数の増加を停止する、ように更に構成されている、実施態様3に記載の外科システム。
(5) 前記外科システムが、リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意の前記リターンパスパッドを前記外科システムから絶縁する命令を提供するように更に構成されている、実施態様1に記載の外科システム。
[Mode of implementation]
(1) A surgical system comprising:
a monopolar energy generator;
a surgical instrument electrically coupled to the monopolar energy generator comprising electrodes and configured to transmit electrosurgical energy through the electrodes to tissue of a patient at a surgical site;
at least one detection circuit,
measuring the amount of conductivity in the electrosurgical energy return path;
determining that the amount of conductivity in the return path is below a predetermined threshold;
at least one detection circuit configured to send a signal to the monopolar generator to increase current leakage in the surgical system by increasing the alternating frequency in the electrosurgical energy generation; prepared,
The monopolar energy generator comprises a sensor configured to determine that a monopolar energy circuit is complete by detecting that the current leakage reaches a ground terminal within the monopolar energy generator. surgical system.
Clause 2. The surgical system of clause 1, wherein increasing the current leakage allows the surgical instrument to be used to perform monopolar electrosurgery on the patient.
(3) the monopolar energy generator,
receiving an indication from the sensor that the current leakage has not yet reached the ground terminal in the monopolar energy generator;
2. The surgical system of embodiment 1, further comprising a control circuit configured to further increase the alternating frequency in response to the instruction.
(4) the control circuit,
receiving a second indication from the sensor that the current leakage has reached the ground terminal in the monopolar energy generator in response to the further increase in the alternating frequency;
4. The surgical system of embodiment 3, further configured to stop increasing the alternating frequency in response to the second indication.
(5) further wherein the surgical system provides instructions to isolate any of the return-path pads from the surgical system to minimize conductivity flowing through any of the return-path pads; 2. The surgical system of embodiment 1, wherein the surgical system is configured.

(6) 前記周波数を増加させることが、前記周波数を500KHz~4MHzの範囲に増加させることを含む、実施態様1に記載の外科システム。
(7) 手術部位で患者の組織に電気外科エネルギーを伝達するように構成された外科用器具に連結された外科システムの単極エネルギー発生器であって、前記エネルギー発生器が、
単極電気外科エネルギーを発生させるように構成された電源と、
完成回路センサと、
制御回路と、
接地端子と、を備え、
前記制御回路が、
前記単極電気外科エネルギーのリターンパスにおける導電性の量が所定の閾値を下回っているという信号を検出回路から受信し、
前記信号に応答して、前記電源に、交流周波数を増加させることによって電流漏れを増加させる、ように構成されており、
前記完成回路センサは、前記電流漏れが前記接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定するように構成されている、単極エネルギー発生器。
(8) 前記電流漏れを増加させることにより、前記外科用器具を使用して前記患者の単極電気外科手術を実施することが可能になる、実施態様7に記載の単極エネルギー発生器。
(9) 前記制御回路が、
前記電流漏れが前記接地端子にまだ到達していないという指示を前記完成回路センサから受信し、
前記指示に応答して、前記交流周波数を更に増加させる、ように更に構成されている、実施態様7に記載の単極エネルギー発生器。
(10) 前記制御回路が、
前記交流周波数の更なる増加に応答して、前記電流漏れが前記単極エネルギー発生器内の前記接地端子に到達したという第2の指示を前記センサから受信し、
前記第2の指示に応答して、前記交流周波数の増加を停止する、ように更に構成されている、実施態様9に記載の単極エネルギー発生器。
Clause 6. The surgical system of Clause 1, wherein increasing the frequency comprises increasing the frequency to a range of 500 KHz to 4 MHz.
(7) a monopolar energy generator of a surgical system coupled to a surgical instrument configured to deliver electrosurgical energy to tissue of a patient at a surgical site, said energy generator comprising:
a power source configured to generate monopolar electrosurgical energy;
a complete circuit sensor;
a control circuit;
a ground terminal;
The control circuit
receiving a signal from a detection circuit that the amount of conductivity in the return path of the monopolar electrosurgical energy is below a predetermined threshold;
configured to cause the power supply to increase current leakage by increasing the AC frequency in response to the signal;
The monopolar energy generator, wherein the completion circuit sensor is configured to determine that the monopolar energy circuit is complete by detecting that the current leakage reaches the ground terminal.
Clause 8. The monopolar energy generator of Clause 7, wherein increasing the current leakage allows the surgical instrument to be used to perform monopolar electrosurgery on the patient.
(9) the control circuit,
receiving an indication from the complete circuit sensor that the current leakage has not yet reached the ground terminal;
8. The monopolar energy generator of embodiment 7, further configured to further increase the alternating frequency in response to the indication.
(10) The control circuit
receiving a second indication from the sensor that the current leakage has reached the ground terminal in the monopolar energy generator in response to the further increase in the alternating frequency;
10. The monopolar energy generator of embodiment 9 further configured to stop increasing the alternating frequency in response to the second indication.

(11) リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意の前記リターンパスパッドを前記外科システムから絶縁する命令を提供するように更に構成されている、実施態様7に記載の単極エネルギー発生器。
(12) 前記周波数を増加させることが、前記周波数を500KHz~4MHzの範囲に増加させることを含む、実施態様7に記載の単極エネルギー発生器。
(13) 外科システムの閉ループ方法であって、前記外科システムが、単極エネルギー発生器と、前記エネルギー発生器に連結された外科用器具と、前記エネルギー発生器に通信可能に連結された検出回路と、を備え、前記方法が、
前記エネルギー発生器によって、前記外科用器具への電気外科エネルギーを発生させることと、
前記外科用器具によって、手術部位で患者の組織に電極を通して電気外科エネルギーを伝達することと、
前記検出回路によって、前記電気外科エネルギーのリターンパスにおける導電性の量を測定することと、
前記検出回路によって、前記リターンパスにおける前記導電性の量が所定の閾値を下回っていると判定することと、
前記検出回路によって、前記エネルギー発生器に、前記電気外科エネルギー発生での交流周波数を増加させることによって前記外科システム内の電流漏れを増加させる信号を前記単極エネルギー発生器に送信することと、
前記単極エネルギー発生器内のセンサによって、前記電流漏れが前記単極エネルギー発生器内の接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定することと、を含む、方法。
(14) 前記電流漏れを増加させることにより、前記外科用器具を使用して前記患者の単極電気外科手術を実施することが可能になる、実施態様13に記載の方法。
(15) 前記電流漏れが前記単極エネルギー発生器内の前記接地端子にまだ到達していないという指示を前記センサから受信することと、
前記指示に応答して、前記交流周波数を更に増加させることと、を更に含む、実施態様13に記載の方法。
(11) further configured to provide instructions to isolate any of the return-path pads from the surgical system to minimize conductivity flowing through any of the return-path pads; 8. A monopolar energy generator according to embodiment 7.
Clause 12. The monopolar energy generator of Clause 7, wherein increasing the frequency comprises increasing the frequency to a range of 500 KHz to 4 MHz.
(13) A closed loop method of a surgical system, wherein said surgical system comprises a monopolar energy generator, a surgical instrument coupled to said energy generator, and a detection circuit communicatively coupled to said energy generator. and, wherein the method includes:
generating electrosurgical energy to the surgical instrument with the energy generator;
transmitting electrosurgical energy through electrodes to tissue of a patient at a surgical site by the surgical instrument;
measuring, with the detection circuitry, the amount of conductivity in the return path of the electrosurgical energy;
determining, by the detection circuit, that the amount of conductivity in the return path is below a predetermined threshold;
sending, by the detection circuit, a signal to the monopolar energy generator that causes the energy generator to increase current leakage in the surgical system by increasing an alternating frequency in the electrosurgical energy generation;
determining, with a sensor in the monopolar energy generator, that a monopolar energy circuit is complete by detecting that the current leakage reaches a ground terminal in the monopolar energy generator; Method.
Aspect 14. The method of aspect 13, wherein increasing the current leakage enables the surgical instrument to be used to perform monopolar electrosurgery on the patient.
(15) receiving an indication from the sensor that the current leakage has not yet reached the ground terminal within the monopolar energy generator;
14. The method of embodiment 13, further comprising, in response to said indication, further increasing said alternating frequency.

(16) 前記交流周波数の更なる増加に応答して、前記電流漏れが前記単極エネルギー発生器内の前記接地端子に到達したという第2の指示を前記センサから受信することと、
前記第2の指示に応答して、前記交流周波数の増加を停止することと、を更に含む、実施態様15に記載の方法。
(17) リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意の前記リターンパスパッドを前記外科システムから絶縁する命令を提供することを更に含む、実施態様13に記載の方法。
(18) 前記周波数を増加させることが、前記周波数を500KHz~4MHzの範囲に増加させることを含む、実施態様13に記載の方法。
(16) receiving a second indication from the sensor that the current leakage has reached the ground terminal within the monopolar energy generator in response to the further increase in the AC frequency;
16. The method of embodiment 15, further comprising, in response to the second indication, stopping increasing the alternating frequency.
Embodiment 13 further comprising providing instructions to isolate any of said return-path pads from said surgical system to minimize conductivity flowing through any of said return-path pads. The method described in .
18. The method of claim 13, wherein increasing the frequency comprises increasing the frequency to a range of 500 KHz to 4 MHz.

Claims (12)

外科システムであって、
単極エネルギー発生器と、
電極を備える前記単極エネルギー発生器に電気的に連結され、手術部位で患者の組織に前記電極を通して電気外科エネルギーを伝達するように構成された外科用器具と、
少なくとも1つの検出回路であって、
前記電気外科エネルギーのリターンパスにおける導電性の量を測定し、
前記リターンパスにおける前記導電性の量が所定の閾値を下回っていると判定し、
前記単極エネルギー発生器に、前記電気外科エネルギー発生での交流周波数を増加させることによって前記外科システム内の電流漏れを増加させる信号を送信する、ように構成された、少なくとも1つの検出回路と、を備え、
前記単極エネルギー発生器は、前記電流漏れが前記単極エネルギー発生器内の接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定するように構成されたセンサを備える、外科システム。
A surgical system,
a monopolar energy generator;
a surgical instrument electrically coupled to the monopolar energy generator comprising electrodes and configured to transmit electrosurgical energy through the electrodes to tissue of a patient at a surgical site;
at least one detection circuit,
measuring the amount of conductivity in the electrosurgical energy return path;
determining that the amount of conductivity in the return path is below a predetermined threshold;
at least one detection circuit configured to send a signal to the monopolar energy generator to increase current leakage in the surgical system by increasing the alternating frequency in the electrosurgical energy generation; with
The monopolar energy generator comprises a sensor configured to determine that a monopolar energy circuit is complete by detecting that the current leakage reaches a ground terminal within the monopolar energy generator. surgical system.
前記電流漏れを増加させることにより、前記外科用器具を使用して前記患者の単極電気外科手術を実施することが可能になる、請求項1に記載の外科システム。 The surgical system of claim 1, wherein increasing the current leakage allows the surgical instrument to be used to perform monopolar electrosurgery on the patient. 前記単極エネルギー発生器が、
前記電流漏れが前記単極エネルギー発生器内の前記接地端子にまだ到達していないという指示を前記センサから受信し、
前記指示に応答して、前記交流周波数を更に増加させる、ように構成された、制御回路を更に備える、請求項1に記載の外科システム。
the monopolar energy generator comprising:
receiving an indication from the sensor that the current leakage has not yet reached the ground terminal in the monopolar energy generator;
The surgical system of claim 1, further comprising a control circuit configured to further increase the AC frequency in response to the indication.
前記制御回路が、
前記交流周波数の更なる増加に応答して、前記電流漏れが前記単極エネルギー発生器内の前記接地端子に到達したという第2の指示を前記センサから受信し、
前記第2の指示に応答して、前記交流周波数の増加を停止する、ように更に構成されている、請求項3に記載の外科システム。
The control circuit
receiving a second indication from the sensor that the current leakage has reached the ground terminal in the monopolar energy generator in response to the further increase in the alternating frequency;
4. The surgical system of claim 3, further configured to stop increasing the AC frequency in response to the second instruction.
前記外科システムが、リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意の前記リターンパスパッドを前記外科システムから絶縁する命令を提供するように更に構成されている、請求項1に記載の外科システム。 The surgical system is further configured to provide instructions to isolate any of the return-path pads from the surgical system to minimize conductivity flowing through any of the return-path pads. 2. The surgical system of claim 1, wherein the surgical system comprises: 前記交流周波数を増加させることが、前記交流周波数を500KHz~4MHzの範囲に増加させることを含む、請求項1に記載の外科システム。 The surgical system of claim 1, wherein increasing the AC frequency comprises increasing the AC frequency to a range of 500 KHz to 4 MHz. 手術部位で患者の組織に電気外科エネルギーを伝達するように構成された外科用器具に連結された外科システムの単極エネルギー発生器であって、前記単極エネルギー発生器が、
単極電気外科エネルギーを発生させるように構成された電源と、
完成回路センサと、
制御回路と、
接地端子と、を備え、
前記制御回路が、
前記単極電気外科エネルギーのリターンパスにおける導電性の量が所定の閾値を下回っているという信号を検出回路から受信し、
前記信号に応答して、前記電源に、交流周波数を増加させることによって電流漏れを増加させる、ように構成されており、
前記完成回路センサは、前記電流漏れが前記接地端子に到達したことを検出することによって単極エネルギー回路が完成したと判定するように構成されている、単極エネルギー発生器。
A surgical system monopolar energy generator coupled to a surgical instrument configured to deliver electrosurgical energy to patient tissue at a surgical site, the monopolar energy generator comprising:
a power source configured to generate monopolar electrosurgical energy;
a complete circuit sensor;
a control circuit;
a ground terminal;
The control circuit
receiving a signal from a detection circuit that the amount of conductivity in the return path of the monopolar electrosurgical energy is below a predetermined threshold;
configured to cause the power supply to increase current leakage by increasing the AC frequency in response to the signal;
The monopolar energy generator, wherein the completion circuit sensor is configured to determine that the monopolar energy circuit is complete by detecting that the current leakage reaches the ground terminal.
前記電流漏れを増加させることにより、前記外科用器具を使用して前記患者の単極電気外科手術を実施することが可能になる、請求項7に記載の単極エネルギー発生器。 8. The monopolar energy generator of claim 7, wherein increasing the current leakage allows the surgical instrument to be used to perform monopolar electrosurgery on the patient. 前記制御回路が、
前記電流漏れが前記接地端子にまだ到達していないという指示を前記完成回路センサから受信し、
前記指示に応答して、前記交流周波数を更に増加させる、ように更に構成されている、請求項7に記載の単極エネルギー発生器。
The control circuit
receiving an indication from the complete circuit sensor that the current leakage has not yet reached the ground terminal;
8. The monopolar energy generator of claim 7, further configured to further increase the AC frequency in response to the indication.
前記制御回路が、
前記交流周波数の更なる増加に応答して、前記電流漏れが前記単極エネルギー発生器内の前記接地端子に到達したという第2の指示を前記完成回路センサから受信し、
前記第2の指示に応答して、前記交流周波数の増加を停止する、ように更に構成されている、請求項9に記載の単極エネルギー発生器。
The control circuit
receiving a second indication from the complete circuit sensor that the current leakage has reached the ground terminal in the monopolar energy generator in response to the further increase in the AC frequency;
10. The monopolar energy generator of claim 9, further configured to stop increasing the AC frequency in response to the second indication.
リターンパスパッドのうちの任意のものを通って流れる導電性を最小化するために、任意の前記リターンパスパッドを前記外科システムから絶縁する命令を提供するように更に構成されている、請求項7に記載の単極エネルギー発生器。 8. Further configured to provide instructions to isolate any of the return-path pads from the surgical system to minimize conductivity flowing through any of the return-path pads. A monopolar energy generator as described in . 前記交流周波数を増加させることが、前記交流周波数を500KHz~4MHzの範囲に増加させることを含む、請求項7に記載の単極エネルギー発生器。 8. The monopolar energy generator of claim 7, wherein increasing the alternating frequency comprises increasing the alternating frequency to a range of 500 KHz to 4 MHz.
JP2020535634A 2017-12-28 2018-10-12 Increasing radio frequency to generate unpadded unipolar loops Active JP7275144B2 (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201762611339P 2017-12-28 2017-12-28
US201762611341P 2017-12-28 2017-12-28
US201762611340P 2017-12-28 2017-12-28
US62/611,339 2017-12-28
US62/611,340 2017-12-28
US62/611,341 2017-12-28
US201862721999P 2018-08-23 2018-08-23
US62/721,999 2018-08-23
US16/115,256 US11253315B2 (en) 2017-12-28 2018-08-28 Increasing radio frequency to create pad-less monopolar loop
US16/115,256 2018-08-28
PCT/IB2018/057944 WO2019130112A1 (en) 2017-12-28 2018-10-12 Increasing radio frequency to create pad-less monopolar loop

Publications (2)

Publication Number Publication Date
JP2021509325A JP2021509325A (en) 2021-03-25
JP7275144B2 true JP7275144B2 (en) 2023-05-17

Family

ID=64109953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535634A Active JP7275144B2 (en) 2017-12-28 2018-10-12 Increasing radio frequency to generate unpadded unipolar loops

Country Status (4)

Country Link
JP (1) JP7275144B2 (en)
CN (1) CN111511300B (en)
BR (1) BR112020012287A2 (en)
WO (1) WO2019130112A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112472299B (en) * 2020-11-30 2024-03-12 重庆邮电大学 Main hand clamping device applied to human feedback equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507247A (en) 1995-10-24 2001-06-05 ガイラス・メディカル・リミテッド Electrosurgical instrument
US20080234671A1 (en) 2007-03-23 2008-09-25 Marion Duane W Ablation apparatus having reduced nerve stimulation and related methods
JP2011036672A (en) 2009-08-12 2011-02-24 Tyco Healthcare Group Lp System and method for augmented impedance sensing
JP2014530657A (en) 2011-09-09 2014-11-20 コヴィディエン リミテッドパートナーシップ Surgical generator and associated method for mitigating overcurrent conditions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523871C3 (en) * 1985-07-04 1994-07-28 Erbe Elektromedizin High frequency surgical device
DE3824913A1 (en) * 1988-07-22 1990-02-01 Thomas Hill Device for monitoring high-frequency (radio-frequency) electric leakage currents
US7995045B2 (en) 2007-04-13 2011-08-09 Ethicon Endo-Surgery, Inc. Combined SBI and conventional image processor
US7982776B2 (en) 2007-07-13 2011-07-19 Ethicon Endo-Surgery, Inc. SBI motion artifact removal apparatus and method
JP2012516220A (en) 2009-01-30 2012-07-19 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク Controllable magnetic source for securing internal devices
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9636165B2 (en) * 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507247A (en) 1995-10-24 2001-06-05 ガイラス・メディカル・リミテッド Electrosurgical instrument
US20080234671A1 (en) 2007-03-23 2008-09-25 Marion Duane W Ablation apparatus having reduced nerve stimulation and related methods
JP2011036672A (en) 2009-08-12 2011-02-24 Tyco Healthcare Group Lp System and method for augmented impedance sensing
JP2014530657A (en) 2011-09-09 2014-11-20 コヴィディエン リミテッドパートナーシップ Surgical generator and associated method for mitigating overcurrent conditions

Also Published As

Publication number Publication date
JP2021509325A (en) 2021-03-25
CN111511300A (en) 2020-08-07
CN111511300B (en) 2024-01-09
BR112020012287A2 (en) 2020-11-24
WO2019130112A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
EP3505118B1 (en) Increasing radio frequency to create pad-less monopolar loop
US11291495B2 (en) Interruption of energy due to inadvertent capacitive coupling
JP7258891B2 (en) Automatic tool alignment for robot-assisted surgical platforms
JP7225247B2 (en) Sensing configuration for robot-assisted surgical platform
JP7275142B2 (en) Computer-implemented interactive surgical system
US20210177489A1 (en) Bipolar combination device that automatically adjusts pressure based on energy modality
JP7247195B2 (en) Communication configuration for robotic-assisted surgical platform
JP7263366B2 (en) A mechanism for controlling different electromechanical systems of an electrosurgical instrument
EP3505053A1 (en) Capacitive coupled return path pad with separable array elements
EP3506304A1 (en) Surgical instrument having a flexible circuit
JP7463067B2 (en) Temperature control of ultrasonic end effector and control system therefor
JP7279051B2 (en) Determining the state of the ultrasonic end effector
CN112055568A (en) Bipolar combined device capable of automatically adjusting pressure based on energy mode
JP7391852B2 (en) Detecting the appearance of end effectors in liquids
JP7275144B2 (en) Increasing radio frequency to generate unpadded unipolar loops
JP7263364B2 (en) Blocking energy due to accidental capacitive coupling
JP7350746B2 (en) Temperature control of ultrasonic end effector and its control system
JP7286654B2 (en) Controlling the operation of ultrasonic surgical instruments according to the presence of tissue
JP7263365B2 (en) Capacitively coupled return path pads with separable array elements
JP7258892B2 (en) Control of ultrasonic surgical instruments according to tissue location
WO2019130114A1 (en) Surgical instrument having a flexible circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150