JP7274130B2 - Optical filter manufacturing method - Google Patents

Optical filter manufacturing method Download PDF

Info

Publication number
JP7274130B2
JP7274130B2 JP2019007240A JP2019007240A JP7274130B2 JP 7274130 B2 JP7274130 B2 JP 7274130B2 JP 2019007240 A JP2019007240 A JP 2019007240A JP 2019007240 A JP2019007240 A JP 2019007240A JP 7274130 B2 JP7274130 B2 JP 7274130B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
polylysine
substrate
layer
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019007240A
Other languages
Japanese (ja)
Other versions
JP2020118727A (en
Inventor
道子 西山
一弘 渡辺
旬一 井田
昌一 窪寺
博幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soka University
Original Assignee
Soka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soka University filed Critical Soka University
Priority to JP2019007240A priority Critical patent/JP7274130B2/en
Publication of JP2020118727A publication Critical patent/JP2020118727A/en
Application granted granted Critical
Publication of JP7274130B2 publication Critical patent/JP7274130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laminated Bodies (AREA)

Description

特許法第30条第2項適用 ▲1▼平成30年1月26日開催 平成29年度情報システム工学専攻修士論文発表会 東京都八王子市丹木町1丁目236番 学校法人創価大学 ▲2▼平成30年1月19日掲載 https://drive.google.com/file/d/1-6BQ8wZpZMLcfIjTSRIxNSO-stSBrmlF/viewApplication of Article 30, Paragraph 2 of the Patent Law (1) Held on January 26, 2018 Master's thesis presentation of the Department of Information Systems Engineering 2017 1-236 Tangi-cho, Hachioji-shi, Tokyo Soka University Educational Corporation (2) Held on January 26, 2018 Posted on January 19, 2019 https://drive. google. com/file/d/1-6BQ8wZpZMLcfIjTSRIxNSO-stSBrmlF/view

本発明は、光学フィルタの製造方法に関する。 The present invention relates to an optical filter manufacturing method.

従来、基板上に屈折率の異なる2種類以上の誘電体薄膜からなる多層膜を備え、異なる誘電体薄膜同士の界面で生じる反射が干渉することを利用して、特定の波長のみを透過させ、或いは特定の波長の透過を制限する光学フィルタが知られている(例えば、特許文献1参照)。 Conventionally, a multilayer film composed of two or more types of dielectric thin films with different refractive indices is provided on a substrate, and interference of reflection occurring at the interface between different dielectric thin films is used to transmit only a specific wavelength, Alternatively, an optical filter that limits transmission of a specific wavelength is known (see, for example, Patent Document 1).

前記光学フィルタは、例えば、スパッタリング法等により屈折率の異なる2種類以上の誘電体薄膜を積層して前記多層膜を形成することにより製造されている。しかし、前記スパッタリング法では成膜装置内を真空にする必要があることから装置が大がかりになる上、生産効率が低く、成膜に時間がかかるという問題がある。 The optical filter is manufactured, for example, by laminating two or more kinds of dielectric thin films having different refractive indices by a sputtering method or the like to form the multilayer film. However, in the sputtering method, since the inside of the film-forming apparatus needs to be evacuated, the apparatus becomes large-scaled, the production efficiency is low, and film-forming takes a long time.

そこで、前記スパッタリング法に代えて、交互積層法により基板上に屈折率の異なる2種類以上の誘電体薄膜からなる多層膜を形成する方法が知られている(例えば、特許文献1参照)。 Therefore, instead of the sputtering method, there is known a method of forming a multilayer film composed of two or more kinds of dielectric thin films having different refractive indices on a substrate by an alternate lamination method (see, for example, Patent Document 1).

前記交互積層法は、負電荷を持つ第1の電解質の溶液又は分散液と、正電荷を持つ第2の電解質の溶液又は分散液とに基板を交互に浸漬することにより、該基板上に静電気的引力で吸着したアニオンとカチオンとの組を積層して前記多層膜を形成することができる。 In the layer-by-layer method, the substrate is alternately immersed in a solution or dispersion of a first electrolyte having a negative charge and a solution or dispersion of a second electrolyte having a positive charge, thereby forming an electrostatic charge on the substrate. The multi-layer film can be formed by laminating pairs of anions and cations adsorbed by magnetic attraction.

特開2018-180430号公報JP 2018-180430 A 特許5720247号公報Japanese Patent No. 5720247

しかしながら、前記交互積層法において、前記第1の電解質としてポリリジンを用い、前記第2の電解質として二酸化チタンナノ粒子を用いるときに、二酸化チタンナノ粒子の粒子径又は二酸化チタンナノ粒子分散液の濃度によっては、前記多層膜を形成することができないことがあるという不都合がある。 However, in the layer-by-layer method, when polylysine is used as the first electrolyte and titanium dioxide nanoparticles are used as the second electrolyte, depending on the particle size of the titanium dioxide nanoparticles or the concentration of the titanium dioxide nanoparticle dispersion, the above There is an inconvenience that it may not be possible to form a multilayer film.

本発明は、かかる不都合を解消して、屈折率の異なる2種類以上の誘電体薄膜多層膜からなる多層膜を、交互成膜法により確実に基板上に形成することができる光学フィルタの製造方法を提供することを目的とする。 The present invention is a method of manufacturing an optical filter that eliminates such inconveniences and can reliably form a multilayer film composed of two or more dielectric thin film multilayer films with different refractive indices on a substrate by an alternate deposition method. intended to provide

かかる目的を達成するために、本発明の光学フィルタの製造方法は、基板上に形成された多層膜を備える光学フィルタの製造方法であって、該基板を5~20ミリモル/リットルの範囲の濃度を備えるモル質量70000~150000のポリリジン溶液に浸漬した後、乾燥して溶媒を除去することにより該基板上に1.45~1.6の範囲の屈折率を備えるポリリジン層を形成する工程と、該ポリリジン層が形成された基板を、5~20nmの範囲の粒子径を備える二酸化チタンナノ粒子を10~20質量%の範囲の濃度で含有する二酸化チタンナノ粒子水分散液に浸漬した後、乾燥することにより該ポリリジン層の上に二酸化チタンナノ粒子からなる1.9~2.3の範囲の屈折率を備える二酸化チタンナノ粒子被膜を形成する工程と、該ポリリジン層を形成する工程と該二酸化チタンナノ粒子被膜を形成する工程とを繰り返し、複数の該ポリリジン層と該二酸化チタンナノ粒子被膜とが交互に積層された多層膜を形成する工程とを備えることを特徴とする。 In order to achieve such an object, the method of manufacturing an optical filter of the present invention is a method of manufacturing an optical filter comprising a multilayer film formed on a substrate, wherein the substrate is coated with a concentration in the range of 5 to 20 mmol/liter forming a polylysine layer having a refractive index in the range of 1.45 to 1.6 on the substrate by immersing in a polylysine solution having a molar mass of 70000 to 150000 and then drying to remove the solvent; The substrate on which the polylysine layer is formed is immersed in an aqueous dispersion of titanium dioxide nanoparticles containing titanium dioxide nanoparticles having a particle diameter in the range of 5 to 20 nm at a concentration in the range of 10 to 20% by mass, and then dried. forming a titanium dioxide nanoparticle coating having a refractive index in the range of 1.9 to 2.3 made of titanium dioxide nanoparticles on the polylysine layer, forming the polylysine layer and the titanium dioxide nanoparticle coating by and forming a multilayer film in which a plurality of said polylysine layers and said titanium dioxide nanoparticle films are alternately laminated.

本発明の光学フィルタの製造方法では、まず、前記基板を前記範囲の濃度を備えるポリリジン溶液に浸漬した後、乾燥して溶媒を除去する。このようにすることにより、前記基板の表面にポリリジン層が形成される。 In the method for manufacturing an optical filter of the present invention, first, the substrate is immersed in a polylysine solution having a concentration within the above range, and then dried to remove the solvent. By doing so, a polylysine layer is formed on the surface of the substrate.

次に、前記ポリリジン層が形成された基板を、二酸化チタンナノ粒子水分散液に浸漬した後、乾燥する。ここで、前記ポリリジンは正に帯電しており、前記二酸化チタンナノ粒子は負に帯電している。そこで、前記二酸化チタンナノ粒子が前記ポリリジン層上に静電気的引力により吸着し、前記二酸化チタンナノ粒子被膜が形成される。 Next, the substrate on which the polylysine layer is formed is immersed in an aqueous dispersion of titanium dioxide nanoparticles, and then dried. Here, the polylysine is positively charged and the titanium dioxide nanoparticles are negatively charged. The titanium dioxide nanoparticles are then adsorbed onto the polylysine layer by electrostatic attraction, forming the titanium dioxide nanoparticle coating.

次に、前記ポリリジン層上に前記二酸化チタンナノ粒子被膜が形成された基板を、前記範囲の濃度を備えるポリリジン溶液に浸漬した後、乾燥して溶媒を除去する。このようにすると、前記二酸化チタンナノ粒子は負に帯電しているので、正に帯電している前記ポリリジンが前記二酸化チタンナノ粒子被膜上に静電気的引力により吸着し、新たなポリリジン層が形成される。 Next, the substrate having the titanium dioxide nanoparticle film formed on the polylysine layer is immersed in a polylysine solution having a concentration within the range, and then dried to remove the solvent. In this way, since the titanium dioxide nanoparticles are negatively charged, the positively charged polylysine is adsorbed onto the titanium dioxide nanoparticle coating by electrostatic attraction, forming a new polylysine layer.

そこで、前記ポリリジン層を形成する工程と前記二酸化チタンナノ粒子被膜を形成する工程とを繰り返すことにより、複数の該ポリリジン層と該二酸化チタンナノ粒子被膜とが静電気的引力により交互に積層された多層膜を形成することができる。 Therefore, by repeating the step of forming the polylysine layer and the step of forming the titanium dioxide nanoparticle coating, a multilayer film in which a plurality of the polylysine layers and the titanium dioxide nanoparticle coating are alternately laminated by electrostatic attraction is formed. can be formed.

本発明の光学フィルタの製造方法では、5~20ミリモル/リットルの範囲の濃度を備えるポリリジン溶液を用いることにより前記ポリリジン層を形成することができ、5~20nmの範囲の粒子径を備える二酸化チタンナノ粒子を10~20質量%の範囲の濃度で含有する二酸化チタンナノ粒子水分散液を用いることにより前記二酸化チタンナノ粒子被膜を形成することができる。二酸化チタンナノ粒子の粒子径が前記範囲外であるか、又は前記二酸化チタンナノ粒子水分散液の二酸化チタンナノ粒子濃度が前記範囲外であるときには、前記二酸化チタンナノ粒子被膜を形成することができない。 In the optical filter manufacturing method of the present invention, the polylysine layer can be formed by using a polylysine solution having a concentration in the range of 5 to 20 mmol/liter, and titanium dioxide nanoparticles having a particle diameter in the range of 5 to 20 nm are used. The titanium dioxide nanoparticle coating can be formed by using a titanium dioxide nanoparticle aqueous dispersion containing the particles at a concentration in the range of 10 to 20% by weight. When the particle size of the titanium dioxide nanoparticles is outside the above range, or when the titanium dioxide nanoparticle concentration of the titanium dioxide nanoparticle aqueous dispersion is outside the above range, the titanium dioxide nanoparticle coating cannot be formed.

また、本発明の光学フィルタの製造方法では、前記基板として、例えば、光ファイバを用いることができる。 Further, in the method for manufacturing an optical filter of the present invention, for example, an optical fiber can be used as the substrate.

本発明の製造方法により得られる光学フィルタの一構成例を示す説明的断面図。An explanatory cross-sectional view showing one configuration example of an optical filter obtained by the manufacturing method of the present invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Embodiments of the present invention will now be described in more detail with reference to the accompanying drawings.

図1に示すように、本実施形態の光学フィルタ1は、基板としての光ファイバ2の表面に多層膜3を備える。 As shown in FIG. 1, an optical filter 1 of this embodiment has a multilayer film 3 on the surface of an optical fiber 2 as a substrate.

光ファイバ2は、コア径50μmのマルチモード光ファイバ11の任意の位置に、コア径3μmのシングルモード光ファイバ12を15mmの長さで挿入し、融着したものである。光ファイバ2は、マルチモード光ファイバ11及びシングルモード光ファイバ12の外周にクラッド層13を備える。 The optical fiber 2 is obtained by inserting a single-mode optical fiber 12 with a core diameter of 3 μm into an arbitrary position of a multi-mode optical fiber 11 with a core diameter of 50 μm with a length of 15 mm and fusing them. The optical fiber 2 includes a clad layer 13 around the outer circumferences of the multimode optical fiber 11 and the single mode optical fiber 12 .

また、多層膜3は、ポリリジン層14と二酸化チタンナノ粒子被膜15とを単位とする複合積層体層16が2~20層、例えば14層積層されている。この結果、多層膜3は、ポリリジン層14と二酸化チタンナノ粒子被膜15とが交互に積層されている。 The multilayer film 3 is composed of 2 to 20, for example, 14 composite laminate layers 16 each having a polylysine layer 14 and a titanium dioxide nanoparticle film 15 as a unit. As a result, the multilayer film 3 is formed by alternately stacking the polylysine layers 14 and the titanium dioxide nanoparticle films 15 .

多層膜3において、ポリリジン層14は1.45~1.6の範囲の屈折率を備え、二酸化チタンナノ粒子被膜15は1.9~2.3の範囲の屈折率を備えている。この結果、屈折率が異なるポリリジン層14と二酸化チタンナノ粒子被膜15との界面で生じる反射が干渉することとなり、多層膜3を備える光ファイバ2を、特定の波長のみを透過させ、或いは特定の波長の透過を制限する光学フィルタ1として用いることができる。 In the multilayer film 3, the polylysine layer 14 has a refractive index in the range of 1.45-1.6 and the titanium dioxide nanoparticle coating 15 has a refractive index in the range of 1.9-2.3. As a result, the reflection occurring at the interface between the polylysine layer 14 and the titanium dioxide nanoparticle coating 15, which have different refractive indices, interferes, causing the optical fiber 2 having the multilayer film 3 to transmit only a specific wavelength, or transmit only a specific wavelength. can be used as an optical filter 1 for limiting the transmission of

次に、本実施形態の光学フィルタ1の製造方法について説明する。 Next, a method for manufacturing the optical filter 1 of this embodiment will be described.

本実施形態の製造方法では、まず、光ファイバ3をポリリジン溶液に浸漬し、乾燥させて溶媒を除去することにより、光ファイバ3の表面にポリリジン層14を形成する。 In the manufacturing method of this embodiment, first, the optical fiber 3 is immersed in a polylysine solution and dried to remove the solvent, thereby forming the polylysine layer 14 on the surface of the optical fiber 3 .

ポリリジン((C12O)、モル質量70000~150000)は、L-リジンの低分子天然ホモポリマーであり、細菌による発酵により生産される。前記ポリリジン溶液は、前記ポリリジンを、5~20ミリモル/リットルの範囲の濃度で、溶媒としての純水に溶解したものである。 Polylysine ((C 6 H 12 N 2 O) n , molar mass 70,000-150,000) is a low-molecular natural homopolymer of L-lysine, produced by bacterial fermentation. The polylysine solution is obtained by dissolving the polylysine in pure water as a solvent at a concentration ranging from 5 to 20 millimoles/liter.

本実施形態の製造方法では、次に、光ファイバ3のポリリジン層14の上に二酸化チタンナノ粒子からなる二酸化チタンナノ粒子被膜15を形成する。二酸化チタンナノ粒子被膜15は、最表面にポリリジン層14を備える光ファイバ3を二酸化チタンナノ粒子水分散液に浸漬し、乾燥させることにより形成することができる。 In the manufacturing method of this embodiment, next, a titanium dioxide nanoparticle coating 15 made of titanium dioxide nanoparticles is formed on the polylysine layer 14 of the optical fiber 3 . The titanium dioxide nanoparticle coating 15 can be formed by immersing the optical fiber 3 having the polylysine layer 14 on the outermost surface in a titanium dioxide nanoparticle aqueous dispersion and drying.

前記二酸化チタンナノ粒子水分散液は、5~20nmの範囲の粒子径を備える二酸化チタンナノ粒子を10~20質量%の範囲の濃度で水に分散させたものであり、例えば、テイカ株式会社製微粒子酸化チタン(商品名:TDK-801)を用いることができる。 The titanium dioxide nanoparticle aqueous dispersion is obtained by dispersing titanium dioxide nanoparticles having a particle diameter in the range of 5 to 20 nm in water at a concentration in the range of 10 to 20% by mass. Titanium (trade name: TDK-801) can be used.

上述のようにすると、前記ポリリジンは正に帯電しており、前記二酸化チタンナノ粒子は負に帯電しているので、該ポリリジンと該二酸化チタンナノ粒子との静電相互作用により、ポリリジン層14と二酸化チタンナノ粒子被膜15とを単位とする複合積層体層16を形成することができる。 As described above, since the polylysine is positively charged and the titanium dioxide nanoparticles are negatively charged, the electrostatic interaction between the polylysine and the titanium dioxide nanoparticles causes the polylysine layer 14 and the titanium dioxide nanoparticles to Composite laminate layers 16 can be formed in units of particle coatings 15 .

本実施形態の製造方法では、次に、ポリリジン層14の形成と二酸化チタンナノ粒子被膜15の形成とを相互に繰り返すことにより、例えば10層の複合積層体層16からなる多層膜3を形成することができる。 In the manufacturing method of the present embodiment, the formation of the polylysine layer 14 and the formation of the titanium dioxide nanoparticle coating 15 are then alternately repeated to form the multilayer film 3 composed of, for example, ten composite laminate layers 16. can be done.

1…光学フィルタ、 2……光ファイバ(基板)、 3…多層膜、 14…ポリリジン層、 15…二酸化チタンナノ粒子被膜、 16…複合積層体層。 DESCRIPTION OF SYMBOLS 1... Optical filter 2... Optical fiber (substrate) 3... Multilayer film 14... Polylysine layer 15... Titanium dioxide nanoparticle coating 16... Composite laminate layer.

Claims (2)

基板上に形成された多層膜を備える光学フィルタの製造方法であって、
該基板を5~20ミリモル/リットルの範囲の濃度を備えるモル質量70000~150000のポリリジン溶液に浸漬した後、乾燥して溶媒を除去することにより該基板上に1.45~1.6の範囲の屈折率を備えるポリリジン層を形成する工程と、
該ポリリジン層が形成された基板を、5~20nmの範囲の粒子径を備える二酸化チタンナノ粒子を10~20質量%の範囲の濃度で含有する二酸化チタンナノ粒子水分散液に浸漬した後、乾燥することにより該ポリリジン層の上に二酸化チタンナノ粒子からなる1.9~2.3の範囲の屈折率を備える二酸化チタンナノ粒子被膜を形成する工程と、
該ポリリジン層を形成する工程と該二酸化チタンナノ粒子被膜を形成する工程とを繰り返し、複数の該ポリリジン層と該二酸化チタンナノ粒子被膜とが交互に積層された多層膜を形成する工程とを備えることを特徴とする光学フィルタの製造方法。
A method for manufacturing an optical filter comprising a multilayer film formed on a substrate, comprising:
After immersing the substrate in a polylysine solution with a molar mass of 70000-150000 with a concentration in the range of 5-20 millimoles/liter, the concentration of 1.45-1.6 is obtained on the substrate by drying to remove the solvent. forming a polylysine layer with a refractive index of
The substrate on which the polylysine layer is formed is immersed in an aqueous dispersion of titanium dioxide nanoparticles containing titanium dioxide nanoparticles having a particle diameter in the range of 5 to 20 nm at a concentration in the range of 10 to 20% by mass, and then dried. forming a titanium dioxide nanoparticle coating with a refractive index in the range of 1.9 to 2.3 consisting of titanium dioxide nanoparticles on the polylysine layer by
repeating the step of forming the polylysine layer and the step of forming the titanium dioxide nanoparticle coating to form a multilayer film in which a plurality of the polylysine layers and the titanium dioxide nanoparticle coating are alternately laminated; A method of manufacturing an optical filter characterized by:
請求項1記載の光学フィルタの製造方法において、前記基板は光ファイバであることを特徴とする光学フィルタの製造方法。 2. The method of manufacturing an optical filter according to claim 1, wherein said substrate is an optical fiber.
JP2019007240A 2019-01-18 2019-01-18 Optical filter manufacturing method Active JP7274130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007240A JP7274130B2 (en) 2019-01-18 2019-01-18 Optical filter manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007240A JP7274130B2 (en) 2019-01-18 2019-01-18 Optical filter manufacturing method

Publications (2)

Publication Number Publication Date
JP2020118727A JP2020118727A (en) 2020-08-06
JP7274130B2 true JP7274130B2 (en) 2023-05-16

Family

ID=71891981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007240A Active JP7274130B2 (en) 2019-01-18 2019-01-18 Optical filter manufacturing method

Country Status (1)

Country Link
JP (1) JP7274130B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119796A1 (en) 2008-03-28 2009-10-01 財団法人北九州産業学術推進機構 Composite thin film, atmosphere sensor comprising the composite thin film, and optical waveguide sensor
JP2012071446A (en) 2010-09-28 2012-04-12 Konica Minolta Holdings Inc Near-infrared reflective film and near-infrared reflector
JP2016211867A (en) 2015-04-30 2016-12-15 学校法人 創価大学 Optical oxygen sensor and method of manufacturing the same
JP2017026864A (en) 2015-07-23 2017-02-02 コニカミノルタ株式会社 Optical Reflection Film
JP2017194607A (en) 2016-04-21 2017-10-26 コニカミノルタ株式会社 Optical reflection film and method for producing optical reflection film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119796A1 (en) 2008-03-28 2009-10-01 財団法人北九州産業学術推進機構 Composite thin film, atmosphere sensor comprising the composite thin film, and optical waveguide sensor
JP2012071446A (en) 2010-09-28 2012-04-12 Konica Minolta Holdings Inc Near-infrared reflective film and near-infrared reflector
JP2016211867A (en) 2015-04-30 2016-12-15 学校法人 創価大学 Optical oxygen sensor and method of manufacturing the same
JP2017026864A (en) 2015-07-23 2017-02-02 コニカミノルタ株式会社 Optical Reflection Film
JP2017194607A (en) 2016-04-21 2017-10-26 コニカミノルタ株式会社 Optical reflection film and method for producing optical reflection film

Also Published As

Publication number Publication date
JP2020118727A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP5011653B2 (en) Low refractive index thin film and manufacturing method thereof
JP3314495B2 (en) Optical fiber ribbon
WO2013179914A1 (en) Antireflection film, optical system, optical device and method for forming antireflection film
WO2012169393A1 (en) Antireflection film, optical system and optical device
Yakovlev et al. Sol–Gel assisted inkjet hologram patterning
JP2013516661A5 (en)
JP4747653B2 (en) Low refractive index thin film and manufacturing method thereof
JP7274130B2 (en) Optical filter manufacturing method
JP2006301126A (en) Low refractive index film
JP2013033124A5 (en)
JP2007169347A (en) Inorganic oxide structure and method of manufacturing the same
JP7530978B2 (en) Highly transmittant light control film
CN207488531U (en) A kind of high rigidity filter sheet structure
JP2003114302A (en) Antireflection film and method for manufacturing antireflective polarizing plate
JP5082201B2 (en) Low refractive index thin film and manufacturing method thereof
Muraguchi et al. Preparation and properties of organic–inorganic hybrid antireflection films made by a low-temperature process using hollow silica nanoparticles
Ratzsch et al. Encapsulation process for diffraction gratings
WO2017002965A1 (en) Optical product, plastic lens, and eye glasses
JP2009139775A5 (en)
JP6108871B2 (en) Antireflection film, optical system, and optical apparatus
TW200407556A (en) A film deposition method for stress balance
CN207488533U (en) A kind of trapezoidal optical filter
CN207488532U (en) A kind of filter sheet structure
CN113031148A (en) Photonic crystal fiber based on photon lead and preparation method thereof
JP2000338305A (en) Antireflection film

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7274130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150