JP7270970B2 - Variable-magnification imaging optical system with anti-vibration function - Google Patents

Variable-magnification imaging optical system with anti-vibration function Download PDF

Info

Publication number
JP7270970B2
JP7270970B2 JP2019128862A JP2019128862A JP7270970B2 JP 7270970 B2 JP7270970 B2 JP 7270970B2 JP 2019128862 A JP2019128862 A JP 2019128862A JP 2019128862 A JP2019128862 A JP 2019128862A JP 7270970 B2 JP7270970 B2 JP 7270970B2
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
optical system
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019128862A
Other languages
Japanese (ja)
Other versions
JP2021015167A (en
Inventor
裕道 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2019128862A priority Critical patent/JP7270970B2/en
Publication of JP2021015167A publication Critical patent/JP2021015167A/en
Application granted granted Critical
Publication of JP7270970B2 publication Critical patent/JP7270970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

望遠端の半画角が3.5°程度以下と狭く、全長が抑制され、フォーカスレンズ群が軽く高速AF制御が可能で、優れた防振性能を有し、リアテレコンバータ装着時の周辺光量を確保した変倍結像光学系を提供する。 The half angle of view at the telephoto end is as narrow as 3.5° or less, the total length is suppressed, the focus lens group is lightweight, enabling high-speed AF control, excellent anti-vibration performance, and the amount of peripheral light when the rear teleconverter is attached. To provide a variable-magnification imaging optical system that ensures

望遠端の画角が狭い変倍結像光学系は、焦点距離が長いため光学系全長が長くなり、製品重量が重くなりがちである。製品重量を軽くするためには光学系全長の短縮はもちろん、フォーカスレンズ群や防振レンズ群などのアクチュエータによって駆動されるレンズ群を小型軽量化してアクチュエータの大型化を防ぐことも重要である。 A variable-magnification imaging optical system with a narrow angle of view at the telephoto end has a long focal length, so the overall length of the optical system tends to be long, and the weight of the product tends to be heavy. In order to reduce the weight of the product, it is important not only to shorten the total length of the optical system, but also to reduce the size and weight of the lens groups such as the focus lens group and the anti-vibration lens group, which are driven by the actuators, to prevent the actuators from increasing in size.

近年、レンズ交換式カメラを用いた動画撮影が一般的になってきている。動画撮影時のオートフォーカスではフォーカスレンズ群を微小駆動させてコントラストのピークを検出する、所謂コントラストAFを採用する場合が多い。そのため、高速なコントラストAFを実現するためにもフォーカスレンズ群を十分に軽くすることが求められている。 2. Description of the Related Art In recent years, moving image shooting using an interchangeable lens camera has become popular. Autofocusing during moving image shooting often employs so-called contrast AF, in which a focus lens group is finely driven to detect a contrast peak. Therefore, in order to realize high-speed contrast AF, it is required to make the focus lens group sufficiently light.

また、超望遠レンズでは手ぶれなどの振動の影響による撮影画像のぶれが大きくなりやすく、防振性能を高める必要があるが、そのために防振レンズ群を光軸に対して垂直方向に変位させる量を大きくすると鏡筒外径が大きくなってしまう。そのため防振レンズ群の径を小さくするだけでなく、防振レンズ群の変位量が少なくても撮影画像のぶれ補正能力を高くできるように防振レンズ群を配置することが重要である。 Also, with a super-telephoto lens, camera shake and other vibrations tend to cause large image blurring, so it is necessary to improve image stabilization performance. If is increased, the outer diameter of the lens barrel becomes larger. Therefore, it is important not only to reduce the diameter of the anti-vibration lens group, but also to position the anti-vibration lens group so as to increase the capability of correcting the blurring of the captured image even if the amount of displacement of the anti-vibration lens group is small.

また、超望遠レンズはリアテレコンバータに対応することが一般的である。リアテレコンバータは一般に、マスターレンズのフランジ面と接触する面から前玉部分が突出しており、マスターレンズに装着するとリアテレコンバータの突出部分はマスターレンズ鏡筒の後部に潜り込むようにして収まるため、リアテレコンバータを装着可能とするためには十分なバックフォーカスを確保する必要がある。しかし、リアテレコンバータの突出部分をマスターレンズの鏡筒後部に収まるようにするためにはリアテレコンバータの前玉径を大きくすることができない。そのためマスターレンズの射出瞳位置が像面から離れていると、マスターレンズから射出した周辺画角の光線がリアテレコンバータの周縁部でケラレやすくなり、リアテレコンバータ装着時の周辺光量低下が大きくなる。よってリアテレコンバータに対応するには射出瞳と像面との距離が長くなりすぎないようにする必要がある。 Also, super-telephoto lenses are generally compatible with rear teleconverters. In general, the rear teleconverter has a front lens part that protrudes from the surface that contacts the flange surface of the master lens. In order to be able to mount a rear teleconverter, it is necessary to secure a sufficient back focus. However, the front lens diameter of the rear teleconverter cannot be increased in order to fit the protruding portion of the rear teleconverter in the rear portion of the barrel of the master lens. Therefore, if the exit pupil position of the master lens is far from the image plane, light rays at peripheral angles of view emitted from the master lens are likely to be vignetted at the periphery of the rear teleconverter, resulting in a large decrease in the amount of peripheral light when the rear teleconverter is attached. . Therefore, in order to support the rear teleconverter, it is necessary to prevent the distance between the exit pupil and the image plane from becoming too long.

防振機能を備えた変倍結像光学系として、例えば以下の特許文献が挙げられる。 For example, the following patent documents can be cited as examples of variable-magnification imaging optical systems having a vibration reduction function.

特開2017-223778号公報JP 2017-223778 A 特開2017-120382号公報JP 2017-120382 A 特開2018-169563号公報JP 2018-169563 A

特許文献1に記載の変倍結像光学系は、フォーカスレンズ群の枚数が多くフォーカス群の軽量化が不十分である。 The variable magnification imaging optical system described in Patent Document 1 has a large number of focus lens groups, and the weight reduction of the focus group is insufficient.

特許文献2に記載の変倍結像光学系は、フォーカスレンズ群を1枚のレンズで構成しフォーカス群の軽量化を達成しているが、バックフォーカスが短くリアテレコンバータの装着が困難である。 The variable-magnification imaging optical system described in Patent Document 2 achieves weight reduction by constructing the focus lens group with a single lens, but the back focus is short and it is difficult to mount a rear teleconverter. .

特許文献3に記載の変倍結像光学系はフォーカスレンズ群を2枚以下のレンズで構成しフォーカス群の軽量化を達成しているが、広角端から望遠端への変倍時の第1レンズ群の移動量が大きく鏡筒の軽量化が困難である。また十分なバックフォーカスを確保しているものの射出瞳から像面までの距離が長くリアテレコンバータ装着時の周辺光量低下が大きい。 The variable-magnification imaging optical system described in Patent Document 3 achieves weight reduction of the focus lens group by constructing the focus lens group with two lenses or less. It is difficult to reduce the weight of the lens barrel because the amount of movement of the lens group is large. Also, although a sufficient back focus is ensured, the distance from the exit pupil to the image plane is long, and when the rear teleconverter is attached, the amount of peripheral light decreases significantly.

本発明はこのような状況に鑑みてなされたものであり、望遠端の半画角が3.5°程度以下と狭く、全長が抑制され、フォーカスレンズ群が軽く高速AF制御が可能で、優れた防振性能を有し、リアテレコンバータ装着時の周辺光量を確保した変倍結像光学系を提供することを目的とする。 The present invention has been made in view of such circumstances, and is excellent in that the half angle of view at the telephoto end is as narrow as about 3.5° or less, the overall length is suppressed, the focus lens group is light, and high-speed AF control is possible. It is an object of the present invention to provide a variable-magnification imaging optical system which has an improved image stabilization performance and secures peripheral light quantity when a rear teleconverter is mounted.

上記目的を達成するために、本発明を実施の第1の発明は、物体側から順に、正の屈折力の第1レンズ群G1と、全体で負の屈折力の前側レンズ群GFと、全体で正の屈折力の中間1レンズ群GM1と、正の屈折力の中間2レンズ群GM2と、全体で負の屈折力の後側レンズ群GRより構成され、前記前側レンズ群GFは一つまたは二つのレンズ群で構成され、光軸と垂直方向に移動することで像ぶれを補正する負の屈折力の防振レンズ群を含み、前記中間1レンズ群GM1は二つの正の屈折力のレンズ群で構成され、最も像側に開口絞りSを備え、前記中間2レンズ群GM2は一つの正の屈折力のレンズ群であり、2枚以下のレンズで構成され、前記後側レンズ群GRは二つの負の屈折力のレンズ群で構成され、広角端から望遠端への変倍に際して、前記第1レンズ群G1が物体側へ移動し、前記第1レンズ群G1と前記前側レンズ群GFの間隔は増大し、前記前側レンズ群GFと前記中間1レンズ群GM1の間隔は減少し、前記中間1レンズ群GM1と前記中間2レンズ群GM2の間隔は変化し、前記中間2レンズ群GM2と前記後側レンズ群GRの間隔は減少し、さらに、前側レンズ群GFが二つのレンズ群で構成される場合、前記前側レンズ群GF内の二つのレンズ群の間隔は変化し、前記中間1レンズ群GM1内の二つのレンズ群の間隔は変化し、前記後側レンズ群GR内の二つのレンズ群の間隔は変化し、無限遠から近距離へのフォーカシングに際して前記中間2レンズ群GM2が光軸に沿って物体側へ移動し、以下の条件式を満たすことを特徴とする、防振機能を備えた変倍結像光学系。
(1) 1.2<LT1m2t/f1m2t<1.55
(2) -0.7<fRw/fw<-0.3
ただし、
LT1m2t:望遠端、無限遠合焦状態における前記第1レンズ群G1から前記中間2レンズ群GM2までの合成系の、最も物体側の面から像側焦点までの長さ
f1m2t:望遠端、無限遠合焦状態における前記第1レンズ群G1から前記中間2レンズ群GM2までの合成系の焦点距離
fRw:広角端での前記後側レンズ群GRの焦点距離
fw:広角端、無限遠合焦状態における全系の焦点距離
とする。
In order to achieve the above object, a first invention embodying the present invention comprises, in order from the object side, a first lens group G1 having a positive refractive power, a front lens group GF having a negative refractive power as a whole, and a consists of one intermediate lens group GM1 with positive refractive power, two intermediate lens groups GM2 with positive refractive power, and a rear lens group GR with negative refractive power as a whole, and the front lens group GF is one or It consists of two lens groups and includes a vibration reduction lens group with negative refractive power that corrects image blurring by moving in the direction perpendicular to the optical axis, and the first intermediate lens group GM1 includes two lenses with positive refractive power. An aperture stop S is provided closest to the image side, the intermediate two lens group GM2 is one lens group with positive refractive power, and is composed of two or less lenses, and the rear lens group GR is It is composed of two lens groups with negative refractive power, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, and the first lens group G1 and the front side lens group GF are separated. The distance between the front side lens group GF and the middle lens group GM1 decreases, the distance between the middle lens group GM1 and the middle lens group GM2 changes, and the distance between the middle lens group GM2 and the middle lens group GM2 changes. The distance between the rear lens group GR decreases, and when the front lens group GF consists of two lens groups, the distance between the two lens groups in the front lens group GF changes, and the middle lens group GR changes. The distance between the two lens groups in GM1 varies, the distance between the two lens groups in the rear lens group GR varies, and the middle two lens groups GM2 move along the optical axis when focusing from infinity to close. A variable-magnification imaging optical system with image stabilizing function, which moves toward the object side by force, and satisfies the following conditional expression.
(1) 1.2<LT1m2t/f1m2t<1.55
(2) -0.7<fRw/fw<-0.3
however,
LT1m2t: Length from the most object-side surface to the image-side focal point of the combined system from the first lens group G1 to the intermediate two lens group GM2 at the telephoto end and infinity focus state f1m2t: Telephoto end, infinity Focal length fRw of the composite system from the first lens group G1 to the intermediate two lens group GM2 in the focused state: focal length fw of the rear lens group GR at the wide-angle end: wide-angle end, in the infinity focused state Let it be the focal length of the entire system.

また、本発明を実施する第2の発明は、前記後側レンズ群GRは、広角端から望遠端への変倍に際して前記後側レンズ群GRのうち物体側のレンズ群は物体側へ移動し、像側の群は像面に対して固定され、以下の条件式を満たすことを特徴とする、請求項1に記載の防振機能を備えた変倍結像光学系。
(3) 0.2<EXPt/LTt<0.4
ただし、
EXPt:望遠端、無限遠合焦状態における射出瞳から像面までの長さ
LTt:望遠端、無限遠合焦状態における光学系の最も物体側の面から像面までの長さ
とする。
In a second aspect of the present invention, the rear lens group GR moves the lens group on the object side toward the object side during zooming from the wide-angle end to the telephoto end. 2. A variable-magnification imaging optical system with a vibration reduction function according to claim 1, wherein the image-side group is fixed with respect to the image plane and satisfies the following conditional expression.
(3) 0.2<EXPt/LTt<0.4
however,
EXPt: length from the exit pupil to the image plane at the telephoto end and infinity focus state LTt: length from the most object-side surface of the optical system to the image plane at the telephoto end and infinity focus state.

また、本発明を実施する第3の発明は、前記前側レンズ群GFは物体側から順に正の屈折力のGFpレンズ成分、負の屈折力のGFnレンズ成分、負の屈折力の防振レンズ群より構成され、前記GFpレンズ成分と前記GFnレンズ成分は空気間隔をもって隔てられて配置され、前記GFpレンズ成分及び前記GFnレンズ成分は内部に空気間隔を含まず、以下の条件式を満たすことを特徴とする請求項1乃至2のいずれかに記載の防振機能を備えた変倍結像光学系。
(4) 0.7<|LTFpnt/fFpnt|<0.95
ただし、
LTFpnt:望遠端におけるGFpレンズ成分とGFnレンズ成分の合成系の、最も物体側の面から像側焦点までの長さ
fFpnt:望遠端におけるGFpレンズ成分とGFnレンズ成分の合成系の焦点距離
とする。
In a third invention embodying the present invention, the front lens group GF comprises, in order from the object side, a GFp lens component with a positive refractive power, a GFn lens component with a negative refractive power, and a vibration reduction lens group with a negative refractive power. wherein the GFp lens component and the GFn lens component are separated by an air gap, the GFp lens component and the GFn lens component do not include an air gap inside, and satisfy the following conditional expression: 3. A variable-magnification imaging optical system with a vibration reduction function according to claim 1.
(4) 0.7<|LTFpnt/fFpnt|<0.95
however,
LTFpnt: Length from the most object side surface to the image side focal point of the composite system of the GFp lens component and the GFn lens component at the telephoto end fFpnt: The focal length of the composite system of the GFp lens component and the GFn lens component at the telephoto end .

また、本発明を実施する第4の発明は、前記前側レンズ群GFのうち少なくとも一部は広角端から望遠端への変倍に際して像面に対して固定されていることを特徴とする請求項1乃至3のいずれかに記載の防振機能を備えた変倍結像光学系。 A fourth aspect of the present invention is characterized in that at least part of the front lens group GF is fixed with respect to the image plane during zooming from the wide-angle end to the telephoto end. 4. A variable-magnification imaging optical system having an anti-vibration function according to any one of 1 to 3.

望遠端の半画角が3.5°程度以下と狭く、全長が抑制され、フォーカスレンズ群が軽く高速AF制御が可能で、優れた防振性能を有し、リアテレコンバータ装着時の周辺光量を確保した変倍結像光学系を提供することが可能となる。 The half angle of view at the telephoto end is as narrow as 3.5° or less, the total length is suppressed, the focus lens group is lightweight, enabling high-speed AF control, excellent anti-vibration performance, and the amount of peripheral light when the rear teleconverter is attached. It is possible to provide a variable-magnification imaging optical system that ensures the

本発明の結像光学系の実施例1に係るレンズ構成図である。It is a lens configuration diagram according to Example 1 of the imaging optical system of the present invention. 実施例1の結像光学系の広角端、無限遠合焦時の縦収差図である。4 is a longitudinal aberration diagram of the imaging optical system of Example 1 at the wide-angle end and in focus at infinity; FIG. 実施例1の結像光学系の中間焦点距離、無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the imaging optical system of Example 1 at an intermediate focal length and infinity focusing; 実施例1の結像光学系の望遠端、無限遠合焦時の縦収差図である。4 is a longitudinal aberration diagram of the imaging optical system of Example 1 at the telephoto end and in focus at infinity. FIG. 実施例1の結像光学系の広角端、無限遠合焦時の横収差図である。4 is a lateral aberration diagram of the imaging optical system of Example 1 at the wide-angle end and in focus at infinity. FIG. 実施例1の結像光学系の中間焦点距離、無限遠合焦時の横収差図である。4 is a lateral aberration diagram of the imaging optical system of Example 1 at an intermediate focal length and infinity focusing; FIG. 実施例1の結像光学系の望遠端、無限遠合焦時の横収差図である。4 is a lateral aberration diagram of the imaging optical system of Example 1 at the telephoto end and in focus at infinity. FIG. 実施例1の結像光学系の広角端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 1 at the wide-angle end and at the time of focusing at infinity with vibration reduction of 0.5°; 実施例1の結像光学系の中間焦点距離、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the image forming optical system of Example 1 when image stabilization is performed by 0.5° at an intermediate focal length and infinity focusing; 実施例1の結像光学系の望遠端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 1 when vibration is reduced by 0.5° at the telephoto end and at the time of focusing at infinity; 本発明の結像光学系の実施例2に係るレンズ構成図である。It is a lens block diagram concerning Example 2 of the imaging optical system of this invention. 実施例2の結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the imaging optical system of Example 2 at the wide-angle end and in focus at infinity; 実施例2の結像光学系の中間焦点距離、無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the imaging optical system of Example 2 at an intermediate focal length and infinity focusing; 実施例2の結像光学系の望遠端、無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the imaging optical system of Example 2 at the telephoto end and in focus at infinity; 実施例2の結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 2 at the wide-angle end and in focus at infinity; 実施例2の結像光学系の中間焦点距離、無限遠合焦時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 2 at an intermediate focal length and infinity focusing; 実施例2の結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 2 at the telephoto end and in focus at infinity; 実施例2の結像光学系の広角端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the image forming optical system of Example 2 at the wide-angle end and at the time of focusing at infinity when vibration is reduced by 0.5°; 実施例2の結像光学系の中間焦点距離、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the image forming optical system of Example 2 when image stabilization is performed by 0.5° at an intermediate focal length and focusing at infinity; 実施例2の結像光学系の望遠端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 2 at the telephoto end and at the time of focusing at infinity when vibration is reduced by 0.5°; 本発明の結像光学系の実施例3に係るレンズ構成図である。It is a lens block diagram concerning Example 3 of the imaging optical system of this invention. 実施例3の結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the imaging optical system of Example 3 at the wide-angle end and in focus at infinity; 実施例3の結像光学系の中間焦点距離、無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the imaging optical system of Example 3 at an intermediate focal length and infinity focusing; 実施例3の結像光学系の望遠端、無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram of the imaging optical system of Example 3 at the telephoto end and in focus at infinity. 実施例3の結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 3 at the wide-angle end and in focus at infinity; 実施例3の結像光学系の中間焦点距離、無限遠合焦時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 3 at an intermediate focal length and infinity focusing; 実施例3の結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 3 at the telephoto end and in focus at infinity; 実施例3の結像光学系の広角端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 11 is a lateral aberration diagram of the image forming optical system of Example 3 at the wide-angle end and at the time of focusing at infinity when vibration is reduced by 0.5°; 実施例3の結像光学系の中間焦点距離、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the image forming optical system of Example 3 when image stabilization is performed by 0.5° at an intermediate focal length and focusing at infinity; 実施例3の結像光学系の望遠端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 3 at the telephoto end and at the time of focusing at infinity when vibration is reduced by 0.5°; 本発明の結像光学系の実施例4に係るレンズ構成図である。It is a lens block diagram concerning Example 4 of the imaging optical system of this invention. 実施例4の結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 4 at the wide-angle end and in focus at infinity; 実施例4の結像光学系の中間焦点距離、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 4 at an intermediate focal length and infinity focusing; 実施例4の結像光学系の望遠端、無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram of the imaging optical system of Example 4 at the telephoto end and in focus at infinity. 実施例4の結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 4 at the wide-angle end and in focus at infinity; 実施例4の結像光学系の中間焦点距離、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 4 at an intermediate focal length and infinity focusing; 実施例4の結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 4 at the telephoto end and in focus at infinity; 実施例4の結像光学系の広角端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 10 is a lateral aberration diagram of the imaging optical system of Example 4 at the wide-angle end and at the time of focusing at infinity when vibration is reduced by 0.5°; 実施例4の結像光学系の中間焦点距離、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 11 is a lateral aberration diagram of the image forming optical system of Example 4 when the image is focused at an intermediate focal length and infinity, and vibration is reduced by 0.5°; 実施例4の結像光学系の望遠端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 4 at the telephoto end and at the time of focusing at infinity with vibration reduction of 0.5°; 本発明の結像光学系の実施例5に係るレンズ構成図である。It is a lens block diagram concerning Example 5 of the imaging optical system of this invention. 実施例5の結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 5 at the wide-angle end and in focus at infinity; 実施例5の結像光学系の中間焦点距離、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 5 at an intermediate focal length and infinity focusing; 実施例5の結像光学系の望遠端、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 5 at the telephoto end and in focus at infinity. 実施例5の結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 5 at the wide-angle end and in focus at infinity; 実施例5の結像光学系の中間焦点距離、無限遠合焦時の横収差図である。FIG. 12 is a lateral aberration diagram of the imaging optical system of Example 5 at an intermediate focal length and infinity focusing; 実施例5の結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 12 is a lateral aberration diagram of the imaging optical system of Example 5 at the telephoto end and in focus at infinity; 実施例5の結像光学系の広角端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 11 is a lateral aberration diagram of the image forming optical system of Example 5 at the wide-angle end and at the time of focusing at infinity when vibration is reduced by 0.5°; 実施例5の結像光学系の中間焦点距離、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 12 is a lateral aberration diagram of the image forming optical system of Example 5 when image stabilization is performed by 0.5° at an intermediate focal length and focusing at infinity; 実施例5の結像光学系の望遠端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 12 is a lateral aberration diagram of the image forming optical system of Example 5 when vibration is reduced by 0.5° at the telephoto end and at the time of focusing at infinity; 本発明の結像光学系の実施例6に係るレンズ構成図である。It is a lens block diagram concerning Example 6 of the imaging optical system of this invention. 実施例6の結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 6 at the wide-angle end and in focus at infinity. 実施例6の結像光学系の中間焦点距離、無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram of the imaging optical system of Example 6 at an intermediate focal length and infinity focusing; 実施例6の結像光学系の望遠端、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 6 at the telephoto end and in focus at infinity. 実施例6の結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 12 is a lateral aberration diagram of the imaging optical system of Example 6 at the wide-angle end and in focus at infinity; 実施例6の結像光学系の中間焦点距離、無限遠合焦時の横収差図である。FIG. 12 is a lateral aberration diagram of the imaging optical system of Example 6 at an intermediate focal length and infinity focusing; 実施例6の結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 6 at the telephoto end and in focus at infinity; 実施例6の結像光学系の広角端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 11 is a lateral aberration diagram of the image forming optical system of Example 6 at the wide-angle end and at the time of focusing at infinity with vibration reduction of 0.5°; 実施例6の結像光学系の中間焦点距離、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 11 is a lateral aberration diagram of the image forming optical system of Example 6 when image stabilization is performed by 0.5° at an intermediate focal length and focusing at infinity; 実施例6の結像光学系の望遠端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 11 is a lateral aberration diagram of the imaging optical system of Example 6 when the telephoto end and infinity focus are corrected by 0.5°; 本発明の結像光学系の実施例7に係るレンズ構成図である。It is a lens configuration diagram according to Example 7 of the imaging optical system of the present invention. 実施例7の結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 7 at the wide-angle end and in focus at infinity; 実施例7の結像光学系の中間焦点距離、無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the imaging optical system of Example 7 at an intermediate focal length and infinity focusing; 実施例7の結像光学系の望遠端、無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram of the imaging optical system of Example 7 at the telephoto end and in focus at infinity. 実施例7の結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 20 is a lateral aberration diagram of the imaging optical system of Example 7 at the wide-angle end and in focus at infinity; 実施例7の結像光学系の中間焦点距離、無限遠合焦時の横収差図である。FIG. 12 is a lateral aberration diagram of the imaging optical system of Example 7 at an intermediate focal length and infinity focusing; 実施例7の結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 20 is a lateral aberration diagram of the imaging optical system of Example 7 at the telephoto end and in focus at infinity; 実施例7の結像光学系の広角端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 20 is a lateral aberration diagram of the image forming optical system of Example 7 at the wide-angle end and at the time of focusing at infinity when vibration is reduced by 0.5°; 実施例7の結像光学系の中間焦点距離、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 12 is a lateral aberration diagram of the image forming optical system of Example 7 when image stabilization is performed by 0.5° at an intermediate focal length and focusing at infinity; 実施例7の結像光学系の望遠端、無限遠合焦時において0.5°防振した時の横収差図である。FIG. 20 is a lateral aberration diagram of the image forming optical system of Example 7 when vibration is reduced by 0.5° at the telephoto end and at the time of focusing at infinity;

本発明の結像光学系は、図1、図11、図21、図31、図41、図51、図61に示すレンズ構成図からわかるように、物体側から順に、正の屈折力の第1レンズ群G1と、全体で負の屈折力の前側レンズ群GFと、全体で正の屈折力の中間1レンズ群GM1と、正の屈折力の中間2レンズ群GM2と、全体で負の屈折力の後側レンズ群より構成される。 As can be seen from the lens configuration diagrams shown in FIGS. 1, 11, 21, 31, 41, 51, and 61, the image forming optical system of the present invention has, in order from the object side, first lenses with positive refractive power. 1 lens group G1, a front lens group GF having negative refractive power as a whole, an intermediate 1 lens group GM1 having positive refractive power as a whole, and an intermediate 2 lens group GM2 having positive refractive power as a whole, and having negative refractive power as a whole. It consists of the rear lens group of power.

前記前側レンズ群GFは一つまたは二つのレンズ群で構成され、光軸と垂直方向に移動することで像ぶれを補正する負の屈折力の防振レンズ群を含み、前記中間1レンズ群GM1は一つまたは二つの正の屈折力のレンズ群で構成され、最も像側に開口絞りSを備え、前記中間2レンズ群GM2は2枚以下のレンズで構成され、前記後側レンズ群GRは一つまたは二つの負の屈折力のレンズ群で構成される。 The front lens group GF is composed of one or two lens groups, and includes a negative refractive power anti-vibration lens group that corrects image blurring by moving in a direction perpendicular to the optical axis. is composed of one or two lens groups with positive refractive power, and is provided with an aperture stop S closest to the image side, the intermediate two lens group GM2 is composed of two or less lenses, and the rear lens group GR is It consists of one or two lens groups with negative refractive power.

広角端から望遠端への変倍に際して、前記第1レンズ群G1が物体側へ移動し、前記第1レンズ群G1と前記前側レンズ群GFの間隔は増大し、前記前側レンズ群GFと前記中間1レンズ群GM1の間隔は減少し、前記中間1レンズ群GM1と前記中間2レンズ群GM2の間隔は変化し、前記中間2レンズ群GM2と前記後側レンズ群GRの間隔は減少する。無限遠から近距離へのフォーカシングに際しては前記中間2レンズ群GM2が光軸に沿って物体側へ移動する。 During zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the distance between the first lens group G1 and the front lens group GF increases, and the distance between the front lens group GF and the intermediate lens group increases. The distance between the first lens group GM1 decreases, the distance between the first intermediate lens group GM1 and the second intermediate lens group GM2 changes, and the distance between the second intermediate lens group GM2 and the rear lens group GR decreases. During focusing from infinity to a short distance, the second intermediate lens group GM2 moves along the optical axis toward the object side.

広角端から望遠端への変倍時には、正の屈折力の第1レンズ群G1と負の屈折力の前側レンズ群GFとの間隔を増大させることにより主な変倍効果を得る。変倍に伴う第1レンズ群G1の移動量を削減するには、広角端においては逆望遠型の屈折力配置、望遠端においては望遠型の屈折力配置とすると良い。 During zooming from the wide-angle end to the telephoto end, the main zooming effect is obtained by increasing the distance between the positive first lens group G1 and the negative front lens group GF. In order to reduce the amount of movement of the first lens group G1 that accompanies zooming, it is preferable to use a reverse telephoto type refracting power arrangement at the wide-angle end and a telephoto type refracting power arrangement at the telephoto end.

そのため広角端においては正の屈折力の第1レンズ群G1と負の屈折力の前側レンズ群GFを接近させてその合成屈折力が負となるように配置し、第1レンズ群G1及び前側レンズ群GFの合成系から像側に離れた位置に全体として正の屈折力となる後方レンズ群を配置するのが良い。本発明において後方レンズ群は、物体側から順に正の屈折力の中間1レンズ群GM1、正の屈折力の中間2レンズ群GM2、負の屈折力の後側レンズ群GRより構成される。 Therefore, at the wide-angle end, the first lens group G1 with positive refractive power and the front lens group GF with negative refractive power are arranged close to each other so that their combined refractive power becomes negative. It is preferable to dispose a rear lens group having a positive refractive power as a whole at a position away from the synthesizing system of the group GF toward the image side. In the present invention, the rear lens group comprises, in order from the object side, an intermediate lens group GM1 with positive refractive power, an intermediate lens group GM2 with positive refractive power, and a rear lens group GR with negative refractive power.

広角端において正の屈折力の中間2レンズ群GM2と負の屈折力の後側レンズ群GRとの間隔を離して配置することで、前記後方レンズ群が望遠型の屈折力配置となり広角端での光学系全長を短縮することができる。 At the wide-angle end, the middle two lens groups GM2 with positive refractive power and the rear lens group GR with negative refractive power are spaced apart from each other, so that the rear lens group has a telephoto-type refractive power arrangement at the wide-angle end. can shorten the total length of the optical system.

一方、望遠端においては正の屈折力の中間2レンズ群GM2と負の屈折力の後側レンズ群GRとを接近させ、更に後方レンズ群全体を前側レンズ群GFに接近させて、前側レンズ群GF以降の合成系の屈折力を負とすることで、第1レンズ群G1との間に望遠型の屈折力配置を構成することにより、望遠端における光学系全長を短縮できる。以上のように構成することで広角端での光学系全長を短縮しつつ第1レンズ群G1の移動量を削減するのに有利となる。 On the other hand, at the telephoto end, the middle two lens groups GM2 with positive refractive power and the rear lens group GR with negative refractive power are brought closer together, and furthermore the entire rear lens group is brought closer to the front lens group GF. The total length of the optical system at the telephoto end can be shortened by forming a telephoto-type refractive power arrangement between the first lens group G1 and the first lens group G1 by making the refractive power of the composite system after GF negative. The configuration described above is advantageous for reducing the amount of movement of the first lens group G1 while shortening the total length of the optical system at the wide-angle end.

正の屈折力の第1レンズ群G1と正の屈折力の中間1レンズ群GM1に挟まれる、負の屈折力の前側レンズ群は屈折力の絶対値が大きいため光軸直交方向の変位に伴う像の光軸直交方向の変位を大きくしやすい。手振れに伴う像変位量が大きくなりやすい望遠の変倍結像光学系においては、負の屈折力の前側レンズ群GFの全部または一部を光軸直交方向に変位させて防振を行う構成が好ましい。 Since the absolute value of the refractive power of the front lens group of negative refractive power, which is sandwiched between the first lens group G1 of positive refractive power and the intermediate lens group GM1 of positive refractive power, is large, displacement in the direction orthogonal to the optical axis It is easy to increase the displacement of the image in the direction perpendicular to the optical axis. In a telephoto variable-power imaging optical system in which the amount of image displacement due to camera shake tends to increase, there is a configuration in which all or part of the negative refractive power front lens group GF is displaced in the direction perpendicular to the optical axis to perform image stabilization. preferable.

本発明においては、無限遠から近距離への合焦に際して中間2レンズ群GM2を光軸に沿って物体側へ移動させることが好ましい。正の屈折力の中間1レンズ群GM1で光束が収斂されることで中間1レンズ群GM1の像側に配置される中間2レンズ群GM2の径が抑えられるため、ここをフォーカスレンズ群として用いると軽量化に有利である。 In the present invention, it is preferable to move the second intermediate lens group GM2 along the optical axis toward the object side when focusing from infinity to a short distance. Since the diameter of the intermediate 2 lens group GM2 arranged on the image side of the intermediate 1 lens group GM1 is suppressed by converging the light flux in the intermediate 1 lens group GM1 having a positive refractive power, it is possible to use this as a focus lens group. It is advantageous for weight reduction.

フォーカスレンズ群をさらに軽量化して高速なAF制御を実現するために、中間2レンズ群GM2を2枚以下のレンズで構成することが好ましい。最近はセンサーサイズが大きく画質に優れるラージフォーマットのカメラが人気である。光学系をラージフォーマットに対応させると周辺画角の主光線が光学系の中で高い位置を通るため、軽量化のためにレンズの外径を小さくすると周辺光量低下が大きくなる。そのためラージフォーマットに対応しつつフォーカスレンズ群を軽量化するにはフォーカスレンズ群をできるだけ少ないレンズ枚数で構成することが求められる。また、フォーカスレンズ群の枚数を少なくすることにより無限遠から近距離にかけてフォーカスレンズ群が移動する空間を広く確保することができる。フォーカスレンズ群の移動量を大きくできるとフォーカスレンズ群の屈折力を弱めることができ、フォーカスレンズ群を構成するレンズの曲率を緩めて収差の発生を抑えることができる。これにより製造誤差でフォーカスレンズ群が偏芯した時の性能低下を抑えられる。 In order to further reduce the weight of the focus lens group and realize high-speed AF control, it is preferable to configure the middle two lens group GM2 with two or less lenses. Recently, large format cameras with large sensors and excellent image quality have become popular. When the optical system is adapted to the large format, the principal ray at the peripheral angle of view passes through a high position in the optical system, so if the outer diameter of the lens is made smaller to reduce the weight, the reduction in the amount of peripheral light will increase. Therefore, in order to reduce the weight of the focus lens group while supporting the large format, it is required to configure the focus lens group with as few lenses as possible. Also, by reducing the number of focus lens groups, it is possible to secure a wide space for the focus lens group to move from infinity to short distances. If the amount of movement of the focus lens group can be increased, the refractive power of the focus lens group can be weakened, and the curvature of the lenses constituting the focus lens group can be relaxed to suppress the occurrence of aberration. This makes it possible to suppress deterioration in performance when the focus lens group is decentered due to manufacturing errors.

フォーカスレンズ群である中間2レンズ群GM2は正の屈折力を有することが望ましい。仮に中間2レンズ群GM2が負の屈折力を有するとする。中間2レンズ群GM2の屈折力が弱いと無限遠から近距離への合焦時の移動量が大きくなり光学系全長の短縮に不利なので、中間2レンズ群GM2は負の屈折力を強める必要があるが、中間2レンズ群GM2と後側レンズ群GRの合成系の負の屈折力が強くなりすぎるとバックフォーカスの確保が困難になるため、後側レンズ群GRの負の屈折力は弱める必要がある。すると広角端から望遠端への変倍時の後側レンズ群GRの変倍補助作用が弱まり、ズーム全域で高い結像性能を確保するには変倍時の他の群の移動量を増やす必要がある。 It is desirable that the intermediate two lens group GM2, which is a focus lens group, have a positive refractive power. It is assumed that the intermediate two lens group GM2 has negative refractive power. If the refracting power of the intermediate 2 lens group GM2 is weak, the amount of movement during focusing from infinity to a short distance becomes large, which is disadvantageous in shortening the total length of the optical system. However, if the negative refractive power of the composite system of the intermediate two lens group GM2 and the rear lens group GR becomes too strong, it becomes difficult to secure the back focus, so it is necessary to weaken the negative refractive power of the rear lens group GR. be. This weakens the effect of the rear lens group GR on zooming assistance when zooming from the wide-angle end to the telephoto end, and it is necessary to increase the amount of movement of the other groups during zooming to ensure high imaging performance over the entire zoom range. There is

しかし、第1レンズ群G1の移動量を増やすと望遠端の全長が長く、前側レンズ群GFと中間1レンズ群GM1との間隔変化量を増やすと広角端で前側レンズ群GFと中間1レンズ群GM1との間隔を長く取る必要があるため広角端での全長が長くなり、いずれも鏡筒重量の増加につながるため好ましくない。また、無限遠から近距離への合焦に際して中間2レンズ群GM2は光軸に沿って像面側へ移動するため、特に移動量が大きくなる望遠端においては無限遠合焦時に中間2レンズ群GM2とその像側に配置される後側レンズ群GRとの間隔を十分確保する必要がある。 However, if the amount of movement of the first lens group G1 is increased, the total length at the telephoto end becomes longer. Since it is necessary to secure a long distance from the GM1, the total length at the wide-angle end becomes long, and both lead to an increase in the weight of the lens barrel, which is not preferable. In addition, since the second intermediate lens group GM2 moves along the optical axis toward the image plane when focusing from infinity to a short distance, especially at the telephoto end where the amount of movement is large, the second intermediate lens group GM2 is shifted when focusing at infinity. and the rear lens group GR arranged on the image side thereof.

すると負の屈折力の強い中間2レンズ群GM2と像面との距離が長くなり、かつ後側レンズ群GRは弱い屈折力しか持たないため望遠端において射出瞳と像面との距離が長くなり、リアテレコンバータ装着時に周辺光束がケラレやすくなって周辺光量の確保が難しくなる。中間2レンズ群GM2を正の屈折力とすると後側レンズ群GRの負の屈折力を強くすることができるため射出瞳と像面との距離が長くならないようにしリアテレコンバータ装着時の周辺光量を確保するのに有利である。 As a result, the distance between the second intermediate lens group GM2, which has a strong negative refractive power, and the image plane becomes long, and since the rear lens group GR has only a weak refractive power, the distance between the exit pupil and the image plane becomes long at the telephoto end. , when the rear teleconverter is attached, the peripheral luminous flux tends to be vignetting, making it difficult to secure the peripheral luminous intensity. If the middle two lens group GM2 has a positive refractive power, the negative refractive power of the rear lens group GR can be strengthened. It is advantageous to ensure

上記構成において高性能な変倍結像光学系を実現するためには以下の条件式(1)、(2)を満足することが望ましい。
(1) 1.20<LT1m2t/f1m2t<1.55
(2) -0.7<fRw/fw<-0.3
ただし、
LT1m2t:望遠端、無限遠合焦状態における前記第1レンズ群G1から前記中間2レンズ群GM2までの合成系の、最も物体側の面から像側焦点までの長さ
f1m2t:望遠端、無限遠合焦状態における前記第1レンズ群G1から前記中間2レンズ群GM2までの合成系の焦点距離
fRw:広角端での前記後側レンズ群GRの焦点距離
fw:広角端、無限遠合焦状態における全系の焦点距離
とする。
In order to realize a high-performance variable magnification imaging optical system with the above configuration, it is desirable to satisfy the following conditional expressions (1) and (2).
(1) 1.20<LT1m2t/f1m2t<1.55
(2) -0.7<fRw/fw<-0.3
however,
LT1m2t: Length from the most object-side surface to the image-side focal point of the combined system from the first lens group G1 to the intermediate two lens group GM2 at the telephoto end and infinity focus state f1m2t: Telephoto end, infinity Focal length fRw of the composite system from the first lens group G1 to the intermediate two lens group GM2 in the focused state: focal length fw of the rear lens group GR at the wide-angle end: wide-angle end, in the infinity focused state Let it be the focal length of the entire system.

条件式(1)は、望遠端、無限遠合焦状態における第1レンズ群G1から中間2レンズ群GM2までの合成系の望遠比に関して、光学系の全長を抑制しつつ無限遠から近距離までのフォーカス全域にわたって高結像性能を実現するための好ましい範囲を規定するものである。 Conditional expression (1) provides a telephoto ratio of the composite system from the first lens group G1 to the intermediate two lens group GM2 at the telephoto end and infinity focused state, while suppressing the total length of the optical system, and from infinity to short distances. It defines a preferable range for achieving high imaging performance over the entire focus range.

条件式(1)の上限を超え、望遠端における第1レンズ群G1から中間2レンズ群GM2までの合成系の望遠比が大きくなると、望遠端における光学系全長の短縮に不利となる。また、第1レンズ群G1から中間2レンズ群GM2までの合成系の焦点距離が短くなると後側レンズ群GRの倍率が大きくなり、フォーカシングの際に中間2レンズ群GM2を光軸に沿って移動させたときの収差変動が後側レンズ群GRでより大きく拡大されてしまい好ましくない。特に高速AFを実現するためにフォーカスレンズ群の枚数を減らすとフォーカスレンズ群を光軸に沿って動かしたときの収差変動が大きくなるため、無限遠から近距離までのフォーカス全域にわたって高結像性能を実現するためには後側レンズ群GRの倍率を小さくする必要がある。 If the upper limit of conditional expression (1) is exceeded and the telephoto ratio of the composite system from the first lens group G1 to the middle two lens group GM2 at the telephoto end is increased, it is disadvantageous for shortening the total length of the optical system at the telephoto end. Further, when the focal length of the composite system from the first lens group G1 to the middle two lens group GM2 becomes short, the magnification of the rear lens group GR becomes large, and the middle two lens group GM2 moves along the optical axis during focusing. Aberration fluctuations when the lens is moved are magnified by the rear lens group GR, which is not preferable. In particular, reducing the number of focus lens groups to achieve high-speed AF increases aberration fluctuations when the focus lens group is moved along the optical axis. To realize this, it is necessary to reduce the magnification of the rear lens group GR.

一方、条件式1の下限を超え、第1レンズ群G1から中間2レンズ群GM2までの合成系の望遠比が小さくなると、製造誤差に対する敏感度が高くなり製品性能を高くすることが困難になる。 On the other hand, when the lower limit of conditional expression 1 is exceeded and the telephoto ratio of the combined system from the first lens group G1 to the intermediate two lens group GM2 becomes small, the sensitivity to manufacturing errors increases, making it difficult to improve product performance. .

また、上述した条件式(1)について、その下限値を1.25に、また、上限値を1.52にすることで、前述の効果をより確実にできるため好ましい。 Further, it is preferable to set the lower limit to 1.25 and the upper limit to 1.52 for conditional expression (1), since the above effect can be more reliably achieved.

条件式(2)は、広角端における後側レンズ群GRと全系の焦点距離比に関して、バックフォーカスを確保しつつ光学系の全長を抑制するための好ましい範囲を規定するものである。 Conditional expression (2) defines a preferable range for suppressing the total length of the optical system while ensuring the back focus, with respect to the focal length ratio between the rear lens group GR and the entire system at the wide-angle end.

条件式(2)の上限を超え、後側レンズ群の負の屈折力が強まると、広角端におけるバックフォーカスが短くなり光学系像側へのリアテレコンバータ等の付加光学系の追加が困難となる。 If the upper limit of conditional expression (2) is exceeded and the negative refractive power of the rear lens group becomes strong, the back focus at the wide-angle end becomes short, making it difficult to add an additional optical system such as a rear teleconverter to the image side of the optical system. Become.

一方、条件式(2)の下限を超え、後側レンズ群GRの負の屈折力が弱まると、後側レンズ群GRの物体側主点が像側へ移動し、広角端における中間2レンズ群GM2と後側レンズ群GRとの間隔が狭くなる。広角端において正の屈折力の中間2レンズ群GM2と負の屈折力の後側レンズ群GRとを間隔を離して配置することにより望遠型の屈折力配置を構成し、これらの合成系の全長を短縮できる。中間2レンズ群GM2と後側レンズ群GRとの間隔が狭くなると望遠型の屈折力配置が弱まり全長の短縮が困難になる。 On the other hand, when the lower limit of conditional expression (2) is exceeded and the negative refractive power of the rear lens group GR weakens, the object-side principal point of the rear lens group GR moves toward the image side, and the intermediate two lens groups at the wide-angle end The distance between GM2 and the rear lens group GR is narrowed. At the wide-angle end, the intermediate two lens groups GM2 with positive refractive power and the rear lens group GR with negative refractive power are arranged with a space therebetween to form a telescopic refractive power arrangement, and the total length of the combined system of these. can be shortened. If the distance between the middle two lens group GM2 and the rear lens group GR becomes narrower, the telephoto type refractive power arrangement weakens, making it difficult to shorten the total length.

また、本発明の変倍結像光学系では、全系で広角端では逆望遠型、望遠端では望遠型の屈折力配置を構成することが変倍時の第1レンズ群G1の移動量を抑制するのに有効である。望遠端においては前側レンズ群から像面側の合成系の屈折力を負とし、正の屈折力の第1レンズ群G1との間で望遠型の屈折力配置とすると良い。広角端から望遠端への変倍に際して中間2レンズ群GM2と後側レンズ群GRとを接近させることによりこれらの合成系が望遠端で負の屈折力となり、望遠端において全系で強い望遠型の屈折力配置を構成しやすくして変倍を補助することができる。広角端において中間2レンズ群GM2と後側レンズ群GRとの間隔が狭くなると、変倍時にここの間隔をあまり変えることができなくなり変倍補助効果が弱まる。結果として変倍時の第1レンズ群G1の移動量が増えて変倍時の操作性が悪化するとともに望遠端における光学系全長が長くなり鏡筒重量が重くなる。 In addition, in the variable-power imaging optical system of the present invention, the refractive power arrangement of the entire system is of a reverse telephoto type at the wide-angle end and of a telephoto type at the telephoto end. Effective for suppression. At the telephoto end, the refractive power of the composite system from the front lens group to the image plane side should be negative, and a telescopic refractive power arrangement should be provided between the first lens group G1 and the first lens group G1 having positive refractive power. When zooming from the wide-angle end to the telephoto end, the two intermediate lens groups GM2 and the rear lens group GR are brought closer to each other, so that the combined system of these becomes negative refractive power at the telephoto end, and the entire system is a strong telephoto type at the telephoto end. It is possible to facilitate the configuration of the refracting power arrangement of the lens and assist the zooming. If the distance between the two intermediate lens groups GM2 and the rear lens group GR is narrowed at the wide-angle end, it becomes difficult to change the distance there during zooming, and the effect of assisting zooming is weakened. As a result, the amount of movement of the first lens group G1 during zooming increases, degrading operability during zooming, and increasing the total length of the optical system at the telephoto end, increasing the weight of the lens barrel.

また、上述した条件式(2)について、その下限値を-0.65に、また、上限値を-0.35にすることで、前述の効果をより確実にできるため好ましい。 Further, it is preferable to set the lower limit to −0.65 and the upper limit to −0.35 for conditional expression (2) described above, because the above effects can be more reliably achieved.

さらに本発明の結像光学系では、後側レンズ群GRは二つの負の屈折力の群で構成され、広角端から望遠端への変倍に際して後側レンズ群GRのうち物体側のレンズ群は物体側へ移動し、像側のレンズ群は像面に対して固定されていることが望ましい。 Further, in the imaging optical system of the present invention, the rear lens group GR is composed of two groups of negative refractive power, and when zooming from the wide-angle end to the telephoto end, the lens group on the object side of the rear lens group GR moves toward the object side, and the lens group on the image side is preferably fixed with respect to the image plane.

物体側の負の屈折力のレンズ群を広角端から望遠端への変倍に際して物体側へ移動させることで、変倍作用を補助し第1レンズ群G1の移動量を減らすことができる。 By moving the negative refractive power lens group on the object side toward the object side during zooming from the wide-angle end to the telephoto end, the zooming action can be assisted and the amount of movement of the first lens group G1 can be reduced.

像側の負の屈折力のレンズ群を広角端から望遠端への変倍に際して像面に対して固定することで、ズーム全域で射出瞳から像面までの距離が長くなるのを抑え、変倍光学系の像側に付加光学系を追加したときに周辺光量低下が大きくなるのを防ぐことができる。 By fixing the negative refractive power lens group on the image side with respect to the image plane when zooming from the wide-angle end to the telephoto end, it is possible to suppress the distance from the exit pupil to the image plane from increasing over the entire zoom range. When an additional optical system is added to the image side of the magnifying optical system, it is possible to prevent the decrease in peripheral light quantity from becoming large.

本発明の結像光学系では、以下に示す条件式(3)を満たすことが望ましい。
(3) 0.20<EXPt/LTt<0.40
ただし、
EXPt:望遠端、無限遠合焦状態における射出瞳から像面までの長さ
LTt:望遠端、無限遠合焦状態における光学系の最も物体側の面から像面までの長さ
とする。
The imaging optical system of the present invention preferably satisfies the following conditional expression (3).
(3) 0.20<EXPt/LTt<0.40
however,
EXPt: length from the exit pupil to the image plane at the telephoto end and infinity focus state LTt: length from the most object-side surface of the optical system to the image plane at the telephoto end and infinity focus state.

条件式(3)は望遠端、無限遠合焦状態における射出瞳から像面までの長さと光学系全長の比に関して、リアテレコンバータに対応しつつ周辺光量を確保するために好ましい条件を規定するものである。 Conditional expression (3) defines a favorable condition for securing the amount of peripheral light while supporting the rear teleconverter with respect to the ratio of the length from the exit pupil to the image plane and the total length of the optical system at the telephoto end and in the infinity focused state. It is.

条件式(3)の上限を超え、射出瞳から像面までの距離が長くなると、リアテレコンバータ装着時に周辺画角の光線ケラレによる周辺光量低下が大きくなる。 When the upper limit of conditional expression (3) is exceeded and the distance from the exit pupil to the image plane becomes long, when the rear teleconverter is attached, the amount of peripheral light decreases due to ray vignetting at peripheral angles of view.

一方、条件式(3)の下限を超え、射出瞳から像面までの距離が短くなると、変倍光学系の最も物体側の面において主光線通過位置が高くなることで下光線が通りにくくなって周辺光量低下が大きくなり、また口径食も悪化する。 On the other hand, when the lower limit of conditional expression (3) is exceeded and the distance from the exit pupil to the image plane becomes short, the principal ray passage position becomes high on the surface closest to the object side of the variable magnification optical system, making it difficult for the lower ray to pass through. As a result, vignetting becomes worse.

また、上述した条件式(3)について、その下限値を0.23に、また、上限値を0.38にすることで、前述の効果をより確実にできるため好ましい。 Further, setting the lower limit to 0.23 and the upper limit to 0.38 for the conditional expression (3) described above is preferable because the above effect can be more reliably achieved.

さらに本発明の結像光学系では、前側レンズ群GFは物体側から順に正の屈折力のGFpレンズ成分、負の屈折力のGFnレンズ成分、負の屈折力の防振レンズ群より構成され、GFpレンズ成分とGFnレンズ成分は空気間隔をもって隔てられて配置され、GFpレンズ成分及びGFnレンズ成分は内部に空気間隔を含まないことが望ましい。 Further, in the imaging optical system of the present invention, the front lens group GF comprises, in order from the object side, a GFp lens component with positive refractive power, a GFn lens component with negative refractive power, and a vibration reduction lens group with negative refractive power. Preferably, the GFp lens component and the GFn lens component are separated by an air gap, and the GFp lens component and the GFn lens component do not contain an internal air gap.

物体側から順に正の屈折力のGFpレンズ成分、負の屈折力のGFnレンズ成分を空気間隔を隔てて配置することにより望遠型の屈折力配置になり、その像側に防振レンズ群を配置することにより防振レンズ群の光線径が抑制されて軽量化が可能になる。 A GFp lens component with positive refracting power and a GFn lens component with negative refracting power are placed in order from the object side with an air gap to form a telephoto refractive power arrangement, and a vibration reduction lens group is placed on the image side. By doing so, the light beam diameter of the anti-vibration lens group is suppressed, and the weight can be reduced.

本発明の結像光学系では、以下に示す条件式(4)を満たすことが望ましい。
(4) 0.70<|LTFpnt/fFpnt|<0.95
ただし、
LTFpnt:望遠端における前記GFpレンズ成分と前記GFnレンズ成分の合成系の、最も物体側の面から像側焦点までの長さ
fFpnt:望遠端における前記GFpレンズ成分と前記GFnレンズ成分の合成系の焦点距離
とする。
The imaging optical system of the present invention preferably satisfies the following conditional expression (4).
(4) 0.70<|LTFpnt/fFpnt|<0.95
however,
LTFpnt: Length from the most object-side surface to the image-side focal point of the composite system of the GFp lens component and the GFn lens component at the telephoto end fFpnt: Length of the composite system of the GFp lens component and the GFn lens component at the telephoto end Let it be the focal length.

条件式(4)は望遠端における正の屈折力のGFpレンズ成分と負の屈折力のGFnレンズ成分の合成系の望遠比に関して、防振レンズ群の光線径を抑制するために好ましい条件を規定するものである。 Conditional expression (4) defines a desirable condition for suppressing the ray diameter of the anti-vibration lens group with respect to the telephoto ratio of the composite system of the GFp lens component with positive refractive power and the GFn lens component with negative refractive power at the telephoto end. It is something to do.

条件式(4)の上限を超え、GFpレンズ成分とGFnレンズ成分の合成系の望遠比が大きくなると、光線径を抑制できずに防振レンズ群が重くなり、また光線径の上昇により鏡筒外径が太くなり製品重量も重くなってしまう。 When the upper limit of conditional expression (4) is exceeded and the telephoto ratio of the combined system of the GFp lens component and the GFn lens component increases, the light beam diameter cannot be suppressed, and the vibration reduction lens group becomes heavy. The larger the outer diameter, the heavier the weight of the product.

一方、条件式(4)の下限を超え、GFpレンズ成分とGFnレンズ成分の合成系の望遠比が小さくなると、GFpレンズ成分及びGFnレンズ成分の製造誤差による偏芯時の収差変動が大きくなり、製品性能を高くすることが困難になる。 On the other hand, when the lower limit of conditional expression (4) is exceeded and the telephoto ratio of the combined system of the GFp lens component and the GFn lens component becomes small, the aberration fluctuation due to the manufacturing error of the GFp lens component and the GFn lens component becomes large during decentering. It becomes difficult to improve product performance.

また、上述した条件式(4)について、その下限値を0.74に、また、上限値を0.92に限定することで、前述の効果をより確実にできるため好ましい。 Further, by limiting the lower limit to 0.74 and the upper limit to 0.92 for conditional expression (4) described above, the above effect can be more reliably achieved, which is preferable.

さらに本発明の結像光学系では、前側レンズ群GFのうち少なくとも一部は広角端から望遠端への変倍に際して像面に対して固定されていることが望ましい。これによりカム構造を単純化し、鏡筒重量の増加を抑えられる。 Further, in the imaging optical system of the present invention, it is desirable that at least part of the front lens group GF be fixed with respect to the image plane during zooming from the wide-angle end to the telephoto end. This simplifies the cam structure and reduces the weight of the lens barrel.

さらに本発明の結像光学系では、正の屈折力の中間1レンズ群GM1を、光線がほぼアフォーカルで通過する空気間隔を境に2分割して構成し、変倍に伴って当該空気間隔を適切に変化させることが好ましい。これにより球面収差にほぼ影響を与えずに変倍中の光学系全系の非点収差を適切に制御することができる。 Further, in the imaging optical system of the present invention, the first intermediate lens group GM1 having a positive refractive power is divided into two with an air gap through which light rays pass substantially afocally. is preferably changed appropriately. As a result, the astigmatism of the entire optical system during zooming can be appropriately controlled without substantially affecting spherical aberration.

また、フォーカスレンズ群である中間2レンズ群GM2が凸レンズ1枚で構成される場合、そのどちらかの面に回折光学素子を設けてもよい。これによりフォーカシング時の軸上色収差の変動を抑制することができ、無限遠から近距離までのフォーカス全域にわたって軸上色収差が良好に補正された変倍結像光学系を実現できる。 Further, when the intermediate two lens group GM2, which is the focus lens group, is composed of one convex lens, a diffractive optical element may be provided on either surface thereof. As a result, fluctuations in axial chromatic aberration during focusing can be suppressed, and a variable-magnification imaging optical system in which axial chromatic aberration is well corrected over the entire focusing range from infinity to short distances can be realized.

次に、本発明の結像光学系に係る実施例のレンズ構成について説明する。
なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。
Next, a description will be given of the lens construction of an embodiment of the imaging optical system of the present invention.
In the following description, lens configurations are described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りSの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数を示す。またBFはバックフォーカスを表す。 In [surface data], the surface number is the number of the lens surface or aperture stop S counted from the object side, r is the radius of curvature of each surface, d is the distance between the surfaces, and nd is the d-line (wavelength λ = 587.56 nm). , and νd indicates the Abbe number for the d-line. BF represents back focus.

面番号を付した(開口絞り)には、平面または開口絞りSに対する曲率半径∞(無限大)に記入している。 In (aperture stop) with a surface number, the radius of curvature ∞ (infinity) with respect to a plane or aperture stop S is written.

[各種データ]には、焦点距離などの値を示している。 [Various data] shows values such as the focal length.

[可変間隔データ]には、各撮影距離状態における可変間隔及びBF(バックフォーカス)の値を示している。 [Variable interval data] shows the variable interval and BF (back focus) values in each photographing distance state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。 [Lens group data] indicates the number of the surface closest to the object side constituting each lens group and the combined focal length of the entire group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In addition, in the values of all the specifications below, unless otherwise specified, millimeters (mm) are used for the focal length f, radius of curvature r, distance between lens surfaces d, and other lengths. The system is not limited to this because the same optical performance can be obtained in both proportional enlargement and proportional reduction.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。 In the aberration diagrams corresponding to each example, d, g, and C represent the d-line, g-line, and C-line, respectively, and .DELTA.S and .DELTA.M represent the sagittal image plane and the meridional image plane, respectively.

さらに図1、11、21、31、41、51、61に示すレンズ構成図において、Sは開口絞り、Iは像面、中心を通る一点鎖線は光軸である。 Furthermore, in the lens configuration diagrams shown in FIGS. 1, 11, 21, 31, 41, 51, and 61, S is the aperture stop, I is the image plane, and the dashed-dotted line passing through the center is the optical axis.

図1は、本発明の実施例1の結像光学系のレンズ構成図である。
正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、負の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、正の屈折力の第6レンズ群G6、負の屈折力の第7レンズ群G7、負の屈折力の第8レンズ群G8より構成される。
FIG. 1 is a lens configuration diagram of an imaging optical system according to Example 1 of the present invention.
A first lens group G1 with positive refractive power, a second lens group G2 with negative refractive power, a third lens group G3 with negative refractive power, a fourth lens group G4 with positive refractive power, and a third lens group G4 with positive refractive power. It consists of five lens groups G5, a positive refractive power sixth lens group G6, a negative refractive power seventh lens group G7, and a negative refractive power eighth lens group G8.

広角端から望遠端への変倍に際して、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像面に対して固定され、第3レンズ群G3は像面側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は物体側へ移動し、第6レンズ群G6は物体側へ移動し、第7レンズ群G7は物体側へ移動し、第8レンズ群G8は像面に対して固定される構成となっている。開口絞りSは第5レンズ群G5の像側に備えられ、変倍の際には第5レンズ群G5と一体で移動する。無限遠物体から近距離物体へのフォーカシングに際して、第6レンズ群G6が光軸に沿って物体側へ移動する。 When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the second lens group G2 is fixed with respect to the image plane, and the third lens group G3 moves toward the image plane side. The fourth lens group G4 moves toward the object side, the fifth lens group G5 moves toward the object side, the sixth lens group G6 moves toward the object side, the seventh lens group G7 moves toward the object side, and the eighth lens group G7 moves toward the object side. The lens group G8 is fixed with respect to the image plane. An aperture diaphragm S is provided on the image side of the fifth lens group G5, and moves integrally with the fifth lens group G5 during zooming. When focusing from an infinite distance object to a short distance object, the sixth lens group G6 moves along the optical axis toward the object side.

本実施例において、前側レンズ群GFは第2レンズ群G2と第3レンズ群G3より構成される。中間1レンズ群GM1は第4レンズ群G4と第5レンズ群G5より構成され、中間2レンズ群GM2は第6レンズ群G6より構成され、後側レンズ群GRは第7レンズ群G7と第8レンズ群G8より構成される。 In this embodiment, the front lens group GF is composed of a second lens group G2 and a third lens group G3. The first intermediate lens group GM1 is composed of a fourth lens group G4 and a fifth lens group G5, the second intermediate lens group GM2 is composed of a sixth lens group G6, and the rear lens group GR is composed of a seventh lens group G7 and an eighth lens group. It is composed of a lens group G8.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、両凸レンズL3より構成される。 The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a biconvex lens L3.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズより構成される。 The second lens group G2 is composed of a positive meniscus lens L4 having a convex surface facing the object side, and a cemented lens composed of a biconvex lens L5 and a biconcave lens L6.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL7と、両凹レンズL8と両凸レンズL9からなる接合レンズより構成される。第3レンズ群G3を光軸に対して垂直方向に変位させることにより防振を行う。 The third lens group G3 is composed of a negative meniscus lens L7 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L8 and a biconvex lens L9. Image stabilization is performed by displacing the third lens group G3 in the direction perpendicular to the optical axis.

第4レンズ群G4は、両凸レンズL10と、両凸レンズL11と物体側に凹面を向けた負メニスカスレンズL12からなる接合レンズより構成される。 The fourth lens group G4 is composed of a biconvex lens L10, a cemented lens composed of a biconvex lens L11 and a negative meniscus lens L12 having a concave surface facing the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17より構成される。 The fifth lens group G5 includes a cemented lens composed of a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L15 having a convex surface facing the object side. It is composed of a negative meniscus lens L16 with a convex surface on the side and a biconvex lens L17.

第6レンズ群G6は、両凸レンズL18より構成される。 The sixth lens group G6 is composed of a biconvex lens L18.

第7レンズ群G7は、物体側に凸面を向けた負メニスカスレンズL19と、両凹レンズL20と両凸レンズL21からなる接合レンズより構成される。 The seventh lens group G7 is composed of a negative meniscus lens L19 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L20 and a biconvex lens L21.

第8レンズ群G8は、物体側に凹面を向けた負メニスカスレンズL22より構成される。 The eighth lens group G8 is composed of a negative meniscus lens L22 having a concave surface facing the object side.

続いて以下に実施例1に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
1 269.0618 2.0000 1.80420 46.50
2 100.3485 7.3530 1.49700 81.61
3 -1000.0000 0.1500
4 103.6699 6.9042 1.43700 95.10
5 -1000.0000 (d5)
6 67.2136 3.6188 1.72047 34.71
7 283.3122 8.9336
8 117.0912 2.2287 1.56732 42.84
9 -537.1145 0.9000 1.91082 35.25
10 55.8686 (d10)
11 999.7824 0.9000 1.77250 49.62
12 58.5400 2.8984
13 -47.3445 0.9000 1.72916 54.67
14 70.3633 3.5000 1.84666 23.78
15 -536.3692 (d15)
16 251.0393 2.5660 1.69680 55.46
17 -94.2157 0.1500
18 70.2602 4.7971 1.58144 40.89
19 -47.7850 0.9000 2.05090 26.94
20 -286.8401 (d20)
21 30.1802 3.3204 1.69895 30.05
22 76.6145 0.5808
23 45.2280 0.9000 1.90043 37.37
24 21.3401 3.6409 1.59410 60.47
25 44.8198 1.4528
26 65.3065 0.9000 2.00100 29.13
27 34.0953 2.1662
28 1000.0000 2.5378 1.59282 68.63
29 -61.7873 2.3750
30(絞り) ∞ (d30)
31 46.0464 2.7485 1.59349 67.00
32 -1000.0000 (d32)
33 142.6963 0.9000 2.00100 29.13
34 36.9292 3.2506
35 -50.0947 0.9000 1.55032 75.50
36 44.1698 5.1303 1.78880 28.43
37 -57.9789 (d37)
38 -40.1895 1.0000 2.05090 26.94
39 -59.1319 (BF)
像面 ∞

[各種データ]
ズーム比 3.76
広角 中間 望遠
焦点距離 103.00 200.08 387.40
Fナンバー 5.15 5.90 6.50
全画角2ω 23.31 11.93 6.15
像高Y 21.63 21.63 21.63
レンズ全長 212.15 255.54 289.15

[可変間隔データ]
広角 中間 望遠
d5 3.3680 46.7644 80.3695
d10 5.5000 10.4000 10.4400
d15 27.0319 15.3115 3.5000
d20 18.4761 8.1967 2.1579
d30 9.4339 17.9858 35.4047
d32 18.4981 14.9456 3.5000
d37 16.1889 28.2895 40.1247
BF 33.1482 33.1482 33.1482

[レンズ群データ]
群 始面 焦点距離
G1 1 197.57
G2 6 -433.83
G3 11 -40.20
G4 16 79.54
G5 21 193.71
G6 31 74.24
G7 33 -98.68
G8 38 -122.70
Next, the specification values of the variable-magnification imaging optical system having the image stabilization function according to the first embodiment are shown below.
Numerical example 1
Unit: mm
[Surface data]
Face number rd nd vd
1 269.0618 2.0000 1.80420 46.50
2 100.3485 7.3530 1.49700 81.61
3 -1000.0000 0.1500
4 103.6699 6.9042 1.43700 95.10
5-1000.0000 (d5)
6 67.2136 3.6188 1.72047 34.71
7 283.3122 8.9336
8 117.0912 2.2287 1.56732 42.84
9 -537.1145 0.9000 1.91082 35.25
10 55.8686 (d10)
11 999.7824 0.9000 1.77250 49.62
12 58.5400 2.8984
13 -47.3445 0.9000 1.72916 54.67
14 70.3633 3.5000 1.84666 23.78
15 -536.3692 (d15)
16 251.0393 2.5660 1.69680 55.46
17 -94.2157 0.1500
18 70.2602 4.7971 1.58144 40.89
19 -47.7850 0.9000 2.05090 26.94
20 -286.8401 (d20)
21 30.1802 3.3204 1.69895 30.05
22 76.6145 0.5808
23 45.2280 0.9000 1.90043 37.37
24 21.3401 3.6409 1.59410 60.47
25 44.8198 1.4528
26 65.3065 0.9000 2.00100 29.13
27 34.0953 2.1662
28 1000.0000 2.5378 1.59282 68.63
29 -61.7873 2.3750
30 (Aperture) ∞ (d30)
31 46.0464 2.7485 1.59349 67.00
32 -1000.0000 (d32)
33 142.6963 0.9000 2.00100 29.13
34 36.9292 3.2506
35 -50.0947 0.9000 1.55032 75.50
36 44.1698 5.1303 1.78880 28.43
37 -57.9789 (d37)
38 -40.1895 1.0000 2.05090 26.94
39 -59.1319 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.76
Wide Angle Medium Telephoto Focal Length 103.00 200.08 387.40
F number 5.15 5.90 6.50
Full angle of view 2ω 23.31 11.93 6.15
Image height Y 21.63 21.63 21.63
Total lens length 212.15 255.54 289.15

[Variable interval data]
wide-angle medium-telephoto
d5 3.3680 46.7644 80.3695
d10 5.5000 10.4000 10.4400
d15 27.0319 15.3115 3.5000
d20 18.4761 8.1967 2.1579
d30 9.4339 17.9858 35.4047
d32 18.4981 14.9456 3.5000
d37 16.1889 28.2895 40.1247
BF 33.1482 33.1482 33.1482

[Lens group data]
Group Starting surface Focal length
G1 1 197.57
G2 6 -433.83
G3 11 -40.20
G4 16 79.54
G5 21 193.71
G6 31 74.24
G7 33 -98.68
G8 38 -122.70

図11は、本発明の実施例2の結像光学系のレンズ構成図である。
正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、負の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、正の屈折力の第6レンズ群G6、負の屈折力の第7レンズ群G7、負の屈折力の第8レンズ群G8より構成される。
FIG. 11 is a lens configuration diagram of an imaging optical system according to Example 2 of the present invention.
A first lens group G1 with positive refractive power, a second lens group G2 with negative refractive power, a third lens group G3 with negative refractive power, a fourth lens group G4 with positive refractive power, and a third lens group G4 with positive refractive power. It consists of five lens groups G5, a positive refractive power sixth lens group G6, a negative refractive power seventh lens group G7, and a negative refractive power eighth lens group G8.

広角端から望遠端への変倍に際して、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像面に対して固定され、第3レンズ群G3は像面側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は物体側へ移動し、第6レンズ群G6は広角端から中間焦点距離では物体側へ移動して中間焦点距離から望遠端では像面側へ移動し、第7レンズ群G7は物体側へ移動し、第8レンズ群G8は像面に対して固定される構成となっている。開口絞りSは第5レンズ群G5の像側に備えられ、変倍の際には第5レンズ群G5と一体で移動する。無限遠物体から近距離物体へのフォーカシングに際して、第6レンズ群G6が光軸に沿って物体側へ移動する。 When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the second lens group G2 is fixed with respect to the image plane, and the third lens group G3 moves toward the image plane side. The fourth lens group G4 moves toward the object side, the fifth lens group G5 moves toward the object side, the sixth lens group G6 moves toward the object side from the wide-angle end to the intermediate focal length, and moves toward the object side from the intermediate focal length to the telephoto end. The seventh lens group G7 moves to the object side, and the eighth lens group G8 is fixed with respect to the image plane. An aperture diaphragm S is provided on the image side of the fifth lens group G5, and moves integrally with the fifth lens group G5 during zooming. When focusing from an infinite distance object to a short distance object, the sixth lens group G6 moves along the optical axis toward the object side.

本実施例において、前側レンズ群GFは第2レンズ群G2と第3レンズ群G3より構成され、中間1レンズ群GM1は第4レンズ群G4と第5レンズ群G5より構成され、中間2レンズ群GM2は第6レンズ群G6より構成され、後側レンズ群GRは第7レンズ群G7と第8レンズ群G8より構成される。 In this embodiment, the front lens group GF consists of the second lens group G2 and the third lens group G3, the first intermediate lens group GM1 consists of the fourth lens group G4 and the fifth lens group G5, and the second intermediate lens group. GM2 is composed of a sixth lens group G6, and the rear lens group GR is composed of a seventh lens group G7 and an eighth lens group G8.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、両凸レンズL3より構成される。 The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a biconvex lens L3.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、物体側に凸面を向けた負メニスカスレンズL5より構成される。 The second lens group G2 is composed of a positive meniscus lens L4 having a convex surface facing the object side and a negative meniscus lens L5 having a convex surface facing the object side.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、両凹レンズL7と物体側に凸面を向けた正メニスカスレンズL8からなる接合レンズより構成される。第3レンズ群G3を光軸に対して垂直方向に変位させることにより防振を行う。 The third lens group G3 is composed of a negative meniscus lens L6 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L7 and a positive meniscus lens L8 having a convex surface facing the object side. Image stabilization is performed by displacing the third lens group G3 in the direction perpendicular to the optical axis.

第4レンズ群G4は、両凸レンズL9と、両凸レンズL10と物体側に凹面を向けた負メニスカスレンズL11からなる接合レンズより構成される。 The fourth lens group G4 is composed of a biconvex lens L9 and a cemented lens composed of a biconvex lens L10 and a negative meniscus lens L11 having a concave surface facing the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と物体側に凸面を向けた正メニスカスレンズL14からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL15と、両凸レンズL16より構成される。 The fifth lens group G5 includes a cemented lens composed of a positive meniscus lens L12 having a convex surface facing the object side, a negative meniscus lens L13 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side. It is composed of a negative meniscus lens L15 with a convex surface on the side and a biconvex lens L16.

第6レンズ群G6は、両凸レンズL17と物体側に凹面を向けた負メニスカスレンズL18からなる接合レンズより構成される。
第7レンズ群G7は、物体側に凸面を向けた負メニスカスレンズL19と、両凹レンズL20と両凸レンズL21からなる接合レンズより構成される。
第8レンズ群G8は、物体側に凹面を向けた負メニスカスレンズL22より構成される。
The sixth lens group G6 is composed of a cemented lens composed of a biconvex lens L17 and a negative meniscus lens L18 having a concave surface facing the object side.
The seventh lens group G7 is composed of a negative meniscus lens L19 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L20 and a biconvex lens L21.
The eighth lens group G8 is composed of a negative meniscus lens L22 having a concave surface facing the object side.

続いて以下に実施例2に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
1 266.3440 2.0000 1.80420 46.50
2 99.5861 7.1349 1.49700 81.61
3 -999.9882 0.1500
4 102.3826 6.7102 1.43700 95.10
5 -1000.0000 (d5)
6 67.3716 3.8879 1.72047 34.71
7 430.0704 8.9942
8 899.4378 0.9000 1.95375 32.32
9 66.4820 (d9)
10 999.9178 0.9000 1.77250 49.62
11 60.5980 2.7073
12 -53.2762 0.9000 1.72916 54.67
13 61.0918 2.4330 1.84666 23.78
14 1416.9365 (d14)
15 231.4977 2.2997 1.72916 54.67
16 -118.4467 0.1500
17 66.4245 4.8620 1.58144 40.89
18 -48.2582 0.9000 2.05090 26.94
19 -211.1957 (d19)
20 31.4430 3.2216 1.69895 30.05
21 89.5680 0.4685
22 52.4231 0.9000 1.90043 37.37
23 23.0153 3.2170 1.59410 60.47
24 47.6296 1.3762
25 65.7306 0.9000 2.00100 29.13
26 34.8049 2.0480
27 513.1218 2.5178 1.59282 68.63
28 -66.6149 2.4410
29(絞り) ∞ (d29)
30 48.2821 3.3699 1.59349 67.00
31 -104.6775 0.9000 1.63930 44.87
32 -2113.4127 (d32)
33 166.2366 0.9000 2.00100 29.13
34 38.3213 3.7290
35 -67.2313 0.9000 1.55032 75.50
36 38.9823 5.4250 1.78880 28.43
37 -67.4252 (d37)
38 -40.3031 1.0000 2.05090 26.94
39 -58.8448 (BF)
像面 ∞

[各種データ]
ズーム比 3.82
広角 中間 望遠
焦点距離 101.50 199.84 387.45
Fナンバー 5.14 5.93 6.49
全画角2ω 23.67 11.96 6.15
像高Y 21.63 21.63 21.63
レンズ全長 210.27 255.13 288.50

[可変間隔データ]
広角 中間 望遠
d5 4.1084 48.9611 82.3388
d9 5.6631 10.5631 10.6631
d14 27.2499 15.5479 3.5000
d19 18.6314 7.4574 2.1314
d29 9.9143 19.0214 38.1124
d32 19.9581 15.6942 3.0000
d37 13.3810 26.5136 37.3902
BF 33.1238 33.1238 33.1238

[レンズ群データ]
群 始面 焦点距離
G1 1 195.26
G2 6 -362.76
G3 10 -40.44
G4 15 74.06
G5 20 215.46
G6 30 82.25
G7 33 -115.99
G8 38 -125.17
Next, the specification values of the variable-magnification imaging optical system provided with the image stabilization function according to Example 2 are shown below.
Numerical example 2
Unit: mm
[Surface data]
Face number rd nd vd
1 266.3440 2.0000 1.80420 46.50
2 99.5861 7.1349 1.49700 81.61
3 -999.9882 0.1500
4 102.3826 6.7102 1.43700 95.10
5-1000.0000 (d5)
6 67.3716 3.8879 1.72047 34.71
7 430.0704 8.9942
8 899.4378 0.9000 1.95375 32.32
9 66.4820 (d9)
10 999.9178 0.9000 1.77250 49.62
11 60.5980 2.7073
12 -53.2762 0.9000 1.72916 54.67
13 61.0918 2.4330 1.84666 23.78
14 1416.9365 (d14)
15 231.4977 2.2997 1.72916 54.67
16 -118.4467 0.1500
17 66.4245 4.8620 1.58144 40.89
18 -48.2582 0.9000 2.05090 26.94
19-211.1957 (d19)
20 31.4430 3.2216 1.69895 30.05
21 89.5680 0.4685
22 52.4231 0.9000 1.90043 37.37
23 23.0153 3.2170 1.59410 60.47
24 47.6296 1.3762
25 65.7306 0.9000 2.00100 29.13
26 34.8049 2.0480
27 513.1218 2.5178 1.59282 68.63
28 -66.6149 2.4410
29 (Aperture) ∞ (d29)
30 48.2821 3.3699 1.59349 67.00
31 -104.6775 0.9000 1.63930 44.87
32 -2113.4127 (d32)
33 166.2366 0.9000 2.00100 29.13
34 38.3213 3.7290
35 -67.2313 0.9000 1.55032 75.50
36 38.9823 5.4250 1.78880 28.43
37 -67.4252 (d37)
38 -40.3031 1.0000 2.05090 26.94
39 -58.8448 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.82
Wide Angle Medium Telephoto Focal Length 101.50 199.84 387.45
F number 5.14 5.93 6.49
Full angle of view 2ω 23.67 11.96 6.15
Image height Y 21.63 21.63 21.63
Total lens length 210.27 255.13 288.50

[Variable interval data]
wide-angle medium-telephoto
d5 4.1084 48.9611 82.3388
d9 5.6631 10.5631 10.6631
d14 27.2499 15.5479 3.5000
d19 18.6314 7.4574 2.1314
d29 9.9143 19.0214 38.1124
d32 19.9581 15.6942 3.0000
d37 13.3810 26.5136 37.3902
BF 33.1238 33.1238 33.1238

[Lens group data]
Group Starting surface Focal length
G1 1 195.26
G2 6 -362.76
G3 10 -40.44
G4 15 74.06
G5 20 215.46
G6 30 82.25
G7 33 -115.99
G8 38 -125.17

図21は、本発明の実施例3の結像光学系のレンズ構成図である。
正の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、負の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、正の屈折力の第6レンズ群G6、負の屈折力の第7レンズ群G7、負の屈折力の第8レンズ群G8より構成される。
FIG. 21 is a lens configuration diagram of an imaging optical system according to Example 3 of the present invention.
A first lens group G1 with positive refractive power, a second lens group G2 with positive refractive power, a third lens group G3 with negative refractive power, a fourth lens group G4 with positive refractive power, and a third lens group G4 with positive refractive power. It consists of five lens groups G5, a positive refractive power sixth lens group G6, a negative refractive power seventh lens group G7, and a negative refractive power eighth lens group G8.

広角端から望遠端への変倍に際して、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像面に対して固定され、第3レンズ群G3は広角端から中間焦点距離では像面側へ移動して中間焦点距離から望遠端では物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は物体側へ移動し、第6レンズ群G6は物体側へ移動し、第7レンズ群G7は物体側へ移動し、第8レンズ群G8は像面に対して固定される構成となっている。開口絞りSは第5レンズ群G5の像側に備えられ、変倍の際には第5レンズ群G5と一体で移動する。無限遠物体から近距離物体へのフォーカシングに際して、第6レンズ群G6が光軸に沿って物体側へ移動する。 When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the second lens group G2 is fixed with respect to the image plane, and the third lens group G3 moves from the wide-angle end to the intermediate focal length. The fourth lens group G4 moves toward the object side, the fifth lens group G5 moves toward the object side, and the sixth lens group G6 moves toward the object side. The seventh lens group G7 moves toward the object side, and the eighth lens group G8 is fixed with respect to the image plane. An aperture diaphragm S is provided on the image side of the fifth lens group G5, and moves integrally with the fifth lens group G5 during zooming. When focusing from an infinite distance object to a short distance object, the sixth lens group G6 moves along the optical axis toward the object side.

本実施例において、前側レンズ群GFは第2レンズ群G2と第3レンズ群G3より構成され、中間1レンズ群GM1は第4レンズ群G4と第5レンズ群G5より構成され、中間2レンズ群GM2は第6レンズ群G6より構成され、後側レンズ群GRは第7レンズ群G7と第8レンズ群G8より構成される。 In this embodiment, the front lens group GF consists of the second lens group G2 and the third lens group G3, the first intermediate lens group GM1 consists of the fourth lens group G4 and the fifth lens group G5, and the second intermediate lens group. GM2 is composed of a sixth lens group G6, and the rear lens group GR is composed of a seventh lens group G7 and an eighth lens group G8.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、両凸レンズL3より構成される。 The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a biconvex lens L3.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4より構成される。 The second lens group G2 is composed of a positive meniscus lens L4 having a convex surface facing the object side.

第3レンズ群G3は、両凸レンズL5と両凹レンズL6からなる接合レンズと、両凹レンズL7と、両凹レンズL8と物体側に凸面を向けた正メニスカスレンズL9からなる接合レンズより構成される。第3レンズ群のうち、L7からL9までの3枚のレンズを一体として光軸に対して垂直方向に変位させることにより防振を行う。 The third lens group G3 is composed of a cemented lens consisting of a biconvex lens L5 and a biconcave lens L6, a cemented lens consisting of a biconcave lens L7, a biconcave lens L8 and a positive meniscus lens L9 having a convex surface facing the object side. In the third lens group, the three lenses L7 to L9 are integrally displaced in the direction perpendicular to the optical axis to perform image stabilization.

第4レンズ群G4は、両凸レンズL10と、両凸レンズL11と物体側に凹面を向けた負メニスカスレンズL12からなる接合レンズより構成される。 The fourth lens group G4 is composed of a biconvex lens L10, a cemented lens composed of a biconvex lens L11 and a negative meniscus lens L12 having a concave surface facing the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL16と、物体側に凹面を向けた正メニスカスレンズL17より構成される。 The fifth lens group G5 includes a cemented lens composed of a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L15 having a convex surface facing the object side. It is composed of a negative meniscus lens L16 with a convex surface facing the side and a positive meniscus lens L17 with a concave surface facing the object side.

第6レンズ群G6は、物体側に凸面を向けた正メニスカスレンズL18より構成される。 The sixth lens group G6 is composed of a positive meniscus lens L18 having a convex surface facing the object side.

第7レンズ群G7は、両凹レンズL19と、両凹レンズL20と両凸レンズL21からなる接合レンズより構成される。 The seventh lens group G7 is composed of a biconcave lens L19 and a cemented lens composed of a biconcave lens L20 and a biconvex lens L21.

第8レンズ群G8は、物体側に凹面を向けた負メニスカスレンズL22より構成される。 The eighth lens group G8 is composed of a negative meniscus lens L22 having a concave surface facing the object side.

続いて以下に実施例3に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
1 257.2220 2.0000 1.81600 46.62
2 102.1991 7.3359 1.49700 81.61
3 -741.3587 0.1500
4 96.6943 6.6306 1.43700 95.10
5 -4465.0993 (d5)
6 99.1585 4.3070 1.72047 34.71
7 4117.9680 (d7)
8 678.0135 2.7629 1.56732 42.84
9 -95.3329 0.9000 1.91082 35.25
10 91.3043 5.0503
11 -702.3996 0.9000 1.77250 49.62
12 69.3864 2.4422
13 -56.5935 0.9000 1.72916 54.67
14 61.3158 2.6016 1.84666 23.78
15 2496.5955 (d15)
16 347.6988 2.3321 1.67790 55.34
17 -98.9801 0.1500
18 71.8417 4.9128 1.58144 40.89
19 -43.9009 0.9000 2.05090 26.94
20 -143.5185 (d20)
21 29.4997 3.2092 1.69895 30.05
22 67.9297 1.1127
23 37.5847 0.9000 1.90043 37.37
24 20.1571 3.2543 1.58913 61.14
25 35.5003 1.6873
26 57.7678 0.9000 2.00100 29.13
27 32.1468 4.3702
28 -239.0346 2.4761 1.61800 63.33
29 -47.0076 2.0844
30(絞り) ∞ (d30)
31 38.3238 2.6603 1.55032 75.50
32 248.1691 (d32)
33 -1737.7533 0.9000 2.00100 29.13
34 48.6813 9.1743
35 -43.0253 0.9000 1.55032 75.50
36 106.0121 4.9918 1.78880 28.43
37 -39.8664 (d37)
38 -41.7715 1.0000 2.05090 26.94
39 -59.5306 (BF)
像面 ∞

[各種データ]
ズーム比 3.87
広角 中間 望遠
焦点距離 100.10 199.36 387.30
Fナンバー 5.15 5.97 6.50
全画角2ω 24.10 12.04 6.20
像高Y 21.63 21.63 21.63
レンズ全長 210.15 254.88 290.15

[可変間隔データ]
広角 中間 望遠
d5 2.0000 46.7360 82.0003
d7 9.5677 10.5598 9.5161
d15 26.1784 14.9702 3.5000
d20 18.0719 7.8314 2.0005
d30 6.4795 15.7261 31.1427
d32 21.9075 15.9659 3.0000
d37 7.2992 24.4508 40.3445
BF 34.7482 34.7482 34.7482

[レンズ群データ]
群 始面 焦点距離
G1 1 187.74
G2 6 140.96
G3 8 -25.88
G4 16 73.33
G5 21 189.12
G6 31 81.99
G7 33 -128.58
G8 38 -137.20
Next, the specification values of the variable-magnification imaging optical system having the image stabilization function according to the third embodiment are shown below.
Numerical example 3
Unit: mm
[Surface data]
Face number rd nd vd
1 257.2220 2.0000 1.81600 46.62
2 102.1991 7.3359 1.49700 81.61
3 -741.3587 0.1500
4 96.6943 6.6306 1.43700 95.10
5-4465.0993 (d5)
6 99.1585 4.3070 1.72047 34.71
7 4117.9680 (d7)
8 678.0135 2.7629 1.56732 42.84
9 -95.3329 0.9000 1.91082 35.25
10 91.3043 5.0503
11 -702.3996 0.9000 1.77250 49.62
12 69.3864 2.4422
13 -56.5935 0.9000 1.72916 54.67
14 61.3158 2.6016 1.84666 23.78
15 2496.5955 (d15)
16 347.6988 2.3321 1.67790 55.34
17 -98.9801 0.1500
18 71.8417 4.9128 1.58144 40.89
19 -43.9009 0.9000 2.05090 26.94
20 -143.5185 (d20)
21 29.4997 3.2092 1.69895 30.05
22 67.9297 1.1127
23 37.5847 0.9000 1.90043 37.37
24 20.1571 3.2543 1.58913 61.14
25 35.5003 1.6873
26 57.7678 0.9000 2.00100 29.13
27 32.1468 4.3702
28 -239.0346 2.4761 1.61800 63.33
29 -47.0076 2.0844
30 (Aperture) ∞ (d30)
31 38.3238 2.6603 1.55032 75.50
32 248.1691 (d32)
33 -1737.7533 0.9000 2.00100 29.13
34 48.6813 9.1743
35 -43.0253 0.9000 1.55032 75.50
36 106.0121 4.9918 1.78880 28.43
37 -39.8664 (d37)
38 -41.7715 1.0000 2.05090 26.94
39 -59.5306 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.87
Wide Angle Medium Telephoto Focal Length 100.10 199.36 387.30
F number 5.15 5.97 6.50
Full angle of view 2ω 24.10 12.04 6.20
Image height Y 21.63 21.63 21.63
Total lens length 210.15 254.88 290.15

[Variable interval data]
wide-angle medium-telephoto
d5 2.0000 46.7360 82.0003
d7 9.5677 10.5598 9.5161
d15 26.1784 14.9702 3.5000
d20 18.0719 7.8314 2.0005
d30 6.4795 15.7261 31.1427
d32 21.9075 15.9659 3.0000
d37 7.2992 24.4508 40.3445
BF 34.7482 34.7482 34.7482

[Lens group data]
Group Starting surface Focal length
G1 1 187.74
G26 140.96
G3 8 -25.88
G4 16 73.33
G5 21 189.12
G6 31 81.99
G7 33 -128.58
G8 38 -137.20

図31は、本発明の実施例4の結像光学系のレンズ構成図である。
正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6、負の屈折力の第7レンズ群G7より構成される。
FIG. 31 is a lens configuration diagram of an imaging optical system according to Example 4 of the present invention.
A first lens group G1 with positive refractive power, a second lens group G2 with negative refractive power, a third lens group G3 with positive refractive power, a fourth lens group G4 with positive refractive power, and a third lens group G4 with positive refractive power. It consists of five lens groups G5, a sixth lens group G6 with negative refractive power, and a seventh lens group G7 with negative refractive power.

広角端から望遠端への変倍に際して、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像面に対して固定され、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は広角端から中間焦点距離では物体側へ移動して中間焦点距離から望遠端では像面側へ移動し、第6レンズ群G6は物体側へ移動し、第7レンズ群G7は像面に対して固定される構成となっている。開口絞りSは第4レンズ群G4の像側に備えられ、変倍の際には第4レンズ群G4と一体で移動する。無限遠物体から近距離物体へのフォーカシングに際して、第5レンズ群G5が光軸に沿って物体側へ移動する。 When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the second lens group G2 is fixed with respect to the image plane, the third lens group G3 moves toward the object side, and the third lens group G3 moves toward the object side. The fourth lens group G4 moves to the object side, the fifth lens group G5 moves to the object side from the wide-angle end to the intermediate focal length, and moves to the image plane side from the intermediate focal length to the telephoto end, and the sixth lens group G6 moves to the object side. It moves to the object side, and the seventh lens group G7 is fixed with respect to the image plane. An aperture diaphragm S is provided on the image side of the fourth lens group G4, and moves integrally with the fourth lens group G4 during zooming. When focusing from an infinite distance object to a short distance object, the fifth lens group G5 moves along the optical axis toward the object side.

本実施例において、前側レンズ群GFは第2レンズ群G2より構成され、中間1レンズ群GM1は第3レンズ群G3と第4レンズ群G4より構成され、中間2レンズ群GM2は第5レンズ群G5より構成され、後側レンズ群GRは第6レンズ群G6と第7レンズ群G7より構成される。 In this embodiment, the front lens group GF consists of the second lens group G2, the first intermediate lens group GM1 consists of the third lens group G3 and the fourth lens group G4, and the second intermediate lens group GM2 consists of the fifth lens group. G5, and the rear lens group GR is composed of a sixth lens group G6 and a seventh lens group G7.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、両凸レンズL3より構成される。 The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a biconvex lens L3.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL7と、両凹レンズL8と両凸レンズL9からなる接合レンズより構成される。第2レンズ群のうち、L7からL9までの3枚のレンズを一体として光軸に対して垂直方向に変位させることにより防振を行う。 The second lens group G2 includes a positive meniscus lens L4 having a convex surface facing the object side, a cemented lens composed of a biconvex lens L5 and a biconcave lens L6, a negative meniscus lens L7 having a convex surface facing the object side, and a biconcave lens L8. It is composed of a cemented lens composed of a biconvex lens L9. In the second lens group, the three lenses L7 to L9 are integrally displaced in the direction perpendicular to the optical axis to perform image stabilization.

第3レンズ群G3は、両凸レンズL10と、両凸レンズL11と物体側に凹面を向けた負メニスカスレンズL12からなる接合レンズより構成される。 The third lens group G3 is composed of a biconvex lens L10 and a cemented lens composed of a biconvex lens L11 and a negative meniscus lens L12 having a concave surface facing the object side.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL16と、物体側に凹面を向けた正メニスカスレンズL17より構成される。 The fourth lens group G4 includes a cemented lens composed of a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L15 having a convex surface facing the object side. It is composed of a negative meniscus lens L16 with a convex surface facing the side and a positive meniscus lens L17 with a concave surface facing the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL18より構成される。 The fifth lens group G5 is composed of a positive meniscus lens L18 having a convex surface facing the object side.

第6レンズ群G6は、両凹レンズL19と、両凹レンズL20と両凸レンズL21からなる接合レンズより構成される。 The sixth lens group G6 is composed of a biconcave lens L19 and a cemented lens composed of a biconcave lens L20 and a biconvex lens L21.

第7レンズ群G7は、物体側に凹面を向けた負メニスカスレンズL22より構成される。 The seventh lens group G7 is composed of a negative meniscus lens L22 having a concave surface facing the object side.

続いて以下に実施例4に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
1 297.5437 2.0000 1.80420 46.50
2 106.2425 7.2662 1.49700 81.61
3 -564.7647 0.1500
4 99.0415 7.4346 1.43700 95.10
5 -3173.2833 (d5)
6 83.2177 3.1401 1.72047 34.71
7 572.4728 7.9089
8 200.8571 2.2364 1.56732 42.84
9 -181.1771 0.9000 1.91082 35.25
10 79.3047 6.0243
11 1144.2839 0.9000 1.77250 49.62
12 56.2468 3.0354
13 -48.0194 0.9000 1.72916 54.67
14 67.9918 3.4043 1.84666 23.78
15 -444.6079 (d15)
16 433.8369 2.5491 1.69680 55.46
17 -82.9224 0.1500
18 73.0108 4.9692 1.58144 40.89
19 -46.7398 0.9000 2.05090 26.94
20 -276.3498 (d20)
21 30.4272 3.3770 1.69895 30.05
22 79.0345 0.1632
23 40.8026 0.9000 1.90043 37.37
24 20.3844 3.6931 1.59410 60.47
25 39.8972 1.6135
26 61.3112 0.9000 2.00100 29.13
27 33.8750 2.5099
28 -288.7244 2.5628 1.61997 63.88
29 -50.1308 2.0806
30(絞り) ∞ (d30)
31 39.0560 2.8987 1.55032 75.50
32 406.2481 (d32)
33 -427.0730 0.9000 2.00100 29.13
34 45.5801 3.0224
35 -45.1709 0.9000 1.55032 75.50
36 62.7138 6.0000 1.78880 28.43
37 -37.4867 (d37)
38 -38.1895 1.0000 2.05090 26.94
39 -61.9328 (BF)
像面 ∞

[各種データ]
ズーム比 3.76
広角 中間 望遠
焦点距離 103.00 199.42 387.30
Fナンバー 5.15 5.86 6.49
全画角2ω 23.26 11.97 6.15
像高Y 21.63 21.63 21.63
レンズ全長 215.15 262.27 293.15

[可変間隔データ]
広角 中間 望遠
d5 5.3730 52.4910 83.3732
d15 26.8424 17.2873 3.5000
d20 19.7478 8.8354 5.5985
d30 6.4259 21.7592 39.8843
d32 20.0237 13.1613 3.0000
d37 15.9410 27.9373 36.9980
BF 34.4048 34.4048 34.4048

[レンズ群データ]
群 始面 焦点距離
G1 1 191.05
G2 6 -39.80
G3 16 83.04
G4 21 165.33
G5 31 78.30
G6 33 -127.62
G7 38 -96.88
Next, the specification values of the variable-magnification imaging optical system having a vibration reduction function according to Example 4 are shown below.
Numerical example 4
Unit: mm
[Surface data]
Face number rd nd vd
1 297.5437 2.0000 1.80420 46.50
2 106.2425 7.2662 1.49700 81.61
3 -564.7647 0.1500
4 99.0415 7.4346 1.43700 95.10
5-3173.2833 (d5)
6 83.2177 3.1401 1.72047 34.71
7 572.4728 7.9089
8 200.8571 2.2364 1.56732 42.84
9 -181.1771 0.9000 1.91082 35.25
10 79.3047 6.0243
11 1144.2839 0.9000 1.77250 49.62
12 56.2468 3.0354
13 -48.0194 0.9000 1.72916 54.67
14 67.9918 3.4043 1.84666 23.78
15 -444.6079 (d15)
16 433.8369 2.5491 1.69680 55.46
17 -82.9224 0.1500
18 73.0108 4.9692 1.58144 40.89
19 -46.7398 0.9000 2.05090 26.94
20 -276.3498 (d20)
21 30.4272 3.3770 1.69895 30.05
22 79.0345 0.1632
23 40.8026 0.9000 1.90043 37.37
24 20.3844 3.6931 1.59410 60.47
25 39.8972 1.6135
26 61.3112 0.9000 2.00100 29.13
27 33.8750 2.5099
28 -288.7244 2.5628 1.61997 63.88
29 -50.1308 2.0806
30 (Aperture) ∞ (d30)
31 39.0560 2.8987 1.55032 75.50
32 406.2481 (d32)
33 -427.0730 0.9000 2.00100 29.13
34 45.5801 3.0224
35 -45.1709 0.9000 1.55032 75.50
36 62.7138 6.0000 1.78880 28.43
37 -37.4867 (d37)
38 -38.1895 1.0000 2.05090 26.94
39 -61.9328 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.76
Wide Angle Medium Telephoto Focal Length 103.00 199.42 387.30
F number 5.15 5.86 6.49
Full angle of view 2ω 23.26 11.97 6.15
Image height Y 21.63 21.63 21.63
Total lens length 215.15 262.27 293.15

[Variable interval data]
wide-angle medium-telephoto
d5 5.3730 52.4910 83.3732
d15 26.8424 17.2873 3.5000
d20 19.7478 8.8354 5.5985
d30 6.4259 21.7592 39.8843
d32 20.0237 13.1613 3.0000
d37 15.9410 27.9373 36.9980
BF 34.4048 34.4048 34.4048

[Lens group data]
Group Starting surface Focal length
G1 1 191.05
G2 6 -39.80
G3 16 83.04
G4 21 165.33
G5 31 78.30
G6 33 -127.62
G7 38 -96.88

図41は、本発明の実施例5の結像光学系のレンズ構成図である。
正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、負の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、正の屈折力の第6レンズ群G6、負の屈折力の第7レンズ群G7、負の屈折力の第8レンズ群G8より構成される。
FIG. 41 is a lens configuration diagram of an imaging optical system according to Example 5 of the present invention.
A first lens group G1 with positive refractive power, a second lens group G2 with negative refractive power, a third lens group G3 with negative refractive power, a fourth lens group G4 with positive refractive power, and a third lens group G4 with positive refractive power. It consists of five lens groups G5, a positive refractive power sixth lens group G6, a negative refractive power seventh lens group G7, and a negative refractive power eighth lens group G8.

広角端から望遠端への変倍に際して、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像面に対して固定され、第3レンズ群G3は像面側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は物体側へ移動し、第6レンズ群G6は広角端から中間焦点距離では物体側へ移動して中間焦点距離から望遠端では像面側へ移動し、第7レンズ群G7は物体側へ移動し、第8レンズ群G8は像面に対して固定される構成となっている。開口絞りSは第5レンズ群G5の像側に備えられ、変倍の際には第5レンズ群G5と一体で移動する。無限遠物体から近距離物体へのフォーカシングに際して、第6レンズ群G6が光軸に沿って物体側へ移動する。 When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the second lens group G2 is fixed with respect to the image plane, and the third lens group G3 moves toward the image plane side. The fourth lens group G4 moves toward the object side, the fifth lens group G5 moves toward the object side, the sixth lens group G6 moves toward the object side from the wide-angle end to the intermediate focal length, and moves toward the object side from the intermediate focal length to the telephoto end. The seventh lens group G7 moves to the object side, and the eighth lens group G8 is fixed with respect to the image plane. An aperture diaphragm S is provided on the image side of the fifth lens group G5, and moves integrally with the fifth lens group G5 during zooming. When focusing from an infinite distance object to a short distance object, the sixth lens group G6 moves along the optical axis toward the object side.

本実施例において、前側レンズ群GFは第2レンズ群G2と第3レンズ群G3より構成され、中間1レンズ群GM1は第4レンズ群G4と第5レンズ群G5より構成され、中間2レンズ群GM2は第6レンズ群G6より構成され、後側レンズ群GRは第7レンズ群G7と第8レンズ群G8より構成される。 In this embodiment, the front lens group GF consists of the second lens group G2 and the third lens group G3, the first intermediate lens group GM1 consists of the fourth lens group G4 and the fifth lens group G5, and the second intermediate lens group. GM2 is composed of a sixth lens group G6, and the rear lens group GR is composed of a seventh lens group G7 and an eighth lens group G8.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、両凸レンズL3より構成される。 The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a biconvex lens L3.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズより構成される。 The second lens group G2 is composed of a positive meniscus lens L4 having a convex surface facing the object side, and a cemented lens composed of a biconvex lens L5 and a biconcave lens L6.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL7と、両凹レンズL8と両凸レンズL9からなる接合レンズより構成される。第3レンズ群G3を光軸に対して垂直方向に変位させることにより防振を行う。 The third lens group G3 is composed of a negative meniscus lens L7 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L8 and a biconvex lens L9. Image stabilization is performed by displacing the third lens group G3 in the direction perpendicular to the optical axis.

第4レンズ群G4は、両凸レンズL10と、両凸レンズL11と物体側に凹面を向けた負メニスカスレンズL12からなる接合レンズより構成される。 The fourth lens group G4 is composed of a biconvex lens L10, a cemented lens composed of a biconvex lens L11 and a negative meniscus lens L12 having a concave surface facing the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17より構成される。 The fifth lens group G5 includes a cemented lens composed of a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L15 having a convex surface facing the object side. It is composed of a negative meniscus lens L16 with a convex surface on the side and a biconvex lens L17.

第6レンズ群G6は、両凸レンズL18より構成される。 The sixth lens group G6 is composed of a biconvex lens L18.

第7レンズ群G7は、物体側に凸面を向けた負メニスカスレンズL19と、両凹レンズL20と両凸レンズL21からなる接合レンズより構成される。 The seventh lens group G7 is composed of a negative meniscus lens L19 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L20 and a biconvex lens L21.

第8レンズ群G8は、物体側に凹面を向けた負メニスカスレンズL22より構成される。 The eighth lens group G8 is composed of a negative meniscus lens L22 having a concave surface facing the object side.

続いて以下に実施例5に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
1 259.8769 2.0000 1.80420 46.50
2 101.6883 8.5000 1.49700 81.61
3 -999.9998 0.1500
4 105.1493 8.0000 1.43700 95.10
5 -1000.0000 (d5)
6 73.7159 4.5000 1.72047 34.71
7 241.0898 9.7379
8 116.1545 2.3751 1.56732 42.84
9 -560.5922 0.9000 1.91082 35.25
10 58.0640 (d10)
11 1000.0000 0.9000 1.77250 49.62
12 59.9450 2.8793
13 -47.3114 0.9000 1.72916 54.67
14 79.6697 2.8644 1.84666 23.78
15 -310.7201 (d15)
16 267.1568 2.5091 1.69680 55.46
17 -91.7527 0.1500
18 69.6950 4.7658 1.58144 40.89
19 -48.5659 0.9000 2.05090 26.94
20 -283.1789 (d20)
21 29.6954 3.3104 1.69895 30.05
22 79.8061 0.4507
23 48.1095 0.9000 1.90043 37.37
24 21.2929 3.4004 1.59410 60.47
25 43.3138 1.4622
26 63.4110 0.9000 2.00100 29.13
27 33.9518 2.1073
28 995.9835 2.5121 1.61997 63.88
29 -62.1193 2.3967
30(絞り) ∞ (d30)
31 41.3817 2.9658 1.55032 75.50
32 -984.8407 (d32)
33 306.7629 0.9000 2.00100 29.13
34 37.1644 3.2166
35 -47.7101 0.9000 1.55032 75.50
36 44.9366 5.9970 1.78880 28.43
37 -44.8010 (d37)
38 -38.4224 1.0000 2.05090 26.94
39 -63.1658 (BF)
像面 ∞

[各種データ]
ズーム比 3.76
広角 中間 望遠
焦点距離 103.00 199.32 387.38
Fナンバー 5.14 5.92 6.50
全画角2ω 23.20 11.93 6.12
像高Y 21.63 21.63 21.63
レンズ全長 212.55 255.08 288.60

[可変間隔データ]
広角 中間 望遠
d5 2.1451 44.6743 78.1987
d10 5.0001 9.9001 9.9116
d15 27.3973 15.1417 3.5000
d20 20.9211 9.9352 3.8994
d30 6.8285 17.2918 36.6088
d32 19.1116 15.2714 3.0001
d37 13.8424 25.5605 36.1811
BF 32.8498 32.8498 32.8499

[レンズ群データ]
群 始面 焦点距離
G1 1 194.47
G2 6 -318.41
G3 11 -42.49
G4 16 77.74
G5 21 203.38
G6 31 72.24
G7 33 -109.39
G8 38 -95.31
Next, the specification values of the variable-magnification imaging optical system having a vibration reduction function according to Example 5 are shown below.
Numerical example 5
Unit: mm
[Surface data]
Face number rd nd vd
1 259.8769 2.0000 1.80420 46.50
2 101.6883 8.5000 1.49700 81.61
3 -999.9998 0.1500
4 105.1493 8.0000 1.43700 95.10
5-1000.0000 (d5)
6 73.7159 4.5000 1.72047 34.71
7 241.0898 9.7379
8 116.1545 2.3751 1.56732 42.84
9 -560.5922 0.9000 1.91082 35.25
10 58.0640 (d10)
11 1000.0000 0.9000 1.77250 49.62
12 59.9450 2.8793
13 -47.3114 0.9000 1.72916 54.67
14 79.6697 2.8644 1.84666 23.78
15 -310.7201 (d15)
16 267.1568 2.5091 1.69680 55.46
17 -91.7527 0.1500
18 69.6950 4.7658 1.58144 40.89
19 -48.5659 0.9000 2.05090 26.94
20 -283.1789 (d20)
21 29.6954 3.3104 1.69895 30.05
22 79.8061 0.4507
23 48.1095 0.9000 1.90043 37.37
24 21.2929 3.4004 1.59410 60.47
25 43.3138 1.4622
26 63.4110 0.9000 2.00100 29.13
27 33.9518 2.1073
28 995.9835 2.5121 1.61997 63.88
29 -62.1193 2.3967
30 (Aperture) ∞ (d30)
31 41.3817 2.9658 1.55032 75.50
32-984.8407 (d32)
33 306.7629 0.9000 2.00100 29.13
34 37.1644 3.2166
35 -47.7101 0.9000 1.55032 75.50
36 44.9366 5.9970 1.78880 28.43
37 -44.8010 (d37)
38 -38.4224 1.0000 2.05090 26.94
39 -63.1658 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.76
Wide Angle Medium Telephoto Focal Length 103.00 199.32 387.38
F number 5.14 5.92 6.50
Full angle of view 2ω 23.20 11.93 6.12
Image height Y 21.63 21.63 21.63
Total lens length 212.55 255.08 288.60

[Variable interval data]
wide-angle medium-telephoto
d5 2.1451 44.6743 78.1987
d10 5.0001 9.9001 9.9116
d15 27.3973 15.1417 3.5000
d20 20.9211 9.9352 3.8994
d30 6.8285 17.2918 36.6088
d32 19.1116 15.2714 3.0001
d37 13.8424 25.5605 36.1811
BF 32.8498 32.8498 32.8499

[Lens group data]
Group Starting surface Focal length
G1 1 194.47
G2 6 -318.41
G3 11 -42.49
G4 16 77.74
G5 21 203.38
G6 31 72.24
G7 33 -109.39
G8 38-95.31

図51は、本発明の実施例6の結像光学系のレンズ構成図である。
正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、負の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、正の屈折力の第6レンズ群G6、負の屈折力の第7レンズ群G7、負の屈折力の第8レンズ群G8より構成される。
FIG. 51 is a lens configuration diagram of an imaging optical system according to Example 6 of the present invention.
A first lens group G1 with positive refractive power, a second lens group G2 with negative refractive power, a third lens group G3 with negative refractive power, a fourth lens group G4 with positive refractive power, and a third lens group G4 with positive refractive power. It consists of five lens groups G5, a positive refractive power sixth lens group G6, a negative refractive power seventh lens group G7, and a negative refractive power eighth lens group G8.

広角端から望遠端への変倍に際して、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像面に対して固定され、第3レンズ群G3は像面側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は物体側へ移動し、第6レンズ群G6は広角端から中間焦点距離では物体側へ移動して中間焦点距離から望遠端では像面側へ移動し、第7レンズ群G7は物体側へ移動し、第8レンズ群G8は像面に対して固定される構成となっている。開口絞りSは第5レンズ群G5の像側に備えられ、変倍の際には第5レンズ群G5と一体で移動する。無限遠物体から近距離物体へのフォーカシングに際して、第6レンズ群G6が光軸に沿って物体側へ移動する。 When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the second lens group G2 is fixed with respect to the image plane, and the third lens group G3 moves toward the image plane side. The fourth lens group G4 moves toward the object side, the fifth lens group G5 moves toward the object side, the sixth lens group G6 moves toward the object side from the wide-angle end to the intermediate focal length, and moves toward the object side from the intermediate focal length to the telephoto end. The seventh lens group G7 moves to the object side, and the eighth lens group G8 is fixed with respect to the image plane. An aperture diaphragm S is provided on the image side of the fifth lens group G5, and moves integrally with the fifth lens group G5 during zooming. When focusing from an infinite distance object to a short distance object, the sixth lens group G6 moves along the optical axis toward the object side.

本実施例において、前側レンズ群GFは第2レンズ群G2と第3レンズ群G3より構成され、中間1レンズ群GM1は第4レンズ群G4と第5レンズ群G5より構成され、中間2レンズ群GM2は第6レンズ群G6より構成され、後側レンズ群GRは第7レンズ群G7と第8レンズ群G8より構成される。 In this embodiment, the front lens group GF consists of the second lens group G2 and the third lens group G3, the first intermediate lens group GM1 consists of the fourth lens group G4 and the fifth lens group G5, and the second intermediate lens group. GM2 is composed of a sixth lens group G6, and the rear lens group GR is composed of a seventh lens group G7 and an eighth lens group G8.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、両凸レンズL3より構成される。 The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a biconvex lens L3.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズより構成される。 The second lens group G2 is composed of a positive meniscus lens L4 having a convex surface facing the object side, and a cemented lens composed of a biconvex lens L5 and a biconcave lens L6.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL7と、両凹レンズL8と物体側に凸面を向けた正メニスカスレンズL9からなる接合レンズより構成される。第3レンズ群G3を光軸に対して垂直方向に変位させることにより防振を行う。 The third lens group G3 is composed of a negative meniscus lens L7 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L8 and a positive meniscus lens L9 having a convex surface facing the object side. Image stabilization is performed by displacing the third lens group G3 in the direction perpendicular to the optical axis.

第4レンズ群G4は、両凸レンズL10と、両凸レンズL11と物体側に凹面を向けた負メニスカスレンズL12からなる接合レンズより構成される。 The fourth lens group G4 is composed of a biconvex lens L10, a cemented lens composed of a biconvex lens L11 and a negative meniscus lens L12 having a concave surface facing the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17より構成される。 The fifth lens group G5 includes a cemented lens composed of a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L15 having a convex surface facing the object side. It is composed of a negative meniscus lens L16 with a convex surface on the side and a biconvex lens L17.

第6レンズ群G6は、両凸レンズL18より構成される。 The sixth lens group G6 is composed of a biconvex lens L18.

第7レンズ群G7は、物体側に凸面を向けた負メニスカスレンズL19と、両凹レンズL20と両凸レンズL21からなる接合レンズより構成される。 The seventh lens group G7 is composed of a negative meniscus lens L19 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L20 and a biconvex lens L21.

第8レンズ群G8は、物体側に凹面を向けた負メニスカスレンズL22より構成される。 The eighth lens group G8 is composed of a negative meniscus lens L22 having a concave surface facing the object side.

続いて以下に実施例6に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
1 260.8067 2.0000 1.81600 46.62
2 103.6022 7.0427 1.49700 81.61
3 -1034.0909 0.1500
4 103.2948 7.3695 1.43700 95.10
5 -1526.2710 (d5)
6 81.6911 4.1781 1.72047 34.71
7 770.4240 7.2424
8 119.4017 2.6688 1.56732 42.84
9 -174.0954 0.9000 1.90525 35.04
10 62.3771 (d10)
11 4348.5697 0.9000 1.72916 54.67
12 65.0312 2.6208
13 -49.1044 0.9000 1.72916 54.67
14 63.3276 2.5427 1.84666 23.78
15 1618.2166 (d15)
16 243.1103 2.4743 1.65160 58.55
17 -93.8608 0.1500
18 73.2594 4.7115 1.58144 40.89
19 -45.8279 0.9000 2.05090 26.94
20 -195.5247 (d20)
21 31.0411 3.7226 1.71736 29.50
22 127.9717 1.2333
23 107.3155 0.9000 1.90043 37.37
24 27.1309 2.9515 1.58913 61.14
25 61.6032 1.2264
26 71.3491 0.9000 2.00100 29.13
27 35.2559 1.8465
28 173.8071 2.9307 1.59282 68.63
29 -62.0397 2.3472
30(絞り) ∞ (d30)
31 49.0564 2.8500 1.55032 75.50
32 -738.1435 (d32)
33 93.0420 0.9000 2.00100 29.13
34 35.6303 5.0748
35 -67.8525 0.9000 1.55032 75.50
36 37.1131 6.0000 1.78880 28.43
37 -83.1843 (d37)
38 -37.5856 1.0000 2.05090 26.94
39 -63.2608 (BF)
像面 ∞

[各種データ]
ズーム比 3.76
広角 中間 望遠
焦点距離 102.89 199.98 387.20
Fナンバー 5.12 5.91 6.49
全画角2ω 23.28 11.91 6.14
像高Y 21.63 21.63 21.63
レンズ全長 212.15 255.61 289.06

[可変間隔データ]
広角 中間 望遠
d5 7.0023 50.4683 83.9176
d10 5.5000 10.3500 10.4400
d15 26.3122 15.2446 3.5000
d20 19.1753 7.6664 2.2972
d30 9.5481 19.3386 37.6901
d32 22.4070 17.0000 4.0000
d37 9.5530 22.8959 34.5681
BF 31.1164 31.1164 31.1164

[レンズ群データ]
群 始面 焦点距離
G1 1 198.74
G2 6 -406.32
G3 11 -40.08
G4 16 77.64
G5 21 176.58
G6 31 83.69
G7 33 -126.31
G8 38 -89.92
Next, the specification values of the variable-magnification imaging optical system having a vibration reduction function according to Example 6 are shown below.
Numerical Example 6
Unit: mm
[Surface data]
Face number rd nd vd
1 260.8067 2.0000 1.81600 46.62
2 103.6022 7.0427 1.49700 81.61
3 -1034.0909 0.1500
4 103.2948 7.3695 1.43700 95.10
5-1526.2710 (d5)
6 81.6911 4.1781 1.72047 34.71
7 770.4240 7.2424
8 119.4017 2.6688 1.56732 42.84
9 -174.0954 0.9000 1.90525 35.04
10 62.3771 (d10)
11 4348.5697 0.9000 1.72916 54.67
12 65.0312 2.6208
13 -49.1044 0.9000 1.72916 54.67
14 63.3276 2.5427 1.84666 23.78
15 1618.2166 (d15)
16 243.1103 2.4743 1.65160 58.55
17 -93.8608 0.1500
18 73.2594 4.7115 1.58144 40.89
19 -45.8279 0.9000 2.05090 26.94
20 -195.5247 (d20)
21 31.0411 3.7226 1.71736 29.50
22 127.9717 1.2333
23 107.3155 0.9000 1.90043 37.37
24 27.1309 2.9515 1.58913 61.14
25 61.6032 1.2264
26 71.3491 0.9000 2.00100 29.13
27 35.2559 1.8465
28 173.8071 2.9307 1.59282 68.63
29 -62.0397 2.3472
30 (Aperture) ∞ (d30)
31 49.0564 2.8500 1.55032 75.50
32 -738.1435 (d32)
33 93.0420 0.9000 2.00100 29.13
34 35.6303 5.0748
35 -67.8525 0.9000 1.55032 75.50
36 37.1131 6.0000 1.78880 28.43
37 -83.1843 (d37)
38 -37.5856 1.0000 2.05090 26.94
39 -63.2608 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.76
Wide Angle Medium Telephoto Focal Length 102.89 199.98 387.20
F number 5.12 5.91 6.49
Full angle of view 2ω 23.28 11.91 6.14
Image height Y 21.63 21.63 21.63
Total lens length 212.15 255.61 289.06

[Variable interval data]
wide-angle medium-telephoto
d5 7.0023 50.4683 83.9176
d10 5.5000 10.3500 10.4400
d15 26.3122 15.2446 3.5000
d20 19.1753 7.6664 2.2972
d30 9.5481 19.3386 37.6901
d32 22.4070 17.0000 4.0000
d37 9.5530 22.8959 34.5681
BF 31.1164 31.1164 31.1164

[Lens group data]
Group Starting surface Focal length
G1 1 198.74
G26-406.32
G3 11 -40.08
G4 16 77.64
G5 21 176.58
G6 31 83.69
G7 33 -126.31
G8 38 -89.92

図61は、本発明の実施例7の結像光学系のレンズ構成図である。
正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、負の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、正の屈折力の第6レンズ群G6、負の屈折力の第7レンズ群G7、負の屈折力の第8レンズ群G8より構成される。
FIG. 61 is a lens configuration diagram of an imaging optical system according to Example 7 of the present invention.
A first lens group G1 with positive refractive power, a second lens group G2 with negative refractive power, a third lens group G3 with negative refractive power, a fourth lens group G4 with positive refractive power, and a third lens group G4 with positive refractive power. It consists of five lens groups G5, a positive refractive power sixth lens group G6, a negative refractive power seventh lens group G7, and a negative refractive power eighth lens group G8.

広角端から望遠端への変倍に際して、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像面に対して固定され、第3レンズ群G3は像面側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は物体側へ移動し、第6レンズ群G6は物体側へ移動し、第7レンズ群G7は物体側へ移動し、第8レンズ群G8は像面に対して固定される構成となっている。開口絞りSは第5レンズ群G5の像側に備えられ、変倍の際には第5レンズ群G5と一体で移動する。無限遠物体から近距離物体へのフォーカシングに際して、第6レンズ群G6が光軸に沿って物体側へ移動する。 When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the second lens group G2 is fixed with respect to the image plane, and the third lens group G3 moves toward the image plane side. The fourth lens group G4 moves toward the object side, the fifth lens group G5 moves toward the object side, the sixth lens group G6 moves toward the object side, the seventh lens group G7 moves toward the object side, and the eighth lens group G7 moves toward the object side. The lens group G8 is fixed with respect to the image plane. An aperture diaphragm S is provided on the image side of the fifth lens group G5, and moves integrally with the fifth lens group G5 during zooming. When focusing from an infinite distance object to a short distance object, the sixth lens group G6 moves along the optical axis toward the object side.

本実施例において、前側レンズ群GFは第2レンズ群G2と第3レンズ群G3より構成され、中間1レンズ群GM1は第4レンズ群G4と第5レンズ群G5より構成され、中間2レンズ群GM2は第6レンズ群G6より構成され、後側レンズ群GRは第7レンズ群G7と第8レンズ群G8より構成される。 In this embodiment, the front lens group GF consists of the second lens group G2 and the third lens group G3, the first intermediate lens group GM1 consists of the fourth lens group G4 and the fifth lens group G5, and the second intermediate lens group. GM2 is composed of a sixth lens group G6, and the rear lens group GR is composed of a seventh lens group G7 and an eighth lens group G8.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、両凸レンズL3より構成される。 The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a biconvex lens L3.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、物体側に凸面を向けた負メニスカスレンズL5より構成される。 The second lens group G2 is composed of a positive meniscus lens L4 having a convex surface facing the object side and a negative meniscus lens L5 having a convex surface facing the object side.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、両凹レンズL7と物体側に凸面を向けた正メニスカスレンズL8からなる接合レンズより構成される。第3レンズ群G3を光軸に対して垂直方向に変位させることにより防振を行う。 The third lens group G3 is composed of a negative meniscus lens L6 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L7 and a positive meniscus lens L8 having a convex surface facing the object side. Image stabilization is performed by displacing the third lens group G3 in the direction perpendicular to the optical axis.

第4レンズ群G4は、両凸レンズL9と、両凸レンズL10と物体側に凹面を向けた負メニスカスレンズL11からなる接合レンズより構成される。 The fourth lens group G4 is composed of a biconvex lens L9 and a cemented lens composed of a biconvex lens L10 and a negative meniscus lens L11 having a concave surface facing the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と物体側に凸面を向けた正メニスカスレンズL14からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL15と、両凸レンズL16より構成される。 The fifth lens group G5 includes a cemented lens composed of a positive meniscus lens L12 having a convex surface facing the object side, a negative meniscus lens L13 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side. It is composed of a negative meniscus lens L15 with a convex surface on the side and a biconvex lens L16.

第6レンズ群G6は、両凸レンズL17と物体側に凹面を向けた負メニスカスレンズL18からなる接合レンズより構成される。 The sixth lens group G6 is composed of a cemented lens composed of a biconvex lens L17 and a negative meniscus lens L18 having a concave surface facing the object side.

第7レンズ群G7は、物体側に凸面を向けた負メニスカスレンズL19と、両凹レンズL20と両凸レンズL21からなる接合レンズより構成される。 The seventh lens group G7 is composed of a negative meniscus lens L19 having a convex surface facing the object side, and a cemented lens composed of a biconcave lens L20 and a biconvex lens L21.

第8レンズ群G8は、物体側に凹面を向けた負メニスカスレンズL22より構成される。 The eighth lens group G8 is composed of a negative meniscus lens L22 having a concave surface facing the object side.

続いて以下に実施例7に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例7
単位:mm
[面データ]
面番号 r d nd vd
1 269.9623 2.0000 1.80420 46.50
2 98.6558 7.2641 1.49700 81.61
3 -1000.0000 0.1500
4 102.0743 6.8059 1.43700 95.10
5 -1000.0000 (d5)
6 69.4121 3.8877 1.72047 34.71
7 429.0748 8.9520
8 659.2138 0.9000 1.95375 32.32
9 69.1195 (d9)
10 1000.0000 0.9000 1.77250 49.62
11 58.5334 2.7742
12 -51.9627 0.9000 1.72916 54.67
13 60.8148 2.4752 1.84666 23.78
14 2926.5512 (d14)
15 320.7635 2.3625 1.72916 54.67
16 -100.1529 0.1500
17 69.5963 4.8422 1.58144 40.89
18 -47.2299 0.9000 2.05090 26.94
19 -216.2545 (d19)
20 32.3811 3.1152 1.69895 30.05
21 88.1160 0.5529
22 55.6435 0.9000 1.90043 37.37
23 24.9408 3.1002 1.59410 60.47
24 53.1162 1.2673
25 67.1912 0.9000 2.00100 29.13
26 35.4891 2.2584
27 981.4323 2.5974 1.59410 60.47
28 -61.4217 2.3335
29(絞り) ∞ (d29)
30 45.7903 3.6022 1.59282 68.63
31 -79.3039 0.9000 1.66672 48.32
32 -676.7993 (d32)
33 244.9433 0.9000 2.00100 29.13
34 39.8626 4.7327
35 -61.0700 0.9000 1.55032 75.50
36 42.1273 5.3895 1.78880 28.43
37 -63.6196 (d37)
38 -40.1794 1.0000 2.05090 26.94
39 -58.6795 (BF)
像面 ∞

[各種データ]
ズーム比 3.78
広角 中間 望遠
焦点距離 102.53 199.83 387.40
Fナンバー 5.14 5.93 6.48
全画角2ω 23.47 11.98 6.17
像高Y 21.63 21.63 21.63
レンズ全長 212.15 256.25 290.65

[可変間隔データ]
広角 中間 望遠
d5 4.6712 48.7706 83.1714
d9 6.1761 10.9125 11.1761
d14 25.0048 14.1473 3.5000
d19 22.4695 10.6441 2.4791
d29 6.9639 14.9927 31.9593
d32 19.7439 15.4983 3.0000
d37 14.3375 28.5005 42.5808
BF 33.0682 33.0682 33.0682

[レンズ群データ]
群 始面 焦点距離
G1 1 197.37
G2 6 -436.30
G3 10 -39.65
G4 15 76.63
G5 20 187.10
G6 30 76.97
G7 33 -101.96
G8 38 -124.73
Next, the specification values of the variable-magnification imaging optical system having a vibration reduction function according to Example 7 are shown below.
Numerical example 7
Unit: mm
[Surface data]
Face number rd nd vd
1 269.9623 2.0000 1.80420 46.50
2 98.6558 7.2641 1.49700 81.61
3 -1000.0000 0.1500
4 102.0743 6.8059 1.43700 95.10
5-1000.0000 (d5)
6 69.4121 3.8877 1.72047 34.71
7 429.0748 8.9520
8 659.2138 0.9000 1.95375 32.32
9 69.1195 (d9)
10 1000.0000 0.9000 1.77250 49.62
11 58.5334 2.7742
12 -51.9627 0.9000 1.72916 54.67
13 60.8148 2.4752 1.84666 23.78
14 2926.5512 (d14)
15 320.7635 2.3625 1.72916 54.67
16 -100.1529 0.1500
17 69.5963 4.8422 1.58144 40.89
18 -47.2299 0.9000 2.05090 26.94
19 -216.2545 (d19)
20 32.3811 3.1152 1.69895 30.05
21 88.1160 0.5529
22 55.6435 0.9000 1.90043 37.37
23 24.9408 3.1002 1.59410 60.47
24 53.1162 1.2673
25 67.1912 0.9000 2.00100 29.13
26 35.4891 2.2584
27 981.4323 2.5974 1.59410 60.47
28 -61.4217 2.3335
29 (Aperture) ∞ (d29)
30 45.7903 3.6022 1.59282 68.63
31 -79.3039 0.9000 1.66672 48.32
32 -676.7993 (d32)
33 244.9433 0.9000 2.00100 29.13
34 39.8626 4.7327
35 -61.0700 0.9000 1.55032 75.50
36 42.1273 5.3895 1.78880 28.43
37 -63.6196 (d37)
38 -40.1794 1.0000 2.05090 26.94
39 -58.6795 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.78
Wide Angle Medium Telephoto Focal Length 102.53 199.83 387.40
F number 5.14 5.93 6.48
Full angle of view 2ω 23.47 11.98 6.17
Image height Y 21.63 21.63 21.63
Total lens length 212.15 256.25 290.65

[Variable interval data]
wide-angle medium-telephoto
d5 4.6712 48.7706 83.1714
d9 6.1761 10.9125 11.1761
d14 25.0048 14.1473 3.5000
d19 22.4695 10.6441 2.4791
d29 6.9639 14.9927 31.9593
d32 19.7439 15.4983 3.0000
d37 14.3375 28.5005 42.5808
BF 33.0682 33.0682 33.0682

[Lens group data]
Group Starting surface Focal length
G1 1 197.37
G2 6 -436.30
G3 10 -39.65
G4 15 76.63
G5 20 187.10
G6 30 76.97
G7 33 -101.96
G8 38 -124.73

以下に上記の各実施例に対応する条件式対応値を示す。
[条件式対応値]
条件式/実施例 1 2 3 4
(1)1.2<LT1m2t/f1m2t<1.55 1.46 1.38 1.42 1.48
(2) -0.70<fRw/fw<-0.30 -0.47 -0.53 -0.57 -0.45
(3) 0.20<EXPt/LTt<0.40 0.30 0.31 0.33 0.30
(4)0.70<|LTFpnt/fFpnt|<0.95 0.84 0.85 0.82 0.88

条件式/実施例 5 6 7
(1)1.20<LT1m2t/f1m2t<1.55 1.49 1.41 1.48
(2) -0.70<fRw/fw<-0.30 -0.42 -0.45 -0.48
(3) 0.20<EXPt/LTt<0.40 0.29 0.27 0.30
(4)0.70<|LTFpnt/fFpnt|<0.95 0.83 0.86 0.86
Values corresponding to conditional expressions corresponding to the above examples are shown below.
[Value corresponding to conditional expression]
Conditional expression/Example 1 2 3 4
(1) 1.2<LT1m2t/f1m2t<1.55 1.46 1.38 1.42 1.48
(2) -0.70<fRw/fw<-0.30 -0.47 -0.53 -0.57 -0.45
(3) 0.20<EXPt/LTt<0.40 0.30 0.31 0.33 0.30
(4) 0.70<|LTFpnt/fFpnt|<0.95 0.84 0.85 0.82 0.88

Conditional expression/Example 5 6 7
(1) 1.20<LT1m2t/f1m2t<1.55 1.49 1.41 1.48
(2) -0.70<fRw/fw<-0.30 -0.42 -0.45 -0.48
(3) 0.20<EXPt/LTt<0.40 0.29 0.27 0.30
(4) 0.70<|LTFpnt/fFpnt|<0.95 0.83 0.86 0.86

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
G7 第7レンズ群
G8 第8レンズ群
GF 前側レンズ群
GM1 中間1レンズ群
GM2 中間2レンズ群
GR 後側レンズ群
S 開口絞り
I 撮像素子
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group G7 7th lens group G8 8th lens group GF Front side lens group GM1 Middle 1 lens group GM2 Intermediate 2 lens group GR Rear lens group S Aperture diaphragm I Image sensor

Claims (4)

物体側から順に、正の屈折力の第1レンズ群G1と、全体で負の屈折力の前側レンズ群GFと、全体で正の屈折力の中間1レンズ群GM1と、正の屈折力の中間2レンズ群GM2と、全体で負の屈折力の後側レンズ群GRより構成され、
前記前側レンズ群GFは一つまたは二つのレンズ群で構成され、光軸と垂直方向に移動することで像ぶれを補正する負の屈折力の防振レンズ群を含み、
前記中間1レンズ群GM1は二つの正の屈折力のレンズ群で構成され、最も像側に開口絞りSを備え、
前記中間2レンズ群GM2は一つの正の屈折力のレンズ群であり、2枚以下のレンズで構成され、
前記後側レンズ群GRは二つの負の屈折力のレンズ群で構成され、
広角端から望遠端への変倍に際して、前記第1レンズ群G1が物体側へ移動し、前記第1レンズ群G1と前記前側レンズ群GFの間隔は増大し、前記前側レンズ群GFと前記中間1レンズ群GM1の間隔は減少し、前記中間1レンズ群GM1と前記中間2レンズ群GM2の間隔は変化し、前記中間2レンズ群GM2と前記後側レンズ群GRの間隔は減少し、さらに、前側レンズ群GFが二つのレンズ群で構成される場合、前記前側レンズ群GF内の二つのレンズ群の間隔は変化し、前記中間1レンズ群GM1内の二つのレンズ群の間隔は変化し、前記後側レンズ群GR内の二つのレンズ群の間隔は変化し、
無限遠から近距離へのフォーカシングに際して前記中間2レンズ群GM2が光軸に沿って物体側へ移動し、
以下の条件式を満たすことを特徴とする、防振機能を備えた変倍結像光学系。
(1) 1.20<LT1m2t/f1m2t<1.55
(2) -0.7<fRw/fw<-0.3
ただし、
LT1m2t:望遠端、無限遠合焦状態における前記第1レンズ群G1から前記中間2レンズ群GM2までの合成系の、最も物体側の面から像側焦点までの長さ
f1m2t:望遠端、無限遠合焦状態における前記第1レンズ群G1から前記中間2レンズ群GM2までの合成系の焦点距離
fRw:広角端での前記後側レンズ群GRの焦点距離
fw:広角端、無限遠合焦状態における全系の焦点距離
とする。
In order from the object side, a first lens group G1 having positive refractive power, a front lens group GF having negative refractive power as a whole, an intermediate lens group GM1 having positive refractive power as a whole, and an intermediate lens group having positive refractive power. Consists of two lens groups GM2 and a rear lens group GR having a negative refractive power as a whole,
The front lens group GF is composed of one or two lens groups, and includes a vibration reduction lens group with a negative refractive power that corrects image blur by moving in a direction perpendicular to the optical axis,
The first intermediate lens group GM1 is composed of two lens groups with positive refractive power, and has an aperture stop S closest to the image side,
The intermediate two lens group GM2 is one lens group with positive refractive power, and is composed of two or less lenses,
The rear lens group GR is composed of two lens groups with negative refractive power,
During zooming from the wide-angle end to the telephoto end, the first lens group G1 moves toward the object side, the distance between the first lens group G1 and the front lens group GF increases, and the distance between the front lens group GF and the intermediate lens group increases. The distance between the first lens group GM1 decreases, the distance between the first intermediate lens group GM1 and the second intermediate lens group GM2 changes, the distance between the second intermediate lens group GM2 and the rear lens group GR decreases, and further, When the front lens group GF is composed of two lens groups, the distance between the two lens groups in the front lens group GF changes, and the distance between the two lens groups in the middle lens group GM1 changes, the distance between the two lens groups in the rear lens group GR varies,
When focusing from infinity to a short distance, the second intermediate lens group GM2 moves along the optical axis toward the object side,
A variable-magnification imaging optical system having a vibration reduction function, characterized by satisfying the following conditional expression.
(1) 1.20<LT1m2t/f1m2t<1.55
(2) -0.7<fRw/fw<-0.3
however,
LT1m2t: Length from the most object-side surface to the image-side focal point of the combined system from the first lens group G1 to the intermediate two lens group GM2 at the telephoto end and infinity focus state f1m2t: Telephoto end, infinity Focal length fRw of the composite system from the first lens group G1 to the intermediate two lens group GM2 in the focused state: focal length fw of the rear lens group GR at the wide-angle end: wide-angle end, in the infinity focused state Let it be the focal length of the entire system.
前記後側レンズ群GRは、広角端から望遠端への変倍に際して前記後側レンズ群GRのうち物体側のレンズ群は物体側へ移動し、像側の群は像面に対して固定され、以下の条件式を満たすことを特徴とする、請求項1に記載の防振機能を備えた変倍結像光学系。
(3) 0.20<EXPt/LTt<0.40
ただし、
EXPt:望遠端、無限遠合焦状態における射出瞳から像面までの長さ
LTt:望遠端、無限遠合焦状態における光学系の最も物体側の面から像面までの長さ
とする。
In the rear lens group GR, when zooming from the wide-angle end to the telephoto end, the lens group on the object side of the rear lens group GR moves toward the object side, and the group on the image side is fixed with respect to the image plane. 2. A variable-magnification imaging optical system with a vibration reduction function according to claim 1, wherein the following conditional expressions are satisfied: .
(3) 0.20<EXPt/LTt<0.40
however,
EXPt: length from the exit pupil to the image plane at the telephoto end and infinity focus state LTt: length from the most object-side surface of the optical system to the image plane at the telephoto end and infinity focus state.
前記前側レンズ群GFは物体側から順に正の屈折力のGFpレンズ成分、負の屈折力のGFnレンズ成分、負の屈折力の防振レンズ群より構成され、前記GFpレンズ成分と前記GFnレンズ成分は空気間隔をもって隔てられて配置され、前記GFpレンズ成分及び前記GFnレンズ成分は内部に空気間隔を含まず、以下の条件式を満たすことを特徴とする請求項1乃至2のいずれかに記載の防振機能を備えた変倍結像光学系。
(4) 0.70<|LTFpnt/fFpnt|<0.95
ただし、
LTFpnt:望遠端における前記GFpレンズ成分と前記GFnレンズ成分の合成系の、最も物体側の面から像側焦点までの長さ
fFpnt:望遠端における前記GFpレンズ成分と前記GFnレンズ成分の合成系の焦点距離
とする。
The front lens group GF comprises, in order from the object side, a GFp lens component with a positive refractive power, a GFn lens component with a negative refractive power, and a vibration reduction lens group with a negative refractive power, the GFp lens component and the GFn lens component. are separated by an air gap, and the GFp lens component and the GFn lens component do not include an air gap inside and satisfy the following conditional expression: Variable magnification imaging optical system with anti-vibration function.
(4) 0.70<|LTFpnt/fFpnt|<0.95
however,
LTFpnt: Length from the most object-side surface to the image-side focal point of the composite system of the GFp lens component and the GFn lens component at the telephoto end fFpnt: Length of the composite system of the GFp lens component and the GFn lens component at the telephoto end Let it be the focal length.
前記前側レンズ群GFのうち少なくとも一部は広角端から望遠端への変倍に際して像面に対して固定されていることを特徴とする請求項1乃至3のいずれかに記載の防振機能を備えた変倍結像光学系。 4. The anti-vibration function according to any one of claims 1 to 3, wherein at least part of said front lens group GF is fixed with respect to an image plane during zooming from the wide-angle end to the telephoto end. variable magnification imaging optical system.
JP2019128862A 2019-07-11 2019-07-11 Variable-magnification imaging optical system with anti-vibration function Active JP7270970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019128862A JP7270970B2 (en) 2019-07-11 2019-07-11 Variable-magnification imaging optical system with anti-vibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128862A JP7270970B2 (en) 2019-07-11 2019-07-11 Variable-magnification imaging optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JP2021015167A JP2021015167A (en) 2021-02-12
JP7270970B2 true JP7270970B2 (en) 2023-05-11

Family

ID=74531453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128862A Active JP7270970B2 (en) 2019-07-11 2019-07-11 Variable-magnification imaging optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP7270970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092636A (en) * 2019-12-10 2021-06-17 株式会社シグマ Variable magnification image-formation optical system equipped with anti-tremor function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7301657B2 (en) * 2019-07-25 2023-07-03 キヤノン株式会社 Zoom lens and imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294304A (en) 2008-06-03 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
WO2017094662A1 (en) 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JP2017223778A (en) 2016-06-14 2017-12-21 株式会社シグマ Zoom imaging optical system with anti-shake capability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560815B2 (en) * 1988-12-22 1996-12-04 キヤノン株式会社 Compact zoom lens
JPH03136014A (en) * 1989-10-23 1991-06-10 Nikon Corp Telephoto zoom lens
JPH09133865A (en) * 1996-09-12 1997-05-20 Nikon Corp Telephoto zoom lens
JP6492517B2 (en) * 2014-10-15 2019-04-03 株式会社シグマ Variable magnification imaging optical system with anti-vibration function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294304A (en) 2008-06-03 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
WO2017094662A1 (en) 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
CN108369327A (en) 2015-11-30 2018-08-03 株式会社尼康 The manufacturing method of variable-power optical system, optical device and variable-power optical system
US20180341092A1 (en) 2015-11-30 2018-11-29 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP2017223778A (en) 2016-06-14 2017-12-21 株式会社シグマ Zoom imaging optical system with anti-shake capability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092636A (en) * 2019-12-10 2021-06-17 株式会社シグマ Variable magnification image-formation optical system equipped with anti-tremor function
JP7350311B2 (en) 2019-12-10 2023-09-26 株式会社シグマ Variable magnification imaging optical system with anti-shake function

Also Published As

Publication number Publication date
JP2021015167A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP5046747B2 (en) Zoom lens and imaging apparatus having the same
JP5344549B2 (en) Zoom lens and imaging apparatus having the same
JP5125009B2 (en) Zoom lens, imaging device, zoom lens vibration isolation method, zoom lens zoom method
JP6153310B2 (en) Zoom lens and imaging apparatus having the same
JP5414205B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP5582303B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5274265B2 (en) Zoom lens and imaging apparatus having the same
JP2006285019A (en) Zoom lens and imaging apparatus equipped with the same
JP2006039531A (en) Zoom lens and imaging apparatus equipped with the same
JP2009014766A (en) Variable power optical system, optical apparatus, and power changing method for variable power optical system
JP2009042269A (en) Zoom lens and imaging apparatus having the same
US8953251B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
JP2007322636A (en) Zoom lens and imaging apparatus having the same
JP2007033553A (en) Zoom lens and imaging apparatus having the same
JP2013003240A (en) Zoom lens and imaging apparatus with the same
JP2013003240A5 (en)
JP2018097134A (en) Zoom lens and imaging apparatus having the same
JP5213727B2 (en) Zoom lens and imaging apparatus having the same
JP2006189627A (en) Zoom lens and imaging apparatus having the same
JP5660311B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5599022B2 (en) Zoom lens and imaging apparatus having the same
JP7270970B2 (en) Variable-magnification imaging optical system with anti-vibration function
JP2010237456A (en) Zoom lens and image pickup device incorporating the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7270970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150