JP7267480B2 - Electrode manufacturing equipment - Google Patents

Electrode manufacturing equipment Download PDF

Info

Publication number
JP7267480B2
JP7267480B2 JP2022045693A JP2022045693A JP7267480B2 JP 7267480 B2 JP7267480 B2 JP 7267480B2 JP 2022045693 A JP2022045693 A JP 2022045693A JP 2022045693 A JP2022045693 A JP 2022045693A JP 7267480 B2 JP7267480 B2 JP 7267480B2
Authority
JP
Japan
Prior art keywords
electrode body
work
section
stacking table
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022045693A
Other languages
Japanese (ja)
Other versions
JP2022170683A (en
Inventor
健一 柿下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to US17/719,370 priority Critical patent/US20220352538A1/en
Priority to CN202210444614.3A priority patent/CN115249783A/en
Publication of JP2022170683A publication Critical patent/JP2022170683A/en
Application granted granted Critical
Publication of JP7267480B2 publication Critical patent/JP7267480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、複数のワークを積み重ねてなる積層型電極体を製造する電極体製造装置に関する。 The present invention relates to an electrode assembly manufacturing apparatus for manufacturing a laminated electrode assembly by stacking a plurality of works.

電池やキャパシタを構成する電極体として、複数の電極板が積層された積層型電極体が知られている。一例としては、複数の矩形状の正極板と複数の矩形状の負極板とが、矩形状のセパレータを介して交互に積層された積層型電極体がある。また、このような積層型電極体を形成するための電極体製造装置も知られており、例えば特許文献1に開示されている。 2. Description of the Related Art Laminated electrode bodies in which a plurality of electrode plates are laminated are known as electrode bodies constituting batteries and capacitors. One example is a laminated electrode body in which a plurality of rectangular positive electrode plates and a plurality of rectangular negative electrode plates are alternately laminated with rectangular separators interposed therebetween. An electrode body manufacturing apparatus for forming such a laminated electrode body is also known, and is disclosed in Patent Document 1, for example.

特許文献1の電極体製造装置(特許文献1では「電池材料積層装置」)は、ワークを搬送する「搬送機構」と、「回転体」と、回転体の周縁部に設けられ回転体と共に回転移動する複数の「保持部」と、所定の位置に配置された「積層テーブル」とを備える(特許文献1の図1、請求項1,2等を参照)。この装置では、まずワークを搬送機構から、回転体の周縁部に設けられた保持部に移載した上で、回転体を半回転させて、この保持部を所定の位置に配置された積層テーブルの近傍まで移動させる。そして、保持部を積層テーブルに対して一時的に停止させて、ワークを保持部から積層テーブルに移載する。この動作を繰り返して、積層テーブル上に複数のワークを積み重ねて積層型電極体を形成する。 The electrode body manufacturing apparatus of Patent Document 1 (“battery material stacking device” in Patent Document 1) includes a “transport mechanism” that transports a work, a “rotating body”, and a rotating body that is provided on the periphery of the rotating body and rotates together with the rotating body. It has a plurality of moving "holding parts" and a "stacking table" arranged at a predetermined position (see FIG. 1, claims 1 and 2, etc. of Patent Document 1). In this device, the workpiece is first transferred from the transport mechanism to a holding section provided on the periphery of the rotating body, then the rotating body is rotated halfway, and the holding section is placed at a predetermined position on the stacking table. Move to the vicinity of Then, the holding part is temporarily stopped with respect to the stacking table, and the work is transferred from the holding part to the stacking table. This operation is repeated to stack a plurality of works on the lamination table to form a laminated electrode assembly.

特開2019-200926号公報JP 2019-200926 A

しかしながら、上述の装置では、保持部は回転体と共に回転移動するのに対し、積層テーブルは所定の位置に配置されているため、回転体と共に回転移動していた保持部を、ワークを保持部から積層テーブルに移載する際に、回転体に対して移動させて、保持部及びこれに保持されたワークを一時的に停止させている。このため、適切にワークを保持部から積層テーブルに移し、適切にワークを積み重ねて積層型電極体を形成するのが難しい。特に積層型電極体の生産性を高めるべく、回転体の回転速度を上げるほど、高速で回転移動する保持部を急に停止させることになるため、適切にワークを保持部から積層テーブルに移し、適切にワークを積み重ねて積層型電極体を形成するのが難しくなる。 However, in the above-described apparatus, the holder rotates together with the rotating body, whereas the stacking table is arranged at a predetermined position. When transferring to the stacking table, the holder and the work held by it are temporarily stopped by moving with respect to the rotating body. For this reason, it is difficult to properly transfer the work from the holding section to the lamination table and stack the work appropriately to form the laminated electrode assembly. In particular, in order to increase the productivity of the laminated electrode body, the higher the rotation speed of the rotating body, the more rapidly the holding section, which rotates and moves at high speed, is stopped. It becomes difficult to properly stack the workpieces to form the laminated electrode assembly.

本発明は、かかる現状に鑑みてなされたものであって、適切にワークを積み重ねて積層型電極体を製造できる電極体製造装置を提供するものである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrode assembly manufacturing apparatus capable of appropriately stacking workpieces to manufacture a laminated electrode assembly.

上記課題を解決するための本発明の一態様は、複数のワークを積み重ねた積層型電極体を製造する電極体製造装置であって、回転軸を中心に回転する円筒状の回転基体と、上記回転基体の外周縁部に設けられ、上記回転基体と共に回転移動する複数の積重ねテーブル部と、保持している未載置ワークを、上記積重ねテーブル部のテーブル面又は上記テーブル面上の既に載置された既載置積層体の径方向外側面である被載置面上に移載するワーク移載部と、を備え、上記積重ねテーブル部は、上記テーブル面の径方向高さHtを変更する高さ変更部を有し、上記高さ変更部は、少なくとも、上記未載置ワークを上記ワーク移載部から上記積重ねテーブル部に移載するワーク移載角度位置では、上記被載置面の径方向高さHsが、予め定めた径方向高さHsc(Hs=Hsc)になるように、上記テーブル面の上記径方向高さHtを変更し、上記ワーク移載部は、上記ワーク移載角度位置における上記被載置面の回転移動に同期して、上記未載置ワークを移動させつつ上記被載置面に載せる電極体製造装置である。 One aspect of the present invention for solving the above-mentioned problems is an electrode body manufacturing apparatus for manufacturing a laminated electrode body in which a plurality of works are stacked, comprising: a cylindrical rotating base that rotates about a rotating shaft; A plurality of stacking table units provided on the outer peripheral edge of the rotating base and rotating and moving together with the rotating base, and a table surface of the stacking table unit or already placed on the table surface. a work transfer section for transferring onto a mounting surface that is a radial outer surface of the already-mounted stacked body, and the stacking table section changes a radial height Ht of the table surface. A height changing section is provided, and the height changing section is configured such that at least at a work transfer angular position at which the unmounted work is transferred from the work transfer section to the stacking table section, the height of the mounting surface is increased. The radial height Ht of the table surface is changed so that the radial height Hs becomes a predetermined radial height Hsc (Hs=Hsc), and the work transfer section moves the work transfer In the electrode body manufacturing apparatus, the unmounted workpiece is placed on the mounting surface while being moved in synchronism with the rotational movement of the mounting surface at the angular position.

上述の電極体製造装置では、積重ねテーブル部を回転基体の外周縁部に設けている。この積重ねテーブル部は、テーブル面の径方向高さHtを変更する高さ変更部を有しており、高さ変更部は、少なくともワーク移載角度位置において、既載置積層体等の被載置面の径方向高さHsが予め定めた径方向高さHscになるように、テーブル面の径方向高さHtを変更する。これにより、回転基体が1回転する毎に、未載置ワークを1個ずつワーク移載部から積重ねテーブル部に移載できるため、回転基体を所定回転(n回転)させることで、所定数(n)の既載置ワークからなる積層型電極体を容易に形成できる。
更に、上述の電極体製造装置では、ワーク移載角度位置における既載置積層体等の被載置面の回転移動に同期して、未載置ワークを移動させつつ被載置面に載せるため、積重ねテーブル部において、適切に未載置ワークを積み重ねて積層型電極体を製造できる。
In the electrode body manufacturing apparatus described above, the stacking table section is provided on the outer peripheral edge of the rotary base. This stacking table section has a height changing section for changing the radial height Ht of the table surface, and the height changing section changes the position of the already-mounted stack or the like at least at the workpiece transfer angular position. The radial height Ht of the table surface is changed so that the radial height Hs of the mounting surface becomes the predetermined radial height Hsc. As a result, each time the rotating base rotates, the unmounted workpieces can be transferred one by one from the workpiece transferring section to the stacking table. n) can easily form a laminated electrode body consisting of the pre-mounted work.
Furthermore, in the above-described electrode body manufacturing apparatus, in synchronism with the rotational movement of the mounting surface such as the already-mounted laminate at the workpiece transfer angular position, the unmounted work is moved and placed on the mounting surface. In the stacking table section, unmounted workpieces can be appropriately stacked to manufacture a stacked electrode body.

なお、「積層型電極体」は、リチウムイオン二次電池などの二次電池や、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電デバイスを構成する電極体である。積層型電極体としては、例えば、複数の正極板と複数の負極板とがセパレータや固体電解質層を介して交互に積層された積層型電極体や、複数の両極電極板(集電箔の一方の主面上に正極活物質層が形成され、他方の主面上に負極活物質層が形成された電極板)がセパレータや固体電解質層を介して積層された積層型電極体などが挙げられる。 The “laminated electrode body” is an electrode body that constitutes a secondary battery such as a lithium ion secondary battery, an electric storage device such as an electric double layer capacitor, a lithium ion capacitor, and the like. As the laminated electrode body, for example, a laminated electrode body in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately laminated via a separator or a solid electrolyte layer, or a plurality of bipolar electrode plates (one side of the current collector foil A layered electrode body in which a positive electrode active material layer is formed on one main surface and a negative electrode active material layer is formed on the other main surface) is laminated via a separator or a solid electrolyte layer. .

「ワーク」としては、例えば、1枚の電極板或いは1枚のセパレータや固体電解質層からなるワークや、正極板、セパレータ(又は固体電解質層)、負極板及びセパレータ(又は固体電解質層)がこの順で予め積層され一体化された、いわゆるモノセルからなるワーク、セパレータ(又は固体電解質層)、電極板及びセパレータ(又は固体電解質層)がこの順で予め積層され一体化されたセパレータ付き電極板(固体電解質層付き電極板)からなるワークなどが挙げられる。また、ワークは、相互に同一形態でなくてもよい。例えば、積層型電極体の積層方向の一端部をなすワーク或いは他端部をなすワークを、これら以外の積層方向の中間部をなすワークと異なる形態としてもよい。 The "work" includes, for example, one electrode plate, a work consisting of one separator or a solid electrolyte layer, a positive electrode plate, a separator (or a solid electrolyte layer), a negative electrode plate and a separator (or a solid electrolyte layer). A workpiece consisting of a so-called monocell, which is preliminarily laminated and integrated in order, a separator (or solid electrolyte layer), an electrode plate, and an electrode plate with separator (or solid electrolyte layer) preliminarily laminated and integrated in this order ( (electrode plate with solid electrolyte layer). Also, the workpieces do not have to have the same form. For example, the work forming one end or the other end of the laminated electrode body may have a different shape from the work forming the intermediate portion in the stacking direction.

積重ねテーブル部において、テーブル面に載置した既載置積層体を保持する手法としては、例えば、既載置積層体を吸引によりテーブル面に吸着し保持する手法が挙げられる。なお、この手法を用いる場合には、既載置積層体を構成する既載置ワーク同士は、例えば接着剤で接着して一体化すると良い。即ち、新たに積み重ねる未載置ワークに、或いは、既載置積層体の径方向外側面(被載置面)に予め接着剤を塗布しておき、未載置ワークを既載置積層体に積み重ねると共に、未載置ワークを既載置積層体に接着すると良い。
また、回転基体の回転速度は、定速とすると回転エネルギーの増減を少なく出来て好ましいが、回転速度を変化させるようにしても良い。
In the stacking table section, as a method for holding the already-placed laminate placed on the table surface, for example, there is a method of holding the already-placed laminate by suction on the table surface. In the case of using this technique, it is preferable that the pre-mounted works constituting the pre-mounted laminated body are integrated by bonding with an adhesive, for example. That is, an adhesive agent is applied in advance to an unmounted workpiece to be newly stacked or to the radial outer surface (surface to be mounted) of the already mounted laminate, and the unmounted workpiece is attached to the already mounted laminate. It is preferable to bond the non-mounted work to the already-mounted laminate while stacking.
Further, it is preferable to keep the rotational speed of the rotary base constant so that fluctuations in rotational energy can be minimized, but the rotational speed may be varied.

また、テーブル面上に載置した既載置積層体の径方向外側面を、複数の爪などの係合部材で係合して径方向内側に向けて引っ張ることにより、既載置積層体をテーブル面に保持する手法も挙げられる。
また、テーブル面上の既載置積層体を、ベルトで径方向内側のテーブル面に押し付けつつ、既載置積層体の回転移動と共にベルトを一緒に移動させることにより、既載置積層体をテーブル面に保持する手法も挙げられる。
これらの手法では、既載置積層体を構成する既載置ワーク同士を接着して一体化しなくてもよいが、接着によって既載置ワーク同士を一体化してもよい。
In addition, by engaging the radially outer surface of the already-placed laminate placed on the table surface with engaging members such as a plurality of claws and pulling the already-placed laminate inward in the radial direction, the already-placed laminate is pulled. A method of holding on a table surface is also available.
In addition, while pressing the already-placed laminate on the table surface against the radially inner table surface with a belt, the already-placed laminate is rotated and moved together with the belt to move the already-placed laminate to the table surface. A method of holding on a surface is also available.
In these methods, it is not necessary to bond and integrate the already-mounted works constituting the already-mounted laminate, but the already-mounted works may be integrated by bonding.

更に、上記の電極体製造装置であって、完成した前記積層型電極体を前記積重ねテーブル部から移載する電極体移載部を備え、上記電極体移載部は、上記積層型電極体を受け取る電極体受取部を有しており、上記積層型電極体を上記積重ねテーブル部から上記電極体受取部に移載する電極体移載角度位置で、かつ、上記積層型電極体を排出する排出タイミングに、上記積重ねテーブル部から分離された上記積層型電極体を、上記積層型電極体の径方向外側頂面の回転移動と等速で上記電極体受取部を移動させつつ受け取る電極体製造装置とすると良い。 The electrode assembly manufacturing apparatus further includes an electrode assembly transfer unit for transferring the completed laminated electrode assembly from the stacking table unit, wherein the electrode assembly transfer unit transfers the laminated electrode assembly. an electrode body receiving portion for receiving the stacked electrode body, and at an electrode body transfer angular position for transferring the stacked electrode body from the stacking table portion to the electrode body receiving portion, and for discharging the stacked electrode body. The electrode body manufacturing apparatus receives the stacked electrode body separated from the stacking table part at the timing while moving the electrode body receiving part at the same speed as the rotational movement of the radially outer top surface of the stacked electrode body. It is good to say

上述の電極体製造装置では、電極体受取部を有する電極体移載部を更に備えており、上述の電極体移載角度位置でかつ排出タイミングに、積重ねテーブル部から分離された積層型電極体を、積層型電極体の径方向外側頂面の回転移動と等速で電極体受取部を移動させつつ受け取る。このようにすることで、積層型電極体を少ない衝撃でスムーズに電極体受取部に移載して、適切に装置外部に排出できる。 The above-described electrode body manufacturing apparatus further includes an electrode body transfer section having an electrode body receiving section, and the laminated electrode body separated from the stacking table section at the above-described electrode body transfer angular position and at the discharge timing. is received while moving the electrode body receiving portion at the same speed as the rotational movement of the radially outer top surface of the laminated electrode body. By doing so, the laminated electrode body can be smoothly transferred to the electrode body receiving portion with little impact and can be appropriately discharged to the outside of the device.

なお、積重ねテーブル部から積層型電極体を分離する手法としては、例えば、積層型電極体を吸引によりテーブル面に吸着保持している場合には、その吸引を解除して積層型電極体を分離する手法が挙げられる。
また、積層型電極体を係合部材で係合して径方向内側のテーブル面に向けて引っ張って保持している場合には、この係合部材による係合を解除して積層型電極体を分離する手法が挙げられる。
また、積層型電極体をベルトで径方向内側のテーブル面に押し付けて保持している場合には、このベルトを移動させてベルトによる押し付けを解除することにより、積層型電極体を分離する手法が挙げられる。
「電極体受取部」としては、例えば、複数の搬送ローラに架け渡した搬送ベルトや、積層型電極体を把持可能に構成したロボットアームの先端部などが挙げられる。
As a method for separating the stacked electrode assembly from the stacking table section, for example, when the stacked electrode assembly is held on the table surface by suction, the suction is released to separate the stacked electrode assembly. There is a method to
Further, when the laminated electrode body is engaged with the engaging member and pulled toward the radially inner table surface and held, the engagement by the engaging member is released to remove the laminated electrode body. There is a method of separating.
Further, when the laminated electrode body is held by being pressed against the radially inner table surface by a belt, there is a method of separating the laminated electrode body by moving the belt to release the pressing by the belt. mentioned.
Examples of the "electrode receiving section" include a conveying belt stretched over a plurality of conveying rollers, and a tip of a robot arm capable of gripping the laminated electrode.

実施形態に係る積層型電極体の断面図である。1 is a cross-sectional view of a laminated electrode body according to an embodiment; FIG. 実施形態に係る積層型電極体の製造方法のフローチャートである。4 is a flow chart of a method for manufacturing a laminated electrode assembly according to an embodiment; 実施形態に係る電極体製造装置の説明図である。1 is an explanatory diagram of an electrode assembly manufacturing apparatus according to an embodiment; FIG. 実施形態に係り、積重ねテーブル部の説明図である。It is an explanatory view of a stacking table unit according to the embodiment. 実施形態に係り、第5積重ねテーブル部に1段目用の未載置ワークを移載した様子を示す説明図である。FIG. 11 is an explanatory diagram showing a state in which an unplaced work for the first stage is transferred to the fifth stacking table section according to the embodiment; 実施形態に係り、第2積重ねテーブル部から、完成した積層型電極体を移載する様子を示す説明図である。FIG. 10 is an explanatory view showing how the completed stacked electrode body is transferred from the second stacking table section according to the embodiment;

(実施形態)
以下、本発明の実施形態を、図面を参照しつつ説明する。図1に本実施形態に係る積層型電極体1の模式的な断面図を示す。なお、以下では、積層型電極体1の縦方向EH、横方向FH及び厚み方向(積層方向)GHを、図1に示す方向と定めて説明する。この積層型電極体1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池(図示しない)に用いられる。
(embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic cross-sectional view of a laminated electrode body 1 according to this embodiment. In the following description, the vertical direction EH, the horizontal direction FH, and the thickness direction (stacking direction) GH of the multilayer electrode body 1 are defined as the directions shown in FIG. This laminated electrode body 1 is used in a prismatic sealed lithium-ion secondary battery (not shown) mounted in a vehicle such as a hybrid car, a plug-in hybrid car, an electric car, or the like.

積層型電極体1は、複数の矩形状の正極板(電極板)11と、複数の矩形状の負極板(電極板)21とが、多孔質樹脂膜からなる矩形状のセパレータ31を介して交互に積層された電極体であり、直方体形状を有する。この積層型電極体1は、後述するように、ワーク10を厚み方向GHに複数段(本実施形態では、段数n=10段)積み重ねると共に、隣り合うワーク10同士を第1接着層41を介して一体化したものである。 The laminated electrode body 1 includes a plurality of rectangular positive electrode plates (electrode plates) 11 and a plurality of rectangular negative electrode plates (electrode plates) 21 interposed between rectangular separators 31 made of porous resin films. It is an electrode body laminated alternately and has a rectangular parallelepiped shape. As will be described later, the laminated electrode body 1 is formed by stacking the works 10 in a plurality of stages (the number of stages n=10 in this embodiment) in the thickness direction GH and connecting the adjacent works 10 with the first adhesive layer 41 interposed therebetween. It is an integrated one.

段数n=10段の積層型電極体1を構成する10個のワーク10のうち、図1中、最上段に位置する第2ワーク10Bを除く、残り9個の第1ワーク10Aは、それぞれモノセルであり、正極板11、セパレータ31、負極板21及びセパレータ31を、この順に第2接着層42を介して積層し一体化したワークである。一方、最上段の第2ワーク10Bは、セパレータ付き負極板であり、負極板21の両主面にそれぞれ第3接着層43を介してセパレータ31を積層し一体化したワークである。 Of the 10 works 10 constituting the laminated electrode body 1 with the number of stages n=10, the remaining 9 first works 10A except for the second work 10B positioned at the top in FIG. , and is a workpiece in which the positive electrode plate 11, the separator 31, the negative electrode plate 21, and the separator 31 are stacked in this order with the second adhesive layer 42 interposed therebetween and integrated. On the other hand, the uppermost second work 10B is a negative electrode plate with a separator, and is a work in which the separators 31 are laminated on both main surfaces of the negative electrode plate 21 via the third adhesive layers 43 and integrated.

正極板11は、矩形状のアルミニウム箔からなる正極集電箔12と、この正極集電箔12の両主面上にそれぞれ形成された正極活物質層13とからなる。正極活物質層13は、リチウムイオンを吸蔵及び放出可能な正極活物質粒子と、導電粒子と、結着剤とから構成されている。正極板11のうち、横方向FHの一方側(図1中、左方)で縦方向EH(図1中、紙面に直交する方向)に延びる端部は、厚み方向GHに正極活物質層13が存在せず、正極集電箔12が厚み方向GHに露出した正極露出部11rとなっている。 The positive electrode plate 11 includes a positive current collector foil 12 made of rectangular aluminum foil and positive electrode active material layers 13 formed on both main surfaces of the positive current collector foil 12 . The positive electrode active material layer 13 is composed of positive electrode active material particles capable of intercalating and deintercalating lithium ions, conductive particles, and a binder. One side (left side in FIG. 1) of the positive electrode plate 11 extending in the vertical direction EH (the direction orthogonal to the paper surface in FIG. 1) on one side (left side in FIG. 1) extends in the thickness direction GH. is not present, and the positive electrode collector foil 12 is exposed in the thickness direction GH to form a positive electrode exposed portion 11r.

負極板21は、矩形状の銅箔からなる負極集電箔22と、この負極集電箔22の両主面上にそれぞれ形成された負極活物質層23とからなる。負極活物質層23は、リチウムイオンを吸蔵及び放出可能な負極活物質粒子と、結着剤とから構成されている。負極板21のうち、横方向FHの他方側(図1中、右方)で縦方向EHに延びる端部は、厚み方向GHに負極活物質層23が存在せず、負極集電箔22が厚み方向GHに露出した負極露出部21rとなっている。 The negative electrode plate 21 is composed of a rectangular negative collector foil 22 made of copper foil and negative active material layers 23 formed on both main surfaces of the negative collector foil 22 . The negative electrode active material layer 23 is composed of negative electrode active material particles capable of intercalating and deintercalating lithium ions and a binder. At the end of the negative electrode plate 21 extending in the vertical direction EH on the other side in the horizontal direction FH (the right side in FIG. 1), the negative electrode active material layer 23 does not exist in the thickness direction GH, and the negative electrode current collector foil 22 does not exist. The negative electrode exposed portion 21r is exposed in the thickness direction GH.

次いで、上記の積層型電極体1の製造方法について説明する(図2~図6参照)。まず「ワーク作製工程S1」(図2参照)において、ワーク10を作製する。
まず正極板11及び負極板21を作製する。即ち、正極活物質粒子、導電粒子、結着剤及び分散媒を混合して得た正極活物質ペーストを、正極集電箔12の一方の主面上に塗布して未乾燥正極活物質層(不図示)を形成し、その後、これを加熱乾燥させて正極活物質層13を形成する。また、正極集電箔12の他方の主面上にも、同様にして正極活物質層13を形成する。その後、ロールプレスにより正極活物質層13を圧密化して、正極板11を作製する。また、負極活物質粒子、結着剤及び分散媒を混合して得た負極活物質ペーストを、負極集電箔22の一方の主面上に塗布して未乾燥負極活物質層(不図示)を形成し、その後、これを加熱乾燥させて負極活物質層23を形成する。また、負極集電箔22の他方の主面上にも、同様にして負極活物質層23を形成する。その後、ロールプレスにより負極活物質層23を圧密化して、負極板21を作製する。また別途、セパレータ31を用意する。
Next, a method for manufacturing the laminated electrode assembly 1 will be described (see FIGS. 2 to 6). First, in a "workpiece production step S1" (see FIG. 2), a work piece 10 is produced.
First, the positive electrode plate 11 and the negative electrode plate 21 are produced. That is, a positive electrode active material paste obtained by mixing positive electrode active material particles, conductive particles, a binder, and a dispersion medium is applied on one main surface of the positive electrode current collector foil 12 to form an undried positive electrode active material layer ( (not shown) is formed, and then dried by heating to form the positive electrode active material layer 13 . Also, on the other main surface of the positive electrode collector foil 12, the positive electrode active material layer 13 is formed in the same manner. Thereafter, the positive electrode active material layer 13 is densified by roll pressing to fabricate the positive electrode plate 11 . Further, a negative electrode active material paste obtained by mixing negative electrode active material particles, a binder and a dispersion medium is applied on one main surface of the negative electrode current collector foil 22 to form an undried negative electrode active material layer (not shown). is formed, and then dried by heating to form the negative electrode active material layer 23 . Also, the negative electrode active material layer 23 is formed in the same manner on the other main surface of the negative electrode current collector foil 22 . Thereafter, the negative electrode active material layer 23 is densified by roll pressing to fabricate the negative electrode plate 21 . Separately, a separator 31 is prepared.

次に、第1ワーク10A(モノセル)については、正極板11、セパレータ31、負極板21及びセパレータ31を、この順に第2接着層42を介して積層し一体化して形成する。一方、第2ワーク10B(セパレータ付き負極板)については、セパレータ31、負極板21及びセパレータ31を、この順に第3接着層43を介して積層し一体化して形成する。 Next, for the first workpiece 10A (monocell), the positive electrode plate 11, the separator 31, the negative electrode plate 21, and the separator 31 are laminated in this order with the second adhesive layer 42 interposed therebetween to form an integrated structure. On the other hand, the second workpiece 10B (negative electrode plate with separator) is formed by laminating the separator 31, the negative electrode plate 21 and the separator 31 in this order with the third adhesive layer 43 interposed therebetween and integrating them.

その後「ワーク移載工程S2」、「判定工程S3」及び「電極体移載工程S4」(図2参照)を行う。このワーク移載工程S2から電極体移載工程S4までは、電極体製造装置100(図3~図6参照)を用いて行う。この電極体製造装置100は、円筒状の回転基体110と、回転基体110の外周縁部110sに設けられ、回転基体110と共に回転移動する複数(本実施形態では8個)の積重ねテーブル部120と、未載置ワーク10Pを積重ねテーブル部120に移載するワーク移載部140と、未載置ワーク10Pに接着剤41Zを塗布する接着剤塗布部160と、完成した積層型電極体1を積重ねテーブル部120から移載する電極体移載部170と、制御部190とを備える。なお、未載置ワークとは、後述する被載置面hsmに載置される予定のワークをいう。 After that, "work transfer step S2", "judgment step S3" and "electrode body transfer step S4" (see FIG. 2) are performed. The work transfer step S2 to the electrode body transfer step S4 are performed using the electrode body manufacturing apparatus 100 (see FIGS. 3 to 6). This electrode body manufacturing apparatus 100 comprises a cylindrical rotating base 110, and a plurality of (eight in this embodiment) stacking table portions 120 provided on an outer peripheral edge portion 110s of the rotating base 110 and rotating together with the rotating base 110. , a work transfer section 140 that transfers the unmounted work 10P to the stacking table section 120, an adhesive application section 160 that applies an adhesive 41Z to the unmounted work 10P, and the completed laminated electrode body 1 is stacked. An electrode body transfer section 170 for transferring from the table section 120 and a control section 190 are provided. Note that an unmounted work is a work to be mounted on a mounting surface hsm, which will be described later.

このうち回転基体110は、モータ(不図示)に接続された回転軸111を有し、この回転軸111を中心に定速(一定の角速度ω)で図3中、反時計回りに回転する。
積重ねテーブル部120(第1積重ねテーブル部120A~第8積重ねテーブル部120H)は(図4も参照)、矩形状のテーブル面121mを含む矩形板状の吸着テーブル121と、この吸着テーブル121を回転基体110の径方向RHに移動させて、テーブル面121mの径方向高さHt(回転基体110の外周縁部110sからの径方向高さHt)を変更する高さ変更部123とを有する。このうち吸着テーブル121は、吸引機構122を有しており、吸引により既載置積層体5をテーブル面121mに吸着可能に構成されている。
Among them, the rotating base 110 has a rotating shaft 111 connected to a motor (not shown), and rotates counterclockwise in FIG.
The stacking table section 120 (first stacking table section 120A to eighth stacking table section 120H) (see also FIG. 4) includes a rectangular plate-shaped suction table 121 including a rectangular table surface 121m, and this suction table 121 rotates. and a height changing portion 123 that moves the base 110 in the radial direction RH to change the radial height Ht of the table surface 121m (the radial height Ht from the outer peripheral edge portion 110s of the rotary base 110). Among them, the suction table 121 has a suction mechanism 122, and is configured to be able to suck the already placed laminate 5 onto the table surface 121m by suction.

一方、高さ変更部123は、吸着テーブル121に接続されたXリンク機構124と、Xリンク機構124を径方向RHに動かすサーボモータ125と、(既載置積層体5が載置されていない)積重ねテーブル部120のテーブル面121m又はテーブル面121m上の既に載置された既載置積層体5の径方向外側面5mである被載置面hsm(以下、既載置積層体5等の被載置面hsm、或いは単に、被載置面hsmともいう)の径方向高さHs(回転基体110の外周縁部110sからの径方向高さHs)を検知する高さ検知センサ126と、高さ検知センサ126の情報に基づいてサーボモータ125を制御する制御部190とから構成されている。具体的には、高さ検知センサ126は、回転基体110の回転軸111に対し、図3中、右方(時計の3時の角度位置)に設置されており、回転基体110と共に回転移動する積重ねテーブル部120が、3時の角度位置を通過する際に、既載置積層体5等の被載置面hsmの径方向高さHsを検知する。 On the other hand, the height changer 123 includes an X link mechanism 124 connected to the suction table 121, a servomotor 125 that moves the X link mechanism 124 in the radial direction RH, ) The mounting surface hsm (hereinafter referred to as the table surface 121m of the stacking table unit 120 or the radially outer surface 5m of the already-mounted laminate 5 already mounted on the table surface 121m (hereinafter referred to as the already-mounted laminate 5, etc.) a height detection sensor 126 for detecting the radial height Hs of the mounting surface hsm (or simply referred to as the mounting surface hsm) (the radial height Hs from the outer peripheral edge portion 110s of the rotary base 110); and a control unit 190 that controls the servo motor 125 based on information from the height detection sensor 126 . Specifically, the height detection sensor 126 is installed on the right side in FIG. When the stacking table section 120 passes the 3 o'clock angular position, the radial height Hs of the mounting surface hsm of the already mounted stacked body 5 or the like is detected.

そしてその後、この積重ねテーブル部120が、回転軸111に対しワーク移載角度位置θw(本実施形態では、図3中、最上位置(時計の12時の角度位置))に達するまでの間(本実施形態では、90度回転する間)に、制御部190は、高さ検知センサ126の情報に基づいてサーボモータ125を駆動制御し、既載置積層体5等の被載置面hsmの径方向高さHsが、予め定めた径方向高さHsc(Hs=Hsc)になるように、テーブル面121mの径方向高さHtを変更する。これにより、積重ねテーブル部120がワーク移載角度位置θwに達するまでには、既載置積層体5等の被載置面hsmの径方向高さHsが予め定めた径方向高さHscにされる。従って、いずれの積重ねテーブル部120(120A~120H)でも、また、テーブル面121mにワーク10を何段積み重ねても、ワーク移載角度位置θwにおける、(新たな未載置ワーク10P移載前の)既載置積層体5等の被載置面hsmの周速(移動速度V2)は同じにされる。 After that, until the stacking table unit 120 reaches the workpiece transfer angular position θw (in this embodiment, the uppermost position in FIG. In the embodiment, while rotating 90 degrees), the control unit 190 drives and controls the servomotor 125 based on the information from the height detection sensor 126 to change the diameter of the mounting surface hsm of the already mounted laminate 5 or the like. The radial height Ht of the table surface 121m is changed so that the directional height Hs becomes a predetermined radial height Hsc (Hs=Hsc). As a result, the radial height Hs of the mounting surface hsm of the already mounted laminate 5 or the like is set to the predetermined radial height Hsc by the time the stacking table section 120 reaches the workpiece transfer angular position θw. be. Therefore, in any of the stacking table units 120 (120A to 120H), and no matter how many stages the workpieces 10 are stacked on the table surface 121m, at the workpiece transfer angular position θw (before the transfer of the new unmounted workpiece 10P) ) The peripheral speed (moving speed V2) of the mounting surface hsm of the already-mounted laminate 5 or the like is set to be the same.

なお、図4では、3段目用のワーク10(未載置ワーク10P)を段数n=2段の既載置積層体5に積み重ねて、段数n=3段の既載置積層体5とした直後の積重ねテーブル部120の状態を示している。この時点での既載置積層体5の被載置面hsmの径方向高さHsは、2つ分の既載置ワーク10Qからなる段数n=2段の既載置積層体5の高さを考慮して高さ制御した径方向高さHscに、新たに積み重ねたワーク10(未載置ワーク10P)の分を加えた高さになっている。 In FIG. 4, the workpiece 10 for the third stage (unmounted workpiece 10P) is stacked on the already-placed laminate 5 with the number of stages n=2, and the already-placed laminate 5 with the number of stages n=3. The state of the stacking table section 120 immediately after the stacking is shown. The radial height Hs of the mounting surface hsm of the already-mounted laminate 5 at this time is the height of the already-mounted laminate 5 with the number of stages n=2, which consists of two already-mounted works 10Q. The height of the newly stacked work 10 (unmounted work 10P) is added to the radial height Hsc that is height-controlled in consideration of the above.

ワーク移載部140は、ワーク移載角度位置θwにおける、既載置積層体5等の被載置面hsmの回転移動に同期して、未載置ワーク10Pを移動させつつ被載置面hsmに載せる。 The work transfer unit 140 moves the unmounted work 10P while moving the unmounted work 10P in synchronism with the rotational movement of the mounted surface hsm of the already-mounted laminate 5 or the like at the work transfer angular position θw. put it on

まずワーク移載部140による未載置ワーク10Pの搬送について説明する。ワーク移載部140は、複数の搬送ローラ141と、これらの搬送ローラ141に架け渡した、多数の吸引孔を有する吸着ベルト143と、吸引機構144とを有しており、未載置ワーク10Pを吸引機構144の吸引により吸着ベルト143に吸着させつつ搬送速度V1で搬送する。 First, the transport of the unmounted work 10P by the work transfer section 140 will be described. The workpiece transfer unit 140 has a plurality of transport rollers 141, a suction belt 143 having a large number of suction holes and a suction mechanism 144, which are stretched over the transport rollers 141. is adsorbed on the adsorption belt 143 by the suction of the suction mechanism 144 and transported at the transport speed V1.

詳細には、まず吸着ベルト143上に配置された未載置ワーク10Pを、その外側面10Pm(吸着ベルト143に吸着されていない側の主面)を上方に向けた状態で、図3中、右方に搬送速度V1で搬送する。その後、吸着ベルト143を搬送ローラ141で折り返して、未載置ワーク10Pを、外側面10Pmを下方に向けた状態で図3中、左方に搬送速度V1で搬送する。なお、この搬送速度V1は、ワーク移載角度位置θwにおける、既載置積層体5等の被載置面hsmの接線方向の移動速度V2(周速)と同じ速度(V1=V2)にしてある。 Specifically, first, the non-placed work 10P placed on the suction belt 143 is turned upward with its outer surface 10Pm (main surface on the side not being sucked by the suction belt 143), as shown in FIG. The sheet is conveyed rightward at a conveying speed V1. After that, the adsorption belt 143 is folded back by the transport roller 141, and the non-mounted work 10P is transported leftward in FIG. 3 at the transport speed V1 with the outer surface 10Pm facing downward. The transport speed V1 is set to the same speed (V1=V2) as the moving speed V2 (peripheral speed) in the tangential direction of the mounting surface hsm of the already mounted laminate 5 or the like at the workpiece transfer angular position θw. be.

また、ワーク移載部140は、搬送された未載置ワーク10Pがワーク移載角度位置θwに達すると、吸引機構144による吸引が無くなるように構成されている。このため、吸着ベルト143に下方から吸着されていた未載置ワーク10Pは、ワーク移載角度位置θwにおいて、吸着ベルト143から分離される。 Further, the workpiece transfer section 140 is configured such that the suction by the suction mechanism 144 is stopped when the conveyed non-mounted workpiece 10P reaches the workpiece transfer angular position θw. Therefore, the non-mounted work 10P that has been sucked by the suction belt 143 from below is separated from the suction belt 143 at the work transfer angular position θw.

しかも、未載置ワーク10Pがワーク移載角度位置θwに達する搬送のタイミングと、この未載置ワーク10Pを移載する積重ねテーブル部120がワーク移載角度位置θwに達する回転のタイミングとが同期するように、吸着ベルト143上の未載置ワーク10Pの配置(載置位置と載置タイミング)が調整されている。 Moreover, the timing of transport when the non-mounted work 10P reaches the work transfer angular position θw and the timing of rotation when the stacking table section 120 for transferring the non-mounted work 10P reaches the work transfer angular position θw are synchronized. The arrangement (placement position and placement timing) of the non-placed work 10P on the suction belt 143 is adjusted so as to do so.

このため前述したように、ワーク移載角度位置θwにおいて、既載置積層体5等の被載置面hsmの回転移動に同期して、未載置ワーク10Pを移動させつつ被載置面hsmに載せることができる。即ち、(分離された)未載置ワーク10Pを吸着ベルト143から既載置積層体5等の被載置面hsm上に移載し、未載置ワーク10Pの外側面10Pmを被載置面hsmに重ねることができる。 For this reason, as described above, at the workpiece transfer angular position θw, the unmounted workpiece 10P is moved in synchronism with the rotational movement of the mounted surface hsm of the already-mounted laminate 5 and the like. can be placed on That is, the (separated) non-mounted work 10P is transferred from the suction belt 143 onto the mounting surface hsm of the already-mounted laminate 5 or the like, and the outer surface 10Pm of the non-mounted work 10P is placed on the mounting surface. hsm can be overlaid.

接着剤塗布部160は、未載置ワーク10Pの外側面10Pmに接着剤41Zを塗布可能に構成されている。具体的には、接着剤塗布部160は、ワーク移載部140の近傍に設けられており、ワーク移載部140の吸着ベルト143に吸着しつつ、外側面10Pmを下方に向けて図3中、左方に搬送されている未載置ワーク10Pのうち外側面10Pmに、接着剤41Zを塗布する。 The adhesive application unit 160 is configured to be able to apply the adhesive 41Z to the outer surface 10Pm of the non-mounted work 10P. Specifically, the adhesive application unit 160 is provided in the vicinity of the work transfer unit 140, and while being attracted to the suction belt 143 of the work transfer unit 140, the outer surface 10Pm is directed downward in FIG. , the adhesive 41Z is applied to the outer surface 10Pm of the non-mounted work 10P conveyed to the left.

電極体移載部170は、10段のワーク10を積み重ねて完成した積層型電極体1を受け取る搬送ベルト(電極体受取部)173を有する。電極体移載部170は、積層型電極体1を積重ねテーブル部120から移載する電極体移載角度位置θd(本実施形態では、図3中、時計の6時の角度位置)で、かつ、完成した積層型電極体1を排出する排出タイミングTdに、積重ねテーブル部120から分離した積層型電極体1を、積層型電極体1の径方向外側頂面1mの回転移動と等速で搬送ベルト173を移動させつつ受け取る。 The electrode body transfer section 170 has a conveyor belt (electrode body receiving section) 173 for receiving the laminated electrode body 1 completed by stacking the works 10 in ten stages. The electrode body transfer section 170 is positioned at the electrode body transfer angular position θd (in the present embodiment, the angular position at 6 o'clock in FIG. 3) for transferring the stacked electrode body 1 from the stacking table section 120, and , at the discharge timing Td of discharging the completed laminated electrode body 1, the laminated electrode body 1 separated from the stacking table section 120 is conveyed at the same speed as the rotational movement of the radially outer top surface 1m of the laminated electrode body 1. The belt 173 is received while being moved.

具体的には、電極体移載部170は、複数の搬送ローラ171と、これらの搬送ローラ171に架け渡された搬送ベルト173とを有しており、搬送ベルト173上に配置した積層型電極体1を、搬送速度V4で搬送可能に構成されている(図6参照)。この搬送速度V4は、電極体移載角度位置θdにおける、積層型電極体1の径方向外側頂面1mの接線方向の移動速度V3(周速)と同じ速度にしてある。
一方、積重ねテーブル部120は、電極体移載角度位置θdに達するタイミングで、吸着テーブル121の吸引機構122による吸引を解除して、吸着テーブル121に吸着していた積層型電極体1を吸着テーブル121から分離し、(分離された)積層型電極体1を搬送ベルト173に載せるように構成されている。
Specifically, the electrode body transfer section 170 has a plurality of transport rollers 171 and a transport belt 173 stretched over these transport rollers 171 , and the stacked electrodes arranged on the transport belt 173 are arranged on the transport belt 173 . The body 1 can be transported at a transport speed V4 (see FIG. 6). The conveying speed V4 is the same speed as the moving speed V3 (peripheral speed) in the tangential direction of the radially outer top surface 1m of the laminated electrode body 1 at the electrode body transfer angular position θd.
On the other hand, the stacking table unit 120 releases the suction by the suction mechanism 122 of the suction table 121 at the timing when the electrode body transfer angular position θd is reached, and the stacked electrode body 1 that has been suctioned to the suction table 121 is removed from the suction table. 121 , and the (separated) laminated electrode body 1 is placed on the conveyor belt 173 .

制御部190は、図示しないCPU、ROM及びRAMを含み、ROM等に記憶された所定の制御プログラムによって作動するマイクロコンピュータを有する。この制御部190には、回転基体110を回転させるモータ(不図示)と、各積重ねテーブル部120(第1積重ねテーブル部120A~第8積重ねテーブル部120H)のサーボモータ125と、ワーク移載部140の搬送ローラ141と、接着剤塗布部160と、電極体移載部170の搬送ローラ171とが接続されており、これらを制御する。 The control unit 190 includes a CPU, ROM, and RAM (not shown), and has a microcomputer that operates according to a predetermined control program stored in the ROM or the like. The control unit 190 includes a motor (not shown) for rotating the rotary base 110, a servo motor 125 for each stacking table unit 120 (first stacking table unit 120A to eighth stacking table unit 120H), and a workpiece transfer unit. The conveying roller 141 of 140, the adhesive application section 160, and the conveying roller 171 of the electrode body transfer section 170 are connected and controlled.

次に、上述の電極体製造装置100を用いて行うワーク移載工程S2~電極体移載工程S4について説明する(図3~図6参照)。まず「ワーク移載工程S2」において、ワーク移載部140により、第1ワーク10A(モノセル)からなる1段目用の未載置ワーク10Pを、各積重ねテーブル部120(120A~120H)のテーブル面121mである被載置面hsm上に順次移載する。本実施形態では、1段目用の未載置ワーク10Pを、まず第1積重ねテーブル部120Aのテーブル面121m(被載置面hsm)に移載し、次に第2積重ねテーブル部120Bのテーブル面121m(被載置面hsm)に移載する。このように順番に第1積重ねテーブル部120Aから第8積重ねテーブル部120Hまで、1段目用の未載置ワーク10Pを移載する。なお、図5では、第5積重ねテーブル部120Eに、1段目用の未載置ワーク10Pを移載して、段数n=1段の既載置積層体5を形成した様子を示している。 Next, the work transfer step S2 to the electrode body transfer step S4 performed by using the electrode body manufacturing apparatus 100 described above will be described (see FIGS. 3 to 6). First, in the "work transfer step S2", the work transfer unit 140 transfers the unplaced work 10P for the first stage, which is the first work 10A (monocell), to the tables of the stacking table units 120 (120A to 120H). The substrates are sequentially transferred onto the mounting surface hsm, which is the surface 121m. In this embodiment, the unplaced workpiece 10P for the first stage is first transferred to the table surface 121m (mounting surface hsm) of the first stacking table portion 120A, and then transferred to the table of the second stacking table portion 120B. It is transferred to the surface 121m (mounting surface hsm). In this way, the unplaced works 10P for the first stage are transferred in order from the first stacking table portion 120A to the eighth stacking table portion 120H. Note that FIG. 5 shows a state in which an unplaced workpiece 10P for the first stage is transferred to the fifth stacking table section 120E to form an already-placed laminate 5 with the number of stages n=1. .

このワーク移載工程S2において、テーブル面121mの径方向高さHt(被載置面hsmの径方向高さHs)は、前述の高さ変更部123により、予め定めた径方向高さHsc(Ht=Hs=Hsc)にされている。また、未載置ワーク10Pの搬送速度V1は、ワーク移載角度位置θwにおけるテーブル面121m(被載置面hsm)の接線方向の移動速度V2(周速)と同じ速度である。このため、適切に未載置ワーク10Pをテーブル面121m(被載置面hsm)に移載できる。 In this workpiece transfer step S2, the radial height Ht of the table surface 121m (the radial height Hs of the mounting surface hsm) is adjusted to the predetermined radial height Hsc ( Ht=Hs=Hsc). Further, the transfer speed V1 of the non-mounted work 10P is the same speed as the moving speed V2 (peripheral speed) in the tangential direction of the table surface 121m (mounting surface hsm) at the work transfer angular position θw. Therefore, the unmounted work 10P can be appropriately transferred to the table surface 121m (mounting surface hsm).

次に、判定工程S3(図2参照)に進み、テーブル面121m上に所定数(本実施形態では10段)の既載置ワーク10Qが積み重なったか否か(段数n=10段の積層型電極体1が完成したか否か)を判定する。ここで、この時点ではまだ段数n=1段であるため、NOと判定され、ワーク移載工程S2を行う。即ち、2回目のワーク移載工程S2では、第1ワーク10A(モノセル)からなる2段目用の未載置ワーク10Pを、段数n=1段の既載置積層体5の径方向外側面5m(被載置面hsm)上に順次移載する。 Next, the process proceeds to the determination step S3 (see FIG. 2) to determine whether or not a predetermined number (10 stages in this embodiment) of already-placed workpieces 10Q are stacked on the table surface 121m (the number of stages n=10 stages of laminated electrodes). (whether or not the body 1 is completed). Here, since the number of stages n=1 at this point, the determination is NO, and the workpiece transfer step S2 is performed. That is, in the second work transfer step S2, the non-placed work 10P for the second stage, which is the first work 10A (monocell), is placed on the radially outer surface of the already-placed laminate 5 with the number of stages n=1. 5 m (mounting surface hsm).

具体的には、ワーク移載部140により、未載置ワーク10Pを、外側面10Pmを下方に向けた状態で搬送する。なお、2回目以降のワーク移載工程S2では、この搬送途中において、接着剤塗布部160により、未載置ワーク10Pの外側面10Pmに接着剤41Zを塗布する。 Specifically, the workpiece transfer unit 140 transports the unmounted workpiece 10P with the outer surface 10Pm facing downward. In the second and subsequent work transfer steps S2, the adhesive application unit 160 applies the adhesive 41Z to the outer surface 10Pm of the unmounted work 10P during the transfer.

その後、ワーク移載角度位置θwにおいて、吸着ベルト143に下方から吸着していた未載置ワーク10Pを、吸着ベルト143から分離し、既載置積層体5の径方向外側面5m(被載置面hsm)上に載せて、接着剤41Zが塗布された未載置ワーク10Pの外側面10Pmを、既載置積層体5の径方向外側面5m(被載置面hsm)に重ねる。これにより、この未載置ワーク10Pを既載置積層体5に接着して一体化させる。
なお、2回目以降のワーク移載工程S2においても、既載置積層体5の被載置面hsmの径方向高さHsは、予め定めた径方向高さHsc(Hs=Hsc)になっている。また、未載置ワーク10Pの搬送速度V1は、ワーク移載角度位置θwにおける既載置積層体5の被載置面hsmの接線方向の移動速度V2(周速)と同じ速度である。このため、適切に未載置ワーク10Pを既載置積層体5の被載置面hsmに載置できる。
After that, at the workpiece transfer angular position θw, the non-mounted workpiece 10P that has been sucked by the suction belt 143 from below is separated from the suction belt 143, and hsm), and the outer surface 10Pm of the non-mounted workpiece 10P coated with the adhesive 41Z is overlapped with the radial outer surface 5m of the already mounted laminate 5 (mounted surface hsm). As a result, the non-mounted work 10P is adhered to the already-mounted laminate 5 and integrated.
Also in the second and subsequent work transfer steps S2, the radial height Hs of the mounting surface hsm of the already-mounted laminate 5 becomes the predetermined radial height Hsc (Hs=Hsc). there is Further, the transport speed V1 of the non-mounted workpiece 10P is the same as the moving speed V2 (peripheral speed) in the tangential direction of the mounted surface hsm of the already mounted laminate 5 at the workpiece transfer angular position θw. Therefore, the non-mounted work 10P can be appropriately mounted on the mounting surface hsm of the already-mounted laminate 5 .

次に、判定工程S3(図2参照)に進み、テーブル面121m上に所定数(10段)の既載置ワーク10Qが積み重なったか否か(段数n=10段の積層型電極体1が完成したか否か)を判定する。ここで、この時点ではまだ段数n=2段であるため、NOと判定され、再びワーク移載工程S2を繰り返す。このように段数n=10段となるまで、ワーク移載工程S2を10回繰り返す。
但し、10回目のワーク移載工程S2では、第1ワーク10Aに代えて、第2ワーク10B(セパレータ付き負極板)からなる10段目用の未載置ワーク10Pを、段数n=9段の既載置積層体5の被載置面hsm上に順次移載する。
そして、既載置ワーク10Qが10段となって、段数n=10段の積層型電極体1が完成すると、判定工程S3でYESと判定され、電極体移載工程S4に進む。
Next, the process proceeds to the determination step S3 (see FIG. 2) to determine whether or not a predetermined number (10 stages) of already-placed works 10Q are stacked on the table surface 121m (the number of stages n=10 stages of the laminated electrode body 1 is completed). or not). Here, since the number of stages n=2 at this time point, the determination is NO, and the workpiece transfer step S2 is repeated again. In this way, the workpiece transfer step S2 is repeated ten times until the number of stages n=10.
However, in the tenth work transfer step S2, instead of the first work 10A, an unmounted work 10P for the tenth stage, which is composed of the second work 10B (negative electrode plate with a separator), is used for n=9 stages. The stacks are sequentially transferred onto the mounting surface hsm of the already-mounted laminate 5 .
Then, when the already-placed works 10Q reach 10 stages and the laminated electrode body 1 with the number of stages n=10 is completed, the determination step S3 is YES, and the process proceeds to the electrode body transfer step S4.

「電極体移載工程S4」では、電極体移載角度位置θdにおいて、かつ、積層型電極体1が完成した後に初めて電極体移載角度位置θdに達する排出タイミングTdに、電極体移載部170により、完成した積層型電極体1を積重ねテーブル部120から搬送ベルト173上に順次移載する。なお、図6では、第2積重ねテーブル部120Bから搬送ベルト173上に積層型電極体1を移載する様子を示している。 In the "electrode body transfer step S4", at the electrode body transfer angular position θd and at the discharge timing Td when the electrode body transfer angular position θd is reached for the first time after the laminated electrode body 1 is completed, the electrode body transfer portion 170 sequentially transfers the completed stacked electrode bodies 1 from the stacking table section 120 onto the conveyor belt 173 . FIG. 6 shows how the stacked electrode body 1 is transferred from the second stacking table section 120B onto the conveyor belt 173. As shown in FIG.

具体的には、電極体移載角度位置θdにおいて、吸着テーブル121の吸引機構122による吸引を解除して、テーブル面121mに吸着していた積層型電極体1を、テーブル面121mから分離し、搬送ベルト173上に載せる。その際、搬送ベルト173の移動速度(搬送速度V4)は、電極体移載角度位置θdにおける積層型電極体1の径方向外側頂面1mの接線方向の移動速度V3(周速)と同じ速度である。このため、積層型電極体1を少ない衝撃でスムーズに搬送ベルト173に移載できる。 Specifically, at the electrode body transfer angular position θd, the suction by the suction mechanism 122 of the suction table 121 is released, and the laminated electrode body 1 that has been suctioned to the table surface 121m is separated from the table surface 121m, Place it on the conveyor belt 173 . At that time, the moving speed (conveying speed V4) of the conveying belt 173 is the same speed as the moving speed V3 (peripheral speed) in the tangential direction of the radial outer top surface 1m of the laminated electrode body 1 at the electrode body transfer angular position θd. is. Therefore, the laminated electrode body 1 can be smoothly transferred to the conveyor belt 173 with little impact.

その後、搬送ベルト173に載せた積層型電極体1を、図6中、右方に搬送して、装置外部に排出する。このような排出操作を第1積重ねテーブル部120Aから第8積重ねテーブル部120Hまで順番に行って、すべて(8個)の積層型電極体1を装置外部に排出する。かくして、図1に示した積層型電極体1を得る。
なお、その後は、再びワーク移載工程S2に戻ることにより、間欠的に8個ずつ連続して積層型電極体1を製造できる。
After that, the stacked electrode body 1 placed on the transport belt 173 is transported rightward in FIG. 6 and discharged to the outside of the apparatus. Such a discharge operation is sequentially performed from the first stacking table portion 120A to the eighth stacking table portion 120H, and all (eight pieces) of the stacked electrode bodies 1 are discharged to the outside of the apparatus. Thus, the laminated electrode body 1 shown in FIG. 1 is obtained.
After that, by returning to the work transfer step S2, it is possible to intermittently manufacture eight laminated electrode bodies 1 in succession.

以上説明したように、電極体製造装置100では、複数の積重ねテーブル部120(120A~120H)を回転基体110の外周縁部110sに設けている。積重ねテーブル部120は、テーブル面121mの径方向高さHtを変更する高さ変更部123を有しており、高さ変更部123は、ワーク移載角度位置θwにおいて、既載置積層体5等の被載置面hsmの径方向高さHsが予め定めた径方向高さHscになるように、テーブル面121mの径方向高さHtを変更する。これにより、回転基体110が1回転する毎に、未載置ワーク10Pを1個ずつワーク移載部140から積重ねテーブル部120に移載できるため、回転基体110を所定回転(本実施形態では10回転)させることで、所定数(本実施形態では10段)の既載置ワーク10Qからなる積層型電極体1を容易に形成できる。
更に、電極体製造装置100では、ワーク移載角度位置θwにおける既載置積層体5等の被載置面hsmの回転移動に同期して、未載置ワーク10Pを移動させつつ被載置面hsmに載せるため、積重ねテーブル部120において、適切に未載置ワーク10Pを積み重ねて積層型電極体1を製造できる。
As described above, in the electrode body manufacturing apparatus 100, a plurality of stacking table portions 120 (120A to 120H) are provided on the outer peripheral portion 110s of the rotary base 110. As shown in FIG. The stacking table section 120 has a height changing section 123 that changes the radial height Ht of the table surface 121m. The radial height Ht of the table surface 121m is changed so that the radial height Hs of the mounting surface hsm, etc., becomes the predetermined radial height Hsc. As a result, each time the rotating base 110 makes one rotation, the unmounted works 10P can be transferred one by one from the work transfer section 140 to the stacking table section 120, so that the rotating base 110 can be rotated by a predetermined number (10 in this embodiment). By rotating the workpieces 10Q, it is possible to easily form the stacked electrode body 1 composed of a predetermined number (10 stages in this embodiment) of already-mounted workpieces 10Q.
Further, in the electrode body manufacturing apparatus 100, the mounting surface hsm of the already-mounted laminate 5 or the like is rotated at the workpiece transfer angular position θw while moving the unmounted work 10P. Since it is placed on the hsm, the stacked electrode body 1 can be manufactured by appropriately stacking the unloaded workpieces 10P on the stacking table section 120 .

また、電極体製造装置100では、搬送ベルト173を有する電極体移載部170を更に備えており、電極体移載角度位置θdでかつ排出タイミングTdに、積重ねテーブル部120から分離された積層型電極体1を、積層型電極体1の径方向外側頂面1mの回転移動と等速で搬送ベルト173を移動させつつ受け取る。このようにすることで、積層型電極体1を少ない衝撃でスムーズに搬送ベルト173に移載して、適切に装置外部に排出できる。 Further, the electrode body manufacturing apparatus 100 further includes an electrode body transfer section 170 having a conveyor belt 173, and the stacking die separated from the stacking table section 120 at the electrode body transfer angular position θd and at the discharge timing Td. The electrode body 1 is received while the conveyor belt 173 is moved at the same speed as the rotational movement of the radially outer top surface 1 m of the laminated electrode body 1 . By doing so, the laminated electrode body 1 can be smoothly transferred to the conveying belt 173 with little impact, and can be appropriately discharged to the outside of the apparatus.

以上において、本発明を実施形態に即して説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態に係る積重ねテーブル部120の高さ変更部123では、高さ検知センサ126で既載置積層体5等の被載置面hsmの径方向高さHsを実際に検知して、この高さ情報に基づいて被載置面hsmの径方向高さHsを変更しているが、これに限られない。被載置面hsmの径方向高さHsは、回転基体110が1回転する毎に、新たに積み重なった既載置ワーク10Qの分だけ高くなるため、予め定めたプログラムにより径方向高さHsを変更してもよい。
Although the present invention has been described above with reference to the embodiments, it goes without saying that the present invention is not limited to the embodiments, and can be appropriately modified and applied without departing from the scope of the invention.
For example, in the height changing unit 123 of the stacking table unit 120 according to the embodiment, the height detection sensor 126 actually detects the radial height Hs of the mounting surface hsm of the already mounted laminate 5 or the like, Although the radial height Hs of the mounting surface hsm is changed based on this height information, it is not limited to this. Since the radial height Hs of the mounting surface hsm increases by the amount of the newly stacked workpieces 10Q that have already been mounted each time the rotary base 110 rotates once, the radial height Hs can be adjusted by a predetermined program. You can change it.

また、実施形態に係るワーク移載部140では、搬送ローラ141に架け渡した吸着ベルト143により、未載置ワーク10Pを積重ねテーブル部120に移載するワーク移載角度位置θwまで搬送しているが、これに限られない。例えば、搬送ローラ141及び吸着ベルト143に代えて、ローラ(不図示)を用い、このローラのロール表面に未載置ワーク10Pを吸着させ、このローラを回転させることにより、未載置ワーク10Pをワーク移載角度位置θwまで搬送するようにしてもよい。 Further, in the work transfer section 140 according to the embodiment, the non-mounted work 10P is conveyed to the work transfer angular position θw at which it is transferred to the stacking table section 120 by the suction belt 143 stretched over the conveying rollers 141. However, it is not limited to this. For example, instead of the conveying roller 141 and the suction belt 143, a roller (not shown) is used, and the unmounted work 10P is attracted to the roll surface of this roller, and by rotating this roller, the unmounted work 10P is removed. The workpiece may be conveyed to the workpiece transfer angular position θw.

また実施形態では、回転軸111を中心にして回転基体110を定速(一定の角速度)で回転させた例を示した。これにより、回転基体110の回転エネルギーの増減を少なく出来る。
しかし、回転基体110の回転速度を適宜変化させるようにしても良い。例えば、未載置ワーク10Pを積重ねテーブル120に載置する段階での回転速度と、完成した積層型電極体1を積重ねテーブル120から電極体移載部170に移載する(排出する)時点の回転速度とを異ならせても良い。具体的には、未載置ワーク10Pを積重ねテーブル120に載置する時点での回転基体110の回転速度に比して、積層型電極体1を積重ねテーブル120から排出する時点での回転速度を相対的に遅くすることが考えられる。これにより、積重ねテーブル120から電極体移載部170に積層型電極体1を確実に移載(排出)するのが好ましい。
Moreover, in the embodiment, an example in which the rotating base 110 is rotated at a constant speed (constant angular velocity) around the rotating shaft 111 is shown. As a result, increase or decrease in rotational energy of the rotating base 110 can be reduced.
However, the rotation speed of the rotating base 110 may be changed as appropriate. For example, the rotation speed at the stage of placing the unplaced work 10P on the stacking table 120, and the time at which the completed stacked electrode body 1 is transferred (discharged) from the stacking table 120 to the electrode body transfer section 170. You may make it differ from a rotation speed. Specifically, the rotation speed at the time of discharging the laminated electrode body 1 from the stacking table 120 is set to be higher than the rotation speed of the rotating base 110 at the time of placing the unplaced work 10P on the stacking table 120. It is conceivable to make it relatively slow. Thereby, it is preferable to reliably transfer (discharge) the stacked electrode body 1 from the stacking table 120 to the electrode body transfer section 170 .

その他、未載置ワーク10Pのうち、未載置ワークの無い積重ねテーブル120に第1段目の未載置ワーク10Pを載置する際には、この未載置ワーク10Pを積層テーブル120に吸着させるだけであるため、比較的に回転速度を早くしておく。一方、2段目以降の未載置ワーク10Pを既載置積層体5上に積み重ねる際には、既に積重ねテーブル120上に積み重ねられた既載置積層体5上に未載置ワーク10Pを載せるだけではなく接着させる必要がある。そこで、回転基体110の回転速度を相対的に遅くすることも考えられる。
さらには、積層テーブル120に積み重ねた既載置積層体5の段数が増えるほど、積層に慎重を期すため、回転基体10の回転速度を相対的に遅くすることも考えられる。
In addition, when placing the unplaced work 10P of the first stage on the stacking table 120 without any unplaced work among the unplaced works 10P, this unplaced work 10P is adsorbed to the stacking table 120. Since the rotation speed is set to be relatively high, the rotation speed is set relatively high. On the other hand, when stacking the unplaced work 10P of the second and subsequent tiers on the already placed laminate 5, the unplaced work 10P is placed on the already placed laminate 5 already stacked on the stacking table 120. It is necessary to glue not only. Therefore, it is conceivable to make the rotation speed of the rotating base 110 relatively slow.
Furthermore, as the number of stacked layers 5 stacked on the stacking table 120 increases, the rotation speed of the rotary base 10 may be relatively slowed down in order to be more careful in stacking.

1 積層型電極体
1m (積層型電極体の)径方向外側頂面
5 既載置積層体
5m (既載置積層体の)径方向外側面
hsm 被載置面
10 ワーク
10P 未載置ワーク
10A 第1ワーク(モノセル)
10B 第2ワーク(セパレータ付き負極板)
11 正極板(電極板)
21 負極板(電極板)
31 セパレータ
100 電極体製造装置
110 回転基体
110s 外周縁部
111 回転軸
120 積重ねテーブル部
120A~120H 第1積重ねテーブル部~第8積重ねテーブル部
121 吸着テーブル
121m テーブル面
123 高さ変更部
140 ワーク移載部
170 電極体移載部
173 搬送ベルト(電極体受取部)
190 制御部
Ht (テーブル面の)径方向高さ
Hs (被載置面の)径方向高さ
Hsc (予め定めた)径方向高さ
θw ワーク移載角度位置
θd 電極体移載角度位置
Td 排出タイミング
1 Laminated electrode body 1m (Laminate electrode body) radial outer top surface 5 Already mounted laminate 5m (Already mounted laminate) radial outer surface hsm Mounting surface 10 Work 10P Unmounted work 10A First workpiece (monocell)
10B Second work (negative electrode plate with separator)
11 positive electrode plate (electrode plate)
21 negative plate (electrode plate)
31 Separator 100 Electrode manufacturing apparatus 110 Rotating base 110s Outer peripheral edge 111 Rotating shaft 120 Stacking table sections 120A to 120H First stacking table section to Eighth stacking table section 121 Suction table 121m Table surface 123 Height changing section 140 Work transfer Part 170 Electrode body transfer part 173 Conveyor belt (electrode body receiving part)
190 Control unit Ht Radial height (of table surface) Hs Radial height (mounting surface) Hsc (predetermined) radial height θw Workpiece transfer angular position θd Electrode body transfer angular position Td Ejection timing

Claims (2)

複数のワークを積み重ねた積層型電極体を製造する電極体製造装置であって、
回転軸を中心に回転する円筒状の回転基体と、
上記回転基体の外周縁部に設けられ、上記回転基体と共に回転移動する複数の積重ねテーブル部と、
保持している未載置ワークを、上記積重ねテーブル部のテーブル面又は上記テーブル面上の既に載置された既載置積層体の径方向外側面である被載置面上に移載するワーク移載部と、を備え、
上記積重ねテーブル部は、
上記テーブル面の径方向高さHtを変更する高さ変更部を有し、
上記高さ変更部は、
少なくとも、上記未載置ワークを上記ワーク移載部から上記積重ねテーブル部に移載するワーク移載角度位置では、
上記被載置面の径方向高さHsが、予め定めた径方向高さHsc(Hs=Hsc)になるように、上記テーブル面の上記径方向高さHtを変更し、
上記ワーク移載部は、
上記ワーク移載角度位置における上記被載置面の回転移動に同期して、上記未載置ワークを移動させつつ上記被載置面に載せる
電極体製造装置。
An electrode body manufacturing apparatus for manufacturing a laminated electrode body by stacking a plurality of works,
a cylindrical rotating base that rotates around a rotating shaft;
a plurality of stacking table units provided on the outer peripheral edge of the rotating base and rotating together with the rotating base;
A work that transfers a held unmounted work onto a mounting surface that is a table surface of the stacking table portion or a radially outer surface of an already-mounted stacked body that has already been mounted on the table surface. a transfer section,
The stacking table section is
having a height changing portion for changing the radial height Ht of the table surface,
The above height changing part is
At least at the work transfer angular position at which the unmounted work is transferred from the work transfer section to the stacking table section,
changing the radial height Ht of the table surface so that the radial height Hs of the mounting surface becomes a predetermined radial height Hsc (Hs=Hsc);
The work transfer section is
An electrode body manufacturing apparatus for placing the unmounted workpiece on the mounting surface while moving the unmounted workpiece in synchronism with the rotational movement of the mounting surface at the workpiece transfer angular position.
請求項1に記載の電極体製造装置であって、
完成した前記積層型電極体を前記積重ねテーブル部から移載する電極体移載部を備え、
上記電極体移載部は、
上記積層型電極体を受け取る電極体受取部を有しており、
上記積層型電極体を上記積重ねテーブル部から上記電極体受取部に移載する電極体移載角度位置で、かつ、上記積層型電極体を排出する排出タイミングに、
上記積重ねテーブル部から分離された上記積層型電極体を、上記積層型電極体の径方向外側頂面の回転移動と等速で上記電極体受取部を移動させつつ受け取る
電極体製造装置。
The electrode body manufacturing apparatus according to claim 1,
an electrode body transfer section for transferring the completed stacked electrode body from the stacking table section;
The electrode body transfer section is
having an electrode body receiving portion for receiving the laminated electrode body,
at the electrode body transfer angle position for transferring the stacked electrode body from the stacking table section to the electrode body receiving section and at the discharge timing for discharging the stacked electrode body,
An electrode body manufacturing apparatus that receives the stacked electrode body separated from the stacking table section while moving the electrode body receiving section at the same speed as the rotational movement of the radially outer top surface of the stacked electrode body.
JP2022045693A 2021-04-28 2022-03-22 Electrode manufacturing equipment Active JP7267480B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/719,370 US20220352538A1 (en) 2021-04-28 2022-04-13 Electrode body producing apparatus
CN202210444614.3A CN115249783A (en) 2021-04-28 2022-04-26 Electrode body manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076263 2021-04-28
JP2021076263 2021-04-28

Publications (2)

Publication Number Publication Date
JP2022170683A JP2022170683A (en) 2022-11-10
JP7267480B2 true JP7267480B2 (en) 2023-05-01

Family

ID=83944596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022045693A Active JP7267480B2 (en) 2021-04-28 2022-03-22 Electrode manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7267480B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004615A (en) 2015-06-04 2017-01-05 株式会社豊田自動織機 Electrode lamination method and electrode lamination device
JP2019200926A (en) 2018-05-17 2019-11-21 株式会社京都製作所 Battery material lamination apparatus
JP2019215977A (en) 2018-06-12 2019-12-19 株式会社京都製作所 Battery material lamination apparatus
JP2020024816A (en) 2018-08-06 2020-02-13 トヨタ自動車株式会社 Electrode stack manufacturing apparatus
JP2020047401A (en) 2018-09-18 2020-03-26 Ckd株式会社 Lamination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004615A (en) 2015-06-04 2017-01-05 株式会社豊田自動織機 Electrode lamination method and electrode lamination device
JP2019200926A (en) 2018-05-17 2019-11-21 株式会社京都製作所 Battery material lamination apparatus
JP2019215977A (en) 2018-06-12 2019-12-19 株式会社京都製作所 Battery material lamination apparatus
JP2020024816A (en) 2018-08-06 2020-02-13 トヨタ自動車株式会社 Electrode stack manufacturing apparatus
JP2020047401A (en) 2018-09-18 2020-03-26 Ckd株式会社 Lamination device

Also Published As

Publication number Publication date
JP2022170683A (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP6057984B2 (en) Laminating apparatus and method
TWI572491B (en) Laminated system
JP5716701B2 (en) Manufacturing method and manufacturing apparatus of laminated electrode body
KR102012957B1 (en) Electrode body fabrication device and method
US20150086317A1 (en) Stacking system
WO2012070297A1 (en) Polar-plate wrapping apparatus
WO2012137904A1 (en) Method for producing and device for producing bagged electrode
JP6022072B2 (en) Fixing method of electrode assembly using tape
CN104876052B (en) The adhesive applicating method of sheet material
JP5855484B2 (en) Battery pressing device and battery pressing method
JP7422138B2 (en) feeding device
JP2010001146A (en) Loading method and loading device for lamellar workpiece
JP5932619B2 (en) Manufacturing method of multilayer secondary battery and suction pad used therefor
JP4626170B2 (en) Manufacturing method and apparatus for multilayer electronic component
JP2020047401A (en) Lamination device
KR101504859B1 (en) Joining device and joining method
JP7267480B2 (en) Electrode manufacturing equipment
WO2004095479A1 (en) Method for manufacturing multilayer unit for multilayer electronic component
JP2013546132A (en) Method and apparatus for manufacturing an electrochemical energy reservoir
WO2020079991A1 (en) Battery material lamination device
CN115249783A (en) Electrode body manufacturing apparatus
JPWO2019017341A1 (en) Electrode crimping device
JP4853659B2 (en) Method for laminating ceramic green sheets and method for producing laminated electronic components
WO2021131433A1 (en) Cutting device, and device for manufacturing laminated electrode assembly
CN108539220B (en) Stacking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7267480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150