JP7266968B2 - Contactless power transmission device and contactless power transmission system - Google Patents

Contactless power transmission device and contactless power transmission system Download PDF

Info

Publication number
JP7266968B2
JP7266968B2 JP2018076867A JP2018076867A JP7266968B2 JP 7266968 B2 JP7266968 B2 JP 7266968B2 JP 2018076867 A JP2018076867 A JP 2018076867A JP 2018076867 A JP2018076867 A JP 2018076867A JP 7266968 B2 JP7266968 B2 JP 7266968B2
Authority
JP
Japan
Prior art keywords
power transmission
contactless
coils
power
contactless power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076867A
Other languages
Japanese (ja)
Other versions
JP2019186427A (en
Inventor
雅城 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2018076867A priority Critical patent/JP7266968B2/en
Publication of JP2019186427A publication Critical patent/JP2019186427A/en
Application granted granted Critical
Publication of JP7266968B2 publication Critical patent/JP7266968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、コイル間距離が可変である非接触電力伝送技術に関する。 The present disclosure relates to contactless power transmission technology with a variable inter-coil distance.

コイル間距離が可変である非接触電力伝送技術が、扉取付部から扉電気錠又は扉照明器具へと非接触電力伝送する目的等に適用されている(例えば、特許文献1等を参照。)。 A non-contact power transmission technology with a variable distance between coils is applied for the purpose of non-contact power transmission from a door mounting portion to a door electric lock or a door lighting fixture (for example, see Patent Document 1, etc.). .

特開2017-115442号公報JP 2017-115442 A

ところで、コイル間距離がある程度離れた状態において、送電周波数での共振条件を満たし電力伝送効率を上げるように、送受電側のコイルのインダクタンス及びコンデンサのキャパシタンスを設計する。ここで、コイル間距離がほぼ0に近づいた状態になると、コイル間距離がある程度離れた状態と比べて、一方側のコアから他方側のコイルへの鎖交磁束が大きくなり、送受電側のコイルのインダクタンスが大きくなる。よって、コイル間距離がほぼ0に近づいた状態では、コイル間距離がある程度離れた状態と異なり、送電周波数での共振条件を満たさず電力伝送効率を上げられない。 By the way, the inductance of the coil on the power transmission/reception side and the capacitance of the capacitor on the power transmission/reception side are designed so that the resonance condition at the power transmission frequency is satisfied and the power transmission efficiency is increased when the distance between the coils is separated to some extent. Here, when the distance between the coils approaches approximately 0, the interlinking magnetic flux from the core on one side to the coil on the other side becomes larger than when the distance between the coils is relatively large. The inductance of the coil increases. Therefore, when the inter-coil distance is close to 0, unlike the case where the inter-coil distance is a certain distance, the resonance condition at the power transmission frequency cannot be satisfied and the power transmission efficiency cannot be increased.

そこで、前記課題を解決するために、本開示は、コイル間距離が可変である非接触電力伝送技術について、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での共振条件を満たし電力伝送効率を上げることを目的とする。 Therefore, in order to solve the above problems, the present disclosure relates to a non-contact power transmission technology in which the inter-coil distance is variable, even when the inter-coil distance is nearly zero, the state where the inter-coil distance is separated to some extent. A similar object is to satisfy the resonance condition at the power transmission frequency and increase the power transmission efficiency.

前記課題を解決するために、コイル同士が対向する空間内に、非磁性導体を配置することとした。すると、一方側のコアから他方側のコイルへの鎖交磁束の一部が、非磁性導体での渦電流発生により打ち消される。よって、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、一方側のコアから他方側のコイルへの鎖交磁束はほとんど変化せず、他方側のコイルのインダクタンスもほとんど変化しない。 In order to solve the above problem, a non-magnetic conductor is arranged in the space where the coils face each other. Then, part of the magnetic flux linkage from the core on one side to the coil on the other side is canceled by eddy current generation in the non-magnetic conductor. Therefore, even when the inter-coil distance is close to 0, the interlinking magnetic flux from the core on one side to the coil on the other side hardly changes, compared to the state where the inter-coil distance is somewhat long. The inductance of the coil also hardly changes.

具体的には、本開示は、巻線及びコアを備える非接触電力伝送コイルであって、他方側の非接触電力伝送コイルと対向する空間内に非磁性導体をさらに備えることを特徴とする非接触電力伝送コイルである。 Specifically, the present disclosure is a non-contact power transmission coil that includes windings and a core, and further includes a non-magnetic conductor in a space facing the non-contact power transmission coil on the other side. It is a contact power transmission coil.

この構成によれば、コイル間距離が可変である非接触電力伝送技術について、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での共振条件を満たし電力伝送効率を上げることができる。 According to this configuration, in the non-contact power transmission technology in which the distance between the coils is variable, even when the distance between the coils is close to 0, resonance at the power transmission frequency is generated in the same manner as when the distance between the coils is separated to some extent. It is possible to satisfy the conditions and increase the power transmission efficiency.

また、本開示は、以上に記載の非接触電力伝送コイルを、送電側及び受電側にともに備え、前記非磁性導体は、前記コアの近傍に配置されることを特徴とする非接触電力伝送装置である。 Further, according to the present disclosure, a contactless power transmission device is provided with the contactless power transmission coil described above on both a power transmission side and a power receiving side, and wherein the non-magnetic conductor is arranged near the core. is.

この構成によれば、送電側/受電側のコアから受電側/送電側のコイルへの鎖交磁束の一部が、非磁性導体での渦電流発生により打ち消される。よって、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、送電側/受電側のコアから受電側/送電側のコイルへの鎖交磁束はほとんど変化せず、受電側/送電側のコイルのインダクタンスもほとんど変化しない。そして、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での送電側及び受電側の共振条件を満たし電力伝送効率を上げることができる。 According to this configuration, part of the magnetic flux linkage from the core on the power transmission side/power receiving side to the coil on the power receiving side/power transmission side is canceled by eddy current generation in the non-magnetic conductor. Therefore, even when the distance between the coils is close to 0, the flux linkage from the core on the power transmission/reception side to the coil on the power reception/transmission side changes little compared to when the distance between the coils is somewhat large. and the inductance of the receiving side/transmitting side coils hardly changes. Even when the inter-coil distance is close to 0, the power transmission efficiency can be increased by satisfying the resonance conditions on the power transmitting side and the power receiving side at the power transmission frequency, as in the case where the inter-coil distance is a certain distance away.

また、本開示は、以上に記載の非接触電力伝送コイルを、送電側に備えず、受電側に備え、前記非磁性導体は、前記コアの近傍に配置されることを特徴とする非接触電力伝送装置である。 Further, according to the present disclosure, the non-contact power transmission coil described above is provided not on the power transmission side but on the power reception side, and the non-magnetic conductor is arranged near the core. It is a transmission device.

この構成によれば、受電側のコアから送電側のコイルへの鎖交磁束の一部が、非磁性導体での渦電流発生により打ち消される。よって、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、受電側のコアから送電側のコイルへの鎖交磁束はほとんど変化せず、送電側のコイルのインダクタンスもほとんど変化しない。そして、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での送電側の共振条件を満たし電力伝送効率を上げることができる。なお、受電側のコイルのインダクタンスが少々変化しても、受電側の負荷の存在により受電側の共振Q値は小さいため、送電周波数での受電側の共振条件がほぼ満たされる。また、送電側に非磁性導体を配置しないため、送電側での渦電流損失が小さくなる。 According to this configuration, part of the magnetic flux linkage from the core on the power receiving side to the coil on the power transmitting side is canceled by eddy current generation in the non-magnetic conductor. Therefore, even when the inter-coil distance is close to 0, the interlinking magnetic flux from the core on the power receiving side to the coil on the power transmitting side hardly changes compared to the state where the distance between the coils is somewhat long. The inductance of the coil also hardly changes. Then, even when the inter-coil distance is close to 0, it is possible to satisfy the resonance condition on the power transmission side at the power transmission frequency and increase the power transmission efficiency, as in the case where the inter-coil distance is a certain distance away. Even if the inductance of the coil on the power receiving side changes slightly, the resonance Q value on the power receiving side is small due to the presence of the load on the power receiving side, so the resonance condition on the power receiving side at the power transmission frequency is substantially satisfied. Also, since no non-magnetic conductor is arranged on the power transmission side, eddy current loss on the power transmission side is reduced.

また、本開示は、以上に記載の非接触電力伝送コイルを、送電側及び/又は受電側に備え、前記非磁性導体は、前記コアを固定している筐体に設置されることを特徴とする非接触電力伝送装置である。 Further, the present disclosure is characterized in that the contactless power transmission coil described above is provided on the power transmission side and/or the power reception side, and the non-magnetic conductor is installed in a housing fixing the core. It is a contactless power transmission device.

この構成によれば、送電側/受電側のコアから受電側/送電側のコイルへの鎖交磁束の一部が、非磁性導体での渦電流発生により打ち消される。よって、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、送電側/受電側のコアから受電側/送電側のコイルへの鎖交磁束はほとんど変化せず、受電側/送電側のコイルのインダクタンスもほとんど変化しない。そして、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での送電側及び受電側の共振条件を満たし電力伝送効率を上げることができる。また、送受電側の対向空間内に非磁性導体を配置するため、送電側及び受電側での渦電流損失が小さくなる。 According to this configuration, part of the magnetic flux linkage from the core on the power transmission side/power receiving side to the coil on the power receiving side/power transmission side is canceled by eddy current generation in the non-magnetic conductor. Therefore, even when the distance between the coils is close to 0, the flux linkage from the core on the power transmission/reception side to the coil on the power reception/transmission side changes little compared to when the distance between the coils is somewhat large. and the inductance of the receiving side/transmitting side coils hardly changes. Even when the inter-coil distance is close to 0, the power transmission efficiency can be increased by satisfying the resonance conditions on the power transmitting side and the power receiving side at the power transmission frequency, as in the case where the inter-coil distance is a certain distance away. In addition, since the non-magnetic conductor is arranged in the space facing the power transmission and reception sides, the eddy current loss on the power transmission side and the power reception side is reduced.

また、本開示は、以上に記載の非接触電力伝送コイルに対して他方側の非接触電力伝送コイルのインダクタンスは、非接触電力伝送が可能な範囲内のコイル間距離に依存しないことを特徴とする非接触電力伝送装置である。 In addition, the present disclosure is characterized in that the inductance of the non-contact power transmission coil on the other side with respect to the non-contact power transmission coil described above does not depend on the distance between the coils within the range in which non-contact power transmission is possible. It is a contactless power transmission device.

この構成によれば、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での送電側及び/又は受電側の共振条件を満たし電力伝送効率を上げることができる。 According to this configuration, even when the distance between the coils approaches approximately 0, the power transmission efficiency satisfies the resonance condition on the power transmission side and/or the power reception side at the power transmission frequency, as in the case where the distance between the coils is somewhat distant. can be raised.

また、本開示は、以上に記載の非接触電力伝送装置と、送電インバータと、を備え、前記送電インバータから見た入力インピーダンスは、誘導性であり、送電側と受電側との間の非接触電力伝送は、SS(Series‐Series)方式で行われることを特徴とする非接触電力伝送システムである。 Further, the present disclosure includes the contactless power transmission device described above and a power transmission inverter, the input impedance seen from the power transmission inverter is inductive, and the contactless power transmission between the power transmission side and the power reception side is inductive. The contactless power transmission system is characterized in that power transmission is performed by the SS (Series-Series) method.

この構成によれば、コイル間距離が可変である非接触電力伝送技術について、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での共振条件を満たし電力伝送効率を上げることができる。 According to this configuration, in the non-contact power transmission technology in which the distance between the coils is variable, even when the distance between the coils is close to 0, resonance at the power transmission frequency is generated in the same manner as when the distance between the coils is separated to some extent. It is possible to satisfy the conditions and increase the power transmission efficiency.

ところで、図8から図10に示すように、送電インバータから見た入力インピーダンスは、若干誘導性であることが望ましい。ここで、コイル間距離がほぼ0に近づいた状態においては、コイル間距離がある程度離れた状態と比べて、送電インバータから見た入力インピーダンスの誘導性が大きくなり過ぎるときには、送電インバータの安定動作をできないとともに、送電インバータの出力電圧を高くする必要がある。しかし、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、送電インバータから見た入力インピーダンスの誘導性がほとんど変化しないときには、送電インバータの安定動作をできるとともに、送電インバータの出力電圧を高くする必要がない。 By the way, as shown in FIGS. 8 to 10, it is desirable that the input impedance seen from the power transmission inverter is slightly inductive. Here, when the distance between the coils approaches approximately 0, compared to when the distance between the coils is somewhat large, when the inductivity of the input impedance seen from the power transmission inverter becomes too large, the power transmission inverter cannot operate stably. In addition, it is necessary to increase the output voltage of the transmission inverter. However, even when the distance between the coils is close to 0, the power transmission inverter can operate stably when the inductivity of the input impedance seen from the power transmission inverter hardly changes compared to when the distance between the coils is somewhat large. In addition, there is no need to increase the output voltage of the transmission inverter.

このように、本開示は、コイル間距離が可変である非接触電力伝送技術について、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数での共振条件を満たし電力伝送効率を上げることができる。 In this way, the present disclosure relates to a non-contact power transmission technology in which the inter-coil distance is variable, and even when the inter-coil distance is close to 0, at the power transmission frequency satisfies the resonance condition, and the power transmission efficiency can be increased.

従来の非接触電力伝送システムの構成を示す図である。It is a figure which shows the structure of the conventional non-contact electric power transmission system. 本開示の第1の非接触電力伝送システムの構成を示す図である。1 is a diagram showing a configuration of a first contactless power transmission system of the present disclosure; FIG. 本開示の第2の非接触電力伝送システムの構成を示す図である。FIG. 3 is a diagram showing the configuration of a second contactless power transmission system of the present disclosure; 本開示の第3の非接触電力伝送システムの構成を示す図である。FIG. 10 is a diagram showing the configuration of a third contactless power transmission system of the present disclosure; 本開示の第1の非接触電力伝送コイルの構成を示す図である。FIG. 3 is a diagram showing a configuration of a first contactless power transmission coil of the present disclosure; 本開示の第2の非接触電力伝送コイルの構成を示す図である。FIG. 5 is a diagram showing the configuration of a second contactless power transmission coil of the present disclosure; 本開示の第3の非接触電力伝送コイルの構成を示す図である。FIG. 4 is a diagram showing the configuration of a third contactless power transmission coil of the present disclosure; 本開示の送電インバータの構成を示す図である。1 is a diagram showing a configuration of a power transmission inverter of the present disclosure; FIG. 比較例の送電インバータの貫通電流及び損失を示す図である。FIG. 5 is a diagram showing through current and loss of a power transmission inverter of a comparative example; 本開示の送電インバータの貫通電流及び損失を示す図である。FIG. 4 is a diagram showing shoot-through current and loss of the power transmission inverter of the present disclosure;

添付の図面を参照して本開示の実施形態を説明する。以下に説明する実施形態は本開示の実施の例であり、本開示は以下の実施形態に制限されるものではない。 Embodiments of the present disclosure will be described with reference to the accompanying drawings. The embodiments described below are examples of implementing the present disclosure, and the present disclosure is not limited to the following embodiments.

従来の非接触電力伝送システムの構成を図1に示す。従来の非接触電力伝送システムSは、送電側において非接触電力伝送コイル1T、送電インバータ2及びコンデンサ3から構成され、受電側において非接触電力伝送コイル1R、コンデンサ4及び負荷5から構成される。非接触電力伝送コイル1Tは、巻線11T及びコア12Tから構成される。非接触電力伝送コイル1Rは、巻線11R及びコア12Rから構成される。 FIG. 1 shows the configuration of a conventional contactless power transmission system. A conventional contactless power transmission system S includes a contactless power transmission coil 1T, a power transmission inverter 2, and a capacitor 3 on the power transmission side, and a contactless power transmission coil 1R, a capacitor 4, and a load 5 on the power receiving side. A contactless power transmission coil 1T is composed of a winding 11T and a core 12T. The contactless power transmission coil 1R is composed of a winding 11R and a core 12R.

非接触電力伝送コイル1T(インダクタンスL)とコンデンサ3(キャパシタンスC)とは、直列に接続される。非接触電力伝送コイル1R(インダクタンスL)とコンデンサ4(キャパシタンスC)とは、直列に接続される。このような接続方式をSS(Series‐Series)方式という。SS方式を採用することにより、送電周波数fでの送電側及び受電側の共振条件を満たすときに電力伝送効率が高くなる。 The contactless power transmission coil 1T (inductance L T ) and capacitor 3 (capacitance C T ) are connected in series. The contactless power transmission coil 1R (inductance L R ) and capacitor 4 (capacitance C R ) are connected in series. Such a connection method is called an SS (Series-Series) method. By adopting the SS method, the power transmission efficiency is increased when the resonance conditions on the power transmitting side and the power receiving side at the power transmission frequency f are satisfied.

コア12T、12Rは、それぞれ棒状コアである。非接触電力伝送コイル1T、1Rの延伸軸は、互いに並行するとともに、互いの距離を可変とする。例えば、非接触電力伝送コイル1Tは、直線上をスライドする扉の取付部に配置される。そして、非接触電力伝送コイル1Rは、直線上をスライドする扉の電気錠又は照明器具に給電する。 Cores 12T and 12R are rod-shaped cores. The extension axes of the contactless power transmission coils 1T and 1R are parallel to each other, and the distance between them is variable. For example, the non-contact power transmission coil 1T is arranged at a mounting portion of a door that slides in a straight line. Then, the non-contact power transmission coil 1R supplies power to an electric lock of a door that slides in a straight line or to a lighting fixture.

コイル間距離がある程度離れた状態において、送電周波数fでの共振条件を満たし電力伝送効率を上げるように、非接触電力伝送コイル1T、1RのインダクタンスL、L及びコンデンサ3、4のキャパシタンスC、Cを設計する。 In a state where the distance between the coils is separated to some extent, the inductances L T and L R of the contactless power transmission coils 1T and 1R and the capacitances C of the capacitors 3 and 4 are set so as to satisfy the resonance condition at the power transmission frequency f and increase the power transmission efficiency. Design T and CR .

コイル間距離がほぼ0に近づいた状態になると、コイル間距離がある程度離れた状態と比べて、コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束が大きくなり、非接触電力伝送コイル1R/1TのインダクタンスL/Lが大きくなる。よって、コイル間距離がほぼ0に近づいた状態では、コイル間距離がある程度離れた状態と異なり、送電周波数fでの送電側及び受電側の共振条件を満たさず電力伝送効率を上げられない。 When the distance between the coils approaches approximately 0, the interlinkage magnetic flux from the cores 12T/12R to the contactless power transmission coils 1R/1T becomes larger than when the distance between the coils is somewhat large, and the contactless power is reduced. The inductance L R /L T of the transmission coils 1R/1T increases. Therefore, when the inter-coil distance is close to 0, unlike the case where the inter-coil distance is a certain distance, the resonance condition on the power transmitting side and the power receiving side at the power transmission frequency f cannot be satisfied, and the power transmission efficiency cannot be increased.

図8から図10に示すように、送電インバータ2から見た入力インピーダンスZINは、若干誘導性であることが望ましい。ここで、コイル間距離がほぼ0に近づいた状態においては、コイル間距離がある程度離れた状態と比べて、送電インバータ2から見た入力インピーダンスZINの誘導性が大きくなり過ぎるときには、送電インバータ2の安定動作をできないとともに、送電インバータ2の出力電圧を高くする必要がある。 As shown in FIGS. 8 to 10, it is desirable that the input impedance ZIN seen by the transmission inverter 2 is slightly inductive. Here, in a state where the inter-coil distance approaches approximately 0, compared to a state where the inter-coil distance is somewhat distant, when the inductivity of the input impedance Z IN seen from the power transmission inverter 2 becomes too large, the power transmission inverter 2 In addition, it is necessary to increase the output voltage of the power transmission inverter 2 .

本開示の第1の非接触電力伝送システムの構成を図2に示す。本開示の第1の非接触電力伝送システムSにおいて、従来の非接触電力伝送システムSに加えて、非接触電力伝送コイル1Tは、Cu、Al、Ag及びAu等の非磁性導体13Tを備え、非接触電力伝送コイル1Rは、Cu、Al、Ag及びAu等の非磁性導体13Rを備える。 FIG. 2 shows the configuration of the first contactless power transmission system of the present disclosure. In the first contactless power transmission system S of the present disclosure, in addition to the conventional contactless power transmission system S, the contactless power transmission coil 1T includes a nonmagnetic conductor 13T such as Cu, Al, Ag, and Au, The non-contact power transmission coil 1R includes a non-magnetic conductor 13R such as Cu, Al, Ag and Au.

非磁性導体13Tは、非接触電力伝送コイル1Rと対向する空間内に、かつ、コア12Tの近傍に配置される。非磁性導体13Rは、非接触電力伝送コイル1Tと対向する空間内に、かつ、コア12Rの近傍に配置される。 The non-magnetic conductor 13T is arranged in the space facing the non-contact power transmission coil 1R and near the core 12T. The non-magnetic conductor 13R is arranged in a space facing the contactless power transmission coil 1T and near the core 12R.

コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の一部が、非磁性導体13T/13Rでの渦電流発生により打ち消される。よって、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束はほとんど変化せず、非接触電力伝送コイル1R/1TのインダクタンスL/Lもほとんど変化しない。そして、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数fでの送電側及び受電側の共振条件を満たし電力伝送効率を上げることができる。 Part of the magnetic flux linkage from the cores 12T/12R to the contactless power transmission coils 1R/1T is canceled by eddy current generation in the non-magnetic conductors 13T/13R. Therefore, even when the distance between the coils approaches approximately 0, the interlinkage magnetic flux from the cores 12T/12R to the contactless power transmission coils 1R/1T hardly changes compared to when the distance between the coils is somewhat large. , the inductances L R /L T of the contactless power transmission coils 1R/1T also change little. Then, even when the inter-coil distance is close to 0, the power transmission efficiency can be increased by satisfying the resonance conditions on the power transmission side and the power reception side at the power transmission frequency f, as in the case where the inter-coil distance is somewhat distant. .

図8から図10に示すように、送電インバータ2から見た入力インピーダンスZINは、若干誘導性であることが望ましい。ここで、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、送電インバータ2から見た入力インピーダンスZINの誘導性がほとんど変化しないときには、送電インバータ2の安定動作をできるとともに、送電インバータ2の出力電圧を高くする必要がない。 As shown in FIGS. 8 to 10, it is desirable that the input impedance ZIN seen by the transmission inverter 2 is slightly inductive. Here, when the inductivity of the input impedance Z IN seen from the power transmission inverter 2 changes little compared to the state where the distance between the coils is somewhat distant even when the distance between the coils approaches approximately 0, the power transmission inverter 2 can operate stably, and there is no need to increase the output voltage of the power transmission inverter 2 .

なお、非磁性導体13T/13Rのサイズは、以下の基準で設計されることが望ましい:(1)コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の一部が、渦電流発生により打ち消されること、(2)コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の全部が、渦電流発生により打ち消されるわけではないこと。 The sizes of the non-magnetic conductors 13T/13R are desirably designed according to the following criteria: (1) part of the interlinking magnetic flux from the cores 12T/12R to the contactless power transmission coils 1R/1T is eddy; (2) All of the magnetic flux linkage from the cores 12T/12R to the contactless power transmission coils 1R/1T is not canceled by the eddy current generation.

例えば、非接触電力伝送コイル1T/1Rの延伸軸と平行方向における非磁性導体13T/13Rのサイズは、巻線11T/11Rの巻回長以上であり、コア12T/12Rの延伸長以下であることが望ましい。そして、非接触電力伝送コイル1T/1Rの延伸軸と垂直方向における非磁性導体13T/13Rのサイズは、巻線11T/11Rの巻回径以下であり、コア12T/12Rの径以下であることが望ましい。 For example, the size of the non-magnetic conductors 13T/13R in the direction parallel to the extension axis of the contactless power transmission coils 1T/1R is greater than or equal to the winding length of the windings 11T/11R and less than or equal to the extension length of the cores 12T/12R. is desirable. The size of the non-magnetic conductors 13T/13R in the direction perpendicular to the extension axis of the non-contact power transmission coils 1T/1R must be equal to or less than the winding diameter of the windings 11T/11R and equal to or less than the diameter of the cores 12T/12R. is desirable.

本開示の第2の非接触電力伝送システムの構成を図3に示す。本開示の第2の非接触電力伝送システムSにおいて、従来の非接触電力伝送システムSに加えて、非接触電力伝送コイル1Rは、Cu、Al、Ag及びAu等の非磁性導体13Rを備えるが、非接触電力伝送コイル1Tは、Cu、Al、Ag及びAu等の非磁性導体13Tを備えない。 FIG. 3 shows the configuration of the second contactless power transmission system of the present disclosure. In the second contactless power transmission system S of the present disclosure, in addition to the conventional contactless power transmission system S, the contactless power transmission coil 1R includes a nonmagnetic conductor 13R such as Cu, Al, Ag, and Au. , the contactless power transmission coil 1T does not include a non-magnetic conductor 13T such as Cu, Al, Ag and Au.

非磁性導体13Rは、非接触電力伝送コイル1Tと対向する空間内に、かつ、コア12Rの近傍に配置される。非磁性導体13Tは、上記のように配置されない。 The non-magnetic conductor 13R is arranged in a space facing the contactless power transmission coil 1T and near the core 12R. The non-magnetic conductor 13T is not arranged as described above.

コア12Rから非接触電力伝送コイル1Tへの鎖交磁束の一部が、非磁性導体13Rでの渦電流発生により打ち消される。よって、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、コア12Rから非接触電力伝送コイル1Tへの鎖交磁束はほとんど変化せず、非接触電力伝送コイル1TのインダクタンスLもほとんど変化しない。そして、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数fでの送電側の共振条件を満たし電力伝送効率を上げることができる。 A part of the interlinking magnetic flux from the core 12R to the non-contact power transmission coil 1T is canceled by eddy current generation in the non-magnetic conductor 13R. Therefore, even when the inter-coil distance is close to 0, the interlinking magnetic flux from the core 12R to the non-contact power transmission coil 1T hardly changes compared to the case where the inter-coil distance is a certain distance. The inductance LT of the transmission coil 1T also hardly changes. Then, even when the inter-coil distance is close to 0, the power transmission efficiency can be increased by satisfying the resonance condition on the power transmission side at the power transmission frequency f, as in the case where the inter-coil distance is a certain distance away.

なお、非接触電力伝送コイル1RのインダクタンスLが少々変化しても、負荷5(抵抗値R)の存在により受電側の共振Q値は小さいため、送電周波数fでの受電側の共振条件がほぼ満たされる。また、送電側に非磁性導体13Tを配置しないため、送電側での渦電流損失が小さくなり、電力伝送効率を上げることができる。 Even if the inductance L R of the non-contact power transmission coil 1R changes slightly, the resonance Q value on the power receiving side is small due to the presence of the load 5 (resistance value R). almost filled. Moreover, since the non-magnetic conductor 13T is not arranged on the power transmission side, eddy current loss on the power transmission side is reduced, and power transmission efficiency can be improved.

図8から図10に示すように、送電インバータ2から見た入力インピーダンスZINは、若干誘導性であることが望ましい。ここで、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、送電インバータ2から見た入力インピーダンスZINの誘導性がほとんど変化しないときには、送電インバータ2の安定動作をできるとともに、送電インバータ2の出力電圧を高くする必要がない。 As shown in FIGS. 8 to 10, it is desirable that the input impedance ZIN seen by the transmission inverter 2 is slightly inductive. Here, when the inductivity of the input impedance Z IN seen from the power transmission inverter 2 changes little compared to the state where the distance between the coils is somewhat distant even when the distance between the coils approaches approximately 0, the power transmission inverter 2 can operate stably, and there is no need to increase the output voltage of the power transmission inverter 2 .

なお、非磁性導体13Rのサイズは、以下の基準で設計されることが望ましい:(1)コア12Rから非接触電力伝送コイル1Tへの鎖交磁束の一部が、渦電流発生により打ち消されること、(2)コア12Rから非接触電力伝送コイル1Tへの鎖交磁束の全部が、渦電流発生により打ち消されるわけではないこと。 The size of the non-magnetic conductor 13R is desirably designed according to the following criteria: (1) part of the magnetic flux linkage from the core 12R to the contactless power transmission coil 1T is canceled by eddy current generation; (2) All of the interlinkage magnetic flux from the core 12R to the non-contact power transmission coil 1T is not canceled by eddy current generation.

例えば、非接触電力伝送コイル1Rの延伸軸と平行方向における非磁性導体13Rのサイズは、巻線11Rの巻回長以上であり、コア12Rの延伸長以下であることが望ましい。そして、非接触電力伝送コイル1Rの延伸軸と垂直方向における非磁性導体13Rのサイズは、巻線11Rの巻回径以下であり、コア12Rの径以下であることが望ましい。 For example, it is desirable that the size of the non-magnetic conductor 13R in the direction parallel to the extension axis of the contactless power transmission coil 1R is greater than or equal to the winding length of the winding 11R and less than or equal to the extension length of the core 12R. The size of the non-magnetic conductor 13R in the direction perpendicular to the extension axis of the contactless power transmission coil 1R is preferably equal to or less than the winding diameter of the winding 11R and equal to or less than the diameter of the core 12R.

本開示の第3の非接触電力伝送システムの構成を図4に示す。本開示の第3の非接触電力伝送システムSにおいて、従来の非接触電力伝送システムSに加えて、非接触電力伝送コイル1T及び/又は1Rは、Cu、Al、Ag及びAu等の非磁性導体13を備える。 FIG. 4 shows the configuration of the third contactless power transmission system of the present disclosure. In the third contactless power transmission system S of the present disclosure, in addition to the conventional contactless power transmission system S, the contactless power transmission coils 1T and/or 1R include nonmagnetic conductors such as Cu, Al, Ag, and Au. 13.

非磁性導体13は、非接触電力伝送コイル1T、1Rが対向する空間内に、かつ、コア12T及び/又は12Rを固定している筐体に設置される。 The non-magnetic conductor 13 is installed in the space where the non-contact power transmission coils 1T and 1R face each other and in the housing fixing the cores 12T and/or 12R.

コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の一部が、非磁性導体13での渦電流発生により打ち消される。よって、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束はほとんど変化せず、非接触電力伝送コイル1R/1TのインダクタンスL/Lもほとんど変化しない。そして、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と同様に、送電周波数fでの送電側及び受電側の共振条件を満たし電力伝送効率を上げることができる。 Part of the magnetic flux linkage from the cores 12T/12R to the contactless power transmission coils 1R/1T is canceled by eddy current generation in the non-magnetic conductor 13 . Therefore, even when the distance between the coils approaches approximately 0, the interlinkage magnetic flux from the cores 12T/12R to the contactless power transmission coils 1R/1T hardly changes compared to when the distance between the coils is somewhat large. , the inductances L R /L T of the contactless power transmission coils 1R/1T also change little. Then, even when the inter-coil distance is close to 0, the power transmission efficiency can be increased by satisfying the resonance conditions on the power transmission side and the power reception side at the power transmission frequency f, as in the case where the inter-coil distance is somewhat distant. .

また、送受電側の対向空間内に非磁性導体13を配置するため、送電側及び受電側での渦電流損失が小さくなり、電力伝送効率を上げることができる。 In addition, since the non-magnetic conductor 13 is arranged in the opposing space on the power transmission/reception side, eddy current loss on the power transmission side and the power reception side is reduced, and power transmission efficiency can be improved.

図8から図10に示すように、送電インバータ2から見た入力インピーダンスZINは、若干誘導性であることが望ましい。ここで、コイル間距離がほぼ0に近づいた状態においても、コイル間距離がある程度離れた状態と比べて、送電インバータ2から見た入力インピーダンスZINの誘導性がほとんど変化しないときには、送電インバータ2の安定動作をできるとともに、送電インバータ2の出力電圧を高くする必要がない。 As shown in FIGS. 8 to 10, it is desirable that the input impedance ZIN seen by the transmission inverter 2 is slightly inductive. Here, when the inductivity of the input impedance Z IN seen from the power transmission inverter 2 changes little compared to the state where the distance between the coils is somewhat distant even when the distance between the coils approaches approximately 0, the power transmission inverter 2 can operate stably, and there is no need to increase the output voltage of the power transmission inverter 2 .

なお、非磁性導体13のサイズは、以下の基準で設計されることが望ましい:(1)コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の一部が、渦電流発生により打ち消されること、(2)コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の全部が、渦電流発生により打ち消されるわけではないこと。 The size of the nonmagnetic conductor 13 is desirably designed according to the following criteria: (1) part of the interlinking magnetic flux from the cores 12T/12R to the contactless power transmission coils 1R/1T generates eddy current; (2) Not all of the magnetic flux linkage from the cores 12T/12R to the contactless power transmission coils 1R/1T is canceled by eddy current generation.

例えば、非接触電力伝送コイル1T、1Rの延伸軸と平行方向における非磁性導体13のサイズは、巻線11T、11Rの巻回長以上であり、コア12T、12Rの延伸長以下であることが望ましい。そして、非接触電力伝送コイル1T、1Rの延伸軸と垂直方向における非磁性導体13のサイズは、巻線11T、11Rの巻回径以下であり、コア12T、12Rの径以下であることが望ましい。 For example, the size of the non-magnetic conductor 13 in the direction parallel to the extension axes of the contactless power transmission coils 1T and 1R is greater than or equal to the winding length of the windings 11T and 11R and less than or equal to the extension length of the cores 12T and 12R. desirable. The size of the non-magnetic conductor 13 in the direction perpendicular to the extension axes of the non-contact power transmission coils 1T and 1R is preferably equal to or less than the winding diameters of the windings 11T and 11R and is equal to or less than the diameters of the cores 12T and 12R. .

本開示の第1の非接触電力伝送コイルの構成を図5に示す。本開示の第1の非接触電力伝送コイル1は、巻線11、コア12、非磁性導体13及び筐体14から構成される。図5の左欄に平面図を示し、図5の右欄に正面A-A断面図を示す。 FIG. 5 shows the configuration of the first contactless power transmission coil of the present disclosure. The first contactless power transmission coil 1 of the present disclosure is composed of a winding 11, a core 12, a non-magnetic conductor 13 and a housing 14. The left column of FIG. 5 shows a plan view, and the right column of FIG. 5 shows a sectional view taken along the line AA.

巻線11は、コア12に巻回される。非磁性導体13は、巻線11を巻回されたコア12の直上に配置され、巻線11と絶縁される。筐体14は、アルミニウム等の筐体であり、巻線11、コア12及び非磁性導体13を埋め込む窪みを有する。なお、巻線11の入力及び出力の配線(図5に不図示。)は、筐体14の内部で引き回される。 Winding 11 is wound around core 12 . The non-magnetic conductor 13 is arranged directly above the core 12 around which the winding 11 is wound, and is insulated from the winding 11 . The housing 14 is a housing made of aluminum or the like, and has a recess in which the winding 11, the core 12 and the non-magnetic conductor 13 are embedded. Input and output wiring (not shown in FIG. 5) of the winding 11 are routed inside the housing 14 .

非接触電力伝送コイル1の延伸軸と平行方向における非磁性導体13のサイズは、コア12の延伸長程度である。非接触電力伝送コイル1の延伸軸と垂直方向における非磁性導体13のサイズは、巻線11の巻回径以下であり、コア12の径以下である。 The size of the non-magnetic conductor 13 in the direction parallel to the extension axis of the contactless power transmission coil 1 is about the extension length of the core 12 . The size of the non-magnetic conductor 13 in the direction perpendicular to the extension axis of the contactless power transmission coil 1 is equal to or less than the winding diameter of the winding wire 11 and equal to or less than the diameter of the core 12 .

本開示の第1の非接触電力伝送コイル1は、図2に示した非接触電力伝送コイル1T、1R又は図3に示した非接触電力伝送コイル1Rに代えて適用することができる。 The first contactless power transmission coil 1 of the present disclosure can be applied in place of the contactless power transmission coils 1T and 1R shown in FIG. 2 or the contactless power transmission coil 1R shown in FIG.

本開示の第2の非接触電力伝送コイルの構成を図6に示す。本開示の第2の非接触電力伝送コイル1は、巻線11、コア12、非磁性導体13及び筐体14から構成される。図6の左欄に平面図を示し、図6の右欄に正面B-B断面図を示す。 FIG. 6 shows the configuration of the second contactless power transmission coil of the present disclosure. The second contactless power transmission coil 1 of the present disclosure is composed of a winding 11, a core 12, a non-magnetic conductor 13 and a housing 14. The left column of FIG. 6 shows a plan view, and the right column of FIG. 6 shows a cross-sectional view taken along the line BB.

非磁性導体13は、コア12の直上に配置され、又は、コア12の直上に配置された樹脂等の基板(図6に不図示。)にパターン形成される。巻線11は、非磁性導体13を配置されたコア12に巻回され、非磁性導体13と絶縁される。筐体14は、アルミニウム等の筐体であり、巻線11、コア12及び非磁性導体13を埋め込む窪みを有する。なお、巻線11の入力及び出力の配線(図6に不図示。)は、筐体14の内部で引き回される。 The non-magnetic conductor 13 is arranged directly above the core 12 or patterned on a substrate (not shown in FIG. 6) made of resin or the like arranged directly above the core 12 . The winding 11 is wound around a core 12 on which a non-magnetic conductor 13 is arranged and is insulated from the non-magnetic conductor 13 . The housing 14 is a housing made of aluminum or the like, and has a recess in which the winding 11, the core 12 and the non-magnetic conductor 13 are embedded. Input and output wiring (not shown in FIG. 6) of the winding 11 are routed inside the housing 14 .

非接触電力伝送コイル1の延伸軸と平行方向における非磁性導体13のサイズは、コア12の延伸長程度である。非接触電力伝送コイル1の延伸軸と垂直方向における非磁性導体13のサイズは、巻線11の巻回径以下であり、コア12の径以下である。 The size of the non-magnetic conductor 13 in the direction parallel to the extension axis of the contactless power transmission coil 1 is about the extension length of the core 12 . The size of the non-magnetic conductor 13 in the direction perpendicular to the extension axis of the contactless power transmission coil 1 is equal to or less than the winding diameter of the winding wire 11 and equal to or less than the diameter of the core 12 .

本開示の第2の非接触電力伝送コイル1は、図2に示した非接触電力伝送コイル1T、1R又は図3に示した非接触電力伝送コイル1Rとして適用することができる。 The second contactless power transmission coil 1 of the present disclosure can be applied as the contactless power transmission coils 1T and 1R shown in FIG. 2 or the contactless power transmission coil 1R shown in FIG.

本開示の第3の非接触電力伝送コイルの構成を図7に示す。本開示の第3の非接触電力伝送コイル1は、巻線11、コア12、非磁性導体13及び筐体14から構成される。図7の左欄に平面図を示し、図7の右欄に正面C-C断面図を示す。 FIG. 7 shows the configuration of the third contactless power transmission coil of the present disclosure. A third contactless power transmission coil 1 of the present disclosure is composed of a winding 11 , a core 12 , a nonmagnetic conductor 13 and a housing 14 . The left column of FIG. 7 shows a plan view, and the right column of FIG. 7 shows a cross-sectional view taken along line CC.

巻線11は、コア12に巻回される。筐体14は、アルミニウム等の筐体であり、巻線11及びコア12を埋め込む窪みを有する。非磁性導体13は、筐体14が有する窪みの上部に配置され、巻線11及びコア12と間隔を有し、巻線11と絶縁される。なお、巻線11の入力及び出力の配線(図7に不図示。)は、筐体14の内部で引き回される。 Winding 11 is wound around core 12 . The housing 14 is a housing made of aluminum or the like, and has a recess in which the windings 11 and the core 12 are embedded. The non-magnetic conductor 13 is arranged above the recess of the housing 14 , is spaced from the windings 11 and the core 12 , and is insulated from the windings 11 . Input and output wiring (not shown in FIG. 7) of the winding 11 are routed inside the housing 14 .

非接触電力伝送コイル1の延伸軸と平行方向における非磁性導体13のサイズは、コア12の延伸長程度である。非接触電力伝送コイル1の延伸軸と垂直方向における非磁性導体13のサイズは、巻線11の巻回径以下であり、コア12の径以下である。 The size of the non-magnetic conductor 13 in the direction parallel to the extension axis of the contactless power transmission coil 1 is about the extension length of the core 12 . The size of the non-magnetic conductor 13 in the direction perpendicular to the extension axis of the contactless power transmission coil 1 is equal to or less than the winding diameter of the winding wire 11 and equal to or less than the diameter of the core 12 .

本開示の第3の非接触電力伝送コイル1は、図4に示した非接触電力伝送コイル1T、及び/又は非接触電力伝送コイル1Rとして適用することができる。 The third contactless power transmission coil 1 of the present disclosure can be applied as the contactless power transmission coil 1T and/or the contactless power transmission coil 1R shown in FIG.

本実施形態では、コア12T、12Rは、それぞれ棒状コアであり、非接触電力伝送コイル1T、1Rの延伸軸は、互いに並行するとともに、互いの距離を可変とする。変形例として、コア12T、12Rは、それぞれ棒状コアであり、非接触電力伝送コイル1T、1Rの棒状コア末端は、互いに対向するとともに、互いの距離を可変としてもよい。 In this embodiment, the cores 12T and 12R are rod-shaped cores, and the extension axes of the non-contact power transmission coils 1T and 1R are parallel to each other and the distance between them is variable. As a modification, the cores 12T and 12R may each be rod-shaped cores, and the ends of the rod-shaped cores of the non-contact power transmission coils 1T and 1R may face each other and the distance between them may be variable.

変形例においても、非磁性導体13のサイズは、以下の基準で設計されることが望ましい:(1)コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の一部が、渦電流発生により打ち消されること、(2)コア12T/12Rから非接触電力伝送コイル1R/1Tへの鎖交磁束の全部が、渦電流発生により打ち消されるわけではないこと。 Also in the modified example, the size of the non-magnetic conductor 13 is desirably designed according to the following criteria: (1) part of the interlinking magnetic flux from the cores 12T/12R to the contactless power transmission coils 1R/1T is (2) All of the magnetic flux linkage from the cores 12T/12R to the non-contact power transmission coils 1R/1T is not canceled by the eddy current generation.

送電周波数fがMHzのオーダーであるときには、非磁性導体13での渦電流発生による非磁性導体13での発熱は少ない。送電周波数fがkHzのオーダーであるときには、非磁性導体13での渦電流発生による非磁性導体13での発熱があるが、送電インバータ2の出力電圧が低ければよく、又は、非磁性導体13の冷却機構があればよい。 When the power transmission frequency f is on the order of MHz, heat generation in the nonmagnetic conductor 13 due to eddy current generation in the nonmagnetic conductor 13 is small. When the power transmission frequency f is on the order of kHz, heat is generated in the non-magnetic conductor 13 due to eddy current generation in the non-magnetic conductor 13. A cooling mechanism is sufficient.

本開示の送電インバータの構成を図8に示す。送電インバータ2は、フルブリッジ回路であり、ハイサイドトランジスタ2AH、ローサイドトランジスタ2AL、ハイサイドトランジスタ2BH及びローサイドトランジスタ2BLから構成される。 FIG. 8 shows the configuration of the power transmission inverter of the present disclosure. The power transmission inverter 2 is a full bridge circuit and is composed of a high side transistor 2AH, a low side transistor 2AL, a high side transistor 2BH and a low side transistor 2BL.

ハイサイドトランジスタ2AHに印加される電圧及びこれに流れる電流を、各々、VAH及びIAHとする。ローサイドトランジスタ2ALに印加される電圧及びこれに流れる電流を、各々、VAL及びIALとする。ハイサイドトランジスタ2BHに印加される電圧及びこれに流れる電流を、各々、VBH及びIBHとする。ローサイドトランジスタ2BLに印加される電圧及びこれに流れる電流を、各々、VBL及びIBLとする。送電インバータ2から出力される電圧及びこれから流れる電流を、各々、V及びIとする。 The voltage applied to the high-side transistor 2AH and the current flowing therethrough are VAH and IAH , respectively. Let V AL and I AL be the voltage applied to the low-side transistor 2AL and the current flowing therethrough, respectively. The voltage applied to the high-side transistor 2BH and the current flowing therethrough are V BH and I BH , respectively. The voltage applied to the low-side transistor 2BL and the current flowing therethrough are V BL and I BL , respectively. The voltage output from the power transmission inverter 2 and the current flowing therefrom are V T and I T , respectively.

比較例の送電インバータの貫通電流及び損失を図9に示す。比較例の送電インバータ2では、送電インバータ2から見た入力インピーダンスZINは、純抵抗より若干分だけ容量性である。つまり、電流Iの位相は、電圧Vの位相より、若干分だけ進んでいる。 FIG. 9 shows the through current and loss of the power transmission inverter of the comparative example. In the power transmission inverter 2 of the comparative example, the input impedance ZIN seen by the power transmission inverter 2 is slightly more capacitive than purely resistive. That is, the phase of the current IT leads the phase of the voltage VT by a small amount.

ここで、ハイサイドトランジスタ2AH(2BH)がオンからオフへと切り替わり、ローサイドトランジスタ2AL(2BL)がオフからオンへと切り替わる時について考える。この時、ハイサイドトランジスタ2AH(2BH)のボディダイオードには、順方向に電流IAH(IBH)<0が流れる。そこに、ハイサイドトランジスタ2AH(2BH)に、電圧VAH(VBH)>0が印加される。すると、ハイサイドトランジスタ2AH(2BH)のボディダイオードには、逆方向にリカバリ電流が流れる。よって、ハイサイドトランジスタ2AH(2BH)からローサイドトランジスタ2AL(2BL)へと、黒丸で示した大きさの貫通電流が流れる。そして、送電インバータ2において、黒丸で示した大きさの損失が生じる。なお、ハイサイドトランジスタ2AH(2BH)がオフからオンへと切り替わり、ローサイドトランジスタ2AL(2BL)がオンからオフへと切り替わる時についても、以上の説明と同様となる。 Now, consider the case where the high side transistor 2AH (2BH) is switched from ON to OFF and the low side transistor 2AL (2BL) is switched from OFF to ON. At this time, a forward current I AH (I BH )<0 flows through the body diode of the high-side transistor 2AH (2BH). Then, a voltage V AH (V BH )>0 is applied to the high-side transistor 2AH (2BH). Then, a recovery current flows in the opposite direction through the body diode of the high-side transistor 2AH (2BH). Therefore, a through current having a magnitude indicated by a black circle flows from the high-side transistor 2AH (2BH) to the low-side transistor 2AL (2BL). Then, in the power transmission inverter 2, a loss of the magnitude indicated by the black circle occurs. It should be noted that when the high side transistor 2AH (2BH) is switched from off to on and the low side transistor 2AL (2BL) is switched from on to off, the above description is the same.

本開示の送電インバータの貫通電流及び損失を図10に示す。本開示の送電インバータ2では、送電インバータ2から見た入力インピーダンスZINは、純抵抗より若干分だけ誘導性である。つまり、電流Iの位相は、電圧Vの位相より、若干分だけ遅れている。 FIG. 10 shows the shoot-through current and loss of the transmission inverter of the present disclosure. In the transmission inverter 2 of the present disclosure, the input impedance Z IN seen by the transmission inverter 2 is slightly more inductive than purely resistive. That is, the phase of the current IT is slightly delayed from the phase of the voltage VT .

ここで、ハイサイドトランジスタ2AH(2BH)がオンからオフへと切り替わり、ローサイドトランジスタ2AL(2BL)がオフからオンへと切り替わる時について考える。この時、ハイサイドトランジスタ2AH(2BH)のボディダイオードには、順方向に電流IAH(IBH)<0が流れるわけではない。よって、ハイサイドトランジスタ2AH(2BH)からローサイドトランジスタ2AL(2BL)へと、図9の黒丸で示した大きさの貫通電流が流れるわけではない。そして、送電インバータ2において、図9の黒丸で示した大きさの損失が生じるわけではない。なお、ハイサイドトランジスタ2AH(2BH)がオフからオンへと切り替わり、ローサイドトランジスタ2AL(2BL)がオンからオフへと切り替わる時についても、以上の説明と同様となる。 Now, consider the case where the high side transistor 2AH (2BH) is switched from ON to OFF and the low side transistor 2AL (2BL) is switched from OFF to ON. At this time, the forward current I AH (I BH )<0 does not flow through the body diode of the high-side transistor 2AH (2BH). Therefore, the through current of the magnitude indicated by the black circle in FIG. 9 does not flow from the high side transistor 2AH (2BH) to the low side transistor 2AL (2BL). In addition, in the power transmission inverter 2, the loss of the magnitude indicated by the black circles in FIG. 9 does not occur. It should be noted that when the high side transistor 2AH (2BH) is switched from off to on and the low side transistor 2AL (2BL) is switched from on to off, the above description is the same.

そこで、送電インバータ2から見た入力インピーダンスZINは、純抵抗より若干分だけ誘導性であることが望ましい。ここで、「純抵抗より若干分だけ誘導性である」とは、非接触電力伝送効率の最適化と、送電インバータ2における損失の低減と、を両立させる程度に、電流Iの位相を電圧Vの位相より遅らせる(位相差の最大限は、π/4rad。)ことをいう。 Therefore, it is desirable that the input impedance Z IN seen from the power transmission inverter 2 is slightly more inductive than pure resistance. Here, the phrase “it is slightly more inductive than purely resistive” means that the phase of the current IT is adjusted to the voltage level to the extent that optimization of contactless power transmission efficiency and reduction of loss in the power transmission inverter 2 are compatible. It means to delay the phase of VT (maximum phase difference is π/4 rad).

本開示の非接触電力伝送コイル、非接触電力伝送装置及び非接触電力伝送システムは、コイル間距離が可変である非接触電力伝送に適用することができ、例えば、扉取付部から扉電気錠又は扉照明器具へと非接触電力伝送する目的等に適用することができる。 The non-contact power transmission coil, the non-contact power transmission device, and the non-contact power transmission system of the present disclosure can be applied to non-contact power transmission in which the distance between the coils is variable. It can be applied for the purpose of non-contact power transmission to a door lighting fixture.

S:非接触電力伝送システム
1、1T、1R:非接触電力伝送コイル
2:送電インバータ
2AH:ハイサイドトランジスタ
2AL:ローサイドトランジスタ
2BH:ハイサイドトランジスタ
2BL:ローサイドトランジスタ
3、4:コンデンサ
5:負荷
11、11T、11R:巻線
12、12T、12R:コア
13、13T、13R:非磁性導体
14:筐体
S: Contactless power transmission system 1, 1T, 1R: Contactless power transmission coil 2: Power transmission inverter 2AH: High side transistor 2AL: Low side transistor 2BH: High side transistor 2BL: Low side transistors 3, 4: Capacitor 5: Load 11, 11T, 11R: windings 12, 12T, 12R: cores 13, 13T, 13R: non-magnetic conductor 14: housing

Claims (6)

棒状コアに巻線が巻回される非接触電力伝送コイルを、送電側及び受電側にともに備える非接触電力伝送装置であって、
前記送電側及び前記受電側の非接触電力伝送コイルの延伸軸は、互いに並行するとともに、当該延伸軸と垂直方向における互いの距離を可変とし、
前記送電側及び前記受電側の非接触電力伝送コイルが対向する空間内に、非磁性導体をさらに備え、
前記送電側及び前記受電側の非接触電力伝送コイルの間の距離がより近づいた状態においては、前記送電側及び前記受電側の非接触電力伝送コイルの間の距離がより離れた状態と比べて、前記送電側及び前記受電側の非接触電力伝送コイルの間の鎖交磁束の一部は、前記非磁性導体での渦電流発生により打ち消され、
非接触電力伝送が可能な範囲内において、前記送電側及び前記受電側の非接触電力伝送コイルの間の鎖交磁束と、前記送電側及び前記受電側の非接触電力伝送コイルのインダクタンスとは、前記送電側及び前記受電側の非接触電力伝送コイルの間の距離に依存せず、
前記送電側及び前記受電側の非接触電力伝送コイルの間の距離が最も近づいた状態においても、前記送電側及び前記受電側の非接触電力伝送コイルの間の距離がより離れた状態と同様に、前記送電側及び前記受電側の非接触電力伝送コイルの送電周波数での共振条件を満たす
ことを特徴とする非接触電力伝送装置。
A contactless power transmission device including contactless power transmission coils in which windings are wound around a rod-shaped core on both the power transmitting side and the power receiving side,
The extension axes of the contactless power transmission coils on the power transmission side and the power reception side are parallel to each other, and the distance between each other in the direction perpendicular to the extension axis is variable,
further comprising a non-magnetic conductor in a space where the contactless power transmission coils on the power transmission side and the power reception side face each other;
In a state in which the distance between the contactless power transmission coils on the power transmission side and the power receiving side is closer, compared to a state in which the distance between the contactless power transmission coils on the power transmission side and the power receiving side is greater. , part of the magnetic flux linkage between the contactless power transmission coils on the power transmission side and the power reception side is canceled by eddy current generation in the non-magnetic conductor;
Within the range where contactless power transmission is possible, the magnetic flux linkage between the contactless power transmission coils on the power transmission side and the power receiving side and the inductance of the contactless power transmission coils on the power transmission side and the power receiving side are: regardless of the distance between the contactless power transmission coils on the power transmission side and the power reception side,
Even when the distance between the contactless power transmission coils on the power transmission side and the power receiving side is the shortest, it is similar to the state where the distance between the contactless power transmission coils on the power transmission side and the power receiving side is longer. , satisfying the resonance condition at the power transmission frequency of the contactless power transmission coils on the power transmission side and the power reception side
A contactless power transmission device characterized by:
記送電側及び前記受電側の非接触電力伝送コイルの延伸軸と平行方向における、前記非磁性導体のサイズは、前記送電側及び前記受電側の巻線の巻回長以上であり、前記送電側及び前記受電側の棒状コアの延伸長以下である
ことを特徴とする、請求項1に記載の非接触電力伝送装置。
The size of the non-magnetic conductor in the direction parallel to the extension axes of the contactless power transmission coils on the power transmission side and the power reception side is equal to or greater than the winding length of the windings on the power transmission side and the power reception side, and the power transmission 2. The contactless power transmission device according to claim 1, wherein the extension length is equal to or less than the extension length of the rod-shaped core on the side and the power receiving side.
前記送電側及び前記受電側の非接触電力伝送コイルは、前記非磁性導体を前記送電側及び前記受電側の非接触電力伝送コイルの棒状コアの近傍に配置され、
前記非磁性導体は、前記送電側及び前記受電側の非接触電力伝送コイルの棒状コアに接触するように配置され、又は、前記送電側及び前記受電側の非接触電力伝送コイルの棒状コアに接触するように配置された基板にパターン形成され、
前記送電側及び前記受電側の巻線は、前記非磁性導体を配置された前記送電側及び前記受電側の非接触電力伝送コイルの棒状コアに巻回され、前記非磁性導体と絶縁される
ことを特徴とする、請求項2に記載の非接触電力伝送装置。
The contactless power transmission coils on the power transmitting side and the power receiving side have the non-magnetic conductor disposed in the vicinity of the rod-shaped cores of the contactless power transmission coils on the power transmitting side and the power receiving side,
The non-magnetic conductor is arranged so as to be in contact with the rod-shaped cores of the contactless power transmission coils on the power transmission side and the power reception side, or is in contact with the rod-shaped cores of the contactless power transmission coils on the power transmission side and the power reception side. patterned on a substrate arranged to
The windings of the power transmission side and the power reception side are wound around rod-shaped cores of the contactless power transmission coils of the power transmission side and the power reception side in which the nonmagnetic conductor is arranged, and are insulated from the nonmagnetic conductor. The contactless power transmission device according to claim 2, characterized by:
前記送電側を除く前記受電側のみの非接触電力伝送コイルは、前記非磁性導体を前記送電側を除く前記受電側のみの非接触電力伝送コイルの棒状コアの近傍に配置され、
前記非磁性導体は、前記送電側を除く前記受電側のみの非接触電力伝送コイルの棒状コアに接触するように配置され、又は、前記送電側を除く前記受電側のみの非接触電力伝送コイルの棒状コアに接触するように配置された基板にパターン形成され、
前記送電側を除く前記受電側のみの巻線は、前記非磁性導体を配置された前記送電側を除く前記受電側のみの非接触電力伝送コイルの棒状コアに巻回され、前記非磁性導体と絶縁される
ことを特徴とする、請求項2に記載の非接触電力伝送装置。
The contactless power transmission coil only on the power receiving side excluding the power transmission side is arranged so that the non-magnetic conductor is in the vicinity of the rod-shaped core of the contactless power transmission coil only on the power receiving side excluding the power transmission side,
The non-magnetic conductor is arranged so as to be in contact with the rod-shaped core of the contactless power transmission coil only on the power receiving side excluding the power transmission side, or the contactless power transmission coil only on the power receiving side excluding the power transmission side. patterned on a substrate positioned in contact with the rod-shaped core;
The winding only on the power receiving side excluding the power transmission side is wound around a rod-shaped core of the contactless power transmission coil only on the power receiving side excluding the power transmission side in which the non-magnetic conductor is arranged, and the non-magnetic conductor and The contactless power transmission device according to claim 2, wherein the contactless power transmission device is insulated.
前記非磁性導体は、前記送電側及び前記受電側の非接触電力伝送コイルが対向する空間内に、かつ、前記送電側及び/又は前記受電側の非接触電力伝送コイルのコアを固定している筐体に設置される
ことを特徴とする、請求項1又は2に記載の非接触電力伝送装置。
The non-magnetic conductor fixes cores of the contactless power transmission coils of the power transmission side and/or the power reception side in a space where the contactless power transmission coils of the power transmission side and the power reception side face each other. 3. The contactless power transmission device according to claim 1, wherein the device is installed in a housing.
請求項1から5のいずれかに記載の非接触電力伝送装置と、送電インバータと、を備え、
前記送電インバータから見た入力インピーダンスは、誘導性であり、
前記送電側の非接触電力伝送コイルと前記受電側の非接触電力伝送コイルとの間の非接触電力伝送は、SS(Series-Series)方式で行われる
ことを特徴とする非接触電力伝送システム。
A contactless power transmission device according to any one of claims 1 to 5, and a power transmission inverter,
an input impedance seen by the transmission inverter is inductive, and
A non-contact power transmission system, wherein non-contact power transmission between the non-contact power transmission coil on the power transmission side and the non-contact power transmission coil on the power reception side is performed by an SS (Series-Series) method.
JP2018076867A 2018-04-12 2018-04-12 Contactless power transmission device and contactless power transmission system Active JP7266968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076867A JP7266968B2 (en) 2018-04-12 2018-04-12 Contactless power transmission device and contactless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076867A JP7266968B2 (en) 2018-04-12 2018-04-12 Contactless power transmission device and contactless power transmission system

Publications (2)

Publication Number Publication Date
JP2019186427A JP2019186427A (en) 2019-10-24
JP7266968B2 true JP7266968B2 (en) 2023-05-01

Family

ID=68337540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076867A Active JP7266968B2 (en) 2018-04-12 2018-04-12 Contactless power transmission device and contactless power transmission system

Country Status (1)

Country Link
JP (1) JP7266968B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353050A (en) 2001-05-28 2002-12-06 Jhc Osaka:Kk Ac adapter
JP2013080785A (en) 2011-10-03 2013-05-02 Nissan Motor Co Ltd Non-contact power supply device
WO2014157029A1 (en) 2013-03-27 2014-10-02 株式会社村田製作所 Wireless power-feeding device
JP2016093084A (en) 2014-10-31 2016-05-23 株式会社京光製作所 Wireless power supply system
US20180090974A1 (en) 2016-09-23 2018-03-29 Apple Inc. Electromagnetic shielding for wireless power transfer systems
JP2019170017A (en) 2018-03-22 2019-10-03 Tdk株式会社 Wireless power transmission system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353050A (en) 2001-05-28 2002-12-06 Jhc Osaka:Kk Ac adapter
JP2013080785A (en) 2011-10-03 2013-05-02 Nissan Motor Co Ltd Non-contact power supply device
WO2014157029A1 (en) 2013-03-27 2014-10-02 株式会社村田製作所 Wireless power-feeding device
JP2016093084A (en) 2014-10-31 2016-05-23 株式会社京光製作所 Wireless power supply system
US20180090974A1 (en) 2016-09-23 2018-03-29 Apple Inc. Electromagnetic shielding for wireless power transfer systems
JP2019170017A (en) 2018-03-22 2019-10-03 Tdk株式会社 Wireless power transmission system

Also Published As

Publication number Publication date
JP2019186427A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
TWI596628B (en) Induction coil structure for wireless charging device
JP4898663B2 (en) Non-contact energy transmission apparatus and method
US20160182001A1 (en) Common mode noise filter
US8416050B2 (en) Inductor
US7548137B2 (en) Generalized cancellation of inductor winding capacitance
JP2016516318A (en) Device and method for filtering electromagnetic interference
JP2007042678A (en) Coil and filter circuit
WO2018021510A1 (en) Switching circuit device and electric power converter
KR20200126910A (en) Power supply multi-tapped autotransformer
JP6315109B2 (en) Power supply device
CN109564813A (en) Induction structure element, the choke coil of current compensation and the method for manufacturing induction structure element
CN109478457B (en) Composite smoothing inductor and smoothing circuit
JP7266968B2 (en) Contactless power transmission device and contactless power transmission system
CN112802672A (en) Device for filtering at least one signal
WO2016143149A1 (en) Noise filter
CN108039777B (en) Wireless power transmission device and wireless power reception device
JP6165889B2 (en) Switch mode drive circuit
US9672974B2 (en) Magnetic component and power transfer device
WO2020003565A1 (en) Common mode choke coil
JP6210464B2 (en) electric circuit
JP7447463B2 (en) Contactless power supply device
US20200196400A1 (en) Induction heating apparatus
WO2020151139A1 (en) Winding coil component and fabrication method therefor
WO2016143207A1 (en) Noise filter
KR101456525B1 (en) Bidirectional high frequency transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221005

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221012

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7266968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150