WO2016143207A1 - Noise filter - Google Patents

Noise filter Download PDF

Info

Publication number
WO2016143207A1
WO2016143207A1 PCT/JP2015/084152 JP2015084152W WO2016143207A1 WO 2016143207 A1 WO2016143207 A1 WO 2016143207A1 JP 2015084152 W JP2015084152 W JP 2015084152W WO 2016143207 A1 WO2016143207 A1 WO 2016143207A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
pattern
ground
noise filter
conductor
Prior art date
Application number
PCT/JP2015/084152
Other languages
French (fr)
Japanese (ja)
Inventor
延是 春名
慶多 ▲高▼橋
賢司 下畑
成人 宮川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/063552 external-priority patent/WO2016143149A1/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP15884691.5A priority Critical patent/EP3270511A4/en
Priority to US15/554,159 priority patent/US20180053591A1/en
Priority to JP2016515555A priority patent/JP5951163B1/en
Priority to CN201580077567.1A priority patent/CN107431469A/en
Publication of WO2016143207A1 publication Critical patent/WO2016143207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a noise filter for attenuating noise generated with a switching operation of a semiconductor element in a power conversion device.
  • a power converter as a device for supplying variable frequency and variable voltage power to a load such as a motor.
  • the semiconductor element of the converter part and the inverter part in the device is composed of a power semiconductor, and voltage switching is performed by switching operation of the power semiconductor, or AC voltage of variable frequency and variable voltage is created, AC power is supplied to a load such as a motor.
  • Power semiconductor switching operations generally cause conductive noise due to potential fluctuations at the neutral point of the output U-phase, V-phase, and W-phase, as well as charging and discharging due to parasitic inductance and parasitic capacitance in the device. Are known.
  • common mode currents currents that flow through a plurality of lines with the same phase and amplitude, and that pass through the metal enclosure or ground of the device whose return path is at the ground line or ground potential are called common mode currents.
  • a countermeasure for reducing common mode current also referred to as common mode noise is indispensable.
  • a common mode coil in which a conductor is wound around a magnetic core is used for the purpose of reducing common mode noise, which is conductive noise as described above, which occurs due to switching operation of a semiconductor element.
  • the common mode coil has an effect as a common mode noise filter that reduces common mode noise by using a coil inductance obtained by winding a magnetic core and a resistance component of the magnetic body. Further, when used in combination with a capacitor that reduces common mode noise by utilizing a small impedance between ground, it functions as a filter that further reduces common mode noise.
  • a common mode noise filter that combines an inductor and a capacitor (capacitor) has problems that the number of terminal connection points is increased, the assembly work is complicated, the installation area and the installation volume of components are increased, and the entire apparatus is enlarged.
  • Patent Document 1 discloses that an E-shaped core and an I-shaped core or an E-shaped core are integrated with a dielectric material sandwiched between a winding of a common mode coil and a ground wire.
  • a small common mode noise filter in which an inductor and a capacitor are integrally formed by fitting two magnetic bodies and the installation area of the entire filter is reduced.
  • Patent Document 2 a dielectric is sandwiched between a winding pattern and a ground pattern, and a plurality of blocks configured by connecting the winding pattern and the ground pattern through a through hole are overlapped to form an inductor and a capacitor.
  • An integrated noise filter is described.
  • JP 2000-312121 A Japanese Utility Model Publication No. 62-134213
  • the present invention has been made to solve the above problems, and maintains the attenuation effect of the noise filter up to a high frequency.
  • a dielectric is provided between a winding conductor composed of a planar conductor, which is composed of a winding pattern arranged in layers and electrically connected between the layers, and the conductor of the winding pattern.
  • a noise filter having a ground conductor that constitutes a ground pattern arranged with a winding pattern and a magnetic core around which the winding pattern is wound, wherein the ground pattern is wound at the input / output terminal position of the winding pattern.
  • the ground conductor is provided with a slit that divides a portion disposed around the magnetic core.
  • the noise filter of the present invention it is possible to maintain a high frequency in a frequency band where the noise filter is effective.
  • FIG. 1 It is explanatory drawing for demonstrating the equivalent circuit of the common mode of a noise filter. It is explanatory drawing for demonstrating the noise current path
  • FIG. 2 is a cross-sectional view taken along the cutting line (AA arrow) shown in FIG. It is a perspective view which shows the noise filter by Embodiment 3 of this invention.
  • FIG. 15 is a cross-sectional view taken along the cutting line (BB arrow) shown in FIG. 14. It is a top view which shows the winding pattern of the noise filter by Embodiment 3 of this invention. It is a top view which shows the winding pattern of the noise filter by Embodiment 3 of this invention. It is a top view which shows the ground pattern of the noise filter by Embodiment 3 of this invention. It is sectional drawing which shows the cross section of the noise filter by Embodiment 4 of this invention.
  • FIG. 24 is a cross-sectional view taken along the cutting line (CC arrow) shown in FIG.
  • FIG. 1 is a perspective view for explaining a noise filter (also referred to as a common mode noise filter) according to Embodiment 1
  • FIG. 13 is a cross-sectional view of the common mode noise filter shown in FIG.
  • a noise filter 700 shown in FIG. 1 schematically includes a winding conductor 100 formed of a winding pattern, a dielectric (also referred to as dielectric resin) 200 that insulates between the winding conductors, It is comprised by the ground conductors 19 and 24 and the magnetic body core 400 which comprise a ground pattern.
  • a dielectric also referred to as dielectric resin
  • the winding conductor 100 is a winding made of a planar conductor.
  • the winding has a substrate structure, and the winding conductor has a winding pattern formed in a substrate shape, and a dielectric resin 200 (see FIG. 13) for insulation is sandwiched between the windings.
  • the edge surface of the conductor is also covered with a dielectric resin in order to improve insulation.
  • the winding is wound for two turns, the two-turn winding is composed of three conductor layers, and the first and fifth layers constitute a ground layer. Yes.
  • FIG. 2 is a plan view for explaining the winding pattern of the first embodiment.
  • the winding patterns 1, 7, and 13 constituting the winding patterns on the positive electrode side of the second layer, the third layer, and the fourth layer arranged as shown in FIG.
  • the respective winding patterns 4, 10, and 16 constituting the line pattern are shown. That is, FIG. 2A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side.
  • FIG. 2B shows a winding pattern on the third layer positive electrode side and a winding pattern on the third layer negative electrode side.
  • FIG. 2C shows a winding pattern on the fourth layer positive electrode side and a winding pattern on the fourth layer negative electrode side.
  • Each of the winding patterns is provided with a positive side winding pattern input terminal 3, a negative side winding pattern input terminal 6, a positive side winding pattern output terminal 14, and a negative side winding pattern output terminal 18. ing. Between the winding pattern between the second layer and third layer terminals (also referred to as connection positions) 2 and end 8 or between end 5 and end 12, between the third and fourth layer terminals The end 9 and the end 15 and the end 11 and the end 17 are electrically connected by, for example, an inner via hole (IVH). At this time, since the heat generation at the via position increases as the current density in the via portion increases, it is desirable that the via has a plurality of vias having a cross-sectional area comparable to that of the winding pattern.
  • the winding patterns 1 and 4 and the winding patterns 13 and 16 are formed with slits 25 and 26 and slits 27 and 28, respectively.
  • FIG. 3 is a plan view for explaining the ground pattern of the first embodiment.
  • FIG. 3A shows a positive-side ground pattern 24a and a negative-side ground pattern 24b constituting the first-layer ground pattern
  • FIG. 3B shows a positive-side ground constituting the fifth-layer ground pattern.
  • a pattern 19a and a ground pattern 19b on the negative electrode side are shown, and a ground capacitor is formed between the second layer and the fourth layer, respectively. Since the capacitance of the capacitor is proportional to the area of the opposing conductor, in order to form as large a capacitance as possible, the ground patterns 24a, 24b, and 19a are located at positions that completely face the winding patterns 1, 4, 13, and 16. , 19b provides the maximum facing area and the maximum capacitance.
  • the ground patterns 24a and 24b and the ground patterns 19a and 19b are extended and arranged outside the winding pattern at positions 29, 30, 31, and 32 facing the input terminals 3 and 6 and the output terminals 14 and 18 of the winding pattern. It is installed.
  • the ground patterns 24 a and 24 b are arranged to have a larger area than the opposing winding patterns 1 and 4.
  • the ground patterns 24a and 24b and the ground patterns 19a and 19b are provided with slits 20 and 21 and slits 22 and 23, respectively.
  • this slit is not formed, when the ground pattern is conducted around the magnetic core, the high frequency impedance of the winding is short-circuited due to magnetic coupling with the winding of the winding pattern, and the magnetic core Although the effect of high impedance at high frequency with winding is lost, such a problem does not occur by providing this slit.
  • the second layer positive electrode side and negative electrode side winding pattern is the first layer ground pattern
  • the fourth layer positive electrode side and negative electrode side winding pattern is the fifth layer ground pattern
  • a capacitance (ground capacitor) is formed between them. Since the ground capacitor has a small impedance to the common mode high-frequency noise current, the noise current can be passed through the ground layer and only the noise current can be attenuated. Since the dielectric layer between the winding pattern and the ground layer for forming the capacitance has a higher dielectric constant or a smaller thickness, the capacitance increases and the noise attenuation effect increases.
  • both the positive electrode side and negative electrode side winding patterns are wound around a magnetic core 400 having a high relative permeability at a high frequency such as a ferrite core, an amorphous core, or a crystalline metal magnetic core. Since the direction of the magnetic flux that links the cores of the common mode noise current flowing through both the positive and negative windings is the same, it is effective in attenuating the common mode noise flowing through the positive and negative electrodes.
  • the magnetic core in the first embodiment is a combination of two U-shaped cores (also referred to as a UU core), or a combination of two types of U-shaped and I-shaped cores (also referred to as a UI core). However, as described in the third embodiment described later, a combination of two E-shaped cores (also referred to as an EE core), or a combination of two types of E-shaped and I-shaped cores ( (Also referred to as EI core).
  • FIG. 4 is a diagram simply showing noise current paths of the positive electrode and the negative electrode flowing from the second winding pattern to the first ground pattern in the first embodiment.
  • FIG. 4A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side.
  • FIG. 4B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer.
  • the ground patterns 24a and 24b are provided with slits 20 and 21 so that the pattern around the magnetic core 400 does not conduct, the ground potential passes through the forward path and the ground pattern flowing through the winding pattern.
  • the slits 20 and 21 of the ground patterns 24a and 24b shown in FIG. 4 are positioned so as to overlap with the slits 25 and 26 of the winding patterns 1 and 4 facing each other through a dielectric.
  • the condition in which the slits of the pattern and slits of the winding pattern overlap so that the capacitance is maximized is the largest condition, and the attenuation effect of the common mode noise filter is the greatest.
  • the relationship between the slit position and the filter attenuation effect is the same for the slits 22 and 23 of the ground patterns 19a and 19b on the output side and the slits 27 and 28 of the winding patterns 13 and 16.
  • FIG. 5A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side.
  • FIG. 5B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer.
  • FIG. 8A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side.
  • FIG. 8B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer.
  • FIG. 9A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side.
  • FIG. 9B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer.
  • FIGS. 10 and 11 are perspective views illustrating the grounding structure of the ground pattern according to the first embodiment.
  • the power converter energy lost in the power semiconductor portion is generated as heat. Furthermore, since a large current of several tens to several hundreds of A flows in the winding in order to transmit a larger amount of power, the power converter generates a large amount of heat from the winding wiring. For this reason, the power conversion device often attaches the heat radiation fin 800 to the noise filter. On the other hand, the radiating fin 800 is used as a ground potential because it is a metal block.
  • the radiating fin is used as a ground for cooling the noise filter and grounding the ground capacitor.
  • the heat radiating fin 800 is provided with a groove (recessed portion) 801.
  • the noise filter is attached as shown in FIGS. 10 and 11, the lower portion of the magnetic core 400 is fitted into the groove 801 and accommodated. Then, the ground pattern of the ground conductor 19 and the radiating fin 800 come into contact with each other.
  • This noise filter is attached to the radiating fin 800 with a conductive screw 600 with low contact resistance with a conductor spacer 500 interposed between the ground conductor 19 and the ground conductor 24.
  • the ground conductor 24 is also coupled together and grounded.
  • the heat dissipating fin 800 is insulated.
  • the ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, and the ground pattern is not a line but a planar pattern. Can be grounded with small self-inductance.
  • the self-resonant frequency is 50 MHz or more, that is, the noise attenuation effect is exhibited even if it is 50 MHz or more.
  • a common mode noise filter can be realized.
  • the common mode noise filter according to the first embodiment has a substrate structure, heat is easily transmitted in a direction perpendicular to the surface of the substrate, and the ground pattern is wide. I can tell you. As a result, the cross-sectional area of the winding pattern constituting the common mode noise filter can be reduced, and there is no need for a separate member that dissipates the Joule heat of the winding pattern.
  • the configuration in which the winding is wound from the outside reduces the wiring inductance of the capacitor as compared to starting winding from the inside as shown in FIG. 8, so the wiring inductance of the capacitor is reduced. Can be maintained.
  • the number of pattern layers when realizing the same number of patterns is smaller than winding the winding from the outside, and as a result, the total length of the winding pattern is shortened.
  • the calorific value can be kept small.
  • the outside described here indicates the outer peripheral side (outside) of the common mode magnetic flux that forms a closed magnetic path in the magnetic body in the UU core or UI core.
  • the substrate-type winding pattern is a single phase.
  • the present invention is not limited to this, and the same configuration can be achieved even in the case of a three-phase, and the winding patterns are magnetically coupled. Thus, similar effects can be obtained.
  • FIG. FIG. 12 is a perspective view for explaining the common mode noise filter according to the second embodiment.
  • the noise filter of the second embodiment is a two-stage noise filter 900 configured using two noise filters (common mode noise filters) 700 shown in the first embodiment. By using two stages, the noise attenuation effect is greatly improved.
  • the ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, as in the first embodiment.
  • the common mode noise filter of the second embodiment is a substrate type that forms a winding conductor and a ground conductor by a pattern, a winding pattern and a ground pattern of a two-stage filter can be created integrally.
  • the grounding area does not increase by the amount of terminal connection and is small.
  • FIG. 14 is a perspective view of the noise filter according to the third embodiment, and shows a state in which the radiation fins 1800 are attached.
  • FIG. 15 is a cross-sectional view taken along line BB of the common mode noise filter shown in FIG. The ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, as in the first embodiment.
  • a noise filter (common mode noise filter) 1700 shown in FIG. 14 is roughly similar to the first embodiment in winding conductor 1100 (see FIGS. 16 and 17) constituting the winding pattern, winding conductor. It is composed of a dielectric (also referred to as dielectric resin) 1200 that insulates between them, a ground conductor that constitutes ground patterns 119 and 124, and a magnetic core 1400.
  • the radiating fin 1800 is provided with a groove, and the lower portion of the magnetic core 1400 is fitted and accommodated in the groove.
  • this noise filter is attached to heat radiating fin 1800 by conductive screw 1600, and the mounting structure is the same as the mounting structure of the noise filter and heat radiating fin by conductive screw 600 in the first embodiment. Yes.
  • the magnetic core 1400 has a structure in which two E-shaped cores (E-shaped core) are combined, or an E-shaped core and an I-shaped core (I-shaped core) are combined.
  • the winding conductor 1100 is a winding made of a planar conductor.
  • the winding has a substrate structure, and a dielectric resin 1200 (see FIG. 15) for insulation is sandwiched between the windings. Further, the edge surface of the conductor is also covered with a dielectric resin in order to enhance insulation.
  • the winding is wound for two turns, and the two-turn winding is composed of three conductor layers on each of the positive electrode side and the negative electrode side. Constitutes the ground layer.
  • an E-type core is used as the magnetic core 1400 and the positions of the winding pattern on the positive side and the negative side will be described.
  • FIGS. 16A to 16C show the winding patterns 101, 107, and 113 constituting the winding pattern on the positive electrode side of the second, third, and fourth layers.
  • 17A to 17C show the winding patterns 116, 110, and 104 constituting the winding patterns on the negative electrode side of the fifth layer, the sixth layer, and the seventh layer, respectively.
  • the second to seventh winding patterns are formed in the order of the winding patterns 101, 107, 113, 116, 110, and 104.
  • Each of the winding patterns is provided with a positive side winding pattern input terminal 103, a negative side winding pattern input terminal 106, a positive side winding pattern output terminal 114, and a negative side winding pattern output terminal 118.
  • the end portion 117 and the end portion 112 between the terminals of the fifth and sixth layers and the terminal portion 111 and the end portion 105 between the terminals of the sixth layer and the seventh layer are, for example, inner via holes (IVH). Electrically connected.
  • IVH inner via holes
  • FIG. 18 is a plan view of the ground pattern of the noise filter according to the third embodiment.
  • 18A shows the ground pattern 124 of the first layer
  • FIG. 18B shows the ground pattern 119 of the seventh layer.
  • a ground capacitor is formed between the second layer and the sixth layer, respectively. To do. It is necessary to provide slits 120 and 122 in the ground patterns 124 and 119 as in the first embodiment.
  • the grounding position of the ground layer is also the noise current (outward path noise current) flowing through the winding pattern and the noise current (flowing to the ground potential through the ground pattern) ( It is necessary to ground so that the direction of the noise current on the return path is opposite.
  • the ground layer is provided at one location on the positive electrode side and one on the negative electrode side.
  • FIG. 19 is a cross-sectional view of a common mode filter that is a noise filter according to the fourth embodiment.
  • the cross-sectional position corresponds to the line BB in FIG. 14 showing the third embodiment.
  • the positive winding 127 and the negative winding 128 are insulated by an insulating spacer 129.
  • 20A and 20B are plan views of the winding pattern of the noise filter according to the fourth embodiment.
  • FIG. 20A shows the positive electrode side
  • FIG. 20B shows the negative electrode side.
  • FIG. 21 is a plan view of the ground pattern of the noise filter according to the fourth embodiment.
  • FIG. 21A shows the positive electrode side
  • FIG. 21B shows the negative electrode side.
  • the ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, as in the first embodiment.
  • the ground pattern 124 on the positive electrode side and the winding pattern 101 for forming a capacitor between the ground and the ground are integrated as a substrate, for example, and a large capacitance is realized by using a dielectric between the ground pattern and the winding pattern. ing. The same applies to the capacitor on the negative electrode side.
  • the configuration of the part forming the capacitor is the same as that of the third embodiment.
  • the windings 127 and 128 other than the portion constituting the capacitor are not formed in the pattern as in the third embodiment but are formed in a spiral shape, for example.
  • the winding that does not face the ground pattern of the winding conductor is not a substrate pattern, but is formed of a continuous conductor, so that the dielectric does not enter between windings of the same polarity, thus reducing the capacitance between the windings. It becomes possible to do. Since the capacitance (parasitic capacitance) Cs between windings of the same polarity is parallel to the inductance (common mode inductance) L as shown in the equivalent circuit of FIG.
  • the noise reduction of the noise filter is reduced as the capacitance Cs is smaller. Performance is improved.
  • the relationship with the ground-to-ground capacitor Cg is expressed as shown in FIG.
  • the winding patterns 101 and 104 forming the ground-to-ground capacitor Cg and the windings 127 and 128 are connected to each other at the connection positions 125 and 126 by screwing, welding, or the like.
  • FIG. 23 is a perspective view of the noise filter 2000 of the fifth embodiment, and shows a state in which the radiation fins 3800 are attached. Similar to the fourth embodiment, the winding conductor is formed in a spiral shape, and since no dielectric is contained between the windings of the same polarity, the capacitance between the windings can be reduced. For this reason, the capacitance in parallel with the inductance formed by the winding and the magnetic core is small, and the noise reduction performance is improved.
  • FIG. 24 is a perspective view of the capacitor member 2100 and the capacitor member 2200 constituting the capacitor of the noise filter of the fifth embodiment.
  • FIG. 24A shows a capacitor member 2100 on the positive electrode side
  • FIG. 24B shows a capacitor member on the negative electrode side.
  • FIG. 25 is a diagram showing a winding pattern and a ground pattern of the capacitor member 2100 and the capacitor member 2200 that constitute the capacitor of the fifth embodiment.
  • FIG. 25A shows a winding pattern 2201 on the positive electrode side and a ground pattern on the positive electrode side
  • FIG. 25B shows a winding pattern on the negative electrode side and a ground pattern on the negative electrode side.
  • the ground patterns 2104 and 2204 are extended and disposed outside the winding pattern at the input / output terminal positions 2103 and 2203, and further, slits 2105 and 2205 are formed. It is.
  • the dielectric resin is sandwiched between the winding patterns 2201, 2101 and the ground patterns 2204, 2104, and a capacitor is formed between the winding pattern and the ground pattern to have a function of reducing noise. Same as 1.
  • the fifth embodiment is characterized in that the ground pattern is bent, unlike the first to fourth embodiments.
  • FIG. 26 shows a winding conductor formed in a spiral shape according to the fifth embodiment.
  • FIG. 26A shows a winding conductor 2800 on the positive electrode side
  • FIG. 26B shows a winding conductor on the negative electrode side.
  • FIG. The terminal portion 2701 and the terminal portion 2801 are electrically connected to the input / output terminal positions 2202 and 2102 having the pattern shown in FIG. 25 by screwing, welding, or the like.
  • FIG. 27 is a cross-sectional view taken along the cutting line (CC arrow) shown in FIG.
  • a metal pressing member 2300 for pressing the magnetic core 2400 against the radiating fin 3800 is provided.
  • the winding conductor 2800 is pressed against the radiating fin 3800 by, for example, screwing or the like, through the insulating sheet 2500 having high thermal conductivity, the magnetic core 2400, and the insulating spacer 3000.
  • the side surface of the winding conductor 2700 is pressed against the insulating sheet 3100 having high thermal conductivity.
  • the capacitor members 2100 and 2200 that use a dielectric to form a capacitor between the winding pattern and the ground pattern not only propagate the noise current but also propagate heat to the heat radiation fins. Since it becomes a route, heat dissipation is excellent. For this reason, the cross-sectional area of the winding conductor can be reduced, and as a result, the magnetic core can be reduced, so that the entire filter can be reduced in size.
  • heat is propagated to the metal member 2900 connected to the heat radiating fin through the insulating sheet 3100 having a high thermoelectric property on the side surface of the winding conductor, thereby improving the heat dissipation of the filter.
  • the whole can be downsized.
  • the magnetic core is of a type having high electrical conductivity
  • the winding conductor 2700 is pressed directly against the insulating sheet 3100 with the magnetic core, a noise current flows from the winding to the magnetic core and bypasses the noise filter.
  • the reason why the insulating sheet 3100 is insulative is also the same.
  • the insulating spacer 3000 has a configuration in which an insulating member and a spring are combined, the winding conductor can be pressed against the insulating sheet 3100 using elastic force, so that an allowable winding and ferrite core dimensional error is also large. Therefore, the manufacturing cost can be reduced.
  • a magnetic core generally has a property that its characteristics change with temperature.
  • the pressing member 2300 for pressing the magnetic core is made of metal. The method of propagating heat from the side surface of the winding conductor described in the fifth embodiment to the heat radiating fin is also effective in the noise filter of the first embodiment covered with an insulator.
  • the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.

Abstract

In order to maintain the noise filter damping effect up to higher frequencies and to enable preventing high temperatures in the noise filter, ground patterns (19a), (19b), (24a), (24b) of ground conductors (19), (24) are arranged extending outside of a winding pattern, in positions (29)-(32) corresponding to the input-output terminal positions (3), (6), (14), (18) of the winding pattern of a winding conductor (100), and in the ground patterns (19a), (19b), (24a), (24b) of the ground conductors, slits (20)-(23), (25)-(28) are provided which divide portions arranged around a magnetic core (400).

Description

ノイズフィルタNoise filter
 この発明は、電力変換装置における半導体素子のスイッチング動作に伴って発生するノイズを減衰させるノイズフィルタに関する。 The present invention relates to a noise filter for attenuating noise generated with a switching operation of a semiconductor element in a power conversion device.
 モータ等の負荷に可変周波数、可変電圧の電力を供給するための装置として電力変換装置がある。電力変換装置は、装置内のコンバータ部分やインバータ部分の半導体素子がパワー半導体で構成されており、パワー半導体のスイッチング動作により電圧の昇降圧を行ったり、可変周波数、可変電圧の交流電圧を作り、モータ等の負荷に交流電力を供給する。パワー半導体のスイッチング動作により、たとえば出力のU相、V相、W相の中性点の電位変動や、装置内の寄生インダクタンス、寄生キャパシタンスによる充放電によって伝導性ノイズが発生することが一般的に知られている。伝導性ノイズの中でも複数の線に同位相、同振幅で流れ、帰還経路が接地線、接地電位になっている装置の金属筺体や大地を通る電流はコモンモード電流と呼ばれている。伝導性ノイズを減衰するためには、コモンモード電流(コモンモードノイズとも称す)の低減対策が不可欠となる。 There is a power converter as a device for supplying variable frequency and variable voltage power to a load such as a motor. In the power conversion device, the semiconductor element of the converter part and the inverter part in the device is composed of a power semiconductor, and voltage switching is performed by switching operation of the power semiconductor, or AC voltage of variable frequency and variable voltage is created, AC power is supplied to a load such as a motor. Power semiconductor switching operations generally cause conductive noise due to potential fluctuations at the neutral point of the output U-phase, V-phase, and W-phase, as well as charging and discharging due to parasitic inductance and parasitic capacitance in the device. Are known. Among conductive noises, currents that flow through a plurality of lines with the same phase and amplitude, and that pass through the metal enclosure or ground of the device whose return path is at the ground line or ground potential are called common mode currents. In order to attenuate conductive noise, a countermeasure for reducing common mode current (also referred to as common mode noise) is indispensable.
 半導体素子のスイッチング動作等に伴い発生する上記のような導電性ノイズであるコモンモードノイズを低減することを目的として、磁性体コアに導体を巻回したコモンモードコイルが用いられる。コモンモードコイルは、磁性体コアに巻線を施したコイルインダクタンスと磁性体の抵抗成分を利用して、コモンモードノイズを低減させるコモンモードノイズフィルタとしての効果がある。また、対接地間の小さなインピーダンスを利用してコモンモードノイズを低減させるコンデンサと合わせて使用するとよりコモンモードノイズを低減させるフィルタとして機能する。 A common mode coil in which a conductor is wound around a magnetic core is used for the purpose of reducing common mode noise, which is conductive noise as described above, which occurs due to switching operation of a semiconductor element. The common mode coil has an effect as a common mode noise filter that reduces common mode noise by using a coil inductance obtained by winding a magnetic core and a resistance component of the magnetic body. Further, when used in combination with a capacitor that reduces common mode noise by utilizing a small impedance between ground, it functions as a filter that further reduces common mode noise.
 しかしながら、インダクタとコンデンサ(キャパシタ)を組み合わせるコモンモードノイズフィルタは、端子接続箇所が増える、組み立て作業が煩雑になる、部品の設置面積、設置体積が増えるため装置全体が大きくなるという課題がある。 However, a common mode noise filter that combines an inductor and a capacitor (capacitor) has problems that the number of terminal connection points is increased, the assembly work is complicated, the installation area and the installation volume of components are increased, and the entire apparatus is enlarged.
 これを解決する方法として、例えば、特許文献1には、コモンモードコイルの巻線と接地線間に誘電体を挟み一体化した部品を、E字型コアとI字型コアもしくはE字型コア2個の磁性体に嵌め合わせることでインダクタとコンデンサを一体で構成した、フィルタ全体の設置面積を小さくした小型のコモンモードノイズフィルタが記載されている。また、特許文献2にも巻線パターンとグラウンドパターン間に誘電体を挟み、巻線パターンどうしとグラウンドパターンどうしをスルーホールを介して接続して構成されるブロックを複数重ね合わせてインダクタとコンデンサを一体化したノイズフィルタが記載されている。 As a method for solving this, for example, Patent Document 1 discloses that an E-shaped core and an I-shaped core or an E-shaped core are integrated with a dielectric material sandwiched between a winding of a common mode coil and a ground wire. There is described a small common mode noise filter in which an inductor and a capacitor are integrally formed by fitting two magnetic bodies and the installation area of the entire filter is reduced. In Patent Document 2, a dielectric is sandwiched between a winding pattern and a ground pattern, and a plurality of blocks configured by connecting the winding pattern and the ground pattern through a through hole are overlapped to form an inductor and a capacitor. An integrated noise filter is described.
特開2000-312121号公報JP 2000-312121 A 実開昭62-134213号公報Japanese Utility Model Publication No. 62-134213
 しかしながら、特許文献1、2のノイズフィルタはともにフィルタ内部から接地線を引き出してきて、接地電位に接続するため、接地線が長くなりコンデンサが比較的低い周波数で容量性から誘導性に変わってしまい、ノイズ減衰効果が高周波まで維持できないという課題があった。 However, since the noise filters of Patent Documents 1 and 2 both draw out a ground wire from the inside of the filter and connect to the ground potential, the ground wire becomes long and the capacitor changes from capacitive to inductive at a relatively low frequency. There is a problem that the noise attenuation effect cannot be maintained up to a high frequency.
 また、例えば車載用の電力変換装置の場合、エンジンルームからの熱が伝わることによりたとえば50度以上の温度環境におかれ、さらに、数10A以上の大電流が電力変換装置の回路を流れることで、ノイズフィルタが置かれる環境は高温となる。フィルタを構成する磁性体や誘電体は高温になると特性が劣化したり、絶縁性劣化等の耐久性が劣化するため、例えば、巻線のジュール熱を放熱させる部材を別途設ける必要が生じ、その結果フィルタが大型化してしまう課題があった。 For example, in the case of an in-vehicle power converter, heat from the engine room is transferred to a temperature environment of, for example, 50 degrees or more, and a large current of several tens of amps flows through the power converter circuit. The environment where the noise filter is placed becomes high temperature. The magnetic and dielectric materials that make up the filter deteriorate when the temperature rises, and the durability such as insulation degradation deteriorates.For example, it is necessary to separately provide a member that radiates the Joule heat of the winding. As a result, there is a problem that the filter becomes large.
 この発明は、上記のような問題点を解決するためになされたものであり、ノイズフィルタの減衰効果を高周波まで維持させるものである。 The present invention has been made to solve the above problems, and maintains the attenuation effect of the noise filter up to a high frequency.
 この発明に係るノイズフィルタにおいては、平面状の導体からなり、層状に配置され層間を電気的に接続した巻線パターンから構成される巻線導体と、巻線パターンの導体との間に誘電体を挟んで配置されたグラウンドパターンを構成するグラウンド導体と、巻線パターンが巻き回された磁性体コアを備えたノイズフィルタであって、グラウンドパターンが巻線パターンの入出力端子位置において、巻線パターンの外側に延伸されて配設されており、グラウンド導体のグラウンドパターンには、磁性体コアの周りに配置される部分を分断するスリットが設けられている。 In the noise filter according to the present invention, a dielectric is provided between a winding conductor composed of a planar conductor, which is composed of a winding pattern arranged in layers and electrically connected between the layers, and the conductor of the winding pattern. A noise filter having a ground conductor that constitutes a ground pattern arranged with a winding pattern and a magnetic core around which the winding pattern is wound, wherein the ground pattern is wound at the input / output terminal position of the winding pattern. The ground conductor is provided with a slit that divides a portion disposed around the magnetic core.
 この発明のノイズフィルタによれば、ノイズフィルタの効果がある周波数帯域の高周波まで維持させることができる。 According to the noise filter of the present invention, it is possible to maintain a high frequency in a frequency band where the noise filter is effective.
この発明の実施の形態1によるノイズフィルタを示す斜視図である。It is a perspective view which shows the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタの巻線パターンを示す平面図である。It is a top view which shows the winding pattern of the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタのグラウンドパターンを示す平面図である。It is a top view which shows the ground pattern of the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタのコンデンサを流れるノイズ電流経路を説明するための説明図である。It is explanatory drawing for demonstrating the noise current path | route which flows through the capacitor | condenser of the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタのコンデンサを流れるノイズ電流経路を説明するための説明図である。It is explanatory drawing for demonstrating the noise current path | route which flows through the capacitor | condenser of the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタのコモンモードの等価回路を説明するための説明図である。It is explanatory drawing for demonstrating the equivalent circuit of the common mode of the noise filter by Embodiment 1 of this invention. ノイズフィルタのコモンモードの等価回路を説明するための説明図である。It is explanatory drawing for demonstrating the equivalent circuit of the common mode of a noise filter. この発明の実施の形態1によるノイズフィルタのコンデンサを流れるノイズ電流経路を説明するための説明図である。It is explanatory drawing for demonstrating the noise current path | route which flows through the capacitor | condenser of the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタのコンデンサを流れるノイズ電流経路を説明するための説明図である。It is explanatory drawing for demonstrating the noise current path | route which flows through the capacitor | condenser of the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタおけるグラウンドパターンの接地構造を説明するための斜視図である。It is a perspective view for demonstrating the grounding structure of the ground pattern in the noise filter by Embodiment 1 of this invention. この発明の実施の形態1によるノイズフィルタおけるグラウンドパターンの接地構造を説明するための斜視図である。It is a perspective view for demonstrating the grounding structure of the ground pattern in the noise filter by Embodiment 1 of this invention. この発明の実施の形態2によるノイズフィルタを示す斜視図である。It is a perspective view which shows the noise filter by Embodiment 2 of this invention. 図1に示す切断線(A-A矢視)における断面図である。FIG. 2 is a cross-sectional view taken along the cutting line (AA arrow) shown in FIG. この発明の実施の形態3によるノイズフィルタを示す斜視図である。It is a perspective view which shows the noise filter by Embodiment 3 of this invention. 図14に示す切断線(B-B矢視)における断面図である。FIG. 15 is a cross-sectional view taken along the cutting line (BB arrow) shown in FIG. 14. この発明の実施の形態3によるノイズフィルタの巻線パターンを示す平面図である。It is a top view which shows the winding pattern of the noise filter by Embodiment 3 of this invention. この発明の実施の形態3によるノイズフィルタの巻線パターンを示す平面図である。It is a top view which shows the winding pattern of the noise filter by Embodiment 3 of this invention. この発明の実施の形態3によるノイズフィルタのグラウンドパターンを示す平面図である。It is a top view which shows the ground pattern of the noise filter by Embodiment 3 of this invention. この発明の実施の形態4によるノイズフィルタの断面を示す断面図である。It is sectional drawing which shows the cross section of the noise filter by Embodiment 4 of this invention. この発明の実施の形態4によるノイズフィルタの巻線パターンを示す平面図である。It is a top view which shows the winding pattern of the noise filter by Embodiment 4 of this invention. この発明の実施の形態4によるノイズフィルタのグラウンドパターンを示す平面図である。It is a top view which shows the ground pattern of the noise filter by Embodiment 4 of this invention. この発明の実施の形態4によるノイズフィルタのコモンモードの等価回路を説明するための説明図である。It is explanatory drawing for demonstrating the equivalent circuit of the common mode of the noise filter by Embodiment 4 of this invention. この発明の実施の形態5によるノイズフィルタを示す斜視図である。It is a perspective view which shows the noise filter by Embodiment 5 of this invention. この発明の実施の形態5によるノイズフィルタの巻線とグラウンドが一体になった基板部分を示す斜視図である。It is a perspective view which shows the board | substrate part with which the coil | winding and ground of the noise filter by Embodiment 5 of this invention were united. この発明の実施の形態5によるノイズフィルタの巻線パターンとグラウンドパターンを示す平面図である。It is a top view which shows the winding pattern and ground pattern of the noise filter by Embodiment 5 of this invention. この発明の実施の形態5によるノイズフィルタのコイル部分を示す斜視図である。It is a perspective view which shows the coil part of the noise filter by Embodiment 5 of this invention. 図23に示す切断線(C-C矢視)における断面図である。FIG. 24 is a cross-sectional view taken along the cutting line (CC arrow) shown in FIG.
実施の形態1.
 図1は、実施の形態1に係るノイズフィルタ(コモンモードノイズフィルタとも称す)を説明するための斜視図、図13は図1に示すコモンモードノイズフィルタのA-A線における断面図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view for explaining a noise filter (also referred to as a common mode noise filter) according to Embodiment 1, and FIG. 13 is a cross-sectional view of the common mode noise filter shown in FIG.
 図1に示すノイズフィルタ(コモンモードノイズフィルタ)700は、概略的には、巻線パターンから構成される巻線導体100、巻線導体間を絶縁する誘電体(誘電体樹脂とも称す)200、グラウンドパターンを構成するグラウンド導体19、24、磁性体コア400とで構成されている。 A noise filter (common mode noise filter) 700 shown in FIG. 1 schematically includes a winding conductor 100 formed of a winding pattern, a dielectric (also referred to as dielectric resin) 200 that insulates between the winding conductors, It is comprised by the ground conductors 19 and 24 and the magnetic body core 400 which comprise a ground pattern.
 巻線導体100は平面状の導体からなる巻線である。巻線は、基板構造となっており、巻線導体は基板状に巻線パターンが形成され、巻線間に絶縁のための誘電体樹脂200(図13参照)が挟まれている。また、導体の縁面も絶縁性を高めるために誘電体樹脂で覆われている。本実施の形態の例では、巻線は2ターン分巻かれており、2ターンの巻線は3層の導体層で構成されており、1層目と5層目はグラウンド層を構成している。 The winding conductor 100 is a winding made of a planar conductor. The winding has a substrate structure, and the winding conductor has a winding pattern formed in a substrate shape, and a dielectric resin 200 (see FIG. 13) for insulation is sandwiched between the windings. The edge surface of the conductor is also covered with a dielectric resin in order to improve insulation. In the example of this embodiment, the winding is wound for two turns, the two-turn winding is composed of three conductor layers, and the first and fifth layers constitute a ground layer. Yes.
 図2は、本実施の形態1の巻線パターンを説明するための平面図である。図2では、図13に示すように配置された2層目、3層目、4層目の正極側の巻線パターンを構成するそれぞれの巻線パターン1、7、13と、負極側の巻線パターンを構成するそれぞれの巻線パターン4、10、16を示している。即ち、図2(a)は、2層目正極側の巻線パターンと2層目負極側の巻線パターンを示している。図2(b)は、3層目正極側の巻線パターンと3層目負極側の巻線パターンを示している。図2(c)は、4層目正極側の巻線パターンと4層目負極側の巻線パターンを示している。 FIG. 2 is a plan view for explaining the winding pattern of the first embodiment. In FIG. 2, the winding patterns 1, 7, and 13 constituting the winding patterns on the positive electrode side of the second layer, the third layer, and the fourth layer arranged as shown in FIG. The respective winding patterns 4, 10, and 16 constituting the line pattern are shown. That is, FIG. 2A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side. FIG. 2B shows a winding pattern on the third layer positive electrode side and a winding pattern on the third layer negative electrode side. FIG. 2C shows a winding pattern on the fourth layer positive electrode side and a winding pattern on the fourth layer negative electrode side.
 巻線パターンのそれぞれには、正極側の巻線パターン入力端子3、負極側の巻線パターン入力端子6、正極側の巻線パターン出力端子14、負極側の巻線パターン出力端子18が設けられている。巻線パターン間である2層目と3層目の端子間の端部(接続位置とも称す)2と端部8や端部5と端部12、3層目と4層目の端子間の端部9と端部15、端部11と端部17は、例えば、インナービアホール(IVH)で電気的に接続されている。このとき、ビア部分の電流密度が高くなるとビア位置での発熱が大きくなるため、ビアは、巻線パターンと同程度の断面積になる程度に複数のビアを打つことが望ましい。また、巻線パターン1、4と巻線パターン13、16は、それぞれスリット25、26とスリット27、28が形成されている。 Each of the winding patterns is provided with a positive side winding pattern input terminal 3, a negative side winding pattern input terminal 6, a positive side winding pattern output terminal 14, and a negative side winding pattern output terminal 18. ing. Between the winding pattern between the second layer and third layer terminals (also referred to as connection positions) 2 and end 8 or between end 5 and end 12, between the third and fourth layer terminals The end 9 and the end 15 and the end 11 and the end 17 are electrically connected by, for example, an inner via hole (IVH). At this time, since the heat generation at the via position increases as the current density in the via portion increases, it is desirable that the via has a plurality of vias having a cross-sectional area comparable to that of the winding pattern. The winding patterns 1 and 4 and the winding patterns 13 and 16 are formed with slits 25 and 26 and slits 27 and 28, respectively.
 図3は、本実施の形態1のグラウンドパターンを説明するための平面図である。図3(a)は、1層目のグラウンドパターンを構成する正極側のグラウンドパターン24a、負極側のグラウンドパターン24b、図3(b)は、5層目のグラウンドパターンを構成する正極側のグラウンドパターン19a、負極側のグラウンドパターン19bを示しており、それぞれ2層目、4層目との間に対地コンデンサを形成する。コンデンサのキャパシタンスは、対向する導体の面積に比例するため、できる限り大きい容量を形成するためには、巻線パターン1、4、13、16と完全に対向する位置にグラウンドパターン24a、24b、19a、19bを設けると対向面積は最大となり、キャパシタンスも最大となる。
 グラウンドパターン24a、24bとグラウンドパターン19a、19bが巻線パターンの入力端子3、6および出力端子14、18に対向する位置29、30、31、32において、巻線パターンの外側に延伸されて配設されている。言い換えると、例えば、グラウンドパターン24a、24bは、それぞれ対向する巻線パターン1、4よりも面積が広く配置されていることになる。
 また、グラウンドパターン24a、24bとグラウンドパターン19a、19bは、それぞれスリット20、21とスリット22、23が形成されている。本スリットが形成されていなければ、磁性体コアの周りでグラウンドパターンが導通すると巻線パターンの巻線との磁気結合により、巻線の高周波インピーダンスがショートした状態のようになり、磁性体コアに巻線を施した高周波での高いインピーダンスの効果が失われてしまうが、本スリットを設けることによりこのような問題を生じない。
FIG. 3 is a plan view for explaining the ground pattern of the first embodiment. FIG. 3A shows a positive-side ground pattern 24a and a negative-side ground pattern 24b constituting the first-layer ground pattern, and FIG. 3B shows a positive-side ground constituting the fifth-layer ground pattern. A pattern 19a and a ground pattern 19b on the negative electrode side are shown, and a ground capacitor is formed between the second layer and the fourth layer, respectively. Since the capacitance of the capacitor is proportional to the area of the opposing conductor, in order to form as large a capacitance as possible, the ground patterns 24a, 24b, and 19a are located at positions that completely face the winding patterns 1, 4, 13, and 16. , 19b provides the maximum facing area and the maximum capacitance.
The ground patterns 24a and 24b and the ground patterns 19a and 19b are extended and arranged outside the winding pattern at positions 29, 30, 31, and 32 facing the input terminals 3 and 6 and the output terminals 14 and 18 of the winding pattern. It is installed. In other words, for example, the ground patterns 24 a and 24 b are arranged to have a larger area than the opposing winding patterns 1 and 4.
The ground patterns 24a and 24b and the ground patterns 19a and 19b are provided with slits 20 and 21 and slits 22 and 23, respectively. If this slit is not formed, when the ground pattern is conducted around the magnetic core, the high frequency impedance of the winding is short-circuited due to magnetic coupling with the winding of the winding pattern, and the magnetic core Although the effect of high impedance at high frequency with winding is lost, such a problem does not occur by providing this slit.
 本実施の形態1では、2層目の正極側と負極側の巻線パターンは1層目のグラウンドパターン、4層目の正極側と負極側の巻線パターンは5層目のグラウンドパターンとの間にキャパシタンス(対地コンデンサ)を構成している。対地コンデンサは、コモンモードの高周波ノイズ電流に対するインピーダンスが小さいため、ノイズ電流をグラウンド層に流し、ノイズ電流のみを減衰させることができる。キャパシタンスを構成するための巻線パターンとグラウンド層間の誘電体層は、その誘電率が高い、もしくは厚みが薄いほどキャパシタンスが大きくなるためノイズ減衰効果は大きくなる。 In the first embodiment, the second layer positive electrode side and negative electrode side winding pattern is the first layer ground pattern, the fourth layer positive electrode side and negative electrode side winding pattern is the fifth layer ground pattern A capacitance (ground capacitor) is formed between them. Since the ground capacitor has a small impedance to the common mode high-frequency noise current, the noise current can be passed through the ground layer and only the noise current can be attenuated. Since the dielectric layer between the winding pattern and the ground layer for forming the capacitance has a higher dielectric constant or a smaller thickness, the capacitance increases and the noise attenuation effect increases.
 さらに、正極側、負極側の両巻線パターンは、例えば、フェライトコア、アモルファスコア、結晶性の金属磁性体コアといった高周波で比透磁率が大きい磁性体コア400に巻き回す。正極側、負極側の両巻線を流れるコモンモードのノイズ電流のコアを鎖交する磁束の方向は、同じであるため、正極、負極に流れるコモンモードノイズの減衰に効果的である。本実施の形態1における磁性体コアは、U形状の2個のコアを組み合わせたもの(UUコアとも称す)、もしくはU形状とI形状の2種類のコアを組み合わせたもの(UIコアとも称す)であるが、後述する実施の形態3で説明するように、E形状の2個のコアを組み合わせたもの(EEコアとも称す)、もしくはE形状とI形状の2種類のコアを組み合わせたもの(EIコアとも称す)でもよい。 Further, both the positive electrode side and negative electrode side winding patterns are wound around a magnetic core 400 having a high relative permeability at a high frequency such as a ferrite core, an amorphous core, or a crystalline metal magnetic core. Since the direction of the magnetic flux that links the cores of the common mode noise current flowing through both the positive and negative windings is the same, it is effective in attenuating the common mode noise flowing through the positive and negative electrodes. The magnetic core in the first embodiment is a combination of two U-shaped cores (also referred to as a UU core), or a combination of two types of U-shaped and I-shaped cores (also referred to as a UI core). However, as described in the third embodiment described later, a combination of two E-shaped cores (also referred to as an EE core), or a combination of two types of E-shaped and I-shaped cores ( (Also referred to as EI core).
 図4は、実施の形態1における2層目の巻線パターンから1層目のグラウンドパターンに流れる正極、負極それぞれのノイズ電流の経路を簡易的に示した図である。図4(a)は2層目正極側の巻線パターンと2層目負極側の巻線パターンを示している。また図4(b)は1層目のグラウンドパターンを構成する正極側のグラウンドパターンと負極側のグラウンドパターンを示している。図4に示すようにグラウンドパターン24a、24bにスリット20、21を設け、磁性体コア400を周回するパターンが導通しないようにすると、巻線パターンを流れている往路とグラウンドパターンを通って接地電位に流れようとする復路のノイズ電流の向きが反対となり、発生させる磁束も反対となって打ち消しあうため、インダクタンスが発生しない。正極側のノイズ電流INpと負極側のノイズ電流INnの向きは破線のようになる。つまり、コモンモードの等価回路図(コアの等価回路は簡易的に1ターンごとの自己インダクタンスLと1ターン目と2ターン目の相互インダクタンスMのみで表記しているが、厳密には抵抗成分や容量成分をもつ。ここでの説明には不要のためインダクタンスLのみ表記。)で示すと、図7のようにはならずに、図6のようになるため、ノイズ減衰効果を高めることが可能となる。なお、対地間コンデンサCとの関係は、図6のように表わされる。また、出力側のグラウンドパターン19a、19bと巻線パターン13、16も同様の配置関係にする必要がある。 FIG. 4 is a diagram simply showing noise current paths of the positive electrode and the negative electrode flowing from the second winding pattern to the first ground pattern in the first embodiment. FIG. 4A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side. FIG. 4B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer. As shown in FIG. 4, when the ground patterns 24a and 24b are provided with slits 20 and 21 so that the pattern around the magnetic core 400 does not conduct, the ground potential passes through the forward path and the ground pattern flowing through the winding pattern. The direction of the noise current in the return path that is going to flow in the opposite direction is reversed, and the generated magnetic flux is also reversed and cancel each other, so that no inductance is generated. The directions of the positive-side noise current INp and the negative-side noise current INn are as shown by broken lines. In other words, an equivalent circuit diagram of the common mode (the core equivalent circuit is simply expressed only by the self-inductance L for each turn and the mutual inductance M for the first and second turns. (It is not necessary for the description here, so only the inductance L is indicated.) If it is shown as in FIG. 6 instead of FIG. 7, it is possible to enhance the noise attenuation effect. It becomes. The relationship with the ground-to-ground capacitor C is expressed as shown in FIG. Also, the output- side ground patterns 19a and 19b and the winding patterns 13 and 16 need to have the same arrangement relationship.
 また、図4に示したグラウンドパターン24a、24bのスリット20、21は、それぞれ誘電体を介して対向する巻線パターン1、4のスリット25、26と重なる位置となっており、このようにグラウンドパターンのスリットと巻線パターンのスリット位置が重なり合うようにスリットを入れた状態が最もキャパシタンスが大きくなる条件となり、コモンモードのノイズフィルタの減衰効果が最も大きい。上記したスリットの位置とフィルタ減衰効果の関係は、出力側のグラウンドパターン19a、19bのスリット22、23と巻線パターン13、16のスリット27、28も同様である。 Also, the slits 20 and 21 of the ground patterns 24a and 24b shown in FIG. 4 are positioned so as to overlap with the slits 25 and 26 of the winding patterns 1 and 4 facing each other through a dielectric. The condition in which the slits of the pattern and slits of the winding pattern overlap so that the capacitance is maximized is the largest condition, and the attenuation effect of the common mode noise filter is the greatest. The relationship between the slit position and the filter attenuation effect is the same for the slits 22 and 23 of the ground patterns 19a and 19b on the output side and the slits 27 and 28 of the winding patterns 13 and 16.
 一方で図5になるようにグラウンドパターンを接地させてしまうと、ノイズ電流が往路だけで接地電位に流れ込むため、発生する磁束がコアを鎖交してしまい、巻線パターンの2ターンの巻線のインダクタンスと結合してしまう。なお、図5(a)は2層目正極側の巻線パターンと2層目負極側の巻線パターンを示している。また図5(b)は1層目のグラウンドパターンを構成する正極側のグラウンドパターンと負極側のグラウンドパターンを示している。
 このような場合は、図7の等価回路となり、ノイズ減衰効果は図6に比べて著しく低い。内側から巻き始める巻線パターンの場合でも、同様に考える必要があり、図8のように接地させると、等価回路は図6のようになるが、図9のように接地させると、等価回路は、図7のようになるため、図8のように接地させる方が図9のように接地させるよりノイズ減衰効果は高い。なお、上記メカニズムは4層目の巻線パターンと5層目のグラウンドパターンの関係にも当てはまる。なお、図8(a)は2層目正極側の巻線パターンと2層目負極側の巻線パターンを示している。図8(b)は1層目のグラウンドパターンを構成する正極側のグラウンドパターンと負極側のグラウンドパターンを示している。また、図9(a)は2層目正極側の巻線パターンと2層目負極側の巻線パターンを示している。図9(b)は1層目のグラウンドパターンを構成する正極側のグラウンドパターンと負極側のグラウンドパターンを示している。
On the other hand, if the ground pattern is grounded as shown in FIG. 5, the noise current flows to the ground potential only in the forward path, so the generated magnetic flux interlinks the core, and the winding pattern has two turns. Will be coupled with the inductance. FIG. 5A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side. FIG. 5B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer.
In such a case, the equivalent circuit of FIG. 7 is obtained, and the noise attenuation effect is significantly lower than that of FIG. Even in the case of a winding pattern that starts winding from the inside, it is necessary to think in the same way. When grounded as shown in FIG. 8, the equivalent circuit is as shown in FIG. 6, but when grounded as shown in FIG. 7, the noise attenuation effect is higher when grounding as shown in FIG. 8 than when grounding as shown in FIG. The above mechanism also applies to the relationship between the fourth layer winding pattern and the fifth layer ground pattern. FIG. 8A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side. FIG. 8B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer. FIG. 9A shows a winding pattern on the second layer positive electrode side and a winding pattern on the second layer negative electrode side. FIG. 9B shows a ground pattern on the positive electrode side and a ground pattern on the negative electrode side constituting the ground pattern of the first layer.
 図10、図11は、本実施の形態1におけるグラウンドパターンの接地構造を説明する斜視図である。電力変換装置はパワー半導体部分で損失するエネルギーが熱となって発生する。さらに電力変換装置は、より大きな電力を伝えるために巻線に数10~数百Aの大電流が流れるため、巻線配線からの発熱も大きい。このため、電力変換装置は、放熱フィン800をノイズフィルタに取り付けることが多い。一方で、放熱フィン800は、金属ブロックのため、グラウンド電位として使用される。 10 and 11 are perspective views illustrating the grounding structure of the ground pattern according to the first embodiment. In the power converter, energy lost in the power semiconductor portion is generated as heat. Furthermore, since a large current of several tens to several hundreds of A flows in the winding in order to transmit a larger amount of power, the power converter generates a large amount of heat from the winding wiring. For this reason, the power conversion device often attaches the heat radiation fin 800 to the noise filter. On the other hand, the radiating fin 800 is used as a ground potential because it is a metal block.
 本実施の形態1では、この放熱フィンをノイズフィルタの冷却と対地コンデンサの接地先のグラウンドとして使用している。放熱フィン800には、溝(窪み部)801が設けられており、図10、図11に示すように、本ノイズフィルタを取り付けると、磁性体コア400の下部が溝801に嵌まり込んで収容され、グラウンド導体19のグラウンドパターンと放熱フィン800とが接触する。本ノイズフィルタは、グラウンド導体19とグラウンド導体24の間に導体スペーサ500を挟んで放熱フィン800に導電性ねじ600によって低接触抵抗で取り付けられる。グラウンド導体24も一緒に結合されて接地される。磁性体コア400に電気伝導率の高い、アモルファス、ファインメット、MnZn(マンガン亜鉛)フェライトを使う場合は、放熱フィン800との間を絶縁する。 In the first embodiment, the radiating fin is used as a ground for cooling the noise filter and grounding the ground capacitor. The heat radiating fin 800 is provided with a groove (recessed portion) 801. When the noise filter is attached as shown in FIGS. 10 and 11, the lower portion of the magnetic core 400 is fitted into the groove 801 and accommodated. Then, the ground pattern of the ground conductor 19 and the radiating fin 800 come into contact with each other. This noise filter is attached to the radiating fin 800 with a conductive screw 600 with low contact resistance with a conductor spacer 500 interposed between the ground conductor 19 and the ground conductor 24. The ground conductor 24 is also coupled together and grounded. In the case where amorphous, fine met, or MnZn (manganese zinc) ferrite having high electrical conductivity is used for the magnetic core 400, the heat dissipating fin 800 is insulated.
 実施の形態1のコモンモードノイズフィルタはグラウンドパターンが入出力端子位置において、巻線パターンの外側に延伸されて配設されており、さらにグラウンドパターンが線ではなく、平面状のパターンであるため、小さな自己インダクタンスで接地できる。 In the common mode noise filter of the first embodiment, the ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, and the ground pattern is not a line but a planar pattern. Can be grounded with small self-inductance.
 従来、コンデンサは、例えば、1nF以上の容量の場合、コンデンサの内部、外部の配線の自己インダクタンスが10nHより大きくなると、50MHz以下の周波数で自己共振周波数をもつため、50MHz以上の周波数では容量性から誘導性に変わり、ノイズ電流を低減する効果は周波数が大きくなるにつれて小さくなる。 Conventional capacitors have a self-resonance frequency at a frequency of 50 MHz or less when the self-inductance of the internal or external wiring of the capacitor is larger than 10 nH, for example, when the capacitance is 1 nF or more. Instead of inductivity, the effect of reducing the noise current decreases as the frequency increases.
 これに対し、本実施の形態1のように平面状の幅広いグラウンドパターン構造のまま接地できれば、1nF以上の容量であっても自己共振周波数を50MHz以上、つまり、50MHz以上でもノイズ減衰効果を発揮するコモンモードノイズフィルタを実現することができる。 On the other hand, if it can be grounded with a wide planar ground pattern structure as in the first embodiment, even if the capacitance is 1 nF or more, the self-resonant frequency is 50 MHz or more, that is, the noise attenuation effect is exhibited even if it is 50 MHz or more. A common mode noise filter can be realized.
 さらに本実施の形態1のコモンモードノイズフィルタは、基板構造となっているため、基板の面に対して垂直な方向に熱が伝わりやすく、グラウンドパターンも幅広いため、効率的にノイズを放熱フィンに伝えることができる。その結果、コモンモードノイズフィルタを構成する、巻線パターンの断面積を小さくでき、また、別途巻線パターンのジュール熱を放熱させる部材を必要としないため、フィルタ全体の小型化の効果もある。 Furthermore, since the common mode noise filter according to the first embodiment has a substrate structure, heat is easily transmitted in a direction perpendicular to the surface of the substrate, and the ground pattern is wide. I can tell you. As a result, the cross-sectional area of the winding pattern constituting the common mode noise filter can be reduced, and there is no need for a separate member that dissipates the Joule heat of the winding pattern.
 本実施の形態1では、図4のように巻線を外側から巻き始めるパターンで説明している。巻線を外側から巻く構成は、図8のように巻線を内側から巻き始めるのに比べてグラウンド層の引き回しが短くなるため、コンデンサの配線インダクタンスが低減するので、より高い周波数までノイズ低減効果を維持できる。また一方で、巻線を内側から巻き始める場合は、同じパターン数を実現する場合のパターン層数が巻線を外側から巻くよりも少なく済むため、結果として巻線パターンの総延長が短くなり、発熱量を小さく抑えることができる。ここで説明する外側とは、UUコアまたはUIコアにおいて、磁性体内で閉磁路を形成するコモンモード磁束の外周側(外側)を示している。
 また、実施の形態1では、基板型巻線パターンが単相の場合を記載したが、これに限らず、三相の場合でも同様に構成することができ、巻線パターンどうしが磁気的に結合しており、同様の作用効果を得ることができる。
In the first embodiment, a description is given of a pattern in which the winding starts to be wound from the outside as shown in FIG. The configuration in which the winding is wound from the outside reduces the wiring inductance of the capacitor as compared to starting winding from the inside as shown in FIG. 8, so the wiring inductance of the capacitor is reduced. Can be maintained. On the other hand, when winding is started from the inside, the number of pattern layers when realizing the same number of patterns is smaller than winding the winding from the outside, and as a result, the total length of the winding pattern is shortened. The calorific value can be kept small. The outside described here indicates the outer peripheral side (outside) of the common mode magnetic flux that forms a closed magnetic path in the magnetic body in the UU core or UI core.
In the first embodiment, the case where the substrate-type winding pattern is a single phase has been described. However, the present invention is not limited to this, and the same configuration can be achieved even in the case of a three-phase, and the winding patterns are magnetically coupled. Thus, similar effects can be obtained.
実施の形態2.
 図12は、実施の形態2に係るコモンモードノイズフィルタを説明するための斜視図である。実施の形態2のノイズフィルタは、実施の形態1で示したノイズフィルタ(コモンモードノイズフィルタ)700を2個用いて構成した2段ノイズフィルタ900である。2段にすることで、ノイズ減衰効果が大幅に向上する。グラウンドパターンが入出力端子位置において、巻線パターンの外側に延伸されて配設されていることは、実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 12 is a perspective view for explaining the common mode noise filter according to the second embodiment. The noise filter of the second embodiment is a two-stage noise filter 900 configured using two noise filters (common mode noise filters) 700 shown in the first embodiment. By using two stages, the noise attenuation effect is greatly improved. The ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, as in the first embodiment.
 さらに、従来の個別部品のインダクタとキャパシタを組み合わせて構成するコモンモードノイズフィルタの場合は、2個のインダクタやインダクタとキャパシタを電気的に接続するために、新たに端子を設ける必要があり、フィルタの設置面積は単純にフィルタを構成する個々の部品のそれの和よりも大きくなる。
 それに対して、本実施の形態2のコモンモードノイズフィルタは、パターンで巻線導体、グラウンド導体を構成する基板型であるので、2段のフィルタの巻線パターン、グラウンドパターンを一体で作成できるため接地面積が端子接続分増えることはなく小型である。
Furthermore, in the case of a conventional common mode noise filter configured by combining an inductor and a capacitor of individual components, it is necessary to provide a new terminal in order to electrically connect the two inductors and the inductor and the capacitor. Is simply larger than the sum of the individual parts constituting the filter.
On the other hand, since the common mode noise filter of the second embodiment is a substrate type that forms a winding conductor and a ground conductor by a pattern, a winding pattern and a ground pattern of a two-stage filter can be created integrally. The grounding area does not increase by the amount of terminal connection and is small.
実施の形態3.
 図14は、実施の形態3に係るノイズフィルタの斜視図であって、放熱フィン1800を取り付けた状態を示している。図15は、図14に示すコモンモードノイズフィルタのB-B線における断面図である。グラウンドパターンが入出力端子位置において、巻線パターンの外側に延伸されて配設されていることは、実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 14 is a perspective view of the noise filter according to the third embodiment, and shows a state in which the radiation fins 1800 are attached. FIG. 15 is a cross-sectional view taken along line BB of the common mode noise filter shown in FIG. The ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, as in the first embodiment.
 図14に示すノイズフィルタ(コモンモードノイズフィルタ)1700は、概略的には、実施の形態1と同様に、巻線パターンを構成する巻線導体1100(図16、図17参照)、巻線導体間を絶縁する誘電体(誘電体樹脂とも称す)1200とグラウンドパターン119、124を構成するグラウンド導体、磁性体コア1400とで構成されている。
放熱フィン1800には、実施の形態1と同様に溝が設けられており、この溝に磁性体コア1400の下部が嵌まり込んで収容されている。また、導電性ねじ1600によって本ノイズフィルタが放熱フィン1800に取り付けられており、その取付構造は、実施の形態1における導電性ねじ600によるノイズフィルタと放熱フィンとの取付構造と同様に構成されている。
A noise filter (common mode noise filter) 1700 shown in FIG. 14 is roughly similar to the first embodiment in winding conductor 1100 (see FIGS. 16 and 17) constituting the winding pattern, winding conductor. It is composed of a dielectric (also referred to as dielectric resin) 1200 that insulates between them, a ground conductor that constitutes ground patterns 119 and 124, and a magnetic core 1400.
As in the first embodiment, the radiating fin 1800 is provided with a groove, and the lower portion of the magnetic core 1400 is fitted and accommodated in the groove. In addition, this noise filter is attached to heat radiating fin 1800 by conductive screw 1600, and the mounting structure is the same as the mounting structure of the noise filter and heat radiating fin by conductive screw 600 in the first embodiment. Yes.
 磁性体コア1400は、形状がE型のコア(E型コア)を2個、もしくはE型コアと形状がI型のコア(I型コア)を組み合わせた構造である。 The magnetic core 1400 has a structure in which two E-shaped cores (E-shaped core) are combined, or an E-shaped core and an I-shaped core (I-shaped core) are combined.
 巻線導体1100は、平面状の導体からなる巻線である。巻線は、基板構造となっており、巻線間に絶縁のための誘電体樹脂1200(図15参照)が挟まれている。また導体の縁面も絶縁性を高めるために誘電体樹脂で覆われている。本実施の形態の例では、巻線は2ターン分巻かれており、2ターンの巻線は、正極側、負極側それぞれ3層の導体層で構成されており、1層目と8層目はグラウンド層を構成している。本実施の形態では、磁性体コア1400としてE型コアを使用して、巻線パターンの正極側と負極側の上下関係の位置となる例で説明する。 The winding conductor 1100 is a winding made of a planar conductor. The winding has a substrate structure, and a dielectric resin 1200 (see FIG. 15) for insulation is sandwiched between the windings. Further, the edge surface of the conductor is also covered with a dielectric resin in order to enhance insulation. In the example of the present embodiment, the winding is wound for two turns, and the two-turn winding is composed of three conductor layers on each of the positive electrode side and the negative electrode side. Constitutes the ground layer. In the present embodiment, an example in which an E-type core is used as the magnetic core 1400 and the positions of the winding pattern on the positive side and the negative side will be described.
 図16、17は本実施の形態3の巻線導体1100における巻線パターンの構成を説明するための平面図である。図16の(a)~(c)は、2層目、3層目、4層目の正極側の巻線パターンを構成するそれぞれの巻線パターン101、107、113を示している。図17の(a)~(c)では、5層目、6層目、7層目の負極側の巻線パターンを構成するそれぞれの巻線パターン116、110、104を示している。本実施の形態では、巻線パターン101、107、113、116、110、104の順に2層目~7層目の巻線パターンを形成している。 16 and 17 are plan views for explaining the configuration of the winding pattern in the winding conductor 1100 of the third embodiment. FIGS. 16A to 16C show the winding patterns 101, 107, and 113 constituting the winding pattern on the positive electrode side of the second, third, and fourth layers. 17A to 17C show the winding patterns 116, 110, and 104 constituting the winding patterns on the negative electrode side of the fifth layer, the sixth layer, and the seventh layer, respectively. In the present embodiment, the second to seventh winding patterns are formed in the order of the winding patterns 101, 107, 113, 116, 110, and 104.
 巻線パターンのそれぞれには、正極側の巻線パターン入力端子103、負極側の巻線パターン入力端子106、正極側の巻線パターン出力端子114、負極側の巻線パターン出力端子118が設けられている。巻線パターン間である2層目と3層目の端子間の端部(接続位置とも称す)102と端部108や3層目と4層目の端子間の端部109と端部115、および5層目と6層目の端子間の端部117と端部112、および、6層目と7層目の端子間の端子部111と端部105は、例えば、インナービアホール(IVH)で電気的に接続されている。このときビア部分の電流密度が高くなると、ビア位置での発熱が大きくなるため、ビアは、巻線パターンと同程度の断面積になる程度に複数のビアを打つことが望ましい。 Each of the winding patterns is provided with a positive side winding pattern input terminal 103, a negative side winding pattern input terminal 106, a positive side winding pattern output terminal 114, and a negative side winding pattern output terminal 118. ing. End portions (also referred to as connection positions) 102 and end portions 108 between the second and third layer terminals between the winding patterns 102 and end portions 109 and end portions 115 between the third and fourth layer terminals, The end portion 117 and the end portion 112 between the terminals of the fifth and sixth layers and the terminal portion 111 and the end portion 105 between the terminals of the sixth layer and the seventh layer are, for example, inner via holes (IVH). Electrically connected. At this time, if the current density in the via portion increases, heat generation at the via position increases, and therefore it is desirable that the via has a plurality of vias having a cross-sectional area comparable to that of the winding pattern.
 図18は、本実施の形態3に係るノイズフィルタのグラウンドパターンの平面図である。図18(a)は、1層目のグラウンドパターン124、図18(b)は、7層目のグラウンドパターン119を示しており、それぞれ2層目、6層目との間に対地コンデンサを形成する。グラウンドパターン124、119には、実施の形態1と同様にスリット120、122を設ける必要がある。また、グラウンド層の接地位置に関しても実施の形態1で説明したように、巻線パターンを流れているノイズ電流(往路のノイズ電流)とグラウンドパターンを通って接地電位に流れようとするノイズ電流(復路のノイズ電流)の向きが反対となるように接地する必要がある。本実施の形態3では、グラウンド層の接地位置は正極側、負極側それぞれ1箇所ずつに設けている。 FIG. 18 is a plan view of the ground pattern of the noise filter according to the third embodiment. 18A shows the ground pattern 124 of the first layer, and FIG. 18B shows the ground pattern 119 of the seventh layer. A ground capacitor is formed between the second layer and the sixth layer, respectively. To do. It is necessary to provide slits 120 and 122 in the ground patterns 124 and 119 as in the first embodiment. In addition, as described in the first embodiment, the grounding position of the ground layer is also the noise current (outward path noise current) flowing through the winding pattern and the noise current (flowing to the ground potential through the ground pattern) ( It is necessary to ground so that the direction of the noise current on the return path is opposite. In the third embodiment, the ground layer is provided at one location on the positive electrode side and one on the negative electrode side.
実施の形態4.
 図19は、実施の形態4に係るノイズフィルタであるコモンモードフィルタの断面図である。断面位置は、実施の形態3を示している図14におけるB-B線に相当するところである。正極側の巻線127と負極側の巻線128は、絶縁体製のスペーサ129で絶縁されている。
 図20は、本実施の形態4に係るノイズフィルタの巻線パターンの平面図であって、図20(a)は正極側、図20(b)は負極側を表わしている。図21は本実施の形態4に係るノイズフィルタのグラウンドパターンの平面図であって、図21(a)は正極側、図21(b)は負極側を表わしている。
 グラウンドパターンが入出力端子位置において、巻線パターンの外側に延伸されて配設されていることは、実施の形態1と同様である。
Embodiment 4 FIG.
FIG. 19 is a cross-sectional view of a common mode filter that is a noise filter according to the fourth embodiment. The cross-sectional position corresponds to the line BB in FIG. 14 showing the third embodiment. The positive winding 127 and the negative winding 128 are insulated by an insulating spacer 129.
20A and 20B are plan views of the winding pattern of the noise filter according to the fourth embodiment. FIG. 20A shows the positive electrode side, and FIG. 20B shows the negative electrode side. FIG. 21 is a plan view of the ground pattern of the noise filter according to the fourth embodiment. FIG. 21A shows the positive electrode side, and FIG. 21B shows the negative electrode side.
The ground pattern is extended and disposed outside the winding pattern at the input / output terminal position, as in the first embodiment.
 対地間コンデンサを形成するための正極側のグラウンドパターン124と巻線パターン101は、例えば、基板として一体化されており、グラウンドパターンと巻線パターン間の誘電体を利用して大きなキャパシタンスを実現している。負極側の対地間コンデンサも同様である。上記コンデンサを形成する部分の構成は実施の形態3と同じである。 The ground pattern 124 on the positive electrode side and the winding pattern 101 for forming a capacitor between the ground and the ground are integrated as a substrate, for example, and a large capacitance is realized by using a dielectric between the ground pattern and the winding pattern. ing. The same applies to the capacitor on the negative electrode side. The configuration of the part forming the capacitor is the same as that of the third embodiment.
 本実施の形態4のノイズフィルタの構成は、コンデンサを構成する部分以外の巻線127、128が実施の形態3のようなパターンではなく、例えば、らせん形状で形成されている。このように、巻線導体のグラウンドパターンと対向しない巻線が基板パターンではなく、一続きの導体で形成することで同極性の巻線間に誘電体が入らないため巻線間のキャパシタンスを小さくすることが可能となる。同極性の巻線間のキャパシタンス(寄生キャパシタンス)Csは、図22の等価回路で示すように、インダクタンス(コモンモードインダクタンス)Lに対して並列となるため、キャパシタンスCsが小さいほどノイズフィルタのノイズ低減性能が向上する。対地間コンデンサCgとの関係は、図22のように表わされる。なお、対地間コンデンサCgを形成している巻線パターン101、104と巻線127、128の接続は接続位置125、126でねじ止め、溶接等で行う。 In the configuration of the noise filter of the fourth embodiment, the windings 127 and 128 other than the portion constituting the capacitor are not formed in the pattern as in the third embodiment but are formed in a spiral shape, for example. In this way, the winding that does not face the ground pattern of the winding conductor is not a substrate pattern, but is formed of a continuous conductor, so that the dielectric does not enter between windings of the same polarity, thus reducing the capacitance between the windings. It becomes possible to do. Since the capacitance (parasitic capacitance) Cs between windings of the same polarity is parallel to the inductance (common mode inductance) L as shown in the equivalent circuit of FIG. 22, the noise reduction of the noise filter is reduced as the capacitance Cs is smaller. Performance is improved. The relationship with the ground-to-ground capacitor Cg is expressed as shown in FIG. The winding patterns 101 and 104 forming the ground-to-ground capacitor Cg and the windings 127 and 128 are connected to each other at the connection positions 125 and 126 by screwing, welding, or the like.
 図23は、本実施の形態5のノイズフィルタ2000の斜視図であって、放熱フィン3800を取り付けた状態を示している。実施の形態4と同様に、巻線導体がらせん形状で形成されており、同極性の巻線間に誘電体が入っていないため巻線間のキャパシタンスを小さくすることが可能となる。このため、巻線と磁性体コアで形成するインダクタンスと並列となるキャパシタンスが小さく、ノイズ低減性能は向上する。 FIG. 23 is a perspective view of the noise filter 2000 of the fifth embodiment, and shows a state in which the radiation fins 3800 are attached. Similar to the fourth embodiment, the winding conductor is formed in a spiral shape, and since no dielectric is contained between the windings of the same polarity, the capacitance between the windings can be reduced. For this reason, the capacitance in parallel with the inductance formed by the winding and the magnetic core is small, and the noise reduction performance is improved.
 図24は本実施の形態5のノイズフィルタのコンデンサを構成するコンデンサ部材2100とコンデンサ部材2200を抜き出した斜視図である。図24(a)が正極側のコンデンサ部材2100、図24(b)が負極側のコンデンサ部材である。
 図25は、本実施の形態5のコンデンサを構成するコンデンサ部材2100とコンデンサ部材2200の巻線パターンとグラウンドパターンを示した図である。図25(a)は、正極側の巻線パターン2201と正極側のグラウンドパターンを、図25(b)は、負極側の巻線パターンと負極側のグラウンドパターンを示している。グラウンドパターン2104、2204が入出力端子位置2103、2203において、巻線パターンの外側に延伸されて配設されており、さらに、スリット2105、2205が形成されていることは、実施の形態1と同様である。巻線パターン2201、2101とグラウンドパターン2204、2104の間に誘電体樹脂が挟まれており、巻線パターンとグラウンドパターンの間にコンデンサを形成し、ノイズを低減する機能を有することも実施の形態1と同様である。本実施の形態5は、実施の形態1~4と異なりグラウンドパターンを折り曲げてあることが特徴である。
FIG. 24 is a perspective view of the capacitor member 2100 and the capacitor member 2200 constituting the capacitor of the noise filter of the fifth embodiment. FIG. 24A shows a capacitor member 2100 on the positive electrode side, and FIG. 24B shows a capacitor member on the negative electrode side.
FIG. 25 is a diagram showing a winding pattern and a ground pattern of the capacitor member 2100 and the capacitor member 2200 that constitute the capacitor of the fifth embodiment. FIG. 25A shows a winding pattern 2201 on the positive electrode side and a ground pattern on the positive electrode side, and FIG. 25B shows a winding pattern on the negative electrode side and a ground pattern on the negative electrode side. As in the first embodiment, the ground patterns 2104 and 2204 are extended and disposed outside the winding pattern at the input / output terminal positions 2103 and 2203, and further, slits 2105 and 2205 are formed. It is. The dielectric resin is sandwiched between the winding patterns 2201, 2101 and the ground patterns 2204, 2104, and a capacitor is formed between the winding pattern and the ground pattern to have a function of reducing noise. Same as 1. The fifth embodiment is characterized in that the ground pattern is bent, unlike the first to fourth embodiments.
 図26は、本実施の形態5のらせん形状で形成された巻線導体を示しており、図26(a)は正極側の巻線導体2800、図26(b)は負極側の巻線導体2700を示した斜視図である。端子部2701と端子部2801がそれぞれ、図25に示すパターンの入出力端子位置2202、2102とねじ止め、溶接等で電気的に接続さている。 FIG. 26 shows a winding conductor formed in a spiral shape according to the fifth embodiment. FIG. 26A shows a winding conductor 2800 on the positive electrode side, and FIG. 26B shows a winding conductor on the negative electrode side. FIG. The terminal portion 2701 and the terminal portion 2801 are electrically connected to the input / output terminal positions 2202 and 2102 having the pattern shown in FIG. 25 by screwing, welding, or the like.
 図27は、図23に示す切断線(C-C矢視)における断面図である。本実施の形態5では、例えば、磁性体コア2400を放熱フィン3800に押さえつけるための金属製の押え部材2300が設けられている。本実施の形態5の例では、巻線導体2800を放熱フィン3800に、例えば、ねじ止め等で押さえつけることで熱伝導性の高い絶縁シート2500、磁性体コア2400、絶縁性スペーサ3000を介して、巻線導体2700の側面を熱伝導性の高い絶縁シート3100に押さえつける。 FIG. 27 is a cross-sectional view taken along the cutting line (CC arrow) shown in FIG. In the fifth embodiment, for example, a metal pressing member 2300 for pressing the magnetic core 2400 against the radiating fin 3800 is provided. In the example of the fifth embodiment, the winding conductor 2800 is pressed against the radiating fin 3800 by, for example, screwing or the like, through the insulating sheet 2500 having high thermal conductivity, the magnetic core 2400, and the insulating spacer 3000. The side surface of the winding conductor 2700 is pressed against the insulating sheet 3100 having high thermal conductivity.
 数10A以上の大きな電流が流れる、大容量の電力変換機器の場合、巻線の抵抗成分によって大きなジュール熱が発生する。実施の形態1でも説明したとおり、誘電体を利用して巻線パターンとグラウンドパターンの間にコンデンサを構成したコンデンサ部材2100、2200は、ノイズ電流の経路だけでなく、熱の放熱フィンへの伝搬経路となるため放熱性が優れている。このため巻線導体の断面積を小さくすることができ、その結果、磁性体コアを小さくすることができるためフィルタ全体を小型化することができる。本実施の形態5では、さらに巻線導体の側面を熱電性の高い絶縁シート3100を介して、放熱フィンと接続された金属部材2900に熱を伝搬させるため、フィルタの放熱性が向上し、フィルタ全体を小型化することが可能となる。磁性体コアが高い電気伝導性をもつ種類の場合、磁性体コアで直接、巻線導体2700を絶縁シート3100に押し付けると、巻線から磁性体コアにノイズ電流が流れて、ノイズフィルタを迂回するノイズ伝搬経路ができ、ノイズフィルタの効果を最大限に高めることが難しくなるため、絶縁性の材料を使用することが望ましい。絶縁シート3100が絶縁性である理由も同様であるが、さらに巻線導体2700と金属部材2900の接触熱抵抗を減らす目的から、柔らかい熱伝導性シートを介在させて使用するのが好ましい。絶縁スペーサ3000は、絶縁性の部材とばねを組み合わせた構成とすると弾性力を利用して巻線導体を絶縁性シート3100に押し付けることができるため、許容できる巻線やフェライトコアの寸法誤差も大きくなるため、製作コストの低減させる効果もある。 In the case of a large-capacity power conversion device in which a large current of several tens of A or more flows, a large Joule heat is generated by the resistance component of the winding. As described in the first embodiment, the capacitor members 2100 and 2200 that use a dielectric to form a capacitor between the winding pattern and the ground pattern not only propagate the noise current but also propagate heat to the heat radiation fins. Since it becomes a route, heat dissipation is excellent. For this reason, the cross-sectional area of the winding conductor can be reduced, and as a result, the magnetic core can be reduced, so that the entire filter can be reduced in size. In the fifth embodiment, heat is propagated to the metal member 2900 connected to the heat radiating fin through the insulating sheet 3100 having a high thermoelectric property on the side surface of the winding conductor, thereby improving the heat dissipation of the filter. The whole can be downsized. When the magnetic core is of a type having high electrical conductivity, when the winding conductor 2700 is pressed directly against the insulating sheet 3100 with the magnetic core, a noise current flows from the winding to the magnetic core and bypasses the noise filter. It is desirable to use an insulating material because a noise propagation path is formed and it is difficult to maximize the effect of the noise filter. The reason why the insulating sheet 3100 is insulative is also the same. However, in order to reduce the contact thermal resistance between the winding conductor 2700 and the metal member 2900, it is preferable to use a soft heat conductive sheet. If the insulating spacer 3000 has a configuration in which an insulating member and a spring are combined, the winding conductor can be pressed against the insulating sheet 3100 using elastic force, so that an allowable winding and ferrite core dimensional error is also large. Therefore, the manufacturing cost can be reduced.
 また、磁性体コア2400の自身の発熱、もしくは巻線導体2700から磁性体コア2400に熱が伝搬すると磁性体コア2400の温度上がる。磁性体コアは一般に温度変化に対して特性が変化する性質をもつ。この変化を抑制するため、磁性体コアを押さえつける押え部材2300は金属製であることが望ましい。本実施の形態5で記載した巻線導体の側面から熱を放熱フィンに伝搬させる方法は、絶縁体で覆われた、実施の形態1のノイズフィルタでも有効である。 Also, when the heat of the magnetic core 2400 itself or heat propagates from the winding conductor 2700 to the magnetic core 2400, the temperature of the magnetic core 2400 rises. A magnetic core generally has a property that its characteristics change with temperature. In order to suppress this change, it is desirable that the pressing member 2300 for pressing the magnetic core is made of metal. The method of propagating heat from the side surface of the winding conductor described in the fifth embodiment to the heat radiating fin is also effective in the noise filter of the first embodiment covered with an insulator.
 なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することができる。 In the present invention, the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.
 100,1100,2700,2800 巻線導体、200,1200 誘電体(誘電体樹脂)、400,1400,2400 磁性体コア、700,1700,2000 ノイズフィルタ(コモンモードノイズフィルタ)、800,1800 放熱フィン、801 溝、1,4,7,10,13,16,101,104,107,110,113,116,2102,2201 巻線パターン、19,24 グラウンド導体、19a,19b,24a,24b,119,124,2104,2204 グラウンドパターン、20,21,22,23,25,26,27,28,120,122,2105,2205 スリット 100, 1100, 2700, 2800 Winding conductor, 200, 1200 dielectric (dielectric resin), 400, 1400, 2400 magnetic core, 700, 1700, 2000 noise filter (common mode noise filter), 800, 1800 radiating fin , 801 groove, 1, 4, 7, 10, 13, 16, 101, 104, 107, 110, 113, 116, 2102, 2201 winding pattern, 19, 24 ground conductor, 19a, 19b, 24a, 24b, 119 , 124, 2104, 2204 Ground pattern, 20, 21, 22, 23, 25, 26, 27, 28, 120, 122, 2105, 2205 slits

Claims (12)

  1.  平面状の導体からなり、層状に配置され層間を電気的に接続した巻線パターンを構成する巻線導体と、前記巻線パターンの導体との間に誘電体を挟んで配置されグラウンドパターンを構成するグラウンド導体と、前記巻線パターンが巻き回された磁性体コアを備えたノイズフィルタであって、前記グラウンドパターンが巻線パターンの入出力端子に対向する位置において、巻線パターンの外側に延伸されて配設されており、前記グラウンド導体のグラウンドパターンには、前記磁性体コアの周りに配置される部分を分断するスリットが設けられていることを特徴とするノイズフィルタ。 It is composed of a planar conductor, and a ground pattern is formed by placing a dielectric between the winding conductor that forms a winding pattern that is arranged in layers and electrically connected between the layers, and the conductor of the winding pattern. A noise filter including a ground conductor and a magnetic core around which the winding pattern is wound, wherein the ground pattern extends outside the winding pattern at a position facing the input / output terminal of the winding pattern. The noise filter is characterized in that the ground pattern of the ground conductor is provided with a slit for dividing a portion disposed around the magnetic core.
  2.  前記巻線導体の入出力端子が前記磁性体コアのコア内で閉磁路を形成する磁束の外周側に設けられていることを特徴とする請求項1に記載のノイズフィルタ。 2. The noise filter according to claim 1, wherein an input / output terminal of the winding conductor is provided on an outer peripheral side of a magnetic flux forming a closed magnetic path in the core of the magnetic core.
  3.  前記巻線導体は、基板状に前記巻線パターンが形成され、前記巻線パターンが複数相設けられており、前記巻線パターンどうしが磁気的に結合していることを特徴とする請求項1に記載のノイズフィルタ。 2. The winding conductor according to claim 1, wherein the winding pattern is formed in a substrate shape, the winding patterns are provided in a plurality of phases, and the winding patterns are magnetically coupled to each other. The noise filter described in 1.
  4.  前記グラウンド導体のグラウンドパターンに設けられた前記スリットの位置と前記誘電体を介して対向する前記巻線導体の巻線パターンに設けられたスリットの位置が重なりあうように前記グラウンドパターンと前記巻線パターンが配置されていることを特徴とする請求項1に記載のノイズフィルタ。 The ground pattern and the winding so that the position of the slit provided in the ground pattern of the ground conductor and the position of the slit provided in the winding pattern of the winding conductor facing each other through the dielectric overlap each other. The noise filter according to claim 1, wherein a pattern is arranged.
  5.  前記グラウンド導体の前記グラウンドパターンに接続された放熱フィンを備えたことを特徴とする請求項1に記載のノイズフィルタ。 The noise filter according to claim 1, further comprising a radiation fin connected to the ground pattern of the ground conductor.
  6.  前記放熱フィンには、前記磁性体コアを収容する溝が設けられ、前記磁性体コアが前記溝に収納された状態で前記グラウンド導体のグラウンドパターンが前記放熱フィンに接続されたことを特徴とする請求項5に記載されたノイズフィルタ。 The heat radiation fin is provided with a groove for accommodating the magnetic core, and a ground pattern of the ground conductor is connected to the heat radiation fin in a state where the magnetic core is accommodated in the groove. The noise filter according to claim 5.
  7.  前記巻線導体の前記グラウンドパターンと対向しない巻線が一続きの線で形成されていることを特徴とする請求項1に記載のノイズフィルタ。 The noise filter according to claim 1, wherein the winding of the winding conductor that is not opposed to the ground pattern is formed by a continuous line.
  8.  前記ノイズフィルタが複数組直列接続されたことを特徴とする請求項1に記載のノイズフィルタ。 The noise filter according to claim 1, wherein a plurality of the noise filters are connected in series.
  9.  前記巻線導体の側面と放熱フィンが絶縁物を介して接していることを特徴とする請求項7に記載のノイズフィルタ。 The noise filter according to claim 7, wherein a side surface of the winding conductor and the heat dissipating fin are in contact with each other through an insulator.
  10.  前記磁性体コアを前記放熱フィンに押えつける押え部材を備えたことを特徴とする請求項9に記載のノイズフィルタ。 The noise filter according to claim 9, further comprising a pressing member that presses the magnetic core against the radiating fin.
  11. 前記巻線導体と前記磁性体コアの間に絶縁性部材を備えていることを特徴とする請求項10に記載のノイズフィルタ。 The noise filter according to claim 10, further comprising an insulating member between the winding conductor and the magnetic core.
  12.  前記誘電体と放熱フィンが接していることを特徴とする請求項1に記載のノイズフィルタ。 The noise filter according to claim 1, wherein the dielectric and the radiating fin are in contact with each other.
PCT/JP2015/084152 2015-03-11 2015-12-04 Noise filter WO2016143207A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15884691.5A EP3270511A4 (en) 2015-03-11 2015-12-04 Noise filter
US15/554,159 US20180053591A1 (en) 2015-03-11 2015-12-04 Noise filter
JP2016515555A JP5951163B1 (en) 2015-03-11 2015-12-04 Noise filter
CN201580077567.1A CN107431469A (en) 2015-03-11 2015-12-04 Noise filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-047908 2015-03-11
JP2015047908 2015-03-11
PCT/JP2015/063552 WO2016143149A1 (en) 2015-03-11 2015-05-12 Noise filter
JPPCT/JP2015/063552 2015-05-12

Publications (1)

Publication Number Publication Date
WO2016143207A1 true WO2016143207A1 (en) 2016-09-15

Family

ID=56878586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084152 WO2016143207A1 (en) 2015-03-11 2015-12-04 Noise filter

Country Status (1)

Country Link
WO (1) WO2016143207A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194884A (en) * 2019-05-28 2020-12-03 株式会社豊田自動織機 Transformer structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234811A (en) * 1992-02-24 1993-09-10 Toho Aen Kk Surface mount lc noise filter and manufacture thereof
JP2000252124A (en) * 1999-02-24 2000-09-14 Kankyo Denji Gijutsu Kenkyusho:Kk Common mode filter
US6384705B1 (en) * 1999-12-30 2002-05-07 Industrial Technology Research Institute Multilayer-type chip common mode filter
JP2004200826A (en) * 2002-12-17 2004-07-15 Hioki Ee Corp Distributed constant filter element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234811A (en) * 1992-02-24 1993-09-10 Toho Aen Kk Surface mount lc noise filter and manufacture thereof
JP2000252124A (en) * 1999-02-24 2000-09-14 Kankyo Denji Gijutsu Kenkyusho:Kk Common mode filter
US6384705B1 (en) * 1999-12-30 2002-05-07 Industrial Technology Research Institute Multilayer-type chip common mode filter
JP2004200826A (en) * 2002-12-17 2004-07-15 Hioki Ee Corp Distributed constant filter element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270511A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194884A (en) * 2019-05-28 2020-12-03 株式会社豊田自動織機 Transformer structure

Similar Documents

Publication Publication Date Title
US10366826B2 (en) Dual-mode choke coil and high-frequency filter using same, and on-board motor integrated electric power steering and on-board charging device
US10491180B2 (en) Board-type noise filter and electronic device
US7642891B2 (en) Planar inductance
US8964410B2 (en) Transformer with externally-mounted rectifying circuit board
US20130027170A1 (en) Isolated power converter with magnetics on chip
TWI584310B (en) Shield for toroidal core electromagnetic device, and toroidal core electromagnetic devices utilizing such shields
WO2016143149A1 (en) Noise filter
CN112425072A (en) Noise filter
WO2018012059A1 (en) Compound smoothing inductor and smoothing circuit
WO2016143207A1 (en) Noise filter
JP3823322B2 (en) Distributed constant structure
JP5951163B1 (en) Noise filter
CN107768122B (en) Coupled inductor for low electromagnetic interference
JP6210464B2 (en) electric circuit
JP2013038935A (en) Common-mode choke coil
JP6344540B2 (en) Power conversion module
JP2012099512A (en) Composite electronic component
JP4854923B2 (en) Magnetic coupling element
JP6823130B2 (en) Filter device
CN213071122U (en) Shielding structure and semiconductor device
JP6676888B2 (en) Power converter
WO2022049695A1 (en) Connection structure
JP2019179904A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system
JP2016213344A (en) Noise suppressing component
WO2023013343A1 (en) Switching power supply device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016515555

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554159

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015884691

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE