JP7265432B2 - Insulated wire manufacturing device and insulated wire manufacturing method - Google Patents

Insulated wire manufacturing device and insulated wire manufacturing method Download PDF

Info

Publication number
JP7265432B2
JP7265432B2 JP2019127612A JP2019127612A JP7265432B2 JP 7265432 B2 JP7265432 B2 JP 7265432B2 JP 2019127612 A JP2019127612 A JP 2019127612A JP 2019127612 A JP2019127612 A JP 2019127612A JP 7265432 B2 JP7265432 B2 JP 7265432B2
Authority
JP
Japan
Prior art keywords
conductor
varnish
coating
heating
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019127612A
Other languages
Japanese (ja)
Other versions
JP2021012855A (en
Inventor
善洋 中澤
昂大 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2019127612A priority Critical patent/JP7265432B2/en
Publication of JP2021012855A publication Critical patent/JP2021012855A/en
Application granted granted Critical
Publication of JP7265432B2 publication Critical patent/JP7265432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

本発明は、絶縁電線の製造装置及び絶縁電線の製造方法に関する。 The present invention relates to an insulated wire manufacturing apparatus and an insulated wire manufacturing method.

線状の導体を絶縁塗料(ワニス)で被覆した絶縁電線が知られている。この絶縁電線は、線状の導体をその軸方向に走行させつつ、導体の外周面へのワニスの塗布及び焼付を絶縁被膜が所定の厚さに達するまで繰り返し行うことで製造される。 An insulated wire is known in which a linear conductor is coated with an insulating paint (varnish). This insulated wire is manufactured by running a linear conductor in its axial direction and repeatedly applying and baking varnish to the outer peripheral surface of the conductor until the insulating coating reaches a predetermined thickness.

このような絶縁電線の製造装置としては、走行している導体の表面にワニスを塗布する塗布部と、ワニスが塗布された導体への加熱により、導体表面に絶縁層を形成する加熱部とを備える製造装置が知られている(特開2015-43305号公報参照)。 Such an insulated wire manufacturing apparatus includes an application unit that applies varnish to the surface of a running conductor, and a heating unit that heats the varnished conductor to form an insulating layer on the conductor surface. There is known a manufacturing apparatus provided with such an apparatus (see Japanese Patent Application Laid-Open No. 2015-43305).

上記絶縁電線の製造装置では、塗布されたワニスが導体への加熱により乾燥及び硬化することで、導体表面に絶縁層が形成される。このとき、導体を急に加熱すると塗布されたワニスが発泡し易くなり、形成される絶縁層の絶縁性が低下するおそれがある。このため、対流及び輻射により比較的緩やかに加熱される熱風循環式加熱炉を用いることが一般的である。 In the insulated wire manufacturing apparatus, the applied varnish is dried and hardened by heating the conductor, thereby forming an insulating layer on the surface of the conductor. At this time, if the conductor is suddenly heated, the applied varnish tends to foam, and the insulating properties of the formed insulating layer may deteriorate. For this reason, it is common to use a hot air circulating heating furnace that is heated relatively slowly by convection and radiation.

特開2015-43305号公報JP 2015-43305 A

熱風循環式加熱炉を用いた絶縁電線の製造装置で、絶縁電線の製造能力を向上するには、導体の走行速度を上げる必要がある。単に走行速度のみを上げると導体が熱風循環式加熱炉を通過する時間が短くなるため、ワニスが十分に乾燥及び硬化する時間が不足する。この時間不足を補うためには、熱風循環式加熱炉の炉長を伸ばす方法及び炉温を上げる方法が挙げられる。 In order to improve the production capacity of insulated wires in an insulated wire manufacturing apparatus using a hot air circulating heating furnace, it is necessary to increase the running speed of the conductor. Simply increasing the running speed shortens the time for the conductor to pass through the hot air circulating heating furnace, so the time for the varnish to sufficiently dry and harden is insufficient. In order to make up for this lack of time, a method of extending the furnace length of the hot air circulation heating furnace and a method of raising the furnace temperature can be mentioned.

前者では、走行速度上昇に応じて熱風循環式加熱炉の炉長を伸ばす必要が生じる。絶縁電線の製造装置では、製造設備のうち熱風循環式加熱炉が占める割合が高いため、絶縁電線の製造装置が大型化し、設備のためのスペース確保が困難となる。 In the former, it becomes necessary to extend the furnace length of the hot air circulating heating furnace as the running speed increases. In insulated wire manufacturing equipment, hot air circulating heating furnaces account for a large proportion of manufacturing equipment, so the insulated wire manufacturing equipment is large, making it difficult to secure space for the equipment.

後者の炉温を上げる方法では、設備の耐熱性の観点から上げられる炉温には限度があり、また炉温の上昇分以上にランニングコストが大きくなるため、製造コストが増大するおそれがある。 In the latter method of raising the furnace temperature, there is a limit to the furnace temperature that can be raised from the viewpoint of the heat resistance of the equipment, and since the running cost is greater than the increase in the furnace temperature, there is a risk that the manufacturing cost will increase.

本発明は、上述のような事情に基づいてなされたものであり、製造時にワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上した絶縁電線の製造装置及び絶縁電線の製造方法の提供を目的とする。 The present invention has been made based on the circumstances as described above, and an insulated wire in which foaming of varnish is unlikely to occur during manufacturing, and manufacturing capacity is improved while suppressing an increase in the size of manufacturing equipment and manufacturing costs. The purpose is to provide a manufacturing apparatus and a method for manufacturing an insulated wire.

本発明の一態様に係る絶縁電線の製造装置は、線状の導体をその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部と、上記塗布乾燥部の上記導体の走行方向下流側に設置され、上記ワニスを硬化させる硬化部とを備え、上記塗布乾燥部が、上記導体に上記ワニスを塗布する塗布装置と、ワニス塗布後の上記導体を加熱する加熱炉とを有し、上記硬化部が、上記導体を加熱する誘導加熱器を有する。 An apparatus for manufacturing an insulated wire according to an aspect of the present invention includes a coating and drying section that coats and dries a varnish while allowing a linear conductor to run in its axial direction, and a downstream side of the coating and drying section in the running direction of the conductor. and a curing section for curing the varnish, the coating and drying section having a coating device for coating the varnish on the conductor and a heating furnace for heating the conductor after the varnish coating, A curing section has an induction heater for heating the conductor.

本発明の絶縁電線の製造装置及び絶縁電線の製造方法は、製造時にワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ製造能力を向上できる。 INDUSTRIAL APPLICABILITY According to the insulated wire manufacturing apparatus and the insulated wire manufacturing method of the present invention, the varnish is less likely to foam during manufacturing, and the manufacturing capacity can be improved while suppressing the enlargement of the manufacturing equipment and the increase in the manufacturing cost.

図1は、本発明の一実施形態に係る絶縁電線の製造装置の模式的構成図である。FIG. 1 is a schematic configuration diagram of an insulated wire manufacturing apparatus according to one embodiment of the present invention. 図2は、図1の絶縁電線の製造装置の塗布乾燥部及び硬化部の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a coating/drying section and a curing section of the insulated wire manufacturing apparatus of FIG. 図3は、図2の塗布装置の詳細構成を示す模式図である。FIG. 3 is a schematic diagram showing the detailed configuration of the coating apparatus of FIG. 図4は、図2の硬化部の詳細構成を示す模式図である。FIG. 4 is a schematic diagram showing the detailed configuration of the curing section in FIG. 図5は、本発明の一実施形態に係る絶縁電線の製造方法を示すフロー図である。FIG. 5 is a flowchart showing a method for manufacturing an insulated wire according to one embodiment of the present invention.

[本発明の実施形態の説明]
本発明の一態様に係る絶縁電線の製造装置は、線状の導体をその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部と、上記塗布乾燥部の上記導体の走行方向下流側に設置され、上記ワニスを硬化させる硬化部とを備え、上記塗布乾燥部が、上記導体に上記ワニスを塗布する塗布装置と、ワニス塗布後の上記導体を加熱する加熱炉とを有し、上記硬化部が、上記導体を加熱する誘導加熱器を有する。
[Description of the embodiment of the present invention]
An apparatus for manufacturing an insulated wire according to an aspect of the present invention includes a coating and drying section that coats and dries a varnish while allowing a linear conductor to run in its axial direction, and a downstream side of the coating and drying section in the running direction of the conductor. and a curing section for curing the varnish, the coating and drying section having a coating device for coating the varnish on the conductor and a heating furnace for heating the conductor after the varnish coating, A curing section has an induction heater for heating the conductor.

当該絶縁電線の製造装置は、塗布乾燥部で、導体へのワニスの塗布後に炉長の長い加熱炉により緩やかに乾燥させるのでワニスの発泡が生じ難い。また、加熱炉は単位長当たりの設備コストが小さいので、長い炉長としても製造にかかるコストの増大を抑止できる。一方、当該絶縁電線の製造装置は、硬化部で、乾燥させたワニスを誘導加熱器により硬化させる。誘導加熱器は投入した電力に実質的に比例して導体の温度を容易に高めることができるので、加熱炉に比べて短い炉長でワニスを硬化させることができる。このため、導体の走行速度を上げて製造能力を向上させても、製造設備の大型化や製造コストの増大を抑止できる。さらに、乾燥させたワニスでは急加熱を行ってもワニスの発泡は生じ難い。従って、当該絶縁電線の製造装置は、ワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上できる。 In the apparatus for manufacturing an insulated wire, after the varnish is applied to the conductor, the varnish is gently dried in the heating furnace having a long furnace length in the coating/drying section, so that the varnish hardly foams. In addition, since the equipment cost per unit length of the heating furnace is small, it is possible to suppress an increase in manufacturing costs even if the furnace length is long. On the other hand, in the insulated wire manufacturing apparatus, the dried varnish is cured by an induction heater in the curing section. Since the induction heater can easily raise the temperature of the conductor substantially in proportion to the power supplied, the varnish can be cured in a shorter furnace length than the heating furnace. Therefore, even if the running speed of the conductor is increased to improve the manufacturing capacity, it is possible to suppress the increase in the size of the manufacturing equipment and the manufacturing cost. Furthermore, even if the dried varnish is rapidly heated, foaming of the varnish is unlikely to occur. Therefore, in the insulated wire manufacturing apparatus, the varnish is less likely to foam, and manufacturing capacity can be improved while suppressing an increase in the size of manufacturing equipment and an increase in manufacturing costs.

上記誘導加熱器が、上記導体の加熱温度を独立して制御可能な複数の加熱領域を上記導体の走行方向に沿って有するとよい。このように上記誘導加熱器を上記導体の加熱温度を独立して制御可能な複数の加熱領域を上記導体の走行方向に沿って有するものとすることで、導体の温度管理を容易に行うことができるので、導体を速やかに所望の温度まで加熱した後、その温度を保つことができる。このような温度管理により製造能力をさらに向上することができる。 It is preferable that the induction heater has a plurality of heating regions along the traveling direction of the conductor, the heating temperature of the conductor being independently controllable. In this way, the induction heater has a plurality of heating regions along the running direction of the conductor in which the heating temperature of the conductor can be independently controlled, thereby facilitating the temperature control of the conductor. Therefore, the conductor can be quickly heated to a desired temperature and then maintained at that temperature. Such temperature control can further improve the production capacity.

上記導体が上記塗布乾燥部及び上記硬化部をこの順に繰り返し通過するように構成されているとよい。導体に必要な絶縁層の厚さに相当する量のワニスを一度に塗布すると、ワニスの乾燥に時間を要するうえに発泡し易くなる。このように塗布乾燥及び硬化を繰り返しながら導体に絶縁層を形成していくことで、ワニスの発泡を抑止しつつ効率的に絶縁層を形成することができる。 It is preferable that the conductor is configured to repeatedly pass through the coating/drying section and the curing section in this order. If an amount of varnish corresponding to the thickness of the insulating layer required for the conductor is applied at one time, it takes time to dry the varnish and foams easily. By forming an insulating layer on the conductor while repeating application, drying and curing in this way, it is possible to efficiently form the insulating layer while suppressing foaming of the varnish.

上記導体が上記塗布乾燥部で上記塗布装置及び上記加熱炉をこの順に繰り返し通過するように構成されているとよい。このように塗布乾燥部で、導体への塗布及び乾燥を一定回数繰り返した後に硬化部で硬化を行うことで、硬化のために必要な設備を低減できる。従って、設備費用及び設置スペースを低減できるうえにランニングコストを低減することができる。 It is preferable that the conductor in the coating and drying section is configured to repeatedly pass through the coating device and the heating furnace in this order. In this way, after repeating the application to the conductor and the drying in the coating/drying section for a certain number of times, the curing is performed in the curing section, so that the equipment required for curing can be reduced. Therefore, equipment costs and installation space can be reduced, and running costs can be reduced.

本発明の別の一態様に係る絶縁電線の製造方法は、線状の導体をその軸方向に走行させつつワニスを塗布する工程と、上記導体に塗布されたワニスを加熱炉により乾燥する工程と、上記乾燥する工程後の上記ワニスを誘導加熱器により硬化する工程とを備える。 A method for manufacturing an insulated wire according to another aspect of the present invention includes the steps of applying varnish while running a linear conductor in its axial direction, and drying the varnish applied to the conductor in a heating furnace. and curing the varnish with an induction heater after the drying step.

当該絶縁電線の製造方法では、導体へのワニスの塗布後に炉長の長い加熱炉により緩やかに乾燥させるのでワニスの発泡が生じ難い。また、加熱炉は単位長当たりの設備コストが小さいので、長い炉長としても製造にかかるコストの増大を抑止できる。一方、当該絶縁電線の製造方法では乾燥させたワニスを誘導加熱器により硬化させる。誘導加熱器は投入した電力に実質的に比例して導体の温度を容易に高めることができるので、加熱炉に比べて短い炉長でワニスを硬化させることができる。このため、導体の走行速度を上げて製造能力を向上させても、製造設備の大型化や製造コストの増大を抑止できる。さらに、乾燥させたワニスでは急加熱を行ってもワニスの発泡は生じ難い。従って、当該絶縁電線の製造方法を用いることで、ワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上できる。 In the method for manufacturing an insulated wire, the conductor is gently dried in a long heating furnace after the varnish is applied, so that the varnish is less likely to foam. In addition, since the equipment cost per unit length of the heating furnace is small, it is possible to suppress an increase in manufacturing costs even if the furnace length is long. On the other hand, in the manufacturing method of the insulated wire, the dried varnish is cured by an induction heater. Since the induction heater can easily raise the temperature of the conductor substantially in proportion to the power supplied, the varnish can be cured in a shorter furnace length than the heating furnace. Therefore, even if the running speed of the conductor is increased to improve the manufacturing capacity, it is possible to suppress the increase in the size of the manufacturing equipment and the manufacturing cost. Furthermore, even if the dried varnish is rapidly heated, foaming of the varnish is unlikely to occur. Therefore, by using the method for manufacturing an insulated wire, it is possible to improve the manufacturing capacity while preventing the varnish from foaming and suppressing the increase in the size of the manufacturing equipment and the manufacturing cost.

なお、本明細書において「加熱炉」とは、電熱や燃焼により発生させた熱を被加熱物体に伝えることで加熱を行う炉を指す。 In this specification, the term "heating furnace" refers to a furnace that heats an object by transferring heat generated by electric heating or combustion to an object to be heated.

[本発明の実施形態の詳細]
以下、本発明に係る絶縁電線の製造装置及び絶縁電線の製造方法の実施形態について図面を参照しつつ詳説する。
[Details of the embodiment of the present invention]
EMBODIMENT OF THE INVENTION Hereinafter, it explains in full detail, referring drawings for embodiment of the manufacturing apparatus of the insulated wire and the manufacturing method of the insulated wire which concern on this invention.

〔絶縁電線の製造装置〕
図1に示す絶縁電線の製造装置は、平行に配設され、1又は複数周回架け渡される線上の導体Wを走行させる一対のドラム1(第一ドラム1a及び第二ドラム1b)と、導体Wをその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部2と、塗布乾燥部2の導体Wの走行方向下流側に設置され、上記ワニスを硬化させる硬化部3と、巻かれた導体Wを第一ドラム1aに送り出す送出部4と、絶縁層を形成された導体W、つまり絶縁電線を巻き取る巻取部5とを備える。
[Insulated wire manufacturing equipment]
The insulated wire manufacturing apparatus shown in FIG. A coating and drying section 2 that applies and dries the varnish while running in its axial direction, a curing section 3 that is installed on the downstream side of the running direction of the conductor W of the coating and drying section 2 and cures the varnish, and a wound It is provided with a delivery section 4 that delivers the conductor W to the first drum 1a, and a winding section 5 that winds up the conductor W formed with an insulating layer, that is, the insulated wire.

<導体>
導体Wとしては、特に材質及び構成が限定されるわけではないが、例えば銅線、錫めっき銅線、アルミ線、アルミ合金線、鋼心アルミ線、カッパーフライ線、ニッケルめっき銅線、銀めっき銅線、銅覆アルミ線等を用いることができる。また、導体Wの断面形状としては、特に制限されず、円形状(丸線)、楕円形状、及び四角形状(平角線)等の多角形状等とすることができる。
<Conductor>
Although the material and configuration of the conductor W are not particularly limited, for example, copper wire, tin-plated copper wire, aluminum wire, aluminum alloy wire, steel core aluminum wire, copper fly wire, nickel-plated copper wire, silver-plated A copper wire, a copper-coated aluminum wire, or the like can be used. Moreover, the cross-sectional shape of the conductor W is not particularly limited, and may be a circular shape (round wire), an elliptical shape, a polygonal shape such as a square shape (rectangular wire), or the like.

<送出部>
送出部4は、リールに巻かれた導体Wを第一ドラム1aに送り出す。送出部4のリールは、駆動式としてもよく、非駆動式としてもよい。送出部4のリールを駆動式とする場合は、第一ドラム1aとの間の導体Wに過度な弛みや張力が発生しないように、送出部4の駆動を制御することが好ましい。送出部4の駆動には、サーボモーター及びステッピングモーター等の公知のモーターを用いることができる。
<Sending part>
The delivery unit 4 delivers the conductor W wound on the reel to the first drum 1a. The reel of the delivery unit 4 may be of a driven type or may be of a non-driven type. When the reel of the delivery section 4 is driven, it is preferable to control the drive of the delivery section 4 so that excessive slack or tension does not occur in the conductor W between the first drum 1a. A well-known motor such as a servomotor and a stepping motor can be used to drive the delivery unit 4 .

<ドラム>
第一ドラム1aと第二ドラム1bとは、塗布乾燥部2と硬化部3とを挟んで上下方向に対向して配置されており、下側に第一ドラム1aが配置され、上側に第二ドラム1bが配置されている。この第一ドラム1aと第二ドラム1bとは、導体Wを周回させる。この第一ドラム1a及び第二ドラム1bは、図1の紙面に垂直な方向に延伸しており、導体Wを掛ける位置をドラム1の軸方向で紙面奥側に1周毎に一定間隔ずらすことで導体Wを周回させることができるようになっている。一定回数ドラム1間を周回させて表面に絶縁層が形成された導体W、即ち、絶縁電線は、最終的には導体Wの走行方向下流側に設けられた巻取部5に巻き取られる。ドラム1の材質としては、金属や樹脂等を用いることができる。第一ドラム1aは、駆動ドラムであり、図示しない駆動部によって回転駆動する。第二ドラム1bは、回転自在に支持されており、導体Wの走行に伴って回転する。
<Drum>
The first drum 1a and the second drum 1b are arranged to face each other in the vertical direction with the coating drying section 2 and the curing section 3 interposed therebetween. A drum 1b is arranged. The first drum 1a and the second drum 1b allow the conductor W to go around. The first drum 1a and the second drum 1b extend in a direction perpendicular to the paper surface of FIG. 1, and the positions at which the conductors W are hooked are shifted in the axial direction of the drum 1 toward the back side of the paper surface by a constant interval for each turn. , the conductor W can be circulated. The conductor W on which an insulating layer is formed on the surface by winding between the drums 1 a certain number of times, ie, the insulated wire, is finally wound by the winding section 5 provided on the downstream side of the conductor W in the running direction. As the material of the drum 1, metal, resin, or the like can be used. The first drum 1a is a drive drum, and is driven to rotate by a drive section (not shown). The second drum 1b is rotatably supported and rotates as the conductor W travels.

<塗布乾燥部>
塗布乾燥部2は、図2に示すように、導体Wにワニスを塗布する塗布装置21と、ワニス塗布後の導体Wを加熱する加熱炉22とを有する。
<Coating and drying part>
As shown in FIG. 2, the coating/drying section 2 includes a coating device 21 for coating the conductor W with varnish, and a heating furnace 22 for heating the conductor W after the varnish coating.

上述のように導体Wは、一定回数ドラム1間を周回し、周回の都度、塗布装置21及び加熱炉22をこの順で通過する。また、図2に示す塗布乾燥部2では、導体Wは、塗布乾燥部2内の塗布装置21及び加熱炉22を3回連続で通過した後に硬化部3を通過するように当該絶縁電線の製造装置が構成されている。つまり、当該絶縁電線の製造装置では、導体Wが塗布乾燥部2で塗布装置21及び加熱炉22をこの順に3回繰り返し通過するように構成されている。このように塗布乾燥部2で、導体Wへの塗布及び乾燥を一定回数繰り返した後に、硬化部3で硬化を行うことで硬化に要する時間を短縮できる。これにより絶縁層の絶縁性を抑止しつつ、絶縁電線の製造能力を向上できる。 As described above, the conductor W circulates between the drums 1 a certain number of times and passes through the coating device 21 and the heating furnace 22 in this order each time it circulates. In addition, in the coating/drying section 2 shown in FIG. 2, the insulated wire is manufactured such that the conductor W passes through the coating device 21 and the heating furnace 22 in the coating/drying section 2 three times in succession, and then passes through the curing section 3. Device is configured. In other words, the insulated wire manufacturing apparatus is configured such that the conductor W in the coating/drying section 2 passes through the coating device 21 and the heating furnace 22 in this order three times. In this manner, the application and drying to the conductor W are repeated a certain number of times in the coating/drying section 2, and then the curing is performed in the curing section 3, thereby shortening the time required for curing. As a result, it is possible to improve the production capacity of the insulated wire while suppressing the insulating property of the insulating layer.

図2では、導体Wが周回毎に異なる塗布装置21を通過するように塗布乾燥部2が構成されているが、例えば同一種類で同一濃度のワニスを塗布する場合であれば、導体Wが周回毎に1つの塗布装置21を通過する構成とすることもできる。また、導体Wの周回数よりも少ない複数の塗布装置21を備え、1つの塗布装置21に対し1回又は複数回、導体Wが通過する構成としてもよい。 In FIG. 2, the coating and drying section 2 is configured so that the conductor W passes through a different coating device 21 for each turn. It is also possible to adopt a configuration in which one coating device 21 is passed through each time. Further, a configuration may be adopted in which a plurality of coating devices 21 are provided in a number smaller than the number of turns of the conductor W, and the conductor W passes through each coating device 21 once or multiple times.

逆に図2では、導体Wが周回毎に同一の加熱炉22を通過するように塗布乾燥部2が構成されているが、例えば周回毎に温度管理を行う場合であれば、導体Wが周回毎に異なる加熱炉22を通過する構成とすることもできる。また、導体Wの周回数よりも少ない複数の加熱炉22を備え、1つの加熱炉22に対し、導体Wが1回又は複数回通過する構成としてもよい。 Conversely, in FIG. 2, the coating and drying section 2 is configured so that the conductor W passes through the same heating furnace 22 for each turn. It can also be configured to pass through a different heating furnace 22 every time. Further, a configuration may be adopted in which a plurality of heating furnaces 22 are provided in a number smaller than the number of turns of the conductor W, and the conductor W passes through one heating furnace 22 once or multiple times.

(塗布装置)
塗布装置21は、図3に示すように、ワニスを貯留するワニス槽21aと、ワニス槽21aの導体Wの走行方向下流側に設けられ、ワニス槽21aを通過した導体Wが挿通される塗布ダイス21bとを備える。塗布装置21は、第一ドラム1a及び第二ドラム1bを周回する導体Wの外周面にワニスを塗布する。
(Coating device)
As shown in FIG. 3, the coating device 21 includes a varnish tank 21a that stores varnish, and a coating die that is provided on the downstream side of the varnish tank 21a in the running direction of the conductor W and through which the conductor W that has passed through the varnish tank 21a is inserted. 21b. The coating device 21 applies varnish to the outer peripheral surface of the conductor W that encircles the first drum 1a and the second drum 1b.

ワニス槽21aの底部には、導体Wを貫通させる貫通孔が設けられており、貫通孔を貫通した導体Wの外周面にはワニス槽21aのワニスが塗布される。なお、1つの塗布装置21に対し導体Wの通過回数が複数である場合は、この貫通孔は、導体Wが周回し易いように所望の間隔を空けて通過回数だけ配列される。 The bottom of the varnish tank 21a is provided with a through hole through which the conductor W penetrates, and the varnish of the varnish tank 21a is applied to the outer peripheral surface of the conductor W passing through the through hole. In addition, when the number of passages of the conductor W to one coating device 21 is plural, the through-holes are arranged at desired intervals by the number of passages so that the conductor W can easily go around.

導体Wの外周面に塗布されたワニスは、導体Wが塗布ダイス21bに挿通されることでダイス孔の径に応じてほぼ均一な厚さに整えられる。この塗布ダイス21bは、1つの塗布装置21に対し導体Wの通過回数に関わらず、導体Wの周回ごとに設けられる。つまり、導体Wの通過回数と同数の塗布ダイス21bが設けられる。塗布ダイス21bのダイス孔の径は、導体Wの走行方向下流側に位置する塗布ダイス21bほど大きくされる。このように塗布ダイス21bの径を徐々に大きくすることで、導体Wの外周面に形成される被覆を徐々に厚くし、一定の厚さの絶縁層を形成することができる。 The varnish applied to the outer peripheral surface of the conductor W is adjusted to a substantially uniform thickness according to the diameter of the die hole by inserting the conductor W through the coating die 21b. This coating die 21b is provided for each round of the conductor W regardless of the number of times the conductor W passes through one coating device 21. FIG. That is, the same number of coating dies 21b as the conductor W passes through is provided. The diameter of the die hole of the coating die 21b is made larger for the coating die 21b positioned further downstream in the running direction of the conductor W. As shown in FIG. By gradually increasing the diameter of the coating die 21b in this manner, the coating formed on the outer peripheral surface of the conductor W can be gradually thickened, and an insulating layer having a constant thickness can be formed.

従って、塗布ダイス21bの個数は、1回当たりに形成される絶縁層の厚さと、必要な絶縁層の総厚とから決定される。そして、導体Wの周回回数は、この塗布ダイス21bの個数と同数とできる。 Therefore, the number of coating dies 21b is determined from the thickness of the insulating layer formed per time and the total thickness of the necessary insulating layers. The number of turns of the conductor W can be the same as the number of coating dies 21b.

上記ワニスとしては、絶縁層を構成する樹脂を溶剤で溶解したものが用いられる。この構成樹脂としては、絶縁性が高く、耐熱性が高い樹脂であれば特に限定されない。具体的には、例えばポリイミド、ポリアミドイミド、ポリエステルイミド等を挙げることができる。また、溶剤としては、例えばピロリドンやクレゾール等を用いることができる。 As the varnish, one obtained by dissolving the resin constituting the insulating layer with a solvent is used. The constituent resin is not particularly limited as long as it has high insulating properties and high heat resistance. Specific examples include polyimide, polyamideimide, and polyesterimide. Moreover, pyrrolidone, cresol, etc. can be used as a solvent.

(加熱炉)
加熱炉22は、ワニス塗布後の導体Wを加熱することで、上記溶剤を蒸発させ、ワニスを乾燥させる。
(heating furnace)
The heating furnace 22 heats the conductor W after the varnish is applied to evaporate the solvent and dry the varnish.

加熱炉22としては、特に限定されないが、電熱や燃焼により発生させた熱をエネルギー源として、対流及び輻射により導体Wを加熱するものを用いることができる。上記電熱としてはヒータを用いることができる。また、上記燃焼には、燃料とともにワニスから蒸発する溶剤を取り込んで燃やすものが含まれる。加熱炉22は、対流及び輻射により比較的緩やかに導体Wを加熱するので、加熱時にワニスの発泡が生じ難い。 The heating furnace 22 is not particularly limited, but one that heats the conductor W by convection and radiation using electric heat or heat generated by combustion as an energy source can be used. A heater can be used as the electric heat. In addition, the combustion includes taking in and burning the solvent that evaporates from the varnish together with the fuel. Since the heating furnace 22 heats the conductor W relatively gently by convection and radiation, the varnish is less likely to foam during heating.

加熱炉22としては、導体Wを循環する熱風により加熱する熱風循環式加熱炉が好ましい。導体Wを熱風により加熱することにより、容易に導体Wの外周面の温度分布の均一化を図ることができるので、製造される絶縁電線の均質化を図ることができる。 As the heating furnace 22, a hot air circulating heating furnace that heats the conductor W with circulating hot air is preferable. By heating the conductor W with hot air, the temperature distribution of the outer peripheral surface of the conductor W can be easily made uniform, so that the manufactured insulated wire can be made uniform.

加熱炉22内を通過する導体Wへの加熱温度(加熱炉22内の雰囲気温度)としては、ワニスから溶剤を蒸発可能な温度とされる。具体的には、加熱炉22内の雰囲気温度の下限としては、150℃が好ましく、200℃がより好ましい。一方、上記雰囲気温度の上限としては、600℃が好ましく、500℃がより好ましい。上記雰囲気温度が上記下限未満であると、十分に溶剤が蒸発しないおそれや、加熱炉22の炉長が不必要に大きくなるおそれがある。逆に、上記雰囲気温度が上記上限を超えると、加熱炉22の耐熱性の不足や、導体Wに熱的損傷を与えるおそれがある。 The temperature at which the conductor W passing through the heating furnace 22 is heated (atmospheric temperature in the heating furnace 22) is a temperature at which the solvent can be evaporated from the varnish. Specifically, the lower limit of the atmospheric temperature in the heating furnace 22 is preferably 150°C, more preferably 200°C. On the other hand, the upper limit of the ambient temperature is preferably 600°C, more preferably 500°C. If the ambient temperature is less than the lower limit, the solvent may not evaporate sufficiently, or the length of the heating furnace 22 may become unnecessarily large. Conversely, if the ambient temperature exceeds the upper limit, the heat resistance of the heating furnace 22 may be insufficient and the conductor W may be thermally damaged.

加熱炉22の炉長は、ワニスから溶剤が十分に蒸発する長さとされ、導体Wの走行速度や加熱炉22内の雰囲気温度に依存して適宜決定される。 The furnace length of the heating furnace 22 is a length that allows the solvent to sufficiently evaporate from the varnish, and is appropriately determined depending on the running speed of the conductor W and the atmospheric temperature in the heating furnace 22 .

上述のように加熱炉22では、緩やかに導体Wを加熱するので、加熱時にワニスの発泡が生じ難い。緩やかに導体Wを加熱するため、加熱に必要とされる炉長は必然的に長くなる。加熱炉22は単位長当たりの設備コストが例えば後述する誘導加熱器31に比べ小さいので、このように長い炉長としても設備コストの増加を抑止できる。従って、当該絶縁電線の製造装置は、加熱炉22を備えることで製造にかかるコストの増大を抑止できる。 Since the conductor W is gently heated in the heating furnace 22 as described above, the varnish is less likely to foam during heating. Since the conductor W is gently heated, the furnace length required for heating is inevitably long. Since the equipment cost per unit length of the heating furnace 22 is smaller than that of, for example, an induction heater 31, which will be described later, an increase in equipment cost can be suppressed even with such a long furnace length. Therefore, the manufacturing apparatus for the insulated wire is provided with the heating furnace 22, thereby suppressing an increase in manufacturing costs.

<硬化部>
硬化部3は、図2に示すように、導体Wを加熱する誘導加熱器31を有する。硬化部3は、塗布乾燥部2で溶剤が蒸発した後のワニスに含まれる樹脂を硬化させ、導体Wの外周に絶縁被覆を形成する。
<Hardened part>
The curing section 3 has an induction heater 31 for heating the conductor W, as shown in FIG. The curing section 3 cures the resin contained in the varnish after the solvent has been evaporated in the coating and drying section 2 to form an insulating coating on the outer periphery of the conductor W. FIG.

図2に示す硬化部3では、導体Wは、塗布乾燥部2内の塗布装置21及び加熱炉22を3回連続で通過した後に硬化部3を通過するように当該絶縁電線の製造装置は構成されている。そして、当該絶縁電線の製造装置は、硬化部3を通過した導体Wが、再び塗布乾燥部2内を通過し、硬化部3を通過するように構成されている。つまり、当該絶縁電線の製造装置は、導体Wが塗布乾燥部2及び硬化部3をこの順に繰り返し通過するように構成されている。このように塗布乾燥及び硬化を繰り返しながら導体Wに絶縁層を形成していくことで、硬化のために必要な設備を低減できる。従って、設備費用及び設置スペースを低減できるうえにランニングコストを低減することができる。 In the curing section 3 shown in FIG. 2, the insulated wire manufacturing apparatus is configured such that the conductor W passes through the curing section 3 after successively passing through the coating device 21 and the heating furnace 22 in the coating drying section 2 three times. It is The insulated wire manufacturing apparatus is configured such that the conductor W that has passed through the curing section 3 passes through the coating drying section 2 again and then passes through the curing section 3 . That is, the insulated wire manufacturing apparatus is configured such that the conductor W repeatedly passes through the coating/drying section 2 and the curing section 3 in this order. By forming the insulating layer on the conductor W while repeating the application, drying and curing in this manner, the equipment required for curing can be reduced. Therefore, equipment costs and installation space can be reduced, and running costs can be reduced.

誘導加熱器31は、磁界の変化(交流磁界)により導体Wに発生する電磁誘導電流を用いて直接導体Wを加熱する。誘導加熱器31の周波数(交流磁界を発生させるための電流の周波数)としては、加熱効率や設備費用の観点から適宜決定されるが、例えば10kHz以上10MHz以下とできる。 The induction heater 31 directly heats the conductor W using an electromagnetic induction current generated in the conductor W by a change in magnetic field (AC magnetic field). The frequency of the induction heater 31 (the frequency of the current for generating the AC magnetic field) is appropriately determined from the viewpoint of heating efficiency and equipment cost, and can be, for example, 10 kHz or more and 10 MHz or less.

誘導加熱では、磁界を生じさせるためコイルに流す電流の大きさに比例して磁界が強まり、磁界の強度に比例して導体Wに誘導される電流も大きくなる。導体Wの発熱量は、この誘導電流の2乗に比例するから、誘導加熱器31では、磁界を生じさせるためのコイルに流す電流の2乗に比例して導体Wを加熱することができる。このため、必要な走行速度に比例した発熱を生ずるように電流を増やすことで、導体Wが誘導加熱器31内部を通過する距離(誘導加熱器31の加熱距離)を伸ばすことなく、導体Wに必要な加熱が可能となる。従って、上記加熱距離は、加熱炉の長さに対し、例えば1/10以上1/2以下とできる。また、直接加熱であるため、設備の耐熱性に起因して加熱温度が制約されることが生じ難い。 In induction heating, the magnetic field is strengthened in proportion to the magnitude of the current flowing through the coil to generate a magnetic field, and the current induced in the conductor W is also increased in proportion to the strength of the magnetic field. Since the amount of heat generated by the conductor W is proportional to the square of this induced current, the induction heater 31 can heat the conductor W in proportion to the square of the current flowing through the coil for generating the magnetic field. Therefore, by increasing the current so as to generate heat in proportion to the necessary running speed, the conductor W can be heated without increasing the distance that the conductor W passes through the induction heater 31 (the heating distance of the induction heater 31). The necessary heating is possible. Therefore, the heating distance can be, for example, 1/10 or more and 1/2 or less of the length of the heating furnace. Moreover, since it is a direct heating method, it is difficult for the heating temperature to be restricted due to the heat resistance of the equipment.

誘導加熱器31は、図4に示すように、導体Wの加熱温度を独立して制御可能な3つの加熱領域(第1加熱領域31a、第2加熱領域31b及び第3加熱領域31c)を導体Wの走行方向に沿って有する。誘導加熱器31内に挿通された導体Wは、速やかに所望の温度(ワニスに含まれる樹脂の硬化に適した温度)に加熱され、その温度を一定に保ったまま誘導加熱器31内を通過することが好ましい。具体的には、例えば第1加熱領域31aで導体Wに大きな誘導電流を生じさせて急速加熱を行い、第2加熱領域31bで導体Wの温度が所望の温度に近づくよう加熱量を調整し、第3加熱領域31cで導体Wの温度を一定に保つように制御するとよい。この場合、各領域で導体Wに誘導すべき電流の大きさが異なるため、第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cが導体Wの加熱温度を独立して制御可能である必要がある。つまり、誘導加熱器31を導体Wの加熱温度を独立して制御可能な複数の加熱領域を導体Wの走行方向に沿って有するものとすることで、導体Wの温度管理を容易に行うことができるので、導体Wを速やかに所望の温度まで加熱した後、その温度を保つことができる。このような温度管理により製造能力をさらに向上することができる。なお、所望の温度とは、ワニスに含まれる樹脂を硬化できる温度であり、例えば150℃以上600℃以下である。 As shown in FIG. 4, the induction heater 31 has three heating regions (first heating region 31a, second heating region 31b, and third heating region 31c) capable of independently controlling the heating temperature of the conductor W. It has along the direction of travel of W. The conductor W inserted into the induction heater 31 is quickly heated to a desired temperature (a temperature suitable for curing the resin contained in the varnish), and passes through the induction heater 31 while maintaining the temperature constant. preferably. Specifically, for example, rapid heating is performed by generating a large induced current in the conductor W in the first heating region 31a, and the heating amount is adjusted so that the temperature of the conductor W approaches the desired temperature in the second heating region 31b, It is preferable to control so that the temperature of the conductor W is kept constant in the third heating region 31c. In this case, since the magnitude of the current to be induced in the conductor W differs in each region, the heating temperature of the conductor W can be independently controlled in the first heating region 31a, the second heating region 31b, and the third heating region 31c. there has to be In other words, the induction heater 31 has a plurality of heating regions along the running direction of the conductor W, in which the heating temperature of the conductor W can be independently controlled, so that the temperature of the conductor W can be easily controlled. Therefore, the conductor W can be quickly heated to a desired temperature and then maintained at that temperature. Such temperature control can further improve the production capacity. The desired temperature is a temperature at which the resin contained in the varnish can be cured, and is, for example, 150° C. or higher and 600° C. or lower.

第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cは、1つの誘導加熱器31内を3つの領域に分けて構成してもよいが、それぞれ独立した3つの誘導加熱器を並べて構成することもできる。 The first heating region 31a, the second heating region 31b, and the third heating region 31c may be configured by dividing one induction heater 31 into three regions. It can also be configured.

また、第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cの加熱距離は必要とされる温度管理により適宜決定される。このため、第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cの加熱距離は、等しくともよいが、異なってもよい。 Also, the heating distances of the first heating region 31a, the second heating region 31b, and the third heating region 31c are appropriately determined according to the required temperature control. For this reason, the heating distances of the first heating region 31a, the second heating region 31b, and the third heating region 31c may be equal or may be different.

第1加熱領域31aと第2加熱領域31bとの間、及び第2加熱領域31bと第3加熱領域31cとの間には、空隙があってもよい。 There may be gaps between the first heating area 31a and the second heating area 31b and between the second heating area 31b and the third heating area 31c.

なお、図4では、誘導加熱器31が3つの加熱領域を有しているが、加熱領域の領域数は3に限定されるものではなく、2あるいは4以上であってもよい。また、誘導加熱器31は、導体Wの加熱温度を独立して制御可能な複数の加熱領域を有さない、つまり全体で
1つの温度制御しかできないものであってもよい。
Although the induction heater 31 has three heating regions in FIG. 4, the number of heating regions is not limited to three, and may be two or four or more. Moreover, the induction heater 31 may not have a plurality of heating regions capable of independently controlling the heating temperature of the conductor W, that is, may be capable of controlling only one temperature as a whole.

誘導加熱器31の加熱距離(第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cそれぞれの加熱距離の合計)は、ワニスに含まれる樹脂を十分に硬化できる長さとされ、誘導加熱器31により加熱される導体Wの温度プロファイルと導体Wの走行速度とに依存して適宜決定される。なお、誘導加熱器31の入口及び出口付近は導体Wの加熱に寄与し難いため、加熱効率の観点から個々の誘導加熱器31の加熱領域の長さは、100mm以上とすることが好ましい。 The heating distance of the induction heater 31 (total heating distance of each of the first heating region 31a, the second heating region 31b, and the third heating region 31c) is a length that can sufficiently cure the resin contained in the varnish. It is appropriately determined depending on the temperature profile of the conductor W heated by the vessel 31 and the running speed of the conductor W. Since the vicinity of the inlet and outlet of the induction heater 31 hardly contributes to the heating of the conductor W, the length of the heating region of each induction heater 31 is preferably 100 mm or more from the viewpoint of heating efficiency.

具体的には、加熱炉22の炉長と誘導加熱器31の加熱距離との比率としては、6:1以上10:1以下とできる。このように当該絶縁電線の製造装置では、加熱炉22の炉長に比べて誘導加熱器31の加熱距離を短くすることができる。このため、同一の絶縁電線の製造装置スペースに対して、加熱炉のみで構成する場合に比べて、加熱炉22の炉長を長くとることができる。従って、導体Wの走行速度を増しても導体Wに塗布されたワニスの乾燥及び硬化を確実に行うことが可能となる。 Specifically, the ratio between the furnace length of the heating furnace 22 and the heating distance of the induction heater 31 can be 6:1 or more and 10:1 or less. As described above, in the insulated wire manufacturing apparatus, the heating distance of the induction heater 31 can be made shorter than the furnace length of the heating furnace 22 . For this reason, the furnace length of the heating furnace 22 can be increased compared to the case where only the heating furnace is used for the same insulated wire manufacturing apparatus space. Therefore, even if the running speed of the conductor W is increased, the varnish applied to the conductor W can be reliably dried and cured.

<巻取部>
巻取部5は、導体Wを引っ張ってリールに巻き取る。この巻取部5の引張力によって、導体Wが塗布乾燥部2及び硬化部3間を周回する。巻取部5の駆動には、サーボモーター及びステッピングモーター等の公知のモーターを用いることができる。
<Winding part>
The winding section 5 pulls the conductor W and winds it onto a reel. The tensile force of the winding section 5 causes the conductor W to go around between the coating/drying section 2 and the curing section 3 . A known motor such as a servomotor or a stepping motor can be used to drive the winding unit 5 .

〔絶縁電線の製造方法〕
次に当該絶縁電線の製造方法について説明する。当該絶縁電線の製造方法は、図5に示すように、塗布する工程S1と、乾燥する工程S2と、硬化する工程S3とを備える。当該絶縁電線の製造方法は、図1に示す絶縁電線の製造装置を用いて行うことができる。
[Manufacturing method of insulated wire]
Next, a method for manufacturing the insulated wire will be described. The method for manufacturing the insulated wire includes, as shown in FIG. 5, a coating step S1, a drying step S2, and a curing step S3. The insulated wire manufacturing method can be performed using the insulated wire manufacturing apparatus shown in FIG.

<塗布する工程>
塗布する工程S1では、線状の導体Wをその軸方向に走行させつつワニスを塗布する。具体的には、導体Wを送出部4から送り出し、第一ドラム1aを経由させ、塗布装置21を走行させる。
<Process of applying>
In the coating step S1, the varnish is applied while running the linear conductor W in its axial direction. Specifically, the conductor W is delivered from the delivery section 4, passed through the first drum 1a, and the coating device 21 is caused to run.

導体Wは、ワニス槽21aの底部の貫通穴から挿入され、ワニス槽21aに貯留されたワニス中を通過することによって外周面に絶縁ワニスが塗布される。そして、導体Wの外周面に塗布されたワニスは、導体Wが塗布ダイス21bに挿通されることでダイス孔の径
に応じてほぼ均一な厚さに整えられる。
The conductor W is inserted from the through hole in the bottom of the varnish tank 21a, passes through the varnish stored in the varnish tank 21a, and is coated with insulating varnish on its outer peripheral surface. The varnish applied to the outer peripheral surface of the conductor W is adjusted to a substantially uniform thickness according to the diameter of the die hole by inserting the conductor W into the coating die 21b.

<乾燥する工程>
乾燥する工程S2では、導体Wに塗布されたワニスを加熱炉22により乾燥する。具体的には、塗布ダイス21bを通過した導体Wを加熱炉22を走行させる。
<Drying process>
In the drying step S<b>2 , the varnish applied to the conductor W is dried by the heating furnace 22 . Specifically, the conductor W that has passed through the coating die 21b is caused to travel through the heating furnace 22 .

これにより導体Wに塗布されたワニスは、加熱炉22内を通過する際にその溶剤が蒸発し、ワニスが乾燥する。 As a result, the varnish applied to the conductor W evaporates the solvent when passing through the heating furnace 22, and the varnish dries.

なお、塗布する工程S1及び乾燥する工程S2は、硬化する工程S3を行う前にこの順に複数回繰り返してもよい。 The applying step S1 and the drying step S2 may be repeated in this order multiple times before performing the curing step S3.

<硬化する工程>
硬化する工程S3では、乾燥する工程S2後の上記ワニスを誘導加熱器31により硬化する。具体的には、加熱炉22を通過した導体Wを誘導加熱器31を走行させる。
<Curing process>
In the curing step S3, the induction heater 31 cures the varnish after the drying step S2. Specifically, the conductor W that has passed through the heating furnace 22 is caused to travel through the induction heater 31 .

これにより乾燥する工程S2で溶剤が蒸発した後のワニスに含まれる樹脂が硬化し、導体Wの外周に絶縁被覆が形成される。 As a result, the resin contained in the varnish after the solvent evaporates in the drying step S2 hardens, and an insulating coating is formed on the outer periphery of the conductor W. As shown in FIG.

なお、塗布する工程S1、乾燥する工程S2及び硬化する工程S3は、この順に繰り返し行ってもよい。 The applying step S1, the drying step S2, and the curing step S3 may be repeated in this order.

以上の工程を経て、導体Wの外周に絶縁層が形成され、絶縁電線を製造することができる。 Through the above steps, an insulating layer is formed on the outer periphery of the conductor W, and an insulated wire can be manufactured.

〔利点〕
当該絶縁電線の製造装置及び当該絶縁電線の製造方法では、導体Wへのワニスの塗布後に炉長の長い加熱炉22により緩やかに乾燥させるのでワニスの発泡が生じ難い。また、加熱炉22は単位長当たりの設備コストが小さいので、長い炉長としても製造にかかるコストの増大を抑止できる。当該絶縁電線の製造装置及び当該絶縁電線の製造方法では、乾燥させたワニスを誘導加熱器31により硬化させる。誘導加熱器31は投入した電力に実質的に比例して導体Wの温度を容易に高めることができるので、加熱炉に比べて短い炉長でワニスを硬化させることができる。このため、導体Wの走行速度を上げて製造能力を向上させても、製造設備の大型化や製造コストの増大を抑止できる。さらに、乾燥させたワニスでは急加熱を行ってもワニスの発泡は生じ難い。従って、当該絶縁電線の製造装置及び当該絶縁電線の製造方法を用いることで、ワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上できる。
〔advantage〕
In the apparatus for manufacturing an insulated wire and the method for manufacturing an insulated wire, after the varnish is applied to the conductor W, the varnish is gently dried in the heating furnace 22 having a long furnace length, so that the varnish hardly foams. In addition, since the heating furnace 22 has a low equipment cost per unit length, it is possible to suppress an increase in manufacturing costs even with a long furnace length. In the insulated wire manufacturing apparatus and the insulated wire manufacturing method, the dried varnish is cured by the induction heater 31 . Since the induction heater 31 can easily raise the temperature of the conductor W substantially in proportion to the power supplied, the varnish can be cured with a shorter furnace length than the heating furnace. Therefore, even if the traveling speed of the conductor W is increased to improve the manufacturing capacity, it is possible to suppress the increase in the size of the manufacturing equipment and the manufacturing cost. Furthermore, even if the dried varnish is rapidly heated, foaming of the varnish is unlikely to occur. Therefore, by using the apparatus for manufacturing an insulated wire and the method for manufacturing an insulated wire, it is possible to improve the manufacturing capacity while preventing the varnish from foaming and suppressing the enlargement of the manufacturing equipment and the increase in the manufacturing cost.

[その他の実施形態]
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other embodiments]
It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is not limited to the configuration of the above-described embodiment, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. be.

上記実施形態では、導体が塗布乾燥部で塗布装置及び加熱炉をこの順に3回繰り返し通過する場合を説明したが、この繰り返し回数は3回に限定されず、2回又は4回以上であってもよい。なお、この繰り返し回数としては、硬化時間の短縮効果と絶縁層の絶縁性低下の抑止との観点から、2回以上5回以下とすることが好ましい。 In the above embodiment, the case where the conductor repeatedly passes through the coating device and the heating furnace in this order three times in the coating and drying section has been described, but the number of repetitions is not limited to three times, and may be two times or four times or more. good too. The number of repetitions is preferably two or more and five or less from the viewpoint of shortening the curing time and suppressing deterioration of the insulating properties of the insulating layer.

また、上記実施形態では、上記繰り返し回数が3回で固定されており、硬化部を通過して周回し、次に導体が塗布乾燥部を通過する際も同じ繰り返し数となるが、この繰り返し数は硬化部を通過して周回するごとに異なってもよい。 Further, in the above embodiment, the number of repetitions is fixed at 3, and the number of repetitions is the same when the conductor passes through the curing section and then circulates and then passes through the coating and drying section. may be different for each revolution through the hardening section.

さらに、上記繰り返し回数は1回、つまり導体が塗布乾燥部で塗布装置及び加熱炉を繰り返し通過せず、塗布装置及び加熱炉を1回通過するごとに硬化部を通過する構成も本発明の意図するところである。 Furthermore, the number of repetitions is 1, that is, the conductor does not repeatedly pass through the coating device and the heating furnace in the coating and drying section, and the configuration in which the conductor passes through the curing section each time it passes through the coating device and the heating furnace is also the intention of the present invention. I'm about to.

上記実施形態では、導体が塗布乾燥部及び硬化部をこの順に繰り返し通過する場合を説明したが、塗布乾燥部及び硬化部をこの順に繰り返さない構成、つまり硬化部が塗布乾燥部の下流側に1つだけ設けられる構成も本発明の意図するところである。 In the above embodiment, the case where the conductor repeatedly passes through the coating/drying section and the curing section in this order has been described. Configurations in which only one is provided are also contemplated by the present invention.

以上のように、本発明の絶縁電線の製造装置及び絶縁電線の製造方法は、製造時にワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ製造能力を向上できる。 As described above, the apparatus for manufacturing an insulated wire and the method for manufacturing an insulated wire according to the present invention can prevent the varnish from foaming during manufacturing, and can improve the manufacturing capacity while suppressing the increase in the size of the manufacturing equipment and the manufacturing cost. .

1 ドラム
1a 第一ドラム
1b 第二ドラム
2 塗布乾燥部
21 塗布装置
21a ワニス槽
21b 塗布ダイス
22 加熱炉
3 硬化部
31 誘導加熱器
31a 第1加熱領域
31b 第2加熱領域
31c 第3加熱領域
4 送出部
5 巻取部
W 導体
1 Drum 1a First Drum 1b Second Drum 2 Coating Drying Section 21 Coating Device 21a Varnish Tank 21b Coating Die 22 Heating Furnace 3 Curing Section 31 Induction Heater 31a First Heating Region 31b Second Heating Region 31c Third Heating Region 4 Delivery Part 5 Winding part W Conductor

Claims (4)

線状の導体をその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部と、
上記塗布乾燥部の上記導体の走行方向下流側に設置され、上記ワニスを硬化させる硬化部と
を備え、
上記塗布乾燥部が、上記導体に上記ワニスを塗布する塗布装置と、ワニス塗布後の上記導体を加熱する加熱炉とを有し、
上記硬化部が、上記導体を加熱する誘導加熱器を有し、
上記加熱炉が、熱風循環式加熱炉であり、
上記導体が上記塗布乾燥部及び上記硬化部をこの順に繰り返し通過するように構成されている絶縁電線の製造装置。
a coating and drying section that coats and dries the varnish while running the linear conductor in its axial direction;
a curing section that is installed downstream of the coating and drying section in the running direction of the conductor and cures the varnish,
The coating and drying unit has a coating device for coating the varnish on the conductor and a heating furnace for heating the conductor after the varnish coating,
The curing unit has an induction heater that heats the conductor,
The heating furnace is a hot air circulation heating furnace,
An apparatus for manufacturing an insulated wire , wherein the conductor is configured to repeatedly pass through the coating/drying section and the curing section in this order .
上記誘導加熱器が、上記導体の加熱温度を独立して制御可能な複数の加熱領域を上記導体の走行方向に沿って有する請求項1に記載の絶縁電線の製造装置。 2. The apparatus for manufacturing an insulated wire according to claim 1, wherein the induction heater has a plurality of heating regions along the traveling direction of the conductor, the heating temperature of the conductor being independently controllable. 上記導体が上記塗布乾燥部で上記塗布装置及び上記加熱炉をこの順に繰り返し通過するように構成されている請求項1又は請求項2に記載の絶縁電線の製造装置。 3. The apparatus for manufacturing an insulated wire according to claim 1, wherein the conductor is configured to repeatedly pass through the coating device and the heating furnace in this order in the coating and drying section. 線状の導体をその軸方向に走行させつつワニスを塗布する工程と、
上記導体に塗布されたワニスを加熱炉により乾燥する工程と、
上記乾燥する工程後の上記ワニスを誘導加熱器により硬化する工程と
を備え、
上記加熱炉が、熱風循環式加熱炉であり、
上記塗布する工程、上記乾燥する工程及び上記硬化する工程をこの順に繰り返し行う絶縁電線の製造方法。
A step of applying varnish while running a linear conductor in its axial direction;
a step of drying the varnish applied to the conductor in a heating furnace;
A step of curing the varnish after the drying step with an induction heater,
The heating furnace is a hot air circulation heating furnace,
A method for manufacturing an insulated wire , wherein the applying step, the drying step, and the curing step are repeated in this order .
JP2019127612A 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method Active JP7265432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019127612A JP7265432B2 (en) 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019127612A JP7265432B2 (en) 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2021012855A JP2021012855A (en) 2021-02-04
JP7265432B2 true JP7265432B2 (en) 2023-04-26

Family

ID=74226148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019127612A Active JP7265432B2 (en) 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method

Country Status (1)

Country Link
JP (1) JP7265432B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252870A (en) 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Apparatus for manufacturing insulated wire and method for manufacturing insulated wire
JP2012252868A (en) 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Device and method for producing insulation wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252870A (en) 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Apparatus for manufacturing insulated wire and method for manufacturing insulated wire
JP2012252868A (en) 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Device and method for producing insulation wire

Also Published As

Publication number Publication date
JP2021012855A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP4887990B2 (en) Stator heating method
KR101044166B1 (en) Method and device for heating stator
JP4593291B2 (en) Manufacturing method of stator of rotating electric machine
US8716914B2 (en) Stator of vehicle AC generator and method for manufacturing the same
JP2020514960A (en) Continuous dislocation conductors and assemblies
JP5979015B2 (en) Insulated wire manufacturing method and apparatus
JP5821410B2 (en) Insulated wire manufacturing method
JP5561830B2 (en) Coating die and method for manufacturing insulated wire
JP7265432B2 (en) Insulated wire manufacturing device and insulated wire manufacturing method
US10510464B1 (en) Continuously transposed conductors and assemblies
JP2014529843A (en) Device for coating conductive wires
JP2012252870A (en) Apparatus for manufacturing insulated wire and method for manufacturing insulated wire
JP2011048956A (en) Insulated wire manufacturing method and heating device
CN100379124C (en) Rotor of electric rotating machine and manufacture thereof
WO2005027320A1 (en) Device and method for manufacture of rotating electric machine
JP6179023B2 (en) Insulated wire manufacturing apparatus and manufacturing method
WO2021182418A1 (en) Method for manufacturing insulated electric wire, and apparatus for manufacturing insulated electric wire
JP5668264B2 (en) Insulated wire manufacturing apparatus and insulated wire manufacturing method
JP6104123B2 (en) Coil manufacturing method for electrical equipment
JP5734110B2 (en) Method for impregnating varnish of winding body for rotating electrical machine and winding body for rotating electrical machine manufactured by the method
JP2016081604A (en) Apparatus for producing insulation-coated wire
JP2016157573A (en) Manufacturing method and manufacturing apparatus for enamel wire
RU2611727C2 (en) Method and device for stitching or vulcanization of elongated element
JP6127821B2 (en) Insulation coated wire manufacturing method and insulation coated wire manufacturing apparatus
JP7484621B2 (en) Manufacturing method of the stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230414

R150 Certificate of patent or registration of utility model

Ref document number: 7265432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150