JP2021012855A - Manufacturing device of insulated wire and manufacturing method of insulated wire - Google Patents

Manufacturing device of insulated wire and manufacturing method of insulated wire Download PDF

Info

Publication number
JP2021012855A
JP2021012855A JP2019127612A JP2019127612A JP2021012855A JP 2021012855 A JP2021012855 A JP 2021012855A JP 2019127612 A JP2019127612 A JP 2019127612A JP 2019127612 A JP2019127612 A JP 2019127612A JP 2021012855 A JP2021012855 A JP 2021012855A
Authority
JP
Japan
Prior art keywords
conductor
varnish
coating
heating
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019127612A
Other languages
Japanese (ja)
Other versions
JP7265432B2 (en
Inventor
善洋 中澤
Yoshihiro Nakazawa
善洋 中澤
昂大 岩本
Kota Iwamoto
昂大 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2019127612A priority Critical patent/JP7265432B2/en
Publication of JP2021012855A publication Critical patent/JP2021012855A/en
Application granted granted Critical
Publication of JP7265432B2 publication Critical patent/JP7265432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

To provide a manufacturing device of an insulated wire difficult to cause varnish to foam at manufacturing, with improved manufacturing capacity, while suppressing a size increase of manufacturing facilities and a rise in production costs.SOLUTION: A manufacturing device of an insulated wire includes: a coating and drying part configured to coat and dry varnish while making a linear conductor travel in an axial direction thereof; and a curing part arranged at a downstream side in a travel direction of the conductor of the coating and drying part and configured to cure the varnish. The coating and drying part includes: a coating device configured to coat the conductor with the varnish; and a heating furnace configured to heat the conductor after coating with the varnish. The curing part includes an induction heating tool configured to heat the conductor.SELECTED DRAWING: Figure 2

Description

本発明は、絶縁電線の製造装置及び絶縁電線の製造方法に関する。 The present invention relates to an insulated wire manufacturing apparatus and a method for manufacturing an insulated wire.

線状の導体を絶縁塗料(ワニス)で被覆した絶縁電線が知られている。この絶縁電線は、線状の導体をその軸方向に走行させつつ、導体の外周面へのワニスの塗布及び焼付を絶縁被膜が所定の厚さに達するまで繰り返し行うことで製造される。 Insulated electric wires in which a linear conductor is coated with an insulating paint (varnish) are known. This insulated wire is manufactured by repeatedly applying and baking a varnish on the outer peripheral surface of the conductor until the insulating coating reaches a predetermined thickness while running the linear conductor in the axial direction.

このような絶縁電線の製造装置としては、走行している導体の表面にワニスを塗布する塗布部と、ワニスが塗布された導体への加熱により、導体表面に絶縁層を形成する加熱部とを備える製造装置が知られている(特開2015−43305号公報参照)。 As an apparatus for manufacturing such an insulated wire, a coating portion for applying varnish to the surface of a running conductor and a heating portion for forming an insulating layer on the conductor surface by heating the conductor coated with varnish are provided. A manufacturing apparatus provided is known (see JP-A-2015-43305).

上記絶縁電線の製造装置では、塗布されたワニスが導体への加熱により乾燥及び硬化することで、導体表面に絶縁層が形成される。このとき、導体を急に加熱すると塗布されたワニスが発泡し易くなり、形成される絶縁層の絶縁性が低下するおそれがある。このため、対流及び輻射により比較的緩やかに加熱される熱風循環式加熱炉を用いることが一般的である。 In the above-mentioned insulated wire manufacturing apparatus, the coated varnish is dried and hardened by heating the conductor, so that an insulating layer is formed on the conductor surface. At this time, if the conductor is suddenly heated, the applied varnish tends to foam, and the insulating property of the formed insulating layer may deteriorate. For this reason, it is common to use a hot air circulation type heating furnace that is heated relatively slowly by convection and radiation.

特開2015−43305号公報JP-A-2015-43305

熱風循環式加熱炉を用いた絶縁電線の製造装置で、絶縁電線の製造能力を向上するには、導体の走行速度を上げる必要がある。単に走行速度のみを上げると導体が熱風循環式加熱炉を通過する時間が短くなるため、ワニスが十分に乾燥及び硬化する時間が不足する。この時間不足を補うためには、熱風循環式加熱炉の炉長を伸ばす方法及び炉温を上げる方法が挙げられる。 In an insulated wire manufacturing device using a hot air circulation heating furnace, it is necessary to increase the traveling speed of the conductor in order to improve the manufacturing capacity of the insulated wire. If only the traveling speed is increased, the time for the conductor to pass through the hot air circulation type heating furnace is shortened, so that the time for the varnish to sufficiently dry and harden is insufficient. In order to make up for this shortage of time, there are a method of extending the length of the hot air circulation type heating furnace and a method of raising the furnace temperature.

前者では、走行速度上昇に応じて熱風循環式加熱炉の炉長を伸ばす必要が生じる。絶縁電線の製造装置では、製造設備のうち熱風循環式加熱炉が占める割合が高いため、絶縁電線の製造装置が大型化し、設備のためのスペース確保が困難となる。 In the former case, it is necessary to extend the length of the hot air circulation type heating furnace as the traveling speed increases. In the insulated wire manufacturing equipment, the hot air circulation type heating furnace occupies a large proportion of the manufacturing equipment, so that the insulated wire manufacturing equipment becomes large and it becomes difficult to secure space for the equipment.

後者の炉温を上げる方法では、設備の耐熱性の観点から上げられる炉温には限度があり、また炉温の上昇分以上にランニングコストが大きくなるため、製造コストが増大するおそれがある。 In the latter method of raising the furnace temperature, there is a limit to the furnace temperature that can be raised from the viewpoint of heat resistance of the equipment, and the running cost increases more than the increase in the furnace temperature, so that the manufacturing cost may increase.

本発明は、上述のような事情に基づいてなされたものであり、製造時にワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上した絶縁電線の製造装置及び絶縁電線の製造方法の提供を目的とする。 The present invention has been made based on the above circumstances, and is an insulated wire in which foaming of varnish is unlikely to occur during manufacturing, and the manufacturing capacity is improved while suppressing the increase in size of manufacturing equipment and the increase in manufacturing cost. It is an object of the present invention to provide a manufacturing apparatus and a manufacturing method of an insulated electric wire.

本発明の一態様に係る絶縁電線の製造装置は、線状の導体をその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部と、上記塗布乾燥部の上記導体の走行方向下流側に設置され、上記ワニスを硬化させる硬化部とを備え、上記塗布乾燥部が、上記導体に上記ワニスを塗布する塗布装置と、ワニス塗布後の上記導体を加熱する加熱炉とを有し、上記硬化部が、上記導体を加熱する誘導加熱器を有する。 The apparatus for manufacturing an insulated electric wire according to one aspect of the present invention includes a coating and drying portion for applying and drying varnish while traveling a linear conductor in the axial direction thereof, and a downstream side of the coating and drying portion in the traveling direction of the conductor. The coating and drying unit has a coating device for applying the varnish to the conductor and a heating furnace for heating the conductor after the varnish is applied, and is provided with a curing portion for curing the varnish. The cured portion has an induction heater that heats the conductor.

本発明の絶縁電線の製造装置及び絶縁電線の製造方法は、製造時にワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ製造能力を向上できる。 The insulated wire manufacturing apparatus and the insulated wire manufacturing method of the present invention can improve the manufacturing capacity while suppressing foaming of the varnish during manufacturing and suppressing an increase in the size of the manufacturing equipment and a manufacturing cost.

図1は、本発明の一実施形態に係る絶縁電線の製造装置の模式的構成図である。FIG. 1 is a schematic configuration diagram of an insulated wire manufacturing apparatus according to an embodiment of the present invention. 図2は、図1の絶縁電線の製造装置の塗布乾燥部及び硬化部の構成を示す模式図である。FIG. 2 is a schematic view showing the configurations of the coated and dried portion and the cured portion of the insulated wire manufacturing apparatus of FIG. 図3は、図2の塗布装置の詳細構成を示す模式図である。FIG. 3 is a schematic view showing a detailed configuration of the coating device of FIG. 図4は、図2の硬化部の詳細構成を示す模式図である。FIG. 4 is a schematic view showing a detailed configuration of the cured portion of FIG. 図5は、本発明の一実施形態に係る絶縁電線の製造方法を示すフロー図である。FIG. 5 is a flow chart showing a method of manufacturing an insulated wire according to an embodiment of the present invention.

[本発明の実施形態の説明]
本発明の一態様に係る絶縁電線の製造装置は、線状の導体をその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部と、上記塗布乾燥部の上記導体の走行方向下流側に設置され、上記ワニスを硬化させる硬化部とを備え、上記塗布乾燥部が、上記導体に上記ワニスを塗布する塗布装置と、ワニス塗布後の上記導体を加熱する加熱炉とを有し、上記硬化部が、上記導体を加熱する誘導加熱器を有する。
[Explanation of Embodiments of the Present Invention]
The apparatus for manufacturing an insulated electric wire according to one aspect of the present invention includes a coating and drying portion for applying and drying varnish while traveling a linear conductor in the axial direction thereof, and a downstream side of the coating and drying portion in the traveling direction of the conductor. The coating and drying unit has a coating device for applying the varnish to the conductor and a heating furnace for heating the conductor after the varnish is applied, and is provided with a curing portion for curing the varnish. The cured portion has an induction heater that heats the conductor.

当該絶縁電線の製造装置は、塗布乾燥部で、導体へのワニスの塗布後に炉長の長い加熱炉により緩やかに乾燥させるのでワニスの発泡が生じ難い。また、加熱炉は単位長当たりの設備コストが小さいので、長い炉長としても製造にかかるコストの増大を抑止できる。一方、当該絶縁電線の製造装置は、硬化部で、乾燥させたワニスを誘導加熱器により硬化させる。誘導加熱器は投入した電力に実質的に比例して導体の温度を容易に高めることができるので、加熱炉に比べて短い炉長でワニスを硬化させることができる。このため、導体の走行速度を上げて製造能力を向上させても、製造設備の大型化や製造コストの増大を抑止できる。さらに、乾燥させたワニスでは急加熱を行ってもワニスの発泡は生じ難い。従って、当該絶縁電線の製造装置は、ワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上できる。 In the insulated wire manufacturing apparatus, the varnish is less likely to foam because it is slowly dried in a heating furnace having a long furnace length after the varnish is applied to the conductor in the coating and drying section. Further, since the equipment cost per unit length of the heating furnace is small, it is possible to suppress an increase in the manufacturing cost even if the furnace length is long. On the other hand, in the insulated wire manufacturing apparatus, the dried varnish is cured by an induction heater at the cured portion. Since the induction heater can easily raise the temperature of the conductor in substantially proportional to the input electric power, the varnish can be cured with a shorter furnace length than the heating furnace. Therefore, even if the traveling speed of the conductor is increased to improve the manufacturing capacity, it is possible to suppress an increase in the size of the manufacturing equipment and an increase in the manufacturing cost. Furthermore, with dried varnish, foaming of the varnish is unlikely to occur even if rapid heating is performed. Therefore, the insulated wire manufacturing apparatus can improve the manufacturing capacity while suppressing the foaming of the varnish and suppressing the increase in the size of the manufacturing equipment and the manufacturing cost.

上記誘導加熱器が、上記導体の加熱温度を独立して制御可能な複数の加熱領域を上記導体の走行方向に沿って有するとよい。このように上記誘導加熱器を上記導体の加熱温度を独立して制御可能な複数の加熱領域を上記導体の走行方向に沿って有するものとすることで、導体の温度管理を容易に行うことができるので、導体を速やかに所望の温度まで加熱した後、その温度を保つことができる。このような温度管理により製造能力をさらに向上することができる。 It is preferable that the induction heater has a plurality of heating regions in which the heating temperature of the conductor can be independently controlled along the traveling direction of the conductor. As described above, by making the induction heater have a plurality of heating regions in which the heating temperature of the conductor can be independently controlled along the traveling direction of the conductor, the temperature control of the conductor can be easily performed. Therefore, the conductor can be quickly heated to a desired temperature and then maintained at that temperature. Such temperature control can further improve the manufacturing capacity.

上記導体が上記塗布乾燥部及び上記硬化部をこの順に繰り返し通過するように構成されているとよい。導体に必要な絶縁層の厚さに相当する量のワニスを一度に塗布すると、ワニスの乾燥に時間を要するうえに発泡し易くなる。このように塗布乾燥及び硬化を繰り返しながら導体に絶縁層を形成していくことで、ワニスの発泡を抑止しつつ効率的に絶縁層を形成することができる。 It is preferable that the conductor is configured to repeatedly pass through the coating and drying portion and the curing portion in this order. If an amount of varnish corresponding to the thickness of the insulating layer required for the conductor is applied at one time, it takes time to dry the varnish and it becomes easy to foam. By forming the insulating layer on the conductor while repeating coating, drying and curing in this way, it is possible to efficiently form the insulating layer while suppressing the foaming of the varnish.

上記導体が上記塗布乾燥部で上記塗布装置及び上記加熱炉をこの順に繰り返し通過するように構成されているとよい。このように塗布乾燥部で、導体への塗布及び乾燥を一定回数繰り返した後に硬化部で硬化を行うことで、硬化のために必要な設備を低減できる。従って、設備費用及び設置スペースを低減できるうえにランニングコストを低減することができる。 It is preferable that the conductor is configured to repeatedly pass through the coating device and the heating furnace in this order in the coating and drying section. In this way, by repeating coating and drying on the conductor a certain number of times in the coating and drying portion and then curing in the cured portion, the equipment required for curing can be reduced. Therefore, the equipment cost and the installation space can be reduced, and the running cost can be reduced.

本発明の別の一態様に係る絶縁電線の製造方法は、線状の導体をその軸方向に走行させつつワニスを塗布する工程と、上記導体に塗布されたワニスを加熱炉により乾燥する工程と、上記乾燥する工程後の上記ワニスを誘導加熱器により硬化する工程とを備える。 The method for manufacturing an insulated wire according to another aspect of the present invention includes a step of applying varnish while running a linear conductor in the axial direction thereof, and a step of drying the varnish applied to the conductor in a heating furnace. The varnish after the drying step is hardened by an induction heater.

当該絶縁電線の製造方法では、導体へのワニスの塗布後に炉長の長い加熱炉により緩やかに乾燥させるのでワニスの発泡が生じ難い。また、加熱炉は単位長当たりの設備コストが小さいので、長い炉長としても製造にかかるコストの増大を抑止できる。一方、当該絶縁電線の製造方法では乾燥させたワニスを誘導加熱器により硬化させる。誘導加熱器は投入した電力に実質的に比例して導体の温度を容易に高めることができるので、加熱炉に比べて短い炉長でワニスを硬化させることができる。このため、導体の走行速度を上げて製造能力を向上させても、製造設備の大型化や製造コストの増大を抑止できる。さらに、乾燥させたワニスでは急加熱を行ってもワニスの発泡は生じ難い。従って、当該絶縁電線の製造方法を用いることで、ワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上できる。 In the method for manufacturing the insulated wire, the varnish is less likely to foam because the varnish is applied to the conductor and then slowly dried in a heating furnace having a long furnace length. Further, since the equipment cost per unit length of the heating furnace is small, it is possible to suppress an increase in the manufacturing cost even if the furnace length is long. On the other hand, in the method of manufacturing the insulated wire, the dried varnish is cured by an induction heater. Since the induction heater can easily raise the temperature of the conductor in substantially proportional to the input electric power, the varnish can be cured with a shorter furnace length than the heating furnace. Therefore, even if the traveling speed of the conductor is increased to improve the manufacturing capacity, it is possible to suppress an increase in the size of the manufacturing equipment and an increase in the manufacturing cost. Furthermore, with dried varnish, foaming of the varnish is unlikely to occur even if rapid heating is performed. Therefore, by using the method for manufacturing the insulated wire, it is possible to improve the manufacturing capacity while suppressing the foaming of the varnish and suppressing the increase in the size of the manufacturing equipment and the manufacturing cost.

なお、本明細書において「加熱炉」とは、電熱や燃焼により発生させた熱を被加熱物体に伝えることで加熱を行う炉を指す。 In addition, in this specification, a "heating furnace" refers to a furnace which heats by transferring the heat generated by electric heat or combustion to an object to be heated.

[本発明の実施形態の詳細]
以下、本発明に係る絶縁電線の製造装置及び絶縁電線の製造方法の実施形態について図面を参照しつつ詳説する。
[Details of Embodiments of the present invention]
Hereinafter, embodiments of the insulated wire manufacturing apparatus and the insulated wire manufacturing method according to the present invention will be described in detail with reference to the drawings.

〔絶縁電線の製造装置〕
図1に示す絶縁電線の製造装置は、平行に配設され、1又は複数周回架け渡される線上の導体Wを走行させる一対のドラム1(第一ドラム1a及び第二ドラム1b)と、導体Wをその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部2と、塗布乾燥部2の導体Wの走行方向下流側に設置され、上記ワニスを硬化させる硬化部3と、巻かれた導体Wを第一ドラム1aに送り出す送出部4と、絶縁層を形成された導体W、つまり絶縁電線を巻き取る巻取部5とを備える。
[Insulated wire manufacturing equipment]
The insulated wire manufacturing apparatus shown in FIG. 1 includes a pair of drums 1 (first drum 1a and second drum 1b) and a conductor W, which are arranged in parallel and run on a conductor W on a line spanning one or a plurality of turns. The coated and dried portion 2 that applies and dries the varnish while traveling in the axial direction thereof, and the cured portion 3 that is installed on the downstream side of the conductor W of the coated and dried portion 2 in the traveling direction and cures the varnish. It includes a delivery unit 4 that sends the conductor W to the first drum 1a, and a conductor W on which an insulating layer is formed, that is, a winding unit 5 that winds the insulated wire.

<導体>
導体Wとしては、特に材質及び構成が限定されるわけではないが、例えば銅線、錫めっき銅線、アルミ線、アルミ合金線、鋼心アルミ線、カッパーフライ線、ニッケルめっき銅線、銀めっき銅線、銅覆アルミ線等を用いることができる。また、導体Wの断面形状としては、特に制限されず、円形状(丸線)、楕円形状、及び四角形状(平角線)等の多角形状等とすることができる。
<Conductor>
The material and composition of the conductor W are not particularly limited, but for example, copper wire, tin-plated copper wire, aluminum wire, aluminum alloy wire, steel core aluminum wire, copper fly wire, nickel-plated copper wire, and silver plating. A copper wire, a copper-covered aluminum wire, or the like can be used. Further, the cross-sectional shape of the conductor W is not particularly limited, and may be a polygonal shape such as a circular shape (round line), an elliptical shape, or a square shape (flat line).

<送出部>
送出部4は、リールに巻かれた導体Wを第一ドラム1aに送り出す。送出部4のリールは、駆動式としてもよく、非駆動式としてもよい。送出部4のリールを駆動式とする場合は、第一ドラム1aとの間の導体Wに過度な弛みや張力が発生しないように、送出部4の駆動を制御することが好ましい。送出部4の駆動には、サーボモーター及びステッピングモーター等の公知のモーターを用いることができる。
<Sending part>
The delivery unit 4 sends the conductor W wound around the reel to the first drum 1a. The reel of the delivery unit 4 may be a driven type or a non-driven type. When the reel of the delivery unit 4 is a drive type, it is preferable to control the drive of the transmission unit 4 so that excessive slack or tension does not occur in the conductor W between the first drum 1a. A known motor such as a servo motor or a stepping motor can be used to drive the delivery unit 4.

<ドラム>
第一ドラム1aと第二ドラム1bとは、塗布乾燥部2と硬化部3とを挟んで上下方向に対向して配置されており、下側に第一ドラム1aが配置され、上側に第二ドラム1bが配置されている。この第一ドラム1aと第二ドラム1bとは、導体Wを周回させる。この第一ドラム1a及び第二ドラム1bは、図1の紙面に垂直な方向に延伸しており、導体Wを掛ける位置をドラム1の軸方向で紙面奥側に1周毎に一定間隔ずらすことで導体Wを周回させることができるようになっている。一定回数ドラム1間を周回させて表面に絶縁層が形成された導体W、即ち、絶縁電線は、最終的には導体Wの走行方向下流側に設けられた巻取部5に巻き取られる。ドラム1の材質としては、金属や樹脂等を用いることができる。第一ドラム1aは、駆動ドラムであり、図示しない駆動部によって回転駆動する。第二ドラム1bは、回転自在に支持されており、導体Wの走行に伴って回転する。
<Drum>
The first drum 1a and the second drum 1b are arranged so as to face each other in the vertical direction with the coating drying portion 2 and the curing portion 3 interposed therebetween, and the first drum 1a is arranged on the lower side and the second drum 1a is arranged on the upper side. The drum 1b is arranged. The first drum 1a and the second drum 1b orbit the conductor W. The first drum 1a and the second drum 1b are extended in a direction perpendicular to the paper surface of FIG. 1, and the position where the conductor W is hung is shifted in the axial direction of the drum 1 toward the back side of the paper surface at regular intervals. It is possible to orbit the conductor W with. The conductor W on which the insulating layer is formed by circulating between the drums 1 a certain number of times, that is, the insulated electric wire, is finally wound around the winding portion 5 provided on the downstream side in the traveling direction of the conductor W. As the material of the drum 1, metal, resin, or the like can be used. The first drum 1a is a drive drum, and is rotationally driven by a drive unit (not shown). The second drum 1b is rotatably supported and rotates as the conductor W travels.

<塗布乾燥部>
塗布乾燥部2は、図2に示すように、導体Wにワニスを塗布する塗布装置21と、ワニス塗布後の導体Wを加熱する加熱炉22とを有する。
<Applying and drying part>
As shown in FIG. 2, the coating / drying unit 2 includes a coating device 21 for coating the conductor W with varnish, and a heating furnace 22 for heating the conductor W after coating the varnish.

上述のように導体Wは、一定回数ドラム1間を周回し、周回の都度、塗布装置21及び加熱炉22をこの順で通過する。また、図2に示す塗布乾燥部2では、導体Wは、塗布乾燥部2内の塗布装置21及び加熱炉22を3回連続で通過した後に硬化部3を通過するように当該絶縁電線の製造装置が構成されている。つまり、当該絶縁電線の製造装置では、導体Wが塗布乾燥部2で塗布装置21及び加熱炉22をこの順に3回繰り返し通過するように構成されている。このように塗布乾燥部2で、導体Wへの塗布及び乾燥を一定回数繰り返した後に、硬化部3で硬化を行うことで硬化に要する時間を短縮できる。これにより絶縁層の絶縁性を抑止しつつ、絶縁電線の製造能力を向上できる。 As described above, the conductor W orbits between the drums 1 a certain number of times, and passes through the coating device 21 and the heating furnace 22 in this order each time. Further, in the coating / drying section 2 shown in FIG. 2, the conductor W is manufactured so as to pass through the curing section 3 after passing through the coating device 21 and the heating furnace 22 in the coating / drying section 2 three times in a row. The device is configured. That is, in the insulated wire manufacturing apparatus, the conductor W is configured to repeatedly pass through the coating apparatus 21 and the heating furnace 22 three times in this order at the coating drying section 2. In this way, the time required for curing can be shortened by repeatedly applying and drying to the conductor W in the coating / drying unit 2 and then curing in the curing unit 3. As a result, the manufacturing capacity of the insulated wire can be improved while suppressing the insulating property of the insulating layer.

図2では、導体Wが周回毎に異なる塗布装置21を通過するように塗布乾燥部2が構成されているが、例えば同一種類で同一濃度のワニスを塗布する場合であれば、導体Wが周回毎に1つの塗布装置21を通過する構成とすることもできる。また、導体Wの周回数よりも少ない複数の塗布装置21を備え、1つの塗布装置21に対し1回又は複数回、導体Wが通過する構成としてもよい。 In FIG. 2, the coating drying section 2 is configured so that the conductor W passes through a different coating device 21 for each circuit. For example, when the same type and the same concentration of varnish is applied, the conductor W rotates. It is also possible to have a configuration in which one coating device 21 is passed through each time. Further, the conductor W may be provided with a plurality of coating devices 21 having a number of times less than the number of circumferences of the conductor W, and the conductor W may pass once or a plurality of times to one coating device 21.

逆に図2では、導体Wが周回毎に同一の加熱炉22を通過するように塗布乾燥部2が構成されているが、例えば周回毎に温度管理を行う場合であれば、導体Wが周回毎に異なる加熱炉22を通過する構成とすることもできる。また、導体Wの周回数よりも少ない複数の加熱炉22を備え、1つの加熱炉22に対し、導体Wが1回又は複数回通過する構成としてもよい。 On the contrary, in FIG. 2, the coating and drying unit 2 is configured so that the conductor W passes through the same heating furnace 22 for each orbit. For example, when the temperature is controlled for each orbit, the conductor W orbits. It may be configured to pass through a different heating furnace 22 for each. Further, a plurality of heating furnaces 22 having a number of times less than the number of circumferences of the conductor W may be provided, and the conductor W may pass once or a plurality of times to one heating furnace 22.

(塗布装置)
塗布装置21は、図3に示すように、ワニスを貯留するワニス槽21aと、ワニス槽21aの導体Wの走行方向下流側に設けられ、ワニス槽21aを通過した導体Wが挿通される塗布ダイス21bとを備える。塗布装置21は、第一ドラム1a及び第二ドラム1bを周回する導体Wの外周面にワニスを塗布する。
(Applying device)
As shown in FIG. 3, the coating device 21 is provided on the downstream side of the varnish tank 21a for storing the varnish and the conductor W of the varnish tank 21a in the traveling direction, and the coating die W through which the conductor W passing through the varnish tank 21a is inserted is inserted. 21b and the like. The coating device 21 applies varnish to the outer peripheral surface of the conductor W that orbits the first drum 1a and the second drum 1b.

ワニス槽21aの底部には、導体Wを貫通させる貫通孔が設けられており、貫通孔を貫通した導体Wの外周面にはワニス槽21aのワニスが塗布される。なお、1つの塗布装置21に対し導体Wの通過回数が複数である場合は、この貫通孔は、導体Wが周回し易いように所望の間隔を空けて通過回数だけ配列される。 A through hole through which the conductor W penetrates is provided at the bottom of the varnish tank 21a, and the varnish of the varnish tank 21a is applied to the outer peripheral surface of the conductor W penetrating the through hole. When the number of times the conductor W has passed through one coating device 21 is plurality, the through holes are arranged as many times as the number of times of passing at a desired interval so that the conductor W can easily orbit.

導体Wの外周面に塗布されたワニスは、導体Wが塗布ダイス21bに挿通されることでダイス孔の径に応じてほぼ均一な厚さに整えられる。この塗布ダイス21bは、1つの塗布装置21に対し導体Wの通過回数に関わらず、導体Wの周回ごとに設けられる。つまり、導体Wの通過回数と同数の塗布ダイス21bが設けられる。塗布ダイス21bのダイス孔の径は、導体Wの走行方向下流側に位置する塗布ダイス21bほど大きくされる。このように塗布ダイス21bの径を徐々に大きくすることで、導体Wの外周面に形成される被覆を徐々に厚くし、一定の厚さの絶縁層を形成することができる。 The varnish applied to the outer peripheral surface of the conductor W is adjusted to have a substantially uniform thickness according to the diameter of the die hole by inserting the conductor W into the coating die 21b. The coating die 21b is provided for each coating device 21 for each orbit of the conductor W regardless of the number of times the conductor W has passed. That is, the same number of coating dies 21b as the number of times the conductor W has passed is provided. The diameter of the die hole of the coating die 21b is increased as much as the coating die 21b located on the downstream side in the traveling direction of the conductor W. By gradually increasing the diameter of the coating die 21b in this way, the coating formed on the outer peripheral surface of the conductor W can be gradually thickened, and an insulating layer having a constant thickness can be formed.

従って、塗布ダイス21bの個数は、1回当たりに形成される絶縁層の厚さと、必要な絶縁層の総厚とから決定される。そして、導体Wの周回回数は、この塗布ダイス21bの個数と同数とできる。 Therefore, the number of the coating dies 21b is determined from the thickness of the insulating layer formed at one time and the total thickness of the required insulating layer. The number of orbits of the conductor W can be the same as the number of the coating dies 21b.

上記ワニスとしては、絶縁層を構成する樹脂を溶剤で溶解したものが用いられる。この構成樹脂としては、絶縁性が高く、耐熱性が高い樹脂であれば特に限定されない。具体的には、例えばポリイミド、ポリアミドイミド、ポリエステルイミド等を挙げることができる。また、溶剤としては、例えばピロリドンやクレゾール等を用いることができる。 As the varnish, a resin in which a resin constituting an insulating layer is dissolved in a solvent is used. The constituent resin is not particularly limited as long as it has high insulating properties and high heat resistance. Specific examples thereof include polyimide, polyamide-imide, and polyesterimide. Further, as the solvent, for example, pyrrolidone, cresol and the like can be used.

(加熱炉)
加熱炉22は、ワニス塗布後の導体Wを加熱することで、上記溶剤を蒸発させ、ワニスを乾燥させる。
(heating furnace)
The heating furnace 22 heats the conductor W after applying the varnish to evaporate the solvent and dry the varnish.

加熱炉22としては、特に限定されないが、電熱や燃焼により発生させた熱をエネルギー源として、対流及び輻射により導体Wを加熱するものを用いることができる。上記電熱としてはヒータを用いることができる。また、上記燃焼には、燃料とともにワニスから蒸発する溶剤を取り込んで燃やすものが含まれる。加熱炉22は、対流及び輻射により比較的緩やかに導体Wを加熱するので、加熱時にワニスの発泡が生じ難い。 The heating furnace 22 is not particularly limited, but a furnace that heats the conductor W by convection and radiation using heat generated by electric heat or combustion as an energy source can be used. A heater can be used as the electric heating. Further, the above-mentioned combustion includes a combustion that takes in a solvent that evaporates from the varnish together with the fuel and burns it. Since the heating furnace 22 heats the conductor W relatively gently by convection and radiation, foaming of the varnish is unlikely to occur during heating.

加熱炉22としては、導体Wを循環する熱風により加熱する熱風循環式加熱炉が好ましい。導体Wを熱風により加熱することにより、容易に導体Wの外周面の温度分布の均一化を図ることができるので、製造される絶縁電線の均質化を図ることができる。 As the heating furnace 22, a hot air circulation type heating furnace that heats the conductor W with hot air circulating is preferable. By heating the conductor W with hot air, the temperature distribution on the outer peripheral surface of the conductor W can be easily made uniform, so that the manufactured insulated electric wire can be made uniform.

加熱炉22内を通過する導体Wへの加熱温度(加熱炉22内の雰囲気温度)としては、ワニスから溶剤を蒸発可能な温度とされる。具体的には、加熱炉22内の雰囲気温度の下限としては、150℃が好ましく、200℃がより好ましい。一方、上記雰囲気温度の上限としては、600℃が好ましく、500℃がより好ましい。上記雰囲気温度が上記下限未満であると、十分に溶剤が蒸発しないおそれや、加熱炉22の炉長が不必要に大きくなるおそれがある。逆に、上記雰囲気温度が上記上限を超えると、加熱炉22の耐熱性の不足や、導体Wに熱的損傷を与えるおそれがある。 The heating temperature of the conductor W passing through the heating furnace 22 (atmospheric temperature in the heating furnace 22) is a temperature at which the solvent can be evaporated from the varnish. Specifically, the lower limit of the atmospheric temperature in the heating furnace 22 is preferably 150 ° C., more preferably 200 ° C. On the other hand, the upper limit of the atmospheric temperature is preferably 600 ° C., more preferably 500 ° C. If the ambient temperature is less than the above lower limit, the solvent may not evaporate sufficiently, or the furnace length of the heating furnace 22 may become unnecessarily large. On the contrary, if the ambient temperature exceeds the upper limit, the heat resistance of the heating furnace 22 may be insufficient or the conductor W may be thermally damaged.

加熱炉22の炉長は、ワニスから溶剤が十分に蒸発する長さとされ、導体Wの走行速度や加熱炉22内の雰囲気温度に依存して適宜決定される。 The furnace length of the heating furnace 22 is set to a length at which the solvent sufficiently evaporates from the varnish, and is appropriately determined depending on the traveling speed of the conductor W and the atmospheric temperature in the heating furnace 22.

上述のように加熱炉22では、緩やかに導体Wを加熱するので、加熱時にワニスの発泡が生じ難い。緩やかに導体Wを加熱するため、加熱に必要とされる炉長は必然的に長くなる。加熱炉22は単位長当たりの設備コストが例えば後述する誘導加熱器31に比べ小さいので、このように長い炉長としても設備コストの増加を抑止できる。従って、当該絶縁電線の製造装置は、加熱炉22を備えることで製造にかかるコストの増大を抑止できる。 As described above, in the heating furnace 22, since the conductor W is heated gently, foaming of the varnish is unlikely to occur during heating. Since the conductor W is heated slowly, the furnace length required for heating is inevitably long. Since the equipment cost per unit length of the heating furnace 22 is smaller than that of the induction heater 31, which will be described later, for example, an increase in equipment cost can be suppressed even with such a long furnace length. Therefore, the insulated wire manufacturing apparatus can suppress an increase in manufacturing cost by providing the heating furnace 22.

<硬化部>
硬化部3は、図2に示すように、導体Wを加熱する誘導加熱器31を有する。硬化部3は、塗布乾燥部2で溶剤が蒸発した後のワニスに含まれる樹脂を硬化させ、導体Wの外周に絶縁被覆を形成する。
<Hardened part>
As shown in FIG. 2, the cured portion 3 has an induction heater 31 that heats the conductor W. The cured portion 3 cures the resin contained in the varnish after the solvent has evaporated in the coating and drying portion 2, and forms an insulating coating on the outer periphery of the conductor W.

図2に示す硬化部3では、導体Wは、塗布乾燥部2内の塗布装置21及び加熱炉22を3回連続で通過した後に硬化部3を通過するように当該絶縁電線の製造装置は構成されている。そして、当該絶縁電線の製造装置は、硬化部3を通過した導体Wが、再び塗布乾燥部2内を通過し、硬化部3を通過するように構成されている。つまり、当該絶縁電線の製造装置は、導体Wが塗布乾燥部2及び硬化部3をこの順に繰り返し通過するように構成されている。このように塗布乾燥及び硬化を繰り返しながら導体Wに絶縁層を形成していくことで、硬化のために必要な設備を低減できる。従って、設備費用及び設置スペースを低減できるうえにランニングコストを低減することができる。 In the curing portion 3 shown in FIG. 2, the insulating wire manufacturing apparatus is configured such that the conductor W passes through the curing portion 3 after passing through the coating device 21 and the heating furnace 22 in the coating drying section 2 three times in a row. Has been done. The insulated wire manufacturing apparatus is configured such that the conductor W that has passed through the cured portion 3 passes through the coated and dried portion 2 again and passes through the cured portion 3. That is, the insulated wire manufacturing apparatus is configured such that the conductor W repeatedly passes through the coating and drying portion 2 and the cured portion 3 in this order. By forming an insulating layer on the conductor W while repeating coating, drying and curing in this way, the equipment required for curing can be reduced. Therefore, the equipment cost and the installation space can be reduced, and the running cost can be reduced.

誘導加熱器31は、磁界の変化(交流磁界)により導体Wに発生する電磁誘導電流を用いて直接導体Wを加熱する。誘導加熱器31の周波数(交流磁界を発生させるための電流の周波数)としては、加熱効率や設備費用の観点から適宜決定されるが、例えば10kHz以上10MHz以下とできる。 The induction heater 31 directly heats the conductor W by using an electromagnetic induction current generated in the conductor W due to a change in the magnetic field (alternating magnetic field). The frequency of the induction heater 31 (frequency of the current for generating the alternating magnetic field) is appropriately determined from the viewpoint of heating efficiency and equipment cost, and can be, for example, 10 kHz or more and 10 MHz or less.

誘導加熱では、磁界を生じさせるためコイルに流す電流の大きさに比例して磁界が強まり、磁界の強度に比例して導体Wに誘導される電流も大きくなる。導体Wの発熱量は、この誘導電流の2乗に比例するから、誘導加熱器31では、磁界を生じさせるためのコイルに流す電流の2乗に比例して導体Wを加熱することができる。このため、必要な走行速度に比例した発熱を生ずるように電流を増やすことで、導体Wが誘導加熱器31内部を通過する距離(誘導加熱器31の加熱距離)を伸ばすことなく、導体Wに必要な加熱が可能となる。従って、上記加熱距離は、加熱炉の長さに対し、例えば1/10以上1/2以下とできる。また、直接加熱であるため、設備の耐熱性に起因して加熱温度が制約されることが生じ難い。 In induction heating, since a magnetic field is generated, the magnetic field is strengthened in proportion to the magnitude of the current flowing through the coil, and the current induced in the conductor W is also increased in proportion to the strength of the magnetic field. Since the calorific value of the conductor W is proportional to the square of the induced current, the induction heater 31 can heat the conductor W in proportion to the square of the current flowing through the coil for generating a magnetic field. Therefore, by increasing the current so as to generate heat in proportion to the required traveling speed, the conductor W does not extend the distance through which the conductor W passes through the inside of the induction heater 31 (the heating distance of the induction heater 31). The required heating is possible. Therefore, the heating distance can be, for example, 1/10 or more and 1/2 or less with respect to the length of the heating furnace. Further, since it is directly heated, it is unlikely that the heating temperature is restricted due to the heat resistance of the equipment.

誘導加熱器31は、図4に示すように、導体Wの加熱温度を独立して制御可能な3つの加熱領域(第1加熱領域31a、第2加熱領域31b及び第3加熱領域31c)を導体Wの走行方向に沿って有する。誘導加熱器31内に挿通された導体Wは、速やかに所望の温度(ワニスに含まれる樹脂の硬化に適した温度)に加熱され、その温度を一定に保ったまま誘導加熱器31内を通過することが好ましい。具体的には、例えば第1加熱領域31aで導体Wに大きな誘導電流を生じさせて急速加熱を行い、第2加熱領域31bで導体Wの温度が所望の温度に近づくよう加熱量を調整し、第3加熱領域31cで導体Wの温度を一定に保つように制御するとよい。この場合、各領域で導体Wに誘導すべき電流の大きさが異なるため、第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cが導体Wの加熱温度を独立して制御可能である必要がある。つまり、誘導加熱器31を導体Wの加熱温度を独立して制御可能な複数の加熱領域を導体Wの走行方向に沿って有するものとすることで、導体Wの温度管理を容易に行うことができるので、導体Wを速やかに所望の温度まで加熱した後、その温度を保つことができる。このような温度管理により製造能力をさらに向上することができる。なお、所望の温度とは、ワニスに含まれる樹脂を硬化できる温度であり、例えば150℃以上600℃以下である。 As shown in FIG. 4, the induction heater 31 conducts three heating regions (first heating region 31a, second heating region 31b, and third heating region 31c) in which the heating temperature of the conductor W can be controlled independently. It is held along the traveling direction of W. The conductor W inserted into the induction heater 31 is quickly heated to a desired temperature (a temperature suitable for curing the resin contained in the varnish) and passes through the induction heater 31 while keeping the temperature constant. It is preferable to do so. Specifically, for example, a large induced current is generated in the conductor W in the first heating region 31a to perform rapid heating, and the heating amount is adjusted so that the temperature of the conductor W approaches a desired temperature in the second heating region 31b. It is preferable to control so that the temperature of the conductor W is kept constant in the third heating region 31c. In this case, since the magnitude of the current to be induced in the conductor W is different in each region, the heating temperature of the conductor W can be independently controlled by the first heating region 31a, the second heating region 31b, and the third heating region 31c. There must be. That is, by making the induction heater 31 have a plurality of heating regions in which the heating temperature of the conductor W can be independently controlled along the traveling direction of the conductor W, the temperature of the conductor W can be easily controlled. Therefore, the conductor W can be quickly heated to a desired temperature and then maintained at that temperature. Such temperature control can further improve the manufacturing capacity. The desired temperature is a temperature at which the resin contained in the varnish can be cured, and is, for example, 150 ° C. or higher and 600 ° C. or lower.

第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cは、1つの誘導加熱器31内を3つの領域に分けて構成してもよいが、それぞれ独立した3つの誘導加熱器を並べて構成することもできる。 The first heating region 31a, the second heating region 31b, and the third heating region 31c may be configured by dividing the inside of one induction heater 31 into three regions, but three independent induction heaters are arranged side by side. It can also be configured.

また、第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cの加熱距離は必要とされる温度管理により適宜決定される。このため、第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cの加熱距離は、等しくともよいが、異なってもよい。 Further, the heating distances of the first heating region 31a, the second heating region 31b and the third heating region 31c are appropriately determined by the required temperature control. Therefore, the heating distances of the first heating region 31a, the second heating region 31b, and the third heating region 31c may be the same, but may be different.

第1加熱領域31aと第2加熱領域31bとの間、及び第2加熱領域31bと第3加熱領域31cとの間には、空隙があってもよい。 There may be voids between the first heating region 31a and the second heating region 31b, and between the second heating region 31b and the third heating region 31c.

なお、図4では、誘導加熱器31が3つの加熱領域を有しているが、加熱領域の領域数は3に限定されるものではなく、2あるいは4以上であってもよい。また、誘導加熱器31は、導体Wの加熱温度を独立して制御可能な複数の加熱領域を有さない、つまり全体で
1つの温度制御しかできないものであってもよい。
In FIG. 4, the induction heater 31 has three heating regions, but the number of regions in the heating region is not limited to three, and may be two or four or more. Further, the induction heater 31 may not have a plurality of heating regions in which the heating temperature of the conductor W can be controlled independently, that is, it may be capable of controlling only one temperature as a whole.

誘導加熱器31の加熱距離(第1加熱領域31a、第2加熱領域31b及び第3加熱領域31cそれぞれの加熱距離の合計)は、ワニスに含まれる樹脂を十分に硬化できる長さとされ、誘導加熱器31により加熱される導体Wの温度プロファイルと導体Wの走行速度とに依存して適宜決定される。なお、誘導加熱器31の入口及び出口付近は導体Wの加熱に寄与し難いため、加熱効率の観点から個々の誘導加熱器31の加熱領域の長さは、100mm以上とすることが好ましい。 The heating distance of the induction heater 31 (the total heating distance of each of the first heating region 31a, the second heating region 31b, and the third heating region 31c) is set to a length that can sufficiently cure the resin contained in the varnish, and the induction heating is performed. It is appropriately determined depending on the temperature profile of the conductor W heated by the vessel 31 and the traveling speed of the conductor W. Since it is difficult to contribute to the heating of the conductor W near the inlet and outlet of the induction heater 31, the length of the heating region of each induction heater 31 is preferably 100 mm or more from the viewpoint of heating efficiency.

具体的には、加熱炉22の炉長と誘導加熱器31の加熱距離との比率としては、6:1以上10:1以下とできる。このように当該絶縁電線の製造装置では、加熱炉22の炉長に比べて誘導加熱器31の加熱距離を短くすることができる。このため、同一の絶縁電線の製造装置スペースに対して、加熱炉のみで構成する場合に比べて、加熱炉22の炉長を長くとることができる。従って、導体Wの走行速度を増しても導体Wに塗布されたワニスの乾燥及び硬化を確実に行うことが可能となる。 Specifically, the ratio of the furnace length of the heating furnace 22 to the heating distance of the induction heater 31 can be 6: 1 or more and 10: 1 or less. As described above, in the insulated wire manufacturing apparatus, the heating distance of the induction heater 31 can be shortened as compared with the furnace length of the heating furnace 22. Therefore, the furnace length of the heating furnace 22 can be made longer than that in the case where only the heating furnace is used for the same insulated wire manufacturing equipment space. Therefore, even if the traveling speed of the conductor W is increased, the varnish applied to the conductor W can be reliably dried and cured.

<巻取部>
巻取部5は、導体Wを引っ張ってリールに巻き取る。この巻取部5の引張力によって、導体Wが塗布乾燥部2及び硬化部3間を周回する。巻取部5の駆動には、サーボモーター及びステッピングモーター等の公知のモーターを用いることができる。
<Winding section>
The take-up unit 5 pulls the conductor W and winds it on a reel. Due to the tensile force of the winding portion 5, the conductor W orbits between the coating drying portion 2 and the curing portion 3. A known motor such as a servo motor or a stepping motor can be used to drive the take-up unit 5.

〔絶縁電線の製造方法〕
次に当該絶縁電線の製造方法について説明する。当該絶縁電線の製造方法は、図5に示すように、塗布する工程S1と、乾燥する工程S2と、硬化する工程S3とを備える。当該絶縁電線の製造方法は、図1に示す絶縁電線の製造装置を用いて行うことができる。
[Manufacturing method of insulated wire]
Next, a method of manufacturing the insulated wire will be described. As shown in FIG. 5, the method for manufacturing the insulated wire includes a coating step S1, a drying step S2, and a curing step S3. The method for manufacturing the insulated wire can be performed using the insulated wire manufacturing apparatus shown in FIG.

<塗布する工程>
塗布する工程S1では、線状の導体Wをその軸方向に走行させつつワニスを塗布する。具体的には、導体Wを送出部4から送り出し、第一ドラム1aを経由させ、塗布装置21を走行させる。
<Applying process>
In the coating step S1, the varnish is applied while the linear conductor W runs in the axial direction thereof. Specifically, the conductor W is sent out from the delivery unit 4, passed through the first drum 1a, and travels on the coating device 21.

導体Wは、ワニス槽21aの底部の貫通穴から挿入され、ワニス槽21aに貯留されたワニス中を通過することによって外周面に絶縁ワニスが塗布される。そして、導体Wの外周面に塗布されたワニスは、導体Wが塗布ダイス21bに挿通されることでダイス孔の径
に応じてほぼ均一な厚さに整えられる。
The conductor W is inserted through a through hole at the bottom of the varnish tank 21a, and the insulating varnish is applied to the outer peripheral surface by passing through the varnish stored in the varnish tank 21a. Then, the varnish applied to the outer peripheral surface of the conductor W is adjusted to have a substantially uniform thickness according to the diameter of the die hole by inserting the conductor W into the coating die 21b.

<乾燥する工程>
乾燥する工程S2では、導体Wに塗布されたワニスを加熱炉22により乾燥する。具体的には、塗布ダイス21bを通過した導体Wを加熱炉22を走行させる。
<Drying process>
In the drying step S2, the varnish applied to the conductor W is dried in the heating furnace 22. Specifically, the conductor W that has passed through the coating die 21b is driven through the heating furnace 22.

これにより導体Wに塗布されたワニスは、加熱炉22内を通過する際にその溶剤が蒸発し、ワニスが乾燥する。 As a result, when the varnish applied to the conductor W passes through the heating furnace 22, the solvent evaporates and the varnish dries.

なお、塗布する工程S1及び乾燥する工程S2は、硬化する工程S3を行う前にこの順に複数回繰り返してもよい。 The coating step S1 and the drying step S2 may be repeated a plurality of times in this order before the curing step S3 is performed.

<硬化する工程>
硬化する工程S3では、乾燥する工程S2後の上記ワニスを誘導加熱器31により硬化する。具体的には、加熱炉22を通過した導体Wを誘導加熱器31を走行させる。
<Curing process>
In the curing step S3, the varnish after the drying step S2 is cured by the induction heater 31. Specifically, the induction heater 31 is driven by the conductor W that has passed through the heating furnace 22.

これにより乾燥する工程S2で溶剤が蒸発した後のワニスに含まれる樹脂が硬化し、導体Wの外周に絶縁被覆が形成される。 As a result, the resin contained in the varnish after the solvent evaporates in the drying step S2 is cured, and an insulating coating is formed on the outer periphery of the conductor W.

なお、塗布する工程S1、乾燥する工程S2及び硬化する工程S3は、この順に繰り返し行ってもよい。 The coating step S1, the drying step S2, and the curing step S3 may be repeated in this order.

以上の工程を経て、導体Wの外周に絶縁層が形成され、絶縁電線を製造することができる。 Through the above steps, an insulating layer is formed on the outer periphery of the conductor W, and an insulated electric wire can be manufactured.

〔利点〕
当該絶縁電線の製造装置及び当該絶縁電線の製造方法では、導体Wへのワニスの塗布後に炉長の長い加熱炉22により緩やかに乾燥させるのでワニスの発泡が生じ難い。また、加熱炉22は単位長当たりの設備コストが小さいので、長い炉長としても製造にかかるコストの増大を抑止できる。当該絶縁電線の製造装置及び当該絶縁電線の製造方法では、乾燥させたワニスを誘導加熱器31により硬化させる。誘導加熱器31は投入した電力に実質的に比例して導体Wの温度を容易に高めることができるので、加熱炉に比べて短い炉長でワニスを硬化させることができる。このため、導体Wの走行速度を上げて製造能力を向上させても、製造設備の大型化や製造コストの増大を抑止できる。さらに、乾燥させたワニスでは急加熱を行ってもワニスの発泡は生じ難い。従って、当該絶縁電線の製造装置及び当該絶縁電線の製造方法を用いることで、ワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ、製造能力を向上できる。
〔advantage〕
In the insulated wire manufacturing apparatus and the insulated wire manufacturing method, the varnish is less likely to foam because it is slowly dried in the heating furnace 22 having a long furnace length after the varnish is applied to the conductor W. Further, since the equipment cost per unit length of the heating furnace 22 is small, it is possible to suppress an increase in the manufacturing cost even if the furnace length is long. In the insulated wire manufacturing apparatus and the insulated wire manufacturing method, the dried varnish is cured by the induction heater 31. Since the induction heater 31 can easily raise the temperature of the conductor W substantially in proportion to the input electric power, the varnish can be cured with a shorter furnace length than the heating furnace. Therefore, even if the traveling speed of the conductor W is increased to improve the manufacturing capacity, it is possible to suppress an increase in the size of the manufacturing equipment and an increase in the manufacturing cost. Furthermore, with dried varnish, foaming of the varnish is unlikely to occur even if rapid heating is performed. Therefore, by using the insulated wire manufacturing apparatus and the insulated wire manufacturing method, it is possible to improve the manufacturing capacity while suppressing the foaming of the varnish and suppressing the increase in the size of the manufacturing equipment and the manufacturing cost.

[その他の実施形態]
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is not limited to the configuration of the above embodiment, but is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. To.

上記実施形態では、導体が塗布乾燥部で塗布装置及び加熱炉をこの順に3回繰り返し通過する場合を説明したが、この繰り返し回数は3回に限定されず、2回又は4回以上であってもよい。なお、この繰り返し回数としては、硬化時間の短縮効果と絶縁層の絶縁性低下の抑止との観点から、2回以上5回以下とすることが好ましい。 In the above embodiment, the case where the conductor passes through the coating device and the heating furnace three times in this order in the coating drying portion has been described, but the number of repetitions is not limited to three times, but may be two times or four times or more. May be good. The number of repetitions is preferably 2 or more and 5 or less from the viewpoint of the effect of shortening the curing time and the suppression of deterioration of the insulating property of the insulating layer.

また、上記実施形態では、上記繰り返し回数が3回で固定されており、硬化部を通過して周回し、次に導体が塗布乾燥部を通過する際も同じ繰り返し数となるが、この繰り返し数は硬化部を通過して周回するごとに異なってもよい。 Further, in the above embodiment, the number of repetitions is fixed at 3 times, and the number of repetitions is the same when the conductor passes through the cured portion and goes around, and then the conductor passes through the coating and drying portion. May be different each time it passes through the hardened portion and goes around.

さらに、上記繰り返し回数は1回、つまり導体が塗布乾燥部で塗布装置及び加熱炉を繰り返し通過せず、塗布装置及び加熱炉を1回通過するごとに硬化部を通過する構成も本発明の意図するところである。 Further, it is also an object of the present invention that the number of repetitions is one, that is, the conductor does not repeatedly pass through the coating device and the heating furnace in the coating drying portion, but passes through the curing portion each time it passes through the coating device and the heating furnace. I'm about to do it.

上記実施形態では、導体が塗布乾燥部及び硬化部をこの順に繰り返し通過する場合を説明したが、塗布乾燥部及び硬化部をこの順に繰り返さない構成、つまり硬化部が塗布乾燥部の下流側に1つだけ設けられる構成も本発明の意図するところである。 In the above embodiment, the case where the conductor repeatedly passes through the coating drying portion and the cured portion in this order has been described, but the configuration in which the coating drying portion and the cured portion are not repeated in this order, that is, the cured portion is 1 on the downstream side of the coating drying portion It is also an object of the present invention to provide only one configuration.

以上のように、本発明の絶縁電線の製造装置及び絶縁電線の製造方法は、製造時にワニスの発泡が生じ難く、かつ製造設備の大型化及び製造コストの増大を抑止しつつ製造能力を向上できる。 As described above, the insulated wire manufacturing apparatus and the insulated wire manufacturing method of the present invention are less likely to cause foaming of varnish during manufacturing, and can improve the manufacturing capacity while suppressing an increase in the size of the manufacturing equipment and a manufacturing cost. ..

1 ドラム
1a 第一ドラム
1b 第二ドラム
2 塗布乾燥部
21 塗布装置
21a ワニス槽
21b 塗布ダイス
22 加熱炉
3 硬化部
31 誘導加熱器
31a 第1加熱領域
31b 第2加熱領域
31c 第3加熱領域
4 送出部
5 巻取部
W 導体
1 Drum 1a 1st drum 1b 2nd drum 2 Coating drying section 21 Coating device 21a Varnish tank 21b Coating die 22 Heating furnace 3 Curing section 31 Induction heater 31a 1st heating region 31b 2nd heating region 31c 3rd heating region 4 Sending Part 5 Winding part W conductor

Claims (5)

線状の導体をその軸方向に走行させつつワニスの塗布及び乾燥を行う塗布乾燥部と、
上記塗布乾燥部の上記導体の走行方向下流側に設置され、上記ワニスを硬化させる硬化部と
を備え、
上記塗布乾燥部が、上記導体に上記ワニスを塗布する塗布装置と、ワニス塗布後の上記導体を加熱する加熱炉とを有し、
上記硬化部が、上記導体を加熱する誘導加熱器を有する絶縁電線の製造装置。
A coating and drying section that applies and dries varnish while running a linear conductor in the axial direction.
It is provided on the downstream side of the coating and drying portion in the traveling direction of the conductor and has a curing portion for curing the varnish.
The coating / drying unit has a coating device for applying the varnish to the conductor and a heating furnace for heating the conductor after the varnish is applied.
An insulated wire manufacturing apparatus in which the cured portion has an induction heater for heating the conductor.
上記誘導加熱器が、上記導体の加熱温度を独立して制御可能な複数の加熱領域を上記導体の走行方向に沿って有する請求項1に記載の絶縁電線の製造装置。 The apparatus for manufacturing an insulated electric wire according to claim 1, wherein the induction heater has a plurality of heating regions in which the heating temperature of the conductor can be independently controlled along the traveling direction of the conductor. 上記導体が上記塗布乾燥部及び上記硬化部をこの順に繰り返し通過するように構成されている請求項1又は請求項2に記載の絶縁電線の製造装置。 The insulated wire manufacturing apparatus according to claim 1 or 2, wherein the conductor is configured to repeatedly pass through the coated and dried portion and the cured portion in this order. 上記導体が上記塗布乾燥部で上記塗布装置及び上記加熱炉をこの順に繰り返し通過するように構成されている請求項1、請求項2又は請求項3に記載の絶縁電線の製造装置。 The insulated wire manufacturing apparatus according to claim 1, claim 2 or claim 3, wherein the conductor is configured to repeatedly pass through the coating device and the heating furnace in this order in the coating and drying section. 線状の導体をその軸方向に走行させつつワニスを塗布する工程と、
上記導体に塗布されたワニスを加熱炉により乾燥する工程と、
上記乾燥する工程後の上記ワニスを誘導加熱器により硬化する工程と
を備える絶縁電線の製造方法。
The process of applying varnish while running a linear conductor in the axial direction,
The process of drying the varnish applied to the conductor in a heating furnace and
A method for manufacturing an insulated wire, which comprises a step of curing the varnish by an induction heater after the step of drying.
JP2019127612A 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method Active JP7265432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019127612A JP7265432B2 (en) 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019127612A JP7265432B2 (en) 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2021012855A true JP2021012855A (en) 2021-02-04
JP7265432B2 JP7265432B2 (en) 2023-04-26

Family

ID=74226148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019127612A Active JP7265432B2 (en) 2019-07-09 2019-07-09 Insulated wire manufacturing device and insulated wire manufacturing method

Country Status (1)

Country Link
JP (1) JP7265432B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252870A (en) * 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Apparatus for manufacturing insulated wire and method for manufacturing insulated wire
JP2012252868A (en) * 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Device and method for producing insulation wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252870A (en) * 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Apparatus for manufacturing insulated wire and method for manufacturing insulated wire
JP2012252868A (en) * 2011-06-02 2012-12-20 Sumitomo Electric Wintec Inc Device and method for producing insulation wire

Also Published As

Publication number Publication date
JP7265432B2 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
JP4706643B2 (en) Stator heating method and heating device
JP4887990B2 (en) Stator heating method
JP4593291B2 (en) Manufacturing method of stator of rotating electric machine
US9697932B2 (en) Method for manufacturing insulated wire
JP5561830B2 (en) Coating die and method for manufacturing insulated wire
JP2008186724A (en) Collective conductor and its manufacturing method
JP2012252870A (en) Apparatus for manufacturing insulated wire and method for manufacturing insulated wire
CA2740745A1 (en) Method for producing windings for a dry-type transformer
JP2014529843A (en) Device for coating conductive wires
JP2011048956A (en) Insulated wire manufacturing method and heating device
JP7265432B2 (en) Insulated wire manufacturing device and insulated wire manufacturing method
CN100379124C (en) Rotor of electric rotating machine and manufacture thereof
JP6179023B2 (en) Insulated wire manufacturing apparatus and manufacturing method
WO2021182418A1 (en) Method for manufacturing insulated electric wire, and apparatus for manufacturing insulated electric wire
JP2013040621A (en) Method and apparatus for manufacturing high-pressure gas tank
JP5668264B2 (en) Insulated wire manufacturing apparatus and insulated wire manufacturing method
JP5579214B2 (en) Winding body of electrical equipment and manufacturing method thereof
JP6104123B2 (en) Coil manufacturing method for electrical equipment
JP6435915B2 (en) Manufacturing method and manufacturing apparatus for enameled wire
JP2014157779A (en) Method and apparatus for producing insulation coating wire material, and insulation coating wire material
JP2016081604A (en) Apparatus for producing insulation-coated wire
JP2010056049A (en) Insulated wire and its manufacturing method
RU2556086C2 (en) Method and device for manufacture of current winding and electric conductor
RU2611727C2 (en) Method and device for stitching or vulcanization of elongated element
JP5579204B2 (en) Coil varnish impregnation method and coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230414

R150 Certificate of patent or registration of utility model

Ref document number: 7265432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150