JP7265331B2 - Porous cellulose particles and cosmetics - Google Patents

Porous cellulose particles and cosmetics Download PDF

Info

Publication number
JP7265331B2
JP7265331B2 JP2018184396A JP2018184396A JP7265331B2 JP 7265331 B2 JP7265331 B2 JP 7265331B2 JP 2018184396 A JP2018184396 A JP 2018184396A JP 2018184396 A JP2018184396 A JP 2018184396A JP 7265331 B2 JP7265331 B2 JP 7265331B2
Authority
JP
Japan
Prior art keywords
porous cellulose
cellulose particles
particles
average particle
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018184396A
Other languages
Japanese (ja)
Other versions
JP2020050840A (en
Inventor
直幸 榎本
慧 渡邊
郁子 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2018184396A priority Critical patent/JP7265331B2/en
Publication of JP2020050840A publication Critical patent/JP2020050840A/en
Application granted granted Critical
Publication of JP7265331B2 publication Critical patent/JP7265331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、良好な生分解性を持つセルロースが集まって形成された多孔質セルロース粒子に関し、特に、高い真球度の多孔質セルロース粒子とこれを含む化粧料に関する。 TECHNICAL FIELD The present invention relates to porous cellulose particles formed by aggregation of cellulose having good biodegradability, and more particularly to porous cellulose particles with high sphericity and cosmetics containing the same.

近年、化粧料に数百μm級のプラスチック粒子(例えば、ポリエチレン粒子)を配合して、感触特性を向上させている。石油由来の合成高分子(プラスチック粒子)の多くは、自然環境中で分解されず、更に、殺虫剤等の化学物質を吸着し易い。そのため、様々な環境問題が起こっている。例えば、水環境に流出したプラスチック製品が蓄積され、海洋や湖沼の生態系に大きな害を与えている。また、生物濃縮により人体に影響を与えるおそれがある。 In recent years, plastic particles (for example, polyethylene particles) of several hundred micrometers have been blended into cosmetics to improve their tactile characteristics. Most petroleum-derived synthetic polymers (plastic particles) are not decomposed in the natural environment and tend to adsorb chemical substances such as insecticides. As a result, various environmental problems have arisen. For example, plastic products that have flowed into the water environment have accumulated, causing great harm to marine and lake ecosystems. In addition, bioaccumulation may affect the human body.

近年、マイクロプラスチックと呼ばれる長さが5mm以下からナノレベルまでの微細なプラスチックが大きな問題となっている。マイクロプラスチックに該当するものとして、化粧料等に含まれる微粒子、加工前のプラスチック樹脂の小さな塊、大きな製品が海中で浮遊するうちに微細化した物、等が挙げられている。 In recent years, fine plastics with a length of 5 mm or less to nano-level called microplastics have become a big problem. Microplastics include fine particles contained in cosmetics, etc., small lumps of plastic resin before processing, and substances that have become finer as large products float in the sea.

これらのことは国連環境計画等でも指摘されており、各国、各種業界団体が規制を検討している。そこで、自然環境中で微生物等により水と二酸化炭素に分解され、自然界の炭素サイクルに組み込まれる生分解性プラスチックが注目されている。 These matters have been pointed out by the United Nations Environment Program, etc., and various countries and industry groups are considering regulations. Therefore, biodegradable plastics, which are decomposed into water and carbon dioxide by microorganisms in the natural environment and incorporated into the carbon cycle of the natural world, have attracted attention.

また、自然派化粧品やオーガニック化粧品に関心が高まっており、化粧品の自然・オーガニック指数表示に関するガイドライン(ISO16128)が制定されている。このガイドラインによれば、製品中の原料を、自然原料、自然由来原料、非自然原料に分類し、各原料の含有量に基づいて指数が定められる。今後、このガイドラインに沿って算出された指数が商品に表示されるであろう。そのため、自然由来原料、更に、自然原料を用いることが要求される。 In addition, there is growing interest in natural cosmetics and organic cosmetics, and guidelines (ISO16128) have been enacted on the display of natural/organic indexes for cosmetics. According to this guideline, raw materials in products are classified into natural raw materials, naturally derived raw materials, and non-natural raw materials, and an index is determined based on the content of each raw material. In the future, indices calculated according to this guideline will be displayed on products. Therefore, it is required to use naturally derived raw materials, and further natural raw materials.

このような背景から、良好な生分解性を持つ、植物由来のセルロース粒子が注目されている。従来から、セルロースが溶解した銅アンモニア溶液を酸で中和して、9~400nmの真球状の再生セルロース粒子を得ることが知られている(例えば、特許文献1を参照)。また、セルロースが溶解した銅エチレンジアミン溶液を凝固液に噴霧して、球状の再生セルロース粒子を得ることが知られている(例えば、特許文献2を参照)。これらの再生セルロース粒子は、意図的な化学修飾を行うプロセスにより得られたII型の結晶形セルロースを用いて作製されている。前述のガイドラインの定義によれば、このような再生セルロース粒子は自然由来原料に分類される。一方、意図的な化学修飾を行わないプロセスによりI型の結晶形セルロースを得て、これを用いて形成されたセルロース粒子をスクラブ剤や化粧品に適用することも知られている(例えば、特許文献3を参照)。 Against this background, plant-derived cellulose particles with good biodegradability have attracted attention. Conventionally, it is known to obtain spherical regenerated cellulose particles of 9 to 400 nm by neutralizing a cuprammonium solution in which cellulose is dissolved with an acid (see, for example, Patent Document 1). It is also known to obtain spherical regenerated cellulose particles by spraying a solution of copper ethylenediamine in which cellulose is dissolved into a coagulation liquid (see, for example, Patent Document 2). These regenerated cellulose particles are produced using type II crystalline cellulose obtained by a process of intentional chemical modification. As defined in the aforementioned guidelines, such regenerated cellulose particles are classified as naturally occurring raw materials. On the other hand, it is also known to obtain type I crystalline cellulose by a process that does not involve intentional chemical modification, and apply cellulose particles formed using this to scrub agents and cosmetics (see, for example, Patent Documents 3).

WO2008/084854号国際公開公報WO2008/084854 International Publication 特開2013-133355号公報JP 2013-133355 A 特開2017-88873号公報JP 2017-88873 A

プラスチックビーズの代替として化粧料に用いるために、セルロース粒子には以下の2点が求められている。
(1)自然原料とみなされるために、意図的な化学修飾を行わないプロセスによって得られるI型の結晶形セルロースで形成されること。
(2)高い真球度や良好な流動性を備え、化粧料の感触特性を向上させること。
In order to use cellulose particles in cosmetics as an alternative to plastic beads, the following two points are required for cellulose particles.
(1) Being formed of type I crystalline form cellulose obtained by a process without intentional chemical modification in order to be considered a natural source;
(2) To have high sphericity and good fluidity, and to improve the feel characteristics of cosmetics.

特許文献1、2に記載の再生セルロース粒子は前述のガイドラインでは自然原料としてみなされなかった。また、特許文献3に記載のセルロース粒子は真球度が0.1~0.7であり、化粧料に良好な感触特性を与えることができなかった。 The regenerated cellulose particles described in US Pat. In addition, the cellulose particles described in Patent Document 3 have a sphericity of 0.1 to 0.7, and could not provide cosmetics with good tactile characteristics.

そこで、本発明の目的は、意図的な化学修飾を行わないプロセスによって得られるI型の結晶形セルロースを用いて、高い真球度と良好な流動性を兼ね備える多孔質セルロース粒子を実現することにある。このような多孔質セルロース粒子が配合された化粧料は、環境問題を引き起こす懸念が少なく、さらに、従来のプラスチックビーズと同様な感触特性を得ることができる。 Therefore, an object of the present invention is to realize porous cellulose particles having both high sphericity and good fluidity by using type I crystalline cellulose obtained by a process without intentional chemical modification. be. Cosmetics containing such porous cellulose particles are less likely to cause environmental problems, and can provide the same tactile characteristics as conventional plastic beads.

本発明による多孔質セルロース粒子は結晶性セルロースが集合した粒子であり、多孔質セルロース粒子の平均粒子径dが5~500nm未満、比表面積が25~1000m/g、真球度が0.85以上である。ここで、結晶性セルロースは、グルコース分子を構成単位としたI型の結晶形を持っている。 The porous cellulose particles according to the present invention are particles in which crystalline cellulose is aggregated, and have an average particle diameter d 1 of 5 to less than 500 nm, a specific surface area of 25 to 1000 m 2 /g, and a sphericity of 0.5 nm. 85 or more. Here, the crystalline cellulose has a type I crystal form with glucose molecules as constituent units.

また、細孔容積PVを、0.2~5.0ml/gの範囲とした。さらに、平均細孔径PDを、2~100nmの範囲とした。また、平均粒子径dが1~200nmの結晶性セルロースを用いることとした。 Also, the pore volume PV is set in the range of 0.2 to 5.0 ml/g. Furthermore, the average pore diameter PD is set in the range of 2 to 100 nm. In addition, crystalline cellulose having an average particle diameter d3 of 1 to 200 nm was used.

さらに、多孔質セルロース粒子の水分散液を、超音波分散機を用いて60分間分散させたとき、分散後の平均粒子径dと、分散前の平均粒子径dの比(d/d)が、0.95~1.05の範囲にある。 Furthermore, when the aqueous dispersion of porous cellulose particles was dispersed for 60 minutes using an ultrasonic disperser, the ratio of the average particle size d2 after dispersion to the average particle size d1 before dispersion ( d2 / d 1 ) is in the range of 0.95 to 1.05.

本発明による多孔質セルロース粒子の製造方法は、I型の結晶形である結晶性セルロースの分散液と界面活性剤と非水系溶媒を混合して、乳化液滴を含む乳化液を調製する乳化工程と、乳化液滴を脱水処理する脱水工程と、脱水工程で得られた非水系溶媒分散体を固液分離して多孔質セルロース粒子を固形物として得る工程と、を備えている。 The method for producing porous cellulose particles according to the present invention includes an emulsification step of preparing an emulsion containing emulsified liquid droplets by mixing a dispersion of crystalline cellulose in the type I crystal form, a surfactant, and a non-aqueous solvent. and a dehydration step for dehydrating the emulsified droplets, and a step for solid-liquid separation of the non-aqueous solvent dispersion obtained in the dehydration step to obtain porous cellulose particles as a solid matter.

上述したいずれかの多孔質セルロース粒子を化粧料成分に配合して、化粧料を作製することができる。 Any of the porous cellulose particles described above can be blended with a cosmetic ingredient to prepare a cosmetic.

本発明による多孔質セルロース粒子は、「グルコース分子を構成単位としたI型の結晶形」を持つ結晶性セルロース(以後、単に「I型の結晶性セルロース」と称す。)が集って形成されている。この多孔質セルロース粒子は、平均粒子径(d)が5~500nm未満、真球度が0.85以上、比表面積が25~1000m/gである。このような粒子によれば、プラスチックビーズと同様の感触特性が得られる。平均粒子径は化粧料の感触特性に影響を与える。5nm未満の平均粒子径では、粒子粉体の流動性が低いために、均一な延び広がり性が得られず、感触特性が著しく低下する。一方、500nm以上の平均粒子径では、延び広がり性が高いため、粒子粉体に触ったときにソフト感としっとり感が得られない。特に、平均粒子径(d)は10~300nmが好ましい。ここでは、レーザー回折法により平均粒子径(d)を求めた。 The porous cellulose particles according to the present invention are formed by aggregating crystalline cellulose having "type I crystalline form with glucose molecules as constituent units" (hereinafter simply referred to as "type I crystalline cellulose"). ing. The porous cellulose particles have an average particle diameter (d 1 ) of 5 to less than 500 nm, a sphericity of 0.85 or more, and a specific surface area of 25 to 1000 m 2 /g. Such particles provide tactile properties similar to plastic beads. The average particle size affects the tactile properties of cosmetics. If the average particle size is less than 5 nm, the fluidity of the particles is low, and uniform spreadability cannot be obtained, resulting in a marked reduction in touch feeling. On the other hand, when the average particle size is 500 nm or more, the spreadability is high, so that the soft and moist feeling cannot be obtained when the powder is touched. In particular, the average particle diameter (d 1 ) is preferably 10-300 nm. Here, the average particle size (d 1 ) was obtained by laser diffraction method.

また、粒子の比表面積が25m/g未満の場合、水系環境に流出した際に十分な速度で生分解できない。一方、比表面積が1000m/gを超える場合、粒子が脆くなり、肌に塗布した際に崩壊することがある。比表面積は50~500m/gが特に好ましい。 Also, if the specific surface area of the particles is less than 25 m 2 /g, they cannot biodegrade at a sufficient rate when released into an aqueous environment. On the other hand, when the specific surface area exceeds 1000 m 2 /g, the particles become brittle and may collapse when applied to the skin. A specific surface area of 50 to 500 m 2 /g is particularly preferred.

また、真球度が0.85未満の粒子が配合された化粧料では、良好な転がり性が得られない。真球度は0.90以上が特に好ましい。ここで、真球度は走査型電子顕微鏡の写真から画像解析法により求めた。 Also, a cosmetic containing particles having a sphericity of less than 0.85 does not have good rolling properties. A sphericity of 0.90 or more is particularly preferable. Here, the sphericity was obtained by an image analysis method from a scanning electron microscope photograph.

さらに、多孔質セルロース粒子の粒子変動係数(CV)は、50%以下が好ましい。粒子変動係数が50%を超えると、均一な転がり性が得られない。粒子変動係数は、小さいほど好適であるものの、1%未満の狭小分布な粒子を得ることは工業的に困難である。概ね3%以上であれば製造上特に問題にはならない。粒子変動係数は、3~40%が好ましく、特に3~30%が良い。 Furthermore, the particle variation coefficient (CV) of the porous cellulose particles is preferably 50% or less. If the coefficient of variation of particles exceeds 50%, uniform rolling properties cannot be obtained. Although the smaller the coefficient of variation of particles, the better, it is industrially difficult to obtain particles with a narrow distribution of less than 1%. If it is about 3% or more, there is no particular problem in manufacturing. The particle variation coefficient is preferably 3 to 40%, particularly 3 to 30%.

さらに、細孔容積(PV)は0.2~5.0ml/g、平均細孔径(PD)は2~100nmが好ましい。細孔容積が0.2ml/g未満の粒子は、弾性が低いため、ソフトな感触特性が得られにくい。一方、5.0ml/gを超える粒子では、強度が脆いため、肌に塗布した際に崩壊するおそれがある。細孔容積は0.2~2.0ml/gが、特に好ましい。また、平均細孔径が、2nm未満の場合、感触特性に大きな影響はないものの、生分解性が低下する。一方、100nmを超えると、粒子の強度が脆くなる。 Furthermore, the pore volume (PV) is preferably 0.2-5.0 ml/g, and the average pore diameter (PD) is preferably 2-100 nm. Particles with a pore volume of less than 0.2 ml/g have low elasticity, and therefore it is difficult to obtain soft touch characteristics. On the other hand, particles exceeding 5.0 ml/g are fragile in strength and may disintegrate when applied to the skin. A pore volume of 0.2 to 2.0 ml/g is particularly preferred. On the other hand, when the average pore diameter is less than 2 nm, the biodegradability is lowered although the tactile properties are not significantly affected. On the other hand, if it exceeds 100 nm, the strength of the particles becomes brittle.

化粧料の製造工程で多孔質セルロース粒子が崩壊すると、当初想定していた機能が得られないおそれがある。そのため、製造工程中に平均粒子径が変化しないことが望ましい。そこで、多孔質セルロース粒子を蒸留水に分散させ、この分散液に、超音波分散機を用いて60分間超音波を印加した。分散試験後の平均粒子径dと試験前の平均粒子径dの比(d/d)は、0.95~1.05が好ましい。この比(d/d)が0.95未満ということは、粒子の強度が低いことを表している。すなわち、製造工程における機械的負荷によって、粒子が崩壊し、感触改良効果が得られないおそれがある。一方、この比(d/d)が1.05を超えるということは、水中で結晶性セルロースが膨潤することを表している。そのため、製造工程後に化粧料が増粘しやすく、品質安定性を担保できない。さらに、感触特性も変化するおそれがある。この比(d/d)は、0.97~1.03が特に好ましい。 If the porous cellulose particles are disintegrated during the manufacturing process of the cosmetic, there is a risk that the initially assumed functions may not be obtained. Therefore, it is desirable that the average particle size does not change during the manufacturing process. Therefore, the porous cellulose particles were dispersed in distilled water, and ultrasonic waves were applied to this dispersion for 60 minutes using an ultrasonic disperser. The ratio (d 2 /d 1 ) between the average particle size d 2 after the dispersion test and the average particle size d 1 before the test is preferably 0.95 to 1.05. A ratio (d 2 /d 1 ) of less than 0.95 indicates that the strength of the particles is low. In other words, there is a possibility that the particles may collapse due to the mechanical load in the manufacturing process, and the effect of improving the texture may not be obtained. On the other hand, the fact that this ratio (d 2 /d 1 ) exceeds 1.05 indicates that the crystalline cellulose swells in water. Therefore, the cosmetics tend to thicken after the manufacturing process, and quality stability cannot be ensured. Furthermore, the tactile properties may also change. This ratio (d 2 /d 1 ) is particularly preferably 0.97 to 1.03.

また、多孔質セルロース粒子は、外殻の内部に空洞が形成された中空構造でもよい。このような中空粒子は同径の中実粒子より軽いため、同じ重量に含まれる粒子数は中実粒子より多くなる。ここで、外殻は多孔質であり、窒素ガスが通過できる程度の多孔性を持つことが好ましい。さらに、外殻の厚さTと多孔質セルロース粒子の外径ODの比(T/OD)は、0.02~0.45の範囲が好ましい。この比(T/OD)が0.45を超えると、中実粒子と実質的に同等になってしまう。一方、この比が、0.02未満であると、粒子が崩壊しやすい。比(T/OD)は、0.04~0.30の範囲が特に好ましい。 Moreover, the porous cellulose particles may have a hollow structure in which a cavity is formed inside the outer shell. Since such hollow particles are lighter than solid particles of the same diameter, the number of particles contained in the same weight is greater than that of solid particles. Here, the outer shell is porous, and preferably has porosity to the extent that nitrogen gas can pass through. Furthermore, the ratio (T/OD) of the outer shell thickness T to the outer diameter OD of the porous cellulose particles is preferably in the range of 0.02 to 0.45. When this ratio (T/OD) exceeds 0.45, it becomes substantially equivalent to solid particles. On the other hand, if this ratio is less than 0.02, the particles tend to disintegrate. The ratio (T/OD) is particularly preferably in the range of 0.04-0.30.

多孔質セルロース粒子を形成するI型の結晶性セルロースは、平均粒子径dが1~200nmの範囲であることが好ましい。微細な平均粒子径の粒子で形成された多孔質セルロース粒子は、良好な生分解性を発揮する。 The type I crystalline cellulose that forms the porous cellulose particles preferably has an average particle size d3 in the range of 1 to 200 nm. Porous cellulose particles formed of particles with a fine average particle size exhibit good biodegradability.

I型の結晶を持つ結晶性セルロースは、植物繊維を蒸解して得られるセルロース繊維や市販のセルロース粉末(旭化成社製セオラス(登録商標)PH-101等)をウォータージェット法等の機械処理やTEMPO酸化法等の化学処理により解繊して得られる。その他にも、セルロースナノファイバーやセルロースナノクリスタルが好適である。あるいは、市販の水分散体(例えば、旭化成社製セオラスRC、第一工業製薬社製レオクリスタ(登録商標)、スギノマシーン社製BiNFi-s(登録商標)、草野作工社製Fibnano等)をI型の結晶性セルロースとして用いてもよい。 Crystalline cellulose having type I crystals can be obtained by subjecting cellulose fibers obtained by cooking plant fibers or commercially available cellulose powder (Seolus (registered trademark) PH-101 manufactured by Asahi Kasei Co., Ltd.) to mechanical processing such as a water jet method or TEMPO. Obtained by fibrillation by chemical treatment such as oxidation method. In addition, cellulose nanofibers and cellulose nanocrystals are suitable. Alternatively, commercially available aqueous dispersions (e.g., Ceolus RC manufactured by Asahi Kasei Corporation, Rheocrysta (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd., BiNFi-s (registered trademark) manufactured by Sugino Machine Co., Ltd., Fibnano manufactured by Kusano Sakuko Co., Ltd., etc.) It may be used as a type of crystalline cellulose.

ここで、多孔質セルロース粒子中にはI型の結晶性セルロースだけではなく、II~IV型の他の結晶性セルロースを含んでいても良い。ただし、I型の結晶性セルロースを50重量%以上含むことが望ましい。I型の結晶性セルロースの含有量は、好ましくは75%以上、更に好ましくは90%以上である。含有量が多いほど前述のガイドラインによる自然指数が高くなる。なお、セルロースの結晶形は、赤外分光法にて同定することができ、I型の結晶形は、3365~3370cm-1に強い吸収が認められる。その他、固体13C-NMR法によるケミカルシフトの違いや、X線回折法による回折角から同定することもできる。また、結晶形は、Iα、Iβのどちらでも良く、混合物であっても良い。 Here, the porous cellulose particles may contain not only type I crystalline cellulose but also other types II to IV crystalline cellulose. However, it is desirable to contain 50% by weight or more of type I crystalline cellulose. The content of type I crystalline cellulose is preferably 75% or more, more preferably 90% or more. The higher the content, the higher the naturalness index according to the aforementioned guidelines. The crystalline form of cellulose can be identified by infrared spectroscopy, and strong absorption is observed at 3365 to 3370 cm -1 in the type I crystalline form. In addition, it can be identified from the difference in chemical shift by solid-state 13C-NMR method and the diffraction angle by X-ray diffraction method. The crystal form may be either Iα or Iβ, or a mixture.

<多孔質セルロース粒子の製造方法>
次に、多孔質セルロース粒子の製造方法について説明する。まず、I型の結晶性セルロースの分散液と界面活性剤と非水系溶媒を混合して、乳化させる(乳化工程)。これにより乳化液滴を含む乳化液が得られる。次に、乳化液を脱水処理する(脱水工程)。これにより、乳化液滴中の水が除去される。次に、固液分離して多孔質セルロース粒子を固形物として取り出す(固液分離工程)。この固形物を乾燥して解砕する(乾燥工程)ことにより、多孔質セルロース粒子の粉体が得られる。得られた多孔質セルロース粒子の真球度は0.85以上である。
<Method for producing porous cellulose particles>
Next, a method for producing porous cellulose particles will be described. First, a dispersion of type I crystalline cellulose, a surfactant, and a non-aqueous solvent are mixed and emulsified (emulsification step). As a result, an emulsified liquid containing emulsified droplets is obtained. Next, the emulsion is dehydrated (dehydration step). This removes the water in the emulsified droplets. Next, solid-liquid separation is performed to take out the porous cellulose particles as a solid (solid-liquid separation step). By drying and pulverizing this solid (drying step), a powder of porous cellulose particles is obtained. The sphericity of the obtained porous cellulose particles is 0.85 or more.

以下、各工程を詳細に説明する。 Each step will be described in detail below.

[乳化工程]
まず、I型の結晶性セルロースの分散液を用意する。この分散液の固形分濃度を0.01~5%の範囲に調整して、適切な粘度の分散液とする。固形分濃度が5%を超える場合は、通常、粘度が高くなり、乳化液滴の均一性が損なわれることがある。0.01%未満の固形分濃度では経済性が悪く、特に利点もない。分散液の固形分濃度は、特に0.1~3.0%が好ましい。なお、分散液の溶媒は水が好ましい。
[Emulsification process]
First, a dispersion of type I crystalline cellulose is prepared. The solid content concentration of this dispersion is adjusted in the range of 0.01 to 5% to obtain a dispersion with an appropriate viscosity. If the solids concentration exceeds 5%, the viscosity usually increases and the homogeneity of the emulsified droplets may be impaired. Solids concentrations of less than 0.01% are not economically viable and offer no particular advantage. The solid content concentration of the dispersion liquid is particularly preferably 0.1 to 3.0%. Water is preferable as the solvent for the dispersion.

この分散液と非水系溶媒と界面活性剤を混合する。非水系溶媒は、乳化のために必要であり、水と相溶しないものであればよい。非水系溶液としては、一般的な炭化水素溶媒を用いることができる。界面活性剤は油中水滴型の乳化液滴を形成するために添加される。界面活性剤のHLB値は1~10の範囲が適している。非水系溶媒の極性に応じて、最適なHLB値を選択すればよい。HLB値は特に1~5の範囲が好ましい。また、異なるHLB値の界面活性剤を組み合わせてもよい。 This dispersion is mixed with a non-aqueous solvent and a surfactant. The non-aqueous solvent is necessary for emulsification and should be incompatible with water. Common hydrocarbon solvents can be used as the non-aqueous solution. Surfactants are added to form water-in-oil emulsified droplets. The HLB value of the surfactant is suitable in the range of 1-10. An optimum HLB value may be selected according to the polarity of the non-aqueous solvent. The HLB value is particularly preferably in the range of 1-5. Also, surfactants with different HLB values may be combined.

次に、この混合溶液を乳化装置により乳化させる。このとき、平均径が5nm~5μmの乳化液滴を含んだ乳化液が得られるように、乳化条件を設定する。乳化液滴中には水に分散したI型の結晶性セルロースが存在している。乳化装置には、一般的な高速せん断装置を用いることができる。この他、より微細な乳化液滴が得られる高圧乳化装置、より均一な乳化液滴が得られる膜乳化装置、マイクロチャネル乳化装置等の公知の装置を目的に応じて選択できる。 Next, this mixed solution is emulsified by an emulsifier. At this time, emulsification conditions are set so as to obtain an emulsified liquid containing emulsified droplets with an average diameter of 5 nm to 5 μm. Type I crystalline cellulose dispersed in water is present in the emulsified droplets. A common high-speed shearing device can be used for the emulsifying device. In addition, known devices such as a high-pressure emulsifier capable of obtaining finer emulsified droplets, a membrane emulsifier capable of obtaining more uniform emulsified droplets, and a microchannel emulsifier can be selected according to the purpose.

なお、乳化液滴の平均径は次のように測定した。乳化液をスライドガラスに滴下し、その上からカバーガラスを被せる。デジタルマイクロスコープ(キーエンス社製、VHX-600)により、カバーガラス越しに30倍から2000倍の倍率で撮影し、乳化液滴の写真投影図を得る。この写真投影図から、50個の液滴を任意に選び、付属のソフトウェアにて円相当径を算出する。それら50個の円相当径の平均値を平均径(平均液滴径)とした。 The average diameter of emulsified droplets was measured as follows. An emulsified liquid is dropped onto a slide glass, and a cover glass is placed thereon. Using a digital microscope (VHX-600, manufactured by Keyence Corporation), images are taken through a cover glass at a magnification of 30 to 2000 times to obtain a photographic projection of the emulsified droplets. 50 droplets are arbitrarily selected from this photographic projection, and the equivalent circle diameter is calculated by the attached software. The average value of these 50 equivalent circle diameters was taken as the average diameter (average droplet diameter).

[脱水工程]
次に、乳化工程で得られた乳化液を脱水処理する。常圧または減圧下で加熱することにより、水を蒸発させる。これにより、乳化液滴から水が除去され、粒子径5~500nm未満の多孔質セルロース粒子(I型結晶性セルロースの集合体)を含む非水系溶媒分散体が得られる。
[Dehydration process]
Next, the emulsified liquid obtained in the emulsifying step is dehydrated. Water is evaporated by heating under normal or reduced pressure. As a result, water is removed from the emulsified droplets, and a non-aqueous solvent dispersion containing porous cellulose particles (aggregates of type I crystalline cellulose) having a particle size of 5 to less than 500 nm is obtained.

例えば、常圧下の加熱脱水法では、冷却管を備えたセパラブルフラスコを加熱し、非水系溶媒を回収しながら、脱水を行う。また、減圧下の加熱脱水法では、ロータリーエバポレーターや、蒸発缶等用いて減圧加熱し、非水系溶媒を回収しながら、脱水を行う。後述の固液分離工程で非水系溶媒分散体から多孔質セルロース粒子を固形物として取り出せる程度まで脱水を行うことが好ましい。脱水が不十分だと、固液分離工程で球状粒子としての形態を維持できない。 For example, in the heat dehydration method under normal pressure, a separable flask equipped with a cooling tube is heated to perform dehydration while recovering the non-aqueous solvent. In the heat dehydration method under reduced pressure, dehydration is performed by heating under reduced pressure using a rotary evaporator, an evaporator, or the like, while recovering the non-aqueous solvent. It is preferable to perform dehydration to such an extent that the porous cellulose particles can be taken out as a solid matter from the non-aqueous solvent dispersion in the solid-liquid separation step described later. If the dehydration is insufficient, the form of spherical particles cannot be maintained in the solid-liquid separation step.

[固液分離工程]
固液分離工程では、従来公知の濾過、遠心分離等の方法で、脱水工程で得られた非水系溶媒分散体から固形分を分離する。これにより、多孔質セルロース粒子のケーキ状物質が得られる。
[Solid-liquid separation step]
In the solid-liquid separation step, a solid content is separated from the non-aqueous solvent dispersion obtained in the dehydration step by a conventionally known method such as filtration or centrifugation. This gives a cake of porous cellulose particles.

さらに、得られたケーキ状物質を洗浄してもよい。これにより、界面活性剤を除去できる。多孔質セルロース粒子を乳化物等の液体製剤に配合する場合、界面活性剤が長期安定性を阻害するおそれがある。そのため、多孔質セルロース粒子に含まれる界面活性剤の残留量は500ppm以下が好ましい。界面活性剤を低減させるためには、有機溶媒を用いて洗浄すると良い。 Furthermore, the obtained cake-like substance may be washed. Thereby, the surfactant can be removed. When the porous cellulose particles are incorporated into a liquid preparation such as an emulsion, the surfactant may impede long-term stability. Therefore, the residual amount of the surfactant contained in the porous cellulose particles is preferably 500 ppm or less. In order to reduce the amount of surfactant, it is preferable to wash with an organic solvent.

[乾燥工程]
乾燥工程では、常圧または減圧下での加熱により、固液分離工程で得られたケーキ状物質に含まれる非水系溶媒を蒸発させる。これにより、真球度0.85以上、平均粒子径5~500nm未満の多孔質セルロース粒子の乾燥粉体が得られる。
[Drying process]
In the drying step, the non-aqueous solvent contained in the cake-like substance obtained in the solid-liquid separation step is evaporated by heating under normal pressure or reduced pressure. As a result, a dry powder of porous cellulose particles having a sphericity of 0.85 or more and an average particle diameter of 5 to less than 500 nm is obtained.

また、乳化工程で得られた乳化液を-50~0℃の範囲で冷却してから脱水工程を行ってもよい。すなわち、乳化液滴中の水を凍結させて凍結乳化物とする。凍結乳化物を常温に戻してから脱水工程を行う。凍結温度が-50℃~-10℃の場合には、中実構造の多孔質セルロース粒子が得られる。-10~0℃の場合には、中空構造の多孔質セルロース粒子が得られる。-10~0℃程度の温度では、氷の結晶が徐々に成長する。結晶の成長に伴って、液滴中の結晶性セルロース(一次粒子)が液滴の外周に排斥される。そのために、外殻の内部に空洞が形成される。 Further, the dehydration step may be performed after cooling the emulsion liquid obtained in the emulsification step to within the range of -50 to 0°C. That is, the water in the emulsified droplets is frozen to form a frozen emulsion. After returning the frozen emulsion to room temperature, the dehydration step is performed. When the freezing temperature is -50°C to -10°C, solid porous cellulose particles are obtained. When the temperature is -10 to 0°C, porous cellulose particles having a hollow structure are obtained. At a temperature of about -10 to 0°C, ice crystals grow gradually. As the crystal grows, the crystalline cellulose (primary particles) in the droplet is expelled to the periphery of the droplet. Therefore, a cavity is formed inside the outer shell.

<化粧料>
上述の多孔質セルロース粒子と各種化粧料成分を配合して化粧料を調製することができる。このような化粧料によれば、単一成分の無機粒子(シリカ粒子)と同様の転がり感、転がり感の持続性、及び均一な延び広がり性、プラスチックビーズと同様のソフト感としっとり感を同時に得ることができる。すなわち、化粧料の感触改良材に求められる代表的な感触特性を満たすことができる。
<Cosmetics>
Cosmetics can be prepared by blending the porous cellulose particles described above and various cosmetic ingredients. Such a cosmetic provides the same rolling feeling as that of inorganic particles (silica particles) of a single component, the durability of the rolling feeling, and uniform spreadability, and the same soft and moist feeling as that of plastic beads. Obtainable. That is, it is possible to satisfy the typical feel properties required for feel improvers for cosmetics.

具体的な化粧料を表1に分類別に例示する。このような化粧料は、従来公知の一般的な方法で製造できる。化粧料は、粉末状、ケーキ状、ペンシル状、スティック状、クリーム状、ジェル状、ムース状、液状、クリーム状等の各種形態で使用される。 Specific cosmetics are exemplified in Table 1 by category. Such cosmetics can be produced by conventionally known general methods. Cosmetics are used in various forms such as powder, cake, pencil, stick, cream, gel, mousse, liquid and cream.

各種化粧料成分として代表的な分類や成分を表2に例示する。さらに、医薬部外品原料規格2006(発行:株式会社薬事日報社、平成18年6月16日)や、International Cosmetic Ingredient Dictionary and Handbook(発行:The Cosmetic, Toiletry, and Fragrance Association、Eleventh Edition2006)等に収載されている化粧料成分を配合してもよい。 Table 2 shows representative classifications and components of various cosmetic ingredients. In addition, the Standards for Quasi-drug Ingredients 2006 (published by Yakuji Nippo Co., Ltd., June 16, 2006), International Cosmetic Ingredient Dictionary and Handbook (published by The Cosmetic, Toiletry, and Fragrance Association, Eleventh Edition 2006), etc. You may mix the cosmetic ingredients listed in.

Figure 0007265331000001
Figure 0007265331000001

Figure 0007265331000002
Figure 0007265331000002

以下、本発明の実施例を具体的に説明する。 Examples of the present invention will be specifically described below.

[実施例1]
はじめに、I型の結晶性セルロースの分散液を準備する。本実施例では、I型セルロース(旭化成社製セオラスPH-101)50gを純水4950gに懸濁した。この懸濁液をマイクロフルイダイザー(マイクロフルイデックス社製M-7250-30)に200回通過させて、固形分濃度1%の分散液を調製した。
[Example 1]
First, a dispersion of type I crystalline cellulose is prepared. In this example, 50 g of I-type cellulose (Seolus PH-101 manufactured by Asahi Kasei Co., Ltd.) was suspended in 4950 g of pure water. This suspension was passed through a microfluidizer (M-7250-30 manufactured by Microfluidex Co., Ltd.) 200 times to prepare a dispersion having a solid concentration of 1%.

この分散液と非水溶性溶媒と界面活性剤を混合する。本実施例では、この分散液200gを、ヘプタン(関東化学社製)3346gと界面活性剤AO-10V(花王社製)25gの混合溶液中に加えた。この混合溶液を100MPaの圧力でマイクロフルイダイザーに通過させた。これにより乳化され、乳化液滴を含む乳化液が得られた。この乳化液を、60℃で16時間加熱し、乳化液滴を脱水した。さらに、10000Gで10分間遠心分離処理を行って、固液分離した。得られた沈降物をヘプタンに分散させ、再度遠心分離処理を行った。この操作を3回繰り返し、界面活性剤を除去した。これにより得られたケーキ状物質を、60℃で12時間乾燥した。この乾燥粉体を250mesh篩(JIS試験用規格篩)でふるいにかけ、多孔質セルロース粒子の粉体を得た。 This dispersion is mixed with a water-insoluble solvent and a surfactant. In this example, 200 g of this dispersion was added to a mixed solution of 3346 g of heptane (manufactured by Kanto Chemical Co., Ltd.) and 25 g of surfactant AO-10V (manufactured by Kao Corporation). This mixed solution was passed through a microfluidizer at a pressure of 100 MPa. This resulted in an emulsified liquid containing emulsified droplets. This emulsion was heated at 60° C. for 16 hours to dehydrate the emulsified droplets. Furthermore, centrifugation treatment was performed at 10000 G for 10 minutes for solid-liquid separation. The sediment obtained was dispersed in heptane and centrifuged again. This operation was repeated three times to remove the surfactant. The resulting cake was dried at 60°C for 12 hours. This dry powder was sieved through a 250 mesh sieve (JIS test standard sieve) to obtain a powder of porous cellulose particles.

多孔質セルロース粒子の調製条件を表3に示す。また、多孔質セルロース粒子の粉体の物性を以下の方法で測定した。その結果を表4に示す。 Table 3 shows the preparation conditions of the porous cellulose particles. Further, the physical properties of the powder of porous cellulose particles were measured by the following methods. Table 4 shows the results.

(1)各粒子の平均粒子径(d、d
レーザー回折法を用いて、各粒子の粒度分布を測定した。この粒度分布からメジアン値を求め、平均粒子径とした。このようにして、多孔質セルロース粒子の平均粒子径d1、I型の結晶性セルロースの平均粒子径d3を求めた。ここでは、レーザー回折/散乱式粒子径分布測定装置LA-950v2(株式会社堀場製作所製)を用いて粒度分布を測定した。但し、セルロースナノファイバーやセルロースナノクリスタル等に代表される繊維状のI型結晶性セルロースの平均粒子径d3については、「平均粒子径=6000÷(真密度×比表面積)」の式を用いて等価球換算の平均粒子径を算出した。
(1) Average particle size of each particle (d 1 , d 3 )
The particle size distribution of each particle was measured using a laser diffraction method. The median value was obtained from this particle size distribution and used as the average particle size. Thus, the average particle size d1 of the porous cellulose particles and the average particle size d3 of the type I crystalline cellulose were obtained. Here, the particle size distribution was measured using a laser diffraction/scattering particle size distribution analyzer LA-950v2 (manufactured by HORIBA, Ltd.). However, for the average particle size d3 of fibrous type I crystalline cellulose represented by cellulose nanofibers, cellulose nanocrystals, etc., using the formula "average particle size = 6000 ÷ (true density × specific surface area)" The average particle size in terms of equivalent spheres was calculated.

(2)超音波分散前後の平均粒子径比
レーザー回折/散乱式粒子径分布測定装置(LA-950v2)で、分散条件を「超音波60分間」に設定し、分散させた。分散後の多孔質セルロース粒子の粒度分布を測定した。この粒度分布のメジアン値を超音波分散後の平均粒子径dとした。これから超音波分散前後の平均粒子径の比(d/d)を求めた。
(2) Average Particle Size Ratio Before and After Ultrasonic Dispersion Dispersion was performed with a laser diffraction/scattering particle size distribution analyzer (LA-950v2) under the dispersing condition of "ultrasonic wave for 60 minutes". The particle size distribution of the dispersed porous cellulose particles was measured. The median value of this particle size distribution was defined as the average particle size d2 after ultrasonic dispersion. From this, the ratio (d 2 /d 1 ) of the average particle size before and after ultrasonic dispersion was obtained.

(3)多孔質セルロース粒子の真球度
透過型電子顕微鏡(日立製作所製、H-8000)により、2000倍から25万倍の倍率で撮影し、写真投影図を得る。この写真投影図から、任意の50個の粒子を選び、それぞれの最大径DLと、これに直交する短径DSを測定し、比(DS/DL)を求めた。それらの平均値を真球度とした。
(3) Sphericality of Porous Cellulose Particles Using a transmission electron microscope (manufactured by Hitachi Ltd., H-8000), photographs are taken at a magnification of 2000 to 250,000 times to obtain photographic projections. Arbitrarily selected 50 particles from this photographic projection, the maximum diameter DL and the short diameter DS perpendicular thereto were measured to obtain the ratio (DS/DL). Their average value was taken as the sphericity.

(4)多孔質セルロース粒子の比表面積
多孔質セルロース粒子の粉体を磁性ルツボ(B-2型)に約30ml採取し、105℃の温度で2時間乾燥後、デシケーターに入れて室温まで冷却した。次に、サンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、比表面積(m/g)をBET法にて測定した。多孔質セルロース粒子に配合したI型結晶性セルロースの密度(1.5g/cm)でこれを換算し、単位体積当たりの比表面積を求めた。
(4) Specific Surface Area of Porous Cellulose Particles About 30 ml of the powder of porous cellulose particles was collected in a magnetic crucible (B-2 type), dried at a temperature of 105° C. for 2 hours, placed in a desiccator and cooled to room temperature. . Next, 1 g of a sample was taken, and the specific surface area (m 2 /g) was measured by the BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics, Multisorb Model 12). The density of type I crystalline cellulose (1.5 g/cm 3 ) blended in the porous cellulose particles was used as a conversion value to determine the specific surface area per unit volume.

(5)多孔質セルロース粒子の細孔容積、平均細孔径
多孔質セルロース粒子の粉体10gをルツボに取り、105℃で1時間乾燥後、デシケーターに入れて室温まで冷却した。次いで、洗浄したセルに0.15g試料を取り、Belsorp miniII(日本ベル社製)を使用して真空脱気しながら試料に窒素ガスを吸着させ、その後、脱着させる。得られた吸着等温線から、BJH法により平均細孔径を算出する。また、「細孔容積(ml/g)=(0.001567×(V-Vc)/W)」という式から細孔容積を算出した。ここで、Vは圧力735mmHgにおける標準状態の吸着量(ml)、Vcは圧力735mmHgにおけるセルブランクの容量(ml)、Wは試料の質量(g)を表す。また、窒素ガスと液体窒素の密度の比を0.001567とした。
(5) Pore Volume and Average Pore Diameter of Porous Cellulose Particles 10 g of porous cellulose particle powder was placed in a crucible, dried at 105° C. for 1 hour, placed in a desiccator and cooled to room temperature. Then, a 0.15 g sample is placed in the cleaned cell, and nitrogen gas is adsorbed onto the sample while vacuum deaeration is performed using Belsorp mini II (manufactured by Bell Japan), followed by desorption. From the obtained adsorption isotherm, the average pore diameter is calculated by the BJH method. Also, the pore volume was calculated from the formula “pore volume (ml/g)=(0.001567×(V−Vc)/W)”. Here, V is the standard adsorption amount (ml) at a pressure of 735 mmHg, Vc is the cell blank capacity (ml) at a pressure of 735 mmHg, and W is the mass of the sample (g). Also, the density ratio of nitrogen gas to liquid nitrogen was set to 0.001567.

[実施例2]
実施例1と同様に、固形分濃度1%のI型の結晶性セルロースの分散液を調製した。この分散液200gとヘプタン3346gと界面活性剤(AO-10V)25gとを混合した。この混合溶液を100MPaの圧力でマイクロフルイダイザーに通過させることにより、乳化させた。このようにして得られた乳化液を-5℃の恒温槽中で72時間静置し、乳化液滴中の水を凍結させた。その後、常温まで昇温し、解凍した。さらに、実施例1と同様に遠心分離処理を行い、ヘプタンで繰り返し洗浄し、界面活性剤を除去した。得られたケーキ状物質から、実施例1と同様に多孔質セルロース粒子の粉体を得て、この粉体の物性を測定した。
[Example 2]
In the same manner as in Example 1, a dispersion of type I crystalline cellulose having a solid concentration of 1% was prepared. 200 g of this dispersion, 3346 g of heptane and 25 g of surfactant (AO-10V) were mixed. This mixed solution was emulsified by passing it through a microfluidizer at a pressure of 100 MPa. The emulsified liquid thus obtained was allowed to stand in a constant temperature bath at -5°C for 72 hours to freeze the water in the emulsified droplets. After that, the temperature was raised to normal temperature and thawed. Furthermore, centrifugation treatment was performed in the same manner as in Example 1, and washing was repeated with heptane to remove the surfactant. A powder of porous cellulose particles was obtained from the obtained cake-like substance in the same manner as in Example 1, and the physical properties of this powder were measured.

本実施例で得られた多孔質セルロース粒子の内部構造を調べた。粉体0.1gをエポキシ樹脂約1g(BUEHLHER製EPO-KWICK)に均一に混合して常温で硬化させた後、FIB加工装置(日立製作所製、FB-2100)を用いて、試料を作製した。透過型電子顕微鏡(日立製作所製、HF-2200)を用いて、加速電圧200kVの条件下で、この試料のSEM像を撮影した。その結果、外殻の内部に空洞が形成された中空構造の粒子であった。このSEM像から、外殻の厚さTと外径ODを計測し、外殻の厚さ比(T/OD)を求めた。 The internal structure of the porous cellulose particles obtained in this example was examined. After uniformly mixing 0.1 g of powder with about 1 g of epoxy resin (EPO-KWICK manufactured by BUEHLHER) and curing at room temperature, a sample was prepared using an FIB processing apparatus (FB-2100 manufactured by Hitachi, Ltd.). . Using a transmission electron microscope (HF-2200, manufactured by Hitachi, Ltd.), an SEM image of this sample was taken under the condition of an acceleration voltage of 200 kV. As a result, the particles had a hollow structure in which a cavity was formed inside the outer shell. From this SEM image, the thickness T and the outer diameter OD of the outer shell were measured to obtain the outer shell thickness ratio (T/OD).

[実施例3]
実施例2と同様に乳化液を調製した。この乳化液を-25℃の冷凍庫中で72時間静置した。これ以降は実施例2と同様にして、多孔質セルロース粒子を調製し、物性を測定した。
[Example 3]
An emulsion was prepared in the same manner as in Example 2. This emulsion was allowed to stand in a freezer at -25°C for 72 hours. Thereafter, porous cellulose particles were prepared in the same manner as in Example 2, and physical properties were measured.

[実施例4]
実施例1のセオラスPH-101の代わりにBiNFi-s WMa-10002(スギノマシン社製)をI型セルロースとして用いて、固形分濃度1%の分散液を調製した。これ以降は実施例1と同様にして多孔質セルロース粒子を調製し、物性を測定した。
[Example 4]
Using BiNFi-s WMa-10002 (manufactured by Sugino Machine Co., Ltd.) as type I cellulose in place of Ceolus PH-101 in Example 1, a dispersion having a solid concentration of 1% was prepared. Thereafter, porous cellulose particles were prepared in the same manner as in Example 1, and physical properties were measured.

[実施例5]
本実施例では、乳化時に50MPaの圧力で混合溶液をマイクロフルイダイザーに通過させた。これ以外は実施例1と同様にして多孔質セルロース粒子を調製し、物性を測定した。
[Example 5]
In this example, the mixed solution was passed through a microfluidizer at a pressure of 50 MPa during emulsification. Except for this, porous cellulose particles were prepared in the same manner as in Example 1, and physical properties were measured.

[実施例6]
実施例1のセオラスPH-101の代わりに第一工業製薬社製I-2SPをI型セルロースとして用いて、固形分濃度1%の分散液を調製した。また、乳化時のマイクロフルイダイザーへの通液回数を5回に変更した。これ以外は実施例1と同様にして多孔質セルロース粒子を調製し、物性を測定した。
[Example 6]
Using I-2SP manufactured by Daiichi Kogyo Seiyaku Co., Ltd. as I-type cellulose instead of Ceolus PH-101 in Example 1, a dispersion having a solid concentration of 1% was prepared. Also, the number of times the liquid was passed through the microfluidizer during emulsification was changed to 5 times. Except for this, porous cellulose particles were prepared in the same manner as in Example 1, and physical properties were measured.

[比較例1]
乳化液の脱水条件を40℃で4時間に変更した以外は実施例4と同様にして多孔質セルロース粒子を調製し、物性を測定した。
[Comparative Example 1]
Porous cellulose particles were prepared in the same manner as in Example 4, except that the emulsion was dehydrated at 40° C. for 4 hours, and its physical properties were measured.

[比較例2]
本比較例では、乳化法を用いずに噴霧乾燥法により結晶性セルロースの集合粒子を作製した。はじめに、旭化成社製セオラスPH-101 20g、尿素75g、水酸化リチウム23g、蒸留水5000gを混合した。この混合液を-25℃の恒温槽内で2時間冷却した。これを常温に昇温し、解凍することによりセルロースが溶解した溶液が得られる。この溶液を噴霧液として、スプレードライヤー(NIRO社製、NIRO-ATMIZER)により噴霧乾燥した。すなわち、入口温度150℃、出口温度が50~55℃に設定した乾燥気流中に、2流体ノズルの一方から噴霧液を2L/hrの流量で、他方のノズルから0.15MPaの圧力で気体を供給して噴霧乾燥した。これにより得られた乾燥粉体はII型の結晶形を持つセルロースである。これを純水に懸濁し、10000Gで10分間遠心分離処理を行って、固液分離した。得られた沈降物を純水に分散させ、再度遠心分離処理を行った。この操作を5回繰り返し、ケーキ状物質を得た。このケーキ状物質を120℃で16時間乾燥させた後、250mesh篩(JIS試験用規格篩)でふるいにかけ、多孔質セルロース粒子の粉体が得られた。この粉体の物性を実施例1と同様に測定した。
[Comparative Example 2]
In this comparative example, aggregated particles of crystalline cellulose were produced by a spray drying method without using an emulsifying method. First, 20 g of Asahi Kasei Seilus PH-101, 75 g of urea, 23 g of lithium hydroxide and 5000 g of distilled water were mixed. This mixture was cooled in a constant temperature bath at -25°C for 2 hours. By raising the temperature to room temperature and thawing, a solution in which cellulose is dissolved is obtained. This solution was used as a spray liquid and spray-dried with a spray dryer (NIRO-ATMIZER manufactured by NIRO). That is, in a dry air stream with an inlet temperature of 150 ° C. and an outlet temperature of 50 to 55 ° C., the liquid is sprayed from one of the two-fluid nozzles at a flow rate of 2 L / hr, and the gas is sprayed from the other nozzle at a pressure of 0.15 MPa. It was fed and spray dried. The dry powder thus obtained is cellulose with a type II crystalline form. This was suspended in pure water and centrifuged at 10,000 G for 10 minutes for solid-liquid separation. The sediment obtained was dispersed in pure water and centrifuged again. This operation was repeated 5 times to obtain a cake-like substance. This cake-like material was dried at 120° C. for 16 hours and then sieved through a 250-mesh sieve (JIS test standard sieve) to obtain a powder of porous cellulose particles. The physical properties of this powder were measured in the same manner as in Example 1.

Figure 0007265331000003
Figure 0007265331000003

Figure 0007265331000004
Figure 0007265331000004

[多孔質セルロース粒子の粉体の感触特性]
次に、各実施例と比較例で得られた粉体の感触特性を評価した。各粉体について、20名の専門パネラーによる官能テストを行い、さらさら感、しっとり感、転がり感、均一な延び広がり性、肌への付着性、転がり感の持続性、およびソフト感の7つの評価項目に関して聞き取り調査を行った。評価点基準(a)に基づく各人の評価点を合計し、評価基準(b)に基づき感触特性を評価した。結果を表5に示す。その結果、各実施例の粉体は、化粧料の感触改良材として極めて優れているが、比較例の粉体は、感触改良材として適していないことが分かった。
評価点基準(a)
5点:非常に優れている
4点:優れている
3点:普通
2点:劣る
1点:非常に劣る
評価基準(b)
◎:合計点が80点以上
○:合計点が60点以上80点未満
△:合計点が40点以上60点未満
▲:合計点が20点以上40点未満
×:合計点が20点未満
[Features of Porous Cellulose Particle Powder]
Next, the tactile properties of the powders obtained in each example and comparative example were evaluated. Each powder was subjected to a sensory test by a panel of 20 specialists, and was evaluated in seven categories: smoothness, moistness, rollability, uniform spreadability, adhesion to skin, durability of rollability, and softness. An interview survey was conducted regarding the items. Each person's evaluation points based on the evaluation point criteria (a) were totaled, and the tactile characteristics were evaluated based on the evaluation criteria (b). Table 5 shows the results. As a result, it was found that the powders of each example are extremely excellent as feel-improving materials for cosmetics, but the powders of comparative examples are not suitable as feel-improving materials.
Evaluation point criteria (a)
5 points: very good 4 points: excellent 3 points: average 2 points: poor 1 point: very poor Criterion (b)
◎: Total score is 80 or more ○: Total score is 60 or more and less than 80 △: Total score is 40 or more and less than 60 ▲: Total score is 20 or more and less than 40 ×: Total score is less than 20

Figure 0007265331000005
Figure 0007265331000005

[パウダーファンデーションの使用感]
多孔質セルロース粒子の粉体を用いて表6に示す配合比率(重量%)となるようにパウダーファンデーションを作製した。すなわち、各実施例の粉体を成分(1)として、成分(2)~(9)とともにミキサーに入れて撹拌し、均一に混合した。次に、化粧料成分(10)~(12)をこのミキサーに入れて撹拌し、さらに均一に混合した。得られたケーキ状物質を解砕処理した後、その中から約12gを取り出し、46mm×54mm×4mmの角金皿に入れてプレス成型した。この様にして得られたパウダーファンデーションについて、20名の専門パネラーによる官能テストを行った。肌への塗布中の均一な延び、しっとり感、滑らかさ、および、肌に塗布後の化粧膜の均一性、しっとり感、やわらかさの6つの評価項目に関して聞き取り調査を行った。前述の評価点基準(a)に基づく各人の評価点を合計し、前述の評価基準(b)に基づきファンデーションの使用感を評価した。結果を表7に示す。実施例による化粧料A~Fは、塗布中でも塗布後でも、使用感が優れていることが分かった。しかし、比較例の化粧料a、bは、使用感がよくないことが分かった。
[Usage of powder foundation]
A powder foundation was prepared using the powder of porous cellulose particles so as to have a blending ratio (% by weight) shown in Table 6. That is, the powder of each example was used as component (1), and the components (2) to (9) were placed in a mixer and stirred to uniformly mix. Next, the cosmetic ingredients (10) to (12) were added to the mixer and stirred to mix evenly. After pulverizing the obtained cake-like material, about 12 g was taken out of the material, placed in a square plate of 46 mm×54 mm×4 mm, and press-molded. The powder foundation thus obtained was subjected to a sensory test by 20 expert panelists. Interviews were conducted on six evaluation items: uniform spread, moist feeling, and smoothness during application to the skin, and uniformity, moist feeling, and softness of the cosmetic film after application to the skin. Each person's evaluation points based on the evaluation point criteria (a) described above were totaled, and the feeling of use of the foundation was evaluated based on the evaluation criteria (b) described above. Table 7 shows the results. It was found that the cosmetics A to F according to Examples had an excellent feeling during use and after application. However, it was found that the cosmetics a and b of the comparative examples did not give a good feeling when used.

Figure 0007265331000006
Figure 0007265331000006

Figure 0007265331000007
Figure 0007265331000007

Claims (7)

結晶性セルロースが集合して形成された多孔質セルロース粒子であって、
該結晶性セルロースは、グルコース分子を構成単位としたI型の結晶形であり、
該多孔質セルロース粒子は、平均粒子径(d)が5~500nm未満、比表面積が25~1000m/g、真球度が0.85以上であることを特徴とする多孔質セルロース粒子。
Porous cellulose particles formed by aggregation of crystalline cellulose,
The crystalline cellulose is a type I crystal form with glucose molecules as constituent units,
The porous cellulose particles have an average particle diameter (d 1 ) of 5 to less than 500 nm, a specific surface area of 25 to 1000 m 2 /g, and a sphericity of 0.85 or more.
細孔容積(PV)が、0.2~5.0ml/gであることを特徴とする請求項1に記載の多孔質セルロース粒子。 2. Porous cellulose particles according to claim 1, characterized in that the pore volume (PV) is between 0.2 and 5.0 ml/g. 平均細孔径(PD)が、2~100nmであることを特徴とする請求項1または2に記載の多孔質セルロース粒子。 3. The porous cellulose particles according to claim 1, wherein the average pore diameter (PD) is 2-100 nm. 前記多孔質セルロース粒子の水分散液を、超音波分散機を用いて60分間分散させたとき、分散後の平均粒子径dと、分散前の平均粒子径dの比(d/d)が、0.95~1.05の範囲にあることを特徴とする請求項1~3のいずれか一項に記載の多孔質セルロース粒子。 When the aqueous dispersion of the porous cellulose particles was dispersed for 60 minutes using an ultrasonic disperser, the ratio of the average particle size d2 after dispersion to the average particle size d1 before dispersion ( d2 /d 1 ) is in the range of 0.95 to 1.05. 前記結晶性セルロースの平均粒子径(d)が1~200nmの範囲にあることを特徴とする請求項1~4のいずれか一項に記載の多孔質セルロース粒子。 The porous cellulose particles according to any one of claims 1 to 4, wherein the average particle diameter (d 3 ) of the crystalline cellulose is in the range of 1 to 200 nm. 前記多孔質セルロース粒子は、外殻の内部に空洞を有する中空粒子であることを特徴とする請求項1~5のいずれか一項に記載の多孔質セルロース粒子。 6. The porous cellulose particles according to any one of claims 1 to 5, wherein the porous cellulose particles are hollow particles having a cavity inside an outer shell. 請求項1~6のいずれか一項に記載の多孔質セルロース粒子が配合された化粧料。 A cosmetic containing the porous cellulose particles according to any one of claims 1 to 6.
JP2018184396A 2018-09-28 2018-09-28 Porous cellulose particles and cosmetics Active JP7265331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184396A JP7265331B2 (en) 2018-09-28 2018-09-28 Porous cellulose particles and cosmetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184396A JP7265331B2 (en) 2018-09-28 2018-09-28 Porous cellulose particles and cosmetics

Publications (2)

Publication Number Publication Date
JP2020050840A JP2020050840A (en) 2020-04-02
JP7265331B2 true JP7265331B2 (en) 2023-04-26

Family

ID=69995979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184396A Active JP7265331B2 (en) 2018-09-28 2018-09-28 Porous cellulose particles and cosmetics

Country Status (1)

Country Link
JP (1) JP7265331B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4268902A1 (en) 2020-12-28 2023-11-01 Ajinomoto Co., Inc. Powder composition for cosmetics or skin topical agent, and production method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036168A1 (en) 2000-11-06 2002-05-10 Asahi Kasei Kabushiki Kaisha Cellulosic particle for pharmaceutical preparation
WO2008084854A1 (en) 2007-01-12 2008-07-17 Asahi Kasei Fibers Corporation Cellulose fine particle, dispersion liquid thereof and dispersion body thereof
WO2009142255A1 (en) 2008-05-21 2009-11-26 旭化成ケミカルズ株式会社 Cellulose powder having excellent segregation preventive effect, and compositions thereof
WO2014038686A1 (en) 2012-09-10 2014-03-13 株式会社カネカ Adsorbent
WO2015046473A1 (en) 2013-09-27 2015-04-02 株式会社カネカ Method for producing porous cellulose beads using alkali aqueous solution, carrier for ligand immobilization, and adsorbent
JP2017088873A (en) 2015-11-02 2017-05-25 日本製紙株式会社 Microsphere particle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733259B2 (en) * 1988-09-20 1998-03-30 旭化成工業株式会社 Porous microcellulose particles
JPH02174709A (en) * 1988-12-27 1990-07-06 Asahi Chem Ind Co Ltd Cellulose particle-containing cosmetic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036168A1 (en) 2000-11-06 2002-05-10 Asahi Kasei Kabushiki Kaisha Cellulosic particle for pharmaceutical preparation
WO2008084854A1 (en) 2007-01-12 2008-07-17 Asahi Kasei Fibers Corporation Cellulose fine particle, dispersion liquid thereof and dispersion body thereof
WO2009142255A1 (en) 2008-05-21 2009-11-26 旭化成ケミカルズ株式会社 Cellulose powder having excellent segregation preventive effect, and compositions thereof
WO2014038686A1 (en) 2012-09-10 2014-03-13 株式会社カネカ Adsorbent
WO2015046473A1 (en) 2013-09-27 2015-04-02 株式会社カネカ Method for producing porous cellulose beads using alkali aqueous solution, carrier for ligand immobilization, and adsorbent
JP2017088873A (en) 2015-11-02 2017-05-25 日本製紙株式会社 Microsphere particle

Also Published As

Publication number Publication date
JP2020050840A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP7269239B2 (en) POROUS CELLULOSE PARTICLES, MANUFACTURING METHOD THEREOF, AND COSMETIC
Meng et al. Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation
CN107602912A (en) A kind of nano-meter flame retardantses for high polymer material
CN101857698B (en) Polystyrene/calcium alginate composite gel microsphere in nuclear shell structure and preparation method thereof
JP7026428B2 (en) Particles containing starch, their manufacturing methods, and cosmetics
AU2015344139B2 (en) Porous Silica Particle and Cleansing Cosmetic
CN114269816B (en) Porous cellulose microparticles and process for producing the same
JP6703432B2 (en) Porous silica-based particles and cleaning cosmetics
TWI702982B (en) Supercritical co2 cellulose spraydrying
JP7199871B2 (en) POROUS CELLULOSE PARTICLES, MANUFACTURING METHOD THEREOF, AND CLEANING COSMETIC
JP7265331B2 (en) Porous cellulose particles and cosmetics
CN112108075B (en) Pickering emulsifier and preparation method and application thereof
EP3251740B1 (en) Method of producing nanoparticle-in-oil dispersion
US20160130370A1 (en) Compositions and structures including nonaggregated stabilized charged polysaccharide nanofibers, methods of making nonaggregated stabilized charged polysaccharide nanofibers, and method of making structures
KR20200136888A (en) Organic-inorganic composite particles, manufacturing method thereof, and cosmetics
US9889072B2 (en) Porous silica particle, method for producing the same, and cleansing cosmetic containing the same
Eshtiaghi et al. Producing hollow granules from hydrophobic powders in high-shear mixer granulators
WO2013079377A1 (en) Granulated materials based on titanium dioxide particles with high mechanical stability, manufacturing method and usage
JP7454942B2 (en) Carboxymethyl cellulose particles, their production method, and cosmetics
WO2021223511A1 (en) Wheat gluten protein nanofiber, preparation method therefor, and application thereof
JP7311258B2 (en) Method for producing spherical particles
JP7440181B2 (en) Highly scattering porous materials based on fibrillar, elongated, or disk-shaped particles
Zhang et al. Preparation and theophylline delivery applications of novel PMAA/MWCNT-COOH nanohybrid hydrogels
JP3086478B2 (en) Porous fine particles
JP2022157453A (en) Natural rubber particle and method for producing the same, and cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230414

R150 Certificate of patent or registration of utility model

Ref document number: 7265331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150