(本発明の基礎となった知見)
本発明者は、「背景技術」の欄において記載した、上記非特許文献1に関し、以下の問題が生じることを見出した。
MPEG-4 AVC(Moving Picture Experts Group-4 Advanced Video Coding)またはHEVC(High Efficiency Video Coding)などの符号化方式においては、ピクチャを階層的に符号化することにより時間方向のスケーラビリティ(以下、時間スケーラビリティという)を実現することができる。例えば、全てのピクチャを復号することにより、120fpsでの再生が可能となり、特定の階層に属するピクチャのみを復号することにより、60fpsでの再生が可能となる。
このような時間スケーラビリティを利用することで、特定の階層に属するピクチャのみを120fpsの間隔で復号することによる2倍速再生が可能となる。さらに、120fpsの間隔で復号することに対応していない再生装置(以下、120fps非対応再生装置という)では、120fpsの符号化ストリームを60fpsで再生することができる可能性がある。
図1Aと図1Bは、HEVCによる時間スケーラビリティを実現するための一例を示す図である。これらの図では、階層間の参照関係、及び、各ピクチャの復号順(つまり符号化順)が示されている。
図1Aは、各ピクチャを3層構造により符号化する例を示す。図1A中のTIdは、Temporal IDであって、階層を識別するための識別子である。また、Iは、Iピクチャ(画面内予測ピクチャ)を示し、PはPピクチャ(例えば前方参照予測ピクチャ)を示し、BはBピクチャ(例えば双方向参照予測ピクチャ)を示す。また、I、PおよびBのそれぞれの右隣に付随する数字は、それらのピクチャの表示順を示す。また、矢印はピクチャ間の参照関係を表し、例えば、ピクチャB2はピクチャI0とピクチャP4を参照する。つまり、この階層間の参照関係では、ピクチャは、そのピクチャが属する階層よりも高い階層に属するピクチャを参照することなく、そのピクチャが属する階層と同じ階層、または、その階層よりも低い階層に属するピクチャを参照して符号化される。ここで、Temporal IDが0から2までの全ての階層のうちの何れかに属する各ピクチャを復号すると、フレームレートは120fpsになる。この場合、Temporal IDが0から1までの何れかの階層に属する各ピクチャを復号すると、フレームレートは60fpsとなる。
図1Bは、各ピクチャを4層構造により符号化する例を示す。この場合は、Temporal IDが0から3までの全ての階層の何れかに属する各ピクチャを復号すると、フレームレートは120fpになる。この場合にも、Temporal IDが0から2までの何れかの階層に属する各ピクチャを復号すると、フレームレートは60fpsとなる。
上述のように、120fps非対応再生装置は、時間スケーラビリティを用いることにより、つまり、120fpsの符号化ストリームにおける一部の階層に属するピクチャのみを復号することにより、60fpsの再生を実現することができる可能性がある。
しかしながら、この場合であっても、120fps非対応再生装置は、1/60秒よりも短い間隔で各ピクチャを復号しなければならない場合がある。したがって、120fps非対応再生装置は、時間スケーラビリティを用いても、各ピクチャを復号する間隔が短いために、120fpsの符号化ストリームを復号することができないという問題がある。
図2は、120fps非対応再生装置が120fpsの符号化ストリームを復号することができないという課題を説明するための図である。図2に示す符号化ストリームは、図1Aに示す120fpsの符号化ストリームである。120fps非対応再生装置は、その符号化ストリームを60fpsで再生する場合には、Temporal IDが0の階層に属する各ピクチャと、Temporal IDが1の階層に属する各ピクチャのみを復号する。
図2におけるTは、120fpsに対応する時間、つまり、1/120秒に相当する。放送コンテンツや蓄積コンテンツにおいては、固定フレームレートでコンテンツを表示する際には、復号も固定のフレームレートで行われるのが一般的である。したがって、120fpsの再生時には、各ピクチャが復号される間隔(以下、復号間隔という)も、各ピクチャが表示される間隔(以下、表示間隔という)もTである。
したがって、60fpsの再生時にも、復号間隔と表示間隔は、共に60fpsに対応する時間、すなわち、2Tの間隔となる必要がある。ところが、図2に示すように、60fpsで再生が行われる場合には、ピクチャI0とピクチャP4の復号間隔、あるいは、ピクチャP4とピクチャB2の復号間隔はTである。復号間隔として2Tの時間が必要である120fps非対応再生装置では、ピクチャの復号が間に合わないという課題がある。つまり、120fps非対応再生装置において処理負荷が高いという課題がある。
このような問題を解決するために、本発明の一態様に係る画像符号化方法は、複数の階層のうちの何れかに属するピクチャごとに、当該ピクチャが属する階層より高い階層に属する他のピクチャを参照することなく、動画像を符号化する画像符号化方法であって、前記動画像に含まれる複数のピクチャのうちの一部の複数のピクチャであって、前記複数の階層のうちの最も高い階層に属していない複数の下層ピクチャの、それぞれの復号時刻が等間隔になるように、かつ、符号化された前記動画像に含まれる複数のピクチャが復号される場合と、前記複数のピクチャのうちの前記複数の下層ピクチャのみが復号される場合との間で、前記複数の下層ピクチャのそれぞれが復号されるタイミングが同一となるように、前記動画像に含まれる複数のピクチャのそれぞれの復号時刻を決定し、決定された前記復号時刻に応じた符号化順にしたがって、前記動画像に含まれる複数のピクチャのそれぞれを符号化し、符号化された前記複数のピクチャと、前記複数のピクチャのそれぞれに対して決定された復号時刻とを含む符号化ストリームを生成する。
これにより、符号化ストリームに含まれる複数ピクチャのそれぞれは、そのピクチャが属する階層よりも高い階層に属する他のピクチャを参照することなく符号化されている。したがって、画像復号装置は、符号化ストリームのうちの複数の下層ピクチャのみを復号することができる。また、符号化ストリームに含まれる複数の下層ピクチャのそれぞれの復号時刻は等間隔である。したがって、画像復号装置は、符号化ストリームのうちの複数の下層ピクチャのみを復号するときには、等間隔の時間経過ごとにそれらの下層ピクチャを順に復号することができる。したがって、その等間隔を適切な時間にすることで、画像復号装置の処理負荷を軽減することができる。つまり、画像復号装置は、ピクチャごとの復号を高いフレームレートで行うことなく、自らの処理能力に応じたフレームレートで行うことができる。さらに、符号化ストリームに含まれる複数のピクチャ(例えば全てのピクチャ)が復号される場合と、その複数の下層ピクチャのみが復号される場合との間で、その複数の下層ピクチャのそれぞれが復号されるタイミングは同一である。したがって、画像復号装置は、符号化ストリームの全てのピクチャを復号する場合と、複数の下層ピクチャのみを復号する場合とで、その複数の下層ピクチャのそれぞれの復号のタイミングを変える必要がない。したがって、画像復号装置の処理負荷をより軽減することができる。
また、前記復号時刻の決定では、前記動画像に含まれる複数のピクチャのうちの一部の複数のピクチャであって、前記最も高い階層に属する複数の最上層ピクチャのそれぞれの復号時刻を、前記複数の下層ピクチャのそれぞれの復号時刻の間に決定してもよい。
これにより、符号化ストリームが復号されるときには、最上層ピクチャと下層ピクチャとはそれぞれ交互に復号される。したがって、符号化ストリームのうちで複数の下層ピクチャのそれぞれが復号される時刻の間隔はいずれも、復号化ストリームの全てのピクチャのそれぞれが復号される時刻の間隔よりも長い。その結果、画像復号装置は、複数の下層ピクチャのみを復号するときには、復号化ストリームの全てのピクチャのそれぞれを復号するときよりも、確実に低いフレームレートで各ピクチャを復号することができる。したがって、画像復号装置の処理負荷を確実に軽減することができる。
また、前記復号時刻の決定では、前記複数の最上層ピクチャおよび前記複数の下層ピクチャのうち、復号順で連続する最上層ピクチャおよび下層ピクチャのそれぞれの復号時刻の間隔の2倍の時間が、前記等間隔の時間と等しくなるように、前記動画像に含まれる複数のピクチャのそれぞれの復号時刻を決定してもよい。
これにより、複数の下層ピクチャのそれぞれの復号時刻の間隔はいずれも、復号順で連続する最上層ピクチャおよび下層ピクチャのそれぞれの復号時刻の間隔、つまり、復号化ストリームの全てのピクチャのそれぞれが復号される時刻の間隔の2倍となる。したがって、符号化ストリームの全てのピクチャを復号して表示するときのフレームレートが120fpsである場合、画像復号装置は、60fpsのフレームレートの逆数の時間間隔で、符号化ストリームに含まれる複数の下層ピクチャのそれぞれを負担なく復号することができる。
また、前記動画像が、復号順で連続する複数のピクチャからなるランダムアクセス単位を複数有する場合、前記復号時刻の決定では、前記ランダムアクセス単位ごとに、当該ランダムアクセス単位において、復号順で先頭のピクチャよりも、表示順で前に表示されるピクチャを除く全てのピクチャを、他のランダムアクセス単位に含まれるピクチャを参照することなく復号し得るように、当該ランダムアクセス単位内の各ピクチャの復号時刻を決定してもよい。例えば、前記先頭のピクチャは、当該先頭のピクチャよりも復号順で後のピクチャが、当該先頭のピクチャよりも復号順で前のピクチャを参照することが禁じられているIピクチャである。または、前記先頭のピクチャは、当該先頭のピクチャよりも復号順で後であって、表示順で前のピクチャが、当該先頭のピクチャよりも復号順で前のピクチャを参照することが許可されているIピクチャである。
これにより、画像復号装置はランダムアクセス単位ごとに、そのランダムアクセス単位に含まれる複数のピクチャのそれぞれを適切に復号することができる。
また、前記復号時刻の決定では、符号化された前記動画像に含まれる全てのピクチャが復号されて表示されるフレームレートがfである場合、前記全てのピクチャに含まれる前記複数の下層ピクチャのそれぞれの復号時刻が、前記fの逆数のn倍(nは2以上の整数)で示される時間だけ離れるように、前記全てのピクチャのそれぞれの復号時刻を決定してもよい。
これにより、画像復号装置は、そのフレームレートの逆数のn倍の時間間隔で、複数の下層ピクチャのそれぞれを順に負担なく復号することができる。
また、前記画像符号化方法は、さらに、前記動画像に含まれる復号順で先頭のピクチャの復号時刻と、前記動画像に含まれる表示順で先頭のピクチャの表示時刻との間の時間である表示遅延を示す表示遅延情報を、前記符号化ストリームに含めてもよい。
これにより、画像復号装置は、符号化ストリームから表示遅延情報を取得することができる。したがって、画像復号装置は、その表示遅延情報によって示される表示遅延だけ表示開始時刻よりも前の時刻から、符号化ストリームの復号を開始すれば、その表示開始時刻から遅延なく動画像を表示することができる。
また、前記画像符号化方法は、さらに、前記動画像に含まれる複数のピクチャのそれぞれに対して決定された復号時刻が等間隔でないことを示す不等間隔情報を前記符号化ストリームに含めてもよい。
これにより、画像復号装置は、符号化ストリームから不等間隔情報を取得することができる。したがって、画像復号装置は、符号化ストリームに含まれる複数のピクチャをそれぞれ、表示のフレームレートで順次復号することができないと判断することができる。その結果、画像復号装置は、符号化ストリームに含まれる複数のピクチャのそれぞれに対して決定された復号時刻を参照しながら、それらの複数のピクチャを適切なタイミングで復号することができる。
また、本発明の一態様に係る画像復号装置は、複数の階層のうちの何れかに属するピクチャごとに、当該ピクチャが属する階層より高い階層に属する他のピクチャを参照することなく符号化された動画像を含む符号化ストリームを復号する画像復号方法であって、前記符号化ストリームに含まれる複数のピクチャのうちの一部の複数のピクチャであって、前記複数の階層のうちの最も高い階層に属していない複数の下層ピクチャの、それぞれの復号時刻が等間隔になるように、かつ、前記符号化ストリームに含まれる複数のピクチャが復号される場合と、前記複数のピクチャのうちの前記複数の下層ピクチャのみが復号される場合との間で、前記複数の下層ピクチャのそれぞれが復号されるタイミングが同一となるように決定された、前記符号化ストリームに含まれる複数のピクチャのそれぞれの復号時刻を、前記符号化ストリームから取得し、取得された前記復号時刻にしたがって、前記符号化ストリームに含まれる複数のピクチャ、または前記複数の下層ピクチャのそれぞれを復号する。
これにより、符号化ストリームに含まれる複数ピクチャのそれぞれは、そのピクチャが属する階層よりも高い階層に属する他のピクチャを参照することなく符号化されている。したがって、画像復号装置は、符号化ストリームのうちの複数の下層ピクチャのみを復号することができる。また、符号化ストリームに含まれる複数の下層ピクチャのそれぞれの復号時刻は等間隔である。したがって、画像復号装置は、符号化ストリームのうちの複数の下層ピクチャのみを復号するときには、等間隔の時間経過ごとにそれらの下層ピクチャを順に復号することができる。したがって、その等間隔が適切な時間であれば、画像復号装置の処理負荷を軽減することができる。つまり、画像復号装置は、ピクチャごとの復号を高いフレームレートで行うことなく、自らの処理能力に応じたフレームレートで行うことができる。さらに、符号化ストリームに含まれる複数のピクチャ(例えば全てのピクチャ)が復号される場合と、その複数の下層ピクチャのみが復号される場合との間で、その複数の下層ピクチャのそれぞれが復号されるタイミングは同一である。したがって、画像復号装置は、符号化ストリームの全てのピクチャを復号する場合と、複数の下層ピクチャのみを復号する場合とで、その複数の下層ピクチャのそれぞれの復号のタイミングを変える必要がない。したがって、画像復号装置の処理負荷をより軽減することができる。
また、前記画像復号方法は、さらに、前記符号化ストリームに含まれる複数のピクチャのそれぞれの復号時刻が等間隔でない場合、前記複数のピクチャのそれぞれの復号時刻を等間隔に変更し、前記符号化ストリームの復号では、変更された前記復号時刻にしたがって、前記符号化ストリームに含まれる複数のピクチャ、または前記複数の下層ピクチャのそれぞれを復号してもよい。
これにより、複数のピクチャのそれぞれの復号時刻が等間隔に変更されるため、画像復号装置は、符号化ストリームに含まれる複数のピクチャのそれぞれを等間隔の時間経過ごとに復号することができる。したがって、画像復号装置の処理負荷をより軽減することができる。
また、前記符号化ストリームの復号では、前記符号化ストリームに含まれるピクチャごとに、当該ピクチャに対して取得された復号時刻が、予め定められた周期ごとに発生する処理信号の発生タイミングと一致するか否かを判定し、一致すると判定されたときに、当該ピクチャを復号してもよい。例えば、前記画像復号方法は、さらに、前記符号化ストリームに含まれる全てのピクチャが復号されて表示されるときのフレームレートの逆数を、前記予め定められた周期に決定する。
これにより、複数のピクチャのそれぞれの復号時刻が等間隔でなくても、複数のピクチャのそれぞれを、そのピクチャの復号時刻に適切に復号することができる。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
以下、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
図3は、本実施の形態における画像符号化装置を説明するための図である。
本実施の形態における画像符号化装置10は、120fpsのフレームレートの動画像を取得し、その動画像を符号化することによって符号化ストリームを生成して出力する。この符号化ストリームに含まれる全てのピクチャが復号される場合には、120fpsのフレームレートで動画像が表示される。また、この符号化ストリームに含まれる一部の複数のピクチャが復号される場合には、60fpsのフレームレートで動画像が表示される。例えば、符号化ストリームに含まれる一部の複数のピクチャは、それぞれが最も高い階層以外の何れかの階層に属する複数のピクチャである。
図4は、本実施の形態における、3つの階層を用いて動画像を符号化する一例を示す図である。本実施の形態における画像符号化装置10は、図1Aに示すピクチャの予測構造と同様の予測構造に基づいて動画像を符号化することにより、120fpsの符号化ストリームを生成する。このとき、画像符号化装置10は、その符号化ストリームを60fpsで再生する際に復号間隔が2T(1/60秒)となるように、120fpsでの再生時にのみ復号されるピクチャの復号時刻(DTS:Decoding Time Stamp)を調整する。つまり、画像符号化装置10は、複数の階層のうちの最も高い階層に属する複数のピクチャのDTSを調整する。
図5は、本実施の形態における、4つの階層を用いて動画像を符号化する一例を示す図である。本実施の形態における画像符号化装置10は、図1Bに示すピクチャの予測構造と同様の予測構造に基づいて動画像を符号化することにより、120fpsの符号化ストリームを生成する。このとき、画像符号化装置10は、その符号化ストリームを60fpsで再生する際に復号間隔が2T(1/60秒)となるように、120fpsでの再生時にのみ復号されるピクチャの復号時刻を調整する。
ここで、動画像を符号化する際には、符号化ストリームの途中のピクチャから復号が開始できるように、GOP(Group Of Pictures)などと呼ばれるランダムアクセス単位が構成される。ランダムアクセス単位において復号順で先頭となるピクチャはランダムアクセスポイントである。例えば、図4に示す、ピクチャI0からピクチャB9までが第1のランダムアクセス単位であり、ピクチャI16が第2のランダムアクセス単位の先頭ピクチャである。ここで、第2のランダムアクセス単位においては、ピクチャB11などのピクチャは、ピクチャI16、あるいは、復号順でピクチャI16以降のピクチャを参照しないが、第2のランダムアクセス単位に含まれる。
また、放送される符号化ストリーム(つまり、放送ストリーム)などの記録では、第1のランダムアクセス単位のようなランダムアクセス単位の終端まで記録されることがある。このとき、ピクチャP12は復号できるにも関わらず、ピクチャB11は第2のランダムアクセス単位に含まれるために復号できない。したがって、復号時の動作が煩雑となる。
ここで、所定の条件を満たすピクチャをアドバンスピクチャという。ピクチャに対する所定の条件は、(1)そのピクチャが、復号順で直前のランダムアクセス単位に含まれるピクチャを参照することと、(2)そのピクチャの表示順が、復号順で直前のランダムアクセス単位に含まれる何れかのピクチャよりも前であること、である。なお、ランダムアクセス単位は、符号化順および復号順によって定義される単位であって、符号化順と復号順は同じである。さらに、第1のランダムアクセス単位のように、アドバンスピクチャを含むランダムアクセス単位の直前にあるランダムアクセス単位を、開放終端ランダムアクセス単位という。また、開放終端ランダムアクセス単位に含まれる、アドバンスピクチャよりも表示順が後のピクチャを、孤立ピクチャという。例えば、図4におけるピクチャB11はアドバンスピクチャであり、ピクチャP12は孤立ピクチャである。
図6は、本実施の形態における、3つの階層を用いて動画像を符号化する他の例を示す図である。
本実施の形態における画像符号化装置10は、3つの階層を用いて時間スケーラビリティを実現する際に、図6に示すように、開放終端ランダムアクセス単位が発生しないように画像を符号化してもよい。
第2のランダムアクセス単位に含まれるいずれのピクチャも、表示順で、第1のランダムアクセス単位の最後のピクチャP12よりも後である。したがって、第2のランダムアクセス単位に含まれる全てのピクチャは、アドバンスピクチャとはならない。その結果、第1のランダムアクセス単位は開放終端ランダムアクセス単位とはならない。ただし、ピクチャB1は、ピクチャB1よりもピクチャB2の復号順が後であるため、そのピクチャB2を参照することができない。同様に、ピクチャB5は、ピクチャB5よりもピクチャB6の復号順が後であるため、そのピクチャB6を参照することができない。このように、Temporal IDが2のピクチャの予測構造は制約される。
図4~図6の例では、60pと120pにおける時間スケーラビリティを例に、階層数が3と4の場合について説明した。しかし、実現できるフレームレートの組合せや階層数はこの限りではない。低階層のピクチャのみを復号して表示する際に、表示のフレームレートにおける各ピクチャの表示間隔をT_ptsとすると、復号順で連続する任意のピクチャの復号間隔がT_ptsと同一、あるいは、T_pts以上であるという条件が保証できればよい。画像符号化装置10は、この条件を満たすように画像を動符号化する。
図7は、本実施の形態における画像復号装置20を説明するための図である。
本実施の形態における画像復号装置20は、上述の画像符号化装置10によって生成された符号化ストリームを取得する。画像復号装置20は、この符号化ストリームに含まれる全てのピクチャを復号することによって、120fpsのフレームレートで動画像を表示する。また、画像復号装置20は、この符号化ストリームに含まれる一部の複数のピクチャを復号することによって、60fpsのフレームレートで動画像を表示する。例えば、符号化ストリームに含まれる一部の複数のピクチャは、それぞれが最も高い階層以外の何れかの階層に属する複数のピクチャである。
このように、本実施の形態では、符号化ストリームに含まれる、最も高い階層に属していない複数のピクチャ(以下、下層ピクチャという)のそれぞれの復号時刻は等間隔である。したがって、画像復号装置は、符号化ストリームのうちの複数の下層ピクチャのみを復号するときには、等間隔の時間経過ごとにそれらの下層ピクチャを順に復号することができる。したがって、その等間隔を適切な時間(例えば上述の2T=1/60秒)にすることで、画像復号装置の処理負荷を軽減することができる。つまり、画像復号装置は、ピクチャごとの復号を高いフレームレートで行うことなく、自らの処理能力に応じたフレームレートで行うことができる。例えば、60fpsの符号化ストリームを復号する際には、1枚のピクチャの復号にかかる時間が1/60秒以下であることを保証すればよい。
(変形例1)
ここで、ランダムアクセス単位の先頭となるピクチャのDTSについて説明する。
図8は、図4に示す符号化ストリームを120fpsで再生する際の、各ピクチャの復号順および表示順と、DTSおよびPTS(Presentation Time Stamp: 表示時刻)を示す図である。
ここで、DTSおよびPTSのそれぞれに対する添え字(数字)は、表示順を示す。DTSまたはPTSは、例えば、放送におけるMPEG-2 TS(Transport Stream)ではPESパケットのヘッダによって示される。MMT(MPEG Media Transport)またはRTP(Real-time Transport Protocol)では、トランスポート層のパケットのヘッダ、あるいは、ペイロードに含まれる符号化ストリームのヘッダ情報などによって、DTSまたはPTSが示される。MPEG-DASH(Dynamic Adaptive Streaming over HTTP)など、ファイルをパケット化せずに送信するタイプのフォーマットでは、ファイルのヘッダ部分にDTSまたはPTSが含まれる。あるいは、MPEG-4 AVCまたはHEVCでは、Picture Timing SEIまたはBuffering Period SEIなど、SEI(Supplemental Enhancement Information)を用いることにより、符号化ストリーム内にDTSまたはPTSを示すことも可能である。
従来の符号化ストリームでは、固定のフレームレートで表示され、表示順で連続する2枚のピクチャにおけるPTSの間隔がTであれば、復号順で連続する2枚のピクチャにおけるDTSの間隔も常にTである。したがって、再生装置(または画像復号装置)は、復号順で先頭のピクチャのDTSのタイミングで、そのピクチャの復号を開始すれば、後続の各ピクチャのDTSを参照することなく、Tの間隔毎に順に後続の各ピクチャを復号すればよい。
一方、本実施の形態における符号化ストリームでは、図8に示すように、ピクチャI0とピクチャP4との間のDTSの間隔、及び、ピクチャP4とピクチャB2と間のDTSの間隔は、2T(Tは例えば1/120秒)である。また、ピクチャB2とピクチャB1との間のDTSの間隔、及び、復号順でピクチャB1以降の連続する2枚のピクチャの間のDTSの間隔はTである。したがって、本実施の形態における符号化ストリームでは、ピクチャ間のDTSの間隔が可変となる。したがって、画像復号装置(または再生装置)は、ピクチャ毎のDTSを参照して、そのDTSのタイミングでピクチャを復号する必要がある。
本変形例に係る画像復号装置20は、一定間隔で発生させるビデオ処理信号のタイミングに基づいてピクチャの復号または表示を行う。例えば、表示のフレームレートが120fpsであれば、画像復号装置20は、T(例えば1/120秒)毎にビデオ処理信号を発生させ、ビデオ処理信号の発生のタイミングでピクチャの復号または表示を行う。図8に示す符号化ストリームでは、ピクチャI0とピクチャP4の間のDTSの間隔と、ピクチャP4とピクチャB2との間のDTSの間隔は、ビデオ処理信号の周期Tの2倍である。さらに、復号順でピクチャB2以降の連続する2枚のピクチャの間のDTSの間隔は、ビデオ処理信号の周期Tと等しい。
図9は、本変形例における画像復号装置20の構成を示すブロック図である。
本変形例に係る画像復号装置20は、上記実施の形態における画像復号装置20と同様の機能を有し、符号化されたピクチャを、そのピクチャのDTSによって示されるタイミングに復号する。このような画像復号装置20は、信号間隔設定部21、DTS取得部22、判定部23および復号部24を備える。
図10は、本変形例に係る画像復号装置20が全階層のピクチャを復号する際の動作の一例を示すフローチャートである。
まず、画像復号装置20の信号間隔設定部21は、ビデオ処理信号を発生する間隔または周期(以下、V_periodという)が、全階層を復号して表示する際のフレームレートの逆数となるように、そのV_periodを設定する(ステップS21)。
次に、DTS取得部22は、ピクチャの符号化データが格納されているPESパケットのヘッダなどから、復号対象となるピクチャのDTS(以下、dts_iという)を取得する(ステップS22)。次に、判定部23は、ビデオ処理信号の発生のタイミングを監視し、そのタイミングがdts_iと一致するかどうかを判定する(ステップS23)。ピクチャのDTSの間隔がV_periodのN倍となる場合には、直前に復号されたピクチャの復号時刻からカウントして、N回目に発生するビデオ処理信号のタイミングが、dts_iと一致することになる。タイミングが一致したと判定された場合には(ステップS23の「はい」)、復号部24は、復号対象のピクチャを復号する(ステップS24)。一方、タイミングが一致しないと判定された場合には(ステップS23の「いいえ」)、判定部23は、ステップS23の処理を繰り返し実行する。
なお、ステップS21は、先頭ピクチャの復号開始に先立って1度実施されればよく、ピクチャの復号毎に行う必要はない。また、ステップS23における判定では、ビデオ処理信号の発生のタイミングとdts_iとの差分値が所定の閾値よりも小さい場合に、両者が一致したとみなしてもよい。また、図10に示す動作は、全階層の復号と、低階層の復号との間における時間スケーラビリティだけでなく、異なる二つの低階層の間における時間スケーラビリティにも適用できる。
このように、本変形例における画像復号装置20では、DTSの間隔が可変であっても、DTSの間隔がビデオ処理信号の周期の整数倍で表現できる場合には、可変のDTSにしたがってピクチャを復号することができる。その結果、復号のタイミングを決定する際の処理量を低減することができる。
ここで、50fpsと120fpsの時間スケーラビリティのように、全階層を復号した場合のフレームレート(以下、FrameRateAllという)が、低階層のみを復号した場合のフレームレート(以下、FrameRatePartという)の整数倍とならないケースを考える。このとき、50fpsの復号能力を有する画像復号装置における復号を保証するためには、低階層のみを復号する際のDTSの間隔が1/50秒となる必要がある。しかしながら、FrameRateAllがFrameRatePartの整数倍とならないため、120fpsでの再生時のピクチャの復号間隔が一定間隔(つまり固定間隔)とならないだけでなく、DTSの間隔(1/50秒)がビデオ処理信号の周期(1/120秒)の整数倍とならない。その結果、DTSに示される時刻に復号を行うことができず、符号化ピクチャのバッファなどにおいてオーバーフローやアンダーフローが発生する可能性がある。したがって、本変形例に係る画像符号化装置10は、時間スケーラビリティを提供する際には、全階層を復号する際の表示のフレームレートが、低階層のみを復号する際の表示のフレームレートの整数倍となるように、時間スケーラビリティを実現する階層の組合せを決定してもよい。また、画像符号化装置10は、全階層を復号した場合のフレームレートが、一部の階層のみを復号した場合のフレームレートの整数倍となることを示す情報を符号化ストリームに格納してもよい。または、画像符号化装置10は、符号化ストリームが多重化されることによって構成されるTS(Transport Stream)におけるデスクリプタなどに、その情報を格納してもよい。
また、ランダムアクセス単位において、復号順で先頭となるピクチャのDTSと、表示順で先頭となるピクチャのPTSとの差分を表示遅延と呼ぶ。図8に示す例では、DTS0とPTS0との差分が表示遅延である。表示のフレームレートが固定である従来の符号化ストリームでは、DTSの間隔も固定であり、その間隔はPTSの間隔と同一である。したがって、表示遅延は、表示順で先頭のピクチャのPTSまでに復号されるピクチャの枚数に、PTSの間隔を乗じた値によって表現される。図8に示す例では、ピクチャI0のPTSまでに復号されるのはピクチャI0とピクチャP4の2枚であるため、従来の計算方法では、表示遅延は2×Tと計算される。しかしながら、図8に示す例では、ピクチャI0とピクチャP4との間のPTSの間隔、及び、ピクチャP4とピクチャB2との間のPTSの間隔は、Tの2倍であるため、実際の表示遅延は4×Tである。このように、従来の方法では、表示遅延を適切に表現できない。
したがって、本変形例に係る画像符号化装置10は、DTSの間隔が一定とならないような符号化ストリームにおいても正しく表示遅延を表現するために、表示遅延がPTSの間隔の何倍になるかを示す情報を符号化ストリームに含めてもよい。図8に示す例では、PTSの間隔がTであり、表示遅延はTの4倍であるため、画像符号化装置10は表示遅延を4と表す。あるいは、画像符号化装置10は、「4×T」のように実際の時間長で表示遅延を示してもよい。表示順で先頭となるピクチャのPTSまでに復号されるピクチャの枚数が必要な場合には、画像符号化装置10は、上述の表示遅延を示す情報とは別に、その枚数を示してもよい。また、画像符号化装置10は、複数のストリーム、あるいは、ストリームの複数の特定区間などを、シームレス接続することがある。この際には、画像符号化装置10は、接続前後のストリームまたは特定区間において、DTSの間隔が可変であることを考慮して、表示遅延が等しくなるように、それらのストリームまたは特定区間を符号化する。このとき、画像符号化装置10は、シームレス接続の前後で表示遅延が等しいことを示す情報を符号化ストリームに格納してもよい。また、画像符号化装置10は、互いにシームレス接続されるストリームを符号化する際には、シームレス接続の前後で、表示順で先頭のピクチャのPTSまでに復号されるピクチャの枚数が等しくなるように符号化するのではなく、本変形例によって規定される表示遅延が等しくなるように符号化してもよい。
また、本変形例に係る画像符号化装置10は、表示のフレームレートが一定、すなわち、PTSの間隔が一定である場合に、DTSの間隔が一定とならないことを示す補助情報をシグナリングしてもよい。例えば、補助情報は、DTSの間隔が一定であるかどうかを示すフラグである。この場合、画像復号装置20は、一定でないことを示すフラグがセットされている場合には、図10に示す動作を行い、セットされていなければ、DTSの間隔が一定であるため、ピクチャ毎のDTSを参照せずに動作してもよい。
本変形例に係る画像符号化装置10は、上述の補助情報をランダムアクセス単位ごとに設定してもよく、符号化ストリーム単位ごと、あるいは、蓄積コンテンツにおいてプレイリストにより参照される単位ごとに設定してもよい。TSパケットにおいてプライベートデータを格納するための領域(private_data_bytesなど)、蓄積コンテンツにおけるコンテンツの管理情報、あるいは、MPEG-4 AVCまたはHEVCなどの符号化ストリームにおけるSEIなど、コンテンツの送受信システムにおける複数のレイヤの何れにも、補助情報を格納さすることができる。しかし、符号化ストリームの復号前にその補助情報が参照可能であることが望ましいため、画像符号化装置10は、TSなどの多重化レイヤ、または多重化データの管理情報など、コンテンツの送受信システムにおける上位のレイヤに補助情報を格納してもよい。このように、本変形例では、動画像に含まれる複数のピクチャのそれぞれに対して決定された復号時刻が等間隔でないことを示す不等間隔情報が上述の補助情報として符号化ストリームに含められる。
また、本変形例に係る画像符号化装置10は、時間スケーラビリティを有する符号化ストリームの低階層のみを復号する際に、復号順で連続する任意の2枚のピクチャのDTSの間隔が可変であることを示す情報を符号化ストリームに格納してもよい。この情報は、上述の低階層のみを復号する際に、表示のフレームレート(以下、frame_rateという)が一定であるとすると、復号順で連続する任意の2枚のピクチャのDTSの間隔が1/frame_rate(秒)と同一、あるいは、1/frame_rate(秒)以上であることを示す。例えば、MPEG2-TSでは、PMT(Program Map Tables)に、プログラムを構成する符号化ストリームの識別情報が示される。本変形例に係る画像符号化装置10は、PMT内のデスクリプタを規定することにより、上述の情報を示してもよい。例えば、60fpsまでの復号能力を有する画像復号装置20は、DTSの間隔が1/60秒未満となることがPMT内のデスクリプタに示されている場合には、符号化ストリームの復号または再生を行わない。あるいは、画像復号装置20は、各ピクチャの復号間隔が1/60秒以上となるようにDTSを設定し直して、各ピクチャを復号するなどの動作が可能である。DTSを設定し直す場合に、PTSの変更が必要となる場合には、画像復号装置20はPTSも変更する。
(変形例2)
次に、ピクチャの復号時刻の変更について説明する。
上記実施の形態における画像復号装置20は、全階層を復号する際には、DTSの間隔が1/frame_rate(秒)となるように、復号開始前にピクチャのDTSを変更してもよい。
図11は、DTSを変更する一例を示す図である。
本変形例に係る画像復号装置20は、図11に示すように、ピクチャI0とピクチャP4のDTSを変更することで、DTSの間隔を全て1/frame_rate(秒)とする。DTSの間隔が可変なピクチャは、表示順で先頭となるピクチャのPTSよりも前に復号されるピクチャである。これらのピクチャのDTSを変更することにより、DTSの間隔が固定となることを保証することができる。また、DTSの間隔が固定となれば、従来と同様の方法によりピクチャの復号のタイミングを決定して復号することができる。なお、表示順で先頭となるピクチャのPTSよりも前に復号されるピクチャのDTSが遅れるように変更されるのみであり、かつ、変更後のDTSの間隔は1/frame_rate(秒)となる。したがって、MPEG-4 AVCまたはHEVCにおけるHRD(Hypothetical Reference Decoder)などのデコーダモデルには特別な問題は生じない。
本変形例に係る画像符号化装置10は、符号化ストリームをTSによって多重化する際には、PESヘッダのTREF(Timestamp Reference)フィールドなどにおいて、変更後のDTSの値を示してもよい。また、他の多重化方式を用いる場合においても、画像符号化装置10は、変更前と変更後のDTSを示してもよい。さらに、全階層を復号する場合に変更後のDTSを用いることを示すなど、復号する階層と使用するDTSあるいはPTSとの対応関係を示す情報を、例えばTSのデスクリプタ、トランスポート層におけるプログラム情報、あるいは、蓄積コンテンツにおける管理情報に示してもよい。また、画像符号化装置10は、変更後のDTSの間隔が固定であること、あるいは、その間隔がPTSの間隔と等しいことを示す情報を、トランスポート層におけるプログラム情報、または蓄積コンテンツにおける管理情報に示してもよい。
このようにすることで、画像復号装置20は、処理能力が低くても、低階層のみを復号することができる。また、全階層を復号する処理能力の高い画像復号装置20は、MPEG-2 TSのデスクリプタなどを解析する、あるいは、PESパケットヘッダのTREFフィールドが存在するかどうかを判定するなどにより、変更後のDTSあるいはPTSが送信されていることが分かる。したがって、その画像復号装置20は、変更後のDTSあるいはPTSを用いて符号化ストリームを復号することができる。
また、画像復号装置20は、全階層が復号できることを前提として符号化ストリームを記録する場合には、上記のようにDTSを変更した後の符号化ストリームを記録してもよい。このとき、TREFなど、変更後のDTSまたはPTSを格納するためのフィールドを用いるのではなく、PESヘッダのDTSまたはPTSのフィールドを変更してもよい。
(変形例3)
次に、再生制御用の補助情報について説明する。
図12は、開放終端ランダムアクセス単位において復号されるピクチャを説明するための図である。
例えば、図12に示す例において、蓄積された符号化ストリーム、あるいは、通信ネットワーク経由で取得された符号化ストリームの終端は、開放終端ランダムアクセス単位である第1のランダムアクセス単位の終端に一致する。このとき、第2のランダムアクセス単位に含まれるピクチャB11,B13,B14,B15を復号することはできない。しかし、第1のランダムアクセス単位に属するピクチャP12を復号することはできる。ここで、ピクチャB11はアドバンスピクチャであり、ピクチャP12は孤立ピクチャである。
なお、符号化ストリームにおけるランダムアクセス単位では、ランダムアクセス単位を構成するピクチャのうちの所定のピクチャを除いて、全てのピクチャを、他のランダムアクセス単位を参照することなく復号することが可能である。所定のピクチャは、ランダムアクセス単位がオープンGOP(Group Of Pictures)として構成されている場合には、そのランダムアクセス単位内で、復号順で先頭のピクチャよりも表示順が前となるピクチャである。このような所定のピクチャは、そのランダムアクセス単位の復号順で直前にあるランダムアクセス単位に含まれるピクチャを参照することがある。したがって、オープンGOPであるそのランダムアクセス単位の先頭から復号が開始される場合には、その所定のピクチャを復号することができない。したがって、画像復号装置は、ランダムアクセス単位において、復号順で先頭のピクチャよりも表示順が後となる全てのピクチャをそれぞれ、復号可能なピクチャとして復号して表示する。
ここで、符号化ストリームのうちの開放終端ランダムアクセス単位までの符号化データを取得した画像復号装置20は、アドバンスピクチャを取得していないため、そのアドバンスピクチャを復号することができない。したがって、本変形例に係る画像符号化装置10は、再生制御のための補助情報を符号化ストリームに含める。
再生制御のための補助情報は、例えば以下の(1)~(5)に示す情報である。
(1)ランダムアクセス単位が開放終端ランダムアクセス単位であるかどうかを示す情報
(2)ランダムアクセス単位が、符号化ストリームの最後、あるいは、プレイリストなどにより示される最後のランダムアクセス単位など、連続して再生される区間における最後のランダムアクセス単位であるかどうかを示す情報
(3)ピクチャが、孤立ピクチャであるかどうかを示す情報、あるいは、ランダムアクセス単位において表示順で最終の孤立ピクチャであるかどうかを示す情報
(4)ピクチャがアドバンスピクチャであるかどうかを示す情報
(5)ランダムアクセス単位において、指定されたピクチャよりも表示順が後となる孤立ピクチャが存在するかどうかを示す情報
なお、上記(2)において、符号化ストリーム内の不連続な区間、あるいは、互いに異なる符号化ストリームなどを連結した場合には、連結部分の前のランダムアクセス単位は、後続のランダムアクセス単位のピクチャを参照することができない。したがって、連結部分の前のランダムアクセス単位も、再生区間における最後のランダムアクセス単位と同様に扱われる。
本変形例に係る画像符号化装置10は、上述のような再生制御用の補助情報をランダムアクセス単位ごとに設定してもよく、符号化ストリーム単位ごと、あるいは、蓄積コンテンツにおいてプレイリストにより参照される単位ごとに設定してもよい。また、TSパケットにおいてプライベートデータを格納するための領域(private_data_bytesなど)、蓄積コンテンツにおけるコンテンツの管理情報、あるいは、MPEG-4 AVCまたはHEVCなどの符号化ストリームにおけるSEIなど、コンテンツの送受信システムにおける複数のレイヤの何れにも、補助情報を格納することができる。しかし、符号化ストリームの復号前にその補助情報が参照可能であることが望ましいため、画像符号化装置10は、TSなどの多重化レイヤ、または多重化データの管理情報など、コンテンツの送受信システムにおける上位のレイヤに補助情報を格納してもよい。
上記(1)と(2)の情報は、ランダムアクセス単位の属性を示す属性情報である。画像符号化装置10は、ランダムアクセス単位の先頭ピクチャよりも復号順が前となるSEI、あるいは、ランダムアクセス単位の先頭ピクチャを格納するTSパケットまたはMMTパケットなどのトランスポートレイヤのパケットヘッダまたはペイロード、あるいは、コンテンツの管理情報においてランダムアクセス単位の属性を管理するテーブルなどに、その属性情報を格納する。トランスポートレイヤにおいて、例えば、TSパケットのrandom_access_indicatorのように、ランダムアクセスポイントを示すための情報がシグナリングされる場合には、ランダムアクセスポイントであることが示されるパケットに、その属性情報を格納してもよい。
また、上記(3)~(4)の情報は、ランダムアクセス単位を構成する各ピクチャについての属性情報である。画像符号化装置10は、それらの属性情報をランダムアクセス単位にまとめて格納してもよいし、ピクチャごとに格納してもよい。ピクチャごとに格納する場合には、画像符号化装置10は、符号化ストリームにおけるランダムアクセス単位ごとにSEIを付加する、あるいは、ピクチャの先頭データを格納するTSパケットのヘッダまたはペイロードに、その属性情報を格納する。また、画像符号化装置10は、ピクチャについての属性情報を、ランダムアクセス単位が開放終端ランダムアクセス単位である場合にのみ格納してもよい。
次に、開放終端ランダムアクセス単位の画像復号方法について説明する。
図13は、本変形例に係る画像復号装置20が再生制御用の補助情報に基づいて動画像を復号する動作の一例を示すフローチャートである。
まず、画像復号装置20は、コンテンツの管理情報、TSなどのトランスポート層、あるいは、符号化ストリームにおいて、再生制御用の補助情報が存在するかどうかを判定する(ステップS211)。連続して再生される再生区間においては、再生区間を構成する全てのランダムアクセス単位において再生制御用の補助情報が提供される、あるいは、提供されない、のいずれかである。したがって、ステップS211の処理は、再生区間における先頭のランダムアクセス単位のみに対して行えばよい。
ここで、再生制御用の補助情報が存在すると判定された場合には(ステップS211の「はい」)、画像復号装置20はステップS212の処理を行い、存在しないと判定された場合には(ステップS211の「いいえ」)、画像復号装置20はステップS215の処理を行う。
ステップS215では、画像復号装置20は、予め規定した方法に基づいて、復号するピクチャを決定する(ステップS215)。ステップS212では、画像復号装置20は、復号対象のランダムアクセス単位が、連続して再生される区間における最後のランダムアクセス単位であり、かつ、開放終端ランダムアクセス単位であるという条件を満たすか否かを判定する(ステップS212)。
ここで、条件を満たすと判定すると(ステップS212の「はい」)、画像復号装置20は、再生制御用の補助情報を参照して復号するピクチャを決定する(ステップS213)。一方、条件を満たさないと判定すると(ステップS212の「いいえ」)、画像復号装置20は、ランダムアクセス単位に含まれる全てのピクチャを復号すると決定する(ステップS214)。ただし、このときには、画像復号装置20は、復号対象のランダムアクセス単位が再生区間における先頭のランダムアクセス単位である場合、その復号対象のランダムアクセス単位よりも復号順で直前のランダムアクセス単位に含まれるピクチャを参照するピクチャを復号しない。
そして、画像復号装置20は、ステップS213,S214,S215の何れかの処理で決定されたピクチャを復号する(ステップS216)。
なお、ステップS212の処理は、ランダムアクセス単位ごとに行われればよい。また、ステップS213におけるピクチャの決定は、複数のピクチャそれぞれの補助情報がランダムアクセス単位にまとめて格納される場合には、ランダムアクセス単位の復号開始時に行われる。また、そのピクチャの決定は、複数のピクチャそれぞれの補助情報がピクチャごとに格納される場合には、ピクチャごとに行われる。
なお、再生制御用の補助情報が、ピクチャごとにそのピクチャの情報を示していない場合には、画像復号装置20は、ステップS213では、参照先のピクチャが存在するかどうかを判定してもよい。画像復号装置20は、これによって、ピクチャの復号可否を決定し、復号するピクチャを決定することができる。
なお、画像復号装置20は、ステップS213におけるピクチャの決定を、以下のように行ってもよい。
例えば、画像復号装置20は、アドバンスピクチャよりも表示順が前のピクチャのみを、復号するピクチャに決定し、孤立ピクチャを復号しないピクチャに決定する。
または、画像復号装置20は、アドバンスピクチャよりも表示順が前のピクチャと、孤立ピクチャとを、復号するピクチャに決定する。孤立ピクチャよりも表示順が前となるアドバンスピクチャを復号することはできない。したがって、画像復号装置20は、アドバンスピクチャのPTSによって示されるタイミングでは、復号可能なピクチャのうち、表示順でアドバンスピクチャの直前となるピクチャの復号結果をフリーズして表示する。つまり、画像復号装置20は、直前のピクチャの復号結果を、アドバンスピクチャのPTSによって示されるタイミングでも継続して表示する。あるいは、画像復号装置20は、復号可能なピクチャのうち、表示順でアドバンスピクチャの直前となるピクチャの復号結果と、アドバンスピクチャの復号結果とを内挿することによって得られる画像を表示してもよい。
ここで、120fpsの復号能力がある画像復号装置は、Temporal IDが0の階層に属するピクチャのみを、120fpsの復号間隔で復号することにより、4倍速で再生するなどの特殊再生を行うことができる。そこで、全階層のピクチャを復号して表示する通常再生時と、特殊再生時とにおいて、復号するピクチャの決定方法を切替えてもよい。例えば、図1Aまたは図1Bに示す例において、Temporal IDが0となる各ピクチャは、IピクチャとPピクチャのみであり、アドバンスピクチャはその各ピクチャに含まれない。したがって、画像復号装置20は、通常再生時には孤立ピクチャを復号せず、特殊再生時にTemporal IDが0の階層に属するピクチャのみを復号して再生する場合などでは、孤立ピクチャを復号してもよい。より一般的には、画像復号装置20は、特殊再生の場合は、復号対象となる階層のピクチャにおいて、アドバンスピクチャよりも表示順が前であるピクチャのみ復号してもよい。
なお、画像符号化装置10は、ランダムアクセス単位が開放終端ランダムアクセス単位である場合に、アドバンスピクチャ、あるいは、表示順で最後の孤立ピクチャを特定するための情報を、そのランダムアクセス単位の属性情報として符号化ストリームに格納してもよい。例えば、画像復号装置20は、アドバンスピクチャの復号順がランダムアクセス単位内でN番目であるとすると、N番目のピクチャのPTSよりも前のPTSを有するピクチャのみを復号すると決定できる。あるいは、画像復号装置20は、表示順で最後の孤立ピクチャが復号順でN番目であるとすると、当該の孤立ピクチャよりも表示順が後となるピクチャを復号しないと決定できる。
(変形例4)
例えば60fpsが復号能力の上限である本変形例に係る画像復号装置20は、60fpsを超えるフレームレートの符号化ストリームを取得した場合には、符号化ストリームに含まれる各ピクチャを復号することができるように、各ピクチャのDTSまたはPTSを変換してもよい。例えば、画像復号装置20は、放送または通信ネットワーク経由で符号化ストリームを取得して記録する場合に、DTSまたはPTSを変換してもよい。または、画像復号装置20は、メモリやハードディスクなどに記録された符号化ストリームを外部の機器に通信ネットワーク経由などを用いて送信する際に、DTSまたはPTSを変換してもよい。
図14は、DTSまたはPTSの変換の一例を示す図である。図14における上から1番目の行は、オリジナルの符号化ストリームに含まれる、全階層を構成する全てのピクチャのオリジナルのDTSを示す。全てのピクチャを復号して表示すると、120fpsのフレームレートで動画像が表示される。図14における上から2番目の行は、上記オリジナルの符号化ストリームを60fpsの符号化ストリームとして記録する際に、記録される各ピクチャ、及び、それらのピクチャのオリジナルのDTSを示す。このように記録された60fpsの符号化ストリームでは、ピクチャ間のDTSの間隔が1/60(秒)となることが保証されていない。
図14における上から3番目の行は、上記オリジナルの符号化ストリームを60fpsの符号化ストリームとして記録する際に、記録される各ピクチャ、及び、それらのピクチャの変更後のDTSを示す。本変形例における画像復号装置20は、この3番目の行に示すDTSの変更を行う。DTSを変更した結果、ピクチャ間のDTSの間隔が1/60(秒)となることが保証される。図14における上から4番目の行は、上記オリジナルの符号化ストリームを60fpsの符号化ストリームとして記録する際に、記録される各ピクチャ、及び、それらのピクチャのPTSを示す。PTSの変更は不要であり、オリジナルのPTSと同一の値を用いることができる。ここで、DTSは、オリジナルのDTSから遅延するように変更され、PTSは変更されない。したがって、画像復号装置20に備えられている前段のバッファ(MPEG-4 AVCまたはHEVCにおけるCoded Picture Bufferに相当)、あるいは、参照ピクチャを保持するためのバッファ(MPEG-4 AVCまたはHEVCにおけるDecoded Picture Bufferに相当)では、オーバーフローもアンダーフローも発生しない。
なお、PTSの変更が必要な場合には、バッファモデル(MPEG-4 AVCまたはHEVCにおけるHypothetical Reference Decoderに相当)を満たすように、PTSを変更してもよい。符号化ストリームをMPEG-2 TSによって多重化する際には、PTSまたはDTSはPESパケットのヘッダにおいて示される。したがって、画像復号装置20は、PESパケットのヘッダにおけるPTSまたはDTSを変更してもよい。あるいは、画像復号装置20は、PTSまたはDTSの値を変更せずに、変更後の値を、PESパケットヘッダにおけるTREF(Timestamp Reference)フィールドに格納してもよい。あるいは、画像復号装置20は、PTSまたはDTSを変更した上で、オリジナルのPTSまたはDTSの値をTREFフィールドに格納してもよい。
上記実施の形態およびその変形例では、60fpsと120fpsの組み合わせに基づく時間スケーラブルを例に説明したが、本発明は、他のフレームレートの組み合わせの時間スケーラブルに適用してもよい。また、上記実施の形態およびその変形例では、時間スケーラブルを実現する際に復号する階層として、全階層と、最上位の階層を除く各階層との組み合わせを例に説明したが、他の組み合わせの階層に適用してもよい。
以上、一つまたは複数の態様に係る画像符号化装置および画像復号装置について、実施の形態およびその変形例に基づいて説明したが、本発明は、この実施の形態およびその変形例に限定されるものではない。
図15Aは、本発明の一態様に係る画像符号化装置のブロック図である。
本発明の一態様に係る画像符号化装置100は、複数の階層のうちの何れかに属するピクチャごとに、そのピクチャが属する階層より高い階層に属する他のピクチャを参照することなく、動画像を符号化する装置であって、決定部101と、符号化部102と、生成部103とを備える。
決定部101は、その動画像に含まれる複数のピクチャのうちの一部の複数のピクチャであって、複数の階層のうちの最も高い階層に属していない複数の下層ピクチャの、それぞれの復号時刻が等間隔になるように、動画像に含まれる複数のピクチャのそれぞれの復号時刻を決定する。このとき、決定部101は、さらに、符号化された動画像に含まれる複数のピクチャが復号される場合と、その複数のピクチャのうちの複数の下層ピクチャのみが復号される場合との間で、複数の下層ピクチャのそれぞれが復号されるタイミングが同一となるように、その動画像に含まれる複数のピクチャのそれぞれの復号時刻を決定する。
符号化部102は、決定された復号時刻に応じた符号化順にしたがって、その動画像に含まれる複数のピクチャをそれぞれ符号化する。生成部103は、符号化された複数のピクチャと、その複数のピクチャのそれぞれに対して決定された復号時刻とを含む符号化ストリームを生成する。
図15Bは、本発明の一態様に係る画像符号化方法を示すフローチャートである。
本発明の一態様に係る画像符号化方法は、画像符号化装置100が、複数の階層のうちの何れかに属するピクチャごとに、そのピクチャが属する階層より高い階層に属する他のピクチャを参照することなく、動画像を符号化する方法である。この画像符号化方法は、ステップS101と、ステップS102と、ステップS103とを含む。ステップS101では、その動画像に含まれる複数のピクチャのうちの一部の複数のピクチャであって、複数の階層のうちの最も高い階層に属していない複数の下層ピクチャの、それぞれの復号時刻が等間隔になるように、動画像に含まれる複数のピクチャのそれぞれの復号時刻を決定する。このとき、さらに、符号化された動画像に含まれる複数のピクチャが復号される場合と、その複数のピクチャのうちの複数の下層ピクチャのみが復号される場合との間で、複数の下層ピクチャのそれぞれが復号されるタイミングが同一となるように、その動画像に含まれる複数のピクチャのそれぞれの復号時刻を決定する。
ステップS102では、決定された復号時刻に応じた符号化順にしたがって、その動画像に含まれる複数のピクチャをそれぞれ符号化する。ステップS103では、符号化された複数のピクチャと、その複数のピクチャのそれぞれに対して決定された復号時刻とを含む符号化ストリームを生成する。
これにより、符号化ストリームに含まれる複数ピクチャのそれぞれは、そのピクチャが属する階層よりも高い階層に属する他のピクチャを参照することなく符号化されている。したがって、画像復号装置は、符号化ストリームのうちの複数の下層ピクチャのみを復号することができる。また、符号化ストリームに含まれる複数の下層ピクチャのそれぞれの復号時刻は等間隔である。したがって、画像復号装置は、符号化ストリームのうちの複数の下層ピクチャのみを復号するときには、等間隔の時間経過ごとにそれらの下層ピクチャを順に復号することができる。したがって、その等間隔を例えば1/60秒などの適切な時間にすることで、画像復号装置の処理負荷を軽減することができる。つまり、画像復号装置は、ピクチャごとの復号を120fpsなどの高いフレームレートで行うことなく、自らの処理能力に応じた60fpsなどのフレームレートで行うことができる。さらに、符号化ストリームに含まれる複数のピクチャ(例えば全てのピクチャ)が復号される場合と、その複数の下層ピクチャのみが復号される場合との間で、その複数の下層ピクチャのそれぞれが復号されるタイミングは同一である。例えば、図4または図6に示すように、複数の下層ピクチャであるピクチャI0,P4,B2,I8,B6などはそれぞれ、120fpsで復号が行われる場合と、60fpsで復号が行われる場合との間で、同じタイミングで復号される。したがって、画像復号装置は、符号化ストリームの全てのピクチャを復号する場合と、複数の下層ピクチャのみを復号する場合とで、その複数の下層ピクチャのそれぞれの復号のタイミングを変える必要がない。したがって、画像復号装置の処理負荷をより軽減することができる。
また、ステップS101における復号時刻の決定では、動画像に含まれる複数のピクチャのうちの一部の複数のピクチャであって、最も高い階層に属する複数の最上層ピクチャのそれぞれの復号時刻を、複数の下層ピクチャのそれぞれの復号時刻の間に決定する。例えば、図6に示す例では、最上層ピクチャであるピクチャB1の復号時刻は、下層ピクチャであるピクチャP4とピクチャB2との間に決定され、最上層ピクチャであるピクチャB3の復号時刻は、下層ピクチャであるピクチャB2とピクチャI8との間に決定される。
これにより、符号化ストリームが復号されるときには、最上層ピクチャと下層ピクチャとはそれぞれ交互に復号される。したがって、符号化ストリームのうちで複数の下層ピクチャのそれぞれが復号される時刻の間隔はいずれも、復号化ストリームの全てのピクチャのそれぞれが復号される時刻の間隔よりも長い。その結果、画像復号装置は、複数の下層ピクチャのみを復号するときには、復号化ストリームの全てのピクチャのそれぞれを復号するときよりも、確実に低いフレームレートで各ピクチャを復号することができる。したがって、画像復号装置の処理負荷を確実に軽減することができる。
また、ステップS101における復号時刻の決定では、複数の最上層ピクチャおよび複数の下層ピクチャのうち、復号順で連続する最上層ピクチャおよび下層ピクチャのそれぞれの復号時刻の間隔の2倍の時間が、上述の等間隔の時間と等しくなるように、動画像に含まれる複数のピクチャのそれぞれの復号時刻を決定する。例えば、図6に示す例では、復号順で連続する最上層ピクチャであるピクチャB1および下層ピクチャであるピクチャB2のそれぞれの復号時刻の間隔はT=1/120秒である。そこで、ステップS101では、2×T=1/60秒が、上述の等間隔の時間と等しくなるように、動画像に含まれる複数のピクチャのそれぞれの復号時刻が決定される。
これにより、複数の下層ピクチャのそれぞれの復号時刻の間隔はいずれも、復号順で連続する最上層ピクチャおよび下層ピクチャのそれぞれの復号時刻の間隔、つまり、復号化ストリームの全てのピクチャのそれぞれが復号される時刻の間隔の2倍となる。したがって、符号化ストリームの全てのピクチャを復号して表示するときのフレームレートが120fpsである場合、画像復号装置は、60fpsのフレームレートの逆数の時間間隔で、符号化ストリームに含まれる複数の下層ピクチャのそれぞれを負担なく復号することができる。
また、動画像が、復号順で連続する複数のピクチャからなるランダムアクセス単位を複数有する場合、ステップS101では、以下のように復号時刻を決定してもよい。つまり、このステップS101では、ランダムアクセス単位ごとに、そのランダムアクセス単位において、復号順で先頭のピクチャよりも、表示順で前に表示されるピクチャを除く全てのピクチャを、他のランダムアクセス単位に含まれるピクチャを参照することなく復号し得るように、そのランダムアクセス単位内の各ピクチャの復号時刻を決定する。ここで、先頭のピクチャは、その先頭のピクチャよりも復号順で後のピクチャが、その先頭のピクチャよりも復号順で前のピクチャを参照することが禁じられているIピクチャ(いわゆるIDRピクチャ:Instantaneous Decoding Refresh Picture)である。または、先頭のピクチャは、その先頭のピクチャよりも復号順で後であって、表示順で前のピクチャが、当該先頭のピクチャよりも復号順で前のピクチャを参照することが許可されているIピクチャ(いわゆるCRAピクチャ:Clean Random Access Picture)である。例えば、このステップS101では、画像符号化装置100は、動画像に含まれる複数のピクチャのそれぞれの復号時刻を図6に示すように決定する。この図6に示す例では、ピクチャI16は、ピクチャI16よりも表示順で前のピクチャB13が第1のランダムアクセス単位内のピクチャP12を参照するため、CRAピクチャである。
これにより、画像復号装置はランダムアクセス単位ごとに、そのランダムアクセス単位に含まれる複数のピクチャのそれぞれを適切に復号することができる。
ここで、画像符号化装置100が、ステップS101において、図6に示す例のように、動画像に含まれる複数のピクチャの復号時刻を決定する処理動作について、詳細に説明する。
符号化された動画像に含まれる全てのピクチャが復号されて表示されるフレームレートが例えば120fpsである場合、画像符号化装置100は、ステップS101では、そのフレームレート(120fps)の逆数の時間単位(1/120秒)で、その全てのピクチャのそれぞれの復号時刻を決定する。つまり、各ピクチャに対して決定される復号時刻は、その時間単位の整数倍にオフセット値を加算した時刻で表現される。また、画像符号化装置100は、ステップS101では、まず、動画像に含まれる複数のピクチャのそれぞれのTIdを決定した後に、複数のピクチャのそれぞれの復号順を決定してもよい。そして、画像符号化装置100は、その決定された復号順に基づいて、複数のピクチャのそれぞれのDTSを上記時間単位で決定する。
例えば、画像符号化装置100は、表示順に配置される各ピクチャに対して、そのピクチャの階層を識別するための値であるTIdを、0以上K(Kは1以上の整数)以下の範囲で決定する。TIdがKの階層が最も高い階層であり、Tidが0の階層が最も低い階層である。具体的には、決定部101は、動画像において、表示順で配列される複数のピクチャのうちの先頭のIピクチャのTidを0に決定する。さらに、決定部101は、表示順に配列されるその先頭のIピクチャ以降の複数のピクチャのうち、連続するM(Mは2以上の整数)枚のピクチャ(以下、ピクチャセットという)ごとに、そのピクチャセットのうちの最後のピクチャであるIピクチャまたはPピクチャのTIdを0に決定する。ピクチャセットにおいて、表示順で最後のピクチャはIピクチャまたはPピクチャであり、そのIピクチャまたはPピクチャのTIdが0に決定される。また、TIdが0に決定されたピクチャを、以下、0階層ピクチャという。例えば、図1Aに示す例では、ピクチャB1、ピクチャB2、ピクチャB3およびピクチャP4を含む4枚のピクチャが、上述のピクチャセットに相当する。そして、ピクチャP4が0階層ピクチャとして決定される。
次に、決定部101は、ピクチャセットに含まれる、0階層ピクチャ以外の少なくとも1つのピクチャ(例えばBピクチャ)であって、TIdが決定される候補となる少なくとも1つのピクチャを候補ピクチャとして特定する。この候補ピクチャは、TIdが既に決定された2つの既定ピクチャの中間に表示されるピクチャである。例えば、図1Aに示す例において、ピクチャI0とピクチャP4のそれぞれのTIdが既に決定されている場合、ピクチャI0とピクチャP4は既定ピクチャである。この場合、ピクチャB1~B3およびピクチャP4を含むピクチャセットでは、ピクチャI0とピクチャP4との中間に表示されるピクチャであるピクチャB2が候補ピクチャとして特定される。
さらに、決定部101は、このように特定された候補ピクチャが複数あれば、それらの候補ピクチャのうち、表示順で先頭の候補ピクチャのTIdを、その先頭の候補ピクチャに対応する前記2つの既定ピクチャのTIdのうちの低い方でないTIdに、1を加算した値Nに決定する。例えば、図1Bに示す例において、ピクチャI0、ピクチャP8およびピクチャB4のそれぞれのTIdが既に決定されている場合、そのピクチャI0、ピクチャP8およびピクチャB4は既定ピクチャである。この場合、ピクチャB1~B7およびピクチャP8を含むピクチャセットでは、ピクチャI0とピクチャB4との中間に表示されるピクチャであるピクチャB2と、ピクチャB4とピクチャP8との中間に表示されるピクチャであるピクチャB6と、が候補ピクチャとして特定される。したがって、決定部101は、それらの候補ピクチャB2およびB6のうち、表示順で先頭の候補ピクチャB2のTIdを、その先頭の候補ピクチャB2に対応する2つの既定ピクチャI0およびB4のTIdのうちの低い方でないTId=1に、1を加算した値(N=2)に決定する。
決定部101は、このような候補ピクチャの特定とTidの決定とを、NがK以下の範囲であって、かつ、ピクチャセットに含まれる、0階層ピクチャ以外の全てのピクチャのITdが決定されるまで、繰り返す。その結果、図1Aまたは図1Bに示すように、各ピクチャに対してTIdが決定される。
次に、決定部101は、上述の先頭のIピクチャの復号順を1番に決定する。例えば、決定部101は、図6に示すように、先頭のIピクチャであるピクチャI0の復号順を1番に決定する。
そして、決定部101は、上述のピクチャセットごとに、そのピクチャセット内の複数のピクチャのそれぞれの復号順を決定する。具体的には、決定部101は、そのピクチャセットにおいて、0階層ピクチャの復号順を先頭に決定する。そして、決定部101は、そのピクチャセットに含まれる、0階層ピクチャ以外の複数のピクチャのうち、表示順で前のピクチャから順に、そのピクチャの復号順を、既に決定された復号順の直後に決定する。例えば、決定部101は、ピクチャB1~B7およびピクチャP8を含むピクチャセットにおいて、0階層ピクチャであるピクチャP8の復号順を先頭に決定する。そして、決定部101は、ピクチャP8の次に、ピクチャB1、ピクチャB2、ピクチャB3が順に続くように、ピクチャB1~B3の復号順を決定する。
また、決定部101は、表示順で配置される複数のピクチャセットを、その配列されている順で復号すると決定する。つまり、決定部101は、ピクチャセットにおける先頭の復号順を、表示順で直前のピクチャセットにおける最後の復号順、または、上述の先頭のIピクチャ(ピクチャI0)の復号順に1を加算した序数に決定する。
さらに、決定部101は、先頭のIピクチャ(ピクチャI0)の復号時刻を決定すると、そのIピクチャの復号順で直後のピクチャ(ピクチャP4)の復号時刻を、そのIピクチャの復号時刻に上述の時間単位(1/120秒)×2を加算した時刻に決定する。また、決定部101は、上述の直後のピクチャ(ピクチャP4)よりも復号順が後の各ピクチャの復号時刻を、復号順で直前のピクチャの復号時刻に上述の時間単位を加算した時刻に決定する。
上述のように決定部101によって各ピクチャの復号時刻が決定されることによって、複数の下層ピクチャのそれぞれの復号時刻は、等間隔、つまり、上述の時間単位(1/120秒)×2の間隔になる。
また、ステップS101における復号時刻の決定では、符号化された動画像に含まれる全てのピクチャが復号されて表示されるフレームレートがfである場合、全てのピクチャに含まれる複数の下層ピクチャのそれぞれの復号時刻が、そのfの逆数のn倍(nは2以上の整数)で示される時間だけ離れるように、全てのピクチャのそれぞれの復号時刻を決定してもよい。
これにより、画像復号装置は、そのフレームレートの逆数のn倍の時間間隔で、複数の下層ピクチャのそれぞれを順に負担なく復号することができる。
また、本発明の一態様に係る画像符号化方法は、さらに、動画像に含まれる復号順で先頭のピクチャの復号時刻と、動画像に含まれる表示順で先頭のピクチャの表示時刻との間の時間である表示遅延を示す表示遅延情報を、符号化ストリームに含めてもよい。
これにより、画像復号装置は、符号化ストリームから表示遅延情報を取得することができる。したがって、画像復号装置は、図8に示すように、その表示遅延情報によって示される表示遅延だけ表示開始時刻よりも前の時刻から、符号化ストリームの復号を開始すれば、その表示開始時刻から遅延なく動画像を表示することができる。
また、本発明の一態様に係る画像符号化方法は、さらに、動画像に含まれる複数のピクチャのそれぞれに対して決定された復号時刻が等間隔でないことを示す不等間隔情報を符号化ストリームに含めてもよい。
これにより、画像復号装置は、符号化ストリームから不等間隔情報を取得することができる。したがって、画像復号装置は、符号化ストリームに含まれる複数のピクチャをそれぞれ、表示のフレームレートで順次復号することができないと判断することができる。その結果、画像復号装置は、図10に示すフローチャートにしたがって、符号化ストリームに含まれる複数のピクチャのそれぞれに対して決定された復号時刻を参照しながら、それらの複数のピクチャを適切なタイミングで復号することができる。
図15Cは、本発明の一態様に係る画像復号装置のブロック図である。
本発明の一態様に係る画像復号装置200は、複数の階層のうちの何れかに属するピクチャごとに、当該ピクチャが属する階層より高い階層に属する他のピクチャを参照することなく符号化された動画像を含む符号化ストリームを復号する装置である。この画像復号装置200は、取得部201と、復号部202とを備える。
取得部201は、符号化ストリームに含まれる複数のピクチャのそれぞれの復号時刻を、その符号化ストリームから取得する。ここで、複数のピクチャのそれぞれの復号時刻は以下のように決定されている。つまり、これらの復号時刻は、符号化ストリームに含まれる複数のピクチャのうちの一部の複数のピクチャであって、複数の階層のうちの最も高い階層に属していない複数の下層ピクチャの、それぞれの復号時刻が等間隔になるように決定されている。さらに、これらの復号時刻は、符号化ストリームに含まれる複数のピクチャが復号される場合と、複数のピクチャのうちの複数の下層ピクチャのみが復号される場合との間で、複数の下層ピクチャのそれぞれが復号されるタイミングが同一となるように決定されている。
復号部202は、取得された復号時刻にしたがって、その符号化ストリームに含まれる複数のピクチャ、または複数の下層ピクチャのそれぞれを復号する。
図15Dは、本発明の一態様に係る画像復号方法を示すフローチャートである。
本発明の一態様に係る画像復号方法は、複数の階層のうちの何れかに属するピクチャごとに、当該ピクチャが属する階層より高い階層に属する他のピクチャを参照することなく符号化された動画像を含む符号化ストリームを、画像復号装置200が復号する方法である。この画像復号方法は、ステップS201と、ステップS202とを含む。
ステップS201では、符号化ストリームに含まれる複数のピクチャのそれぞれの復号時刻を、その符号化ストリームから取得する。ここで、複数のピクチャのそれぞれの復号時刻は以下のように決定されている。つまり、これらの復号時刻は、符号化ストリームに含まれる複数のピクチャのうちの一部の複数のピクチャであって、複数の階層のうちの最も高い階層に属していない複数の下層ピクチャの、それぞれの復号時刻が等間隔になるように決定されている。さらに、これらの復号時刻は、符号化ストリームに含まれる複数のピクチャが復号される場合と、複数のピクチャのうちの複数の下層ピクチャのみが復号される場合との間で、複数の下層ピクチャのそれぞれが復号されるタイミングが同一となるように決定されている。
ステップS202では、取得された復号時刻にしたがって、その符号化ストリームに含まれる複数のピクチャ、または複数の下層ピクチャのそれぞれを復号する。
これにより、符号化ストリームに含まれる複数ピクチャのそれぞれは、そのピクチャが属する階層よりも高い階層に属する他のピクチャを参照することなく符号化されている。したがって、画像復号装置200は、符号化ストリームのうちの複数の下層ピクチャのみを復号することができる。また、符号化ストリームに含まれる複数の下層ピクチャのそれぞれの復号時刻は等間隔である。したがって、画像復号装置200は、符号化ストリームのうちの複数の下層ピクチャのみを復号するときには、等間隔の時間経過ごとにそれらの下層ピクチャを順に復号することができる。したがって、その等間隔が適切な時間であれば、画像復号装置200の処理負荷を軽減することができる。つまり、画像復号装置200は、ピクチャごとの復号を高いフレームレートで行うことなく、自らの処理能力に応じたフレームレートで行うことができる。さらに、符号化ストリームに含まれる複数のピクチャ(例えば全てのピクチャ)が復号される場合と、その複数の下層ピクチャのみが復号される場合との間で、その複数の下層ピクチャのそれぞれが復号されるタイミングは同一である。したがって、画像復号装置200は、符号化ストリームの全てのピクチャを復号する場合と、複数の下層ピクチャのみを復号する場合とで、その複数の下層ピクチャのそれぞれの復号のタイミングを変える必要がない。したがって、画像復号装置200の処理負荷をより軽減することができる。
また、本発明の一態様に係る画像復号方法は、さらに、符号化ストリームに含まれる複数のピクチャのそれぞれの復号時刻が等間隔でない場合、その複数のピクチャのそれぞれの復号時刻を等間隔に変更し、符号化ストリームの復号では、変更された復号時刻にしたがって、その符号化ストリームに含まれる複数のピクチャ、または複数の下層ピクチャのそれぞれを復号してもよい。
これにより、例えば図11に示すように、複数のピクチャのそれぞれの復号時刻が等間隔に変更されるため、画像復号装置200は、符号化ストリームに含まれる複数のピクチャのそれぞれを等間隔の時間経過ごとに復号することができる。したがって、画像復号装置200の処理負荷をより軽減することができる。
また、本発明の一態様に係る画像復号方法は、符号化ストリームの復号では、符号化ストリームに含まれるピクチャごとに、そのピクチャに対して取得された復号時刻が、予め定められた周期ごとに発生する処理信号(上述のビデオ処理信号に相当)の発生タイミングと一致するか否かを判定し、一致すると判定されたときに、当該ピクチャを復号してもよい。例えば、画像復号方法は、さらに、符号化ストリームに含まれる全てのピクチャが復号されて表示されるときのフレームレートの逆数を、上述の予め定められた周期に決定してもよい。
これにより、図10のフローチャートに示すように、複数のピクチャのそれぞれの復号時刻が等間隔でなくても、複数のピクチャのそれぞれを、そのピクチャの復号時刻に適切に復号することができる。
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記実施の形態または変形例の画像符号化装置10、100を実現するソフトウェアは、図15Bに示すフローチャートに含まれる各ステップをコンピュータに実行させる。また、上記実施の形態または変形例の画像復号装置20,200を実現するソフトウェアは、図15Dに示すフローチャートに含まれる各ステップをコンピュータに実行させる。
(実施の形態2)
上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。
図16は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。
しかし、コンテンツ供給システムex100は図16のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。
カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。
コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の一態様に係る画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。
なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。
また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。
また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。
以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。
なお、コンテンツ供給システムex100の例に限らず、図17に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の一態様に係る画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。
また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。
図18は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。
また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の一態様に係る画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。
まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバーフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。
また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。
また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。
一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図19に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。
以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。
図20に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。
以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。
また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図18に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。
図21Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。
さらに、携帯電話ex114の構成例について、図21Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。
電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。
携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。
さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。
データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の一態様に係る画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。
多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。
データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の一態様に係る画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。
また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。
このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。
また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。
(実施の形態3)
上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。
この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。
図22は、多重化データの構成を示す図である。図22に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。
多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
図23は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。
図24は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図24における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図24の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。
図25は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図25下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種デスクリプタを持つ。デスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
図26はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するデスクリプタが複数配置される。上記コピーコントロール情報などが、デスクリプタとして記載される。デスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
多重化データ情報ファイルは、図27に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
多重化データ情報は図27に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
ストリーム属性情報は図28に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
また、本実施の形態における動画像復号化方法のステップを図29に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。
このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。
(実施の形態4)
上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図30に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。
なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。
また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。
なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
(実施の形態5)
上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図31は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。
より具体的には、駆動周波数切替え部ex803は、図30のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図30の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態3で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態3で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図33のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。
図32は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。
さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。
また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。
さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。
このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。
(実施の形態6)
テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図34Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明の一態様に特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。
また、処理を一部共有化する他の例を図34Bのex1000に示す。この例では、本発明の一態様に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の一態様に係る動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明の一態様、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。
このように、本発明の一態様に係る動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。
以上、一つまたは複数の態様に係る画像符号化方法および画像復号方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。