JP7264583B2 - Battery controller and battery system - Google Patents

Battery controller and battery system Download PDF

Info

Publication number
JP7264583B2
JP7264583B2 JP2016212450A JP2016212450A JP7264583B2 JP 7264583 B2 JP7264583 B2 JP 7264583B2 JP 2016212450 A JP2016212450 A JP 2016212450A JP 2016212450 A JP2016212450 A JP 2016212450A JP 7264583 B2 JP7264583 B2 JP 7264583B2
Authority
JP
Japan
Prior art keywords
battery
temperature
vehicle
time
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212450A
Other languages
Japanese (ja)
Other versions
JP2018074766A (en
Inventor
雅浩 米元
啓 坂部
大輝 小松
晋 山内
亮平 中尾
圭一朗 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2016212450A priority Critical patent/JP7264583B2/en
Priority to PCT/JP2017/037627 priority patent/WO2018079360A1/en
Publication of JP2018074766A publication Critical patent/JP2018074766A/en
Application granted granted Critical
Publication of JP7264583B2 publication Critical patent/JP7264583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電池制御システム、電池パック、及び電池システムに関する。 The present invention relates to battery control systems, battery packs, and battery systems.

リチウムイオン二次電池は短期間で継続的に大きな負荷を掛けられると、抵抗が著しく上昇する「高負荷抵抗上昇」が発生することがある。 この「高負荷抵抗上昇」を抑制するため、電池管理システム(Battery Management System、以下BMS)は、直近での電池負荷の大きさと継続性を示す電池負荷指標を常に演算し、演算された電池負荷指標に基づき電池負荷を適切に制限している。しかし、BMS停止中は制御演算の空白期間が生じるため、再始動直後は制御演算の空白期間、即ちBMS停止時間を考慮して演算した電池負荷指標に基づき電池負荷を適切に制限する必要がある。 When a lithium ion secondary battery is continuously subjected to a large load in a short period of time, a "high load resistance increase" in which the resistance rises significantly may occur. In order to suppress this "increase in high load resistance", a battery management system (hereinafter referred to as BMS) always calculates a battery load index indicating the magnitude and continuity of the battery load in the most recent time, and the calculated battery load Appropriately limit the battery load based on the index. However, since a control calculation blank period occurs while the BMS is stopped, it is necessary to appropriately limit the battery load based on the battery load index calculated in consideration of the control calculation blank period, that is, the BMS stop time immediately after the restart. .

従来のBMS停止時間を算出する技術として、リアルタイムクロック(Real Time Clock、以下RTC)を用いる方式が一般的である。また、BMS停止期間も定期的に電池状態測定を実施することで、BMS停止期間後の電池の状態指標を演算する内容が特許文献1に記載されている。 As a conventional technology for calculating the BMS stop time, a method using a real time clock (hereinafter referred to as RTC) is generally used. In addition, Patent Document 1 discloses that the battery state index is calculated after the BMS stop period by periodically measuring the battery state during the BMS stop period.

特開2014-126412号公報JP 2014-126412 A

高負荷抵抗上昇を抑制するためには、BMS停止中における制御演算の空白期間を考慮して、BMS起動後の電池負荷を適切に制限する必要があるが、RTCから車両休止時間を演算する方式や前記の特許文献1に開示された技術は、車両休止中も稼働している素子があるため、待機電流が増加する課題がある。また、RTCを搭載する場合は部品コストが増加してしまう恐れや、RTCが故障した時に適切な電流制限を実施できない恐れがある。 In order to suppress the increase in high load resistance, it is necessary to appropriately limit the battery load after starting the BMS, considering the blank period of control calculation while the BMS is stopped. and the technology disclosed in Patent Literature 1, there is a problem that the standby current increases because there are elements that are in operation even when the vehicle is not in operation. In addition, if the RTC is mounted, there is a risk that the component cost will increase, and there is a risk that appropriate current limiting cannot be performed when the RTC fails.

上記課題を解決するため、本発明に記載の電池制御装置は、電池セルの温度情報と、電池セルの温度情報とは異なる温度情報を用いて、電池セルの入出力電力を制限する。 In order to solve the above problems, the battery control device according to the present invention limits the input/output power of the battery cells by using the temperature information of the battery cells and the temperature information different from the temperature information of the battery cells.

本発明によれば、BMS停止時間を、RTCが使用できない状況(例えばRTCが搭載されていない状況、またはRTCが故障した状況)でも入出力電力の制限が可能となる。また、他の目的としてBMS再始動直後の電池負荷指標を、RTCが搭載されていない状況、またはRTCが故障した状況でも演算出来る。 According to the present invention, input/output power can be limited even in situations where the BMS downtime cannot be used by the RTC (for example, the situation where the RTC is not installed or the RTC has failed). For another purpose, the battery load index immediately after restarting the BMS can be calculated even when the RTC is not installed or when the RTC is out of order.

図1は、BMS再始動時の初期値を0に設定した場合の電池負荷指標を示す図である。FIG. 1 is a diagram showing the battery load index when the initial value at BMS restart is set to 0. FIG. 図2は、BMS再始動時の初期値を前回値に設定した場合の電池負荷指標推移を示す図である。FIG. 2 is a diagram showing changes in the battery load index when the initial value at the time of restarting the BMS is set to the previous value. 図3は、充放電による電池パックの温度変化を示す図である。FIG. 3 is a diagram showing temperature changes of the battery pack due to charging and discharging. 図4は、許容電力演算ブロックの概要を示す図である。FIG. 4 is a diagram showing an outline of the allowable power calculation block. 図5は、第1の実施例におけるBMS停止時間推定結果を示す図である。FIG. 5 is a diagram showing BMS stop time estimation results in the first embodiment. 図6は、第2の実施例におけるBMS停止時間推定結果を示す図である。FIG. 6 is a diagram showing BMS stop time estimation results in the second embodiment.

《第1の実施例》
以下、図を参照して本発明を実施するための形態について説明する。
<<First Embodiment>>
Embodiments for carrying out the present invention will be described below with reference to the drawings.

第1の実施例について説明する。 A first embodiment will be described.

車両用BMSは、車両停止時(前回車両停止した際の処理時)の電池負荷指標を記憶して車両再始動時(車両を再始動した際の処理時)は電池負荷指標を車両休止時間(車両停止時から車両再始動時までの経過時間)に応じて減衰演算する必要がある。しかしながら、コスト上の制約や待機電力の制約が厳しいBMS基板では時刻情報を取得するRTCを搭載しないため、車両休止時間を取得出来ず、車両再始動後(車両再始動時の後の期間)に正しい電池負荷指標を演算することは非常に困難である。 The vehicle BMS stores the battery load index when the vehicle is stopped (during processing when the vehicle was stopped last time), and when the vehicle is restarted (during processing when the vehicle is restarted), the battery load index is stored as the vehicle idle time ( Attenuation calculation must be performed according to the elapsed time from when the vehicle is stopped until when the vehicle is restarted. However, since the BMS board, which has strict restrictions on cost and standby power, does not have an RTC that acquires time information, it is not possible to acquire the vehicle downtime, and after the vehicle is restarted (the period after the vehicle is restarted) Calculating a correct battery load index is very difficult.

そのため、車両再始動時の電池負荷指標を0リセットするか(図1)、前回の車両停止時の電池負荷指標を代入するか(図2)の対応が考えられる。 Therefore, it is conceivable to either reset the battery load index when the vehicle is restarted to 0 (FIG. 1) or substitute the battery load index when the vehicle was stopped last time (FIG. 2).

図1(a)、(b)は車両再始動時の電池負荷指標を0リセットして後のデータ処理を説明する図である。図1(a)及び(b)に示すとおり、BMSでの処理は大きく分けて前回稼動期間A、休止期間B、及び現在稼動期間Cとすることが出来る。図1(a)及び(b)では、現在稼動期間C中の真値は実線で、0リセットして得られる電池負荷指標は見かけ値として二点鎖であらわしている。休止期間Bが長期間となる図1(a)の場合、電池が定常状態になるため、本方法のように0リセットして対策した場合、真の値と見かけ値がほぼ同じ値となる。一方で、休止期間Bが短期間となる図1(b)の場合、電池が定常状態にならないため、本方法のように0リセットして対策した場合、見かけ値が真値よりも大幅に小さくなる方向にずれることとなる。このため、高負荷抵抗上昇抑制のために電力制限しなければならないときも制限が掛からない恐れがある。 FIGS. 1(a) and 1(b) are diagrams for explaining data processing after resetting the battery load index to zero when the vehicle is restarted. As shown in FIGS. 1(a) and 1(b), the processing in the BMS can be roughly divided into a previous operating period A, a pause period B, and a current operating period C. FIG. In FIGS. 1A and 1B, the true value during the current operating period C is indicated by a solid line, and the battery load index obtained by resetting to 0 is indicated by a two-dot chain as an apparent value. In the case of FIG. 1A, in which the idle period B is long, the battery is in a steady state. Therefore, if the countermeasure is taken by resetting to 0 as in the present method, the true value and the apparent value are almost the same. On the other hand, in the case of FIG. 1B, in which the rest period B is short, the battery does not reach a steady state. will deviate in any direction. For this reason, there is a risk that even when power must be limited in order to suppress an increase in the high load resistance, the limitation will not be applied.

一方、図2(a)、(b)は車両再停止時の電池負荷指標を代入して後のデータ処理を説明する図である。休止期間Bが短期間となる図2(b)の場合、電池が定常状態にならないため、本方法のように前回の値を代入して対策した場合、真の値と見かけ値がほぼ同じ値となる。一方で、休止期間Bが長期間となる図2(a)の場合、電池が定常状態になるため、本方法のように前回の値を代入して対策した場合、見かけ値が真値よりも大幅に大きくなる方向にずれることとなる。そのため、本方法を採用し、図2 (a)のように長時間の休止となる場合には、車両再始動後の電池負荷指標の見かけ値は真値よりも大きくなるため、必要以上に制限を掛けすぎてしまう場合がある。 On the other hand, FIGS. 2A and 2B are diagrams for explaining data processing after substituting the battery load index when the vehicle is stopped again. In the case of FIG. 2(b), in which the idle period B is short, the battery does not reach a steady state. becomes. On the other hand, in the case of FIG. 2A, in which the idle period B is long, the battery is in a steady state. It deviates in the direction of increasing significantly. Therefore, if this method is adopted and the vehicle is stopped for a long time as shown in Fig. 2 (a), the apparent value of the battery load indicator after restarting the vehicle will be larger than the true value, so the limit is more than necessary. may be applied too much.

つまり、車両再始動時の電池負荷指標を0リセットするか、前回の車両停止時の電池負荷指標を代入するか、いずれかの方式を選択しても短時間の休止の場合と長時間の休止の場合の両方に対応して適切に電力を制限出来ない。 In other words, regardless of whether the battery load index is reset to 0 when the vehicle is restarted or the battery load index is substituted when the vehicle is stopped last time, either method is selected for a short period of rest or a long period of rest. The power cannot be appropriately limited corresponding to both cases.

以上の理由により、本発明では短時間の休止の場合と長時間の休止の場合の両方に対応した新たな方式を考える必要がある。 For the above reasons, in the present invention, it is necessary to consider a new method for both short and long pauses.

また、電池パックに短期間で継続的に大きな負荷を印加した場合、発熱等により電池パックの中心部温度は環境温度よりも高くなり温度差が生じる。この温度差を示したデータが図3(b)(c)となる。図3(a)は模式的に電池パック100を示したものであり、この電池パック100に電池パック中心部温度センサ200、電池パック端部側温度センサ210、及び電池パック筐体内部温度センサ220を配置して温度測定をしている。図3(b)は充放電時間と電池温度の相関関係を、図3(c)は所定時間充放電した後に充放電を停止し電池パック端部温度及び電池パック中心部温度の時間依存を示した図である。図3(b)に示すように、電池パックの中心部温度と電池パックの端部温度は大きな差が出る。また、図3(c)に示すように電池パックの中心部温度と電池パックの端部温度は時間経過と共に指数関数的に減衰する。本発明ではこれらの温度特性を利用して、BMS停止直前とBMS再始動直後の温度情報に基づきBMS停止時間を演算することで高負荷抵抗上昇を未然に防止することができる。 Further, when a large load is continuously applied to the battery pack for a short period of time, the temperature at the center of the battery pack becomes higher than the environmental temperature due to heat generation or the like, resulting in a temperature difference. Data showing this temperature difference are shown in FIGS. 3(b) and 3(c). FIG. 3(a) schematically shows the battery pack 100. This battery pack 100 includes a battery pack center temperature sensor 200, a battery pack end side temperature sensor 210, and a battery pack housing internal temperature sensor 220. is placed to measure the temperature. FIG. 3(b) shows the correlation between charging/discharging time and battery temperature, and FIG. 3(c) shows the time dependence of battery pack edge temperature and battery pack center temperature after charging/discharging is stopped after charging/discharging for a predetermined time. It is a diagram. As shown in FIG. 3B, there is a large difference between the temperature at the center of the battery pack and the temperature at the ends of the battery pack. Further, as shown in FIG. 3(c), the temperature at the center of the battery pack and the temperature at the ends of the battery pack exponentially decay over time. In the present invention, these temperature characteristics are used to calculate the BMS stop time based on the temperature information immediately before the BMS is stopped and immediately after the BMS is restarted, thereby preventing an increase in the high load resistance.

図4は、本発明に係る電池管理システムの第1の実施の形態を説明する図である。図4(a)は電池システム10を示す図である。電池システム10は電池パック100と、電池パック100に繋がり電池パックの制御を行うBMS110からなる。この電池システム10はインバータ120と繋がり、このインバータ120がモータ130と繋がり車両駆動システムを構成する。
図4(b)はBMS110を拡大して、制御ブロック図として表したものである。電池パック100の電池セルからセルコントローラ(不図示)を介して取得された電流情報、電圧情報、温度情報、充電率情報、及び抵抗率情報が、BMS110に入力される。このBMS110は制限前許容電力演算部111、電池負荷指標演算部112、制限率演算部113、制限後許容電力演算部114から構成される。制限前許容電力演算部111は、電池の上下限電圧設定値範囲内で充放電可能な許容電力を演算するブロックである。電池負荷指標演算部112は、電池負荷の大きさと継続性を表す電池負荷指標を演算するブロックである。制限率演算部113は、電池負荷指標に基づき制限率を演算するブロックである。制限後許容電力演算部114は、制限前許容電力に制限率を乗じて制限後許容電力を演算するブロックである。制限前許容電力演算部111、電池負荷指標演算部112はそれぞれセルコントローラ(不図示)を介して取得された電流情報、電圧情報、温度情報、充電率情報、及び抵抗率情報が入力され、それぞれ前述の制御パラメータを演算する。電池負荷指標演算部112で演算された電池負荷指標と、電圧情報、温度情報、充電率情報から、制限率演算部113は制限率を計算する。そして、制限後許容電力演算部114は、制限前許容電力演算部111で演算されたパラメータと制限率から、制御後許容電力値を演算する。
FIG. 4 is a diagram for explaining the first embodiment of the battery management system according to the present invention. FIG. 4(a) is a diagram showing the battery system 10. FIG. The battery system 10 includes a battery pack 100 and a BMS 110 connected to the battery pack 100 and controlling the battery pack. This battery system 10 is connected to an inverter 120, and this inverter 120 is connected to a motor 130 to form a vehicle drive system.
FIG. 4B is an enlarged control block diagram of the BMS 110. FIG. Current information, voltage information, temperature information, charging rate information, and resistivity information acquired from the battery cells of the battery pack 100 via a cell controller (not shown) are input to the BMS 110 . The BMS 110 comprises a pre-restriction allowable power calculator 111 , a battery load index calculator 112 , a limit rate calculator 113 , and a post-limit allowable power calculator 114 . The pre-restriction allowable power calculation unit 111 is a block that calculates the allowable power that can be charged and discharged within the range of upper and lower voltage set values of the battery. The battery load index calculator 112 is a block that calculates a battery load index representing the magnitude and continuity of the battery load. The limit rate calculator 113 is a block that calculates the limit rate based on the battery load index. The post-restriction allowable power calculation unit 114 is a block that multiplies the pre-restriction allowable power by the limit rate to calculate the post-restriction allowable power. Current information, voltage information, temperature information, state-of-charge information, and resistivity information acquired via a cell controller (not shown) are input to the pre-restriction allowable power calculation unit 111 and the battery load index calculation unit 112, respectively. Calculate the aforementioned control parameters. The limit rate calculator 113 calculates the limit rate from the battery load index calculated by the battery load index calculator 112, voltage information, temperature information, and charging rate information. Then, the post-restriction allowable power calculation unit 114 calculates the post-control allowable power value from the parameter and the restriction rate calculated by the pre-restriction allowable power calculation unit 111 .

続いて、本発明の具体的な演算方法について説明する。図3(c)に記載のように充放電休止直後(t)のパック中心温度(Tcenter)と環境温度(Tamb)の温度差(ΔT)は時定数τで減衰する指数関数的に収束するため、充放電休止直後(t)における温度差(ΔT(t) = Tcenter(t) - Tamb(t))と、充放電休止直後からtrest経過した時点(t = t + trest)における温度差(ΔT(t) = Tcenter(t) - Tamb(t))の関係は式(1)のように表される。 Next, a specific calculation method of the present invention will be described. As shown in FIG. 3(c), the temperature difference (ΔT) between the pack center temperature (T center ) and the ambient temperature (T amb ) immediately after the charge/discharge pause (t 0 ) is exponentially attenuated with a time constant τ. In order to converge, the temperature difference (ΔT( t 0 ) = T center (t 0 ) - T amb (t 0 )) immediately after the charge/discharge pause (t 0 ) and the time point t rest after the charge/discharge pause (t The relationship of the temperature difference (ΔT(t 1 )=T center (t 1 )−T amb (t 1 )) at 1=t 0 +t rest ) is represented by Equation (1).

Figure 0007264583000001
Figure 0007264583000001

式(1)を変形すると、経過時間(trest)は式(2)のように求めることが出来る。 By transforming equation (1), the elapsed time (t rest ) can be obtained as in equation (2).

Figure 0007264583000002
Figure 0007264583000002

式(2)を本発明における車両休止時間推定の基本式とした。ただし、車両休止時間の推定値が異常値とならないために、式(2)の温度入力は温度センサの誤差(ドリフト誤差、オフセット誤差のセンサ間バラツキ)や、温度センサの分解能、車両休止中の環境温度(Tamb)の変化等を考慮し、以下の制約条件を満たす必要がある。
(A)log関数内の分母成分が正の値であること
(B)log関数内の分子成分が正の値であること
(C)log関数内の分母成分よりも分子成分が大きいこと
(D)経過時間(trest)が0以上となること
そのため、上記(2)式に対して上記制約条件を満たして計算することが好ましい。
Equation (2) is used as the basic equation for estimating the vehicle down time in the present invention. However, since the estimated value of the vehicle idle time does not become an abnormal value, the temperature input in Equation (2) is the temperature sensor error (drift error, offset error variation between sensors), the resolution of the temperature sensor, and the vehicle idle time. Considering changes in environmental temperature (T amb ), etc., it is necessary to satisfy the following constraints.
(A) The denominator component in the log function is a positive value (B) The numerator component in the log function is a positive value (C) The numerator component is greater than the denominator component in the log function (D ) Elapsed time (t rest ) should be 0 or more. Therefore, it is preferable to perform the calculation by satisfying the constraint conditions for the above equation (2).

本発明を用いて精度を検証した結果、つまりBMS110が環境温度(Tamb)を取得可能な場合の車両休止時間推定アルゴリズムの精度検証結果を述べる。この時、tは0sec固定とした。 The result of verifying the accuracy using the present invention, that is, the result of verifying the accuracy of the vehicle idle time estimation algorithm when the BMS 110 can acquire the environmental temperature (T amb ) will be described. At this time, t0 was fixed at 0 sec.

図5(a)より、車両休止時間の推定値は10000sec以下の区間においてほぼ真値線上で推移することを確認した。この結果から、温度情報から車両休止時間を定量的に推定出来る。次に、図5(b)より、時刻tと時刻tにおける電池パックの温度差が大きい1000sec以上の区間では、車両休止時間の推定値比率は基準線上で推移することを確認した。さらに、時刻tと時刻tにおける電池パックの温度差が小さい1000sec以下の区間では、車両休止時間の推定値比率の変動幅が大きく基準線を超えた。この計算は電池負荷指標演算部112で行われる。このように本発明を用いることによって、RTCが使用できない状況で高精度に車両停止時からの経過時間を推定できるため高精度に電池負荷指標を演算することが出来る。特に1000sec以上の領域においては高精度に車両停止時からの時間を推定出来、特に高精度に電池負荷指標を演算することが出来る。 From FIG. 5(a), it was confirmed that the estimated value of the vehicle idle time changed substantially on the true value line in the section of 10000 sec or less. From this result, it is possible to quantitatively estimate the vehicle idle time from the temperature information. Next, from FIG. 5(b), it was confirmed that the estimated value ratio of the vehicle down time changes on the reference line in the interval of 1000 seconds or longer where the battery pack temperature difference between time t0 and time t1 is large. Furthermore, in the interval of 1000 seconds or less where the temperature difference between the battery packs at time t0 and time t1 is small, the fluctuation range of the estimated value ratio of the vehicle stop time greatly exceeded the reference line. This calculation is performed by the battery load index calculator 112 . By using the present invention in this way, it is possible to accurately estimate the elapsed time since the vehicle stopped even when the RTC cannot be used, so that the battery load index can be calculated with high accuracy. Particularly in the region of 1000 seconds or more, the time from the vehicle stop can be estimated with high accuracy, and the battery load index can be calculated particularly with high accuracy.

本実施例では車両停止時の電池セルの温度と環境温度との差を用いて車両停止時からの時間を推定することとしたが、別の温度を用いることも可能である。例えば、車両停止時からの経過時間を推定するのに車両停止時の電池セルの温度と車両起動時の電池セルの温度を使用することしても良い。このような構成にすることによって、環境温度を測定する温度センサが不要になるため、電池パックとしてシンプルにすることが出来る。また、他の例としては車両停止時からの経過時間を推定するのに車両停止時の電池セルの温度と電池セルが収納される電池パック筐体内部の温度情報を使用しても良い。このような構成にすることによって、一つの電池パックの製品として本制御を完結させることが出来る。 In this embodiment, the difference between the temperature of the battery cell when the vehicle is stopped and the ambient temperature is used to estimate the time from when the vehicle is stopped, but it is also possible to use another temperature. For example, the battery cell temperature when the vehicle is stopped and the battery cell temperature when the vehicle is started may be used to estimate the elapsed time since the vehicle was stopped. Such a configuration eliminates the need for a temperature sensor for measuring the environmental temperature, so the battery pack can be made simple. As another example, information on the temperature of the battery cells when the vehicle is stopped and the temperature information inside the battery pack housing in which the battery cells are accommodated may be used to estimate the elapsed time since the vehicle was stopped. By adopting such a configuration, it is possible to complete this control as a single battery pack product.

また、本実施例に車両起動時の電池セルの温度情報と電池セルが収納される筐体内部の温度情報を用いる場合、車両起動時の電池セルの温度情報と電池セルが収納される筐体内部の温度情報との差が所定値よりも大きい場合であって、かつ電池セルの温度情報の方が電池セルが収納される筐体内部の温度情報よりも高い場合に電池セルの入出力電力を制限する。このような構成にすることによって、仮に筐体内部の温度と電池セルの温度に大きな差があった場合でも、確実に許容電力を制限することができ、安全な電池パックを提供することが可能となる。 Further, in the case of using the temperature information of the battery cells when the vehicle is started and the temperature information of the inside of the housing in which the battery cells are stored in this embodiment, the temperature information of the battery cells when the vehicle is started and the housing in which the battery cells are stored are used. The input/output power of the battery cell when the difference from the internal temperature information is larger than a predetermined value and the temperature information of the battery cell is higher than the temperature information inside the housing in which the battery cell is stored. limit. With such a configuration, even if there is a large difference between the temperature inside the housing and the temperature of the battery cells, it is possible to reliably limit the allowable power and provide a safe battery pack. becomes.

なお、オフセット誤差のセンサ間バラツキに対するマージン(ΔToffset、margin)、車両休止時間マージン(trest、margin)、車両休止期間前後のセル温度差に対する不感マージン(ΔTdrift、margin)を(2)式で考慮しても良い。 In addition, the margin for the offset error variation between sensors (ΔT offset, margin ), the vehicle rest time margin (t rest, margin ), and the insensitivity margin for the cell temperature difference before and after the vehicle rest period (ΔT drift, margin ) are expressed by equation (2). can be considered.

制限率演算部113は、RTCが使用出来ない状態で高精度に演算された電池負荷指標、電圧情報、温度情報、充電率情報から高精度に制限率を演算する。この制限率を用いて制限後許容電力演算部114で許容電力を演算できるため、RTCを使用しなかったとしても高精度に入出力電力の制限が可能となる。
以上、第1の実施例について簡単にまとめる。本実施例に記載の電池制御装置は、電池セルの温度情報と、電池セルの温度情報とは異なる温度情報(例えば環境温度)を用いて車両停止時からの経過時間を推定し、電池セルの入出力電力を制限することとした。このような構成にすることによって、RTCが使用できない状況(例えばRTCが搭載されていない状況、またはRTCが故障した状況)でも高精度に電池負荷指標を演算することが出来るため、より正確な入出力電力の制限が可能となるRTCが使用できない状況(例えばRTCが搭載されていない状況、またはRTCが故障した状況)でも入出力電力の制限が可能となる。
The limit rate calculation unit 113 calculates the limit rate with high accuracy from the battery load index, voltage information, temperature information, and charging rate information that are calculated with high accuracy when the RTC cannot be used. Since the post-restriction allowable power calculation unit 114 can calculate the allowable power using this limit rate, it is possible to limit the input/output power with high precision even if the RTC is not used.
The above is a brief summary of the first embodiment. The battery control device according to the present embodiment estimates the elapsed time from the vehicle stop using temperature information of the battery cells and temperature information (for example, environmental temperature) different from the temperature information of the battery cells. It was decided to limit input/output power. By adopting such a configuration, the battery load index can be calculated with high accuracy even in a situation where the RTC cannot be used (for example, a situation in which the RTC is not installed or a situation in which the RTC has failed). Input/output power can be limited even in a situation where an RTC that can limit the output power cannot be used (for example, a situation in which the RTC is not mounted or a situation in which the RTC has failed).

また、本実施例に記載の電池制御装置は、電池セルの温度情報に車両起動時の電池セルの温度情報を使用することとした。このような構成にすることによって、環境温度を測定する温度センサが不要になるため、電池パックとしてシンプルにすることが出来る。 In addition, the battery control device described in this embodiment uses battery cell temperature information when the vehicle is started as the battery cell temperature information. Such a configuration eliminates the need for a temperature sensor for measuring the environmental temperature, so the battery pack can be made simple.

また、本実施例に記載の電池制御装置は、電池セルの温度とは異なる温度情報に電池セルが収納される筐体内部の温度情報を使用することとした。このような構成にすることによって、一つの電池パックの製品として本制御を完結させることが出来る。 Further, the battery control device described in this embodiment uses the temperature information of the inside of the housing in which the battery cells are accommodated as the temperature information different from the temperature of the battery cells. By adopting such a configuration, it is possible to complete this control as a single battery pack product.

また、本実施例に記載の電池制御装置は、車両起動時の電池セルの温度情報と電池セルが収納される筐体内部の温度情報との差が所定値よりも大きい場合であって、かつ電池セルの温度情報の方が電池セルが収納される筐体内部の温度情報よりも高い場合に前記電池セルの入出力電力を制限する。このような構成にすることによって、仮に筐体内部の温度と電池セルの温度に大きな差があった場合でも、確実に許容電力を制限することができ、安全な電池パックを提供することが可能となる。 Further, the battery control device according to the present embodiment is provided in the case where the difference between the temperature information of the battery cells when the vehicle is started and the temperature information of the inside of the housing in which the battery cells are accommodated is greater than a predetermined value, and The input/output power of the battery cell is restricted when the temperature information of the battery cell is higher than the temperature information of the inside of the housing in which the battery cell is accommodated. With such a configuration, even if there is a large difference between the temperature inside the housing and the temperature of the battery cells, it is possible to reliably limit the allowable power and provide a safe battery pack. becomes.

また、本実施例に記載の電池制御装置は、電池セルの温度情報とは異なる温度情報に車両停止時の電池セルの温度情報を使用することとした。このような構成にすることによって、
また、本実施例に記載の電池制御装置は、電池セルが収納される筐体内部の温度情報と前記車両停止時の電池セルの温度情報との差が所定値よりも大きい場合に前記電池セルの入出力電力を制限する。
In addition, the battery control device described in this embodiment uses the temperature information of the battery cells when the vehicle is stopped as temperature information different from the temperature information of the battery cells. By configuring like this,
Further, the battery control device according to the present embodiment can detect the temperature of the battery cell when the difference between the temperature information of the inside of the housing in which the battery cell is accommodated and the temperature information of the battery cell when the vehicle is stopped is larger than a predetermined value. limit the input and output power of

《第2の実施例》
次に、第2の実施例について説明する。実際のBMS110において電池の充放電に伴う発熱の影響を受けない環境温度情報を取得することが出来ない場合があるため、本実施例では上位システムから環境温度情報を取得するようにした。つまり、本実施例ではBMSが環境温度(Tamb)を取得するのでははく、環境温度(Tamb)の代わりに電池パック端部の温度情報を用いる。計算条件としては第1の実施例と同様のものとした。
<<Second embodiment>>
Next, a second embodiment will be described. In the actual BMS 110, it may not be possible to acquire environmental temperature information that is not affected by heat generated by charging and discharging of the battery, so in this embodiment, the environmental temperature information is acquired from the host system. In other words, in this embodiment, the BMS does not acquire the ambient temperature (T amb ), but instead uses the temperature information of the end of the battery pack instead of the ambient temperature (T amb ). Calculation conditions were the same as in the first embodiment.

本実施例を用いて推定した車両休止時間の真値と推定値の比較を図6(a)、車両休止時間推定値の真値に対する比率を図6(b)にそれぞれ示す。図6(a)より、パック端部温度(Tend)を用いた車両休止時間の推定値は、環境部温度(Tamb)を用いた車両休止時間の推定値と同様に真値線近傍を推移している。このような構成にすることによって、一つの電池パック内に2つの温度センサを設けるだけで高精度に入出力電力を制限することが出来る。 FIG. 6A shows a comparison between the true value and the estimated value of the vehicle downtime estimated using the present embodiment, and FIG. 6B shows the ratio of the estimated vehicle downtime to the true value. From FIG. 6(a), the estimated value of the vehicle down time using the pack end temperature (T end ) is similar to the estimated value of the vehicle down time using the environmental part temperature (T amb ). It is transitioning. With such a configuration, it is possible to limit the input/output power with high precision only by providing two temperature sensors in one battery pack.

以上の結果より、電池パック中央部温度(Tcenter)と電池パック端部温度(Tend)を用いて車両休止時間を推定することで、RTCのような時刻情報を取得する素子が無くても確実な高負荷抵抗上昇抑制を実現出来る。 From the above results, by estimating the vehicle stop time using the battery pack center temperature (T center ) and the battery pack end temperature (T end ), even if there is no element that acquires time information such as an RTC, Reliable high load resistance rise suppression can be realized.

最後に各実施例の共通する概念をまとめる。電池パックに短期間で継続的に大きな負荷を印加した場合、発熱等により電池パックの中心部が周囲温度よりも高くなり温度差が生じる。充放電停止後、周囲温度が急激に変化しない場合、この温度差は時間経過と共に指数関数的に減衰する。本発明ではこの特性を利用して、BMS停止直前とBMS再始動直後の温度情報に基づき演算したBMS停止時間を用いて適切に電力制限する。このような制御をすることによって、コスト制約や故障によりリアルタイムクロック(RTC)から時刻情報を直接入手出来ない場合に、 電池制御システム(BMS)停止期間を推定し、高負荷抵抗上昇抑制アルゴリズムの冗長性を確保する電池制御装置を提供することができる。 Finally, the concept common to each embodiment is summarized. When a large load is continuously applied to the battery pack for a short period of time, the central portion of the battery pack becomes higher than the ambient temperature due to heat generation or the like, resulting in a temperature difference. If the ambient temperature does not change abruptly after the charging/discharging is stopped, this temperature difference exponentially decays over time. In the present invention, using this characteristic, the power is appropriately limited using the BMS stop time calculated based on the temperature information immediately before the BMS is stopped and immediately after the BMS is restarted. With this type of control, when time information cannot be obtained directly from the real-time clock (RTC) due to cost constraints or failures, the battery control system (BMS) stop period can be estimated, and redundancy of the high load resistance rise suppression algorithm can be achieved. It is possible to provide a battery control device that ensures reliability.

上記の通り、種々の実施の形態について説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 As described above, various embodiments have been described, but the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

10 電池システム
100 電池パック
110 BMS
111 制限前許容電力演算部
112 電池負荷指標演算部
113 制限率演算部
114 制限後許容電力演算部
120 インバータ
130 モータ
200 電池パック中央部温度センサ
210 電池パック端部温度センサ
220 電池パック筐体内部温度センサ
10 battery system 100 battery pack 110 BMS
111 pre-restriction allowable power calculator 112 battery load index calculator 113 limit rate calculator 114 post-limit allowable power calculator 120 inverter 130 motor 200 battery pack center temperature sensor 210 battery pack edge temperature sensor 220 battery pack housing internal temperature sensor

Claims (3)

車両に搭載される電池セルの充放電を制御する電池制御装置において、
前記電池セルの温度と、前記電池セルの環境温度、前記電池セルが収納される筐体内部の温度、または前記電池セルの温度よりも早く前記環境温度に収束する位置における他の前記電池セルの温度と、の温度差分を、前記車両の停止時および再始動時のそれぞれのタイミングで求め、
前記再始動時における処理において、前記停止時および前記再始動時のそれぞれのタイミングにおける前記温度差分に基づいて前記車両の車両休止時間を推定し、推定した前記車両休止時間に応じて、前記電池セルに継続的に掛けられた負荷の大きさと該負荷が前記電池セルに継続的に掛けられた時間を表す電池負荷指標の前記停止時におけるを減衰させ、
前記再始動時の後の期間に、前記再始動時における処理において減衰された後の前記電池負荷指標に基づいて前記電池セルの入出力電力を制限する
ことを特徴とする電池制御装置。
In a battery control device that controls charging and discharging of battery cells mounted on a vehicle,
The temperature of the battery cell, the environmental temperature of the battery cell, the temperature inside the housing in which the battery cell is accommodated, or the temperature of the other battery cell at a position where the temperature converges to the environmental temperature faster than the temperature of the battery cell A temperature difference between the temperature and the temperature is obtained at each timing when the vehicle is stopped and when the vehicle is restarted,
In the restart processing, the vehicle stop time of the vehicle is estimated based on the temperature difference at each timing of the stop and the restart, and the battery cell is calculated according to the estimated vehicle stop time. Attenuate the value at the time of suspension of the battery load index representing the magnitude of the load continuously applied to the battery cell and the time the load was continuously applied to the battery cell,
The battery control device limits the input/output power of the battery cell during a period after the restart, based on the battery load index that has been attenuated in the process at the restart.
請求項1に記載の電池制御装置において、
前記再始動時における前記電池負荷指標の減衰の際に、
オフセット誤差の温度センサ間のバラツキに対するマージン、前記車両休止時間のマージン、および車両休止期間前後の前記温度差分に対する不感マージンのうちの少なくも一つを設けて、前記再始動時における前記電池負荷指標が減衰されにくくする
ことを特徴とする電池制御装置。
In the battery control device according to claim 1,
During the decay of the battery load indicator during the restart,
At least one of a margin for variations in offset errors between temperature sensors, a margin for the vehicle rest period, and an insensitive margin for the temperature difference before and after the vehicle rest period is provided to determine the battery load index at the time of restart. A battery control device characterized by making it difficult to attenuate.
前記電池セルと、
請求項1または2に記載の電池制御装置と
を有することを特徴とする電池システム。
the battery cell;
A battery system comprising the battery control device according to claim 1 or 2.
JP2016212450A 2016-10-31 2016-10-31 Battery controller and battery system Active JP7264583B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016212450A JP7264583B2 (en) 2016-10-31 2016-10-31 Battery controller and battery system
PCT/JP2017/037627 WO2018079360A1 (en) 2016-10-31 2017-10-18 Battery control device, battery pack, and battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212450A JP7264583B2 (en) 2016-10-31 2016-10-31 Battery controller and battery system

Publications (2)

Publication Number Publication Date
JP2018074766A JP2018074766A (en) 2018-05-10
JP7264583B2 true JP7264583B2 (en) 2023-04-25

Family

ID=62024876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212450A Active JP7264583B2 (en) 2016-10-31 2016-10-31 Battery controller and battery system

Country Status (2)

Country Link
JP (1) JP7264583B2 (en)
WO (1) WO2018079360A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888521B2 (en) * 2017-11-01 2021-06-16 トヨタ自動車株式会社 Control device that estimates the deterioration index value of the power storage device
JP7154999B2 (en) * 2018-12-27 2022-10-18 ビークルエナジージャパン株式会社 battery controller
JP7274368B2 (en) * 2019-07-02 2023-05-16 ビークルエナジージャパン株式会社 battery control system
JP7159370B2 (en) * 2020-02-28 2022-10-24 エルエス、マテリアルズ、カンパニー、リミテッド capacitor module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105995A (en) 2012-11-22 2014-06-09 Furukawa Electric Co Ltd:The Device and method for estimating state of secondary battery
JP2015154671A (en) 2014-02-18 2015-08-24 トヨタ自動車株式会社 Power storage system
WO2015141500A1 (en) 2014-03-18 2015-09-24 株式会社 東芝 Degradation estimation method, degradation estimation system, and degradation estimation program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157687B2 (en) * 1994-11-08 2001-04-16 松下電器産業株式会社 Storage battery charge control device
JPH09163614A (en) * 1995-12-11 1997-06-20 Toshiba Battery Co Ltd Charging circuit of secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105995A (en) 2012-11-22 2014-06-09 Furukawa Electric Co Ltd:The Device and method for estimating state of secondary battery
JP2015154671A (en) 2014-02-18 2015-08-24 トヨタ自動車株式会社 Power storage system
WO2015141500A1 (en) 2014-03-18 2015-09-24 株式会社 東芝 Degradation estimation method, degradation estimation system, and degradation estimation program

Also Published As

Publication number Publication date
JP2018074766A (en) 2018-05-10
WO2018079360A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP7264583B2 (en) Battery controller and battery system
JP6615011B2 (en) Battery management system, battery system and hybrid vehicle control system
EP3252489B1 (en) Device and method for estimating state of battery
US10330731B2 (en) Power and current estimation for batteries
EP3413067A1 (en) Method and apparatus for estimating a state of health of a battery pack
JP4571000B2 (en) Remaining capacity calculation device for power storage device
US7589532B2 (en) System and method for estimating a state vector associated with a battery
KR20150120697A (en) A method and device to calibrate error from estimation of batter life
JP6904226B2 (en) Power control system and method
JP2017103077A (en) Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery
JP2018147680A (en) Temperature abnormality determination device, temperature abnormality determination method, and computer program
WO2017056732A1 (en) Battery control device and battery system
US10914788B2 (en) Battery system, remaining capacity estimation device, and remaining capacity estimation method
JPWO2015019834A1 (en) Battery control system, vehicle control system
JP2010036718A (en) Battery deterioration determination device
KR20140052658A (en) Intelligent battery sensor and battery internal resistance estimation method thereof
JP4519523B2 (en) Remaining capacity calculation device for power storage device
JP2016211405A (en) Idling stop propriety determination device
JP7497163B2 (en) Anomaly detection device and anomaly detection method
JP2002223526A (en) Residue detector for electric dipole layer capacitor
KR101498757B1 (en) Method for detecting abnormal power-off of battery management system and battery management system using the same
JP2006017682A (en) Remaining capacity computing unit for electricity accumulating device
JP6045984B2 (en) Secondary battery status detector
WO2022244391A1 (en) Determination method, determination device, and program
KR102152080B1 (en) Monitoring apparatus for a cooling apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230110

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7264583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150