JP7261703B2 - Method for treating heavy metal-containing ash - Google Patents

Method for treating heavy metal-containing ash Download PDF

Info

Publication number
JP7261703B2
JP7261703B2 JP2019157499A JP2019157499A JP7261703B2 JP 7261703 B2 JP7261703 B2 JP 7261703B2 JP 2019157499 A JP2019157499 A JP 2019157499A JP 2019157499 A JP2019157499 A JP 2019157499A JP 7261703 B2 JP7261703 B2 JP 7261703B2
Authority
JP
Japan
Prior art keywords
amount
ash
elution
mixed
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019157499A
Other languages
Japanese (ja)
Other versions
JP2021035655A (en
Inventor
利雄 濱
順一 佐野
徳之 北野
基裕 山植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2019157499A priority Critical patent/JP7261703B2/en
Publication of JP2021035655A publication Critical patent/JP2021035655A/en
Application granted granted Critical
Publication of JP7261703B2 publication Critical patent/JP7261703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、重金属含有灰、たとえば、ごみ焼却場から排出される焼却灰や飛灰などに含まれる鉛、カドミウム、水銀、ヒ素、セレン、六価クロム等の有害な重金属を固定化する処理方法に関するものである。 The present invention is a treatment method for immobilizing harmful heavy metals such as lead, cadmium, mercury, arsenic, selenium, and hexavalent chromium contained in heavy metal-containing ash, such as incineration ash and fly ash discharged from garbage incineration plants. It is about.

最終処分場の埋立て延命の観点から、廃棄物焼却炉の主灰や飛灰の溶融処理、また、廃棄物の直接ガス化溶融などが行われるようになってきている。灰溶融炉やガス化溶融炉では、高クロムの高温用耐火材が用いられることから、処理施設から排出される飛灰の重金属処理において、特に六価クロムの溶出超過が懸念されている。 From the viewpoint of prolonging the landfill life of final disposal sites, the melting treatment of bottom ash and fly ash from waste incinerators, and the direct gasification and melting of wastes are being carried out. Since ash melting furnaces and gasification melting furnaces use high-temperature refractory materials with a high chromium content, excess elution of hexavalent chromium, in particular, is a concern in the treatment of heavy metals in fly ash discharged from treatment facilities.

飛灰中には、一般に、Hg、Pb、Cd、六価Cr、As、Seなどの有害重金属が含まれている。これら有害重金属の処理法としては、1)薬剤処理法、2)溶融固化法、3)セメント固化法、4)酸やその他の溶媒抽出による方法が義務つけられている。これらの処理方法の中で、薬剤処理法は、比較的簡単な設備で、しかも低コストで行えることから、採用されることが多い。薬剤としては、有機系のキレート薬剤が用いられたり、燐酸や硫化物などの無機系の薬剤が用いられたりしている。このうち、無機系の薬剤を用いる方法は、酸腐食や臭気があって取り扱いに注意を要することから、近年はジチオカルバミン酸基を有するキレート薬剤を用いる方法が主流になっている。 Fly ash generally contains harmful heavy metals such as Hg, Pb, Cd, hexavalent Cr, As, and Se. 1) Chemical treatment, 2) Melt solidification, 3) Cement solidification, and 4) Extraction with acid or other solvent are obligatory methods for treating these harmful heavy metals. Among these treatment methods, the chemical treatment method is often adopted because it can be performed with relatively simple equipment and at low cost. As the chemical, an organic chelating agent is used, or an inorganic chemical such as phosphoric acid or sulfide is used. Among these methods, the method using an inorganic chemical requires caution in handling due to acid corrosion and odor. Therefore, in recent years, the method using a chelating agent having a dithiocarbamic acid group has become mainstream.

キレート薬剤は、Hg、Pb、Cd等のカチオン系の重金属(水溶液中でカチオンとして安定な重金属)と強固な錯体を形成してこれらを固定化することが可能である。しかし、六価Cr、As、Seなど、溶出液中でクロム酸、ヒ酸(あるいは亜ヒ酸)、セレン酸(あるいは亜セレン酸)などのアニオンとして安定な重金属を固定することは出来ない。 A chelating agent can form a strong complex with cationic heavy metals (heavy metals that are stable as cations in an aqueous solution) such as Hg, Pb, and Cd to immobilize them. However, heavy metals such as hexavalent Cr, As, and Se, which are stable as anions such as chromic acid, arsenic acid (or arsenous acid), and selenic acid (or selenous acid), cannot be fixed in the eluate.

このような重金属汚染物質を安全に処理するための重金属処理剤として、特許文献1に開示される、還元剤を添加したキレート薬剤(以下、混合薬剤ともいう)が市販されており、溶融飛灰やガス化溶融飛灰の重金属処理に用いられている。 As a heavy metal treatment agent for safely treating such heavy metal contaminants, a chelating agent to which a reducing agent is added (hereinafter also referred to as a mixed agent) disclosed in Patent Document 1 is commercially available. It is also used for heavy metal processing of gasified molten fly ash.

このとき、六価クロム(六価Cr、Cr6+)の固定化に必要な還元剤の量として、六価クロムと当量の添加量では不足で、実際上はこれでは固定化ができない。このため従来は、必要な添加量が実験により決められて、通常は組成変動を考慮して必要以上の還元剤が添加されている。 At this time, as the amount of reducing agent necessary for immobilization of hexavalent chromium (hexavalent Cr, Cr 6+ ), the addition amount equivalent to hexavalent chromium is insufficient, and immobilization cannot actually be achieved with this amount. For this reason, conventionally, the required addition amount is determined by experiments, and usually more reducing agent than necessary is added in consideration of composition fluctuations.

六価クロムの固定化は、六価クロムを還元剤により水に不溶な三価クロムに還元することで行われる。理論的には、還元剤とキレート薬剤とを含む混合薬剤による処理物の重金属溶出試験(以下、溶出試験という)において、平衡状態に達したときのクロムの形態は、溶出液のpHと、標準水素電極での酸化還元電位(以下、Ehともいう)によって決まる。溶出液のpHが12の場合は、Ehが-30mV以下のときに三価クロムの安定領域に入り、六価クロムの溶出が抑制される。 Hexavalent chromium is immobilized by reducing hexavalent chromium to water-insoluble trivalent chromium with a reducing agent. Theoretically, in a heavy metal elution test (hereinafter referred to as elution test) of a product treated with a mixed agent containing a reducing agent and a chelating agent, the form of chromium when reaching an equilibrium state depends on the pH of the eluate and the standard It is determined by the oxidation-reduction potential (hereinafter also referred to as Eh) at the hydrogen electrode. When the pH of the eluate is 12, the stable region of trivalent chromium is entered when Eh is -30 mV or less, and the elution of hexavalent chromium is suppressed.

通常、Ehは、比較電極として塩化銀電極やカロメル電極を用いたORP計で測定した電位(以下、ORPともいう)に、比較電極と標準水素電極との電位差を加えることにより求められる。そして、溶出液の温度、pHおよびEhから、クロムの形態が三価クロムの領域に入っていると判断されれば、六価クロムが三価クロムになっていることになり、六価クロムの固定化がなされることになる。 Eh is usually obtained by adding the potential difference between the reference electrode and the standard hydrogen electrode to the potential (hereinafter also referred to as ORP) measured by an ORP meter using a silver chloride electrode or calomel electrode as a reference electrode. Then, if it is determined that the form of chromium is in the region of trivalent chromium from the temperature, pH, and Eh of the eluate, it means that hexavalent chromium has become trivalent chromium, and hexavalent chromium Immobilization will take place.

特許第5493788号明細書Patent No. 5493788 specification

本発明は、灰に含まれるカチオン系の重金属とアニオン系の重金属とを同時に処理できるようにするとともに、必要以上の還元剤を添加することなくアニオン系の重金属を処理できるようにすることを目的とする。 An object of the present invention is to simultaneously treat cationic heavy metals and anionic heavy metals contained in ash, and to treat anionic heavy metals without adding a reducing agent more than necessary. and

上記目的を達成するため本発明は、下記の項目(1)~()をその技術的特徴とする。 In order to achieve the above object, the present invention has the technical features of the following items (1) to ( 5 ).

)水溶液中でカチオンとして安定な重金属類と水溶液中でアニオンとして安定な六価クロムを含む灰の薬剤処理に際し、
還元剤とキレート薬剤とを含む混合薬剤を使用し、
前記混合薬剤で処理した薬剤処理灰の溶出液の安定化後の酸化還元電位が六価クロムを三価クロムに還元することができる酸化還元電位となるように、前記混合薬剤の添加量を決定する重金属含有灰の処理方法であって、
あらかじめ採取した灰について、前記混合薬剤の添加量を変化させた溶出試験を行って、溶出液の酸化還元電位の経時変化から、同溶出液の安定化後の酸化還元電位を六価クロムを三価クロムに還元するための安定な電位とするために必要な混合薬剤の添加量と、溶出試験終了後の溶出液の酸化還元電位との相関関係を求めておき、
前記相関関係にもとづき、実際に処理した薬剤処理灰の溶出試験終了後の溶出液の酸化還元電位から、六価クロム溶出防止の合否を判断することを特徴とする重金属含有灰の処理方法。
( 1 ) Chemical treatment of ash containing heavy metals stable as cations in aqueous solutions and hexavalent chromium stable as anions in aqueous solutions,
using a mixed drug containing a reducing agent and a chelating agent,
The amount of the mixed chemical to be added is determined so that the oxidation-reduction potential after stabilization of the eluate of the chemical-treated ash treated with the mixed chemical becomes an oxidation-reduction potential capable of reducing hexavalent chromium to trivalent chromium. A method for treating heavy metal-containing ash, comprising:
For the ash collected in advance, an elution test was performed by changing the amount of the mixed chemical added. Determine the correlation between the amount of the mixed chemical to be added to obtain a stable potential for reduction to valent chromium and the oxidation-reduction potential of the eluate after the dissolution test,
A method for treating heavy metal-containing ash, characterized in that, based on the above correlation, whether or not hexavalent chromium elution is prevented is judged from the oxidation-reduction potential of the eluate after the elution test of chemically treated ash actually treated.

六価クロム溶出防止の合否を早期に判断するため、上記の溶出試験終了後の溶出液の酸化還元電位は、溶出試験終了後1日を経過しないできるだけ短い時間内に測定するのが好ましく、たとえば6時間以内のような初期に測定するのがより好ましく、また1時間以内のような直後に測定するのがさらに好ましい。ただし、後述するように溶出液の酸化還元電位は、溶出試験終了後7~10日後に安定するまで経時変化するので、溶出試験が終了してから酸化還元電位を測定するまでの時間は途中で変えないことが大切である。 In order to quickly determine whether or not hexavalent chromium elution is prevented, the oxidation-reduction potential of the eluate after the elution test is preferably measured within as short a time as possible, not more than one day after the elution test is completed. More preferably early, such as within 6 hours, and even more preferably immediately after, such as within 1 hour. However, as will be described later, the redox potential of the eluate changes over time until it stabilizes 7 to 10 days after the end of the dissolution test. It is important not to change.

)前記薬剤処理灰の溶出試験終了後の溶出液の酸化還元電位が、前記相関関係にもとづき得られる溶出試験終了後の溶出液の酸化還元電位の+15%以下の数値になったときに、六価クロムの溶出防止が適正であると判断することを特徴とする上記()の重金属含有灰の処理方法。 ( 2 ) When the oxidation-reduction potential of the eluate after the elution test of the chemical-treated ash is completed is +15% or less of the oxidation-reduction potential of the eluate after the elution test, which is obtained based on the correlation. The method for treating heavy metal-containing ash according to ( 1 ) above, wherein it is determined that the elution prevention of hexavalent chromium is appropriate.

)水溶液中でカチオンとして安定な重金属類と水溶液中でアニオンとして安定な六価クロムを含む灰の薬剤処理に際し、
還元剤とキレート薬剤とを含む混合薬剤を使用し、
前記混合薬剤で処理した薬剤処理灰の溶出液の安定化後の酸化還元電位が六価クロムを三価クロムに還元することができる酸化還元電位となるように、前記混合薬剤の添加量を決定する重金属含有灰の処理方法であって、
あらかじめ採取した灰中の銅含有量(Cu(質量%))と鉛含有量(Pb(質量%))の測定結果と、この灰に添加する前記混合薬剤の量を変化させたときに鉛の溶出量を0.3mg/L以下にすることができる同混合薬剤の添加量とから、鉛の溶出防止に必要な同混合薬剤の添加量に関する下記の実験式(a)における係数k1、k2を求め、
前記灰と同じ種類の灰を用いて、実験式(a)から算出した鉛溶出防止に必要な混合薬剤の添加量(F)と、この灰に前記混合薬剤と加湿水とを加えて混練したうえで溶出試験を行う場合において、同混合薬剤の添加量を変化させたときに鉛の溶出量を溶出基準値以下にすることができる同混合薬剤の添加量(B)と、六価クロムの溶出量を溶出基準値以下にすることができる同混合薬剤の添加量(D)と、安定化後の標準水素電極での酸化還元電位を0mV以下にするために必要な同混合薬剤の添加量(E)とを求めるとともに、
処理しようとする灰について実験式(a)から求めた鉛溶出防止に必要な前記混合薬剤の添加量に、{(B/F)の平均値}×{(D/B)の平均値}×{(E/D)の平均値}を乗じて得られた値を、添加すべき同混合薬剤の添加量とすることを特徴とする重金属含有灰の処理方法。
鉛溶出防止に必要な混合薬剤の添加量(質量%)
=k1×Cu(質量%)+k2×Pb(質量%)・・・・(a)
( 3 ) In the chemical treatment of ash containing heavy metals that are stable as cations in aqueous solutions and hexavalent chromium that is stable as anions in aqueous solutions,
using a mixed drug containing a reducing agent and a chelating agent,
The amount of the mixed chemical to be added is determined so that the oxidation-reduction potential after stabilization of the eluate of the chemical-treated ash treated with the mixed chemical becomes an oxidation-reduction potential capable of reducing hexavalent chromium to trivalent chromium. A method for treating heavy metal-containing ash, comprising:
Measurement results of the copper content (Cu (mass%)) and lead content (Pb (mass%)) in the ash collected in advance, and the amount of lead when the amount of the mixed chemical added to the ash was changed. Coefficients k1 and k2 in the following empirical formula (a) regarding the amount of the mixed chemical required to prevent the elution of lead from the added amount of the mixed chemical that can reduce the elution amount to 0.3 mg / L or less seek,
Using the same type of ash as the ash, the added amount (F) of the mixed chemical required to prevent lead elution calculated from the empirical formula (a), and the mixed chemical and humidified water were added to the ash and kneaded. In the case of performing an elution test on the above, the amount of the mixed chemical added that can make the elution amount of lead less than the elution standard value when the added amount of the mixed chemical is changed (B), and the amount of hexavalent chromium Addition amount (D) of the same mixed drug that can make the elution amount less than the elution standard value, and addition amount of the same mixed drug required to make the oxidation-reduction potential at the standard hydrogen electrode after stabilization 0 mV or less (E) and,
For the ash to be treated, the added amount of the mixed chemical necessary for preventing lead elution obtained from the empirical formula (a) is given by {(B/F) average value}×{(D/B) average value}× A method for treating heavy metal-containing ash, characterized in that the value obtained by multiplying {the average value of (E/D)} is used as the amount of the mixed chemical to be added.
Addition amount of mixed chemicals required to prevent lead elution (% by mass)
= k1 × Cu (% by mass) + k2 × Pb (% by mass) (a)

)処理しようとする灰について上記()の重金属含有灰の処理方法における実験式(a)から求められる、鉛溶出防止に必要な前記混合薬剤の添加量と、上記()の重金属含有灰の処理方法において求められる、添加すべき同混合薬剤の添加量とのうち、どちらか多い方の量の混合薬剤を添加することを特徴とする重金属含有灰の処理方法。 ( 4 ) Regarding the ash to be treated, the added amount of the mixed chemical required to prevent lead elution, which is obtained from the empirical formula (a) in the method for treating heavy metal-containing ash in ( 3 ) above, and the heavy metal in ( 3 ) above A method for treating heavy metal-containing ash, characterized by adding a larger amount of the mixed chemical than the amount of the same mixed chemical to be added required in the method for treating the contained ash.

)前記混合薬剤として、還元剤を含有したキレート薬剤と、還元剤を含有しないキレート薬剤に同キレート薬剤との相溶性を有する還元剤を混合させた薬剤とのいずれかを用いることを特徴とする上記(1)から()までのいずれかの重金属含有灰の処理方法。 ( 5 ) The mixed drug is characterized by using either a chelating drug containing a reducing agent or a drug obtained by mixing a chelating drug containing no reducing agent with a reducing agent having compatibility with the chelating drug. The method for treating heavy metal-containing ash according to any one of the above (1) to ( 4 ).

本発明によれば、還元剤とキレート薬剤との混合薬剤で処理した薬剤処理灰の溶出試験終了後の溶出液のEhから安定後のEhを予測することによって、六価クロム固定化の合否を直ぐに判断することができて、薬剤処理灰の搬出を迅速に行えると共に、適正な混合薬剤量の把握とコントロールとを行うことが可能になる。また、カチオン系重金属の溶出防止に必要なキレート薬剤添加量を求める従来の技術を組み合わせることによって、カチオン系の重金属とアニオン系重金属の両方の溶出防止が可能になる。 According to the present invention, the success or failure of immobilization of hexavalent chromium is determined by estimating the Eh after stabilization from the Eh of the eluate after the elution test of chemical-treated ash treated with a mixed chemical of a reducing agent and a chelating agent. This makes it possible to make a quick judgment, quickly carry out chemical-treated ash, and grasp and control an appropriate mixed chemical amount. In addition, by combining conventional techniques for determining the amount of chelating agent to be added to prevent elution of cationic heavy metals, it becomes possible to prevent elution of both cationic heavy metals and anionic heavy metals.

混合薬剤添加量と、Pb、Cr6+の溶出量および溶出液のEhとの関係を示す図である。FIG. 4 is a diagram showing the relationship between the amount of mixed chemicals added, the amount of Pb and Cr 6+ eluted, and the Eh of the eluate. 混合薬剤添加量と、Pb、Cr6+の溶出量および溶出液のEhとの関係を示す別の図である。FIG. 10 is another diagram showing the relationship between the amount of mixed chemicals added, the amount of Pb and Cr 6+ eluted, and the Eh of the eluate. 安定後のEhを0mV以下にするのに必要な混合薬剤添加量(E)と、溶出試験終了直後のEhとの関係を示す図である。FIG. 4 is a diagram showing the relationship between the amount (E) of the mixed drug added required to make the Eh after stabilization equal to or less than 0 mV and the Eh immediately after the dissolution test is completed. 飛灰中の重金属濃度の自動計測装置にて得られた重金属濃度より求めた必要混合薬剤添加量と、混合薬剤添加試験により求めた、Pb溶出量を0.3mg/L以下にするのに必要な混合薬剤添加量との相関性を示す図である。Necessary amount of mixed chemicals to be added obtained from the heavy metal concentration obtained by an automatic measuring device for heavy metal concentration in fly ash, and necessary to reduce the Pb elution amount to 0.3 mg / L or less, which was obtained from the mixed chemical addition test. FIG. 10 is a diagram showing the correlation with a mixed chemical addition amount.

本発明は、実験的手法を用いて完成されたものである。以下、同手法にもとづいて説明する。 The present invention was perfected using experimental techniques. The method will be described below based on the same method.

以下に説明する実験や試験は、複数の飛灰を用いて実行された。表1は、用いた8種類の飛灰についての重金属含有量と重金属溶出量とを示す。水銀の溶出量は、用いた8種類全ての飛灰について溶出基準値以下(0.005mg/L以下)であった。なお、表1において、「T-Cr」は、六価クロムを含む全クロム濃度を意味する。 The experiments and tests described below were performed with multiple fly ash. Table 1 shows the heavy metal content and heavy metal elution amount for the eight types of fly ash used. The elution amount of mercury was below the elution standard value (0.005 mg/L or less) for all eight types of fly ash used. In Table 1, "T-Cr" means the total chromium concentration including hexavalent chromium.

Figure 0007261703000001
Figure 0007261703000001

[検討例1]
表1に記載された飛灰1と飛灰2とを使用して、飛灰100質量部に混合薬剤(東ソー社製の品番:TS-400、キレート薬剤の種類:ピペラジンのカルボジチオ酸カリウム塩系薬剤、含有される還元剤の種類:(メーカによる開示が行われていない)、還元剤の含有量:2~5質量%)を0~12質量部、加湿水を28~40質量部(混合薬剤+加湿水で40質量部)を加えてよく混練し、日本国環境庁告示13号により6時間をかけて溶出試験を行った。孔径1μmのガラスクロスフィルターでろ過した溶出液について、温度、pH、ORPおよび重金属濃度(Pb、Cr6+)を測定した。ORPは、溶出試験終了直後から10日後まで測定した。なお、「溶出試験終了」の時点とは、溶出試験が終了したと客観的に判断される時点を意味する。また、溶出試験終了後1時間以内に測定したデータを「溶出試験終了直後」のデータとした。表2にその結果を示す。
[Examination example 1]
Using fly ash 1 and fly ash 2 described in Table 1, a mixed agent (manufactured by Tosoh Corporation, product number: TS-400, type of chelating agent: piperazine carbodithioate potassium salt system) was added to 100 parts by mass of fly ash. Agent, type of reducing agent contained: (not disclosed by the manufacturer), content of reducing agent: 2 to 5% by weight) 0 to 12 parts by weight, humidifying water 28 to 40 parts by weight (mixed 40 parts by mass of chemicals and humidified water) were added and kneaded well, and an elution test was performed over 6 hours according to Notification No. 13 of the Japanese Environment Agency. Temperature, pH, ORP and heavy metal concentrations (Pb, Cr 6+ ) were measured for the eluate filtered through a glass cloth filter with a pore size of 1 μm. The ORP was measured from immediately after the end of the dissolution test until 10 days later. The term "end of the dissolution test" means the point of time when the dissolution test is objectively judged to be completed. The data measured within 1 hour after the end of the dissolution test was defined as the data "immediately after the end of the dissolution test". Table 2 shows the results.

Figure 0007261703000002
Figure 0007261703000002

図1および図2に、表2のデータを用いて得られた、混合薬剤添加量と、Pb、Cr6+の溶出量および溶出液のEhとの関係を示す。図1は飛灰1に関するものであり、図2は飛灰2に関するものである。Ehは、上述のように、ORPの測定結果に、公知文献1(MS Today、Vol.10、No.4、p.14(2001年4月号))によって予め知られている比較電極と標準水素電極との電位差を加えることにより求めた。 1 and 2 show the relationship between the amount of mixed chemicals added, the amount of Pb and Cr 6+ eluted, and the Eh of the eluate obtained using the data in Table 2. FIG. 1 relates to fly ash 1 and FIG. 2 relates to fly ash 2. FIG. As described above, Eh is a reference electrode and a standard known in advance in the ORP measurement results from publicly known document 1 (MS Today, Vol. 10, No. 4, p. 14 (April 2001)). It was obtained by adding the potential difference with the hydrogen electrode.

その結果、溶出液のpHが12.2~12.5である場合において、公知文献2(恒岡信幸ほか;セメント改良土から溶出する六価クロムに土壌の吸着・還元作用が及ぼす影響、土木学会論文集、No.764/III-67、133―145、2004.6)によって紹介された理論的なEh域(-30~-50mV)で、六価クロムの溶出量を定量下限の0.05mg/L程度まで低減できることが確認された。また、六価クロムの溶出量を溶出基準値の1.5mg/L以下にするためにはEhが0mV程度でも良いことが確認された。 As a result, when the pH of the eluate is 12.2 to 12.5, it was found that the known document 2 (Nobuyuki Tsuneoka et al.: Effect of adsorption/reduction action of soil on hexavalent chromium eluted from cement-improved soil, Japan Society of Civil Engineers Papers, No.764/III-67, 133-145, 2004.6) in the theoretical Eh region (-30 to -50 mV), the elution amount of hexavalent chromium is 0.05 mg, which is the lower limit of determination. It was confirmed that it can be reduced to about /L. In addition, it was confirmed that Eh of about 0 mV is sufficient in order to make the elution amount of hexavalent chromium equal to or less than the elution standard value of 1.5 mg/L.

溶出液のEhは、徐々に低下して7日目以降で安定した。また、Cr6+の溶出防止に必要な混合薬剤添加量は、Pbの溶出防止に必要な混合薬剤添加量よりも若干多くなった。さらに、安定化後のEhが0mV以下になる混合薬剤添加量は、Cr6+の溶出防止に必要な混合薬剤添加量よりも多く、この混合薬剤添加量ではCr6+の溶出を0.2mg/L以下に抑制できるものであった。 The Eh of the eluate gradually decreased and stabilized after 7 days. Further, the amount of the mixed chemical added necessary for preventing the elution of Cr 6+ was slightly larger than the amount of the mixed chemical added necessary for preventing the elution of Pb. Furthermore, the amount of the mixed drug added that makes the Eh after stabilization 0 mV or less is greater than the amount of the mixed drug added required to prevent the elution of Cr 6+ , and the amount of the mixed drug added prevents the elution of Cr 6+ from 0.2 mg/L. It was possible to suppress the following.

以下においては、「添加量」を単に「量」とだけ記載することがある。表3に、図1および図2から求めた、PbとCr6+の溶出防止に必要な混合薬剤量、溶出試験から10日後のEhが0mV以下になる混合薬剤量、この混合薬剤量での溶出試験終了直後のEhなどを示す。 Hereinafter, the "addition amount" may be simply referred to as "amount". Table 3 shows the amount of the mixed drug required to prevent the elution of Pb and Cr 6+ , the amount of the mixed drug that Eh is 0 mV or less after 10 days from the elution test, and the elution with this mixed drug amount, which was obtained from Figures 1 and 2. Eh and the like immediately after the end of the test are shown.

Figure 0007261703000003
Figure 0007261703000003

表3における「Cu、Pb含有量と反応当量の混合薬剤量(A)」は、下記の式1で求められる。また、表3における「Cr6+含有量と反応当量の還元剤量相当の混合薬剤量(C)」は、下記の式2で求められる。キレート薬剤は、イオン化傾向の小さな金属Au<Pt<Ag<Hg<Cu,<(H)<Pb<Sn・・から優先的に反応するので、飛灰中に比較的多く存在するCu、Pbについて、その含有量と反応当量の混合薬剤量(A)は、Pb溶出防止に必要な混合薬剤量の目安になる。 The "Cu, Pb content and reaction equivalent mixed chemical amount (A)" in Table 3 is determined by the following formula 1. In Table 3, the "mixed chemical amount (C) corresponding to the reducing agent amount corresponding to the Cr 6+ content and the reaction equivalent" is obtained by the following equation 2. The chelating agent preferentially reacts with metals Au<Pt<Ag<Hg<Cu,<(H)<Pb<Sn . , the content and the reaction equivalent amount (A) of the mixed chemical agent is a measure of the amount of the mixed chemical agent necessary for preventing Pb elution.

混合薬剤量(A)[質量%]=(Cu含有量[g/kg]/Cu原子量 + Pb含有量[g/kg]/Pb原子量)×キレートのモル質量/(キレートの濃度/100)×(100/1000)・・・・・・(式1)
ここで、上述の東ソー社製の品番:TS-400に含まれるキレートすなわちピペラジンのカルボジチオ酸カリウム塩のモル質量は314.6[g/mol]であり、上記TS-400におけるキレートの濃度は35[質量%]である。
Mixed drug amount (A) [% by mass] = (Cu content [g/kg]/Cu atomic weight + Pb content [g/kg]/Pb atomic weight) x molar mass of chelate/(concentration of chelate/100) x (100/1000) (Formula 1)
Here, the molar mass of the chelate contained in the above Tosoh product number: TS-400, that is, the potassium salt of piperazine carbodithioate is 314.6 [g/mol], and the concentration of the chelate in TS-400 is 35. [% by mass].

混合薬剤量(C)[質量%]=(Cr6+含有量[mg/kg]/Cr原子量)/1000×110×1.5/(3.5/100)×(100/1000)・・・(式2)
ここで、混合薬剤中に含まれる還元剤の濃度は3.5[質量%]である。また、1.5はCr6+をCr3+に還元するのに必要な還元剤の反応当量比である。
Amount of mixed drug (C) [% by mass]=(Cr 6 + content [mg/kg]/Cr atomic weight)/1000×110×1.5/(3.5/100)×(100/1000)... (Formula 2)
Here, the concentration of the reducing agent contained in the mixed chemical is 3.5 [mass %]. Also, 1.5 is the reaction equivalent ratio of the reducing agent required to reduce Cr 6+ to Cr 3+ .

表3に示すように、Cr6+含有量と反応当量の還元剤量に相当する混合薬剤量(C)は、飛灰1で0.29質量%、飛灰2で0.52質量%と計算される。ところが、溶出液のpHが12.2~12.5の領域でCr6+の溶出量を溶出基準値の1.5mg/L以下にするためには、10日後のEhを0mV以下にする必要がある。そのために必要な混合薬剤量(E)は、飛灰1で7.89質量%、飛灰2で9.41質量%となる。つまり、Cr6+含有量と当量の混合薬剤量(C)とは約18~27倍の開きがある。この表3に示された結果から、必要な還元剤量に相当する混合薬剤量を、単なる当量計算からでは算出できないことが判る。溶出液のCr6+をCr3+に還元するのに必要な混合薬剤量は、上述のように10日後のEhを0mV以下にする分量が必要であり、この分量と同等の混合薬剤を添加することで、表2に示すようにCr6+の溶出量が1.5mg/L以下になることが判った。 As shown in Table 3, the mixed chemical amount (C) corresponding to the amount of reducing agent for the Cr 6+ content and the reaction equivalent is 0.29% by mass for fly ash 1 and 0.52% by mass for fly ash 2. be done. However, in order to keep the Cr 6+ elution amount below the elution standard value of 1.5 mg/L when the pH of the eluate is in the range of 12.2 to 12.5, Eh after 10 days must be 0 mV or below. be. The amount of mixed chemical (E) required for that purpose is 7.89% by mass for fly ash 1 and 9.41% by mass for fly ash 2. In other words, there is a difference of about 18 to 27 times between the Cr 6+ content and the equivalent mixed drug amount (C). From the results shown in Table 3, it can be seen that the amount of mixed chemicals corresponding to the required amount of reducing agent cannot be calculated by simple equivalent calculation. The amount of the mixed drug required to reduce Cr 6+ in the eluate to Cr 3+ must be the amount that makes Eh 0 mV or less after 10 days as described above, and the amount of the mixed drug equivalent to this amount must be added. As shown in Table 2, it was found that the Cr 6+ elution amount was 1.5 mg/L or less.

[検討例2]
飛灰3~飛灰8を使用して、飛灰100質量部に、混合薬剤(東ソー社製の品番:TS-400)を0~10質量部と、加湿水を30~40質量部(混合薬剤+加湿水で40質量部)とを加えてよく混練し、日本国環境庁告示13号により溶出試験を行った。孔径1μmのガラスクロスフィルターでろ過した溶出液について、温度、pH、ORPおよび重金属濃度(Pb、Cr6+)を測定した。ORPは、溶出試験終了直後から10日後まで測定した。その結果を表4に示す。
[Examination example 2]
Using fly ash 3 to fly ash 8, 100 parts by mass of fly ash, 0 to 10 parts by mass of a mixed agent (Tosoh product number: TS-400), and 30 to 40 parts by mass of humidifying water (mixed 40 parts by mass of chemicals and humidified water) were added and kneaded well, and an elution test was performed according to Notification No. 13 of the Japanese Environment Agency. Temperature, pH, ORP and heavy metal concentrations (Pb, Cr 6+ ) were measured for the eluate filtered through a glass cloth filter with a pore size of 1 μm. The ORP was measured from immediately after the end of the dissolution test until 10 days later. Table 4 shows the results.

Figure 0007261703000004
Figure 0007261703000004

表5に、検討例1の図1および図2と同様の図を作成することにより求めた、飛灰1~8についての、PbとCr6+の溶出防止に必要な混合薬剤量、溶出試験から10日後のEhが0mV以下になる混合薬剤量、この混合薬剤量での溶出試験終了直後のEhを示す。10日後のEhを0mV以下にするのに必要な混合薬剤量(E)における溶出試験終了直後のEhは、検討例1と2の平均で78.35mV(ORPで-131.65mV)である。すなわち、混合薬剤で処理した薬剤処理灰の溶出試験終了直後のEhが78.35mV程度であれば、安定化後(7~10日後)のEhが0mV程度になって、PbおよびCr6+の溶出量が溶出基準値以下に抑制されることになる。 Table 5 shows the amount of mixed chemicals required to prevent elution of Pb and Cr 6+ for fly ash 1 to 8, obtained by creating figures similar to FIGS. 1 and 2 of Study Example 1, from the elution test. The amount of the mixed drug at which Eh becomes 0 mV or less after 10 days, and the Eh immediately after the end of the dissolution test with this amount of mixed drug are shown. The Eh immediately after the dissolution test in the mixed drug amount (E) required to reduce the Eh to 0 mV or less after 10 days was 78.35 mV (-131.65 mV in ORP) on average in Study Examples 1 and 2. That is, if the Eh of the chemical-treated ash treated with the mixed chemical immediately after the elution test is completed is about 78.35 mV, the Eh after stabilization (after 7 to 10 days) is about 0 mV, and Pb and Cr 6+ are eluted. The amount will be suppressed below the elution standard value.

Figure 0007261703000005
Figure 0007261703000005

混合薬剤にて処理した飛灰の溶出試験終了直後の溶出液のEhからCr6+の固定化の合否の判断を行うには、溶出試験終了直後のEhから10日後のEhを予測する必要がある。 In order to judge the success or failure of immobilization of Cr 6+ from the Eh of the eluate immediately after the elution test of the fly ash treated with the mixed chemical, it is necessary to predict the Eh 10 days after the elution test. .

図3に、表5に示された安定後のEhを0mV以下にするのに必要な混合薬剤量(E)と、溶出試験終了直後のEhとの相関関係を示す。この図3にプロットされたデータから導かれた近似式である
y=-4.3114x + 110.59
より、たとえば、飛灰に5質量%の混合薬剤(東ソー社製の品番:TS-400)を添加混練処理した処理物の溶出試験終了直後における溶出液のEhが89.0mV(25℃でのORPで-117mV)よりも低ければ、Cr6+の溶出を溶出基準値以下に抑制できることになる。もちろん、Pbの溶出についても溶出基準値以下に抑制できていることになる。ただし、データのバラツキを考慮すると、図示のように、近似式で求められる電位の+15%以下、好ましくは±15%程度の範囲内での管理が適当と考えられる。
FIG. 3 shows the correlation between the amount of mixed drug (E) required to make the Eh after stabilization shown in Table 5 0 mV or less and the Eh immediately after the dissolution test. An approximation derived from the data plotted in FIG. 3 is y=−4.3114x+110.59
More, for example, the Eh of the eluate immediately after the end of the elution test of the treated product obtained by adding and kneading 5% by mass of a mixed drug (manufactured by Tosoh Corporation: TS-400) to fly ash is 89.0 mV (at 25 ° C. If the ORP is lower than −117 mV), the elution of Cr 6+ can be suppressed below the elution standard value. Of course, the elution of Pb is also suppressed below the elution standard value. However, considering variations in data, as shown in the figure, it is considered appropriate to control the potential within +15% or less, preferably within a range of about ±15% of the potential obtained by the approximation formula.

なお、上記においては、溶出試験終了直後のEhを用いて検討を行い、それによって最良の結果が得られたが、本発明はこれに限定されるものではない。溶出試験終了直後のEhに代えて、溶出液が安定化する以前の任意の時点におけるEhを用いても同様に本発明を実施することができる。たとえば、本発明では、溶出試験終了後3日以内の時点におけるEhや、溶出試験終了後1日以内の時点におけるEhなどを用いることを妨げるものではない。 In the above description, the best results were obtained by using Eh immediately after the dissolution test was completed, but the present invention is not limited to this. Instead of the Eh immediately after the dissolution test is completed, the Eh at any point before the eluate is stabilized can be used in the same manner. For example, the present invention does not preclude the use of Eh within 3 days after the end of the dissolution test, or Eh within 1 day after the end of the dissolution test.

また、上記においては、日本国環境庁告示13号の規定に従い、溶出時間を6時間として溶出試験を行ったが、溶出時間は6時間に限定されない。客観的に判断して重金属類の溶出が十分な場合はもっと短い時間で溶出試験を終了することができ、重金属類の溶出が不十分な場合はもっと長い時間をかけても良いが、溶出時間は途中で変えないことが大切である。 In addition, in the above, the dissolution test was conducted with the dissolution time set to 6 hours in accordance with the provisions of Notification No. 13 of the Japanese Environment Agency, but the dissolution time is not limited to 6 hours. Judging objectively, the elution test can be completed in a shorter time if the elution of heavy metals is sufficient. It is important not to change in the middle.

[検討例3]
飛灰3を使用して、同飛灰100質量部に、還元剤を含まないキレート薬剤(東ソー社製の品番:TS-300)を0~10質量部、同キレート薬剤との相溶性を有する還元剤として硫化二カリウムをキレート薬剤10質量部に対して0.35質量部、加湿水を30~40質量部(キレート薬剤+加湿水で40質量部)を加えてよく混練し、日本国環境庁告示13号により溶出試験を行った。孔径1μmのガラスクロスフィルターでろ過した溶出液について、温度、pH、ORPおよび重金属濃度(Pb、Cr6+)を測定した。ORPは、溶出試験終了直後から10日後まで測定した。その結果を用いて検討例1の図1および図2と同様のグラフを作成し、PbとCr6+の溶出防止に必要な混合薬剤量、溶出試験から10日後のEhが0mV以下になる混合薬剤量、この混合薬剤量での溶出試験終了直後のEhを求めた。その結果を表6に示す。
[Examination example 3]
Using fly ash 3, 100 parts by mass of the fly ash, 0 to 10 parts by mass of a chelating agent that does not contain a reducing agent (product number: TS-300 manufactured by Tosoh), and compatible with the chelating agent. 0.35 parts by mass of dipotassium sulfide as a reducing agent is added to 10 parts by mass of the chelating agent, and 30 to 40 parts by mass of humidifying water (40 parts by mass of the chelating agent + humidifying water) are added and well kneaded to obtain a Japanese environment. A dissolution test was performed according to Government Notification No. 13. Temperature, pH, ORP and heavy metal concentrations (Pb, Cr 6+ ) were measured for the eluate filtered through a glass cloth filter with a pore size of 1 μm. The ORP was measured from immediately after the end of the dissolution test until 10 days later. Using the results, graphs similar to those in Figs. 1 and 2 of Investigation Example 1 were created, and the amount of the mixed drug required to prevent the elution of Pb and Cr 6+ , and the mixed drug whose Eh was 0 mV or less after 10 days from the elution test. Eh immediately after completion of the dissolution test with this mixed drug amount was determined. Table 6 shows the results.

Figure 0007261703000006
Figure 0007261703000006

PbとCr6+の溶出防止に必要な混合薬剤量、溶出試験から10日後のEhが0mV以下になる混合薬剤量、この混合薬剤量での溶出試験終了直後のEhなどは、検討例2の飛灰3を用いた場合と同様の試験結果が得られた。ピペラジンのカルボジチオ酸カリウム塩系のキレート薬剤の安定性を損なわないような還元剤を選択使用することにより、検討例2で使用した混合薬剤(東ソー社製の品番:TS-400)と同様のPbおよびCr6+の溶出防止効果が得られた。本検討例3で使用した還元剤は硫化二カリウムで、TS-300のカリウム塩にあわせた。 The amount of the mixed drug required to prevent the elution of Pb and Cr 6+ , the amount of the mixed drug at which Eh becomes 0 mV or less after 10 days from the elution test, and the Eh immediately after the elution test with this mixed drug amount, etc. Similar test results were obtained with Ash 3. By selectively using a reducing agent that does not impair the stability of the piperazine carbodithioate potassium salt-based chelating agent, the same Pb and an effect of preventing elution of Cr 6+ was obtained. The reducing agent used in Investigation Example 3 was dipotassium sulfide, which was combined with the potassium salt of TS-300.

[検討例4]
灰中の重金属濃度の自動計測装置を、飛灰混練装置の入口シュート部に設置して、飛灰中のCuとPbの濃度すなわち含有量を自動計測した。この自動計測装置としては、特許第5361698号公報、同第5657112号公報に記載されたものを用いた。また、同じ飛灰について、混合薬剤添加試験により、混合薬剤で処理した薬剤処理灰からのPb溶出量を0.3mg/L以下にするのに必要な混合薬剤量を求めた。そして、20検体程度の試験結果より、PbとCuの分析結果に一定の定数k1、k2を乗じた数値と、Pb溶出量を0.3mg/L以下にするのに必要な混合薬剤量とが合致するように、上記の定数k1、k2の値を決めた。本検討例4に用いた飛灰において、Cu含有量(質量%)にk1として4.4を乗じ、またPb含有量(質量%)にk2として17.6を乗じることで、必要混合薬剤量を求めることができた。すなわち、次の式3を得ることができた。
Pb溶出量を0.3mg/L以下にするのに必要な混合薬剤量(質量%)
=4.4×Cu(質量%)+17.6×Pb(質量%)・・・(式3)
[Examination example 4]
An automatic measuring device for heavy metal concentrations in ash was installed at the inlet chute of the fly ash kneading device to automatically measure the concentrations of Cu and Pb in the fly ash. As this automatic measuring device, those described in Japanese Patent No. 5361698 and Japanese Patent No. 5657112 were used. Further, for the same fly ash, a mixed chemical addition test was performed to determine the amount of the mixed chemical required to reduce the Pb elution amount from the chemical-treated ash to 0.3 mg/L or less. Then, from the test results of about 20 samples, the values obtained by multiplying the analysis results of Pb and Cu by constant constants k1 and k2, and the amount of mixed chemicals required to reduce the Pb elution amount to 0.3 mg/L or less. The above constants k1 and k2 were determined to match. In the fly ash used in this study example 4, the Cu content (mass%) was multiplied by 4.4 as k1, and the Pb content (mass%) was multiplied by 17.6 as k2. could ask for That is, the following formula 3 was able to be obtained.
Mixed drug amount (% by mass) required to reduce the Pb elution amount to 0.3 mg/L or less
= 4.4 × Cu (mass%) + 17.6 × Pb (mass%) (Equation 3)

上記の定数は、使用する混合薬剤種、飛灰の種類、自動計測装置にて蛍光X線計測するときの試料の作製方法等により、数値が変化する。なお、飛灰混練装置の入口シュート部において灰中の重金属濃度を自動計測する手段については、上記した2つの特許公報に記載されたもののほかに、たとえば特開2005-118733号公報に記載された手段などを利用することもできる。 The above constants vary depending on the type of mixed chemicals used, the type of fly ash, the preparation method of the sample for fluorescent X-ray measurement with an automatic measuring device, and the like. Incidentally, the means for automatically measuring the concentration of heavy metals in the ash at the inlet chute portion of the fly ash kneading device is described in, for example, JP-A-2005-118733 in addition to those described in the above two patent publications. You can also use tools.

図4に、飛灰中の重金属濃度の自動計測装置にて得られた重金属濃度より求めた必要混合薬剤量と、混合薬剤添加試験により求めた、Pb溶出量を0.3mg/L以下にするのに必要な混合薬剤量との相関性を示す。この関係から、Pbの溶出量を確実に0.3mg/L以下にするためには、式3の右辺にプラス1質量%を加えれば良いことがわかった。なお、図4において、菱形の印は式3の定数の値を決めるためにあらかじめ採取した飛灰のデータを表し、丸印は同飛灰と同じ施設から採取した同じ種類の飛灰3~飛灰8のデータを表す。 Fig. 4 shows the required mixed chemical amount obtained from the heavy metal concentration obtained by the automatic measuring device of the heavy metal concentration in the fly ash, and the Pb elution amount obtained by the mixed chemical addition test to be 0.3 mg / L or less. shows the correlation with the amount of mixed drug required for From this relationship, it was found that plus 1% by mass should be added to the right side of Equation 3 in order to ensure that the elution amount of Pb is 0.3 mg/L or less. In FIG. 4, the diamond-shaped marks represent the data of the fly ash collected in advance to determine the value of the constant in Equation 3, and the circular marks are the same type of fly ash collected from the same facility as the same fly ash 3 to fly ash. Data for Ash 8 are represented.

飛灰3~飛灰8について、飛灰中の重金属濃度の自動計測装置にて求められたPb溶出防止に必要な混合薬剤量と、検討例2で求めたPb、Cr6+溶出量を溶出基準値以下にするのに必要な混合薬剤量と、混合薬剤で処理した薬剤処理灰の溶出液についての安定化後のEhが0mV以下になる混合薬剤量とを、表7に示す。 For fly ash 3 to 8, the amount of mixed chemicals required to prevent Pb elution, which was obtained by an automatic measuring device for heavy metal concentrations in fly ash, and the amount of Pb and Cr 6+ elution obtained in Study Example 2 were used as the elution criteria. Table 7 shows the amount of the mixed chemicals required to reduce the Eh to the value or less and the amount of the mixed chemicals that makes the Eh of 0 mV or less after stabilization for the eluate of the chemical-treated ash treated with the mixed chemicals.

Figure 0007261703000007
Figure 0007261703000007

表7において、安定化後のEhを0mV以下にするのに必要な混合薬剤量(E)は、Cr6+溶出量を1.5mg/L以下にするのに必要な混合薬剤量(D)を上回っている。また、上述の式3で求められる混合薬剤量(F)も、Pb溶出量を0.3mg/L以下にするのに必要な混合薬剤量(B)を上回っている。よって、対象とする重金属の固定化に必要な混合薬剤量を求めることができる。また、安定化後のEhが0mV以下になる混合薬剤量(E)と、式3にて求められる混合薬剤量(F)との多い方で飛灰処理することで、カチオン系の重金属とアニオン系の重金属との両方の溶出防止が可能になる。 In Table 7, the mixed drug amount (E) required to make Eh after stabilization 0 mV or less is the mixed drug amount (D) required to make the Cr 6 + elution amount 1.5 mg / L or less. surpassed. In addition, the mixed chemical amount (F) obtained by the above equation 3 also exceeds the mixed chemical amount (B) required to reduce the Pb elution amount to 0.3 mg/L or less. Therefore, it is possible to obtain the amount of the mixed chemical necessary for immobilizing the target heavy metal. In addition, by performing fly ash treatment with the larger amount of mixed chemicals (E) where Eh after stabilization is 0 mV or less and the amount of mixed chemicals (F) obtained by Equation 3, cationic heavy metals and anions It becomes possible to prevent the elution of both heavy metals from the system.

実処理における混合薬剤添加量の管理の際には、表7に示されているところの、式3にて求められる混合薬剤量(F)に最大3質量%の上乗せを行えば、PbおよびCr6+の溶出量が溶出基準値を超えることは無い。ここでは、この上乗せ後の混合薬剤量を「管理混合薬剤量(1)」と称する。また、Ehが0mV以下になる混合薬剤量(E)がE>BかつE>Dであるならば、
F×{(B/F)の平均値}×{(D/B)の平均値}×{(E/D)の平均値}
で混合薬剤添加量を管理することにより、表8に示すように、混合薬剤使用量を1.6質量%程度削減することができる(8.435-6.837=1.598)。このように管理された混合薬剤量を「管理混合薬剤量(2)」と称し、添加すべき混合薬剤の添加量とする。表8に各混合薬剤量の比較を示す。管理混合薬剤量(2)は、安定化後のEhを0mV以下にするのに必要な混合薬剤量(E)に相当するから、式3にて求められる鉛溶出防止に必要な混合薬剤の添加量(F)と管理混合薬剤量(2)との多い方で飛灰処理することで、カチオン系の重金属とアニオン系の重金属との両方の溶出防止が可能になる。なお、Ehが0mV以下になる混合薬剤量(E)がE>BかつE>Dの条件を満たさない場合は、管理混合薬剤量(2)の代わりに管理混合薬剤量(1)を添加すべき混合薬剤の添加量とすれば良い。
When controlling the amount of mixed chemicals to be added in actual processing, if a maximum of 3% by mass is added to the amount of mixed chemicals (F) obtained by Equation 3 shown in Table 7, Pb and Cr The amount of elution of 6+ never exceeds the elution standard value. Here, the mixed medicine amount after this addition is referred to as "controlled mixed medicine amount (1)". Also, if the mixed drug amount (E) at which Eh becomes 0 mV or less is E>B and E>D,
F × {Average value of (B/F)} × {Average value of (D/B)} × {Average value of (E/D)}
By controlling the amount of the mixed chemical added, as shown in Table 8, the amount of the mixed chemical used can be reduced by about 1.6% by mass (8.435-6.837=1.598). The mixed drug amount managed in this way is referred to as a "controlled mixed drug amount (2)", and is the amount of the mixed drug to be added. Table 8 shows a comparison of the amount of each mixed drug. The control mixed chemical amount (2) corresponds to the mixed chemical amount (E) required to make the Eh after stabilization 0 mV or less. By treating the fly ash with the larger amount (F) or the control mixed chemical amount (2), it becomes possible to prevent the elution of both cationic heavy metals and anionic heavy metals. If the mixed drug amount (E) that makes Eh equal to or less than 0 mV does not satisfy the conditions of E>B and E>D, the controlled mixed drug amount (1) is added instead of the controlled mixed drug amount (2). It is sufficient to set the amount of the mixed drug to be added to the desired value.

Figure 0007261703000008
Figure 0007261703000008

Hg、Pb、Cd等のカチオン系重金属の溶出防止に必要なキレート薬剤添加量については、公知の方法を用いて計測することができる。しかし、公知のカチオン系重金属の溶出防止に必要なキレート薬剤添加量の計測方法は、Cr6+、As、Seなどのアニオン系の有害重金属の固定に有効な方法ではない。 The amount of chelating agent added necessary for preventing elution of cationic heavy metals such as Hg, Pb, and Cd can be measured using a known method. However, known methods for measuring the amount of chelating agent added necessary for preventing elution of cationic heavy metals are not effective methods for fixing harmful anionic heavy metals such as Cr 6+ , As, and Se.

本発明は、特にガス化溶融や灰溶融などの溶融飛灰において溶出超過が懸念されるCr6+の溶出防止方法に関するものである。本発明の方法と、従来のカチオン系重金属の溶出防止に必要なキレート薬剤添加量を求める技術とを組み合わせることによって、カチオン系の重金属とアニオン系重金属の両方の溶出防止が可能になる。 The present invention relates to a method for preventing Cr 6+ elution, which is concerned about excess elution in molten fly ash such as gasification melting and ash melting. By combining the method of the present invention with a conventional technique for determining the amount of chelating agent added to prevent the elution of cationic heavy metals, it becomes possible to prevent the elution of both cationic heavy metals and anionic heavy metals.

詳細には、上記のように、還元剤とキレート薬剤との混合薬剤で処理した薬剤処理灰の溶出液の温度、pHおよびEhの関係から、六価クロムの溶出防止に関する理論的な原理が再現された。しかしながら、Ehが経時変化することが確認された。このEhが安定するのに7~10日程度必要である。このため、混合薬剤で処理した薬剤処理灰の六価クロム固定化合否の判断を処理現場で迅速に出来ないと、薬剤処理灰の搬出までに7~10日程度の保管期間が必要になってしまう。この点に関し、本発明によれば、混合薬剤を用いて実際に処理した薬剤処理灰の溶出試験終了後の溶出液のEhから安定後のEhを予測することによって、六価クロム固定化の合否を直ぐに判断することができる。これにより、薬剤処理灰の搬出を迅速に行えると共に、必要な混合薬剤量の適正な把握とコントロールとが可能になる。 Specifically, as described above, the theoretical principle of preventing the elution of hexavalent chromium is reproduced from the relationship between the temperature, pH, and Eh of the eluate of the chemical-treated ash treated with a mixed chemical of a reducing agent and a chelating agent. was done. However, it was confirmed that Eh changed over time. It takes about 7 to 10 days for this Eh to stabilize. For this reason, if it is not possible to quickly determine whether the hexavalent chromium fixation of the chemical-treated ash treated with the mixed chemical is successful or not at the treatment site, a storage period of about 7 to 10 days is required before the chemical-treated ash is transported. put away. In this regard, according to the present invention, the success or failure of immobilization of hexavalent chromium is determined by estimating the Eh after stabilization from the Eh of the eluate after the elution test of the chemical-treated ash actually treated with the mixed chemical. can be determined immediately. As a result, the chemical-treated ash can be carried out quickly, and the required mixed chemical amount can be properly grasped and controlled.

[実施例1]
上述の特許第5361698号公報、同第5657112号公報に記載された灰中の重金属濃度の自動計測装置を、飛灰混練装置の入口シュート部に設置して、処理しようとする飛灰中のCuとPbとの濃度を自動計測した。また、同時に飛灰をサンプリングし、T-CrとCr6+との含有量を化学分析すると共に、混合薬剤添加前の重金属溶出量を日本国環境庁告示13号試験により測定した。それらの結果を表9に示す。
[Example 1]
The automatic measuring device for the heavy metal concentration in the ash described in the above-mentioned Japanese Patent Nos. 5361698 and 5657112 is installed at the inlet chute portion of the fly ash kneading device, and the Cu in the fly ash to be processed is and Pb concentrations were automatically measured. At the same time, the fly ash was sampled, and the contents of T-Cr and Cr 6+ were chemically analyzed, and the amount of heavy metal elution before the addition of the mixed chemical was measured by the Japanese Environment Agency Notification No. 13 test. Those results are shown in Table 9.

Figure 0007261703000009
Figure 0007261703000009

重金属濃度の自動計測装置で分析したCuとPbとの含有量から、式3によりPb固定化に必要な混合薬剤添加量(F)を求めることができた。表9における飛灰9~11については、混合薬剤添加量(F)+3質量%で求めた管理混合薬剤量(1)の混合薬剤(東ソー社製の品番:TS-400)と加湿水とを加えて混練処理を行った。また、飛灰12~14については、表8に示された値にもとづき、「混合薬剤添加量(F)×{(B/F)の平均値}である0.829×{(D/B)の平均値}である1.098×{(E/D)の平均値}である1.382」により求めた管理混合薬剤量(2)の混合薬剤(東ソー社製の品番:TS-400)と、加湿水とを加えて混練処理を行った。添加した混合薬剤量と混練した薬剤処理灰の溶出試験結果とを表10に示す。表10に示すように、実際に処理した薬剤処理灰のPbとCr6+の溶出量は、いずれも溶出基準値(Pbは0.3mg/L以下、Cr6+は1.5mg/L以下)をクリアしていた。また、各薬剤処理灰の溶出液の溶出試験終了直後のEhについても、目標管理値(すなわち図3に示す溶出試験終了直後のEhの範囲)を満足しており、安定化後のEhは0mV付近に到達するものと想定された。 From the contents of Cu and Pb analyzed by an automatic measuring device for heavy metal concentrations, it was possible to obtain the amount (F) of the mixed chemical to be added necessary for Pb immobilization from Equation 3. For fly ash 9 to 11 in Table 9, the mixed agent (manufactured by Tosoh Corporation, product number: TS-400) of the controlled mixed agent amount (1) obtained by adding the mixed agent amount (F) + 3% by mass and humidified water. In addition, a kneading process was performed. In addition, for fly ash 12 to 14, based on the values shown in Table 8, 0.829 × {(D / B ) is 1.098 × {(E/D) average value} is 1.382”. ) and moistened water were added to perform a kneading treatment. Table 10 shows the amount of the mixed chemicals added and the results of the elution test of the kneaded chemical-treated ash. As shown in Table 10, the elution amounts of Pb and Cr 6+ in the chemically treated ash that were actually treated were both below the elution standard values (Pb: 0.3 mg/L or less, Cr 6+ : 1.5 mg/L or less). had cleared. In addition, the Eh immediately after the end of the elution test of the eluate of each chemical-treated ash also satisfies the target control value (that is, the range of Eh immediately after the end of the elution test shown in FIG. 3), and the Eh after stabilization is 0 mV. expected to arrive in the vicinity.

Figure 0007261703000010
Figure 0007261703000010

Claims (5)

水溶液中でカチオンとして安定な重金属類と水溶液中でアニオンとして安定な六価クロムを含む灰の薬剤処理に際し、
還元剤とキレート薬剤とを含む混合薬剤を使用し、
前記混合薬剤で処理した薬剤処理灰の溶出液の安定化後の酸化還元電位が六価クロムを三価クロムに還元することができる酸化還元電位となるように、前記混合薬剤の添加量を決定する重金属含有灰の処理方法であって、
あらかじめ採取した灰について、前記混合薬剤の添加量を変化させた溶出試験を行って、溶出液の酸化還元電位の経時変化から、同溶出液の安定化後の酸化還元電位を六価クロムを三価クロムに還元するための安定な電位とするために必要な混合薬剤の添加量と、溶出試験終了後の溶出液の酸化還元電位との相関関係を求めておき、
前記相関関係にもとづき、実際に処理した薬剤処理灰の溶出試験終了後の溶出液の酸化還元電位から、六価クロム溶出防止の合否を判断することを特徴とする重金属含有灰の処理方法。
In the chemical treatment of ash containing heavy metals that are stable as cations in aqueous solutions and hexavalent chromium that is stable as anions in aqueous solutions,
using a mixed drug containing a reducing agent and a chelating agent,
The amount of the mixed chemical to be added is determined so that the oxidation-reduction potential after stabilization of the eluate of the chemical-treated ash treated with the mixed chemical becomes an oxidation-reduction potential capable of reducing hexavalent chromium to trivalent chromium. A method for treating heavy metal-containing ash, comprising:
For the ash collected in advance, an elution test was performed by changing the amount of the mixed chemical added. Determine the correlation between the amount of the mixed chemical to be added to obtain a stable potential for reduction to valent chromium and the oxidation-reduction potential of the eluate after the dissolution test,
A method for treating heavy metal-containing ash, characterized in that, based on the above correlation, whether or not hexavalent chromium elution is prevented is judged from the oxidation-reduction potential of the eluate after the elution test of chemically treated ash actually treated.
前記薬剤処理灰の溶出試験終了後の溶出液の酸化還元電位が、前記相関関係にもとづき得られる溶出試験終了後の溶出液の酸化還元電位の+15%以下の数値になったときに、六価クロムの溶出防止が適正であると判断することを特徴とする請求項記載の重金属含有灰の処理方法。 When the oxidation-reduction potential of the eluate after the elution test of the chemical-treated ash is completed is +15% or less of the oxidation-reduction potential of the eluate after the elution test is obtained based on the correlation, the hexavalent 2. The method for treating heavy metal-containing ash according to claim 1 , wherein it is judged that the elution prevention of chromium is appropriate. 水溶液中でカチオンとして安定な重金属類である銅および鉛と水溶液中でアニオンとして安定な六価クロムを含む灰の薬剤処理に際し、
還元剤とキレート薬剤とを含む混合薬剤を使用し、
前記混合薬剤で処理した薬剤処理灰の溶出液の安定化後の酸化還元電位が六価クロムを三価クロムに還元することができる酸化還元電位となるように、前記混合薬剤の添加量を決定する重金属含有灰の処理方法であって、
あらかじめ採取した灰中の銅含有量(Cu(質量%))と鉛含有量(Pb(質量%))の測定結果と、この灰に添加する前記混合薬剤の量を変化させたときに鉛の溶出量を0.3mg/L以下にすることができる同混合薬剤の添加量とから、鉛の溶出防止に必要な同混合薬剤の添加量に関する下記の実験式(a)における係数k1、k2を求め、
前記灰と同じ種類の灰を用いて、実験式(a)から算出した鉛溶出防止に必要な混合薬剤の添加量(F)と、この灰に前記混合薬剤と加湿水とを加えて混練したうえで溶出試験を行う場合において、同混合薬剤の添加量を変化させたときに鉛の溶出量を溶出基準値以下にすることができる同混合薬剤の添加量(B)と、六価クロムの溶出量を溶出基準値以下にすることができる同混合薬剤の添加量(D)と、安定化後の標準水素電極での酸化還元電位を0mV以下にするために必要な同混合薬剤の添加量(E)とを求めるとともに、
処理しようとする灰について実験式(a)から求めた鉛溶出防止に必要な前記混合薬剤の添加量に、{(B/F)の平均値}×{(D/B)の平均値}×{(E/D)の平均値}を乗じて得られた値を、添加すべき同混合薬剤の添加量とすることを特徴とする重金属含有灰の処理方法。
鉛溶出防止に必要な混合薬剤の添加量(質量%)
=k1×Cu(質量%)+k2×Pb(質量%)・・・・(a)
In the chemical treatment of ash containing copper and lead, which are heavy metals stable as cations in aqueous solutions, and hexavalent chromium, which is stable as anions in aqueous solutions,
using a mixed drug containing a reducing agent and a chelating agent,
The amount of the mixed chemical to be added is determined so that the oxidation-reduction potential after stabilization of the eluate of the chemical-treated ash treated with the mixed chemical becomes an oxidation-reduction potential capable of reducing hexavalent chromium to trivalent chromium. A method for treating heavy metal-containing ash, comprising:
Measurement results of the copper content (Cu (mass%)) and lead content (Pb (mass%)) in the ash collected in advance, and the amount of lead when the amount of the mixed chemical added to the ash was changed. Coefficients k1 and k2 in the following empirical formula (a) regarding the amount of the mixed chemical required to prevent the elution of lead from the added amount of the mixed chemical that can reduce the elution amount to 0.3 mg / L or less seek,
Using the same type of ash as the ash, the added amount (F) of the mixed chemical required to prevent lead elution calculated from the empirical formula (a), and the mixed chemical and humidified water were added to the ash and kneaded. In the case of performing an elution test on the above, the amount of the mixed chemical added that can reduce the elution amount of lead below the elution standard value when the added amount of the mixed chemical is changed (B), and the amount of hexavalent chromium Addition amount (D) of the same mixed drug that can make the elution amount less than the elution standard value, and addition amount of the same mixed drug required to make the oxidation-reduction potential at the standard hydrogen electrode after stabilization 0 mV or less (E) and,
For the ash to be treated, the addition amount of the mixed chemical necessary for preventing lead elution obtained from the empirical formula (a) is given by {(B/F) average value}×((D/B) average value}× A method for treating heavy metal-containing ash, characterized in that the value obtained by multiplying {the average value of (E/D)} is used as the amount of the same mixed chemical to be added.
Addition amount of mixed chemicals required to prevent lead elution (% by mass)
= k1 × Cu (% by mass) + k2 × Pb (% by mass) (a)
処理しようとする灰について請求項に記載の重金属含有灰の処理方法における実験式(a)から求められる、鉛溶出防止に必要な前記混合薬剤の添加量と、請求項に記載の重金属含有灰の処理方法において求められる、添加すべき同混合薬剤の添加量とのうち、どちらか多い方の量の混合薬剤を添加することを特徴とする重金属含有灰の処理方法。 For the ash to be treated, the added amount of the mixed chemical necessary for preventing lead elution, which is obtained from the empirical formula (a) in the method for treating heavy metal-containing ash described in claim 3 , and the heavy metal content described in claim 3 . A method for treating heavy metal-containing ash, characterized by adding a larger amount of the mixed chemical than the amount of the same mixed chemical to be added required in the method for treating ash. 前記混合薬剤として、還元剤を含有したキレート薬剤と、還元剤を含有しないキレート薬剤に同キレート薬剤との相溶性を有する還元剤を混合させた薬剤とのいずれかを用いることを特徴とする請求項1からまでのいずれか1項記載の重金属含有灰の処理方法。 The mixed drug is either a chelating drug containing a reducing agent or a drug obtained by mixing a chelating drug containing no reducing agent with a reducing agent having compatibility with the chelating drug. A method for treating heavy metal-containing ash according to any one of items 1 to 4 .
JP2019157499A 2019-08-30 2019-08-30 Method for treating heavy metal-containing ash Active JP7261703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157499A JP7261703B2 (en) 2019-08-30 2019-08-30 Method for treating heavy metal-containing ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157499A JP7261703B2 (en) 2019-08-30 2019-08-30 Method for treating heavy metal-containing ash

Publications (2)

Publication Number Publication Date
JP2021035655A JP2021035655A (en) 2021-03-04
JP7261703B2 true JP7261703B2 (en) 2023-04-20

Family

ID=74716539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157499A Active JP7261703B2 (en) 2019-08-30 2019-08-30 Method for treating heavy metal-containing ash

Country Status (1)

Country Link
JP (1) JP7261703B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438855B2 (en) 2020-06-05 2024-02-27 清水建設株式会社 Processing method and equipment for substances containing heavy metals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340874A (en) 2000-06-01 2001-12-11 Kurita Water Ind Ltd Method for determining necessary addition amount of chelate type metal collector, and method and apparatus for controlling chemical injection
JP2002126685A (en) 2000-10-26 2002-05-08 Kurita Water Ind Ltd Method for determining necessary amount of addition of chelate-base heavy metal immobilizing agent as well as method and apparatus for deciding heavy metal immobilization effect of treated ash
JP2008275635A (en) 2002-03-14 2008-11-13 Ebara Corp Injection control method for heavy metal elution inhibitor and control device therefor
JP2010075897A (en) 2008-09-29 2010-04-08 Kobelco Eco-Solutions Co Ltd Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system
JP2011062620A (en) 2009-09-16 2011-03-31 Kurita Water Ind Ltd Method for treating chromium-containing ash
JP2011144347A (en) 2009-07-08 2011-07-28 Tosoh Corp Heavy metal-treating agent and method for treating heavy metal-contaminated material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1244152A (en) * 1983-08-31 1988-11-01 Gary R. Douglas Phosphoric acid/lime hazardous waste detoxification treatment process
JP3237465B2 (en) * 1995-05-22 2001-12-10 栗田工業株式会社 Method for determining required amount of liquid chelating agent for fly ash treatment
JPH1080673A (en) * 1996-09-06 1998-03-31 Mitsubishi Heavy Ind Ltd Treatment of ash and treating device
US5951457A (en) * 1997-06-26 1999-09-14 Chemical Land Holdings. Inc. Method to reduce hexavelant chromium in soils, sediments, industrial waste and other contaminated materials using ascorbic acid
JP3843551B2 (en) * 1997-08-29 2006-11-08 東ソー株式会社 Determination method of required amount of liquid chelating agent for fly ash treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340874A (en) 2000-06-01 2001-12-11 Kurita Water Ind Ltd Method for determining necessary addition amount of chelate type metal collector, and method and apparatus for controlling chemical injection
JP2002126685A (en) 2000-10-26 2002-05-08 Kurita Water Ind Ltd Method for determining necessary amount of addition of chelate-base heavy metal immobilizing agent as well as method and apparatus for deciding heavy metal immobilization effect of treated ash
JP2008275635A (en) 2002-03-14 2008-11-13 Ebara Corp Injection control method for heavy metal elution inhibitor and control device therefor
JP2010075897A (en) 2008-09-29 2010-04-08 Kobelco Eco-Solutions Co Ltd Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system
JP2011144347A (en) 2009-07-08 2011-07-28 Tosoh Corp Heavy metal-treating agent and method for treating heavy metal-contaminated material
JP2011062620A (en) 2009-09-16 2011-03-31 Kurita Water Ind Ltd Method for treating chromium-containing ash

Also Published As

Publication number Publication date
JP2021035655A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP5962722B2 (en) Chelating agent addition amount determination device and chelating agent addition amount determination method
Xie et al. Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite
JP7261703B2 (en) Method for treating heavy metal-containing ash
JP2009179841A (en) Method for treating molten fly ash
US7144362B2 (en) Method for chemically stabilizing waste materials containing multivalent oxyanions
JP5378873B2 (en) Method for determining required amount of chelating agent and method for treating fly ash
JP5652293B2 (en) Method for processing heavy metal-containing solids
JP3911539B2 (en) Detoxification method for incineration ash or fly ash
JP3237465B2 (en) Method for determining required amount of liquid chelating agent for fly ash treatment
JP7089971B2 (en) Insolubilization method for heavy metals and insolubilizer
JP2005186009A (en) Treatment method for soil polluted with heavy metal
JPH07171541A (en) Agent and process for fixing heavy metal contained in waste
JPH1170374A (en) Method for determining necessary amount of addition of liquid chelating agent for treating fly ash
JP6284460B2 (en) Hexavalent chromium elution suppression method
JP2005144256A (en) Detoxification method of sludge or soil
JP2005199221A (en) Detoxicating processing method for sludge or soil
JP2005144255A (en) Method of processing sludge or soil for detoxification
JP5903866B2 (en) Heavy metal treating agent and method for treating heavy metal-containing material using the same
JP3969157B2 (en) Method and apparatus for determining required amount of chelating heavy metal immobilizing agent
JP2020116502A (en) Insolubilization method of heavy metal analogs
JP3831832B2 (en) Se-containing ash treatment method
JP2004261809A (en) Method of deciding required addition amount of liquid chelating agent for fly ash treatment
JPH11147082A (en) Method for treating metal-containing solid waste
JP2005305357A (en) Method for determining required amount of heavy metal treating agent
JP2000070902A (en) Determining method of necessary addition amount of chelate heavy portal fixing agent, judging method of fixing effect of heavy metal in treated ash and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7261703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150