JP7258853B2 - Process for producing powders containing uranium oxide UO2, optionally plutonium oxide PuO2, and optionally americium oxide AmO2 and/or oxides of other minor actinides - Google Patents

Process for producing powders containing uranium oxide UO2, optionally plutonium oxide PuO2, and optionally americium oxide AmO2 and/or oxides of other minor actinides Download PDF

Info

Publication number
JP7258853B2
JP7258853B2 JP2020509517A JP2020509517A JP7258853B2 JP 7258853 B2 JP7258853 B2 JP 7258853B2 JP 2020509517 A JP2020509517 A JP 2020509517A JP 2020509517 A JP2020509517 A JP 2020509517A JP 7258853 B2 JP7258853 B2 JP 7258853B2
Authority
JP
Japan
Prior art keywords
oxide
powder
optional
optionally
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020509517A
Other languages
Japanese (ja)
Other versions
JP2020531386A (en
Inventor
ラモン,ロール
ベルナール-グランジェ,ギヨーム
ドロー,フランク
パニュー,セシル
ルミア,フロリアン ラ
Original Assignee
コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ filed Critical コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Publication of JP2020531386A publication Critical patent/JP2020531386A/en
Application granted granted Critical
Publication of JP7258853B2 publication Critical patent/JP7258853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/28Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using special binding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/006Compounds containing, besides uranium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/01Oxides; Hydroxides
    • C01G43/025Uranium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G56/00Compounds of transuranic elements
    • C01G56/004Compounds of plutonium
    • C01G56/005Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G56/00Compounds of transuranic elements
    • C01G56/007Compounds of transuranic elements
    • C01G56/008Compounds of neptunium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G56/00Compounds of transuranic elements
    • C01G56/007Compounds of transuranic elements
    • C01G56/009Compounds of americium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/51Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on compounds of actinides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • F26B5/065Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing the product to be freeze-dried being sprayed, dispersed or pulverised
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/045Pellets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glanulating (AREA)

Description

本発明は、酸化ウランUO2、任意の酸化プルトニウムPuO2、並びに任意の酸化アメリシウムAmO2及び/又は別のマイナーアクチニドの酸化物を含む粉末の製造方法に関する。 The present invention relates to a method for producing powders comprising uranium oxide UO2 , optionally plutonium oxide PuO2 , and optionally americium oxide AmO2 and/or other oxides of minor actinides.

ただし、本開示の残りの部分では、マイナーアクチニドなる用語は、ウラン、プルトニウム及びトリウム以外のアクチニド元素を意味する。それらは、標準的な燃料コアによる中性子の連続的な捕捉によって原子炉で形成される。マイナーアクチニドはアメリシウム、キュリウム及びネプツニウムである。 However, in the remainder of this disclosure, the term minor actinides refers to actinide elements other than uranium, plutonium and thorium. They are formed in nuclear reactors by the continuous capture of neutrons by standard fuel cores. Minor actinides are americium, curium and neptunium.

より具体的には、本発明は、流動することができ、狭い単峰性傾向の粒度分布を有し、事前の混合なしに圧縮されることを意図した、さらに具体的には以下の特定の物理化学的特性を有することができる粉末の製造方法に関する:
- 自然発生する流動についての適性;
- 150~350μmの値を中心とする単峰性傾向を有する粒度分布;
- 粉末粒子内の元素の良好な均質性;
- 機器及びグローブボックス内における粉末の拡散を防ぐための、粉末中の微粒子の最小割合;
- 圧縮についての適正;及び、
- 自然焼結に対する優れた反応性。
More specifically, the present invention provides a flowable, narrow unimodal trending particle size distribution, intended to be compressed without prior mixing, more specifically the following specific It relates to a method for producing powders that can have physico-chemical properties:
- suitability for naturally occurring flows;
- particle size distribution with a unimodal trend centered on values between 150 and 350 μm;
- good homogeneity of the elements within the powder particles;
- a minimum proportion of fine particles in the powder to prevent diffusion of the powder within the equipment and glovebox;
- suitability for compression; and
- Excellent reactivity to natural sintering.

上記の物理化学的特性の結果、本発明の方法によって得られた粉末は、以下の材料の製造に適している場合がある:
- 現在、軽水炉で使用されているMOX燃料と呼ばれるウランとプルトニウムの混合酸化物燃料(U,Pu)O2
- 特にこれらのマイナーアクチニド元素の核変換メカニズムをよりよく理解するために、高速中性子炉で核変換実験を実施することを目的としたマイナーアクチニドを用いた核変換ターゲット等のマイナーアクチニドを用いたブランケット(当該ターゲットは1~5重量%のマイナーアクチニドを含むMOXタイプの材料(当該材料は、式(U,Pu,Am,Np,Cm)O2で表すことができる)又は10~20重量%のマイナーアクチニドを含む酸化ウランマトリックスを含む材料(当該材料は、式(U,Am,Np,Cm)O2で表すことができる)で構成することができる)。
As a result of the above physico-chemical properties, the powder obtained by the method of the invention may be suitable for the production of the following materials:
- Mixed oxide fuel of uranium and plutonium (U,Pu) O2 , called MOX fuel, currently used in light water reactors;
- A blanket with minor actinides, such as a transmutation target with minor actinides, aimed at conducting transmutation experiments in fast neutron reactors, in particular to better understand the transmutation mechanisms of these minor actinide elements. (the target is a MOX type material containing 1-5 wt% minor actinides (the material can be represented by the formula (U, Pu, Am, Np, Cm) O A material comprising a uranium oxide matrix containing minor actinides (the material can be represented by the formula (U, Am, Np, Cm) O 2 ).

MOX燃料と呼ばれるウランとプルトニウムの混合酸化物(U,Pu)O2の製造は、使用済み燃料の再処理中に回収されたプルトニウムをリサイクルしたいという要求に関連する様々な開発の目的であった。MOX燃料の製造と照射によるプルトニウムのリサイクルは、今日では、プルトニウムの増殖を制限する手段と考えられている。 The production of mixed oxides of uranium and plutonium (U,Pu) O2 , called MOX fuel, has been the subject of various developments related to the desire to recycle plutonium recovered during spent fuel reprocessing. . Recycling of plutonium by manufacturing MOX fuel and irradiation is today considered a means of limiting plutonium proliferation.

過去20年間にわたってMOX燃料を製造するためのいくつかの方法が開発されてきた。均質混合物を提供するために、UO2とPuO2の粉末の完全な粉砕を利用するものもあり、これらの粉末の一部のみの粉砕に限定されるものもある。 Several methods have been developed to produce MOX fuel over the past two decades. Some utilize complete grinding of UO 2 and PuO 2 powders to provide a homogeneous mixture, while others are limited to grinding only a portion of these powders.

現在、混合酸化物(U,Pu)O2の製造は、UO2とPuO2酸化物の機械的混合によって行われている。得られた混合物は、加圧、焼結及び精留の後、現在の仕様を満たすMOX燃料のペレットを製造することを可能にする。MIMAS法として知られている最も信頼でき実績のある工業的方法には、粉末の製造における2つの主要な工程が含まれる:酸化ウランとプルトニウムの粉末を共粉砕し、プルトニウムの含有量が25~30%であることを特徴とするマスターバッチと呼ばれる最初の混合物を製造し、次いで、目的のプルトニウムの最終含有量が得られるまで当該マスターバッチを酸化ウランで乾燥希釈する。 Currently, the production of mixed oxide (U,Pu) O2 is carried out by mechanical mixing of UO2 and PuO2 oxides. The resulting mixture makes it possible, after pressing, sintering and rectification, to produce pellets of MOX fuel that meet current specifications. The most reliable and proven industrial method, known as the MIMAS process, involves two major steps in the production of powders: co-grinding uranium oxide and plutonium powders to produce plutonium content of 25-25 An initial mixture, called a masterbatch, characterized by 30%, is produced and then dry-diluted with uranium oxide until the desired final plutonium content is obtained.

燃料の製造には、使用する粉末が的確な特性を満たす必要がある。特に良好な流動性の適性、良好な圧縮性、及び、焼結による高密度化の適性が必要である。焼結材料の最終特性における重要な品質基準は、プルトニウムの分布の均一性である。各焼結ペレットにおける良好な均質性は、一方では、特に燃焼速度を高めて円滑に進めるという観点で、原子炉内のMOXの挙動にとって完全に有利であり、他方では、再処理操作中の照射済み燃料を完全に溶解する。 Fuel production requires that the powders used meet precise properties. In particular good fluidity suitability, good compressibility and suitability for densification by sintering are required. An important quality criterion in the final properties of the sintered material is the homogeneity of the plutonium distribution. Good homogeneity in each sintered pellet is, on the one hand, wholly favorable for the behavior of MOX in the reactor, especially in terms of increasing the burn rate and smoothing the way, and on the other hand, irradiation during reprocessing operations. Completely dissolves spent fuel.

核変換ターゲットに関して、それらは上記の最終的状態に加えて、加圧水型原子炉からの使用済み燃料の処理から生じるマイナーアクチニドのリサイクルを可能にするための詳細な研究の対象となっている。 As for transmutation targets, they are the subject of detailed studies to enable the recycling of minor actinides resulting from the processing of spent fuel from pressurized water reactors, in addition to the above end states.

このタイプのリサイクルは、次の名称で知られる2つの別のチャネルを介して実施される:
- 不均質リサイクル;及び、
- 均質リサイクル。
This type of recycling is carried out through two separate channels known as:
- heterogeneous recycling; and
- Homogeneous recycling.

不均質リサイクルの場合、使用済み燃料の処理中にマイナーアクチニドがウランとプルトニウムから分離され、その後、高含有量(約10~20%原子)で燃料成分に組み込まれる。それは、原子炉の標準的な燃料成分とは別の非核分裂性マトリックス(例えば、劣化したUO2)を含む。マイナーアクチニドを含む燃料成分は、例えば、原子炉の炉心の周囲に配置されたブランケットの元素で構成することができる。当該リサイクルチャネルにより、特に、マイナーアクチニドの混入による標準燃料の特性の低下を、これらのアクチニドによって起こった問題を材料の流量の減少に集中させることで防ぐことができる。 In the case of heterogeneous recycling, minor actinides are separated from uranium and plutonium during spent fuel processing and then incorporated into the fuel components at high contents (approximately 10-20% atomic). It contains a non-fissionable matrix (eg, depleted UO 2 ) separate from the standard fuel components of nuclear reactors. A fuel component containing minor actinides may, for example, consist of a blanket of elements arranged around the core of a nuclear reactor. In particular, the recycle channel prevents the degradation of standard fuel properties due to contamination with minor actinides by concentrating the problems caused by these actinides in reducing the flow rate of the material.

均質リサイクルの場合、マイナーアクチニドは、低含有量(5%未満の原子)で混合され、全ての原子炉の標準的な燃料成分に実質的に均一に分配される。これを実施するために、使用済み燃料の処理中に、ウラン、プルトニウム及びマイナーアクチニドが一緒に処理されて酸化物を形成する。その後、当該燃料の製造に使用される。 For homogeneous recycling, the minor actinides are mixed at low content (less than 5% atomic) and distributed substantially uniformly in all reactor standard fuel components. To do this, uranium, plutonium and minor actinides are processed together to form oxides during spent fuel processing. It is then used to make the fuel.

燃料のためのものでも、核変換ターゲットのためのものでも、近年、使用されている製造方法は、微粉末の拡散を制限し、ペレット中の元素の均質性を改善する方法に移行する傾向がある。これは、粉砕、スクリーニング、混合等の造粒の工程を実施する従来の粉末冶金法とは対照的に、造粒段階を経ずに混合酸化物(U,Am)O2の均質な小球を得ることができるWAR法の場合であり、微粒子の拡散を大幅に制限する。 In recent years, the manufacturing methods used, whether for fuels or transmutation targets, have tended to move towards methods that limit the diffusion of fines and improve the homogeneity of the elements in the pellet. be. This produces homogeneous globules of mixed oxide (U,Am) O2 without going through a granulation step, in contrast to conventional powder metallurgical methods that carry out the steps of granulation such as grinding, screening, and mixing. This is the case for the WAR method, which can obtain , which severely limits the diffusion of fine particles.

さらに、噴霧乾燥段階を含む別の方法が特許文献1に記載されている。当該方法は、粉砕、混合、スクリーニングの工程を使用しない。しかしながら噴霧中に無視できない割合の微粒子を依然として生成する。 Yet another method involving a spray-drying step is described in US Pat. The method does not use grinding, mixing or screening steps. However, it still produces a non-negligible proportion of fine particles during spraying.

したがって、すでに存在するもの及び従来技術の方法の欠点に照らして、本発明の著者は、酸化ウランUO2、酸化プルトニウムPuO2並びに任意の酸化アメリシウムAmO2及び/又は別のマイナーアクチニドの酸化物を含む粉末を製造するための新しい方法を提案する目標を設定した。これは、粉末の球状粒子を得ることを提供し、したがって良好な流動性にアクセスすることを可能にし、粉末を構成する元素の分布の良好な均質性を有する。最後に、本発明の方法は、圧縮材料の設計に直接使用できる粉末を得ることを可能にする(すなわち、圧縮のための添加剤の添加を必要とせず、拡散される微粒子の形成を防止することを可能にする乾燥経路を介した粉砕又は混合の工程を必要としない)ことを目的とする。 Therefore, in light of what already exists and the shortcomings of the methods of the prior art, the authors of the present invention have developed uranium oxide UO 2 , plutonium oxide PuO 2 and optionally americium oxide AmO 2 and/or oxides of other minor actinides. The goal was set to propose a new method for producing powders containing This provides for obtaining spherical particles of the powder, thus making it possible to access good fluidity and having good homogeneity of the distribution of the elements that make up the powder. Finally, the method of the present invention makes it possible to obtain powders that can be used directly in the design of compacted materials (i.e. without the need for the addition of additives for compaction, preventing the formation of dispersed fine particles). (no milling or mixing steps via a dry route are required).

国際公開第00/30978号WO 00/30978

したがって、本発明は、酸化ウランUO2、任意の酸化プルトニウムPuO2並びに任意の酸化アメリシウムAmO2及び/又は別のマイナーアクチニドの酸化物MO2(Mはネプツニウム又はキュリウムである)を含む粉末の製造方法に関し、該製造方法は以下の工程を含む: Accordingly, the present invention provides for the manufacture of powders comprising uranium oxide UO2 , optionally plutonium oxide PuO2 and optionally americium oxide AmO2 and/or oxides MO2 of another minor actinide, where M is neptunium or curium. Regarding the method, the manufacturing method includes the following steps:

a)水と接触させることを含む水性懸濁液の調製工程;酸化ウランUO2粉末、任意の酸化プルトニウムPuO2粉末並びに任意の酸化アメリシウムAmO2粉末及び/又は別のマイナーアクチニドの酸化物MO2(Mはネプツニウム又はキュリウムである)粉末;凝集防止剤、有機結合剤及びそれらの混合物から選択される少なくとも1つの添加剤(前記添加剤は、水性懸濁液の動粘度が1000mPa.sを超えない、好ましくは300mPa.sを超えない量で添加される); a) A process of preparing an aqueous suspension comprising contacting with water; uranium oxide UO2 powder, optionally plutonium oxide PuO2 powder and optionally americium oxide AmO2 powder and/or another minor actinide oxide MO2 . powder (M is neptunium or curium); at least one additive selected from anticaking agents, organic binders and mixtures thereof, said additive having a kinematic viscosity of the aqueous suspension exceeding 1000 mPa.s; not, preferably added in an amount not exceeding 300 mPa.s);

b)a)で調製した懸濁液の低温造粒工程;
c)b)で得られた顆粒の凍結乾燥工程;これにより、酸化ウランUO2、任意の酸化プルトニウムPuO2並びに任意の酸化アメリシウムAmO2及び/又は別のマイナーアクチニドの酸化物MO2(Mはネプツニウム又はキュリウムである)を含む粉末が得られる。
b) a cold granulation step of the suspension prepared in a);
c) a freeze-drying step of the granules obtained in b), whereby uranium oxide UO 2 , optionally plutonium oxide PuO 2 and optionally americium oxide AmO 2 and / or another minor actinide oxide MO 2 (M is neptunium or curium) is obtained.

本技術分野に関する部分で既に言及され、本発明の方法の実施により達成される目的に加えて、本発明の方法は以下の利点も有する: In addition to the objectives already mentioned in the technical field part and achieved by the practice of the method of the invention, the method of the invention also has the following advantages:

- 特に興味深い分散媒としての水の使用。有機生成物の使用を制限し、それにより得られる最終粉末の不純物を制限できるためである; - The use of water as dispersion medium of particular interest. because it limits the use of organic products and thereby limits impurities in the final powder obtained;

- 工程a)の間に、低温造粒装置の注入ノズルに簡単にポンピングすることによって、支障なく搬送できる懸濁液をもたらすシンプルで迅速かつ再現可能な実施; - simple, rapid and reproducible implementation during step a), which results in a suspension that can be transported without difficulty by simple pumping into the injection nozzle of the cryogenic granulator;

- 制御された多孔性と良好な流動性を有する粒子を含む粉末を得ることができる懸濁液、低温造粒及び凍結乾燥の併用。当該粒子は、元素(U、任意のPu並びに任意のAm及び/又は別のマイナーアクチニド)の分布が均質な固体であり、極めて球形である; - A combination of suspension, cold granulation and freeze-drying that can yield powders containing particles with controlled porosity and good flowability. The particles are solids with a homogeneous distribution of the elements (U, optionally Pu and optionally Am and/or another minor actinide) and are highly spherical;

- 懸濁液中の非常に高い割合の乾燥物を得る可能性。これにより、高密度の固体であり極めて球形の粉末粒子をもたらすことができる;及び、 - Possibility to obtain a very high percentage of dry matter in suspension. This can result in powder particles that are dense, solid and highly spherical; and

- 臨界、すなわち装置の構造を考慮して、当該方法を工業設備の生産ユニットにおいて実施できる実現性。 - Criticality, ie the feasibility of carrying out the process in production units of industrial installations, taking into account the structure of the equipment.

当該方法では、最初に水と接触させることにより、水性懸濁液を調製する;酸化ウランUO2粉末、任意の酸化プルトニウムPuO2粉末並びに任意の酸化アメリシウムAmO2粉末及び/又は別のマイナーアクチニドの酸化物MO2(Mはネプツニウム又はキュリウム)粉末;凝集防止剤、有機結合剤及びそれらの混合物から選択される少なくとも1つの添加剤(前記懸濁液は、1000mPa.sを超えない、好ましくは300mPa.sを超えない動粘度を有し、低温造粒の操作に適切である)。 In the method, an aqueous suspension is prepared by first contacting with water; uranium oxide UO2 powder, optionally plutonium oxide PuO2 powder and optionally americium oxide AmO2 powder and/or another minor actinide. oxide MO2 (M is neptunium or curium) powder; at least one additive selected from anti-agglomeration agents, organic binders and mixtures thereof (said suspension does not exceed 1000 mPa.s, preferably 300 mPa.s) suitable for cold granulation operations with kinematic viscosities not exceeding .s).

動粘度は、通常、シリンダーコーン構成システムを使用して、周囲温度で(すなわち、周囲雰囲気の温度と圧力以外の外部加熱や加圧なしで、周囲温度は20℃の温度とすることができ、周囲圧力は大気圧である)、少なくとも103-1(例えば、1,500s-1)の剪断速度のレオメータを使用して測定される。より好ましくは、動粘度は300mPa.sを超えない。これは低温造粒装置の供給管及びスプレーノズルを容易に循環できる非常に流動性の高い懸濁液に対応する。 Kinematic viscosity is typically measured at ambient temperature using a cylinder-cone configuration system (i.e., without external heating or pressure other than the temperature and pressure of the ambient atmosphere, where the ambient temperature can be a temperature of 20° C., Ambient pressure is atmospheric pressure), measured using a rheometer with a shear rate of at least 10 3 s -1 (eg, 1,500 s -1 ). More preferably, the kinematic viscosity is 300 mPa.s. not exceed s. This corresponds to a very fluid suspension that can be easily circulated through the feed pipes and spray nozzles of the cryogenic granulator.

酸化ウランUO2粉末、任意の酸化プルトニウムPuO2粉末並びに任意の酸化アメリシウムAmO2粉末及び/又は別のマイナーアクチニドの酸化物MO2(Mはネプツニウム又はキュリウム)粉末は、有利には、懸濁液の水量に対して10~50体積%の範囲の含有量で存在する。 Uranium oxide UO 2 powder, optionally plutonium oxide PuO 2 powder and optionally americium oxide AmO 2 powder and/or another minor actinide oxide MO 2 (M is neptunium or curium) powder are advantageously in suspension It is present in a content ranging from 10 to 50% by volume relative to the amount of water in the.

懸濁液の調製のために、凝集防止剤(分散剤とも呼ぶこともできる)、有機結合剤及びそれらの混合物から選択される少なくとも1つの添加剤、好ましくは、少なくとも1つの凝集防止剤と少なくとも1つの有機結合剤の混合物が使用される。 For the preparation of the suspension, at least one additive selected from anti-flocculating agents (also called dispersants), organic binders and mixtures thereof, preferably at least one anti-flocculating agent and at least A mixture of one organic binder is used.

凝集防止剤は、懸濁液を流動化する目的で使用される。これは除去が容易な有機製品、例えば、Polyplastic S.A.社によってDARBAN Cなる名称で市販されている製品などのポリメタクリル酸アンモニウム(25重量%のポリメタクリル酸アンモニウムの水溶液)から形成することができる。凝集防止剤は、BASF社によりMasterGlenium 27なる名称で市販されている製品などのポリカルボン酸エーテルであってもよい。 Anti-flocculants are used to fluidize the suspension. This is an easy-to-remove organic product, such as Polyplastic S.T. A. Ammonium polymethacrylate (aqueous solution of 25% by weight of ammonium polymethacrylate) such as the product marketed under the name DARBAN C by the company. The anti-agglomeration agent may be a polycarboxylic acid ether such as the product marketed under the name MasterGlenium 27 by BASF.

使用される凝集防止剤の量は、通常、懸濁液の乾燥物の重量(すなわち酸化物UO2、任意のPuO2、任意のAmO2、任意のMO2(Mはネプツニウム又はキュリウム)の総重量)の0.02~1重量%である。 The amount of anti-flocculating agent used is usually the sum of the weight of dry matter of the suspension (i.e. oxide UO2 , optionally PuO2, optionally AmO2 , optionally MO2 (M is neptunium or curium)). weight) is 0.02 to 1% by weight.

有機結合剤は、低温造粒の間の粉末の凝集に有利に働くように懸濁液中で使用される。選択は主に、簡単に除去できる有機結合剤において行われる。例としては、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)、ポリ(ビニルブチラール)(略称PVBで知られている)、アクリルラテックス又はそれらの混合物を挙げることができる。 Organic binders are used in the suspension to favor cohesion of the powder during cold granulation. The choice is primarily made in easily removable organic binders. Examples include polyvinyl alcohol (PVA), polyethylene glycol (PEG), poly(vinyl butyral) (known by the abbreviation PVB), acrylic latex or mixtures thereof.

使用される有機結合剤の量は、懸濁液の乾燥物の重量(すなわち酸化物UO2、任意のPuO2、任意のAmO2、任意のMO2(Mはネプツニウム又はキュリウム)の総重量)の0.1~3重量%とすることができる。 The amount of organic binder used is the weight of the dry matter of the suspension (i.e. the total weight of the oxide UO2 , optionally PuO2, optionally AmO2 , optionally MO2 (M is neptunium or curium)). 0.1 to 3% by weight of the.

懸濁液の調製のために、未処理状態のUO2を、又は、未処理状態のUO2及び/又はPuO2及び/又はAmO2及び/又は別のマイナーアクチニドの酸化物MO2(Mはネプツニウム又はキュリウム)の混合物を、添加剤(凝集防止剤及び/又は有機結合剤)を含む水の混合物に添加して開始することができる。次いで全体を機械的攪拌により、好ましくはローラー攪拌機及び粉砕ビーズ(例えば、イットリウム化ジルコニア製又はアルミナ製)を用いて、数時間混合することができる。懸濁液は、バーミルを使用して、又は摩擦によって調製することもできる。 For the preparation of suspensions, raw UO 2 or raw UO 2 and/or PuO 2 and/or AmO 2 and/or oxides of other minor actinides MO 2 (M is neptunium or curium) to a mixture of water containing additives (anti-agglomeration agents and/or organic binders). The whole can then be mixed by mechanical stirring, preferably using a roller stirrer and grinding beads (eg made of yttrium zirconia or alumina) for several hours. Suspensions can also be prepared using a bar mill or by attrition.

低温造粒の次の工程は、当該工程を実施するために、市販の造粒装置又は特別に準備された実験装置で実施することができる。それは、懸濁液の顆粒化を可能にするために懸濁液をノズルに運ぶことを可能にする蠕動ポンプで形成することができる。ノズルによって形成及びスプレーされたこれらの微小液滴は、液体窒素のDewar瓶に落ち、そのまま球形に凍結する。造粒の最後に凍結乾燥の工程を実施するために、凍結した顆粒を凍結乾燥機に入れて凍結水の昇華を可能にし、顆粒の形状(特にその球形)及びその個別性を保持することができる。 The next step of cold granulation can be carried out on commercial granulators or specially prepared laboratory equipment for carrying out the steps. It can be formed with a peristaltic pump that allows the suspension to be conveyed to a nozzle to allow granulation of the suspension. These microdroplets formed and sprayed by the nozzle fall into a Dewar bottle of liquid nitrogen where they are frozen into a spherical shape. In order to carry out a freeze-drying step at the end of granulation, the frozen granules can be placed in a freeze-dryer to allow sublimation of the frozen water, preserving the shape of the granules (especially their spherical shape) and their individuality. can.

凍結乾燥の終了時、顆粒の残留湿度は非常に低く、使用前の粉末の乾燥を防ぐことができる。 At the end of freeze-drying, the residual moisture content of the granules is very low, preventing drying of the powder prior to use.

この最終工程の後、特に以下の特性を有することができる粉末が得られる: After this final step, a powder is obtained which can in particular have the following properties:

- 150~350μmの値を中心とする単峰性傾向を有する粒度分布。
- ペレットの製造の操作に耐える十分な顆粒の凝集性;
- 優れた流動性;
- 圧縮についての適正;
- 自然焼結に対する優れた適性;及び、
- 粉末内の元素分布の良好な均質性。
- Particle size distribution with a unimodal trend centered on values between 150 and 350 μm.
- sufficient cohesiveness of the granules to withstand the operation of making pellets;
- excellent liquidity;
- suitability for compression;
- excellent suitability for natural sintering; and
- Good homogeneity of the elemental distribution within the powder.

これらの顆粒の実質的に完全な真球度により、加圧金型内で非常に良好な流動性が得られ、その後焼結されるペレットが得られる。 The virtually perfect sphericity of these granules provides very good flowability in the press mold, resulting in a pellet that is subsequently sintered.

元素の分布の均質性に関して、プルトニウム元素が存在する場合、プルトニウム元素との関係が特に重要である。MOX燃料を作るために、一旦、粉末が圧縮され焼結されると、特に燃焼速度を上げて促進するという観点で、原子炉内の燃料の挙動にとってプルトニウムの分布の均質性が完全に好ましい。一方、その後の再処理操作中の照射済み燃料は完全に溶解する。 Regarding the homogeneity of the distribution of the elements, the relationship with the plutonium element, if present, is of particular importance. Once the powder is compacted and sintered to make MOX fuel, the homogeneity of the plutonium distribution is absolutely favorable to the behavior of the fuel in the reactor, especially in terms of increasing and promoting the burning rate. On the other hand, the irradiated fuel during subsequent reprocessing operations is completely dissolved.

顆粒の直径に影響を与えるパラメーターは、造粒される懸濁液のレオロジー、空気の流速、及び、造粒中の懸濁液の流速である。 Parameters affecting the granule diameter are the rheology of the suspension to be granulated, the air flow rate and the flow rate of the suspension during granulation.

本発明の方法により得られた粉末は、直接(すなわち、他の成分の添加を必要とすることなく)使用して、例えば燃料ペレットの形態の圧縮材料を形成することができる。 The powders obtained by the method of the invention can be used directly (ie without the need for the addition of other ingredients) to form compacted materials, for example in the form of fuel pellets.

したがって、本発明は、以下の工程を連続して含む、核燃料のペレットの製造方法にも関する: The invention therefore also relates to a method for the production of nuclear fuel pellets comprising, in succession, the following steps:

d)上記で定義した粉末の製造方法を実施する工程;
e)d)で得られた粉末をペレットの形状に圧縮する工程;及び、
f)e)で得られたペレットを焼結する工程。
d) carrying out a method for producing a powder as defined above;
e) compressing the powder obtained in d) into the shape of pellets; and
f) sintering the pellets obtained in e).

圧縮工程e)は、一方では、1つ以上のペレットの形成に適した形状の金型に粉末を置くこと、及び、他方では、当該粉末を一軸圧縮にかけることから成ることができる。例えば、金型に置かれた粉末に圧力を加えるピストンを使用して、1秒から30分の範囲とすることができる持続時間の間、当該圧力を250~1,500MPaの範囲とすることができる。 The compaction step e) can consist, on the one hand, of placing the powder in a mold of a shape suitable for forming one or more pellets and, on the other hand, of subjecting the powder to uniaxial compaction. For example, using a piston that applies pressure to the powder placed in the mold, the pressure can range from 250 to 1,500 MPa for a duration that can range from 1 second to 30 minutes. can.

焼結工程f)は、アルゴン等の中性ガス雰囲気下で、場合により水素及び水の存在下で、又は、水素及び任意にアルゴン等の中性ガスを含む還元媒体(水素は5体積%までの範囲とすることができる含有量で混合物中に含まれ、任意に20,000ppmまでの範囲とすることができる含有量で水を含む)下で、上記のペレットを、例えば、1,000~1,800℃の範囲の温度で、1~8時間の範囲とすることができる持続時間の間、加熱することから成ることができる。 Sintering step f) is carried out under a neutral gas atmosphere such as argon, optionally in the presence of hydrogen and water, or in a reducing medium comprising hydrogen and optionally a neutral gas such as argon (up to 5 vol. optionally including water in a content that can range up to 20,000 ppm in the mixture, with a content that can range from 1,000 ppm to heating at a temperature in the range of 1,800° C. for a duration that can range from 1 to 8 hours.

本発明の他の特徴及び利点は、本発明の方法による実施形態に従って、混合粉末及び燃料ペレットを製造するための実施例に関する記載である以下の補足に表されるであろう。 Other features and advantages of the present invention will appear in the following supplementary description of examples for producing mixed powders and fuel pellets according to embodiments of the method of the present invention.

当然に、当該補足の記載は、本発明を説明する目的のためだけに提供され、いかなる場合でも制限を形成しない。 Naturally, the supplementary description is provided only for the purpose of illustrating the invention and does not form a limitation in any way.

(実施例1)
当該実施例は、原子比(Pu/U+Pu)=10%の酸化ウランUO2及び酸化プルトニウムPuO2を含む混合粉末の製造のための本発明の方法の実施を示す。当該製造は完全にグローブボックス内で製造される。
(Example 1)
This example demonstrates the implementation of the method of the invention for the production of a mixed powder containing uranium oxide UO 2 and plutonium oxide PuO 2 in an atomic ratio (Pu/U+Pu)=10%. The production is made entirely in the glove box.

70mLの脱塩水(最終懸濁液の総重量の40重量%に相当)を、ジルコニア製の約250gの粉砕ビーズ(平均直径3mm)が入った250mLのプラスチック容器に入れる。分散剤と結合剤(それぞれ、DARVAN Cとポリエチレングリコール300(PEG 300)である)を、それぞれ乾燥酸化物の重量(すなわちUO2とPuO2の総重量)の0.5%と2%の割合で加える。 70 mL of demineralized water (corresponding to 40% by weight of the total weight of the final suspension) is placed in a 250 mL plastic container containing approximately 250 g of grinding beads made of zirconia (average diameter 3 mm). Dispersant and binder (which are DARVAN C and polyethylene glycol 300 (PEG 300), respectively) in proportions of 0.5% and 2%, respectively, of the weight of the dry oxide (i.e. the total weight of UO2 and PuO2 ). Add with .

これらの原料を急速に混合した後、UO2とPuO2の粉末の混合物を最終懸濁液の重量に対して60重量%の割合で加える、又は、89gのUO2粉末と16gのPuO2粉末を含む粉末の混合物105gを加える。得られた混合物を、35rpmの回転速度のロックンロールタイプのローラー攪拌機を用いて回転させる。これにより粉末のデアグロメレーションと、さらに良好な分散が可能になる。攪拌は、液体懸濁液が得られるまで少なくとも5時間維持される。 After rapidly mixing these raw materials, a mixture of UO2 and PuO2 powders is added at a rate of 60% by weight relative to the weight of the final suspension, or 89 g UO2 powder and 16 g PuO2 powder. Add 105 g of a powder mixture containing The resulting mixture is rotated using a rock and roll type roller stirrer with a rotation speed of 35 rpm. This allows deagglomeration of the powder and better dispersion. Stirring is maintained for at least 5 hours until a liquid suspension is obtained.

懸濁液の粘度は、ANTON PAAR RHEOLAB QCレオメータを用いて1500s-1で測定すると、1500s-1の剪断速度において100mPa.sの値となり、300mPa.s未満の好ましい範囲内に収まる。これは、懸濁液の低温造粒をトリガーするために特に有利である。 The viscosity of the suspension , measured at 1500 s -1 using an ANTON PAAR RHEOLAB QC rheometer, is 100 mPa. s and 300 mPa.s. falls within the preferred range of less than s. This is particularly advantageous for triggering cold granulation of suspensions.

低温造粒は、以下の部分を備える装置において実施される。
- 上記の懸濁液を収容するビーカー。当該ビーカーは、懸濁液をスプレーノズルに運ぶことを可能にする蠕動ポンプに接続されている。当該ポンプの流量は0.15barの空気圧で最大2L/hである;
-液体窒素で満たされたDewar型の反応器。前記反応器はスプレーノズルに接続し、前記反応器はスプレーノズルから来る懸濁液の液滴の瞬間凍結を可能にする。
Cold granulation is carried out in an apparatus comprising the following parts.
- A beaker containing the above suspension. The beaker is connected to a peristaltic pump that allows the suspension to be conveyed to the spray nozzle. The flow rate of the pump is up to 2 L/h at an air pressure of 0.15 bar;
- Dewar type reactor filled with liquid nitrogen. Said reactor is connected to a spray nozzle, said reactor allowing flash freezing of droplets of suspension coming from the spray nozzle.

実用的な観点から、事前に得られた懸濁液を上記のビーカーに入れ、次いで33mL/minの流量と0.15barの空気圧で蠕動ポンプによって回収し、スプレーノズルを介してDewar型の反応器に運び入れる。形成された液滴は、反応器に含まれる液体窒素によって直接凍結される。当該実施例で得られた懸濁液の体積については、低温造粒に必要なのは5分未満である。 From a practical point of view, the previously obtained suspension was placed in the above-mentioned beaker, then withdrawn by a peristaltic pump at a flow rate of 33 mL/min and an air pressure of 0.15 bar, and passed through a spray nozzle into a Dewar-type reactor. bring it into The droplets formed are directly frozen by the liquid nitrogen contained in the reactor. For the volume of suspension obtained in the example, less than 5 minutes are required for cold granulation.

一旦、凍結したら、顆粒の球形を維持しながら、凍結して顆粒内に閉じ込められた水を昇華させる目的で、得られた顆粒を迅速に凍結乾燥機に入れる。当該凍結乾燥の操作は、実験の最後に10-3mbarの安定した真空と約-100℃の温度を達成するために、少なくとも3時間かかる。 Once frozen, the resulting granules are rapidly placed in a freeze dryer with the aim of sublimating the water trapped within the frozen granules while maintaining the spherical shape of the granules. The freeze-drying procedure takes at least 3 hours to achieve a stable vacuum of 10 −3 mbar and a temperature of about −100° C. at the end of the experiment.

全ての水が顆粒から除去されると、これにより、加圧によりペレットを形成するためにそのまま使用できる200μmの値を中心とする単峰性の粒度分布を持つ顆粒が得られる。 Once all the water has been removed from the granules, this results in granules with a monomodal particle size distribution centered at a value of 200 μm which are ready for use to form pellets by pressing.

(実施例2)
当該実施例は、上記の実施例1で得られた粒状粉末からのUO2/PuO2MOX燃料ペレットの製造を示す。
(Example 2)
This example demonstrates the production of UO 2 /PuO 2 MOX fuel pellets from the granular powder obtained in Example 1 above.

これを行うために、粉末は、ステアリン酸による外側潤滑を用いて700MPaでの冷一軸圧縮にかけられる。それにより、直径9.5mm及び高さ10mmのペレットが得られる。次いで、得られたペレットを、4体積%の水素を含むアルゴン雰囲気下で4時間、1,750℃で焼結する操作に付す。1,750℃の温度は3℃/minの温度上昇により到達する。 To do this, the powder is subjected to cold uniaxial pressing at 700 MPa with external lubrication by stearic acid. Pellets with a diameter of 9.5 mm and a height of 10 mm are thereby obtained. The pellets obtained are then subjected to sintering at 1,750° C. for 4 hours in an argon atmosphere containing 4% by volume of hydrogen. A temperature of 1,750° C. is reached with a temperature increase of 3° C./min.

このようにして焼結されたペレットは、ペレット内の元素U及びPuの良好な均質性を伴う約94~98%の相対密度を有する(粉末中のこれらの元素の良好な均質性の結果である)。これらの元素は、粉末冶金で製造されたMOXペレット中よりも均質に分布している。 Pellets sintered in this way have a relative density of about 94-98% with good homogeneity of the elements U and Pu within the pellet (resulting in good homogeneity of these elements in the powder). be). These elements are more homogeneously distributed than in MOX pellets produced by powder metallurgy.

Claims (9)

酸化ウランUO2、任意の酸化プルトニウムPuO2 任意の酸化アメリシウムAmO2 、任意の酸化ネプツニウムNpO 2 及び任意の酸化キュリウムCmO 2 を含む粉末の製造方法であって、以下の工程を含む製造方法:
a)水と接触させることを含む水性懸濁液の調製工程;酸化ウランUO2粉末、任意の酸化プルトニウムPuO2粉末任意の酸化アメリシウムAmO2粉末、任意の酸化ネプツニウムNpO 2 粉末及び任意の酸化キュリウムCmO 2 粉末;凝集防止剤、有機結合剤及びそれらの混合物から選択される少なくとも1つの添加剤、前記添加剤は、水性懸濁液の動粘度が1000mPa.sを超えない量で添加される;
b)a)で調製した懸濁液の低温造粒工程;
c)b)で得られた顆粒を凍結乾燥し、酸化ウランUO、任意の酸化プルトニウムPuO 任意の酸化アメリシウムAmO 、任意の酸化ネプツニウムNpO 2 及び任意の酸化キュリウムCmO 2 を含む粉末を得る凍結乾燥工程。
A method of producing a powder comprising uranium oxide UO2 , optionally plutonium oxide PuO2 , optionally americium oxide AmO2 , optionally neptunium oxide NpO2 and optionally curium oxide CmO2 , the method comprising the steps of:
a) Aqueous suspension preparation step including contacting with water; uranium oxide UO2 powder, optional plutonium oxide PuO2 powder , optional americium oxide AmO2 powder , optional neptunium oxide NpO2 powder and optional oxide Curium CmO2 powder ; at least one additive selected from anticaking agents, organic binders and mixtures thereof, said additive having a kinematic viscosity of the aqueous suspension of 1000 mPa.s; added in an amount not exceeding s;
b) a cold granulation step of the suspension prepared in a);
c) freeze-drying the granules obtained in b) to give a powder comprising uranium oxide UO2 , optionally plutonium oxide PuO2 , optionally americium oxide AmO2 , optionally neptunium oxide NpO2 and optionally curium oxide CmO2 Freeze-drying process to obtain.
酸化ウランUO2粉末、任意の酸化プルトニウムPuO2粉末任意の酸化アメリシウムAmO2粉末、任意の酸化ネプツニウムNpO 2 粉末及び任意の酸化キュリウムCmO 2 粉末が、懸濁液の水量に対して10~50体積%の範囲の含有量で存在する請求項1に記載の製造方法。 Uranium oxide UO 2 powder, optional plutonium oxide PuO 2 powder , optional americium oxide AmO 2 powder , optional neptunium oxide NpO 2 powder and optional curium oxide CmO 2 powder are 10-50 to the amount of water in the suspension. 2. A process according to claim 1, present in a content in the range of % by volume. 添加剤が、少なくとも1つの凝集防止剤と少なくとも1つの有機結合剤の混合物である請求項1又は2に記載の製造方法。 3. Process according to claim 1 or 2, wherein the additive is a mixture of at least one anti-agglomeration agent and at least one organic binder. 凝集防止剤が、ポリメタクリル酸アンモニウム又はポリカルボン酸エーテルである請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the anti-aggregation agent is polyammonium methacrylate or polycarboxylic acid ether. 凝集防止剤が、懸濁液の乾燥物の重量(すなわち酸化物UO2、任意のPuO2、任意のAmO2、任意のNp2 及び任意のCmO 2 の総重量)の0.02~1重量%の範囲で存在する請求項1~4のいずれか一項に記載の製造方法。 0.02 to 1 of the weight of the dry matter of the suspension (i.e. the total weight of oxide UO 2 , optional PuO 2 , optional AmO 2 , optional NpO 2 and optional CmO 2 ). A manufacturing method according to any one of claims 1 to 4, present in the range of weight percent. 有機結合剤が、ポリビニルアルコール、ポリエチレングリコール、ポリ(ビニルブチラール)、アクリルラテックス又はそれらの混合物である請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the organic binder is polyvinyl alcohol, polyethylene glycol, poly(vinyl butyral), acrylic latex or a mixture thereof. 有機結合剤が、懸濁液の乾燥物の重量(すなわち酸化物UO2、任意のPuO2、任意のAmO2任意のNpO 2 及び任意のCmO 2 の総重量)の0.1~3重量%の範囲で存在する請求項1~6のいずれか一項に記載の製造方法。 0.1 to 3 weight of organic binder by weight of dry matter of suspension (i.e. total weight of oxide UO 2 , optional PuO 2 , optional AmO 2 , optional NpO 2 and optional CmO 2 ) % range. 懸濁液の動粘度が、300mPa.sを超えない請求項1~7のいずれか一項に記載の製造方法。 The kinematic viscosity of the suspension is 300 mPa.s. The manufacturing method according to any one of claims 1 to 7, wherein s does not exceed. 以下の工程を連続して含む、核燃料のペレットの製造方法:
d)請求項1~8のいずれか一項で定義した粉末の製造方法を実施する工程;
e)d)で得られた粉末をペレットの形状に圧縮する工程;及び、
f)e)で得られたペレットを焼結する工程。
A method of producing nuclear fuel pellets comprising, in succession, the following steps:
d) carrying out a method for producing a powder as defined in any one of claims 1-8;
e) compressing the powder obtained in d) into the shape of pellets; and
f) sintering the pellets obtained in e).
JP2020509517A 2017-08-23 2018-08-17 Process for producing powders containing uranium oxide UO2, optionally plutonium oxide PuO2, and optionally americium oxide AmO2 and/or oxides of other minor actinides Active JP7258853B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1757829A FR3070278B1 (en) 2017-08-23 2017-08-23 PROCESS FOR THE PREPARATION OF A POWDER COMPRISING URANIUM OXIDE UO2, POSSIBLY PLUTONIUM OXIDE PUO2 AND POSSIBLY AMERICON OXIDE AMO2 AND / OR AN OXIDE OF ANOTHER MINOR ACTINID
FR1757829 2017-08-23
PCT/FR2018/052072 WO2019038497A1 (en) 2017-08-23 2018-08-17 Method for preparing a powder comprising uranium oxide uo2, optionally plutonium oxide puo2 and optionally americium oxide amo2 and/or an oxide of another minor actinide

Publications (2)

Publication Number Publication Date
JP2020531386A JP2020531386A (en) 2020-11-05
JP7258853B2 true JP7258853B2 (en) 2023-04-17

Family

ID=60182731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509517A Active JP7258853B2 (en) 2017-08-23 2018-08-17 Process for producing powders containing uranium oxide UO2, optionally plutonium oxide PuO2, and optionally americium oxide AmO2 and/or oxides of other minor actinides

Country Status (6)

Country Link
JP (1) JP7258853B2 (en)
CN (1) CN111032205B (en)
FR (1) FR3070278B1 (en)
GB (1) GB2579740B (en)
RU (1) RU2770610C2 (en)
WO (1) WO2019038497A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218092B (en) * 2019-05-20 2022-03-18 中国核动力研究设计院 UO added with trace elements2-ZrO2Ceramic material and preparation method thereof
CN112892402A (en) * 2021-01-25 2021-06-04 姚公付 Fertilizer granulation cutter
FR3128957A1 (en) * 2021-11-05 2023-05-12 Université De Limoges PROCESS FOR MANUFACTURING CERAMIC PARTS AND USE OF THE PARTS OBTAINED BY THIS PROCESS
FR3131583B1 (en) * 2021-12-30 2024-01-19 Commissariat Energie Atomique METHOD FOR PREPARING AN ACTINIDE OXIDE(S) POWDER FROM A COLLOIDAL SOL-GEL SOLUTION

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530261A (en) 1998-11-26 2002-09-17 コミツサリア タ レネルジー アトミーク Preparation of moldable powders by spray drying of uranium dioxide obtained by dry process conversion of UF6
JP2005134319A (en) 2003-10-31 2005-05-26 Japan Nuclear Cycle Development Inst States Of Projects Method for manufacturing mox fuel pellet
JP2008008644A (en) 2006-06-27 2008-01-17 Japan Atomic Energy Agency Granulating method of granule for pellet manufacturing
JP2009235325A (en) 2008-03-28 2009-10-15 Konica Minolta Opto Inc Production method for optical resin material, optical resin material, and optical element
JP2013504049A (en) 2009-09-02 2013-02-04 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for preparing a porous nuclear fuel based on at least one minor actinide
JP2013224925A (en) 2012-03-23 2013-10-31 Hitachi-Ge Nuclear Energy Ltd Method and system for treating spent fuel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321560A (en) * 1964-06-30 1967-05-23 Atomic Energy Authority Uk Production of fuel for nuclear reactors
AT267007B (en) * 1965-07-08 1968-12-10 Oesterr Studien Atomenergie Process for the production of spherical particles
FR2720645B1 (en) * 1994-06-03 1996-08-02 Oreal Process for obtaining a raw material in the form of granules, raw material in the form of granules and its use in the cosmetic, hair, veterinary or pharmaceutical fields.
FR2807199B1 (en) * 2000-04-04 2002-08-23 Franco Belge Combustibles PROCESS FOR PRODUCING GRANULES OF NUCLEAR FUEL MATERIAL
CN100427427C (en) * 2006-12-15 2008-10-22 清华大学 Method of preparing UO2 ceramic fuel microsphere
CN203139974U (en) * 2013-03-12 2013-08-21 河北一然生物科技有限公司 Equipment for manufacturing deeply-refrigerated particles
CN104446479A (en) * 2014-11-06 2015-03-25 中国核动力研究设计院 Method of preparing ceramic grade uranium dioxide ball
CN106268503B (en) * 2015-06-29 2020-01-17 南京邮电大学 Liquid nitrogen spray freezing granulation vacuum drying device and working method
FR3042987B1 (en) * 2015-11-04 2017-12-15 Commissariat Energie Atomique DEVICE FOR GRANULATING POWDERS BY CRYOGENIC ATOMIZATION
CN105924169B (en) * 2016-04-28 2018-05-08 中国核动力研究设计院 One kind is with waste and old UO2Powder is the high density UO of raw material2Pellet preparation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530261A (en) 1998-11-26 2002-09-17 コミツサリア タ レネルジー アトミーク Preparation of moldable powders by spray drying of uranium dioxide obtained by dry process conversion of UF6
JP2005134319A (en) 2003-10-31 2005-05-26 Japan Nuclear Cycle Development Inst States Of Projects Method for manufacturing mox fuel pellet
JP2008008644A (en) 2006-06-27 2008-01-17 Japan Atomic Energy Agency Granulating method of granule for pellet manufacturing
JP2009235325A (en) 2008-03-28 2009-10-15 Konica Minolta Opto Inc Production method for optical resin material, optical resin material, and optical element
JP2013504049A (en) 2009-09-02 2013-02-04 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for preparing a porous nuclear fuel based on at least one minor actinide
JP2013224925A (en) 2012-03-23 2013-10-31 Hitachi-Ge Nuclear Energy Ltd Method and system for treating spent fuel

Also Published As

Publication number Publication date
CN111032205A (en) 2020-04-17
GB2579740A (en) 2020-07-01
RU2020111125A (en) 2021-09-24
FR3070278B1 (en) 2020-01-24
RU2770610C2 (en) 2022-04-19
CN111032205B (en) 2022-07-05
JP2020531386A (en) 2020-11-05
GB2579740A8 (en) 2020-08-05
WO2019038497A1 (en) 2019-02-28
FR3070278A1 (en) 2019-03-01
GB2579740B (en) 2022-06-08
RU2020111125A3 (en) 2021-11-22
GB202002418D0 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP7258853B2 (en) Process for producing powders containing uranium oxide UO2, optionally plutonium oxide PuO2, and optionally americium oxide AmO2 and/or oxides of other minor actinides
US20230104365A1 (en) Fission product getter
US3087881A (en) Boiling water reactor with feed water injection nozzles
KR102084425B1 (en) Method for preparing a porous nuclear fuel
JPS5939719B2 (en) Nuclear fuel body and its manufacturing method
La Lumia et al. Dense and homogeneous MOX fuel pellets manufactured using the freeze granulation route
Ganguly et al. Sol-Gel microsphere pelletization process for fabrication of high-density ThO2—2% UO2 fuel for advanced pressurized heavy water reactors
JPH01148994A (en) Manufacture of nuclear fuel pellet for mixed oxide (u,pu)o2 base
Remy et al. Fabrication of uranium dioxide ceramic pellets with controlled porosity from oxide microspheres
CN1934656A (en) Method for producing ceramic nuclear fuel tablets, device and container for carrying out said method
US3355393A (en) Small spherical nuclear fuel particles and processes of making same
JP4075116B2 (en) Method for producing nuclear fuel particles and method for producing nuclear fuel pellets
US4016226A (en) Method of making porous nuclear fuel
Schram et al. The fabrication and irradiation of plutonium-containing inert matrix fuels for the ‘Once Though Then Out’experiment
JP2008008644A (en) Granulating method of granule for pellet manufacturing
JP2002536628A (en) Dry recycling method for (U, Pu) O2 mixed oxide nuclear fuel scrap
Gündüz et al. Effects of Different Parameters on the Densities of Uranium Dioxide and Uranium Dioxide–Gadolinium Oxide Fuels Produced by the Sol-Gel Technique
PL219069B1 (en) Method for obtaining uranium dioxide with spherical and irregular grains
DE2921423A1 (en) METHOD OF MANUFACTURING A SHAPED BODY
CA1169643A (en) Method for producing mixed-oxide nuclear fuel pellets soluble in nitric acid
KR100812952B1 (en) Zirconia added neutron absorbing pellets and their fabrication methods
US3278655A (en) Method for sphering refractory oxides
RU2672256C1 (en) Tablet for manufacturing a thermal element of nuclear reactor on quick neutrons
JPH08166482A (en) Preparation of mixed-oxide fuel
US3116106A (en) Preparation of high-density thorium oxide spheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7258853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150