JP7257897B2 - Pile evaluation method - Google Patents

Pile evaluation method Download PDF

Info

Publication number
JP7257897B2
JP7257897B2 JP2019122935A JP2019122935A JP7257897B2 JP 7257897 B2 JP7257897 B2 JP 7257897B2 JP 2019122935 A JP2019122935 A JP 2019122935A JP 2019122935 A JP2019122935 A JP 2019122935A JP 7257897 B2 JP7257897 B2 JP 7257897B2
Authority
JP
Japan
Prior art keywords
pile
elastic wave
ground
propagation velocity
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019122935A
Other languages
Japanese (ja)
Other versions
JP2021009071A (en
Inventor
洋之 堀田
貴俊 桐山
由佳 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2019122935A priority Critical patent/JP7257897B2/en
Publication of JP2021009071A publication Critical patent/JP2021009071A/en
Application granted granted Critical
Publication of JP7257897B2 publication Critical patent/JP7257897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、建築物の新築または建て替えに際して杭の支持性能を評価する杭評価方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pile evaluation method for evaluating the supporting performance of piles when constructing or rebuilding a building.

建築物の新築又は建て替えに際して、工費・工期の低減や地球環境への配慮から、既存建物の基礎杭を再利用する要求が高まっている。既存の杭の再利用に当たっては、その支持性能を評価するために、杭長や材料の健全性を確認する必要がある。しかし、既存建物の設計図書や施工記録は残存していない場合もあり、何らかの調査を行って実際の杭長を評価することになる。 BACKGROUND ART When constructing a new building or rebuilding it, there is an increasing demand for reusing the foundation piles of an existing building in order to reduce the construction cost and construction period and to consider the global environment. When reusing existing piles, it is necessary to confirm the pile length and soundness of materials in order to evaluate their bearing performance. However, in some cases, design documents and construction records for existing buildings do not exist, so some sort of survey is conducted to evaluate the actual pile length.

出願人は、杭評価方法として、衝撃弾性波試験に基づく杭長評価において、杭頭部で後退の弾性波速度を測定し、さらに地盤の影響による伝播速度の低下を数値解析により考慮して、杭長の評価制度を向上させる方法を開示した(特許文献1参照)。 As a pile evaluation method, the applicant measures the receding elastic wave velocity at the pile head in the pile length evaluation based on the impact elastic wave test, and considers the decrease in propagation speed due to the influence of the ground through numerical analysis. A method for improving the pile length evaluation system has been disclosed (see Patent Document 1).

特開2019-032303号公報JP 2019-032303 A

本発明は、簡便且つ的確に杭の支持性能を評価することが可能となる杭評価方法を提供することを目的とする。 An object of the present invention is to provide a pile evaluation method that enables simple and accurate evaluation of the support performance of piles.

本発明にかかる杭評価方法は、
杭の頭部をたたいて打撃波を発生させてから、前記打撃波が弾性波として前記杭を伝播し前記杭の下端で反射した反射波が弾性波として前記頭部に伝播するまでの実際の衝撃弾性波試験の立ち上がり時間差を取得するステップと、
前記杭の弾性波伝播速度を取得するステップと、
前記杭が予め定めた基準値よりも長いか否かを判定するステップと、
前記杭が基準値よりも長いと判定した場合、前記杭の弾性波伝播速度の測定値を低減して杭長を算定するステップと、
前記杭が基準値よりも短いと判定した場合、前記杭の弾性波伝播速度の測定値を用いて杭長を算定するステップと、
を有し、
前記杭の弾性波伝播速度の測定値を低減する杭長の算定は、以下の低減率の式又は前記式から導かれた図表を用いる
ことを特徴とする。

Figure 0007257897000001


ここで、ρpは杭の密度、Apは杭の断面積、Epは杭のヤング率、ρgは杭周地盤2aの密度、Agは杭周地盤2aの断面積、Egは杭周地盤2aのヤング率である。 The pile evaluation method according to the present invention is
After striking the head of a pile to generate an impact wave, the impact wave propagates through the pile as an elastic wave, and the reflected wave reflected at the lower end of the pile propagates to the head as an elastic wave. obtaining the rise time difference of the shock acoustic wave test of
obtaining the elastic wave propagation velocity of the pile;
determining whether the pile is longer than a predetermined reference value;
if the pile is determined to be longer than a reference value, reducing the measured value of the elastic wave propagation velocity of the pile to calculate the pile length;
if the pile is determined to be shorter than a reference value, calculating the pile length using the measured elastic wave velocity of the pile;
has
The calculation of the pile length that reduces the measured value of the elastic wave propagation velocity of the pile is characterized by using the following reduction rate formula or a diagram derived from the above formula.
Figure 0007257897000001


Here, ρ p is the density of the pile, A p is the cross-sectional area of the pile, E p is the Young's modulus of the pile, ρ g is the density of the pile surrounding ground 2a, A g is the cross-sectional area of the pile surrounding ground 2a, and E g is It is the Young's modulus of the pile surrounding ground 2a.

本発明にかかる杭評価方法によれば、簡便且つ的確に杭の支持性能を評価することが可能となる。 According to the pile evaluation method of the present invention, it is possible to easily and accurately evaluate the support performance of piles.

本実施形態の杭評価方法において考慮する杭及び杭周地盤の範囲を示す。The range of the pile and the surrounding ground of the pile considered in the pile evaluation method of this embodiment is shown. 本実施形態の杭評価方法における衝撃弾性波試験を行った地盤と杭の概要を示す。The outline of the ground and pile which performed the impact elastic wave test in the pile evaluation method of this embodiment is shown. 本実施形態の杭評価方法における杭の弾性波伝播速度低減率を求めるために行った3次元有限要素法の解析モデルを示す。3 shows an analysis model of a three-dimensional finite element method performed to obtain the elastic wave propagation velocity reduction rate of piles in the pile evaluation method of the present embodiment. 本実施形態の杭評価方法における杭の弾性波伝播速度低減率を求めるために行った3次元有限要素法解析の結果における杭周地盤の弾性波速度と杭の弾性波伝播速度の低減率の関係を示す。The relationship between the elastic wave velocity of the ground around the pile and the reduction rate of the elastic wave propagation velocity of the pile in the result of the three-dimensional finite element method analysis performed to obtain the elastic wave propagation velocity reduction rate of the pile in the pile evaluation method of this embodiment indicates 本実施形態の杭評価方法における杭の弾性波伝播速度低減率を求めるために行った3次元有限要素法解析の結果から導かれた杭周地盤の弾性波速度と考慮すべき杭周付加地盤厚さの関係を示す。The elastic wave velocity of the ground around the pile derived from the results of the three-dimensional finite element method analysis performed to determine the reduction rate of the elastic wave propagation velocity of the pile in the pile evaluation method of this embodiment and the additional ground thickness around the pile to be considered shows the relationship between 本実施形態の杭評価方法における杭周地盤の弾性波速度と杭の弾性波伝播速度の低減率の関係を示す。2 shows the relationship between the elastic wave velocity of the ground around the pile and the reduction rate of the elastic wave propagation velocity of the pile in the pile evaluation method of the present embodiment. 本実施形態の杭評価方法のフローチャートを示す。4 shows a flowchart of a pile evaluation method according to the present embodiment.

以下、図面を参照して本発明にかかる一実施形態の杭評価方法を説明する。 A pile evaluation method according to an embodiment of the present invention will be described below with reference to the drawings.

図1は、本実施形態の杭評価方法において考慮する杭及び杭周地盤の範囲を示す。図2は、本実施形態の杭評価方法における衝撃弾性波試験を行った地盤と杭の概要を示す。 FIG. 1 shows the range of piles and pile surrounding ground considered in the pile evaluation method of this embodiment. FIG. 2 shows an overview of the ground and piles subjected to the impact elastic wave test in the pile evaluation method of this embodiment.

本実施形態の杭評価方法で評価する杭1は、直径が2dの断面円形状、長さが(H+D)の棒状の部材とする。杭1は、上部が表層地盤2に埋まり、下端が支持地盤3に根入れされる。 The pile 1 to be evaluated by the pile evaluation method of the present embodiment is a bar-shaped member having a circular cross section with a diameter of 2d and a length of (H+D). The pile 1 is embedded in the surface ground 2 at its upper part and embedded in the supporting ground 3 at its lower end.

まず、空気中の杭を伝播する縦波について波動方程式を考える。杭長方向にエレメント法を適用し、厚さdxの杭に作用する力の釣り合いを考えると、鉛直下向きを正とすれば、次式で表す表面力が作用する。

Figure 0007257897000002

First, consider the wave equation for longitudinal waves propagating through piles in air. Applying the element method in the pile length direction and considering the balance of forces acting on a pile of thickness dx, if the vertical downward direction is positive, the surface force expressed by the following equation acts.
Figure 0007257897000002

また、これ以降で用いる各種物性値は定義した変数を用いて次式で表される。

Figure 0007257897000003


ここで、ρpは杭の密度、Apは杭の断面積、Epは杭のヤング率である。 Various physical property values used hereinafter are represented by the following equations using the defined variables.
Figure 0007257897000003


where ρ p is the pile density, A p is the pile cross-sectional area, and E p is the pile Young's modulus.

式(1-1)、式(1-2)の作用力を受ける杭の運動方程式は、以下の式で表される。

Figure 0007257897000004

The equation of motion of the pile that receives the acting forces of Equations (1-1) and (1-2) is expressed by the following equations.
Figure 0007257897000004

式(1-6f)は、波動方程式であり、弾性波速度Vp,pで波動が伝播する様子を表す。 Equation (1-6f) is a wave equation, and expresses how a wave propagates at elastic wave velocity Vp,p.

次に、地中の杭1を伝播する縦波について説明する。 Next, longitudinal waves propagating through the underground pile 1 will be described.

地中の杭1を伝播する縦波は、杭周の厚さrの部分の杭周地盤2aが杭1と一体に振動するものと仮定する。そして、杭長方向にエレメント法を適用する。厚さdxの杭要素に作用する力の釣り合いを考えると、鉛直下向きを正とすれば、次式で表す表面力が作用する。

Figure 0007257897000005

It is assumed that longitudinal waves propagating through the pile 1 in the ground vibrate together with the pile 1 in the ground 2a around the pile at a thickness r. Then, the element method is applied in the pile length direction. Considering the balance of forces acting on a pile element of thickness dx, if the vertical downward direction is positive, the surface force expressed by the following equation acts.
Figure 0007257897000005

また、これ以降で用いる各種物性値は定義した変数を用いて次式で表される。

Figure 0007257897000006


ここで、ρpは杭の密度、Apは杭の断面積、σpは杭の軸応力、Epは杭のヤング率、mgは杭周地盤2aの質量、ρgは杭周地盤2aの密度、Agは杭周地盤2aの断面積、σgは杭周地盤2aの軸応力、Egは杭周地盤2aのヤング率である。 Various physical property values used hereinafter are represented by the following equations using the defined variables.
Figure 0007257897000006


where ρ p is the density of the pile, A p is the cross-sectional area of the pile, σ p is the axial stress of the pile, E p is the Young's modulus of the pile, m g is the mass of the pile surrounding ground 2a, and ρ g is the pile surrounding ground. The density of 2a, A g is the cross-sectional area of the pile surrounding ground 2a, σ g is the axial stress of the pile surrounding ground 2a, and E g is the Young's modulus of the pile surrounding ground 2a.

式(2-1)、式(2-2)の作用力を受ける杭要素の運動方程式は、以下の式で表される。この時、杭要素の運動は、周辺地盤の運動も伴うと考え、杭半径dに対し、杭周地盤を付加したd+rの範囲に縦波が伝播すると仮定する。

Figure 0007257897000007

The equation of motion of the pile element that receives the acting forces of Equations (2-1) and (2-2) is expressed by the following equations. At this time, it is assumed that the motion of the pile element is accompanied by the motion of the surrounding ground, and the longitudinal wave propagates in the range of d + r, which is the pile radius d plus the pile surrounding ground.
Figure 0007257897000007

式(2-6)を考慮して、式(1-6f)と式(2-10g)を比較すると、式(2-11)は弾性波伝播速度の低減率を表していることがわかる。 Comparing the equations (1-6f) and (2-10g) in consideration of the equation (2-6), it can be seen that the equation (2-11) expresses the reduction rate of the elastic wave propagation velocity.

以上の検討により、杭1と一体になって振動する杭周地盤の厚さrが決定すれば、地中における杭1の弾性波伝播速度の低減率を求めることができる。 If the thickness r of the ground around the pile that vibrates integrally with the pile 1 is determined from the above examination, the reduction rate of the elastic wave propagation velocity of the pile 1 in the ground can be obtained.

次に、杭周地盤の厚さrを決定する方法について説明する。杭1と一体となって振動する杭周地盤2aの厚さrを決定するために、杭1の衝撃弾性波試験を模擬したパラメトリック・スタディーを実施する。 Next, a method for determining the thickness r of the ground surrounding the pile will be described. In order to determine the thickness r of the pile surrounding ground 2a that vibrates together with the pile 1, a parametric study simulating an impact elastic wave test of the pile 1 is carried out.

図3は、本実施形態の杭評価方法における杭の弾性波伝播速度低減率を求めるために行った3次元有限要素法の解析モデルを示す。 FIG. 3 shows an analysis model of the three-dimensional finite element method performed to obtain the elastic wave propagation velocity reduction rate of the pile in the pile evaluation method of this embodiment.

解析条件は、以下のように設定する。
・杭1の条件
(直径)2d=2m
(長さ)H+D=31m
(単位体積重量)γ=9.8ρg=23kN/m3
(ポアソン比)ν=0.2
(縦波伝播速度)Vp(3D)=4000m/s
(ヤング率)E=3.31×107kN/m2
・表層地盤2の条件
(幅)W=10m
(深さ)H=30m
(単位体積重量)γ=9.8ρg=14又は16又は18kN/m3(表1参照)

(ポアソン比)ν=0.49
・支持地盤3の条件
(幅)W=10m
(深さ)H=11m
(単位体積重量)γ=9.8ρg=18kN/m3
(ポアソン比)ν=0.49
The analysis conditions are set as follows.
・Conditions for pile 1 (diameter) 2d = 2m
(Length) H + D = 31m
(Unit volume weight) γ = 9.8ρ g = 23kN/m 3
(Poisson's ratio) ν = 0.2
(Longitudinal wave propagation velocity) Vp(3D) = 4000m/s
(Young's modulus) E=3.31×107kN/ m2
・Conditions for Surface Ground 2 (Width) W = 10m
(Depth) H = 30m
(Unit volume weight) γ = 9.8ρ g = 14 or 16 or 18 kN/m 3 (See Table 1)

(Poisson's ratio) ν = 0.49
・Conditions of supporting ground 3 (width) W = 10m
(Depth) H = 11m
(Unit volume weight) γ = 9.8ρ g = 18kN/m 3
(Poisson's ratio) ν = 0.49

また、表層地盤2は、以下の表1のように設定する。

Figure 0007257897000008


ここで、γは単位体積重量、Vs,g は地盤の弾性波速度、G=ρVs,g 2は地盤のせん断弾性係数を示す。 The surface ground 2 is set as shown in Table 1 below.
Figure 0007257897000008


where γ is the unit weight, V s,g is the elastic wave velocity of the ground, and G = ρV s,g 2 is the shear elastic modulus of the ground.

図4は、本実施形態の杭評価方法における杭の弾性波伝播速度低減率を求めるために行った3次元有限要素法解析の結果における杭周地盤の弾性波速度と杭の弾性波伝播速度の低減率の関係を示す。 FIG. 4 shows the elastic wave velocity of the ground around the pile and the elastic wave propagation velocity of the pile in the results of the three-dimensional finite element method analysis performed to obtain the elastic wave propagation velocity reduction rate of the pile in the pile evaluation method of this embodiment. Fig. 3 shows the relation of reduction rate.

図4に示すように、粘土、シルト又は砂の表層地盤2において、地盤の弾性波速度Vs,gが速くなれば、杭1の弾性波伝播速度Vp,pの低減率も大きくなる。 As shown in FIG. 4, in the surface layer 2 of clay, silt, or sand, the faster the elastic wave velocity V s,g of the ground, the larger the reduction rate of the elastic wave propagation velocity V p,p of the pile 1 .

図5は、本実施形態の杭評価方法における杭の弾性波伝播速度低減率を求めるために行った3次元有限要素法解析の結果から導かれた杭周地盤の弾性波速度と考慮すべき杭周付加地盤厚さの関係を示す。 Fig. 5 shows the elastic wave velocity of the ground around the pile derived from the result of the three-dimensional finite element method analysis performed to obtain the elastic wave propagation velocity reduction rate of the pile in the pile evaluation method of this embodiment and the pile to be considered. Figure 1 shows the relationship of additional ground thickness around the perimeter.

杭周地盤2aの厚さrは、式(2-11)に式(2-8)及び式(2-9)を代入して求める。図5に示した結果は、杭1の半径が1mに対するものなので、rの値は、杭1の半径に対する杭周地盤2aの厚さの比と見てもよい。図5に示すように、表層地盤2の弾性波速度Vs,gが大きい程、杭周地盤2aの厚さrが薄くなることがわかる。 The thickness r of the pile surrounding ground 2a is obtained by substituting the equations (2-8) and (2-9) into the equation (2-11). Since the results shown in FIG. 5 are for the radius of the pile 1 of 1 m, the value of r may be regarded as the ratio of the thickness of the pile surrounding ground 2a to the radius of the pile 1. As shown in FIG. 5, it can be seen that the thickness r of the pile surrounding ground 2a decreases as the elastic wave velocity V s,g of the surface ground 2 increases.

図6は、本実施形態の杭評価方法における杭周地盤の弾性波速度と杭の弾性波伝播速度の低減率の関係を示す。 FIG. 6 shows the relationship between the elastic wave velocity of the ground around the pile and the reduction rate of the elastic wave propagation velocity of the pile in the pile evaluation method of this embodiment.

図6では、図4に対して回帰直線の勾配と切片の値を外挿して、礫相当の単位体積当たりの質量γ=20kN/m3の近似直線を設定している。このチャートを用いることにより、土質毎に表層地盤2の弾性波速度Vs,gに対する杭1の弾性波伝播速度Vp,pの低減率を求めることができる。 In FIG. 6, by extrapolating the values of the slope and intercept of the regression line with respect to FIG. 4, an approximation straight line of mass per unit volume equivalent to pebbles γ=20 kN/m 3 is set. By using this chart, it is possible to obtain the reduction rate of the elastic wave propagation velocity V p, p of the pile 1 with respect to the elastic wave velocity V s,g of the subsurface ground 2 for each soil type.

図7は、本実施形態の杭評価方法のフローチャートを示す。ここでは、今まで説明した内容をフローチャートにし、順序ごとに簡単に確認する。 FIG. 7 shows a flowchart of the pile evaluation method of this embodiment. Here, the content explained so far is made into a flow chart, and it is easily confirmed for each order.

まず、ステップ1で、弾性波伝播試験を行う(ST1)。弾性波伝播試験は、特許文献1に示したように行う。まず、杭1の頭部11の先端をハンマー等でたたき打撃波を発生させる。打撃波は、弾性波として杭1を伝播する。伝播した弾性波は、杭1の下端で反射する。反射した弾性波は反射波として、杭1を伝播し、頭部11の先端に戻る。そして、杭1の頭部で打撃波を発生させてから反射波が頭部に伝播するまでの立ち上がり時間差を取得する。 First, in step 1, an elastic wave propagation test is performed (ST1). Elastic wave propagation tests are performed as shown in US Pat. First, the tip of the head portion 11 of the pile 1 is hit with a hammer or the like to generate an impact wave. The impact wave propagates through the pile 1 as an elastic wave. The propagated elastic wave is reflected at the lower end of pile 1 . The reflected elastic wave propagates through the stake 1 as a reflected wave and returns to the tip of the head 11 . Then, the rise time difference between the generation of the impact wave at the head of the pile 1 and the propagation of the reflected wave to the head is acquired.

次に、ステップ2で、杭の弾性波伝播速度を取得する(ST2)。杭1の弾性波伝播速度は、杭1の気中部分での測定間隔lと測定された時間Δtを用いて、V=l/Δt によって求められる。 Next, in step 2, the elastic wave propagation velocity of the pile is acquired (ST2). The elastic wave propagation velocity of the pile 1 is determined by V=l/.DELTA.t, using the measured distance l in the air part of the pile 1 and the measured time .DELTA.t.

次に、ステップ3で、基準値より長い杭か否かを判定する(ST3)。杭1は、ある長さ以上になると、地盤の影響による弾性波伝播速度の変化が顕著になる。したがって、地盤の影響が強くなる基準値を予め決めておき、その基準値よりも長いか否かを判定する。 Next, in step 3, it is determined whether or not the pile is longer than the reference value (ST3). When the pile 1 exceeds a certain length, the change in elastic wave propagation speed due to the influence of the ground becomes significant. Therefore, a reference value at which the influence of the ground becomes stronger is determined in advance, and it is determined whether or not it is longer than the reference value.

ステップ3において、杭が基準値よりも長いと判定した場合、ステップ4で、杭1の弾性波伝播速度の測定値を低減して杭長を算定する(ST4)。算定の際には、式(2-11)及び図6に示した低減率のグラフ等の式(2-11)から導かれた図表を用いればよい。 If it is determined in step 3 that the pile is longer than the reference value, in step 4, the measured value of the elastic wave propagation velocity of pile 1 is reduced to calculate the pile length (ST4). For the calculation, the graph derived from the equation (2-11) such as the graph of the reduction rate shown in the equation (2-11) and FIG. 6 may be used.

ステップ3において、杭が基準値よりも短いと判定した場合、ステップ5で、杭1の弾性波伝播速度の測定値を用いて杭長を算定する(ST5)。 If it is determined in step 3 that the pile is shorter than the reference value, in step 5, the pile length is calculated using the measured value of the elastic wave propagation velocity of pile 1 (ST5).

このように、本実施形態の杭評価方法によれば、簡便且つ的確に杭長を評価することが可能となる。 Thus, according to the pile evaluation method of the present embodiment, it is possible to easily and accurately evaluate the pile length.

なお、ステップ3以降をなくし、常に杭1の弾性波伝播速度の測定値を低減して杭長を算定することにしてもよい。 It should be noted that the pile length may be calculated by eliminating the step 3 and subsequent steps and always reducing the measured value of the elastic wave propagation velocity of the pile 1 .

以上、本実施形態の杭評価方法は、杭1の頭部をたたいて打撃波を発生させてから、打撃波が弾性波として杭1を伝播し杭1の下端で反射した反射波が弾性波として頭部に伝播するまでの実際の衝撃弾性波試験の立ち上がり時間差を取得するステップと、杭1の弾性波伝播速度を取得するステップと、杭1が予め定めた基準値よりも長いか否かを判定するステップと、杭1が基準値よりも長いと判定した場合、杭1の弾性波伝播速度の測定値を低減して杭長を算定するステップと、杭1が基準値よりも短いと判定した場合、杭の弾性波伝播速度の測定値を用いて杭長を算定するステップと、を有し、杭1の弾性波伝播速度の測定値を低減する杭長の算定は、以下の低減率の式又は前記式から導かれた図表を用いる。したがって、簡便に杭の支持性能を評価することが可能となる。

Figure 0007257897000009


ここで、ρpは杭の密度、Apは杭の断面積、Epは杭のヤング率、ρgは杭周地盤2aの密度、Agは杭周地盤2aの断面積、Egは杭周地盤2aのヤング率である。 As described above, in the pile evaluation method of the present embodiment, the head of the pile 1 is hit to generate an impact wave, and the impact wave propagates through the pile 1 as an elastic wave, and the reflected wave reflected at the lower end of the pile 1 is elastic. Obtaining the rise time difference of the actual impact elastic wave test until it propagates to the head as a wave, obtaining the elastic wave propagation speed of the pile 1, and whether the pile 1 is longer than a predetermined reference value a step of determining whether the pile 1 is longer than the reference value, a step of calculating the pile length by reducing the measured value of the elastic wave propagation velocity of the pile 1, and a step of calculating the pile length when the pile 1 is shorter than the reference value and calculating the pile length using the measured value of the elastic wave propagation velocity of the pile, and the calculation of the pile length that reduces the measured value of the elastic wave propagation velocity of the pile 1 is as follows. Use the rate of reduction formula or a chart derived from the above formula. Therefore, it is possible to easily evaluate the support performance of the pile.
Figure 0007257897000009


Here, ρ p is the density of the pile, A p is the cross-sectional area of the pile, E p is the Young's modulus of the pile, ρ g is the density of the pile surrounding ground 2a, A g is the cross-sectional area of the pile surrounding ground 2a, and E g is It is the Young's modulus of the pile surrounding ground 2a.

なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えてもよい。 It should be noted that the present invention is not limited by this embodiment. That is, in describing the embodiments, many specific details are included for the purposes of illustration, but those skilled in the art may make many variations and modifications to these details.

1…杭
11…頭部
12…下部
2…地表面
3…地盤
1... Pile 11... Head 12... Lower part 2... Ground surface 3... Ground

Claims (1)

杭の頭部をたたいて打撃波を発生させてから、前記打撃波が弾性波として前記杭を伝播し前記杭の下端で反射した反射波が弾性波として前記頭部に伝播するまでの実際の衝撃弾性波試験の立ち上がり時間差を取得するステップと、
前記杭の弾性波伝播速度を取得するステップと、
前記杭が予め定めた基準値よりも長いか否かを判定するステップと、
前記杭が基準値よりも長いと判定した場合、前記杭の弾性波伝播速度の測定値を低減して杭長を算定するステップと、
前記杭が基準値よりも短いと判定した場合、前記杭の弾性波伝播速度の測定値を用いて杭長を算定するステップと、
を有し、
前記杭の弾性波伝播速度の測定値を低減する杭長の算定は、以下の低減率の式又は前記式から導かれた図表を用いる
ことを特徴とする杭評価方法。
Figure 0007257897000010


ここで、ρpは杭の密度、Apは杭の断面積、Epは杭のヤング率、ρgは杭周地盤2aの密度、Agは杭周地盤2aの断面積、Egは杭周地盤2aのヤング率である。
After striking the head of a pile to generate an impact wave, the impact wave propagates through the pile as an elastic wave, and the reflected wave reflected at the lower end of the pile propagates to the head as an elastic wave. obtaining the rise time difference of the shock acoustic wave test of
obtaining the elastic wave propagation velocity of the pile;
determining whether the pile is longer than a predetermined reference value;
if the pile is determined to be longer than a reference value, reducing the measured value of the elastic wave propagation velocity of the pile to calculate the pile length;
if the pile is determined to be shorter than a reference value, calculating the pile length using the measured elastic wave velocity of the pile;
has
A pile evaluation method, wherein the calculation of the pile length that reduces the measured value of the elastic wave propagation velocity of the pile uses the following reduction rate formula or a diagram derived from the above formula.
Figure 0007257897000010


Here, ρ p is the density of the pile, A p is the cross-sectional area of the pile, E p is the Young's modulus of the pile, ρ g is the density of the pile surrounding ground 2a, A g is the cross-sectional area of the pile surrounding ground 2a, and E g is It is the Young's modulus of the pile surrounding ground 2a.
JP2019122935A 2019-07-01 2019-07-01 Pile evaluation method Active JP7257897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019122935A JP7257897B2 (en) 2019-07-01 2019-07-01 Pile evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019122935A JP7257897B2 (en) 2019-07-01 2019-07-01 Pile evaluation method

Publications (2)

Publication Number Publication Date
JP2021009071A JP2021009071A (en) 2021-01-28
JP7257897B2 true JP7257897B2 (en) 2023-04-14

Family

ID=74199931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019122935A Active JP7257897B2 (en) 2019-07-01 2019-07-01 Pile evaluation method

Country Status (1)

Country Link
JP (1) JP7257897B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155479A (en) 2016-03-01 2017-09-07 株式会社アミック Anchor and diagnosis method
JP2019032303A (en) 2017-08-07 2019-02-28 清水建設株式会社 Pile evaluation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155479A (en) 2016-03-01 2017-09-07 株式会社アミック Anchor and diagnosis method
JP2019032303A (en) 2017-08-07 2019-02-28 清水建設株式会社 Pile evaluation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
今田 和夫、外2名,模型杭を用いたインテグリティ試験における地盤拘束の影響に関する研究,土木学会論文集,第2000巻第652号,日本,公益社団法人 土木学会,2000年06月21日,第91頁~第102頁,https://www.jstage.jst.go.jp/article/jscej1984/2000/652/2000_652_91/_pdf
山本 辰徳、外2名,衝撃載荷試験に用いる杭の縦波伝搬速度に関する検討,地盤工学研究発表会発表講演集,第43巻2号,日本,公益社団法人 地盤工学会,2008年06月12日,第1261頁~第1262頁,http://www.japanpile.co.jp/ir/uploads/05_50.pdf

Also Published As

Publication number Publication date
JP2021009071A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
Prendergast et al. An investigation of the changes in the natural frequency of a pile affected by scour
Ha et al. Investigation of seismic performances of unconnected pile foundations using dynamic centrifuge tests
JP6731309B2 (en) Pile performance evaluation method
Rezaei et al. Investigation of peak particle velocity variations during impact pile driving process
Tran et al. Evaluation of the soil–pile interface properties in the lateral direction for seismic analysis in sand
Prendergast et al. Experimental application of FRF-based model updating approach to estimate soil mass and stiffness mobilised under pile impact tests
Ni et al. Inclination correction of the parallel seismic test for pile length detection
JP7257748B2 (en) Pile evaluation method
JP7257897B2 (en) Pile evaluation method
Falkner et al. Rapid impact compaction for middle-deep improvement of the ground–numerical and experimental investigation
JP5126882B2 (en) Stability analysis method for empty stone walls
Mirdamadi Deterministic and probabilistic simple model for single pile behavior under lateral truck impact
US10451399B2 (en) Methods and systems for non-destructive estimation of a length of a member
Kwon et al. 3D dynamic numerical modeling for soil-pile-structure interaction in centrifuge tests
JP4766423B2 (en) Evaluation method and program for slope failure and structural damage by energy
Tran et al. Soil dynamic stiffness and wave velocity measurement through dynamic cone penetrometer and wave analysis
Shaban et al. Interpretation of In Situ State Parameters of Piezocone Penetration Tests in High Pile Rebound Soils
JP2008039534A (en) Method for evaluating soundness of foundation structure
Perikleous et al. Energy losses during driving due to tapered section of monopile
JP4382383B2 (en) Input wave calculation system and input wave calculation method
JP7357989B1 (en) Rapid loading test method for piles using interval type unloading point connection method
Noori et al. Effect of pile driving on ground vibration in clay soil: Numerical and experimental study
Alwalan High Strain Dynamic Test on Helical Piles: Analytical and Numerical Investigations
Ambassa et al. Numerical Finite Element Analysis of the Soil Mass Subjected to the Impulsive Load of a Standard Penetration Test (SPT): Assessment of Young’s Modulus of Soils
Jugdernamjil et al. Prediction of Ultimate Lateral Capacity of Rigid Spiral Pile under Static Loading in Cohesionless soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7257897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150