JP2008039534A - Method for evaluating soundness of foundation structure - Google Patents

Method for evaluating soundness of foundation structure Download PDF

Info

Publication number
JP2008039534A
JP2008039534A JP2006212804A JP2006212804A JP2008039534A JP 2008039534 A JP2008039534 A JP 2008039534A JP 2006212804 A JP2006212804 A JP 2006212804A JP 2006212804 A JP2006212804 A JP 2006212804A JP 2008039534 A JP2008039534 A JP 2008039534A
Authority
JP
Japan
Prior art keywords
ground
value
shear stiffness
design level
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006212804A
Other languages
Japanese (ja)
Other versions
JP4863813B2 (en
Inventor
Kuniyuki Minegishi
邦行 峯岸
Nobumasa Mizuno
進正 水野
Hiroshi Haneya
洋 羽矢
Satoshi Nakano
聡 中野
Hiroshi Ushijima
宏 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUYAMA CONSULTANTS CO Ltd
Railway Technical Research Institute
Original Assignee
FUKUYAMA CONSULTANTS CO Ltd
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUYAMA CONSULTANTS CO Ltd, Railway Technical Research Institute filed Critical FUKUYAMA CONSULTANTS CO Ltd
Priority to JP2006212804A priority Critical patent/JP4863813B2/en
Publication of JP2008039534A publication Critical patent/JP2008039534A/en
Application granted granted Critical
Publication of JP4863813B2 publication Critical patent/JP4863813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the soundness of a foundation structure based on the vibration data by excitation of a superstructure. <P>SOLUTION: As shown in the figure, in this method, for the structure consisting of the superstructure 1 and the foundation structure 3, a vibration test is performed to the superstructure 1 and its vibration data is measured by a sensor part 5. The vibration data is analyzed by a data record-analysis system 9 and the soundness of the foundation structure 3 is evaluated. In a first technique, the shear rigidity G and the shear strain γ of the ground are calculated from the vibration data, the sheer rigidity GO of the ground of an initial level and the shear rigidity G' of a design level are calculated from these values, stable calculation is carried out to a structural model of a structure considering the ground spring constant determined from the shear rigidity G', and the soundness of the foundation structure is evaluated. In a second technique, the limit value G' (L) of the shear rigidity is determined assuming deformation of the ground and the foundation, and the soundness is evaluated by comparing the analytical natural frequency at the limit value and the natural frequency of actual measurement. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基礎構造物の健全度評価方法に係り、更に詳しくは、衝撃試験を元に求めた地盤のひずみ依存性を考慮したせん断剛性から算出する地盤ばねを用いた基礎構造物の健全度評価方法に関する。   The present invention relates to a method for evaluating the soundness of a foundation structure, and more specifically, the soundness of a foundation structure using a ground spring calculated from the shear stiffness considering the strain dependence of the ground obtained based on an impact test. It relates to the evaluation method.

従来、構造物の健全度を、被検査対象物を人為的に加振し、固有振動数の変化から評価する方法が提案されている(特許文献1参照)。   Conventionally, a method has been proposed in which the soundness of a structure is evaluated by artificially vibrating an object to be inspected and a change in natural frequency (see Patent Document 1).

特開2005−180951号公報JP 2005-180951 A

しかしながら、基礎構造物は、地盤に接しているため、境界条件として地盤ばねを考慮しなければならず、健全度評価が明確でないという問題があった。   However, since the foundation structure is in contact with the ground, the ground spring must be considered as a boundary condition, and there is a problem that the soundness evaluation is not clear.

本発明は、このような問題を鑑みてなされたもので、その目的は、基礎構造物の健全度を、上部構造物の人為的な加振による振動データを元に、地盤のひずみ依存性を考慮した地盤のせん断剛性から算出した地盤ばねを用いて評価する方法を提案することである。   The present invention has been made in view of such problems. The purpose of the present invention is to determine the soundness of the foundation structure and the strain dependence of the ground based on vibration data obtained by artificial excitation of the upper structure. It is to propose a method to evaluate using the ground spring calculated from the shear rigidity of the ground.

前述の課題を解決するための発明は、構造物に人為的に振動を与え、それによる振動データを測定する振動試験工程と、振動試験工程により得られた振動データから構造物の固有振動数を算定する固有振動数算定工程と、固有振動数算定工程により算定した構造物の固有振動数を用いて地盤のせん断剛性の実測値を求める地盤せん断剛性算出工程と、振動試験工程により得られた振動データから地盤のせん断ひずみを算出するせん断ひずみ算出工程と、地盤せん断剛性実測値とせん断ひずみから、設計レベルの地盤せん断剛性値を求める設計レベル地盤せん断剛性算定工程と、設計レベルの地盤せん断剛性値から求めた地盤ばねを考慮したモデルにより基礎構造物の健全度を評価する健全度評価工程と、を有することを特徴とする基礎構造物の健全度評価方法である。
以上のように、加振による構造物の振動データを元に求めた地盤のせん断剛性の実測値から設計レベルの地盤のせん断剛性値を求め、この設計レベルの地盤のせん断剛性値を元に求まる地盤ばねに基づいたモデルを使用することにより、基礎構造物の健全度を評価できる。
The invention for solving the above-described problems includes a vibration test process for artificially giving vibration to a structure and measuring vibration data thereby, and the natural frequency of the structure from the vibration data obtained by the vibration test process. The natural frequency calculation process to be calculated, the ground shear stiffness calculation process to obtain the measured value of the ground shear stiffness using the natural frequency of the structure calculated by the natural frequency calculation process, and the vibration obtained by the vibration test process A shear strain calculation process that calculates the shear strain of the ground from the data, a design level ground shear stiffness calculation process that calculates the ground shear stiffness value of the design level from the actual ground shear stiffness measurement value and the shear strain, and a ground shear stiffness value of the design level And a soundness evaluation process for evaluating the soundness of the foundation structure by a model considering the ground spring obtained from It is healthy evaluation method.
As described above, the shear stiffness value of the ground at the design level is obtained from the actual value of the shear stiffness of the ground obtained based on the vibration data of the structure due to vibration, and the shear stiffness value of the ground at this design level is obtained based on the measured value. By using a model based on ground spring, the soundness of the foundation structure can be evaluated.

ここで、健全度評価方法には2種類の方法がある。
まず、健全度評価工程は、設計レベルの地盤せん断剛性値を考慮したモデルに対して安定計算を実施し、安定計算の結果から基礎構造物の健全度を評価する方法である。
これは、設計レベルの地盤せん断剛性値から求めた地盤ばねを含む構造物のモデルで安定計算を実施することにより、基礎構造物の健全度を評価するものである。
Here, there are two types of soundness evaluation methods.
First, the soundness evaluation step is a method of performing a stability calculation on a model considering a ground shear stiffness value at the design level, and evaluating the soundness of the foundation structure from the result of the stability calculation.
This is to evaluate the soundness of the foundation structure by performing stability calculation with a model of the structure including the ground spring obtained from the ground shear stiffness value at the design level.

一方、健全度評価方法は次のようであってもよい。すなわち、健全度評価工程は、設計レベルの地盤せん断剛性値を使用した安定計算により設計レベルの限界地盤せん断剛性値を求める設計レベル限界地盤せん断剛性値算定工程を有し、設計レベル限界地盤せん断剛性値算定工程により求めた設計レベルの限界地盤せん断剛性値を考慮して算出した地盤ばねを取り付けた構造物のモデルに対して振動試験レベルの地盤ばねの変更を行ったモデルの解析固有振動数と、固有振動数算定工程から求める実測固有振動数を比較することにより、基礎構造物の健全度を評価する。
ここで、限界地盤せん断剛性値は、仮想的に基礎の変状を想定し、その変状に対して安定度を満足しうる最低限の地盤せん断剛性値である。
On the other hand, the soundness evaluation method may be as follows. In other words, the soundness evaluation process has a design level limit ground shear stiffness value calculation step to obtain a design level limit ground shear stiffness value by a stable calculation using the design level ground shear stiffness value. The analysis natural frequency of the model in which the ground spring at the vibration test level was changed to the model of the structure with the ground spring calculated considering the limit ground shear stiffness value at the design level obtained by the value calculation process The soundness of the foundation structure is evaluated by comparing the measured natural frequencies obtained from the natural frequency calculation process.
Here, the limit ground shear stiffness value is a minimum ground shear stiffness value that virtually assumes the deformation of the foundation and can satisfy the stability against the deformation.

そして、設計レベル限界地盤せん断剛性値算出工程は、設計レベルの地盤せん断剛性値を初期値としてその値を徐々に低下させ、その地盤せん断剛性値に対応する地盤ばね定数を元に安定計算を実施し、安定度を満足する最低の前記設計レベルの地盤せん断剛性値を設計レベル限界地盤せん断剛性値することが好ましい。   In the design level limit ground shear stiffness value calculation process, the design level ground shear stiffness value is set as the initial value, and the value is gradually reduced. Based on the ground spring constant corresponding to the ground shear stiffness value, stable calculation is performed. It is preferable that the ground shear stiffness value of the design level that satisfies the stability is the design level limit ground shear stiffness value.

また、設計レベル限界地盤せん断剛性値算出工程は、杭基礎あるいはケーソン基礎の場合に、所定の設計レベルの地盤せん断剛性値から求めた地盤ばね定数を用い、土被り量を低下させて安定計算を実施し、安定度を満足する最低の前記設計レベルの地盤せん断剛性値を設定レベル限界地盤せん断剛性値としてもよい。
さらに、設計レベル限界地盤せん断剛性値算出工程は、直接基礎の場合に、所定の設計レベルの地盤せん断剛性値から求めた地盤ばね定数を用い、洗掘量を変化させて安定計算を実施し、安定度を満足する最低の前記設計レベルの地盤せん断剛性値を設定レベル限界地盤せん断剛性値としてもよい。
In addition, the design level limit ground shear stiffness value calculation process uses a ground spring constant obtained from the ground shear stiffness value of a predetermined design level for pile foundations or caisson foundations to reduce the amount of soil covering and perform stable calculation. The ground shear stiffness value at the lowest design level that is implemented and satisfies the stability may be set as the set level limit ground shear stiffness value.
Furthermore, the design level limit ground shear stiffness value calculation process, in the case of direct foundation, using the ground spring constant obtained from the ground shear stiffness value of the predetermined design level, to perform the stability calculation by changing the scouring amount, The lowest ground shear stiffness value at the design level that satisfies the stability may be set as the set level limit ground shear stiffness value.

以上の方法により、基礎の変状を想定した場合の設計レベルの限界地盤せん断剛性値と、前記設計レベルの地盤せん断剛性値と前記設計レベルの限界地盤せん断剛性値の関係を地盤せん断剛性実測値に適用して求めた振動試験レベルの限界地盤せん断剛性に関して、それぞれ固有振動数(設計レベルと振動試験レベル)を求めることが可能で、この内、振動試験レベルの固有振動数と前記固有振動数算定工程から求める固有振動数を比較することにより、健全性の評価が可能になる。   By the above method, the ground level shear stiffness value at the design level when the deformation of the foundation is assumed, and the relationship between the ground shear stiffness value at the design level and the limit ground shear stiffness value at the design level are measured values of the ground shear stiffness. It is possible to determine the natural frequency (design level and vibration test level) for the limit ground shear stiffness at the vibration test level obtained by applying to the vibration test level. Of these, the natural frequency at the vibration test level and the natural frequency Soundness can be evaluated by comparing the natural frequencies obtained from the calculation process.

本発明の基礎構造物の健全度評価方法により、上部構造物の人為的な加振による振動データを元に、地盤のひずみ依存性を考慮した地盤ばねを用いて基礎構造物の健全度を的確に評価することが可能になる。   The foundation structure soundness evaluation method of the present invention is used to accurately determine the soundness of the foundation structure using ground springs that take into account the strain dependence of the ground, based on vibration data from artificial vibration of the superstructure. It becomes possible to evaluate to.

以下、図面に基づいて本発明の形態を詳細に説明する。図1は、本発明の実施の形態にかかる健全度評価方法を実現するためのシステム構成図、図2は、第1の健全度評価方法の処理の流れを示すフローチャート、図3は、加振データから地盤のひずみおよび地盤のせん断剛性を求める処理の説明図、図4は、せん断剛性低下率とせん断ひずみの関係を示す図、図5は、第2の健全度評価方法の処理の流れを示すフローチャート、図6は、せん断剛性の限界値の説明図、図7は、限界値算出の説明図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system configuration diagram for realizing a soundness evaluation method according to an embodiment of the present invention, FIG. 2 is a flowchart showing a processing flow of the first soundness evaluation method, and FIG. FIG. 4 is a diagram showing the relationship between the shear stiffness reduction rate and the shear strain, and FIG. 5 is a flowchart of the processing of the second soundness evaluation method. FIG. 6 is an explanatory diagram of the limit value of shear rigidity, and FIG. 7 is an explanatory diagram of calculation of the limit value.

構造物の構造はさまざまであるが、一般に、図1(a)に示すように、地面7より下部の地中に構築されている基礎構造物3と、基礎構造物3の上部に構築される上部構造物1よりなる。
地面7より上部の部分は、目視等により状態を直接確認することが可能であるが、地面7より下の地中にある基礎構造物3の状態を直接目で確かめることが困難である。
Although the structures of the structures are various, in general, as shown in FIG. 1A, the foundation structure 3 constructed in the ground below the ground 7 and the top of the foundation structure 3 are constructed. It consists of an upper structure 1.
Although it is possible to directly confirm the state of the portion above the ground 7 by visual observation or the like, it is difficult to directly confirm the state of the foundation structure 3 in the ground below the ground 7.

本実施の形態の基礎構造物の健全度診断方法は、以上のような基礎構造物3の健全度を判定することを目的とする方法であり、図1に示すような構成により実現可能である。
図1(a)に示すように、上部構造物1に対して矢印Fのように人為的に加振する。この加振は、例えば重錘等を矢印Fのように上部構造物1に打撃することにより加えることができる(衝撃振動試験)。また、加振器等による強制振動試験を行ってもよいし、急速開放ジャッキによって起振してもよい。
また、上部構造物1には、例えば天端にセンサ部5を設置し、以上の方法による加振の結果起こる構造物の振動を計測する。
The foundation structure soundness diagnostic method of the present embodiment is a method for determining the soundness of the foundation structure 3 as described above, and can be realized by the configuration shown in FIG. .
As shown in FIG. 1A, the upper structure 1 is artificially vibrated as indicated by an arrow F. This vibration can be applied, for example, by hitting a weight or the like on the upper structure 1 as indicated by an arrow F (impact vibration test). Moreover, you may perform a forced vibration test with a vibrator etc., and you may vibrate with a quick open jack.
The upper structure 1 is provided with, for example, a sensor unit 5 at the top, and measures the vibration of the structure that occurs as a result of the vibration by the above method.

これらのセンサ部5の計測データを解析するために、データ収録・解析システム9を使用する(図1(b))。センサ部5は例えばケーブル11を介してデータ収録・解析システム9に接続されている。また、センサ部5に無線送信機能、データ収録・解析システム9に無線受信機能を設けることにより、ケーブル11により接続することなく、無線通信により計測データの送受信を行ってもよい。   In order to analyze the measurement data of these sensor units 5, a data recording / analysis system 9 is used (FIG. 1B). The sensor unit 5 is connected to a data recording / analysis system 9 via, for example, a cable 11. Further, by providing the sensor unit 5 with a wireless transmission function and the data recording / analysis system 9 with a wireless reception function, the measurement data may be transmitted and received by wireless communication without being connected by the cable 11.

図1(b)に示すように、センサ部5は、速度計51、アンプ53、A/D変換機55、および、通信インタフェース57から成る。速度計51は、上部構造物1の振動を速度信号として計測する。計測された速度信号はアンプ53により増幅され、A/D変換機55により量子化される。ディジタル・データに変換された速度データは、通信インタフェース57、ケーブル11を介してデータ収録・解析システム9に送られる。   As shown in FIG. 1B, the sensor unit 5 includes a speedometer 51, an amplifier 53, an A / D converter 55, and a communication interface 57. The speedometer 51 measures the vibration of the upper structure 1 as a speed signal. The measured speed signal is amplified by the amplifier 53 and quantized by the A / D converter 55. The speed data converted into digital data is sent to the data recording / analysis system 9 via the communication interface 57 and the cable 11.

一方、データ収録・解析システム13は、パーソナル・コンピュータ等のコンピュータ・システムで構成できる。すなわち、制御部91、記憶部93、通信制御部95、メディア入出力部97、入力部99、表示部101、印刷部103等より成り、それらがシステム・バス105に接続された構成である。
制御部91は、中央制御装置(CPU)、RAM(randam access memory)、ROM(read only memory)等よりなり、ROMあるいは記憶部93に記憶されているプログラムを実行する。記憶部93は、ハードディスク装置等であり、プログラムやデータ等が記憶される。通信制御部95は、外部との通信インタフェースであり、RS−232C入出力や、無線通信、モデム等の通信インタフェースよりなる。また、メディア入出力部97は、CD−ROM、メモリーカード等の入出力制御部である。
さらに、入力部99は、キーボード、マウス等の入力装置、表示部101は、ディスプレイ装置、印刷部103は、プリンタを備える。
On the other hand, the data recording / analysis system 13 can be configured by a computer system such as a personal computer. That is, the control unit 91, the storage unit 93, the communication control unit 95, the media input / output unit 97, the input unit 99, the display unit 101, the printing unit 103, and the like are connected to the system bus 105.
The control unit 91 includes a central control unit (CPU), a RAM (random access memory), a ROM (read only memory), and the like, and executes a program stored in the ROM or the storage unit 93. The storage unit 93 is a hard disk device or the like, and stores programs, data, and the like. The communication control unit 95 is a communication interface with the outside, and includes a communication interface such as RS-232C input / output, wireless communication, and a modem. The media input / output unit 97 is an input / output control unit such as a CD-ROM or a memory card.
Further, the input unit 99 includes an input device such as a keyboard and a mouse, the display unit 101 includes a display device, and the printing unit 103 includes a printer.

本実施の形態の基礎構造物の健全度評価方法におけるデータ収録やデータ解析、健全度診断に使用するプログラムは、例えば、CD−ROM等のメディアにより供給され、データ収録・解析システム9のメディア入出力部97より入力され、記憶部93に格納されて、制御部91により実行される。
また、センサ部5で測定された速度データは、センサ部5の通信インタフェース57、ケーブル11を介してデータ収録・解析システム9に送信され、通信制御部95を介して記憶部93に格納され、後述する基礎構造物の健全度評価方法を実現するプログラムにより解析処理される。
このとき、センサ部5の通信インタフェース57を無線通信インタフェースとし、データ収録・解析システム9の通信制御部95の無線通信制御を使用することにより、ケーブル11を使用せずに、無線通信により速度データを送受信することも可能である。
The program used for data recording, data analysis, and soundness diagnosis in the soundness evaluation method for the foundation structure according to the present embodiment is supplied by a medium such as a CD-ROM, and is inserted into the data recording / analysis system 9. Input from the output unit 97, stored in the storage unit 93, and executed by the control unit 91.
The speed data measured by the sensor unit 5 is transmitted to the data recording / analysis system 9 via the communication interface 57 of the sensor unit 5 and the cable 11, and stored in the storage unit 93 via the communication control unit 95. Analysis processing is performed by a program that realizes a soundness evaluation method for a foundation structure described later.
At this time, by using the communication interface 57 of the sensor unit 5 as a wireless communication interface and using the wireless communication control of the communication control unit 95 of the data recording / analysis system 9, speed data can be obtained by wireless communication without using the cable 11. It is also possible to send and receive.

図2は、第1の実施の形態の基礎構造物の健全度評価処理の流れを示すフローチャートである。まず、処理の流れを簡単に説明する。
まず、図1(a)で矢印Fに示したように、上部構造物1に対して振動試験を実施し、センサ部5で計測した振動データをデータ収録・解析システム9に記録し、この振動データから、振動試験レベルの地盤のせん断剛性Gと、せん断ひずみγを算出する(ステップ100)。算出方法については後述する。
FIG. 2 is a flowchart showing the flow of the soundness evaluation process of the foundation structure according to the first embodiment. First, the process flow will be briefly described.
First, as shown by an arrow F in FIG. 1A, a vibration test is performed on the superstructure 1, and vibration data measured by the sensor unit 5 is recorded in the data recording / analysis system 9, and the vibration is measured. From the data, the shear rigidity G of the ground at the vibration test level and the shear strain γ are calculated (step 100). The calculation method will be described later.

ここで、地盤のせん断剛性とひずみの関係を説明する。図3は、地盤のせん断剛性とせん断ひずみとの関係を示す図である。同図の横軸はせん断ひずみ量、縦軸はせん断剛性の低下率を示す。せん断剛性の低下率は、せん断剛性値を初期のせん断剛性値G0で正規化した値であり、初期レベルのせん断剛性低下率を1とする。同図に示すように、せん断ひずみが大きくなるとともに、せん断剛性は低下する。同図に示すように、せん断ひずみが10−6におけるせん断剛性を初期レベルの地盤のせん断剛性G0とする。
このせん断剛性低下率−せん断ひずみ曲線の設定方法は2通りある。すなわち、健全度評価を行う構造物がある現地においてボーリングを行い、サンプリングした土の供試体に対して、動的変形特性を求める繰り返し三軸試験を実施して求める方法(「土質試験の方法と解説」、土質工学会)と、土質区分ごとに既に規定された曲線を用いる方法(例えば、「地盤の地震時応答特性の数値解析法」、土研資料第1778号、建設省土木研究所地震防災部振動研究室、昭和57年2月)である。
本実施の形態では、土研資料第1778号に既に規定されたせん断剛性低下率−せん断ひずみ曲線を用いることとするが、第1の方法によってこの曲線を設定してもよい。
Here, the relationship between the shear rigidity of the ground and the strain will be described. FIG. 3 is a diagram showing the relationship between the shear stiffness of the ground and the shear strain. In the figure, the horizontal axis represents the amount of shear strain, and the vertical axis represents the rate of decrease in shear stiffness. The reduction rate of the shear stiffness is a value obtained by normalizing the shear stiffness value with the initial shear stiffness value G0, and the initial level shear stiffness reduction rate is 1. As shown in the figure, the shear strain increases and the shear stiffness decreases. As shown in the figure, the shear stiffness at a shear strain of 10 −6 is defined as the shear stiffness G0 of the ground at the initial level.
There are two methods for setting the shear stiffness reduction rate-shear strain curve. In other words, a method of performing boring at a site where there is a structure for soundness evaluation and performing repeated triaxial tests to obtain dynamic deformation characteristics for the sampled soil specimen ("Soil testing method and "Explanation", Japan Society of Geotechnical Engineering) and methods using curves already defined for each soil classification (for example, "Numerical analysis of ground response characteristics during earthquakes", Earth Engineering Materials No. 1778, Ministry of Construction, Civil Engineering Research Institute Earthquake) Disaster Prevention Department Vibration Laboratory, February 1982).
In the present embodiment, the shear stiffness reduction rate-shear strain curve already defined in Doken No. 1778 is used, but this curve may be set by the first method.

このせん断剛性低下率−せん断ひずみ曲線を用いて、まず、初期レベルの地盤のせん断剛性G0を求め(ステップ110)、さらに、設計レベルの地盤のせん断剛性G’を算出する(ステップ120)。初期レベルおよび設計レベルの地盤のせん断剛性(G0、G’)を求める方法については後述する。   First, the shear stiffness G0 of the ground at the initial level is obtained using the shear stiffness reduction rate-shear strain curve (step 110), and further, the shear stiffness G 'of the ground at the design level is calculated (step 120). A method for obtaining the shear rigidity (G0, G ′) of the ground at the initial level and the design level will be described later.

ステップ120で求まった設計レベルの地盤のせん断剛性G’から地盤ばね定数を求め、対象の構造物の構造モデルを構成し、安定計算を行うことにより、基礎構造物が健全か否かを判定する(ステップ130)。   A ground spring constant is obtained from the shear rigidity G ′ of the ground at the design level obtained in step 120, a structural model of the target structure is constructed, and a stable calculation is performed to determine whether the foundation structure is healthy. (Step 130).

次に、ステップ100の振動試験レベルの地盤のせん断剛性Gおよびせん断ひずみγの算出方法を説明する。
まず、地盤のせん断ひずみγを求める。
振動試験において、振動データとして、上部構造物1の天端に設置されたセンサ部5により測定された速度データを使用する。この速度データを積分することにより、振動試験による構造物天端の変位δが求まる。
図4(a)に示すように、地盤のせん断ひずみγは、変位δと構造物の高さLにより、γ=δ/Lで表せる。この計算式により、振動試験における地盤のせん断ひずみγの値が求まる。
Next, a method for calculating the shear rigidity G and shear strain γ of the ground at the vibration test level in step 100 will be described.
First, the ground shear strain γ is obtained.
In the vibration test, velocity data measured by the sensor unit 5 installed at the top of the superstructure 1 is used as vibration data. By integrating the velocity data, the displacement δ of the top of the structure by the vibration test can be obtained.
As shown in FIG. 4A, the shear strain γ of the ground can be expressed as γ = δ / L by the displacement δ and the height L of the structure. By this calculation formula, the value of the ground shear strain γ in the vibration test is obtained.

次に、振動試験レベルの地盤のせん断剛性Gを求める。
まず、振動試験により得た速度データをフーリエ変換等により周波数分析し、卓越する振動数を読み取ることにより構造物の実測固有振動数を求める。
次に、例えば図4(b)のような、対象構造物の構造モデルを作成し、地盤ばね定数を設定して解析固有振動数を求め、地盤ばね定数を変化させて繰り返し解析固有振動数を求める計算を行い、解析固有振動数が実測固有振動数と一致する地盤ばね定数を求める。この地盤ばね定数は、振動試験を実施した構造物の基礎地盤の地盤ばね定数と見なすことができ、この地盤ばね定数から、地盤のせん断剛性Gを求める。
Next, the shear rigidity G of the ground at the vibration test level is obtained.
First, the frequency data obtained by the vibration test is subjected to frequency analysis by Fourier transform or the like, and the actual natural frequency of the structure is obtained by reading the outstanding frequency.
Next, for example, as shown in FIG. 4B, a structural model of the target structure is created, the ground spring constant is set to obtain the analysis natural frequency, the ground spring constant is changed, and the analysis natural frequency is repeatedly determined. The obtained calculation is performed, and the ground spring constant at which the analysis natural frequency matches the actual measurement natural frequency is obtained. This ground spring constant can be regarded as the ground spring constant of the foundation ground of the structure subjected to the vibration test, and the ground shear stiffness G is obtained from this ground spring constant.

ここで、地盤のせん断剛性Gは、以下の式に示すように、構造物の固有振動数fおよび構造物の質量Mの関数である。
すなわち、例えば、構造物を1自由度と考えるとその固有振動数fは、
f=(1/2π)・(K/M)1/2 ・・・(1)
ここで、Kはばね定数であり、式(1)より、
K=(2πf)M ・・・(2)
となり、ばね定数Kは固有振動数fと質量Mの関数として表せる。
Here, the shear rigidity G of the ground is a function of the natural frequency f of the structure and the mass M of the structure, as shown in the following equation.
That is, for example, when a structure is considered to have one degree of freedom, its natural frequency f is
f = (1 / 2π) · (K / M) 1/2 (1)
Here, K is a spring constant, and from equation (1),
K = (2πf) 2 M (2)
The spring constant K can be expressed as a function of the natural frequency f and the mass M.

また、ばね定数Kは、地盤反力係数kと基礎の寸法から算出することができる。例えば、鉛直方向の地盤反力係数Kvは、
Kv=kv×Av ・・・(3)
により算出することができる。ここで、kv:鉛直方向の地盤反力係数、Av:基礎底面の面積である。kvは、道路橋示方書では、
kv=(1/0.3)・E・(Av1/2/0.3)−3/4 ・・・(4)
鉄道構造物等設計標準では、
kv=frk・(2.3・α・E・Av−1/4) ・・・(5)
などと表される。ここで、frk、αは定数であり、Eは変形係数と呼ばれるもので、
E=2(1+ν)G ・・・(6)
の関係にあることから、Gは、Kv、ν、Avを求めることにより算出できる。(νは地盤のポアソン比であり、ほぼ一定の値である)。
つまり、構造物の数法Av、質量M、固有振動数fから地盤のせん断剛性Gを求めることができる。
The spring constant K can be calculated from the ground reaction force coefficient k and the dimensions of the foundation. For example, the ground reaction force coefficient Kv in the vertical direction is
Kv = kv × Av (3)
Can be calculated. Here, kv: ground reaction force coefficient in the vertical direction, Av: area of the base bottom surface. kv is the road bridge specification
kv = (1 / 0.3) · E · (Av 1/2 / 0.3) −3/4 (4)
In the railway structure design standard,
kv = f rk · (2.3 · α · E · Av -1/4 ) (5)
And so on. Here, f rk and α are constants, E is called a deformation coefficient,
E = 2 (1 + ν) G (6)
Therefore, G can be calculated by obtaining Kv, ν, and Av. (Ν is the Poisson's ratio of the ground and is a substantially constant value).
That is, the shear rigidity G of the ground can be obtained from the number method Av, the mass M, and the natural frequency f of the structure.

次に、振動試験レベルの地盤のせん断剛性Gとせん断ひずみγの値を元に、初期レベルの地盤のせん断剛性G0を求める(ステップ110)。
すなわち、まず、図3に示したようなせん断剛性低下率−せん断ひずみ曲線を選定する。例えば、前述のように土研資料で規定されている対象構造物の場所の土質区分に対応する曲線を選定する。
この曲線上で、振動試験レベルの地盤のせん断ひずみγ値におけるせん断剛性低下率の値がG/G0であり、この値と振動試験レベルの地盤のせん断剛性Gの値から初期レベルの地盤のせん断剛性値G0を算出する。
Next, based on the values of the shear rigidity G and the shear strain γ of the ground at the vibration test level, the shear rigidity G0 of the ground at the initial level is obtained (step 110).
That is, first, a shear stiffness reduction rate-shear strain curve as shown in FIG. 3 is selected. For example, as described above, a curve corresponding to the soil classification of the location of the target structure specified in the DOken data is selected.
On this curve, the value of the shear stiffness reduction rate at the shear strain γ value of the ground at the vibration test level is G / G0. From this value and the value of the shear stiffness G of the ground at the vibration test level, the shear of the ground at the initial level is obtained. The rigidity value G0 is calculated.

次に、初期レベルの地盤のせん断剛性G0の値から設計レベルの地盤のせん断剛性G’を求める(ステップ120)。
設計レベルの地盤のせん断剛性G’の求め方には以下の2種類の方法があり、どちらの方法を用いてもよい。
Next, the shear rigidity G ′ of the ground at the design level is obtained from the value of the shear rigidity G0 of the ground at the initial level (step 120).
There are the following two methods for obtaining the shear rigidity G ′ of the ground at the design level, and either method may be used.

第1の方法は、地盤のせん断剛性Gと地盤の変形係数Eの関係式から設計レベルのせん断剛性G’を算出する方法である。すなわち、粘性土と砂質土について、それぞれ、次の算出式がある。
(粘性土)
G’={β/2(1+ν)}・(1/100)・(gG0/ε)3/2
・・・(7)
(砂質土)
G’={β/2(1+ν)}・(1/80)・(gG0/ε)3/2
・・・(8)
ここで、βは構造物の種類によって決まる値であり、鉄道橋ではβ=2800、道路橋ではβ=2500とする。また、gは重力加速度、εは土の単位体積重量である。
The first method is a method of calculating the design level shear stiffness G ′ from the relational expression between the ground shear stiffness G and the ground deformation coefficient E. That is, there are the following calculation formulas for viscous soil and sandy soil, respectively.
(Cohesive soil)
G ′ = {β / 2 (1 + ν)} · (1/100) · (gG0 / ε) 3/2
... (7)
(Sandy soil)
G ′ = {β / 2 (1 + ν)} · (1/80) · (gG0 / ε) 3/2
... (8)
Here, β is a value determined by the type of structure, and β = 2800 for a railway bridge and β = 2500 for a road bridge. G is the acceleration of gravity, and ε is the unit volume weight of the soil.

式(7)、式(8)は、下記の関係から導かれる。
E’=2(1+ν)G’ ・・・(9)
G0=ε・Vs/g ・・・(10)
E’=βN ・・・(11)
Vs=100N1/3 (粘性土) ・・・(12)
Vs=80N1/3 (砂質土) ・・・(13)
ここで、E’=設計レベルの地盤の変形係数(地盤ばね定数)、Vsはせん断弾性波速度、Nは標準貫入試験で得られたN値である。
以上のように、式(7)、式(8)から設計レベルの地盤のせん断剛性G’を求めることができる。
Expressions (7) and (8) are derived from the following relationship.
E ′ = 2 (1 + ν) G ′ (9)
G0 = ε · Vs 2 / g (10)
E ′ = βN (11)
Vs = 100N 1/3 (cohesive soil) (12)
Vs = 80N 1/3 (sandy soil) (13)
Here, E ′ = the deformation coefficient (ground spring constant) of the ground at the design level, Vs is the shear elastic wave velocity, and N is the N value obtained in the standard penetration test.
As described above, the shear rigidity G ′ of the ground at the design level can be obtained from the expressions (7) and (8).

一方、第2の方法は、図3のせん断剛性低下率−せん断ひずみ曲線において、設計レベルの地盤のせん断ひずみγdの値を想定することにより、それに対応するせん断剛性低下率G’/G0の値を読み取り、その値から設計レベルの地盤のせん断ひずみG’が求められる。   On the other hand, the second method assumes the value of the shear strain γd of the ground at the design level in the shear stiffness reduction rate-shear strain curve of FIG. 3, and thereby the corresponding value of the shear stiffness reduction rate G ′ / G0. From this value, the shear strain G ′ of the ground at the design level is obtained.

以上によって求められた設計レベルの地盤のせん断剛性G’を元に、この設計レベルの地盤ばね定数E’を算出し、これを考慮した構造モデルを作成し、安定計算を実施する(ステップ130)。
この安定計算の結果から、対象構造物の基礎構造部3の健全度が把握可能になる。
Based on the shear rigidity G ′ of the ground at the design level obtained as described above, the ground spring constant E ′ at this design level is calculated, a structural model is created in consideration of this, and a stability calculation is performed (step 130). .
From the result of this stability calculation, the soundness of the foundation structure part 3 of the target structure can be grasped.

図5は、第2の実施の形態の基礎構造物の健全度評価処理の流れを示すフローチャートである。第2の実施の形態の基礎構造物の健全度評価は、基礎構造物3に変状が生じた場合を想定した振動試験により求めた実測固有振動数と、安定計算により求めた変状が生じた場合の限界解析固有振動数を比較し、その比較結果から健全度を評価する方法である。変状とは、通常の状態、暴風時、地震の発生時等であり、それぞれの変状は、構造モデルの設計荷重を変化させることにより設定される。   FIG. 5 is a flowchart illustrating the flow of the soundness evaluation process of the foundation structure according to the second embodiment. In the soundness evaluation of the foundation structure of the second embodiment, the measured natural frequency obtained by the vibration test assuming the occurrence of the deformation in the foundation structure 3 and the deformation obtained by the stability calculation occur. This is a method for comparing the natural frequency of limit analysis and evaluating the soundness from the comparison result. The deformation is a normal state, a storm, an earthquake, etc., and each deformation is set by changing the design load of the structural model.

次に処理の流れを説明する。図5のフローチャートにおいて、ステップ200からステップ220は、第1の実施の形態のステップ100からステップ120と同様であり、これにより、設計レベルの地盤のせん断剛性G’が算出される。
設計レベルのせん断剛性G’が算出されたら、次に、基礎構造物3に仮想的な変状を想定して安定計算を実施し、それぞれの変状について、安定度を満足する限界の地盤のせん断剛性G’(L)を求める(ステップ230)。この地盤のせん断剛性限界値G’(L)を求める方法については後述する。
次に、この地盤のせん断剛性限界値G’(L)について設計レベルの解析固有振動数f2を求め(ステップ240)、さらに、設計レベルのせん断剛性G’とせん断剛性限界値G’(L)との関係を用いて、振動試験レベルのせん断剛性限界値G(L)を求め(ステップ240)、この試験レベルのせん断剛性限界値G(L)についての振動試験レベルの解析固有振動数f1を求めて(ステップ250)、解析固有振動数f1と振動試験算定工程から求めた固有振動数を比較する。解析固有振動数f1<振動試験算定工程から求めた固有振動数であれば基礎構造物3は健全であると判断し、解析固有振動数f1≧振動試験算定工程から求めた固有振動数であれば基礎構造物3は健全ではないと判断する(ステップ260)。
Next, the flow of processing will be described. In the flowchart of FIG. 5, Step 200 to Step 220 are the same as Step 100 to Step 120 of the first embodiment, whereby the design level ground shear stiffness G ′ is calculated.
After the design-level shear stiffness G ′ is calculated, the stability calculation is performed on the basis of the hypothetical deformation of the foundation structure 3, and the limit ground satisfying the stability is satisfied for each deformation. The shear rigidity G ′ (L) is obtained (step 230). A method for determining the shear stiffness limit value G ′ (L) of the ground will be described later.
Next, an analysis natural frequency f2 at the design level is obtained for the shear stiffness limit value G ′ (L) of this ground (step 240), and further, the design level shear stiffness G ′ and the shear stiffness limit value G ′ (L). Is used to obtain the shear stiffness limit value G (L) at the vibration test level (step 240), and the analysis natural frequency f1 at the vibration test level for the shear stiffness limit value G (L) at this test level is obtained. Obtaining (step 250), the analysis natural frequency f1 and the natural frequency obtained from the vibration test calculation process are compared. If the analysis natural frequency f1 <the natural frequency obtained from the vibration test calculation process, the foundation structure 3 is judged to be healthy, and if the natural vibration frequency obtained from the analysis natural frequency f1 ≧ the vibration test calculation process. It is determined that the foundation structure 3 is not healthy (step 260).

次に、上述の処理の流れの詳細を説明する。
図7は、ステップ230の変状を想定した場合のせん断剛性限界値G’(L)算出の説明図である。
せん断剛性限界値G’(L)の算出方法は以下の2通りの手法がある。すなわち、基礎地盤のせん断剛性を低下させていき、安定計算を満たす限界のせん断剛性値G'(L)を見つける方法(方法1)と、G’を一定として土被り量または洗掘量を変化させていき、安定計算を満たす限界の地盤ばねを求める方法(方法2)である。
図7に示すように、基礎構造物3の種類により、方法を選択するとよい。すなわち、同図(a)に示すように、基礎構造物3が杭またはケーソン基礎の場合には、方法1または方法2の土被り量を低下させる方法から、同図(b)に示すように、基礎構造物3が直接基礎の場合には、方法1または方法2の洗掘量を低下させる方法から好ましい方法を選択できる。
Next, the details of the above-described processing flow will be described.
FIG. 7 is an explanatory diagram for calculating the shear stiffness limit value G ′ (L) when the deformation of step 230 is assumed.
There are the following two methods for calculating the shear stiffness limit value G ′ (L). That is, decreasing the shear stiffness of the foundation ground, finding the limit shear stiffness value G ′ (L) that satisfies the stability calculation (Method 1), and changing the soil cover amount or scouring amount with G ′ constant. This is a method (method 2) for determining the limit ground spring satisfying the stability calculation.
As shown in FIG. 7, the method may be selected depending on the type of substructure 3. That is, as shown in the figure (a), when the foundation structure 3 is a pile or a caisson foundation, the method 1 or the method 2 reduces the amount of earth covering, as shown in the figure (b). When the foundation structure 3 is a direct foundation, a preferred method can be selected from the methods 1 and 2 in which the amount of scouring is reduced.

同図に示すように、方法1の場合、ステップ220で求まった設計レベルの地盤のせん断剛性G’の値から始めて、例えば80%、50%、・・・というように徐々にせん断剛性値を低下させ、それぞれのせん断剛性値から地盤ばね定数を算出し、その値を考慮した構造モデルを作成して安定計算を実施する。安定計算では、通常時、暴風時、レベル1地震時等の変状を考慮した荷重が構造モデルに加味される。それぞれの変状について、安定計算を満足する場合には、さらに、地盤のせん断剛性値を低下させて安定計算を実施する。この処理を繰り返し、安定計算を満足する最低の地盤のせん断剛性値をせん断剛性限界値G’(L)とする。   As shown in the figure, in the case of method 1, starting from the value of the shear rigidity G ′ of the ground at the design level obtained in step 220, the shear rigidity value is gradually increased, for example, 80%, 50%,. The ground spring constant is calculated from each shear stiffness value, a structural model is created taking into account the value, and stability calculation is performed. In the stability calculation, loads that take into account deformation during normal times, storms, level 1 earthquakes, etc. are added to the structural model. When the stability calculation is satisfied for each deformation, the stability calculation is further performed by lowering the shear rigidity value of the ground. This process is repeated, and the lowest shear stiffness value satisfying the stability calculation is set as a shear stiffness limit value G ′ (L).

一方、方法2の場合には、G’を一定とし、安定計算において、杭・ケーソン基礎の場合には土被り量を低下させ、直接基礎の場合には洗掘量を変化させる。そして、安定計算を満たす限界のせん断ばねを算定する。   On the other hand, in the case of the method 2, G ′ is constant, and in the stability calculation, the amount of earth covering is reduced in the case of the pile / caisson foundation, and the scouring amount is changed in the case of the direct foundation. Then, the limit shear spring that satisfies the stability calculation is calculated.

方法1の場合、変状を想定した限界の地盤のせん断剛性G’(L)が求まった後、この値G'(L)から地盤のばね定数を求め、この地盤ばね定数を考慮した構造モデルを作成し、解析固有振動数f2を求める。一方、方法2の場合には、G’と安定計算を満たす限界の土被り量、あるいは洗掘量から地盤のばね定数を求め、この地盤ばね定数を考慮した構造モデルを作成し、解析固有振動数f2を求める。この解析固有振動数が変状を想定した場合の限界の固有振動数である。   In the case of method 1, after the shear rigidity G ′ (L) of the ground assuming the deformation is obtained, the spring constant of the ground is obtained from this value G ′ (L), and the structural model considering this ground spring constant And the analysis natural frequency f2 is obtained. On the other hand, in the case of Method 2, the ground spring constant is obtained from G 'and the limit soil covering amount that satisfies the stability calculation, or the scouring amount, and a structural model that takes this ground spring constant into consideration is created. The number f2 is obtained. This analysis natural frequency is the limit natural frequency when deformation is assumed.

次に、以上で求まった解析固有振動数の限界値f2と、振動試験を行った時点の実測固有振動数を比較して、変状を想定した場合の健全度を評価する。
このとき、振動試験レベルの実測固有振動数の限界値f1を求めるために、振動試験レベルのせん断弾性限界値G(L)を求める。すなわち、図6に示すように、設計レベルのせん断剛性G’と振動試験レベルのせん断剛性Gの関係を設計レベルのせん断剛性限界値G'(L)に適用し、振動試験レベルのせん断剛性限界値G(L)を算定する。すなわち、
G(L)=G'(L)・G/G’ ・・・・(13)
である。
Next, the limit value f2 of the analysis natural frequency obtained above is compared with the actually measured natural frequency at the time when the vibration test was performed, and the soundness when the deformation is assumed is evaluated.
At this time, in order to obtain the limit value f1 of the measured natural frequency of the vibration test level, the shear elasticity limit value G (L) of the vibration test level is obtained. That is, as shown in FIG. 6, the relationship between the design level shear stiffness G ′ and the vibration test level shear stiffness G is applied to the design level shear stiffness limit value G ′ (L), and the vibration test level shear stiffness limit. The value G (L) is calculated. That is,
G (L) = G ′ (L) · G / G ′ (13)
It is.

式(13)により求めた振動試験レベルのせん断剛性限界値G(L)から地盤ばね定数を求め、この値を考慮した構造モデルから実測固有振動数f1が算出される。以上の方法により求められた変状を考慮した限界の解析固有振動数f2と実測固有振動数f1を比較することにより、基礎構造物3の健全度が評価可能になる。   The ground spring constant is obtained from the shear stiffness limit value G (L) at the vibration test level obtained by the equation (13), and the actually measured natural frequency f1 is calculated from the structural model considering this value. The soundness of the substructure 3 can be evaluated by comparing the limit analysis natural frequency f2 in consideration of the deformation obtained by the above method and the measured natural frequency f1.

以上のように、第1の実施の形態の方法では、現状の基礎構造物3が安定計算を満足するか(健全か)が評価可能となるとともに、第2の実施の形態の方法では、変状を考慮し、限界値に関して、実測固有振動数と解析固有振動数を比較することにより基礎構造物3の健全度が評価可能である。   As described above, in the method of the first embodiment, it is possible to evaluate whether the current foundation structure 3 satisfies the stability calculation (health), and in the method of the second embodiment, the method is not changed. The soundness of the foundation structure 3 can be evaluated by comparing the measured natural frequency and the analyzed natural frequency with respect to the limit value.

尚、本発明は、前述した実施の形態に限定されるものではなく、種々の改変が可能であり、それらも、本発明の技術範囲に含まれる。   The present invention is not limited to the embodiment described above, and various modifications are possible, and these are also included in the technical scope of the present invention.

本発明の実施の形態にかかる健全度評価方法を実現するためのシステム構成図The system block diagram for implement | achieving the soundness evaluation method concerning embodiment of this invention 第1の健全度評価方法の処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the 1st soundness evaluation method せん断剛性低下率とせん断ひずみの関係を示す図Diagram showing the relationship between shear stiffness reduction rate and shear strain 加振データから地盤のひずみおよび地盤のせん断剛性を求める処理の説明図Explanatory drawing of processing to obtain ground strain and ground shear stiffness from vibration data 第2の健全度評価方法の処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the 2nd soundness evaluation method せん断剛性の限界値の説明図Illustration of limit value of shear rigidity 限界値算出の説明図Illustration of limit value calculation

符号の説明Explanation of symbols

1………上部構造物
3………基礎構造物
5………センサ部
7………地面
9………データ収録・解析システム
51………速度計
1 ……… Superstructure 3 ……… Basic structure 5 ……… Sensor part 7 ……… Ground 9 ……… Data recording / analysis system 51 ……… Speedometer

Claims (6)

構造物に人為的に振動を与えてそれによる振動データを測定する振動試験工程と、
前記振動試験工程により得られた振動データから前記構造物の固有振動数を算定する固有振動数算定工程と、
前記固有振動数算定工程により算定した前記構造物の固有振動数を用いて地盤のせん断剛性の実測値を求める地盤せん断剛性算出工程と、
前記振動試験工程により得られた振動データから地盤のせん断ひずみを算出するせん断ひずみ算出工程と、
前記地盤せん断剛性実測値と前記せん断ひずみから、設計レベルの地盤せん断剛性値を求める設計レベル地盤せん断剛性算定工程と、
前記設計レベルの地盤せん断剛性値から求めた地盤ばねを考慮したモデルにより基礎構造物の健全度を評価する健全度評価工程と、を有することを特徴とする基礎構造物の健全度評価方法。
A vibration test process for artificially applying vibration to the structure and measuring vibration data from the vibration;
A natural frequency calculating step for calculating the natural frequency of the structure from vibration data obtained by the vibration test step;
A ground shear stiffness calculation step for obtaining an actual measurement value of the shear stiffness of the ground using the natural frequency of the structure calculated by the natural frequency calculation step;
A shear strain calculation step of calculating the shear strain of the ground from the vibration data obtained by the vibration test step;
A design level ground shear stiffness calculation step for obtaining a design level ground shear stiffness value from the ground shear stiffness measured value and the shear strain,
A soundness evaluation step for evaluating the soundness of the foundation structure using a model that takes into account the ground spring obtained from the ground shear stiffness value at the design level, and a soundness evaluation method for the foundation structure.
前記健全度評価工程は、前記設計レベルの地盤せん断剛性値を考慮したモデルに対して安定計算を実施し、安定計算の結果から基礎構造物の健全度を評価することを特徴とする請求項1記載の基礎構造物の健全度評価方法。   2. The soundness evaluation step includes performing a stability calculation on a model considering a ground shear rigidity value at the design level, and evaluating the soundness of a foundation structure from a result of the stability calculation. The soundness evaluation method for the described foundation structure. 前記健全度評価方法は、前記設計レベルの地盤せん断剛性値を使用した安定計算により設計レベルの限界地盤せん断剛性値を求める設計レベル限界値盤せん断剛性値算定工程を有し、
前記設計レベル限界地盤せん断剛性値算定工程により求めた前記設計レベルの限界地盤せん断剛性値を考慮した振動試験レベルの解析固有振動数と、前記固有振動数算定工程から求める固有振動数を比較することにより、基礎構造物の健全度を評価することを特徴とする請求項1記載の基礎構造物の健全度評価方法。
The soundness evaluation method has a design level limit board shear stiffness value calculation step for obtaining a design level limit ground shear stiffness value by a stable calculation using the design level ground shear stiffness value,
Comparing the analysis natural frequency of the vibration test level considering the limit ground shear stiffness value of the design level determined by the design level limit ground shear stiffness value calculation step and the natural frequency calculated from the natural frequency calculation step The soundness evaluation method for a substructure according to claim 1, wherein the soundness of the substructure is evaluated.
前記設計レベル限界地盤せん断剛性値算出工程は、前記設計レベルの地盤せん断剛性値を初期値としてその値を徐々に低下させ、その地盤せん断剛性値に対応する地盤ばね定数を元に安定計算を実施し、安定度を満足する最低の前記設計レベルの地盤せん断剛性値を設計レベル地盤せん断剛性値とすることを特徴とする請求項3記載の基礎構造物の健全度評価方法。   In the design level limit ground shear stiffness value calculation step, the ground shear stiffness value at the design level is set as an initial value, and the value is gradually decreased, and stable calculation is performed based on the ground spring constant corresponding to the ground shear stiffness value. 4. The foundation structure soundness evaluation method according to claim 3, wherein the lowest ground shear stiffness value of the design level satisfying the stability is set as the design level ground shear stiffness value. 前記設計レベル限界地盤せん断剛性値算出工程は、杭基礎あるいはケーソン基礎の場合に、所定の設計レベルの地盤せん断剛性値から求めた地盤ばね定数を用い、土被り量を低下させて安定計算を実施し、安定度を満足する最低の前記設計レベルの地盤せん断剛性値を設定レベル限界地盤せん断剛性値とすることを特徴とする請求項4記載の基礎構造物の健全度評価方法。   In the design level limit ground shear stiffness calculation process, in the case of a pile foundation or caisson foundation, the ground spring constant obtained from the ground shear stiffness value of a predetermined design level is used to reduce the amount of soil covering and perform a stable calculation. 5. The foundation structure soundness evaluation method according to claim 4, wherein a ground shear rigidity value at the lowest design level satisfying the stability is set as a set level limit ground shear rigidity value. 前記設計レベル限界地盤せん断剛性値算出工程は、直接基礎の場合に、所定の設計レベルの地盤せん断剛性値から求めた地盤ばね定数を用い、洗掘量を変化させて安定計算を実施し、安定度を満足する最低の前記設計レベルの地盤せん断剛性値を設定レベル限界地盤せん断剛性値とすることを特徴とする請求項4記載の基礎構造物の健全度評価方法。   The design level limit ground shear stiffness value calculation process, in the case of a direct foundation, uses the ground spring constant obtained from the ground shear stiffness value of a predetermined design level, and performs stability calculation by changing the scouring amount, 5. The foundation structure soundness evaluation method according to claim 4, wherein a ground shear rigidity value at the lowest design level satisfying a degree is set as a set level limit ground shear rigidity value.
JP2006212804A 2006-08-04 2006-08-04 Method for evaluating the soundness of foundation structures Active JP4863813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212804A JP4863813B2 (en) 2006-08-04 2006-08-04 Method for evaluating the soundness of foundation structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212804A JP4863813B2 (en) 2006-08-04 2006-08-04 Method for evaluating the soundness of foundation structures

Publications (2)

Publication Number Publication Date
JP2008039534A true JP2008039534A (en) 2008-02-21
JP4863813B2 JP4863813B2 (en) 2012-01-25

Family

ID=39174721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212804A Active JP4863813B2 (en) 2006-08-04 2006-08-04 Method for evaluating the soundness of foundation structures

Country Status (1)

Country Link
JP (1) JP4863813B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879161A (en) * 2012-09-29 2013-01-16 河南省电力公司电力科学研究院 Method for evaluating and detecting looseness prevention performance of fasteners of transmission towers
CN104977176A (en) * 2015-05-29 2015-10-14 上海交通大学 Leg mating unit device suitable for float-over installation model test

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612661B (en) * 2018-12-26 2020-08-14 同济大学 Method for quickly testing structural dynamic characteristics by utilizing artificial excitation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180951A (en) * 2003-12-16 2005-07-07 Keepers:Kk Soundness evaluation method for structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180951A (en) * 2003-12-16 2005-07-07 Keepers:Kk Soundness evaluation method for structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879161A (en) * 2012-09-29 2013-01-16 河南省电力公司电力科学研究院 Method for evaluating and detecting looseness prevention performance of fasteners of transmission towers
CN102879161B (en) * 2012-09-29 2015-09-02 河南省电力公司电力科学研究院 The anti-loosening property assessment detection method of electric power pylon securing member
CN104977176A (en) * 2015-05-29 2015-10-14 上海交通大学 Leg mating unit device suitable for float-over installation model test
CN104977176B (en) * 2015-05-29 2017-10-03 上海交通大学 A kind of spud leg suitable for floating support mounting model test docks cell arrangement

Also Published As

Publication number Publication date
JP4863813B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
Prendergast et al. An investigation of the changes in the natural frequency of a pile affected by scour
Lin et al. Interaction between laterally loaded pile and surrounding soil
Xiong et al. Influence of soil–structure interaction (structure-to-soil relative stiffness and mass ratio) on the fundamental period of buildings: experimental observation and analytical verification
JP6001740B1 (en) High precision evaluation of structure transfer functions, earthquake response prediction, deterioration diagnosis system and method
L'Heureux et al. Correlations between shear wave velocity and geotechnical parameters in Norwegian clays
Erdogan et al. Investigation of the seismic behavior of a historical masonry minaret considering the interaction with surrounding structures
Zinno et al. Structural health monitoring (SHM)
Chatterjee1a et al. Dynamic analyses and field observations on piles in Kolkata city
Oskay et al. A survey of geotechnical system identification techniques
JP2007051873A (en) Soundness diagnostic method for structure
JP4863813B2 (en) Method for evaluating the soundness of foundation structures
Lee et al. Shear wave velocity measurements and soil–pile system identifications in dynamic centrifuge tests
Araei et al. Impact and cyclic shaking on loose sand properties in laminar box using gap sensors
JP5087425B2 (en) Structure health diagnosis method
RU2364852C1 (en) Method for determination of resilient characteristics of pile and enclosing soil
Shahbazi et al. Seismic risk assessment of a steel building supported on helical pile groups
Zarrin et al. A review on factors affecting seismic pile response analysis: a parametric study
Dammala et al. Dynamic characterization of soils using various methods for seismic site response studies
Basarah et al. Impact of hysteretic damping on nonlinear dynamic soil-underground structure-structure interaction analyses
US20170322011A1 (en) Methods and systems for non-destructive estimation of a length of a member
Kana et al. Development of a scale model for the dynamic interaction of a pile in clay
JP4766423B2 (en) Evaluation method and program for slope failure and structural damage by energy
Masoumi et al. Pile response and free field vibrations due to low strain dynamic loading
Navarro et al. Experimental techniques for assessment of dynamic behaviour of buildings
JP4704848B2 (en) Ground improvement evaluation device and ground improvement evaluation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250