JP7252044B2 - Concentration analyzer - Google Patents

Concentration analyzer Download PDF

Info

Publication number
JP7252044B2
JP7252044B2 JP2019077800A JP2019077800A JP7252044B2 JP 7252044 B2 JP7252044 B2 JP 7252044B2 JP 2019077800 A JP2019077800 A JP 2019077800A JP 2019077800 A JP2019077800 A JP 2019077800A JP 7252044 B2 JP7252044 B2 JP 7252044B2
Authority
JP
Japan
Prior art keywords
concentration
pipe
sample water
hydrogen peroxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019077800A
Other languages
Japanese (ja)
Other versions
JP2020176868A (en
Inventor
翔太 森野
大作 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2019077800A priority Critical patent/JP7252044B2/en
Publication of JP2020176868A publication Critical patent/JP2020176868A/en
Application granted granted Critical
Publication of JP7252044B2 publication Critical patent/JP7252044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、試料水中の過酸化水素濃度と溶存酸素濃度とを分析する濃度分析装置に関する。 The present invention relates to a concentration analyzer for analyzing the hydrogen peroxide concentration and dissolved oxygen concentration in sample water.

従来から、半導体デバイスや液晶デバイスの製造プロセスでは、半導体ウエハやガラス基板等の電子部品を洗浄する洗浄液として、不純物が高度に除去された超純水が用いられている。超純水は、一般に、原水(河川水、地下水、工業用水など)を、前処理システム、一次純水システム、および二次純水システム(サブシステム)で順次処理することにより製造されている。 2. Description of the Related Art Conventionally, ultrapure water from which impurities are highly removed has been used as a cleaning liquid for cleaning electronic components such as semiconductor wafers and glass substrates in the manufacturing processes of semiconductor devices and liquid crystal devices. Ultrapure water is generally produced by sequentially treating raw water (river water, groundwater, industrial water, etc.) with a pretreatment system, a primary pure water system, and a secondary pure water system (subsystem).

多くのサブシステムでは、被処理水(一次純水システムで製造された一次純水)に含まれる全有機炭素(TOC)を分解するために、被処理水に紫外線を照射する紫外線酸化装置が設けられている。紫外線酸化装置では、紫外線酸化処理の過程で微量の過酸化水素が生成されることが知られているが、この過酸化水素は、例えば超純水をシリコンウエハの洗浄液として使用する場合、シリコンウエハの表面に自然酸化膜を形成したり、微細な配線を腐食させたりするなどの要因となる。そこで、紫外線酸化装置を含むサブシステムでは、処理水(超純水)中の過酸化水素をできるだけ低減することが求められており、その前提として、処理過程における過酸化水素の濃度管理を適切に行うことが求められている。 In many subsystems, an ultraviolet oxidizer is installed to irradiate the water to be treated with ultraviolet rays in order to decompose the total organic carbon (TOC) contained in the water to be treated (primary pure water produced in the primary pure water system). It is It is known that a small amount of hydrogen peroxide is generated in the process of the ultraviolet oxidation treatment in the ultraviolet oxidation apparatus. This causes the formation of a natural oxide film on the surface of the metal and the corrosion of fine wiring. Therefore, it is required to reduce the hydrogen peroxide in the treated water (ultra-pure water) as much as possible in the subsystem including the ultraviolet oxidation device. are required to do so.

このような要求に対し、特許文献1,2には、試料水中の過酸化水素濃度を簡便かつ高精度に分析可能な濃度分析装置が記載されている。この分析装置では、過酸化水素が水と酸素に分解されることを利用し、過酸化水素分解手段による過酸化水素の分解前後での試料水中の溶存酸素濃度を比較することで、試料水中の過酸化水素濃度が算出される。なお、この分析装置では、過酸化水素分解手段による過酸化水素の分解前の試料水中の溶存酸素濃度が測定されるため、従来から適切な管理が求められている試料水中の溶存酸素濃度の分析も可能になる。 In response to such demands, Patent Literatures 1 and 2 describe concentration analyzers capable of analyzing the concentration of hydrogen peroxide in sample water simply and with high accuracy. Utilizing the fact that hydrogen peroxide decomposes into water and oxygen, this analyzer compares the dissolved oxygen concentration in the sample water before and after hydrogen peroxide is decomposed by the hydrogen peroxide decomposing means. A hydrogen peroxide concentration is calculated. In addition, since this analyzer measures the dissolved oxygen concentration in the sample water before the hydrogen peroxide is decomposed by the hydrogen peroxide decomposition means, analysis of the dissolved oxygen concentration in the sample water, which has conventionally been required to be appropriately controlled, is necessary. is also possible.

特開2005-274386号公報JP 2005-274386 A 特開2012-63303号公報JP 2012-63303 A

ところで、過酸化水素分解手段の中には、例えば白金族金属を含む触媒のように、過酸化水素を水と酸素に分解するだけでなく(2H→2HO+O)、水素共存下で酸素と反応して水を生成するものもある(2H+O→2HO)。そのため、試料水に過酸化水素だけでなく水素も含まれていると、過酸化水素の分解により生じた酸素が水素と反応して消費されてしまう。その結果、過酸化水素の分解により生じた酸素の濃度を正確に測定することができず、試料水中の過酸化水素濃度を正確に算出できないことがある。これに対し、特許文献1,2に記載されているように、過酸化水素分解手段の前段に気体分離膜などの脱気手段を設置することで、前述の水素をあらかじめ除去することも考えられる。しかしながら、その場合、試料水にもともと含まれる酸素も除去されてしまい、試料水中の過酸化水素濃度を高精度に分析しながら溶存酸素濃度の分析も同時に行うことが困難になる。1つの装置で溶存酸素濃度の分析も同時に行うには、そのための溶存酸素計を別途追加することも考えられるが、このことは、比較的高価な溶存酸素計の個数が増えることにつながるため好ましくない。 By the way, some hydrogen peroxide decomposing means not only decompose hydrogen peroxide into water and oxygen (2H 2 O 2 →2H 2 O + O 2 ), such as catalysts containing platinum group metals, but also hydrogen coexistence Some react with oxygen below to produce water (2H 2 +O 2 →2H 2 O). Therefore, if the sample water contains not only hydrogen peroxide but also hydrogen, the oxygen generated by decomposition of the hydrogen peroxide reacts with the hydrogen and is consumed. As a result, the concentration of oxygen generated by the decomposition of hydrogen peroxide cannot be measured accurately, and the concentration of hydrogen peroxide in the sample water cannot be accurately calculated. On the other hand, as described in Patent Documents 1 and 2, it is conceivable to remove the hydrogen in advance by installing a degassing means such as a gas separation membrane before the hydrogen peroxide decomposition means. . However, in that case, the oxygen originally contained in the sample water is also removed, making it difficult to analyze the dissolved oxygen concentration at the same time as analyzing the hydrogen peroxide concentration in the sample water with high accuracy. In order to simultaneously analyze the dissolved oxygen concentration with one device, it is conceivable to add a separate dissolved oxygen meter for that purpose, but this is preferable because it leads to an increase in the number of relatively expensive dissolved oxygen meters. do not have.

そこで、本発明の目的は、コストアップを抑えながら、試料水中の過酸化水素濃度だけでなく溶存酸素濃度も高精度に分析可能な濃度分析装置を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a concentration analyzer capable of highly accurately analyzing not only the concentration of hydrogen peroxide but also the concentration of dissolved oxygen in sample water while suppressing an increase in cost.

上述した目的を達成するために、本発明の濃度分析装置は、水処理システムの所定位置から採取した試料水中の過酸化水素濃度と溶存酸素濃度とを分析する濃度分析装置であって、所定位置に接続され、試料水を流通させる第1の配管と、所定位置に接続され、試料水を流通させる第2の配管と、第1の配管に設けられ、試料水中の少なくとも溶存水素を除去する脱気手段と、脱気手段より下流側の第1の配管に設けられ、試料水中の過酸化水素を分解する過酸化水素分解手段と、脱気手段と過酸化水素分解手段との間の第1の配管と、第2の配管とを接続する第3の配管と、過酸化水素分解手段より下流側の第1の配管に設けられ、試料水の溶存酸素濃度測定する第1の濃度測定手段と、第2の配管と第3の配管との接続部より下流側の第2の配管に設けられ、試料水の溶存酸素濃度測定する第2の濃度測定手段と、第1の濃度測定手段による測定結果と第2の濃度測定手段による測定結果とに基づいて、試料水中の過酸化水素濃度を算出する演算手段と、を有し、第1の濃度測定手段は、第1の配管を経由して脱気手段と過酸化水素分解手段とを通る第1の供給経路を流れた試料水の溶存酸素濃度である第1の濃度を測定するようになっており、第2の濃度測定手段は、第1の配管を経由して脱気手段を通り、過酸化水素分解手段を通らずに、第3の配管から第2の配管へと通じる第2の供給経路を流れた試料水の溶存酸素濃度である第2の濃度と、第2の配管を経由して脱気手段と過酸化水素分解手段とを通らない第3の供給経路を流れた試料水の溶存酸素濃度である第3の濃度とを別々に測定するようになっており、演算手段は、第1の濃度測定手段による第1の濃度の測定値と第2の濃度測定手段による第2の濃度の測定値との差分に基づいて、試料水中の過酸化水素濃度を算出するIn order to achieve the above object, the concentration analyzer of the present invention is a concentration analyzer for analyzing the concentration of hydrogen peroxide and the concentration of dissolved oxygen in sample water sampled from a predetermined position of a water treatment system. A first pipe connected to and through which the sample water flows, a second pipe connected to a predetermined position and through which the sample water flows, and a desorption device provided in the first pipe for removing at least dissolved hydrogen in the sample water A gas means, a hydrogen peroxide decomposition means provided in a first pipe downstream from the degassing means for decomposing hydrogen peroxide in the sample water, and a first pipe between the degassing means and the hydrogen peroxide decomposition means. and a third pipe connecting the second pipe, and a first concentration measuring means provided in the first pipe on the downstream side of the hydrogen peroxide decomposition means and measuring the dissolved oxygen concentration of the sample water and a second concentration measuring means provided in the second pipe on the downstream side of the connecting portion between the second pipe and the third pipe for measuring the dissolved oxygen concentration of the sample water, and a first concentration measuring means. and a calculation means for calculating the concentration of hydrogen peroxide in the sample water based on the measurement result of the second concentration measurement means and the measurement result of the second concentration measurement means, the first concentration measurement means passing through the first pipe to measure the dissolved oxygen concentration of the sample water that has flowed through the first supply route passing through the degassing means and the hydrogen peroxide decomposing means, and the second concentration measuring means measures , the dissolved oxygen in the sample water that has flowed through the second supply route from the third pipe to the second pipe without passing through the degassing means via the first pipe and without passing through the hydrogen peroxide decomposition means and a third concentration that is the dissolved oxygen concentration of the sample water that has flowed through the third supply route that does not pass through the degassing means and the hydrogen peroxide decomposition means via the second pipe. and are separately measured, and the calculation means is based on the difference between the first density measurement value obtained by the first density measurement means and the second density measurement value obtained by the second density measurement means. to calculate the concentration of hydrogen peroxide in the sample water .

このような濃度分析装置では、採取した試料水が、脱気手段を含む第1の供給経路を通じて第1の濃度測定手段に供給され、同じく脱気手段を含む第2の供給経路を通じて第2の濃度測定手段に供給される。そのため、仮に採取した試料水に水素が含まれていたとしても、過酸化水素の分解により生じた酸素が水素と反応して消費されることはなく、試料水中の過酸化水素濃度を高精度に分析することが可能になる。また、採取した試料水を第3の供給経路に流通させることで、第2の濃度測定手段により、試料水にもともと含まれる酸素の濃度(第3の濃度)を測定することも可能になる。 In such a concentration analyzer, sampled water is supplied to the first concentration measuring means through the first supply route including the degassing means, and is supplied to the second concentration measuring means through the second supply route also including the degassing means. It is supplied to the concentration measuring means. Therefore, even if the sample water contains hydrogen, the oxygen generated by the decomposition of hydrogen peroxide will not react with the hydrogen and be consumed, and the hydrogen peroxide concentration in the sample water can be determined with high accuracy. analysis becomes possible. Further, by circulating the collected sample water through the third supply route, it is also possible to measure the concentration of oxygen originally contained in the sample water (third concentration) by the second concentration measuring means.

以上、本発明によれば、コストアップを抑えながら、試料水中の過酸化水素濃度だけでなく溶存酸素濃度も高精度に分析可能な濃度分析装置を提供することができる。 As described above, according to the present invention, it is possible to provide a concentration analyzer capable of highly accurately analyzing not only the hydrogen peroxide concentration in sample water but also the dissolved oxygen concentration while suppressing an increase in cost.

本発明の第1の実施形態に係る濃度分析装置の概略構成図である。1 is a schematic configuration diagram of a concentration analyzer according to a first embodiment of the present invention; FIG. 本発明の第2の実施形態に係る濃度分析装置の概略構成図である。FIG. 4 is a schematic configuration diagram of a concentration analyzer according to a second embodiment of the present invention;

以下、図面を参照して、本発明の実施の形態について説明する。本発明の濃度分析装置は、超純水製造装置の二次純水システム(サブシステム)における被処理水(一次純水システムで製造された一次純水)または処理水(超純水)の過酸化水素濃度と溶存酸素濃度とを分析するために好適に用いられる。ただし、本発明はこれに限定されず、様々な水処理システムの所定位置から採取した水を分析対象とすることができる。本発明が対象とする試料水としては、例えば、ユースポイントから回収された使用済みの処理水(超純水)や、水素水のようないわゆる機能水、排水処理設備における被処理水または処理水なども挙げられる。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. The concentration analyzer of the present invention is a method for measuring the concentration of water to be treated (primary pure water produced in the primary pure water system) or treated water (ultrapure water) in a secondary pure water system (subsystem) of an ultrapure water production apparatus. It is preferably used for analyzing hydrogen oxide concentration and dissolved oxygen concentration. However, the present invention is not limited to this, and water sampled from predetermined positions in various water treatment systems can be analyzed. Examples of sample water targeted by the present invention include used treated water (ultra-pure water) collected from points of use, so-called functional water such as hydrogen water, water to be treated or treated water in wastewater treatment equipment. And so on.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る濃度分析装置の概略構成図である。なお、図示した構成は、あくまで一例であり、本発明を限定するものではない。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a concentration analyzer according to a first embodiment of the present invention. The illustrated configuration is merely an example, and does not limit the present invention.

濃度分析装置10は、分析対象となる試料水が流れるメイン配管L1にサンプリング配管L10を介して接続され、サンプリング配管L10を通じて採取される試料水中の過酸化水素濃度と溶存酸素濃度を分析するものである。濃度分析装置10は、脱気装置1と、過酸化水素分解装置2と、2つの濃度測定装置3a,3bと、切替装置4と、演算装置5とを有している。また、濃度分析装置10は、各種分析結果(測定結果や演算結果)をリアルタイムで表示したり印刷したりするために、モニタなどの表示装置やプリンタなどの出力装置を有していてもよい。なお、メイン配管L1には、サンプリング配管L10が接続される部分より上流側に、試料水を流通させるためのポンプなどの送液装置(図示せず)が設けられており、それがもたらす圧力により、濃度分析装置10への試料水の供給も行われる。そのため、濃度分析装置10の間近にポンプなどの送液装置を設けることは基本的には不要であるが、必要に応じて、例えばサンプリング配管L10に送液装置が設けられていてもよい。また、サンプリング配管L10には、濃度分析装置10への試料水の供給を制御するバルブが設けられていてもよい。 The concentration analyzer 10 is connected via a sampling pipe L10 to a main pipe L1 through which sample water to be analyzed flows, and analyzes the hydrogen peroxide concentration and dissolved oxygen concentration in the sample water sampled through the sampling pipe L10. be. The concentration analyzer 10 has a degassing device 1 , a hydrogen peroxide decomposition device 2 , two concentration measuring devices 3 a and 3 b , a switching device 4 and an arithmetic device 5 . The concentration analyzer 10 may also have a display device such as a monitor and an output device such as a printer in order to display and print various analysis results (measurement results and calculation results) in real time. In addition, the main pipe L1 is provided with a liquid delivery device (not shown) such as a pump for circulating the sample water upstream from the portion to which the sampling pipe L10 is connected. , the sample water is also supplied to the concentration analyzer 10 . Therefore, it is basically not necessary to provide a liquid transfer device such as a pump near the concentration analyzer 10, but if necessary, a liquid transfer device may be provided, for example, in the sampling pipe L10. A valve for controlling the supply of sample water to the concentration analyzer 10 may be provided in the sampling pipe L10.

脱気装置(脱気手段)1は、サンプリング配管L10から分岐した2つの分岐配管L11,L12のうち第1の分岐配管L11に設けられている。脱気装置1は、試料水中の溶存水素を除去するものであり、これにより、後述するように、過酸化水素分解装置2で過酸化水素が分解される際に生じる酸素と水素との反応を抑制することができる。また、脱気装置1は、試料水中の溶存酸素を除去することもできる。このことは、溶存酸素のバックグラウンド濃度(ブランク値)を100μg/L以下、好ましくは10μg/L以下に下げることができ、過酸化水素濃度がμg/Lレベルの微量分析において特に有用である。脱気装置1としては、例えば、気体分離膜を備えたものが挙げられる。 A deaerator (deaerator) 1 is provided in the first branch pipe L11 of the two branch pipes L11 and L12 branched from the sampling pipe L10. The degassing device 1 removes dissolved hydrogen in the sample water, thereby reducing the reaction between oxygen and hydrogen that occurs when hydrogen peroxide is decomposed in the hydrogen peroxide decomposing device 2, as will be described later. can be suppressed. The deaerator 1 can also remove dissolved oxygen in the sample water. This makes it possible to reduce the background concentration of dissolved oxygen (blank value) to 100 μg/L or less, preferably 10 μg/L or less, which is particularly useful in microanalysis of hydrogen peroxide concentration at the μg/L level. As the degassing device 1, for example, one having a gas separation membrane can be used.

過酸化水素分解装置(過酸化水素分解手段)2は、脱気装置1の下流側で第1の分岐配管L11に設けられている。過酸化水素分解装置2は、白金族金属が担体に担持された白金族金属担持触媒を備えている。白金族金属担持触媒は、例えば容器(カラム)に充填され、過酸化水素を含有する試料水と接触することで、過酸化水素を水と酸素に分解する機能を有している(2H→2HO+O)。 A hydrogen peroxide decomposing device (hydrogen peroxide decomposing means) 2 is provided downstream of the degassing device 1 in the first branch pipe L11. The hydrogen peroxide decomposition device 2 includes a platinum group metal supported catalyst in which a platinum group metal is supported on a carrier. The platinum group metal-supported catalyst is packed in a container (column), for example, and has the function of decomposing hydrogen peroxide into water and oxygen by contact with sample water containing hydrogen peroxide (2H 2 O 22H2O + O2 ).

白金族金属担持触媒に用いられる白金族金属としては、触媒活性に優れ、比較的安価であることから、パラジウムを用いることが好ましい。白金族金属担持触媒の担体としては、一般的な粒状のアニオン交換樹脂を用いることもできるが、触媒の調整および反応性の観点から、アニオン交換体を用いることが好ましく、特に、モノリス状有機多孔質アニオン交換体を用いることがより好ましい。モノリス状有機多孔質アニオン交換体は、モノリス状有機多孔質体の骨格中にイオン交換基が導入されたものであり、2000h-1を越える空間速度での通水が可能になる。そのため、例えば、過酸化水素分解装置2に間欠的または連続的に空気(酸素)が混入したり、装置立ち上げ時に過酸化水素分解装置2に空気が残留していたりする場合にも、空気の一部または全部を速やかに下流側に押し流すことができる。その結果、空気の混入による分析精度の悪化を抑制したり、立ち上げ時間を短縮したりすることができる。なお、モノリス状有機多孔質アニオン交換体を用いることは、過酸化水素分解装置2の小型化が容易になる点でも有利である。モノリス状有機多孔質アニオン交換体の具体的な例については後述する。 Palladium is preferably used as the platinum group metal used in the supported platinum group metal catalyst because it has excellent catalytic activity and is relatively inexpensive. As the support for the platinum group metal-supported catalyst, a general granular anion exchange resin can be used, but from the viewpoint of adjustment and reactivity of the catalyst, it is preferable to use an anion exchanger, especially a monolithic organic porous It is more preferred to use a high quality anion exchanger. The monolithic organic porous anion exchanger is obtained by introducing ion exchange groups into the skeleton of the monolithic organic porous material, and is capable of passing water at a space velocity exceeding 2000 h −1 . Therefore, for example, even if air (oxygen) is mixed intermittently or continuously in the hydrogen peroxide decomposition device 2, or if air remains in the hydrogen peroxide decomposition device 2 when the device is started up, the air Some or all of it can be quickly swept downstream. As a result, it is possible to suppress the deterioration of the analysis accuracy due to the mixture of air, and shorten the start-up time. The use of the monolithic organic porous anion exchanger is also advantageous in that it facilitates miniaturization of the hydrogen peroxide decomposition device 2 . A specific example of the monolithic organic porous anion exchanger will be described later.

白金族金属担持触媒が充填される容器(カラム)の材料としては、特に制限はないが、酸素透過率が低く、耐久性に優れたものが好ましく、加えて、装置立ち上げ時にカラム内の気泡の有無を確認できるように透明なものが好ましい。そのような材料としては、例えば、アクリル、塩化ビニル、ポリカーボネートなどが挙げられる。 The material of the container (column) in which the platinum group metal-supported catalyst is packed is not particularly limited, but preferably has a low oxygen permeability and excellent durability. A transparent one is preferable so that the presence or absence of the film can be confirmed. Such materials include, for example, acrylic, vinyl chloride, polycarbonate, and the like.

2つの濃度測定装置3a,3bは、試料水中の溶存酸素濃度を測定するものであり、過酸化水素分解装置2の下流側で第1の分岐配管L11に設けられた第1の濃度測定装置3aと、第2の分岐配管L12に設けられた第2の濃度測定装置3bを含んでいる。第1および第2の濃度測定装置3a,3bとして、それぞれ公知の溶存酸素計を用いることができる。なお、この場合、それぞれの個体差を小さくして分析精度を高めるために、同一の型式およびロットの溶存酸素計を用いることが好ましい。 The two concentration measuring devices 3a and 3b measure the dissolved oxygen concentration in the sample water. and a second concentration measuring device 3b provided in the second branch pipe L12. Known dissolved oxygen meters can be used as the first and second concentration measuring devices 3a and 3b, respectively. In this case, it is preferable to use dissolved oxygen meters of the same model and lot in order to reduce individual differences and improve analysis accuracy.

濃度分析装置10には、2つの濃度測定装置3a,3bに対し、メイン配管L1を流れる試料水を3つの供給経路のいずれかを経由して供給するために、サンプリング配管L10と2つの分岐配管L11,L12に加えて、接続配管L21が設けられている。接続配管L21は、第1の分岐配管L11のうち脱気装置1の下流側であって過酸化水素分解装置2の上流側の部分と、第2の分岐配管L12のうち第2の濃度測定装置3bの上流側の部分とを接続するものである。 The concentration analyzer 10 has a sampling pipe L10 and two branch pipes for supplying the sample water flowing through the main pipe L1 to the two concentration measurement devices 3a and 3b via one of three supply routes. A connection pipe L21 is provided in addition to L11 and L12. The connecting pipe L21 is a portion of the first branch pipe L11 downstream of the degassing device 1 and upstream of the hydrogen peroxide decomposition device 2, and a second branch pipe L12 of the second concentration measuring device. 3b is connected to the upstream portion.

こうして、4つの配管L10~L12,L21により、上述した3つの供給経路が形成される。第1の供給経路L10,L11は、サンプリング配管L10から第1の分岐配管L11を経由して脱気装置1と過酸化水素分解装置2とを通る経路である。第2の供給経路L10,L11,L21,L12は、サンプリング配管L10から第1の分岐配管L11を経由して脱気装置1を通り、過酸化水素分解装置2を通らずに接続配管L21から第2の分岐配管L12へと通じる経路である。第3の供給経路L10,L12は、サンプリング配管L10から第2の分岐配管L12へと通じる経路であり、脱気装置1と過酸化水素分解装置2とを通らない経路である。そして、第1の濃度測定装置3aは、第1の供給経路L10,L11上にあり、第2の濃度測定装置3bは、第2の供給経路L10,L11,L21,L12上であって第3の供給経路L10,L12上にある。 Thus, the four pipes L10 to L12, L21 form the three supply routes described above. The first supply routes L10 and L11 are routes passing through the degassing device 1 and the hydrogen peroxide decomposition device 2 from the sampling pipe L10 via the first branch pipe L11. The second supply routes L10, L11, L21, L12 pass from the sampling pipe L10 via the first branch pipe L11 to the degassing device 1, do not pass through the hydrogen peroxide decomposition device 2, and from the connecting pipe L21 to the second 2 branch pipe L12. The third supply routes L10 and L12 are routes that lead from the sampling pipe L10 to the second branch pipe L12 and do not pass through the deaerator 1 and the hydrogen peroxide decomposition device 2 . The first concentration measuring device 3a is on the first supply paths L10, L11, and the second concentration measuring device 3b is on the second supply paths L10, L11, L21, L12 and on the third are on the supply paths L10 and L12 of the

したがって、第1の濃度測定装置3aは、第1の供給経路L10,L11を流れた試料水、すなわち、脱気装置1により溶存水素が除去され過酸化水素分解装置2により過酸化水素が分解された試料水の溶存酸素濃度である第1の濃度を測定するものである。また、第2の濃度測定装置3bは、第2の供給経路L10,L11,L21,L12を流れた試料水、すなわち、脱気装置1により溶存水素が除去された試料水であって過酸化水素分解装置2により過酸化水素が分解されていない試料水の溶存酸素濃度である第2の濃度を測定するものである。さらに、第2の濃度測定装置3bは、第3の供給経路L10,L12を流れた試料水、すなわち、メイン配管L1を流れる試料水の溶存酸素濃度である第3の濃度を測定するものでもある。 Therefore, the first concentration measuring device 3a is used for the sample water that has flowed through the first supply paths L10 and L11. It measures the first concentration, which is the dissolved oxygen concentration of the sample water. Further, the second concentration measuring device 3b measures sample water that has flowed through the second supply paths L10, L11, L21, and L12, that is, sample water from which dissolved hydrogen has been removed by the degassing device 1, and which is hydrogen peroxide. A second concentration, which is the concentration of dissolved oxygen in the sample water in which the hydrogen peroxide is not decomposed by the decomposing device 2, is measured. Furthermore, the second concentration measuring device 3b also measures the third concentration, which is the dissolved oxygen concentration of the sample water flowing through the third supply paths L10 and L12, that is, the sample water flowing through the main pipe L1. .

第2の濃度測定装置3bへの試料水の供給経路の切り替えは、切替装置(切替手段)4により行われる。すなわち、切替装置4は、第2の濃度測定装置3bへの試料水の供給経路を第2の供給経路L10,L11,L21,L12と第3の供給経路L10,L12のいずれかに切り替えるものであり、2つの開閉弁41,42から構成されている。第1の開閉弁41は、接続配管L21に設けられ、第2の開閉弁42は、第2の分岐配管L12のうち、第2の分岐配管L12と接続配管L21との接続部より上流側に設けられている。このような切替装置4により、第1および第2の濃度測定装置3a,3bによる濃度測定は、試料水中の過酸化水素濃度を分析するための第1の測定モードと、試料水中の過酸化水素濃度と溶存酸素濃度とを分析するための第2の測定モードとに切り替え可能になる。 A switching device (switching means) 4 switches the sample water supply route to the second concentration measuring device 3b. That is, the switching device 4 switches the sample water supply route to the second concentration measuring device 3b between the second supply routes L10, L11, L21, L12 and the third supply routes L10, L12. There are two on-off valves 41 and 42 . The first on-off valve 41 is provided on the connection pipe L21, and the second on-off valve 42 is located upstream of the connection between the second branch pipe L12 and the connection pipe L21 in the second branch pipe L12. is provided. With this switching device 4, the concentration measurement by the first and second concentration measuring devices 3a and 3b can be performed in the first measurement mode for analyzing the concentration of hydrogen peroxide in the sample water, and in the hydrogen peroxide concentration in the sample water. It becomes possible to switch to a second measurement mode for analyzing concentration and dissolved oxygen concentration.

第1の測定モードでは、第1の開閉弁41が開放されるとともに第2の開閉弁42が閉鎖される。これにより、第1の濃度測定装置3aには、第1の供給経路L10,L11を通じて試料水が供給され、第2の濃度測定装置3bには、第2の供給経路L10,L11,L21,L12を通じて試料水が供給される。こうして、第1の濃度測定装置3aで第1の濃度が測定され、第2の濃度測定装置3bで第2の濃度が測定される。その結果、後述するように、演算装置5により試料水中の過酸化水素濃度が算出される。 In the first measurement mode, the first on-off valve 41 is opened and the second on-off valve 42 is closed. As a result, sample water is supplied to the first concentration measuring device 3a through the first supply paths L10 and L11, and the sample water is supplied to the second concentration measuring device 3b through the second supply paths L10, L11, L21 and L12. Sample water is supplied through Thus, the first density is measured by the first density measuring device 3a, and the second density is measured by the second density measuring device 3b. As a result, the arithmetic device 5 calculates the concentration of hydrogen peroxide in the sample water, as will be described later.

一方、第2の測定モードでは、第1の開閉弁41が閉鎖されるとともに第2の開閉弁42が開放される。これにより、第1の濃度測定装置3aには、第1の供給経路L10,L11を通じて試料水が供給され、第2の濃度測定装置3bには、第3の供給経路L10,L12を通じて試料水が供給される。こうして、第1の濃度測定装置3aで第1の濃度が測定され、第2の濃度測定装置3bで第3の濃度、すなわち、試料水にもともと含まれる酸素の濃度(溶存酸素濃度)が測定される。なお、第2の測定モードにおいても、第1の測定モードでの第2の濃度測定装置3bによる第2の濃度の測定値を用いることで、後述するように、演算装置5により試料水中の過酸化水素濃度が算出される。 On the other hand, in the second measurement mode, the first on-off valve 41 is closed and the second on-off valve 42 is opened. As a result, the sample water is supplied to the first concentration measuring device 3a through the first supply paths L10 and L11, and the sample water is supplied to the second concentration measuring device 3b through the third supply paths L10 and L12. supplied. Thus, the first concentration is measured by the first concentration measuring device 3a, and the third concentration, that is, the concentration of oxygen originally contained in the sample water (dissolved oxygen concentration) is measured by the second concentration measuring device 3b. be. Also in the second measurement mode, by using the second concentration measurement value obtained by the second concentration measuring device 3b in the first measurement mode, the calculation device 5 can detect excess concentration in the sample water, as will be described later. A hydrogen oxide concentration is calculated.

演算装置5は、第1の濃度測定装置3aによる第1の濃度の測定値と第2の濃度測定装置3bによる第2の濃度の測定値との差分に基づいて、試料水中の過酸化水素濃度を算出するものである。すなわち、第1の濃度測定装置3aにより測定された第1の濃度DOと、第2の濃度測定装置3bにより測定された第2の濃度DOとから、その差分ΔDO=DO-DOを算出する。ここで、算出された差分ΔDOは、過酸化水素分解装置2において過酸化水素の分解(2H→2HO+O)により生じた酸素に由来する酸素濃度の増加分に一致する。したがって、算出された差分すなわち酸素濃度の増加分ΔDOから、試料水中の過酸化水素濃度CHP=(68/32)ΔDOを算出する。ここで、係数68は、上記過酸化水素の分解反応式の左辺における過酸化水素の分子量であり、係数32は、同右辺における酸素の分子量である。 The computing device 5 determines the concentration of hydrogen peroxide in the sample water based on the difference between the first concentration value measured by the first concentration measuring device 3a and the second concentration value measured by the second concentration measuring device 3b. is calculated. That is, from the first density DO 1 measured by the first density measuring device 3a and the second density DO 2 measured by the second density measuring device 3b, the difference ΔDO=DO 1 -DO 2 Calculate Here, the calculated difference ΔDO coincides with the increase in oxygen concentration resulting from oxygen generated by decomposition of hydrogen peroxide (2H 2 O 2 →2H 2 O+O 2 ) in the hydrogen peroxide decomposition device 2 . Therefore, the hydrogen peroxide concentration C HP =(68/32) ΔDO in the sample water is calculated from the calculated difference, that is, the increment ΔDO of the oxygen concentration. Here, the coefficient 68 is the molecular weight of hydrogen peroxide on the left side of the hydrogen peroxide decomposition reaction formula, and the coefficient 32 is the molecular weight of oxygen on the right side.

なお、過酸化水素分解装置2の白金族金属担持触媒は、試料水中の過酸化水素を分解するだけでなく、水素共存下で酸素と反応して水を生成する機能(2H+O→2HO)も有している。したがって、過酸化水素と水素を含有する試料水が過酸化水素分解装置2に供給されると、過酸化水素の分解により生じた酸素が水素と反応して消費されてしまい、算出される差分ΔDOが、実際に生じた酸素に由来する酸素濃度の増加分よりも低く見積もられる可能性がある。このような状況は、例えば、試料水として、紫外線酸化装置を含む超純水製造装置のサブシステムにおける処理水を用いた場合に発生する可能性がある。すなわち、紫外線酸化装置では、紫外線酸化処理の過程で微量の過酸化水素だけでなく微量の水素も生成されることが知られており、サブシステムにおける処理水に過酸化水素だけでなく水素も含まれる可能性がある。 The platinum group metal-supported catalyst of the hydrogen peroxide decomposition device 2 not only decomposes the hydrogen peroxide in the sample water, but also has the function of reacting with oxygen in the presence of hydrogen to generate water (2H 2 + O 2 → 2H 2 O). Therefore, when the sample water containing hydrogen peroxide and hydrogen is supplied to the hydrogen peroxide decomposition device 2, the oxygen generated by the decomposition of the hydrogen peroxide reacts with the hydrogen and is consumed, and the calculated difference ΔDO However, it is possible that the increase in oxygen concentration due to the oxygen actually produced is underestimated. Such a situation may occur, for example, when treated water in a subsystem of an ultrapure water production apparatus including an ultraviolet oxidizer is used as sample water. In other words, it is known that not only a small amount of hydrogen peroxide but also a small amount of hydrogen is generated in the ultraviolet oxidation process in the ultraviolet oxidation device, and the treated water in the subsystem contains not only hydrogen peroxide but also hydrogen. There is a possibility that

しかしながら、本実施形態の濃度分析装置10では、採取した試料水は、脱気装置1を含む第1の供給経路L10,L11を経由して、第1の濃度測定装置3aに供給され、同じく脱気装置1を含む第2の供給経路L10,L11,L21,L12を経由して、第2の濃度測定装置3bに供給される。したがって、仮にメイン配管L1を流れる試料水に水素が含まれていたとしても、そのような水素は脱気装置1により除去されるため、過酸化水素の分解により生じた酸素が水素と反応して消費されることはなくなる。その結果、算出される差分ΔDOが、実際に生じた酸素の増加分よりも低く見積もられる可能性はなくなり、より高精度に試料水中の過酸化水素濃度を算出することが可能になる。なお、本実施形態の濃度分析装置10は、試料水に含み得る水素を除去する脱気装置1を備えているため、気体分離膜などの脱気手段を備えていない超純水製造装置のサブシステムにおける処理水を分析対象とする場合に特に有用である。 However, in the concentration analyzer 10 of the present embodiment, the collected sample water is supplied to the first concentration measurement device 3a via the first supply paths L10 and L11 including the degassing device 1, and is also degassed. It is supplied to the second concentration measuring device 3b via the second supply paths L10, L11, L21, L12 including the gas device 1. Therefore, even if the sample water flowing through the main pipe L1 contains hydrogen, such hydrogen is removed by the degassing device 1, so that the oxygen generated by the decomposition of the hydrogen peroxide reacts with the hydrogen. It will no longer be consumed. As a result, there is no possibility that the calculated difference ΔDO will be estimated lower than the actual increase in oxygen, and it becomes possible to calculate the concentration of hydrogen peroxide in the sample water with higher accuracy. Since the concentration analyzer 10 of this embodiment is equipped with the degassing device 1 that removes hydrogen that may be contained in the sample water, it is a sub of an ultrapure water production device that does not have degassing means such as a gas separation membrane. It is particularly useful when the treated water in the system is to be analyzed.

また、本実施形態によれば、採取した試料水を第3の供給経路L10,L12に流通させることで、試料水中の過酸化水素濃度を分析するために用いられる第2の濃度測定装置3bにより、試料水にもともと含まれる酸素の濃度(溶存酸素濃度)を測定することも可能になる。なお、濃度測定が行われた試料水は、それぞれ分岐配管L11,L12から外部に排出されるが、本実施形態は、濃度測定に試薬などが使用されないため、排水処理が容易になる点でも有利である。 In addition, according to the present embodiment, the second concentration measuring device 3b used for analyzing the concentration of hydrogen peroxide in the sample water causes the collected sample water to flow through the third supply paths L10 and L12. , it is also possible to measure the concentration of oxygen originally contained in the sample water (dissolved oxygen concentration). The sample water whose concentration has been measured is discharged to the outside from the branch pipes L11 and L12, respectively, but this embodiment is advantageous in that wastewater treatment is facilitated because no reagent is used for concentration measurement. is.

第1の測定モードと第2の測定モードはいずれも継続的に行われることが好ましい。それにより、各測定値のばらつきが大きい場合にも、一定時間における移動平均値を用いて過酸化水素濃度を算出することができ、その結果、過酸化水素濃度の分析精度を高めることができる。また、第1の測定モードと第2の測定モードとの切り替えは所定の頻度で行われてもよく、あるいは、通常は第1の測定モードが実行され、必要に応じて、第1の測定モードの合間に第2の測定モードが実行されてもよい。第1の測定モードと第2の測定モードとを所定の頻度で切り替える場合、その頻度に特に制限はないが、測定値が安定する前に切り替えが行われてしまわないように、切り替えの頻度は多すぎないことが好ましい。なお、各測定モードにおいて、実際の濃度測定は、試料水の供給の切り替えが行われてから一定時間が経過し、各測定値が安定した後で行われることが好ましい。 Both the first measurement mode and the second measurement mode are preferably performed continuously. As a result, the hydrogen peroxide concentration can be calculated using the moving average value for a certain period of time even when the measured values vary greatly, and as a result, the analysis accuracy of the hydrogen peroxide concentration can be improved. Further, switching between the first measurement mode and the second measurement mode may be performed at a predetermined frequency, or the first measurement mode is normally executed and the first measurement mode is switched as necessary. A second measurement mode may be performed between . When switching between the first measurement mode and the second measurement mode at a predetermined frequency, the frequency is not particularly limited. preferably not too much. In each measurement mode, the actual concentration measurement is preferably performed after a certain period of time has passed since the supply of the sample water was switched, and each measurement value has stabilized.

また、第1および第2の濃度測定装置3a,3bに用いられる溶存酸素計に対しては、任意の頻度で校正を行うことが好ましい。それにより、各濃度計の測定精度、ひいては過酸化水素濃度と溶存酸素濃度の分析精度を高めることができる。溶存酸素計の校正方法としては、溶存酸素計の校正に一般的に用いられる大気校正やゼロ点校正を用いることができる。校正の頻度に特に制限はないが、1日に1回より多い頻度では、頻繁に校正が行われるため煩雑であり、1年に1回より少ない頻度では、校正の頻度として少なすぎるため、測定値の信頼性が乏しくなる。したがって、校正の頻度は、1日から1年に1回が好ましく、より好ましくは1週間から半年に1回である。 Further, it is preferable to calibrate the dissolved oxygen meters used in the first and second concentration measuring devices 3a and 3b at an arbitrary frequency. Thereby, the measurement accuracy of each densitometer and the analysis accuracy of the hydrogen peroxide concentration and the dissolved oxygen concentration can be improved. As a method for calibrating the dissolved oxygen meter, atmospheric calibration and zero point calibration, which are generally used for calibrating the dissolved oxygen meter, can be used. There is no particular limit to the frequency of calibration, but if the frequency is more than once a day, it is troublesome because calibration is frequently performed, and if it is less than once a year, the frequency of calibration is too low. value becomes unreliable. Therefore, the frequency of calibration is preferably once a day to once a year, more preferably once a week to once a year.

第1および第2の濃度測定装置3a,3bに用いられる溶存酸素計は、所定の流量範囲で最も誤差が少なくなるように調整されている。そのため、各濃度計に供給される試料水の流量がそのような流量範囲に調整されていることが好ましい。したがって、各分岐配管L11,L12には、図示したように、それぞれを流れる試料水の流量を調整する流量調整手段11,12が設けられていることが好ましい。各流量調整手段11,12の構成に特に制限はなく、例えば、流量計と流量調整弁とからなる流量調整手段をそれぞれ用いることができる。また、各流量調整手段11,12の設置位置は、配管などの継ぎ目から空気(酸素)が侵入するおそれがあるため、各濃度測定装置3a,3bの下流側であることが好ましい。なお、各分岐配管L11,L12には、流量調整手段11,12の他にも、プロセス制御に用いられる周知の構成(例えば警報装置など)が任意に設けられていてもよい。 The dissolved oxygen meters used in the first and second concentration measuring devices 3a and 3b are adjusted to minimize errors within a predetermined flow rate range. Therefore, it is preferable that the flow rate of sample water supplied to each densitometer is adjusted within such a flow rate range. Therefore, it is preferable that each of the branch pipes L11 and L12 is provided with flow rate adjusting means 11 and 12 for adjusting the flow rate of the sample water flowing therethrough. There are no particular restrictions on the configuration of each of the flow rate adjusting means 11 and 12, and for example, flow rate adjusting means each comprising a flow meter and a flow rate adjusting valve can be used. Moreover, the installation positions of the flow rate adjusting means 11 and 12 are preferably downstream of the concentration measuring devices 3a and 3b because there is a risk that air (oxygen) may enter through joints of pipes or the like. In addition to the flow rate adjusting means 11 and 12, the branch pipes L11 and L12 may be arbitrarily provided with a well-known configuration (for example, an alarm device) used for process control.

第1の供給経路L10,L11と第2の供給経路L10,L11,L21,L12は、第2の分岐配管L12に過酸化水素分解装置2が設置されていない分、圧力損失などの通水条件が互いに異なる。そのため、このような通水条件の違いが、過酸化水素濃度の分析精度に影響を及ぼす可能性がある。そこで、第1の供給経路L10,L11の通水条件と第2の供給経路L10,L11,L21,L12の通水条件を一致させるために、第2の分岐配管L12のうち、第2の分岐配管L12と接続配管L21との接続部より下流側に、ダミー容器(カラム)が設置されていてもよい。ダミーカラムの構成に特に制限はなく、例えば、過酸化水素分解能力を備えていないこと(担体に白金族金属が担持されていないこと)を除いて過酸化水素分解装置2と同様の構成のものを設置することができる。 The first supply paths L10, L11 and the second supply paths L10, L11, L21, L12 have no water flow conditions such as pressure loss because the hydrogen peroxide decomposition device 2 is not installed in the second branch pipe L12. are different from each other. Therefore, such a difference in water flow conditions may affect the analysis accuracy of the hydrogen peroxide concentration. Therefore, in order to match the water flow conditions of the first supply routes L10, L11 with the water flow conditions of the second supply routes L10, L11, L21, L12, the second branch pipe L12 A dummy container (column) may be installed downstream from the connecting portion between the pipe L12 and the connection pipe L21. There are no particular restrictions on the configuration of the dummy column, and for example, it has the same configuration as the hydrogen peroxide decomposition device 2 except that it does not have hydrogen peroxide decomposition capability (no platinum group metal is supported on the carrier). can be installed.

なお、サンプリング配管L10や分岐配管L11,L12、接続配管L21の材料としては、ガス透過性の低いものが好ましく、特に、酸素透過率が低く、不純物の溶出が少ないものが好ましい。そのような材料としては、例えば、ステンレス鋼やポリアミド樹脂が挙げられる。また、各配管の材料としてステンレス鋼が用いられる場合、継ぎ目からの空気(酸素)の侵入を抑制するために、配管の分岐部や屈曲部は、エルボやチーズなどの継手類によって構成されるのではなく、溶接や曲げ加工によって作製されることが好ましい。 The materials for the sampling pipe L10, the branch pipes L11 and L12, and the connection pipe L21 are preferably those with low gas permeability, particularly those with low oxygen permeability and little elution of impurities. Examples of such materials include stainless steel and polyamide resin. In addition, when stainless steel is used as the material for each pipe, joints such as elbows and tee are used to prevent air (oxygen) from entering through the joints. It is preferably made by welding or bending instead.

本実施形態では、第1の濃度測定装置3aが、第1の濃度を測定する第1の濃度測定手段として機能し、第2の濃度測定装置3bが、第2の濃度と第3の濃度とを測定する第2の濃度測定手段として機能し、演算装置5が、これらの測定値に基づいて試料水中の過酸化水素濃度を算出する演算手段として機能するが、第1の濃度測定手段と第2の濃度測定手段と演算手段の構成はこれに限定されるものではない。例えば、濃度測定装置(溶存酸素計)3a,3bの代わりに、隔膜電極法に基づいて試料水中の溶存酸素濃度に比例して電極間に流れる電流を検出する検出器が設けられ、その検出結果に基づいて、演算装置5が、溶存酸素濃度の換算と過酸化水素濃度の算出とを行ってもよい。すなわち、演算装置5が、第1の濃度測定手段としての機能と第2の濃度測定手段としての機能と演算手段としての機能とを併せ持っていてもよい。 In this embodiment, the first concentration measuring device 3a functions as first concentration measuring means for measuring the first concentration, and the second concentration measuring device 3b measures the second concentration and the third concentration. and the arithmetic device 5 functions as arithmetic means for calculating the concentration of hydrogen peroxide in the sample water based on these measured values. The configuration of the concentration measuring means and computing means of 2 is not limited to this. For example, instead of the concentration measuring devices (dissolved oxygen meters) 3a and 3b, a detector for detecting the current flowing between the electrodes in proportion to the dissolved oxygen concentration in the sample water based on the diaphragm electrode method is provided, and the detection result is , the calculation device 5 may convert the dissolved oxygen concentration and calculate the hydrogen peroxide concentration. That is, the computing device 5 may have the functions of the first density measuring means, the second density measuring means, and the computing means.

図示した構成では、2つの分岐配管L11,L12がサンプリング配管L10を介してメイン配管L1に接続されているが、それぞれが直接メイン配管L1に接続されていてもよい。ただし、試料水の採取位置が大きく異なると、溶存酸素濃度などの水質条件が異なるおそれがあるため、2つの分岐配管L11,L12は、図示したように、サンプリング配管L10を介してメイン配管L1に接続されていることが好ましい。 In the illustrated configuration, two branch pipes L11 and L12 are connected to the main pipe L1 via the sampling pipe L10, but each may be directly connected to the main pipe L1. However, if the sampling positions of the sample water differ greatly, the water quality conditions such as the dissolved oxygen concentration may differ. preferably connected.

(第2の実施形態)
図2は、本発明の第2の実施形態に係る濃度分析装置の概略構成図である。以下、第1の実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、第1の実施形態と異なる構成のみ説明する。
(Second embodiment)
FIG. 2 is a schematic configuration diagram of a concentration analyzer according to a second embodiment of the present invention. In the following, configurations similar to those of the first embodiment are denoted by the same reference numerals in the drawings, description thereof is omitted, and only configurations different from those of the first embodiment are described.

上述したように、第1および第2の濃度測定装置3a,3bに用いられる溶存酸素計の測定精度を高めるためには、任意の頻度で校正を行うことが好ましいが、そのような校正を実行しても、過酸化水素濃度がμg/Lレベルの微量分析を行う場合、各濃度計の微小な個体差が無視できないことがある。特に、2つの溶存酸素計の測定値の差分に基づいて過酸化水素濃度が算出される場合、このような微小な個体差による影響がより大きくなる可能性がある。 As described above, in order to improve the measurement accuracy of the dissolved oxygen meters used in the first and second concentration measuring devices 3a and 3b, it is preferable to perform calibration at any frequency. However, in microanalyses of hydrogen peroxide concentrations at the μg/L level, minute individual differences among densitometers may not be negligible. In particular, when the hydrogen peroxide concentration is calculated based on the difference between the measured values of two dissolved oxygen meters, such minute individual differences may have a greater effect.

そこで、本実施形態では、濃度分析装置10の通常動作である上述した濃度分析工程(第1および第2の測定モード)の合間に、補正値取得工程(第3の測定モード)が任意の頻度で実行される。補正値取得工程では、溶存酸素計(第1および第2の濃度測定装置3a,3b)の個体差を補償するための補正値が取得され、こうして取得された補正値に基づいて、本実施形態の濃度分析工程において、第1の濃度測定装置3aにより測定された第1の濃度DOと、第2の濃度測定装置3bにより測定された第2の濃度DOと差分ΔDO(=DO-DO)が補正される。そして、この補正された差分が、過酸化水素の分解により生じた酸素に由来する酸素濃度の増加分に一致することになる。 Therefore, in the present embodiment, the correction value acquisition step (third measurement mode) is performed at any frequency between the above-described concentration analysis steps (first and second measurement modes), which are normal operations of the concentration analyzer 10. is executed in In the correction value obtaining step, a correction value for compensating for individual differences in dissolved oxygen meters (first and second concentration measuring devices 3a and 3b) is obtained. in the concentration analysis step, the first concentration DO 1 measured by the first concentration measuring device 3a, the second concentration DO 2 measured by the second concentration measuring device 3b, and the difference ΔDO (=DO 1 − DO 2 ) is corrected. Then, this corrected difference matches the increased amount of oxygen concentration derived from oxygen generated by the decomposition of hydrogen peroxide.

この補正値取得工程を実行するために、本実施形態の濃度分析装置10には、第1の実施形態の接続配管(第1の接続配管)L21に加えて、その下流側にさらに別の接続配管(第2の接続配管)L22が設けられている。第2の接続配管L22は、第1の分岐配管L11のうち過酸化水素分解装置2の下流側であって第1の濃度測定装置3aの上流側の部分と、第2の分岐配管L12のうち、第2の分岐配管L12と第1の接続配管L21との接続部より下流側であって第2の濃度測定装置3bの上流側の部分とを接続するものである。なお、第2の接続配管L22の材料や加工方法は、サンプリング配管L10や分岐配管L11,L12、第1の接続配管L21の場合と同様であることが好ましい。 In order to execute this correction value acquisition process, the concentration analyzer 10 of the present embodiment has, in addition to the connection pipe (first connection pipe) L21 of the first embodiment, another connection downstream thereof. A pipe (second connection pipe) L22 is provided. The second connection pipe L22 is a portion of the first branch pipe L11 downstream of the hydrogen peroxide decomposition device 2 and upstream of the first concentration measuring device 3a, and a portion of the second branch pipe L12. , downstream of the connecting portion of the second branch pipe L12 and the first connection pipe L21 and upstream of the second concentration measuring device 3b. The material and processing method of the second connection pipe L22 are preferably the same as those of the sampling pipe L10, the branch pipes L11 and L12, and the first connection pipe L21.

濃度分析工程と補正値分析工程とは切替装置4によって切り替えられる。このために、切替装置4は、第1の開閉弁41と第2の開閉弁42に加えて、第3の開閉弁43と第4の開閉弁44とを有している。第3の開閉弁43は、第2の接続配管L22に設けられ、第4の開閉弁44は、第1の分岐配管L11のうち、過酸化水素分解装置2の下流側であって第1の分岐配管L11と第2の接続配管L22との接続部より上流側に設けられている。本実施形態の濃度分析工程(第1の測定モードおよび第2の測定モード)では、いずれの測定モードにおいても、第3の開閉弁43は閉鎖され、第4の開閉弁44は開放される。 A switch 4 switches between the concentration analysis process and the correction value analysis process. For this purpose, the switching device 4 has a third on-off valve 43 and a fourth on-off valve 44 in addition to the first on-off valve 41 and the second on-off valve 42 . The third on-off valve 43 is provided in the second connection pipe L22, and the fourth on-off valve 44 is provided in the first branch pipe L11 on the downstream side of the hydrogen peroxide decomposition device 2 and in the first branch pipe L11. It is provided on the upstream side of the connecting portion between the branch pipe L11 and the second connection pipe L22. In the concentration analysis step (first measurement mode and second measurement mode) of this embodiment, the third on-off valve 43 is closed and the fourth on-off valve 44 is opened in any measurement mode.

一方、補正値取得工程では、第1および第2の開閉弁41,42が閉鎖されるとともに第3および第4の開閉弁43,44が開放される。これにより、第1の濃度測定装置3aには、第1の供給経路L10,L11を通じて試料水が供給され、第2の濃度測定装置3bにも、第1の供給経路L10,L11を流れた試料水が第2の接続配管L22から第2の分岐配管L12を通じて供給される。こうして、第1の濃度測定装置3aと第2の濃度測定装置3bで同時に第1の濃度が測定される。あるいは、補正値取得工程では、第1および第4の開閉弁41,44が閉鎖されるとともに第2および第3の開閉弁42,43が開放される。これにより、第1の濃度測定装置3aには、第3の供給経路L10,L12を流れた試料水が第2の接続配管L22から第1の分岐配管L11を通じて供給され、第2の濃度測定装置3bにも、第2の供給経路L10,L12を流れた試料水が供給される。こうして、第1の濃度測定装置3aと第2の濃度測定装置3bで同時に第3の濃度が測定される。 On the other hand, in the correction value obtaining step, the first and second on-off valves 41 and 42 are closed, and the third and fourth on-off valves 43 and 44 are opened. As a result, the sample water is supplied to the first concentration measuring device 3a through the first supply routes L10 and L11, and the sample water flowing through the first supply routes L10 and L11 is also supplied to the second concentration measuring device 3b. Water is supplied from the second connecting pipe L22 through the second branch pipe L12. Thus, the first density is measured simultaneously by the first density measuring device 3a and the second density measuring device 3b. Alternatively, in the correction value obtaining step, the first and fourth on-off valves 41 and 44 are closed and the second and third on-off valves 42 and 43 are opened. As a result, the sample water that has flowed through the third supply paths L10 and L12 is supplied to the first concentration measuring device 3a from the second connection pipe L22 through the first branch pipe L11, and the second concentration measuring device 3b is also supplied with the sample water that has flowed through the second supply paths L10 and L12. In this way, the third concentration is simultaneously measured by the first concentration measuring device 3a and the second concentration measuring device 3b.

第1の濃度測定装置3aと第2の濃度測定装置3bで同時に第1の濃度または第3の濃度が測定されると、演算装置5により、第1の濃度測定装置3aの測定値M1と、第2の濃度測定装置3bの測定値M2とから、その差分ΔM=M1-M2が算出される。こうして算出された差分ΔMは、第1および第2の濃度測定装置3a,3bの溶存酸素計の個体差を補償するための補正値として演算装置5に記憶され、補正値取得工程が実行されるごとに更新される。 When the first concentration or the third concentration is simultaneously measured by the first concentration measuring device 3a and the second concentration measuring device 3b, the computing device 5 outputs the measured value M1 of the first concentration measuring device 3a, The difference ΔM=M1−M2 is calculated from the measured value M2 of the second concentration measuring device 3b. The difference ΔM thus calculated is stored in the computing device 5 as a correction value for compensating for individual differences in the dissolved oxygen meters of the first and second concentration measuring devices 3a and 3b, and a correction value obtaining step is executed. updated every

本実施形態の濃度分析工程では、補正値取得工程で取得された補正値ΔMに基づいて、上記差分ΔDOが補正される。すなわち、補正値ΔMと、差分ΔDOとから、過酸化水素の分解により生じた酸素に由来する酸素濃度の増加分ΔDO=ΔDO-ΔMが算出される。そして、上述したように、算出された酸素濃度の増加分ΔDOから、試料水中の過酸化水素濃度CHPが算出される(CHP=(68/32)ΔDO)。これにより、溶存酸素計(第1および第2の濃度測定装置3a,3b)の個体差による影響を抑え、より高精度に過酸化水素濃度の分析を行うことができる。 In the concentration analysis step of this embodiment, the difference ΔDO is corrected based on the correction value ΔM obtained in the correction value obtaining step. That is, from the correction value ΔM and the difference ΔDO, the oxygen concentration increment ΔDO 0 =ΔDO−ΔM derived from the oxygen generated by the decomposition of hydrogen peroxide is calculated. Then, as described above, the hydrogen peroxide concentration C HP in the sample water is calculated from the calculated increase in oxygen concentration ΔDO 0 (C HP =(68/32)ΔDO 0 ). As a result, the influence of individual differences in the dissolved oxygen meters (the first and second concentration measuring devices 3a and 3b) can be suppressed, and the hydrogen peroxide concentration can be analyzed with higher accuracy.

補正値取得工程は、上述した濃度計自体の校正の直後に実行されるが、これとは別に所定の頻度でも実行される。その実行頻度に特に制限はないが、1日に1回より多い頻度では、濃度分析工程から補正値取得工程への切り替えが頻繁に生じるため、過酸化水素濃度を分析できない期間が長くなってしまい、半年に1回より少ない頻度では、校正の頻度として少なすぎるため、測定値の信頼性が乏しくなる。したがって、補正値取得工程を実行する頻度は、濃度計自体の校正直後を除いて、1日から半年に1回であることが好ましい。なお、補正値取得工程における実際の補正値の算出は、試料水の供給の切り替えが行われてから一定時間が経過し、各測定値が安定した後で行われることが好ましく、その算出には、所定時間における平均値を用いることもできる。 The correction value acquisition step is executed immediately after the calibration of the densitometer itself as described above, but apart from this, it is also executed at a predetermined frequency. The execution frequency is not particularly limited, but if the frequency is more than once a day, the concentration analysis process is frequently switched to the correction value acquisition process, resulting in a longer period during which the hydrogen peroxide concentration cannot be analyzed. If the frequency is less than once every six months, the frequency of calibration is too low and the reliability of the measured value is poor. Therefore, the frequency of executing the correction value obtaining step is preferably once a day to once every six months, except immediately after calibration of the densitometer itself. It should be noted that the calculation of the actual correction value in the correction value acquisition step is preferably performed after a certain period of time has elapsed since the supply of the sample water was switched, and each measurement value has stabilized. , an average value over a predetermined period of time can also be used.

補正値取得工程では、第1および第2の濃度測定装置3a,3bに対して同じ種類の試料水が供給される限り、第1の供給経路L10,11を流れた試料水と第3の供給経路L10,12を流れた試料水のどちらが供給されてもよい。ただし、補正値取得工程の実行中にも、試料水にもともと含まれていた酸素の濃度(第3の濃度)を監視することができる点で、第3の供給経路L10,12を流れた試料水が供給されることが好ましい。なお、図示した構成では、上述した2つの場合において、試料水は第2の接続配管L22を互いに反対方向に流れる。そのため、第2の接続配管L22に設置される第3の開閉弁43としては、ボールバルブのように流れ方向に制限のないものを用いることが好ましい。また、補正値取得工程において、第1および第2の濃度測定装置3a,3bに対して第1の供給経路L10,11を流れた試料水が供給されることがあらかじめ決められている場合、第4の開閉弁44を省略することができる。これにより、バルブから侵入する空気(酸素)量を低減することができ、バルブのメンテナンスも減らすことができる。 In the correction value acquisition step, as long as the same kind of sample water is supplied to the first and second concentration measuring devices 3a and 3b, the sample water flowing through the first supply paths L10 and L11 and the third supply Either of the sample waters that have flowed through paths L10 and L12 may be supplied. However, the concentration of oxygen originally contained in the sample water (third concentration) can be monitored even during the execution of the correction value acquisition process, and the sample water flowing through the third supply paths L10, L12 Water is preferably supplied. In the illustrated configuration, the sample water flows in the opposite directions through the second connecting pipe L22 in the two cases described above. Therefore, as the third on-off valve 43 installed in the second connection pipe L22, it is preferable to use a ball valve that has no restriction in the flow direction. Further, in the correction value obtaining step, when it is predetermined that the sample water flowing through the first supply paths L10, L11 is supplied to the first and second concentration measuring devices 3a, 3b, 4 on-off valve 44 can be omitted. As a result, the amount of air (oxygen) entering from the valve can be reduced, and maintenance of the valve can also be reduced.

補正値取得工程では、第1および第2の濃度測定装置3a,3bに用いられる溶存酸素計に対して同じ流量の試料水が供給されることが好ましい。したがって、第1の実施形態と同様に、各分岐配管L11,L12には、それぞれを流れる試料水の流量を調整する流量調整手段11,12が設けられていることが好ましい。 In the correction value obtaining step, it is preferable to supply sample water at the same flow rate to the dissolved oxygen meters used in the first and second concentration measuring devices 3a and 3b. Therefore, as in the first embodiment, each of the branch pipes L11 and L12 is preferably provided with flow rate adjusting means 11 and 12 for adjusting the flow rate of the sample water flowing therethrough.

(モノリスアニオン交換体)
ここで、上述した実施形態の過酸化水素分解装置2に好適に使用されるモノリス状有機多孔質アニオン交換体の具体例として、2種類のモノリス状有機多孔質アニオン交換体について説明する。以下、モノリス状有機多孔質アニオン交換体を単に「モノリスアニオン交換体」といい、モノリス状有機多孔質体を単に「モノリス」ともいう。また、モノリスの製造における中間体(前駆体)であるモノリス状有機多孔質中間体を単に「モノリス中間体」ともいう。
(Monolithic anion exchanger)
Here, two kinds of monolithic organic porous anion exchangers will be described as specific examples of monolithic organic porous anion exchangers that are suitably used in the hydrogen peroxide decomposition apparatus 2 of the above-described embodiment. Hereinafter, the monolithic organic porous anion exchanger is simply referred to as "monolithic anion exchanger", and the monolithic organic porous material is also simply referred to as "monolith". A monolithic organic porous intermediate, which is an intermediate (precursor) in the production of a monolith, is also simply referred to as a "monolith intermediate".

[Aタイプのモノリスアニオン交換体]
Aタイプのモノリスアニオン交換体は、モノリスにアニオン交換基を導入することで得られるものであり、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30~300μm、好ましくは30~200μm、特に好ましくは40~100μmの開口(メソポア)となる連続マクロポア構造体である。Aタイプのモノリスアニオン交換体の開口の平均直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの開口の平均直径よりも大きくなる。水湿潤状態での開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、水湿潤状態での開口の平均直径が大き過ぎると、被処理水(試料水)とAタイプのモノリスアニオン交換体および担持された白金族金属ナノ粒子との接触が不十分となり、その結果、過酸化水素分解特性が低下してしまうため好ましくない。なお、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態のモノリスの開口の平均直径、及び乾燥状態のモノリスアニオン交換体の開口の平均直径は、それぞれ水銀圧入法により測定される値を意味する。また、水湿潤状態のAタイプのモノリスアニオン交換体の開口の平均直径は、乾燥状態のAタイプのモノリスアニオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。また、アニオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のAタイプのモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、水湿潤状態のAタイプのモノリスアニオン交換体の開口の平均直径を算出することもできる。
[Type A monolithic anion exchanger]
The type A monolithic anion exchanger is obtained by introducing anion exchange groups into a monolith. Cellular macropores overlap each other, and the overlapping portions have an average diameter of 30 to 300 μm, preferably 30 μm, in a water-wet state. It is a continuous macropore structure with openings (mesopores) of up to 200 μm, particularly preferably 40 to 100 μm. The average diameter of the openings of the type A monolith anion exchanger is larger than that of the monolith because the entire monolith swells when the anion exchange groups are introduced into the monolith. If the average diameter of the openings in a wet state is less than 30 μm, the pressure loss during water flow increases, which is not preferable. water) and the monolithic anion exchanger of type A and the supported platinum group metal nanoparticles become insufficient, resulting in poor hydrogen peroxide decomposition properties. The average diameter of the openings of the dry monolith intermediate, the average diameter of the openings of the dry monolith, and the average diameter of the openings of the dry monolith anion exchanger are values measured by mercury porosimetry. do. The average diameter of the apertures of the type A monolith anion exchanger in a water-wet state is a value calculated by multiplying the average diameter of the apertures of the type A monolith anion exchanger in a dry state by the swelling ratio. In addition, the average diameter of the openings of the monolith in a dry state before anion exchange group introduction, and the swelling of the monolithic anion exchanger in a water-wet state with respect to the dry state monolith when anion exchange groups are introduced into the dry monolith. If the ratio is known, the average diameter of the openings of the monolith in the dry state can also be multiplied by the swelling ratio to calculate the average diameter of the openings in the water-wetted Type A monolith anion exchanger.

Aタイプのモノリスアニオン交換体において、連続マクロポア構造体の切断面の走査型電子顕微鏡(SEM)画像において、断面に表れる骨格部面積が、画像領域中、25~50%、好ましくは25~45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とAタイプのモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下し、触媒効果が低下するため好ましくなく、50%を超えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。 In the A-type monolithic anion exchanger, in a scanning electron microscope (SEM) image of the cross section of the continuous macropore structure, the skeleton portion area appearing in the cross section is 25 to 50%, preferably 25 to 45%, of the image area. is. If the area of the skeletal portion appearing in the cross section is less than 25% of the image area, the skeletal structure will be thin, and the mechanical strength will decrease, resulting in large deformation of the monolithic anion exchanger, especially when water is passed at a high flow rate. I don't like it because Furthermore, the contact efficiency between the water to be treated and the type A monolithic anion exchanger and the platinum group metal nanoparticles supported on it decreases, which is not preferable because the catalytic effect decreases. It is not preferable because it is too high and the pressure loss increases when water is passed.

また、Aタイプのモノリスアニオン交換体の全細孔容積は、0.5~5ml/g、好ましくは0.8~4ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当たりの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、機械的強度が低下して、特に高流速で通水した際にAタイプのモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とAタイプのモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下し、触媒効果も低下してしまうため好ましくない。なお、モノリス中間体、モノリス、及びモノリスアニオン交換体の全細孔容積は、それぞれ水銀圧入法により測定される値を意味する。また、モノリス中間体、モノリス、及びモノリスアニオン交換体の全細孔容積は、それぞれ、乾燥状態でも、水湿潤状態でも、同じである。 Also, the total pore volume of the A-type monolithic anion exchanger is 0.5-5 ml/g, preferably 0.8-4 ml/g. If the total pore volume is less than 0.5 ml/g, the pressure loss during water flow increases, which is not preferable. I don't like it because I can't put it away. On the other hand, when the total pore volume exceeds 5 ml/g, the mechanical strength is lowered, and the type A monolithic anion exchanger is deformed particularly when water is passed at a high flow rate, which is not preferable. Furthermore, the contact efficiency between the water to be treated and the type A monolithic anion exchanger and the platinum group metal nanoparticles supported thereon is lowered, and the catalytic effect is also lowered, which is not preferable. The total pore volume of the monolith intermediate, monolith, and monolith anion exchanger means a value measured by mercury porosimetry. Also, the total pore volume of the monolith intermediate, monolith, and monolith anion exchanger, respectively, is the same in dry and water-wet states.

なお、Aタイプのモノリスアニオン交換体に水を透過させた際の圧力損失は、これを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失で示すと、0.001~0.1MPa/m・LVの範囲、特に0.005~0.05MPa/m・LVであることが好ましい。 The pressure loss when water is permeated through the A-type monolithic anion exchanger is represented by the pressure loss when water is passed through a column packed with 1 m of this at a linear water flow velocity (LV) of 1 m / h. It is preferably in the range of 0.001 to 0.1 MPa/m·LV, particularly 0.005 to 0.05 MPa/m·LV.

Aタイプのモノリスアニオン交換体は、水湿潤状態での体積当たりのアニオン交換容量が0.4~1.0mg当量/mlである。体積当たりのアニオン交換容量が0.4mg当量/ml未満であると、体積当たりの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当たりのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、Aタイプのモノリスアニオン交換体の重量当たりのアニオン交換容量は特に限定されないが、アニオン交換基が多孔質体の表面及び骨格内部にまで均一に導入しているため、3.5~4.5mg当量/gである。 The type A monolithic anion exchanger has a volumetric anion exchange capacity of 0.4 to 1.0 mgeq/ml in a water-wet state. If the anion exchange capacity per volume is less than 0.4 mg equivalent/ml, the amount of platinum group metal nanoparticles supported per volume decreases, which is not preferable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent/ml, the pressure loss during water passage increases, which is not preferable. The anion exchange capacity per unit weight of the type A monolithic anion exchanger is not particularly limited, but since the anion exchange groups are uniformly introduced to the surface and the inside of the skeleton of the porous body, the anion exchange capacity is 3.5 to 4.5. 5 mg equivalent/g.

Aタイプのモノリスアニオン交換体において、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3~10モル%、好適には0.3~5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン等の芳香族ビニルポリマーが挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。 In the A-type monolithic anion exchanger, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslink density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units, based on the total structural units constituting the polymer material. is preferred. If the crosslinked structural unit is less than 0.3 mol %, the mechanical strength is insufficient, and if it exceeds 10 mol %, introduction of the anion exchange group may become difficult, which is not preferred. The type of polymer material is not particularly limited, and examples thereof include aromatic vinyl polymers such as polystyrene. The above polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a cross-linking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a cross-linking agent, or a blend of two or more types of polymers. may have been Among these organic polymer materials, the ease of forming a continuous macropore structure, the ease of introducing anion-exchange groups, high mechanical strength, and high stability against acids or alkalis make aromatic vinyl polymers cross-linkable. A coalescence is preferred, and styrene-divinylbenzene copolymers and vinylbenzyl chloride-divinylbenzene copolymers are particularly preferred materials.

Aタイプのモノリスアニオン交換体のアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基等が挙げられる。 The anion exchange group of the A type monolithic anion exchanger includes quaternary ammonium groups such as trimethylammonium group, triethylammonium group, tributylammonium group, dimethylhydroxyethylammonium group, dimethylhydroxypropylammonium group and methyldihydroxyethylammonium group. is mentioned.

導入されたアニオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「アニオン交換基が均一に分布している」とは、アニオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。アニオン交換基の分布状況は、対アニオンを塩化物イオン、臭化物イオンなどにイオン交換した後、電子線マイクロアナライザ(EPMA)を用いることで、比較的簡単に確認することができる。また、アニオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。 The introduced anion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body. The phrase "the anion-exchange groups are uniformly distributed" as used herein means that the anion-exchange groups are uniformly distributed on the surface and inside the skeleton at least on the order of μm. The distribution of anion-exchange groups can be confirmed relatively easily by using an electron probe microanalyzer (EPMA) after ion-exchanging counter anions to chloride ions, bromide ions, or the like. In addition, when the anion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the porous body, the physical properties and chemical properties of the surface and the inside can be made uniform, resulting in swelling and shrinkage. Improves durability against

Aタイプのモノリスアニオン交換体は、骨太のモノリスにアニオン交換基が導入されるため、例えば骨太モノリスの1.4~1.9倍のように大きく膨潤する。このため、骨太モノリスの開口径が小さいものであっても、モノリスイオン交換体の開口径は概ね、上記倍率で大きくなる。また、開口径が膨潤で大きくなっても全細孔容積は変化しない。従って、Aタイプのモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。 In the A-type monolith anion exchanger, since an anion exchange group is introduced into the monolith of the bone, it swells as much as 1.4 to 1.9 times that of the monolith of the bone. Therefore, even if the opening diameter of the monolithic monolith is small, the opening diameter of the monolithic ion exchanger generally increases by the above magnification. Further, even if the opening diameter increases due to swelling, the total pore volume does not change. Therefore, the A-type monolithic ion exchanger has high mechanical strength because it has a bone skeleton in spite of its significantly large opening diameter.

[Bタイプのモノリスアニオン交換体]
Bタイプのモノリスアニオン交換体は、アニオン交換基が導入された全構成単位中、架橋構造単位を0.3~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが水湿潤状態で1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10~100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5~5ml/gであり、水湿潤状態での体積当たりのイオン交換容量が0.3~1.0mg当量/mlであり、アニオン交換基が該多孔質イオン交換体中に均一に分布している。
[B type monolithic anion exchanger]
The B-type monolithic anion exchanger is composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of crosslinked structural units among all structural units into which anion exchange groups have been introduced, and has an average thickness in a water-wet state. A co-continuous structure comprising a three-dimensionally continuous skeleton of 1 to 60 μm and three-dimensionally continuous pores having an average diameter of 10 to 100 μm in a water-wet state between the skeletons, It has a volume of 0.5 to 5 ml/g, an ion exchange capacity per volume in a water-wet state of 0.3 to 1.0 mg equivalent/ml, and anion exchange groups are uniform in the porous ion exchanger. distributed in

Bタイプのモノリスアニオン交換体は、アニオン交換基が導入された平均太さが水湿潤状態で1~60μm、好ましくは3~58μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10~100μm、好ましくは15~90μm、特に好ましくは20~80μmの三次元的に連続した空孔とからなる共連続構造体である。すなわち、共連続構造は、連続する骨格相と連続する空孔相とが絡み合ってそれぞれが共に3次元的に連続する構造である。この連続した空孔は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動を達成できる。また、骨格が太いため機械的強度が高い。 The B-type monolithic anion exchanger has a three-dimensionally continuous skeleton having an anion exchange group introduced therein and having an average thickness of 1 to 60 μm, preferably 3 to 58 μm in a wet state, and an average diameter between the skeletons. It is a co-continuous structure consisting of three-dimensionally continuous pores of 10 to 100 μm, preferably 15 to 90 μm, particularly preferably 20 to 80 μm in a water-wet state. That is, the co-continuous structure is a structure in which a continuous skeletal phase and a continuous pore phase are intertwined and both are three-dimensionally continuous. Since the continuous pores have higher continuity than conventional open-cell monoliths and particle-aggregated monoliths, and there is no bias in the size of the pores, extremely uniform ion adsorption behavior can be achieved. In addition, since the skeleton is thick, the mechanical strength is high.

Bタイプのモノリスアニオン交換体の骨格の太さ及び空孔の直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大きくなる。この連続した空孔は、従来の連続気泡型モノリスアニオン交換体や粒子凝集型モノリスアニオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なアニオンの吸着挙動を達成できる。三次元的に連続した空孔の平均直径が水湿潤状態で10μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水(試料水)と有機多孔質アニオン交換体との接触が不十分となり、その結果、被処理水中の溶存酸素の除去が不十分となるため好ましくない。また、骨格の平均太さが水湿潤状態で1μm未満であると、体積当たりのアニオン交換容量が低下するといった欠点のほか、機械的強度が低下して、特に高流速で通水した際にBタイプのモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とBタイプのモノリスアニオン交換体との接触効率が低下し、触媒効果が低下するため好ましくない。一方、骨格の太さが60μmを越えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。 The skeleton thickness and pore diameter of the B-type monolith anion exchanger are larger than those of the monolith because the entire monolith swells when the anion exchange groups are introduced into the monolith. Become. These continuous pores have higher continuity than conventional open-cell monolithic anion exchangers and particle-aggregated monolithic anion exchangers, and there is no bias in the size of the pores, resulting in extremely uniform anion adsorption. behavior can be achieved. If the average diameter of the three-dimensionally continuous pores is less than 10 μm in a water-wet state, the pressure loss during water passage increases, which is not preferable. Contact with the organic porous anion exchanger becomes insufficient, and as a result, dissolved oxygen in the water to be treated becomes insufficiently removed, which is not preferable. In addition, if the average thickness of the skeleton is less than 1 μm in a water-wet state, in addition to the drawback that the anion exchange capacity per volume decreases, the mechanical strength decreases, especially when water is passed at a high flow rate. This type of monolithic anion exchanger is greatly deformed, which is not preferable. Furthermore, the contact efficiency between the water to be treated and the B-type monolithic anion exchanger is lowered, and the catalytic effect is lowered, which is not preferable. On the other hand, if the thickness of the skeleton exceeds 60 μm, the skeleton becomes too thick, which is not preferable because the pressure loss increases when water flows.

上記連続構造体の空孔の水湿潤状態での平均直径は、水銀圧入法で測定した乾燥状態のモノリスアニオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。また、アニオン交換基導入前の乾燥状態のモノリスの空孔の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のBタイプのモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの空孔の平均直径に、膨潤率を乗じて、水湿潤状態のBタイプのモノリスアニオン交換体の空孔の平均直径を算出することもできる。また、上記連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態のBタイプのモノリスアニオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。また、アニオン交換基導入前の乾燥状態のモノリスの骨格の平均太さ、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のBタイプのモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの骨格の平均太さに、膨潤率を乗じて、水湿潤状態のBタイプのモノリスアニオン交換体の骨格の平均太さを算出することもできる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。 The average diameter of the pores of the continuous structure in a water-wet state is a value calculated by multiplying the average diameter of the pores of the dry monolithic anion exchanger measured by the mercury porosimetry by the swelling ratio. In addition, the average pore diameter of the dry monolith before anion exchange group introduction, and the water-wet B type monolith anion exchanger with respect to the dry monolith when anion exchange groups are introduced into the dry monolith If the swelling ratio is known, the average pore diameter of the monolith in the dry state can be multiplied by the swelling ratio to calculate the average pore diameter of the water-wet type B monolith anion exchanger. In addition, the average thickness of the skeleton of the continuous structure in a water-wet state is obtained by observing the B-type monolithic anion exchanger in a dry state with an SEM at least three times, and measuring the thickness of the skeleton in the obtained image. and the mean value is multiplied by the swelling ratio. In addition, the average thickness of the skeleton of the monolith in a dry state before anion exchange group introduction, and the monolithic B type anion exchanger in a water-wet state with respect to the dry state monolith when anion exchange groups are introduced into the dry state monolith If the swelling rate is known, the average thickness of the skeleton of the monolith in the dry state can be multiplied by the swelling rate to calculate the average thickness of the skeleton of the B-type monolith anion exchanger in the water-wet state. The skeleton is rod-shaped and has a circular cross-sectional shape, but may include a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、Bタイプのモノリスアニオン交換体の全細孔容積は、0.5~5ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当たりの透過水量が小さくなり、処理水量が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当たりのアニオン交換容量が低下し、白金族金属ナノ粒子の担持量も低下し触媒効果が低下するため好ましくない。また、機械的強度が低下して、特に高流速で通水した際にBタイプのモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とBタイプのモノリスアニオン交換体との接触効率が低下して、過酸化水素分解効果も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、被処理水との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通水が可能となる。なお、モノリス中間体、モノリス、及びモノリスアニオン交換体の全細孔容積は、それぞれ、乾燥状態でも、水湿潤状態でも、同じである。 Also, the total pore volume of the B-type monolithic anion exchanger is 0.5-5 ml/g. If the total pore volume is less than 0.5 ml/g, the pressure loss during water flow increases, which is not preferable. I don't like it because On the other hand, if the total pore volume exceeds 5 ml/g, the anion exchange capacity per volume is lowered, the amount of platinum group metal nanoparticles supported is also lowered, and the catalytic effect is lowered, which is not preferable. Moreover, the mechanical strength is lowered, and the type B monolithic anion exchanger is greatly deformed particularly when water is passed at a high flow rate, which is not preferable. Furthermore, the contact efficiency between the water to be treated and the type B monolithic anion exchanger is lowered, and the effect of decomposing hydrogen peroxide is also lowered, which is not preferable. If the three-dimensionally continuous pore size and total pore volume are within the above range, contact with the water to be treated is extremely uniform, the contact area is large, and water can flow under low pressure loss. Become. It should be noted that the total pore volume of the monolith intermediate, the monolith, and the monolith anion exchanger, respectively, are the same in the dry and water-wet states.

なお、Bタイプのモノリスアニオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失で示すと、0.001~0.5MPa/m・LVの範囲、特に0.005~0.1MPa/m・LVである。 The pressure loss when water is permeated through the B-type monolithic anion exchanger is indicated by the pressure loss when water is passed through a column packed with a porous body of 1 m at a linear water flow velocity (LV) of 1 m / h. and the range of 0.001 to 0.5 MPa/m·LV, especially 0.005 to 0.1 MPa/m·LV.

Bタイプのモノリスアニオン交換体において、共連続構造体の骨格を構成する材料は、全構成単位中、0.3~5モル%、好ましくは0.5~3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレンが挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい。 In the B-type monolithic anion exchanger, the material constituting the skeleton of the co-continuous structure contains 0.3 to 5 mol%, preferably 0.5 to 3.0 mol% of crosslinked structural units in all structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the crosslinked structural unit is less than 0.3 mol %, the mechanical strength is insufficient, and if it exceeds 5 mol %, the structure of the porous body tends to deviate from the co-continuous structure. The type of the aromatic vinyl polymer is not particularly limited, and examples thereof include polystyrene. The above polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a cross-linking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a cross-linking agent, or a blend of two or more types of polymers. may have been Among these organic polymer materials, styrene-divinylbenzene copolymer is preferred because of its ease of forming a co-continuous structure, ease of introduction of anion-exchange groups, high mechanical strength, and high stability against acid or alkali. and vinylbenzyl chloride-divinylbenzene copolymer are preferred.

Bタイプのモノリスアニオン交換体は、水湿潤状態での体積当たりのアニオン交換容量が0.3~1.0mg当量/mlのイオン交換容量を有する。Bタイプのモノリスアニオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当たりのアニオン交換容量を飛躍的に大きくすることができる。体積当たりのアニオン交換容量が0.3mg当量/ml未満であると、体積当たりの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当たりのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、Bタイプのモノリスアニオン交換体の乾燥状態における重量当たりのアニオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3.5~4.5mg当量/gである。 The B-type monolithic anion exchanger has an ion exchange capacity of 0.3 to 1.0 mgeq/ml of anion exchange capacity per volume in a water-wet state. Since the B-type monolithic anion exchanger has high continuity and uniformity of three-dimensionally continuous pores, even if the total pore volume is reduced, the pressure loss does not increase so much. Therefore, the anion exchange capacity per volume can be dramatically increased while keeping the pressure loss low. If the anion exchange capacity per volume is less than 0.3 mg equivalent/ml, the amount of platinum group metal nanoparticles supported per volume decreases, which is not preferable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent/ml, the pressure loss during water passage increases, which is not preferable. The anion exchange capacity per unit weight of the B-type monolithic anion exchanger in a dry state is not particularly limited. 5 to 4.5 mg equivalent/g.

Bタイプのモノリスアニオン交換体のアニオン交換基としては、Aタイプのモノリスアニオン交換体の説明で挙げたものと同様のものを挙げることができる。また、アニオン交換基の分布状態や、「アニオン交換基が均一に分布している」ことの意味内容や、アニオン交換基分布状態の確認方法や、アニオン交換基がモノリスの表面のみならず多孔質体の骨格内部にまで均一に分布することの効果もAタイプのモノリスアニオン交換体と同様である。 Examples of the anion-exchange group for the B-type monolithic anion exchanger are the same as those mentioned in the description of the A-type monolithic anion exchanger. In addition, the distribution state of the anion exchange groups, the meaning of "the anion exchange groups are uniformly distributed", the method for confirming the distribution state of the anion exchange groups, and the anion exchange groups not only on the surface of the monolith but also on the porous surface. The effect of uniform distribution inside the skeleton of the body is also similar to that of the A-type monolithic anion exchanger.

モノリス中間体のポリマー材料の種類は、Aタイプのモノリスアニオン交換体のモノリス中間体のポリマー材料の種類と同様であり、その説明を省略する。 The type of polymer material for the monolith intermediate is the same as the type of polymer material for the monolith intermediate of the A-type monolith anion exchanger, and the description thereof is omitted.

モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には16ml/gを超え、25ml/g以下である。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのアニオン交換容量が低下したりしてしまうため好ましくない。モノリス中間体の全細孔容積をBタイプのモノリスアニオン交換体の特定の範囲とするには、モノマーと水の比を、概ね1:20~1:40とすればよい。 The total pore volume of the monolith intermediate is greater than 16 ml/g and less than or equal to 30 ml/g, preferably greater than 16 ml/g and less than or equal to 25 ml/g. In other words, this monolithic intermediate basically has a continuous macropore structure, but because the openings (mesopores), which are the overlapping portions of macropores and macropores, are remarkably large, the framework that constitutes the monolithic structure changes from the two-dimensional walls to the first order. It has a structure that is extremely close to the original rod-like skeleton. When this is allowed to coexist in the polymerization system, a porous body with a co-continuous structure is formed with the structure of the monolithic intermediate as a mold. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer will change from a co-continuous structure to a continuous macropore structure, which is not preferable. It is not preferable because the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered, and the anion exchange capacity per unit volume is lowered. Monolithic intermediate total pore volumes in the specified range for B-type monolithic anion exchangers can be achieved using a monomer to water ratio of approximately 1:20 to 1:40.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5~100μmである。開口の平均直径が乾燥状態で5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスアニオン交換体との接触が不十分となり、その結果、過酸化水素分解特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。 In the monolithic intermediate, the average diameter of the openings (mesopores), which are the overlapping portions of macropores, is 5 to 100 μm in a dry state. If the average diameter of the openings is less than 5 μm in a dry state, the opening diameter of the monolith obtained after polymerizing the vinyl monomer will be small, and the pressure loss during fluid permeation will increase, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the water to be treated and the monolith anion exchanger becomes insufficient, resulting in poor hydrogen peroxide decomposition properties. is not preferable because the The monolithic intermediate preferably has a uniform structure with uniform macropore sizes and opening diameters, but is not limited to this. It may be something to do.

Bタイプのモノリスアニオン交換体は、共連続構造のモノリスにアニオン交換基が導入されるため、例えばモノリスの1.4~1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、Bタイプのモノリスアニオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当たりのアニオン交換容量を大きくでき、更に、被処理水を低圧、大流量で長期間通水することが可能である。 The B-type monolith anion exchanger swells 1.4 to 1.9 times as much as the monolith, for example, because anion exchange groups are introduced into the monolith of co-continuous structure. Further, even if the pore diameter increases due to swelling, the total pore volume does not change. Therefore, the B-type monolithic anion exchanger has high mechanical strength because it has a skeleton, although the three-dimensionally continuous pore size is remarkably large. In addition, since the skeleton is thick, the anion exchange capacity per unit volume in a water-wet state can be increased, and the water to be treated can be passed for a long period of time at a low pressure and a large flow rate.

10 濃度分析装置
1 脱気装置
2 過酸化水素分解装置
3a 第1の濃度測定装置
3b 第2の濃度測定装置
4 切替装置
41 第1の開閉弁
42 第2の開閉弁
43 第3の開閉弁
44 第4の開閉弁
5 演算装置
11,12 流量調整手段
L1 メイン配管
L10 サンプリング配管
L11 第1の分岐配管
L12 第2の分岐配管
L21 接続配管(第1の接続配管)
L22 第2の接続配管
10 concentration analyzer 1 degassing device 2 hydrogen peroxide decomposition device 3a first concentration measuring device 3b second concentration measuring device 4 switching device 41 first on-off valve 42 second on-off valve 43 third on-off valve 44 Fourth on-off valve 5 Arithmetic device 11, 12 Flow rate adjusting means L1 Main pipe L10 Sampling pipe L11 First branch pipe L12 Second branch pipe L21 Connection pipe (first connection pipe)
L22 Second connecting pipe

Claims (8)

水処理システムの所定位置から採取した試料水中の過酸化水素濃度と溶存酸素濃度とを分析する濃度分析装置であって、
前記所定位置に接続され、前記試料水を流通させる第1の配管と、
前記所定位置に接続され、前記試料水を流通させる第2の配管と、
前記第1の配管に設けられ、記試料水中の少なくとも溶存水素を除去する脱気手段と、
前記脱気手段より下流側の前記第1の配管に設けられ、前記試料水中の過酸化水素を分解する過酸化水素分解手段と、
前記脱気手段と前記過酸化水素分解手段との間の前記第1の配管と、前記第2の配管とを接続する第3の配管と、
前記過酸化水素分解手段より下流側の前記第1の配管に設けられ、前記試料水の溶存酸素濃度測定する第1の濃度測定手段と、
前記第2の配管と前記第3の配管との接続部より下流側の前記第2の配管に設けられ、前記試料水の溶存酸素濃度を測定する第2の濃度測定手段と、
前記第1の濃度測定手段による測定結果と前記第2の濃度測定手段による測定結果とに基づいて、前記試料水中の過酸化水素濃度を算出する演算手段と、を有し、
前記第1の濃度測定手段は、前記第1の配管を経由して前記脱気手段と前記過酸化水素分解手段とを通る第1の供給経路を流れた前記試料水の溶存酸素濃度である第1の濃度を測定するようになっており、
前記第2の濃度測定手段は、前記第1の配管を経由して前記脱気手段を通り、前記過酸化水素分解手段を通らずに、前記第3の配管から前記第2の配管へと通じる第2の供給経路を流れた前記試料水の溶存酸素濃度である第2の濃度と、前記第2の配管を経由して前記脱気手段と前記過酸化水素分解手段とを通らない第3の供給経路を流れた前記試料水の溶存酸素濃度である第3の濃度とを別々に測定するようになっており、
前記演算手段は、前記第1の濃度測定手段による前記第1の濃度の測定値と前記第2の濃度測定手段による前記第2の濃度の測定値との差分に基づいて、前記試料水中の過酸化水素濃度を算出する、濃度分析装置。
A concentration analyzer for analyzing the hydrogen peroxide concentration and dissolved oxygen concentration in sample water sampled from a predetermined position in a water treatment system,
a first pipe connected to the predetermined position and through which the sample water flows;
a second pipe connected to the predetermined position for circulating the sample water;
a degassing means provided in the first pipe for removing at least dissolved hydrogen in the sample water;
hydrogen peroxide decomposition means provided in the first pipe downstream of the degassing means for decomposing hydrogen peroxide in the sample water;
a third pipe connecting the first pipe between the degassing means and the hydrogen peroxide decomposition means and the second pipe;
a first concentration measuring means provided in the first pipe on the downstream side of the hydrogen peroxide decomposition means for measuring the concentration of dissolved oxygen in the sample water;
a second concentration measuring means provided in the second pipe on the downstream side of the joint between the second pipe and the third pipe for measuring the concentration of dissolved oxygen in the sample water;
calculating means for calculating the concentration of hydrogen peroxide in the sample water based on the result of measurement by the first concentration measuring means and the result of measurement by the second concentration measuring means ;
The first concentration measuring means measures the concentration of dissolved oxygen in the sample water that has flowed through the first supply route passing through the degassing means and the hydrogen peroxide decomposition means via the first pipe. It is designed to measure the concentration of 1,
The second concentration measuring means communicates from the third pipe to the second pipe through the first pipe, through the degassing means, and without passing through the hydrogen peroxide decomposition means. A second concentration that is the dissolved oxygen concentration of the sample water that has flowed through the second supply route, and a third concentration that does not pass through the degassing means and the hydrogen peroxide decomposition means via the second pipe. and a third concentration, which is the dissolved oxygen concentration of the sample water that has flowed through the supply route, are separately measured,
The computing means calculates the excess concentration in the sample water based on the difference between the first concentration value measured by the first concentration measuring means and the second concentration value measured by the second concentration measuring means. A concentration analyzer that calculates the concentration of hydrogen oxide .
記試料水を前記第1の供給経路と前記第2の供給経路とに流通させ、前記第1の濃度測定手段で前記第1の濃度を測定し、前記第2の濃度測定手段で前記第2の濃度を測定する第1の測定モードと、前記試料水を前記第1の供給経路と前記第3の供給経路とに流通させ、前記第1の濃度測定手段で前記第1の濃度を測定し、前記第2の濃度測定手段で前記第3の濃度を測定する第2の測定モードとを切り替える切替手段を有する、請求項1に記載の濃度分析装置。 The sample water is circulated through the first supply route and the second supply route, the first concentration is measured by the first concentration measuring means, and the second concentration measuring means measures the a first measurement mode for measuring a second concentration; circulating the sample water through the first supply route and the third supply route; 2. The concentration analyzer according to claim 1, further comprising switching means for switching between a second measurement mode for measuring the concentration and measuring the third concentration by the second concentration measurement means. 記切替手段が、前記第3の配管に設けられた第1の開閉弁と、前記第2の配管と前記第3の配管との接続部より上流側の前記第2の配管に設けられた第2の開閉弁とを有し、
前記第1の測定モードでは、前記第1の開閉弁が開放されるとともに前記第2の開閉弁が閉鎖され、前記第2の測定モードでは、前記第1の開閉弁が閉鎖されるとともに前記第2の開閉弁が開放される、請求項2に記載の濃度分析装置。
The switching means is provided in the second pipe on the upstream side from a connection portion between the first on-off valve provided in the third pipe and the second pipe and the third pipe. and a second on-off valve,
In the first measurement mode, the first on-off valve is opened and the second on-off valve is closed. In the second measurement mode, the first on-off valve is closed and the second 3. The concentration analyzer according to claim 2, wherein two on-off valves are opened.
前記第1および第2の配管のそれぞれに設けられ、該配管を流れる前記試料水の流量を調整する流量調整手段を有する、請求項3に記載の濃度分析装置。 4. The concentration analyzer according to claim 3, further comprising flow rate adjusting means provided in each of said first and second pipes for adjusting the flow rate of said sample water flowing through said pipes. 前記過酸化水素分解手段より下流側であって前記第1の濃度測定手段より上流側の前記第1の配管と、前記第2の配管と前記第3の配管との接続部より下流側であって前記第2の濃度測定手段より上流側の前記第2の配管とを接続する第4の配管をさらに有し、
前記第1の濃度測定手段は、前記第1の濃度と前記第3の濃度別々に測定するようになっており
前記第2の濃度測定手段は、前記第1の濃度と前記第2の濃度と前記第3の濃度と別々に測定するようになっており
前記切替手段は、前記第1の測定モードと、前記第2の測定モードと、前記試料水を前記第1の供給経路に流通させ前記第1の濃度測定手段に供給し、該第1の濃度測定手段で前記第1の濃度を測定するのと同時に、前記第1の供給経路を流れた前記試料水を前記第4の配管から前記第2の配管を通じて前記第2の濃度測定手段に供給し、該第2の濃度測定手段で前記第1の濃度を測定するか、あるいは、前記試料水を前記第3の供給経路に流通させて前記第2の濃度測定手段に供給し、該第2の濃度測定手段で前記第3の濃度を測定するのと同時に、前記第3の供給経路を流れた前記試料水を前記第4の配管から前記第1の配管を通じて前記第1の濃度測定手段に供給し、該第1の濃度測定手段で前記第3の濃度を測定する第3の測定モードとを切り替えるように構成され、
前記演算手段は、前記第3の測定モードでの前記第1および第2の濃度測定手段による測定結果に基づいて、前記差分を補正し、該補正された差分から前記試料水中の過酸化水素濃度を算出する、請求項2に記載の濃度分析装置。
downstream from the hydrogen peroxide decomposing means and upstream from the first concentration measuring means, and downstream from the connecting portion between the second pipe and the third pipe; further comprising a fourth pipe connecting the second pipe upstream of the second concentration measuring means and the second pipe;
the first concentration measuring means separately measures the first concentration and the third concentration ;
the second concentration measuring means separately measures the first concentration, the second concentration, and the third concentration ;
The switching means circulates the first measurement mode, the second measurement mode, and the sample water through the first supply path to supply the first concentration measurement means. At the same time that the first concentration is measured by the first concentration measuring means, the sample water that has flowed through the first supply route is passed from the fourth pipe through the second pipe to the second concentration measuring means. and the first concentration is measured by the second concentration measuring means, or the sample water is circulated through the third supply route and supplied to the second concentration measuring means Simultaneously with measuring the third concentration by the second concentration measuring means, the sample water that has flowed through the third supply route is supplied from the fourth pipe through the first pipe to the first pipe. configured to switch between a third measurement mode in which the first concentration measurement means is supplied with the first concentration measurement means and the third concentration is measured by the first concentration measurement means;
The calculating means corrects the difference based on the measurement results obtained by the first and second concentration measuring means in the third measurement mode, and calculates the concentration of hydrogen peroxide in the sample water from the corrected difference. 3. The concentration analyzer according to claim 2, which calculates .
記切替手段が、前記第3の配管に設けられた第1の開閉弁と、前記第2の配管と前記第3の配管との接続部より上流側の前記第2の配管に設けられた第2の開閉弁と、前記第4配管に設けられた第3の開閉弁と、前記過酸化水素分解手段より下流側であって前記第1の配管と前記第4の配管との接続部より上流側の前記第1の配管に設けられた第4の開閉弁とを有し、
前記第1の測定モードでは、前記第1および第4の開閉弁が開放されるとともに前記第2および第3の開閉弁が閉鎖され、前記第2の測定モードでは、前記第1および第3の開閉弁が閉鎖されるとともに前記第2および第4の開閉弁が開放され、前記第3の測定モードでは、前記第1および第2の開閉弁が閉鎖されるとともに前記第3および第4の開閉弁が開放されるか、あるいは、前記第1および第4の開閉弁が閉鎖されるとともに前記第2および第3の開閉弁が開放される、請求項5に記載の濃度分析装置。
The switching means is provided in the second pipe on the upstream side from a connection portion between the first on-off valve provided in the third pipe and the second pipe and the third pipe. a second on-off valve, a third on-off valve provided in the fourth pipe , and a connection between the first pipe and the fourth pipe on the downstream side of the hydrogen peroxide decomposition means. and a fourth on-off valve provided in the first pipe on the upstream side of the part,
In the first measurement mode, the first and fourth on-off valves are opened and the second and third on-off valves are closed. In the second measurement mode, the first and third on-off valves are closed. The on-off valve is closed and the second and fourth on-off valves are opened. In the third measurement mode, the first and second on-off valves are closed and the third and fourth on-off valves are closed. 6. The concentration analyzer according to claim 5, wherein a valve is opened, or said first and fourth on-off valves are closed and said second and third on-off valves are opened.
前記第1および第2の配管のそれぞれに設けられ、該配管を流れる前記試料水の流量を調整する流量調整手段を有する、請求項6に記載の濃度分析装置。 7. The concentration analyzer according to claim 6, further comprising flow rate adjusting means provided in each of said first and second pipes for adjusting the flow rate of said sample water flowing through said pipes. 前記過酸化水素分解手段が白金族金属担持触媒を含む、請求項1から7のいずれか1項に記載の濃度分析装置。 8. A concentration analyzer according to any one of claims 1 to 7, wherein said hydrogen peroxide decomposition means comprises a supported platinum group metal catalyst.
JP2019077800A 2019-04-16 2019-04-16 Concentration analyzer Active JP7252044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019077800A JP7252044B2 (en) 2019-04-16 2019-04-16 Concentration analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019077800A JP7252044B2 (en) 2019-04-16 2019-04-16 Concentration analyzer

Publications (2)

Publication Number Publication Date
JP2020176868A JP2020176868A (en) 2020-10-29
JP7252044B2 true JP7252044B2 (en) 2023-04-04

Family

ID=72935884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019077800A Active JP7252044B2 (en) 2019-04-16 2019-04-16 Concentration analyzer

Country Status (1)

Country Link
JP (1) JP7252044B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274386A (en) 2004-03-25 2005-10-06 Japan Organo Co Ltd Hydrogen peroxide analyzer, and hydrogen peroxide analytical method
JP2010127830A (en) 2008-11-28 2010-06-10 Nippon Sheet Glass Co Ltd Method and apparatus for quantifying hydrogen peroxide
JP2012063303A (en) 2010-09-17 2012-03-29 Japan Organo Co Ltd Device and method for measuring hydrogen peroxide concentration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274386A (en) 2004-03-25 2005-10-06 Japan Organo Co Ltd Hydrogen peroxide analyzer, and hydrogen peroxide analytical method
JP2010127830A (en) 2008-11-28 2010-06-10 Nippon Sheet Glass Co Ltd Method and apparatus for quantifying hydrogen peroxide
JP2012063303A (en) 2010-09-17 2012-03-29 Japan Organo Co Ltd Device and method for measuring hydrogen peroxide concentration

Also Published As

Publication number Publication date
JP2020176868A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
US11408868B2 (en) Measuring system and measuring method of hydrogen peroxide concentration
JP5484278B2 (en) Hydrogen peroxide concentration measuring device and measuring method
JP5647842B2 (en) Pure water or ultrapure water production apparatus and production method
KR20150142036A (en) Cleaning method for exposed copper substrate and cleaning system
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
JP7195097B2 (en) Hydrogen peroxide concentration analyzer and hydrogen peroxide concentration analysis method
US6228325B1 (en) Methods and apparatus for measurement of the carbon and heteroorganic content of water including single-cell instrumentation mode for same
WO2005019110A2 (en) Inorganic carbon removal
JP7252044B2 (en) Concentration analyzer
JP7020960B2 (en) Hydrogen peroxide concentration measurement system and measurement method
JP7333706B2 (en) Concentration analyzer
CN107607676B (en) Standard generation system for trace moisture in gas
JP2005274386A (en) Hydrogen peroxide analyzer, and hydrogen peroxide analytical method
JP2021194587A (en) Operation management system for ultrapure water production apparatus, ultrapure water production apparatus, and operation method of ultrapure water production apparatus
CN116106249A (en) Method for measuring COD in sewage
JP5484277B2 (en) System and method for measuring total organic carbon content in ultrapure water
JP5663410B2 (en) Ultrapure water production method and apparatus
JP5342463B2 (en) Dissolved hydrogen concentration measuring device and dissolved hydrogen concentration measuring method
JP5292136B2 (en) Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
KR20190106987A (en) PH control method by electric conductivity
CN114648908B (en) Simulation method for natural gas desulfurization equipment
CN219935667U (en) Device for continuously testing COD (chemical oxygen demand) of chlorine-containing wastewater by mercury-free method
JPH1062371A (en) Method and device for measuring boron, extrapure water manufacturing device, and operating method therefor
JP2003344343A (en) Dissolved gas measuring meter and method for measuring dissolved gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7252044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150