JP5342463B2 - Dissolved hydrogen concentration measuring device and dissolved hydrogen concentration measuring method - Google Patents
Dissolved hydrogen concentration measuring device and dissolved hydrogen concentration measuring method Download PDFInfo
- Publication number
- JP5342463B2 JP5342463B2 JP2010003002A JP2010003002A JP5342463B2 JP 5342463 B2 JP5342463 B2 JP 5342463B2 JP 2010003002 A JP2010003002 A JP 2010003002A JP 2010003002 A JP2010003002 A JP 2010003002A JP 5342463 B2 JP5342463 B2 JP 5342463B2
- Authority
- JP
- Japan
- Prior art keywords
- dissolved
- hydrogen
- concentration
- water
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
本発明は、水中の溶存水素濃度測定装置及び溶存水素濃度の測定方法に関する。 The present invention relates to a dissolved hydrogen concentration measuring apparatus and dissolved hydrogen concentration measuring method in water.
従来から、半導体素子の製造工程で使用する洗浄水、細胞培養、DNA複製、医療用の精製水、原子力発電での冷却水、微量分析用の溶媒など、様々な分野において超純水が使用されている。中でも、電子デバイスをはじめとする電子部品製造の洗浄工程では、多くの超純水が使用されている。電子デバイスの製造工程では、基板表面を超純水で洗浄している。この洗浄には、超純水のみならず、窒素ガス、水素ガス、オゾンガス等を超純水に溶解し、洗浄効果を高めた、いわゆる機能水が用いられることがある。 Conventionally, ultrapure water has been used in various fields such as washing water used in semiconductor device manufacturing processes, cell culture, DNA replication, purified water for medical use, cooling water for nuclear power generation, and solvent for trace analysis. ing. In particular, a lot of ultrapure water is used in the cleaning process for manufacturing electronic components such as electronic devices. In the manufacturing process of the electronic device, the substrate surface is washed with ultrapure water. In this cleaning, not only ultrapure water but also so-called functional water in which nitrogen gas, hydrogen gas, ozone gas or the like is dissolved in ultrapure water to enhance the cleaning effect may be used.
一般的な機能水の製造ラインでは、各ユースポイントでの仕様に応じて、複数の機能水を供給する構成とすることがある。特に、かかる製造ラインで製造した水素水を、一部のユースポイントに供給する場合には、そのユースポイントで消費できなかった余剰の水素水を超純水の製造ラインへ戻す設備を設けることがある。 A general functional water production line may be configured to supply a plurality of functional water according to specifications at each use point. In particular, when supplying hydrogen water produced in such a production line to some use points, a facility for returning surplus hydrogen water that could not be consumed at that use point to the ultra pure water production line may be provided. is there.
超純水では、含有不純物量を非常に少ないレベルにするように要求されている。このため、水中の溶存気体量も少ない量に制御する必要がある。また、機能水では、溶解させるガスの濃度を適切な濃度に制御する必要がある。 In ultrapure water, the amount of impurities contained is required to be very low. For this reason, it is necessary to control the amount of dissolved gas in water to a small amount. In the case of functional water, it is necessary to control the concentration of the dissolved gas to an appropriate concentration.
このような制御を行うためには、水中の正確な溶存気体濃度を測定することが求められる。現在、水中の溶存水素濃度を測定する装置としては、熱伝導度式(TCD型)溶存水素計及び隔膜型ポーラロ式水素濃度計が存在する。熱伝導度式溶存水素計の測定原理は非特許文献1に開示されている。また、非特許文献2には隔膜型ポーラロ式酸素濃度計の測定原理が開示されており、この酸素濃度計と同様の測定原理によって、隔膜型ポーラロ式水素濃度計では水素濃度の測定を行う。 In order to perform such control, it is required to measure an accurate dissolved gas concentration in water. Currently, there are a thermal conductivity type (TCD type) dissolved hydrogen meter and a diaphragm type polaro type hydrogen concentration meter as devices for measuring the dissolved hydrogen concentration in water. The measurement principle of the thermal conductivity type dissolved hydrogen meter is disclosed in Non-Patent Document 1. Non-Patent Document 2 discloses the measurement principle of a diaphragm type polaro oximeter, and the diaphragm type polaro hydrogen concentration meter measures the hydrogen concentration based on the same measurement principle as this oximeter.
隔膜型ポーラロ式水素濃度計は、低濃度まで水素を測定できるという利点を有するものの、電極での反応性の劣化や立ち上がり不良を防ぐため、測定中か否かに関わらず電圧印加が必要とされている。また、水中に酸化物が存在すると電極が劣化して、測定誤差の原因となる場合があった。このため、隔膜型ポーラロ式水素濃度計では、安定して連続的に水中の水素濃度を測定することは困難であった。 Although the diaphragm-type polaro-type hydrogen concentration meter has the advantage of being able to measure hydrogen to a low concentration, voltage application is required regardless of whether or not the measurement is in progress in order to prevent the deterioration of reactivity and start-up failure at the electrode. ing. In addition, when an oxide is present in water, the electrode deteriorates and may cause a measurement error. For this reason, it has been difficult to stably and continuously measure the hydrogen concentration in water with the diaphragm type polaro hydrogen concentration meter.
一方、熱伝導度式溶存水素計は、上記のような隔膜型ポーラロ式水素濃度計の問題点がなく、連続的に安定して溶存水素濃度を測定できるという特徴を有する。 On the other hand, the thermal conductivity type dissolved hydrogen meter does not have the problems of the diaphragm type polaro type hydrogen concentration meter as described above, and has a feature that the dissolved hydrogen concentration can be measured continuously and stably.
熱伝導度式溶存水素計は、被測定水中から測定用プローブ内に拡散してきた水素によって、プローブ内の熱伝導度が変化し、その熱伝導度の変化速度と水素濃度とが一定の関係にあることを利用して溶存水素濃度を算出している。このため、水中に水素以外の気体が溶存していると、水素と共に水素以外の気体もプローブ内まで拡散し、プローブ中の熱伝導度を変化させる。従って、水中に複数の気体が溶存している場合には、水素以外の気体の存在によって測定誤差が生じる原因となっていた。 The thermal conductivity type dissolved hydrogen meter has a constant relationship between the rate of change in thermal conductivity and the hydrogen concentration due to the change in the thermal conductivity of the probe due to the hydrogen diffused into the measurement probe from the water to be measured. The dissolved hydrogen concentration is calculated by using a certain thing. For this reason, when gas other than hydrogen is dissolved in water, gas other than hydrogen diffuses into the probe together with hydrogen, and changes the thermal conductivity in the probe. Therefore, when a plurality of gases are dissolved in water, measurement errors are caused by the presence of gases other than hydrogen.
また、従来の熱伝導度式溶存水素計では、測定できる水素濃度の範囲に限界があり、数十ppb以下の低濃度の溶存水素の測定は困難であった。 Moreover, in the conventional thermal conductivity type dissolved hydrogen meter, there is a limit to the range of hydrogen concentration that can be measured, and it has been difficult to measure low concentration dissolved hydrogen of several tens of ppb or less.
本発明は上記課題に鑑みてなされたものである。すなわち、本発明は、水中に複数種の気体が溶存する場合であっても、従来の熱伝導度検出器を用いて、水素濃度の正確な値を測定可能とし、かつ、測定中か否かに関わらず電圧印加が必要な隔膜型ポーラロ式水素濃度計の管理上の問題点を解消することができる、水中の溶存水素濃度の測定装置及び測定方法を提供することにある。 The present invention has been made in view of the above problems. That is, the present invention makes it possible to measure an accurate value of the hydrogen concentration using a conventional thermal conductivity detector even when a plurality of gases are dissolved in water, and whether or not measurement is in progress. It is an object of the present invention to provide an apparatus and a method for measuring dissolved hydrogen concentration in water, which can solve the management problems of a diaphragm type polaro hydrogen concentration meter that requires voltage application.
熱伝導度検出器を用いて被測定水中の溶存水素濃度を測定するに際し、被測定水中に水素以外の溶存気体が存在すると、熱伝導度検出器は、測定対象の水素と気体が共存した溶存気体による熱伝導度の変化速度を測定し、その変化速度との関係で溶存水素濃度を算出する。 When measuring the dissolved hydrogen concentration in the measured water using the thermal conductivity detector, if there is a dissolved gas other than hydrogen in the measured water, the thermal conductivity detector The rate of change in thermal conductivity due to gas is measured, and the dissolved hydrogen concentration is calculated in relation to the rate of change.
例えば、水素及び窒素が溶存した被測定水について、熱伝導度式溶存水素計を用いて溶存水素濃度を測定する場合を例に挙げて説明する。この場合、窒素の熱伝導度は0℃で0.0243(W/(m・K))、100℃で0.0312(W/(m・K))であるのに対して、水素の熱伝導度は0℃で0.1684(W/(m・K))、100℃で0.216(W/(m・K))である。このように水素の熱伝導度は、窒素の熱伝導度と異なる値を示す(理科年表 昭和57年版)。つまり、被測定水中の溶存水素濃度を測定するに際し、被測定水中に溶存窒素も含まれている場合には、熱伝導度式溶存水素計による測定値は、実際の溶存水素濃度よりも溶存窒素分だけ多くなる。 For example, with respect to water to be measured in which hydrogen and nitrogen are dissolved, a case where the dissolved hydrogen concentration is measured using a thermal conductivity type dissolved hydrogen meter will be described as an example. In this case, the thermal conductivity of nitrogen is 0.0243 (W / (m · K)) at 0 ° C. and 0.0312 (W / (m · K)) at 100 ° C., whereas the heat of hydrogen The conductivity is 0.1684 (W / (m · K)) at 0 ° C. and 0.216 (W / (m · K)) at 100 ° C. Thus, the thermal conductivity of hydrogen shows a value different from the thermal conductivity of nitrogen (Science Chronology 1982 edition). In other words, when measuring the dissolved hydrogen concentration in the measured water, if the measured water contains dissolved nitrogen, the measured value by the thermal conductivity type dissolved hydrogen meter will be higher than the actual dissolved hydrogen concentration. Increase by the minute.
このことから、本発明者らは、被測定水中の溶存水素を取り除くことで、溶存水素除去前の水中の溶存気体による熱伝導度の変化及び溶存水素除去後の水中の溶存気体による熱伝導度の変化を熱伝導度検出器で測定した結果を出力し、それぞれの測定値の差から溶存水素濃度を算出することにより、簡便な方法で、被測定水中に水素とその他の気体が共存する場合であっても、正確な溶存水素濃度を測定できる方法を見出し、以下の発明に至った。 From this, the present inventors removed the dissolved hydrogen in the water to be measured, thereby changing the thermal conductivity due to the dissolved gas in the water before removing the dissolved hydrogen and the thermal conductivity due to the dissolved gas in the water after removing the dissolved hydrogen. When hydrogen and other gases coexist in the water to be measured by a simple method by outputting the result of measuring the change in temperature with a thermal conductivity detector and calculating the dissolved hydrogen concentration from the difference between the measured values. Even so, the inventors have found a method that can accurately measure the dissolved hydrogen concentration and have reached the following invention.
即ち、 流路と、
前記流路内の水中の溶存水素を除去する水素除去部と、
前記水中の溶存気体による熱伝導度の変化を検出し、電気信号に変換する1又は複数の熱伝導度検出器と、
前記水素除去部通過前の水中の溶存気体による熱伝導度の変化を前記熱伝導度検出器で変換した電気信号及び前記水素除去部通過後の水中の溶存気体による熱伝導度の変化を前記熱伝導度検出器で変換した電気信号に基づいて、前記水中の溶存水素濃度を算出する溶存水素濃度算出手段と、
を有する、溶存水素濃度測定装置に関する。
That is, the flow path,
A hydrogen removal unit for removing dissolved hydrogen in water in the flow path;
One or more thermal conductivity detectors that detect changes in thermal conductivity due to dissolved gas in the water and convert them into electrical signals;
An electrical signal obtained by converting a change in thermal conductivity due to dissolved gas in water before passing through the hydrogen removal unit and a change in thermal conductivity due to dissolved gas in water after passing through the hydrogen removal unit are converted into heat. A dissolved hydrogen concentration calculating means for calculating a dissolved hydrogen concentration in the water based on an electrical signal converted by a conductivity detector;
The present invention relates to a device for measuring dissolved hydrogen concentration.
また、水中の溶存水素を除去する水素除去工程と、
前記水素除去工程前の前記水中の溶存気体による熱伝導度の変化を測定する第1の測定工程と、
前記水素除去工程後の前記水中の溶存気体による熱伝導度の変化を測定する第2の測定工程と、
前記第1の測定工程及び第2の測定工程における熱伝導度の変化の測定結果に基づき、前記水中の溶存水素濃度を算出する溶存水素濃度算出工程と、
を有する、溶存水素濃度の測定方法に関する。
In addition, a hydrogen removal process for removing dissolved hydrogen in water,
A first measurement step of measuring a change in thermal conductivity due to dissolved gas in the water before the hydrogen removal step;
A second measurement step of measuring a change in thermal conductivity due to dissolved gas in the water after the hydrogen removal step;
A dissolved hydrogen concentration calculating step of calculating a dissolved hydrogen concentration in the water based on a measurement result of a change in thermal conductivity in the first measuring step and the second measuring step;
The present invention relates to a method for measuring dissolved hydrogen concentration.
熱伝導度検出器を用いて、被測定水中に水素とその他の気体が共存する場合であっても、水中に溶存する水素の濃度の正確な値を測定することができる。また、隔膜型ポーラロ式水素濃度計の管理上の問題点を解消するとともに、隔膜型ポーラロ式水素濃度計と同程度に低濃度の溶存水素濃度を測定することができる。 Even when hydrogen and other gases coexist in the water to be measured, the accurate value of the concentration of hydrogen dissolved in the water can be measured using the thermal conductivity detector. Moreover, while solving the management problem of the diaphragm-type polaro hydrogen concentration meter, it is possible to measure the dissolved hydrogen concentration as low as the diaphragm-type polaro hydrogen concentration meter.
(溶存水素濃度の測定方法)
図1は本発明の溶存水素濃度の測定原理を示す図である。図1に示すように、水素除去部を通過する前(水素除去工程前)の被測定水中の気体濃度を溶存気体濃度として測定し(第1の測定)、次いで、水素除去部を通過した後(水素除去工程後)の被測定水中の気体濃度を溶存気体濃度として測定する(第2の測定)。そして、ΔDG=(第1の測定による溶存気体濃度DG1)−(第2の測定による溶存気体濃度DG2)で表されるΔDGを算出し、このΔDGの値から溶存水素濃度を算出する処理を行う。
(Measurement method of dissolved hydrogen concentration)
FIG. 1 is a diagram showing the measurement principle of the dissolved hydrogen concentration according to the present invention. As shown in FIG. 1, the gas concentration in the water to be measured before passing through the hydrogen removal unit (before the hydrogen removal step) is measured as the dissolved gas concentration (first measurement), and then passed through the hydrogen removal unit. The gas concentration in the water to be measured (after the hydrogen removal step) is measured as the dissolved gas concentration (second measurement). Then, ΔDG = (dissolved gas concentration DG 1 by the first measurement) − (dissolved gas concentration DG 2 by the second measurement) is calculated, and the dissolved hydrogen concentration is calculated from the value of ΔDG. I do.
被測定水中の溶存気体濃度の測定ではまず、電気信号に変換する素子(熱伝導度検出素子=TCD)と半透膜とを組み合わせた熱伝導度検出器を有するものを用いて、被測定水中の溶存気体による熱伝導度の変化を測定する。 In the measurement of the dissolved gas concentration in the water to be measured, first, using a device having a thermal conductivity detector that combines an element (thermal conductivity detection element = TCD) that converts to an electrical signal and a semipermeable membrane, Changes in thermal conductivity due to dissolved gases are measured.
図2は一般的な溶存気体濃度の測定原理を示す図である。まず、バルブ124を開とし、パージガス供給源120のパージガス(二酸化炭素ガス、アルゴンガス等)をパージガス供給ライン122から測定室110に供給し、測定室110内をパージガスで充満させる。この状態において、TCD112はパージガスの熱伝導度を測定し、その測定値を信号として増幅器130に出力する。この際、測定室110内は特定のパージガスで充満されているため、TCD112から増幅器130に出力される信号は、パージガスの熱伝導度で安定している。TCD112から出力された信号は、増幅器130を経由し制御器132に送られる。制御器132では、TCD112から出力される信号が安定、即ち、測定室110内のパージが完了すると、バルブ124を閉とし、測定室110へのパージガスの供給を停止する。
FIG. 2 is a diagram showing a general measurement principle of dissolved gas concentration. First, the valve 124 is opened, purge gas (carbon dioxide gas, argon gas, etc.) of the purge
測定室110内がパージガスで充満されている状態で、流路1に被測定水が供給されると、被測定水中の溶存気体は半透膜104を透過して測定室110に移行する。流路1から溶存気体が測定室110に移行してくると、測定室110内のパージガスは、移行してきた溶存気体によりガス排出ライン114に排出される。そして、TCD112は、測定室110内の溶存気体濃度に応じた熱伝導度を測定し、その測定値を信号として増幅器130を介して制御器132に出力する。測定室110内のパージガスが溶存気体に置換される速さは、流路1の溶存気体の分圧に比例する。このため、制御器132は、TCD112が検出する熱伝導度の変化速度から、流路1における溶存気体の分圧を求め、求めた溶存気体の分圧を基に被測定水中の溶存気体濃度が算出される。 When the water to be measured is supplied to the flow channel 1 in a state where the measurement chamber 110 is filled with the purge gas, the dissolved gas in the water to be measured passes through the semipermeable membrane 104 and moves to the measurement chamber 110. When the dissolved gas moves from the flow path 1 to the measurement chamber 110, the purge gas in the measurement chamber 110 is discharged to the gas discharge line 114 by the transferred dissolved gas. The TCD 112 measures the thermal conductivity according to the dissolved gas concentration in the measurement chamber 110 and outputs the measured value as a signal to the controller 132 via the amplifier 130. The speed at which the purge gas in the measurement chamber 110 is replaced with the dissolved gas is proportional to the partial pressure of the dissolved gas in the flow path 1. Therefore, the controller 132 obtains the partial pressure of the dissolved gas in the flow path 1 from the change rate of the thermal conductivity detected by the TCD 112, and the dissolved gas concentration in the measured water is based on the obtained partial pressure of the dissolved gas. Calculated.
したがって、本発明において被測定水中の溶存水素濃度を測定するにあたっては、TCDと半透膜とを組み合わせた熱伝導度検出器を有するものを用いて、被測定水中の溶存気体の熱伝導度の変化を測定することができればよい。例えば、窒素濃度算出部を用いて溶存水素濃度を測定する場合は、熱伝導度検出器で変換した電気信号は水中の窒素濃度として出力される。つまり、熱伝導度検出器及び窒素濃度算出部(以下、熱伝導度検出器及び窒素濃度算出部を「熱伝導度式溶存窒素計」と記載する場合がある)により、第1の測定で水素除去部通過前の水中の溶存窒素濃度を測定し、第2の測定で水素除去部通過後の水中の溶存窒素濃度を測定する。そして、演算部により、ΔDN=(第1の測定における溶存窒素濃度DN1)−(第2の測定における溶存窒素濃度DN2)で表されるΔDNを算出し、このΔDNの値から溶存水素濃度を算出する処理を行う。また、被測定水中に溶存水素及び溶存水素以外の気体が溶存している場合であっても、溶存水素除去部では水素を選択的に除去するため、溶存水素除去部で除去された水素以外の気体の溶存量にはほとんど変化はないので、ΔDNの算出には影響しない。 Therefore, in measuring the dissolved hydrogen concentration in the water to be measured in the present invention, the one having a thermal conductivity detector combining TCD and a semipermeable membrane is used to measure the thermal conductivity of the dissolved gas in the water to be measured. It suffices if the change can be measured. For example, when measuring the dissolved hydrogen concentration using a nitrogen concentration calculator, the electrical signal converted by the thermal conductivity detector is output as the nitrogen concentration in water. In other words, the thermal conductivity detector and the nitrogen concentration calculation unit (hereinafter, the thermal conductivity detector and the nitrogen concentration calculation unit may be referred to as “thermal conductivity type dissolved nitrogen meter”) in the first measurement. The dissolved nitrogen concentration in the water before passing through the removal unit is measured, and the dissolved nitrogen concentration in the water after passing through the hydrogen removal unit is measured in the second measurement. Then, the calculation unit calculates ΔDN represented by ΔDN = (dissolved nitrogen concentration DN 1 in the first measurement) − (dissolved nitrogen concentration DN 2 in the second measurement), and the dissolved hydrogen concentration from the value of ΔDN. The process which calculates is performed. In addition, even if dissolved hydrogen and gas other than dissolved hydrogen are dissolved in the water to be measured, in order to selectively remove hydrogen in the dissolved hydrogen removal unit, other than hydrogen removed in the dissolved hydrogen removal unit Since there is almost no change in the amount of dissolved gas, it does not affect the calculation of ΔDN.
このように、既存の熱伝導度式溶存窒素計等を用いて測定を行う場合、熱伝導度検出器からの信号は溶存窒素濃度に変換されて出力される。このため、既知の溶存水素濃度のサンプル水を用いて熱伝導度式溶存窒素計で測定して得られた溶存窒素濃度を元に作成した、溶存水素濃度と溶存窒素濃度の関係を表す検量線を利用することにより、溶存窒素濃度から溶存水素濃度への変換を行うことができる。 Thus, when measuring using the existing thermal conductivity type dissolved nitrogen meter etc., the signal from a thermal conductivity detector is converted into dissolved nitrogen concentration, and is output. For this reason, a calibration curve representing the relationship between dissolved hydrogen concentration and dissolved nitrogen concentration created based on the dissolved nitrogen concentration obtained by measuring with a thermal conductivity type dissolved nitrogen meter using sample water with a known dissolved hydrogen concentration Can be used to convert the dissolved nitrogen concentration to the dissolved hydrogen concentration.
また、熱伝導度検出器からの電気信号をΔDNに変換して、溶存水素濃度を算出する一連の計算をプログラムによって行うこともできる。 Further, a series of calculations for calculating the dissolved hydrogen concentration by converting the electrical signal from the thermal conductivity detector into ΔDN can be performed by a program.
なお、上記窒素濃度算出部以外にも、熱伝導度検出器で変換した電気信号を、水中の溶存酸素濃度に変換する酸素濃度算出部や、水中の溶存水素濃度に変換する水素濃度算出部を使用しても良い。 In addition to the nitrogen concentration calculation unit, an oxygen concentration calculation unit that converts the electrical signal converted by the thermal conductivity detector into dissolved oxygen concentration in water and a hydrogen concentration calculation unit that converts into dissolved hydrogen concentration in water. May be used.
例えば、酸素濃度算出部を用いた溶存水素濃度の測定では、熱伝導度検出器及び酸素濃度算出部により、第1及び第2の測定における溶存酸素濃度DO1、DO2を測定する。この後、演算部により、ΔDO=DO1−DO2を算出し、このΔDOの値から溶存水素濃度を算出する処理を行う。 For example, in the measurement of the dissolved hydrogen concentration using the oxygen concentration calculation unit, the dissolved oxygen concentrations DO 1 and DO 2 in the first and second measurements are measured by the thermal conductivity detector and the oxygen concentration calculation unit. Thereafter, the calculation unit calculates ΔDO = DO 1 −DO 2 and performs a process of calculating the dissolved hydrogen concentration from the value of ΔDO.
また、水素濃度算出部を用いた溶存水素濃度の測定では、熱伝導度検出器及び水素濃度算出部により得られた第1及び第2の測定における溶存水素濃度DH1、DH2から、溶存水素濃度ΔDH=DH1−DH2を算出し、このΔDHの値から溶存水素濃度を算出する処理を行う。 In the measurement of the dissolved hydrogen concentration using the hydrogen concentration calculation unit, the dissolved hydrogen concentration is calculated from the dissolved hydrogen concentrations DH 1 and DH 2 in the first and second measurements obtained by the thermal conductivity detector and the hydrogen concentration calculation unit. A concentration ΔDH = DH 1 −DH 2 is calculated, and a process of calculating the dissolved hydrogen concentration from the value of ΔDH is performed.
水素除去部を設けることで、従来の熱伝導度検出器を用いた測定で誤差原因となっていた共存ガスの影響を排除できるため、溶存水素濃度の正確な値を得ることができる。また、水素除去部通過前後の測定値の差分から溶存水素濃度を算出するため、隔膜型ポーラロ式水素濃度計の定量下限値と同等程度に低濃度の水素を測定することができる。 By providing the hydrogen removal unit, it is possible to eliminate the influence of the coexisting gas that has caused the error in the measurement using the conventional thermal conductivity detector, so that an accurate value of the dissolved hydrogen concentration can be obtained. In addition, since the dissolved hydrogen concentration is calculated from the difference between the measured values before and after passing through the hydrogen removal section, it is possible to measure a low concentration of hydrogen that is equivalent to the lower limit of quantification of the diaphragm type polaro hydrogen concentration meter.
被測定水としては、溶存水素濃度の測定対象となるいずれの水についても測定可能であるが、溶存水素濃度をより正確な値で管理することが要求され、従来の熱伝導度式溶存水素計を用いた通常の測定方法では困難である超純水等の純水や、純水に水素ガスを溶解した水素水に本発明を好適に用いることができる。例えば、図3に示すような超純水や、機能水の一種である水素水の製造工程において、溶存水素濃度を測定する場合、製造した超純水中の溶存水素を測定する場合には、図3の(a)部から流路を分岐して、後述する図4a〜eに示すように溶存水素濃度測定装置に接続する。また、水素水中の溶存水素濃度を測定する場合には、図3の(b)部で同様に溶存水素濃度測定装置を接続すればよい。 As the water to be measured, any water that is the target for measuring the dissolved hydrogen concentration can be measured, but it is required to manage the dissolved hydrogen concentration with a more accurate value, and a conventional thermal conductivity dissolved hydrogen meter is required. The present invention can be suitably used for pure water such as ultrapure water, which is difficult to obtain by a normal measurement method using water, or hydrogen water in which hydrogen gas is dissolved in pure water. For example, in the production process of ultrapure water as shown in FIG. 3 or hydrogen water which is a kind of functional water, when measuring the dissolved hydrogen concentration, when measuring the dissolved hydrogen in the produced ultrapure water, The flow path is branched from the part (a) of FIG. 3 and connected to a dissolved hydrogen concentration measuring device as shown in FIGS. Moreover, what is necessary is just to connect a dissolved hydrogen concentration measuring apparatus similarly to the (b) part of FIG. 3, when measuring the dissolved hydrogen concentration in hydrogen water.
(溶存水素濃度測定装置)
図4a〜4eは、熱伝導度検出器を用いて被測定水中の溶存窒素濃度を測定して溶存水素濃度を算出する場合の溶存水素濃度測定装置の一例を示す図である。一実施形態である図4aにおいて、溶存水素濃度測定装置は、流路1、水素除去部17、第1の熱伝導度検出器15a、第2の熱伝導度検出器15b、第1の窒素濃度算出部13、第2の窒素濃度算出部14、及び演算部18を有する。この流路1は、超純水や機能水の製造工程の本管61に接続される。この流路1には、上流側から下流側に向かって、すなわち、矢印の方向に順に、第1の熱伝導度検出器15a、水素除去部17、及び第2の熱伝導度検出器15bが設けられている。この第1の熱伝導度検出器15aは、水素除去部17通過前の水中の溶存気体による熱伝導度の変化を電気信号に変換する。そして、第1の熱伝導度検出器15aに接続されている第1の窒素濃度算出部13において、第1の熱伝導度検出器15aからの電気信号に基づき溶存窒素濃度を算出する。また、第2の熱伝導度検出器15bは、水素除去部17通過後の水中の溶存気体による熱伝導度の変化を電気信号に変換する。そして、第2の熱伝導度検出器15bに接続されている第2の窒素濃度算出部14において、第2の熱伝導度検出器15bからの電気信号に基づき溶存窒素濃度を算出する。そして、演算部18において、第1及び第2の窒素濃度算出部13及び14で算出された溶存窒素濃度の差分から溶存水素濃度を算出する。
(Dissolved hydrogen concentration measuring device)
4a to 4e are diagrams illustrating an example of a dissolved hydrogen concentration measurement apparatus in a case where a dissolved hydrogen concentration is calculated by measuring a dissolved nitrogen concentration in water to be measured using a thermal conductivity detector. In FIG. 4a which is one embodiment, the dissolved hydrogen concentration measurement apparatus includes a flow path 1, a hydrogen removal unit 17, a first thermal conductivity detector 15a, a second thermal conductivity detector 15b, and a first nitrogen concentration. A calculation unit 13, a second nitrogen concentration calculation unit 14, and a calculation unit 18 are included. This flow path 1 is connected to the main pipe 61 of the manufacturing process of ultrapure water or functional water. The flow path 1 includes a first thermal conductivity detector 15a, a hydrogen removal unit 17, and a second thermal conductivity detector 15b from the upstream side toward the downstream side, that is, in the direction of the arrow. Is provided. The first thermal conductivity detector 15a converts a change in thermal conductivity due to dissolved gas in the water before passing through the hydrogen removing unit 17 into an electrical signal. Then, the first nitrogen concentration calculation unit 13 connected to the first thermal conductivity detector 15a calculates the dissolved nitrogen concentration based on the electrical signal from the first thermal conductivity detector 15a. The second thermal conductivity detector 15b converts a change in thermal conductivity caused by dissolved gas in the water after passing through the hydrogen removing unit 17 into an electrical signal. Then, the second nitrogen concentration calculation unit 14 connected to the second thermal conductivity detector 15b calculates the dissolved nitrogen concentration based on the electric signal from the second thermal conductivity detector 15b. Then, the calculation unit 18 calculates the dissolved hydrogen concentration from the difference between the dissolved nitrogen concentrations calculated by the first and second nitrogen concentration calculation units 13 and 14.
また、他の実施形態の一例である図4bにおいては、第1の熱伝導度検出器及び第2の熱伝導度検出器で検出した各熱伝導度の変化を電気信号に変換し、それぞれの溶存窒素濃度を1つの窒素濃度算出部13で算出できるように接続されている。この場合、例えば、まず、第1の熱伝導度検出器15aで検出した熱伝導度の変化を電気信号に変換して、水素除去部17通過前の水中の溶存窒素濃度を窒素濃度算出部13で算出し、その値が窒素濃度算出部13又は演算部18で記憶される。次いで、第2の熱伝導度検出器15bで検出した熱伝導度の変化を電気信号に変換して、水素除去部17通過後の水中の溶存窒素濃度を窒素濃度算出部13で算出し、その値が窒素濃度算出部13又は演算部18で記憶される。そして、演算部18において、この記憶されたそれぞれの溶存窒素濃度の差分から溶存水素濃度を算出する。 Moreover, in FIG. 4b which is an example of other embodiment, the change of each thermal conductivity detected with the 1st thermal conductivity detector and the 2nd thermal conductivity detector is converted into an electric signal, It is connected so that the dissolved nitrogen concentration can be calculated by one nitrogen concentration calculation unit 13. In this case, for example, first, the change in thermal conductivity detected by the first thermal conductivity detector 15a is converted into an electric signal, and the dissolved nitrogen concentration in the water before passing through the hydrogen removing unit 17 is converted into the nitrogen concentration calculating unit 13. And the value is stored in the nitrogen concentration calculator 13 or the calculator 18. Next, the change in thermal conductivity detected by the second thermal conductivity detector 15b is converted into an electrical signal, and the dissolved nitrogen concentration in the water after passing through the hydrogen removing unit 17 is calculated by the nitrogen concentration calculating unit 13, The value is stored in the nitrogen concentration calculator 13 or the calculator 18. And in the calculating part 18, a dissolved hydrogen concentration is calculated from the difference of each memorize | stored dissolved nitrogen concentration.
なお、図4a及び図4bの実施形態では、第1の熱伝導度検出器15a及び第2の熱伝導度検出器15bが流路1に直接接続されているが、他の実施形態の一例を示す図4c及び図4dに示すように、それぞれを枝管で分岐し、その枝管にそれぞれの熱伝導度検出器を設けてもよい。 In the embodiment of FIGS. 4a and 4b, the first thermal conductivity detector 15a and the second thermal conductivity detector 15b are directly connected to the flow path 1, but an example of another embodiment is shown. As shown in FIGS. 4c and 4d, each branch pipe may be branched, and each thermal conductivity detector may be provided in the branch pipe.
また、他の実施形態の一例である図4eは、水素除去部17の通過前の被測定水と通過後の被測定水の溶存窒素濃度を1つの熱伝導度検出器と1つの窒素濃度算出部で測定する場合の形態である。図4eに示すように、流路1の水素除去部17の上流側に弁54を介して枝管41を分岐し、同様に流路1の水素除去部17の下流側に弁55を介して枝管42を分岐する。枝管41及び42は合流しており、この合流地点よりも下流側に熱伝導度検出器15cを接続する。そして、弁51、54を開とし、弁55を閉とすると、熱伝導度検出器15cでは、水素除去部17通過前の熱伝導度の変化を検出することができる。また、弁51、55を開とし、弁54を閉とすると、水素除去部17通過後の熱伝導度の変化を検出することができる。
FIG. 4 e, which is an example of another embodiment, calculates the dissolved nitrogen concentration of the water to be measured before passing through the hydrogen removing unit 17 and the water to be measured after passing through one thermal conductivity detector and one nitrogen concentration calculation. It is the form in the case of measuring by a part. As shown in FIG. 4e, the branch pipe 41 is branched to the upstream side of the hydrogen removing unit 17 in the flow path 1 via the
以上に実施形態の例を挙げたが、窒素濃度算出部を用いた場合は、溶存水素除去部17の通過前と通過後の溶存窒素濃度を、窒素濃度算出部を用いて算出することができ、算出した溶存窒素濃度の差分を溶存水素濃度に変換する演算部を有していれば、枝管や弁の構成、熱伝導度検出器及び窒素濃度算出部の構成は、特に限定されない。例えば、水素除去部を通過した後の水や流路から分岐した枝管の水を本管に戻すこともできるし、図4c、図4dにおいて、第1及び第2の熱伝導度検出器通過後にそれぞれの枝管を合流することもできる。また、枝管を合流させた場合に、それぞれの枝管の合流点よりも上流側に逆止弁を設けて被測定水の逆流を防止することもできる。 Although the example of the embodiment has been described above, when the nitrogen concentration calculation unit is used, the dissolved nitrogen concentration before and after passing through the dissolved hydrogen removal unit 17 can be calculated using the nitrogen concentration calculation unit. As long as a calculation unit that converts the calculated difference in dissolved nitrogen concentration into a dissolved hydrogen concentration is provided, the configuration of the branch pipe and valve, the configuration of the thermal conductivity detector, and the nitrogen concentration calculation unit are not particularly limited. For example, the water after passing through the hydrogen removing unit or the water of the branch pipe branched from the flow path can be returned to the main pipe. In FIGS. 4c and 4d, the first and second thermal conductivity detectors pass. Each branch pipe can be joined later. In addition, when the branch pipes are joined, a check valve can be provided upstream from the junction of the respective branch pipes to prevent backflow of the water to be measured.
また、熱伝導度検出器と窒素濃度算出部は、熱伝導度式溶存窒素計として既存のものを用いることができる。例えば、オービスフェア社製model−3621等が挙げられる。 In addition, the thermal conductivity detector and the nitrogen concentration calculator can use existing thermal conductivity dissolved nitrogen meters. Examples thereof include model-3621 manufactured by Orbis Fair.
水素除去部17は、被測定水中の溶存水素を選択的に除去できるものであれば特に限定されない。水素除去部17は、水素吸蔵金属及び水素吸蔵合金の少なくとも一方を含む充填材を充填したカラムであることが好ましい。充填材としては、例えば金属、合金の粒、水素吸蔵金属又は水素吸蔵合金を担体に担持させたものが良い。担体としては、樹脂、アルミナ、活性炭、金属及びゼオライトなどがある。また、充填材の形状は特に限定させず、例えばペレット状、球状、粒状等の形状を挙げることができる。また、水素吸蔵金属又は水素吸蔵合金は、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、及び白金からなる群から選択された白金族元素を含むことが好ましい。 The hydrogen removing unit 17 is not particularly limited as long as it can selectively remove dissolved hydrogen in the water to be measured. The hydrogen removing unit 17 is preferably a column filled with a filler containing at least one of a hydrogen storage metal and a hydrogen storage alloy. As the filler, for example, a metal, alloy grain, hydrogen storage metal or hydrogen storage alloy supported on a carrier is preferable. Examples of the carrier include resin, alumina, activated carbon, metal, and zeolite. Further, the shape of the filler is not particularly limited, and examples thereof include a pellet shape, a spherical shape, and a granular shape. The hydrogen storage metal or hydrogen storage alloy preferably contains a platinum group element selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, and platinum.
演算部は、窒素濃度算出部等の気体濃度算出部で測定された、水素除去部通過前及び通過後の被測定水中の溶存窒素濃度の差分から溶存水素濃度を算出する機能を実現するように構成されていれば良く、例えば、コンピュータプログラムを読み取って対応する処理動作を実行できるハードウェアであれば良い。具体的には、CPU(Central Processing Unit)を主体として、これに、ROM、RAM(Random Access Memory)、I/F(Interface)ユニット等の各種デバイスが接続されたハードウェアなどで良い。また、演算部と気体濃度算出部のプロセッサーは、個々の独立した存在である必要はなく、1個の溶存水素濃度算出手段として形成されていること、お互いの一部が重複していることが可能である。例えば、熱伝導度検出器で検出した熱伝導度の変化速度の電気信号を直接、溶存水素濃度算出手段に入力し、溶存水素濃度算出手段で算出されたΔDNの値を溶存水素濃度に変換する処理を行うこともできる。また、ΔDNを算出しなくても、溶存気体の熱伝導度の変化速度と溶存気体濃度が比例関係にあることから、水素除去部通過前及び通過後の各熱伝導度検出器による電気信号の差分から直接、溶存水素濃度を求めてもよい。 The calculation unit realizes a function of calculating a dissolved hydrogen concentration from a difference in dissolved nitrogen concentration in the measured water before and after passing through the hydrogen removing unit, which is measured by a gas concentration calculating unit such as a nitrogen concentration calculating unit. Any hardware may be used as long as it is configured, for example, hardware that can read a computer program and execute a corresponding processing operation. Specifically, hardware including a CPU (Central Processing Unit) as a main body and various devices such as a ROM, a RAM (Random Access Memory), and an I / F (Interface) unit may be connected thereto. In addition, the processor of the calculation unit and the gas concentration calculation unit do not have to be independent of each other, and is formed as one dissolved hydrogen concentration calculation unit, and a part of each other may overlap. Is possible. For example, the electrical signal of the change rate of the thermal conductivity detected by the thermal conductivity detector is directly input to the dissolved hydrogen concentration calculating means, and the ΔDN value calculated by the dissolved hydrogen concentration calculating means is converted to the dissolved hydrogen concentration. Processing can also be performed. In addition, even if ΔDN is not calculated, the rate of change in the thermal conductivity of the dissolved gas and the dissolved gas concentration are in a proportional relationship, so that the electrical signal from each thermal conductivity detector before and after passing through the hydrogen removal unit The dissolved hydrogen concentration may be obtained directly from the difference.
(水素除去機能回復手段)
溶存水素濃度測定装置は、水素除去部の水素除去機能を回復するような水素除去機能回復手段を有することが好ましい。水素除去機能回復手段は、水素除去部の水素除去機能を回復できれば、その方法は問わないが、被測定水に酸素を添加して水素除去部に酸素を通過させる、酸素添加手段を有するのが好ましい。溶存水素濃度測定装置を使用するにつれて、水素除去部内は取り込まれた水素により徐々に飽和状態になる。そして、水素除去部の水素吸蔵能力が飽和状態となった後は、水素除去部により被測定水中の溶存水素を除去できなくなる。そこで、酸素を通過させることによって、下記式(A)で表すように、水素除去部に取り込まれた水素は、水中の酸素と反応して水となり除去される。
2H2+O2→2H2O (A)
この結果、水素除去部は長時間、安定してほぼ完全に水中の水素を除去できるようになる。
(Hydrogen removal function recovery means)
The dissolved hydrogen concentration measuring device preferably has a hydrogen removal function recovery means that recovers the hydrogen removal function of the hydrogen removal unit. The hydrogen removal function recovery means may be any method as long as the hydrogen removal function of the hydrogen removal section can be recovered, but it has oxygen addition means for adding oxygen to the water to be measured and passing the oxygen through the hydrogen removal section. preferable. As the dissolved hydrogen concentration measuring device is used, the hydrogen removal unit gradually becomes saturated with the incorporated hydrogen. Then, after the hydrogen occlusion capacity of the hydrogen removal unit becomes saturated, the hydrogen removal unit cannot remove dissolved hydrogen in the water to be measured. Therefore, by allowing oxygen to pass through, as represented by the following formula (A), the hydrogen taken into the hydrogen removal unit reacts with oxygen in water to be removed as water.
2H 2 + O 2 → 2H 2 O (A)
As a result, the hydrogen removing unit can remove hydrogen in water stably and almost completely for a long time.
図5に酸素添加手段を備えた溶存水素濃度測定装置の一例を示す。図5では、酸素添加手段28は、ガス溶解膜19と、弁56及び弁57を備えている。弁56には酸素ガスを溶解させる水を供給する水供給部21が接続されており、弁57には酸素ガスを供給する酸素供給部20が接続されている。そして、流路1の水素除去部17の上流側に接続されている。ガス溶解膜19は、気体を透過させるが液体は透過させないため、このガス溶解膜を通して酸素ガスが被測定水中に供給される。これにより、酸素が被測定水を媒体として水素除去部に取り込まれる。
FIG. 5 shows an example of a dissolved hydrogen concentration measuring apparatus provided with oxygen adding means. In FIG. 5, the oxygen addition means 28 includes a gas dissolving film 19, a
酸素添加手段は、水素除去部17に酸素が到達するような位置に設けられていればよいが、酸素を添加しながら溶存水素濃度を測定する場合、水素除去部通過前の熱伝導度検出器又は枝管と水素除去部の間に設けるのが好ましい。これによって、より正確に溶存水素濃度を測定することが可能となる。仮に、酸素添加手段を水素除去部通過前の熱伝導度検出器又は枝管より上流側に設けた場合、水素除去部を通過する前の第1の測定では、酸素を含んだ熱伝導度の変化を検出する。しかし、添加した酸素は水素除去部で消費されるため、水素除去部通過後の第2の測定では、酸素を含まない熱伝導度の変化を検出する。溶存水素濃度は第1の測定及び第2の測定で検出したそれぞれの熱伝導度の変化の差分から算出するため、添加した酸素の分だけ溶存水素濃度の測定結果に誤差が生じてしまう。また、酸素添加手段を直接、水素除去部に設けることもできる。さらには、酸素添加手段を水素除去部の下流側に設けて、被測定水を通水していないときに、被測定水の流れとは逆の方向から酸素を含む水を水素除去部に通水する方法などもある。 The oxygen addition means may be provided at a position where oxygen reaches the hydrogen removal unit 17, but when measuring the dissolved hydrogen concentration while adding oxygen, the thermal conductivity detector before passing through the hydrogen removal unit Or it is preferable to provide between a branch pipe and a hydrogen removal part. This makes it possible to measure the dissolved hydrogen concentration more accurately. If the oxygen addition means is provided on the upstream side of the thermal conductivity detector or branch pipe before passing through the hydrogen removal unit, the first measurement before passing through the hydrogen removal unit shows the thermal conductivity containing oxygen. Detect changes. However, since the added oxygen is consumed in the hydrogen removal unit, the second measurement after passing through the hydrogen removal unit detects a change in thermal conductivity not containing oxygen. Since the dissolved hydrogen concentration is calculated from the difference in change in thermal conductivity detected in the first measurement and the second measurement, an error occurs in the measurement result of the dissolved hydrogen concentration by the amount of added oxygen. Moreover, an oxygen addition means can also be provided directly in the hydrogen removal unit. Furthermore, when oxygen measuring means is provided on the downstream side of the hydrogen removing unit and water to be measured is not flowing, water containing oxygen is passed through the hydrogen removing unit from the direction opposite to the flow of the water to be measured. There is also a method of watering.
また、酸素添加手段は水素除去部17を酸素が通過できるような構成になっていればよく、例えば、水供給部21の代わりに、本管61から水を供給してもよい。これ以外にも、水素除去部にガス溶解膜を介して酸素ガスを直接添加する方法などもある。 Further, the oxygen addition means only needs to be configured to allow oxygen to pass through the hydrogen removal unit 17. For example, water may be supplied from the main pipe 61 instead of the water supply unit 21. In addition to this, there is a method in which oxygen gas is directly added to the hydrogen removing portion through a gas dissolution film.
被測定水中の溶存酸素(DO)が被測定水中の溶存水素(DH)に対し、質量比(DO/DH)で8.5以上となるように酸素を添加することが好ましい。DO/DHが8.5以上では水素除去率が非常に高く、水素除去部を効率よく使用することができる。したがって、例えば、本溶存水素濃度測定装置を用いて溶存水素濃度を測定するにあたり、あらかじめDO/DH8.5以上の酸素を水素除去部に添加することによって、水素除去部の水素除去能力を最大限とすることができ、測定範囲を広くすることができる。 It is preferable to add oxygen so that the dissolved oxygen (DO) in the measured water is 8.5 or more in terms of mass ratio (DO / DH) with respect to the dissolved hydrogen (DH) in the measured water. When DO / DH is 8.5 or more, the hydrogen removal rate is very high, and the hydrogen removal unit can be used efficiently. Therefore, for example, when measuring the dissolved hydrogen concentration using the present dissolved hydrogen concentration measuring apparatus, the hydrogen removal capability of the hydrogen removal unit is maximized by adding oxygen of DO / DH 8.5 or more to the hydrogen removal unit in advance. And the measurement range can be widened.
(参考例1)
熱伝導度検出器は水中に溶存する気体の種類を区別できず、水中に溶存する全ての気体を一つの溶存気体として熱伝導度の変化を測定する。そこで、本参考例1では、熱伝導度式溶存窒素計を用いて水中の溶存窒素濃度を測定するに際し、水中に溶存水素が含まれている場合に、測定結果に溶存水素が影響することを確認した。
(Reference Example 1)
The thermal conductivity detector cannot distinguish the type of gas dissolved in water, and measures the change in thermal conductivity with all gases dissolved in water as one dissolved gas. Therefore, in this Reference Example 1, when measuring the dissolved nitrogen concentration in water using a thermal conductivity type dissolved nitrogen meter, when dissolved hydrogen is contained in water, the measurement result is affected by dissolved hydrogen. confirmed.
溶存窒素濃度を0.9〜1.3ppmに安定させた被測定水中に所定量の水素を添加し、そのときの溶存窒素濃度を熱伝導度式溶存窒素計(オービスフェア社製 model−3621の窒素測定ユニット)で測定した。測定は、図6の実験フローに示すような装置で行った。流路1内を矢印の方向に向かって、既知の溶存窒素濃度の超純水(溶存窒素濃度:0.9〜1.3ppm)を流した。流路1内の超純水には、ガス溶解膜を介して流路内の水素濃度2.7ppb、5.4ppb、8.0ppb、10.7ppb、21.4ppb又は35.7ppbとなるように水素を水素添加部27から添加した。 A predetermined amount of hydrogen is added to the water to be measured whose dissolved nitrogen concentration is stabilized at 0.9 to 1.3 ppm, and the dissolved nitrogen concentration at that time is measured by a thermal conductivity type dissolved nitrogen meter (model-3621 manufactured by Orbis Fair). Nitrogen measurement unit). The measurement was performed with an apparatus as shown in the experimental flow of FIG. Ultrapure water having a known dissolved nitrogen concentration (dissolved nitrogen concentration: 0.9 to 1.3 ppm) was flowed in the flow path 1 in the direction of the arrow. The ultrapure water in the flow channel 1 has a hydrogen concentration of 2.7 ppb, 5.4 ppb, 8.0 ppb, 10.7 ppb, 21.4 ppb, or 35.7 ppb in the flow channel through the gas dissolution membrane. Hydrogen was added from the hydrogen addition section 27.
なお、本参考例1では使用していないが、流路1は、ガス溶解膜を介して所定量の酸素を添加することができる酸素添加手段28を有している。また、水素除去部17は、カラムの内部にPd担持樹脂を充填させたものであり、このカラムを流路1の途中に設けることで、被測定水がカラム内を流れるようにした。 Although not used in the present reference example 1, the flow path 1 has an oxygen addition means 28 that can add a predetermined amount of oxygen through a gas dissolving film. The hydrogen removing unit 17 is a column filled with Pd-supporting resin. By providing this column in the middle of the flow path 1, the water to be measured flows through the column.
水素除去部17の仕様は以下の通りとした。
○Pd担持樹脂:OH形 960[mg/L−R]
○Pd担持樹脂の製造方法:ゲル形強塩基性アニオン交換樹脂に塩化Pd酸を吸着させた。この後、これを還元剤で還元し、金属Pdを析出させた。次に、樹脂をOH形に精製し、その後TOC溶出を防ぐ処理を行った。
○Pd担持樹脂の充填量:150mL
○カラムの種類:S−300 (昭立プラスチック株式会社製)
○S−300カラムの外径・内径の規格値:34φ×26φ×337mm
○カラムの高さ:30cm
○カラムへの通水量:SV=400[/h]
(SVは、樹脂の単位体積[L]に対して1時間に通水させる量[L]を表す。)。
The specifications of the hydrogen removal unit 17 were as follows.
○ Pd-supported resin: OH form 960 [mg / LR]
O Production method of Pd-supported resin: Chloride Pd acid was adsorbed on a gel-type strongly basic anion exchange resin. Thereafter, this was reduced with a reducing agent to deposit metal Pd. Next, the resin was purified to OH form, and then treated to prevent TOC elution.
○ Filling amount of Pd-supported resin: 150 mL
○ Type of column: S-300 (manufactured by Shodate Plastic Co., Ltd.)
○ Standard value of outer diameter and inner diameter of S-300 column: 34φ × 26φ × 337mm
○ Column height: 30cm
○ Water flow rate to the column: SV = 400 [/ h]
(SV represents the amount [L] that allows water to flow for 1 hour with respect to the unit volume [L] of the resin).
また、流路1の水素除去部17よりも上流側には枝管29、下流側には枝管30が設けられ、これらを三方弁28に接続した。三方弁28を更に管を介して隔膜型ポーラロ式水素濃度計(東亜DKK社製;DHDI−1)31と、酸素/窒素濃度計(オービスフェア社製;model−3621)32に接続した。酸素/窒素濃度計32は、隔膜型ポーラロ式酸素濃度計と熱伝導度式溶存窒素計から構成されており、水中に窒素と酸素が共存している場合には溶存窒素濃度を測定するにあたり、自動的に溶存酸素分の補正が行われる。
Further, a branch pipe 29 is provided on the upstream side of the hydrogen removing unit 17 of the flow path 1, and a
各溶存水素濃度DHに対する、熱伝導度式溶存窒素計の測定値DNとの関係を図7に示す。 The relationship between the measured value DN of the thermal conductivity type dissolved nitrogen meter with respect to each dissolved hydrogen concentration DH is shown in FIG.
上述したように、被測定水中の窒素濃度は、0.9〜1.3ppmとほぼ一定であるため、本来的には熱伝導度式溶存窒素計の表示値は0.9〜1.3ppmとなるはずである。ところが、図7によると、被測定水中の溶存水素濃度の増加に伴い、溶存窒素計の表示値も増加することがわかる。従って、被測定水中の溶存水素濃度と溶存窒素計の表示値には一定の関係があることがわかる。また、溶存水素濃度が1ppb増加すると、溶存窒素計の表示値が0.5ppm上昇することから、溶存窒素濃度を測定するに際し、溶存水素の存在が大きく影響することがわかる。 As described above, since the nitrogen concentration in the water to be measured is substantially constant at 0.9 to 1.3 ppm, the display value of the thermal conductivity type dissolved nitrogen meter is originally 0.9 to 1.3 ppm. Should be. However, according to FIG. 7, it can be seen that the displayed value of the dissolved nitrogen meter increases as the dissolved hydrogen concentration in the measured water increases. Therefore, it can be seen that there is a certain relationship between the dissolved hydrogen concentration in the water to be measured and the displayed value of the dissolved nitrogen meter. Further, when the dissolved hydrogen concentration increases by 1 ppb, the displayed value of the dissolved nitrogen meter rises by 0.5 ppm, so that it can be understood that the presence of dissolved hydrogen greatly affects the measurement of the dissolved nitrogen concentration.
(実施例1)
図6に示す実験フローにより、水素添加部より水素を所定量添加し、水素除去部通過前の溶存水素濃度(DH;隔膜型ポーラロ式水素濃度計で測定)と、水素除去部通過前及び通過後の溶存窒素濃度の差分(ΔDN)を測定した。実験の条件として、添加水素濃度以外は、参考例1と同様である。測定結果を表1及び図8に示す。図8中の「■」は所定DH濃度に対するΔDNを表す。
Example 1
According to the experimental flow shown in FIG. 6, a predetermined amount of hydrogen is added from the hydrogen addition section, the dissolved hydrogen concentration before passing through the hydrogen removal section (DH; measured by a diaphragm type polaro type hydrogen concentration meter), and before and after passing through the hydrogen removal section. The difference (ΔDN) in the later dissolved nitrogen concentration was measured. The experimental conditions are the same as in Reference Example 1 except for the added hydrogen concentration. The measurement results are shown in Table 1 and FIG. “■” in FIG. 8 represents ΔDN with respect to a predetermined DH concentration.
表1及び図8の結果より、DHとΔDNは優れた直線関係を示している。したがって、例えば、2つの既知の溶存水素濃度のサンプル水を本実施例の溶存水素濃度測定装置で測定したときのΔDNに基づき検量線を作成することによって、被測定水のΔDNから溶存水素濃度を求めることができることがわかる。また、この直線関係はDHが5.3〜52ppbの範囲で認められ、本実施例の溶存水素濃度測定装置及び溶存水素濃度の測定方法では、少なくとも5.3ppbという低濃度まで溶存水素濃度を測定できることがわかる。 From the results of Table 1 and FIG. 8, DH and ΔDN show an excellent linear relationship. Therefore, for example, by creating a calibration curve based on ΔDN when two sample waters having a known dissolved hydrogen concentration are measured by the dissolved hydrogen concentration measuring apparatus of the present embodiment, the dissolved hydrogen concentration is calculated from the ΔDN of the water to be measured. It can be seen that it can be obtained. In addition, this linear relationship is recognized when DH is in the range of 5.3 to 52 ppb. With the dissolved hydrogen concentration measuring apparatus and the dissolved hydrogen concentration measuring method of this example, the dissolved hydrogen concentration is measured to a low concentration of at least 5.3 ppb. I understand that I can do it.
以上より、本実施例の溶存水素濃度測定装置及び溶存水素濃度の測定方法では、熱伝導度式溶存窒素計を用いて、低濃度まで水素濃度の測定が可能なことを確認できた。 From the above, it was confirmed that the dissolved hydrogen concentration measuring apparatus and the dissolved hydrogen concentration measuring method of this example can measure the hydrogen concentration to a low concentration using a thermal conductivity type dissolved nitrogen meter.
(実施例2)
本実施例では、図6に示す実験フローにより、酸素添加手段から所定量の酸素を添加する以外は実施例1と同様の条件において、DHに対するΔDNを測定した。
(Example 2)
In this example, ΔDN with respect to DH was measured according to the experimental flow shown in FIG. 6 under the same conditions as in Example 1 except that a predetermined amount of oxygen was added from the oxygen addition means.
測定結果を表2及び図9に示す。図9中の「□」は酸素添加手段より酸素を添加した場合、「◆」は酸素添加手段より酸素を添加しなかった場合を表す。 The measurement results are shown in Table 2 and FIG. “□” in FIG. 9 represents a case where oxygen was added from the oxygen addition means, and “♦” represents a case where oxygen was not added from the oxygen addition means.
表2及び図9の結果より、酸素を添加した場合(□)は、DH=54〜94ppbの範囲でΔDNとDHは優れた直線関係を示しており、本実施例の溶存水素濃度測定装置及び溶存水素濃度の測定方法により水中の溶存水素濃度を測定できることが分かる。 From the results of Table 2 and FIG. 9, when oxygen is added (□), ΔDN and DH show an excellent linear relationship in the range of DH = 54 to 94 ppb, and the dissolved hydrogen concentration measuring apparatus of this example and It can be seen that the dissolved hydrogen concentration in water can be measured by the method for measuring the dissolved hydrogen concentration.
また、酸素を添加していない場合(◆)は、DH=52ppbまでΔDNとDHに直線関係が認められるものの、DH=102ppbになるとDH=52ppb以下のデータとの間で直線関係を示さなくなった。この理由は、水素除去部に多量の水素が吸蔵されてしまい、水素除去部が水中の溶存水素を完全に除去できなくなったためと考えられる。 In addition, when oxygen is not added (♦), a linear relationship between ΔDN and DH is recognized up to DH = 52 ppb, but when DH = 102 ppb, there is no linear relationship with data below DH = 52 ppb. . The reason for this is considered that a large amount of hydrogen is occluded in the hydrogen removal part, and the hydrogen removal part cannot completely remove dissolved hydrogen in water.
以上より、本実施例の溶存水素濃度測定装置及び溶存水素濃度の測定方法では、酸素添加手段により酸素を添加することで、熱伝導度式溶存窒素計を用いて超純水中の溶存水素濃度を測定できる範囲を拡大できることを確認できた。 As described above, in the dissolved hydrogen concentration measuring apparatus and the dissolved hydrogen concentration measuring method of the present embodiment, the dissolved hydrogen concentration in the ultrapure water using the thermal conductivity type dissolved nitrogen meter is obtained by adding oxygen by the oxygen addition means. We were able to confirm that the range in which measurement was possible could be expanded.
また、実施例2の実験において、酸素を添加した場合と添加していない場合における被測定水中の溶存酸素と溶存水素の質量比(DO/DH)と、水素除去部の溶存水素除去率を測定した。測定結果を表3及び図10に示す。
溶存水素除去率は、図6の枝管29からサンプリングした被測定水中の溶存水素濃度DH1、枝管30からサンプリングした被測定水中の溶存水素濃度DH2として、下記の式より算出した。
溶存水素除去率=(DH1−DH2)/DH1×100
Further, in the experiment of Example 2, the mass ratio (DO / DH) of dissolved oxygen and dissolved hydrogen in the water to be measured when oxygen is added and not added, and the dissolved hydrogen removal rate of the hydrogen removal unit are measured. did. The measurement results are shown in Table 3 and FIG.
The dissolved hydrogen removal rate was calculated from the following equation as the dissolved hydrogen concentration DH 1 in the measured water sampled from the branch pipe 29 in FIG. 6 and the dissolved hydrogen concentration DH 2 in the measured water sampled from the
Dissolved hydrogen removal rate = (DH 1 −DH 2 ) / DH 1 × 100
表3及び図10の結果より、DO/DHが8.5以上で溶存水素除去率が非常に高いことがわかる。 From the results of Table 3 and FIG. 10, it can be seen that DO / DH is 8.5 or more and the dissolved hydrogen removal rate is very high.
したがって、あらかじめDO/DH8.5以上の酸素を水素除去部に添加することによって、水素除去部の水素除去能力を最大限とすることができ、測定範囲を広くすることができる。 Therefore, by adding oxygen of DO / DH 8.5 or more to the hydrogen removal unit in advance, the hydrogen removal capability of the hydrogen removal unit can be maximized and the measurement range can be widened.
1 流路
13 第1の窒素濃度算出部
14 第2の窒素濃度算出部
15a 第1の熱伝導度検出器
15b 第2の熱伝導度検出器
15c 熱伝導度検出器
17 水素除去部
18 演算部
19 ガス溶解膜
20 酸素供給部
27 水素添加部
28 三方弁
29、30 枝管
31 隔膜型ポーラロ式水素濃度計
32 酸素/窒素濃度計
41、42 枝管
51、54、55 弁
61 本管
104 半透膜
110 測定室
112 熱伝導度検出素子
114 ガス排出ライン
120 パージガス供給源
122 パージガス供給ライン
130 増幅器
132 制御器
DESCRIPTION OF SYMBOLS 1 Flow path 13 1st nitrogen concentration calculation part 14 2nd nitrogen concentration calculation part 15a 1st thermal conductivity detector 15b 2nd thermal conductivity detector 15c Thermal conductivity detector 17 Hydrogen removal part 18 Calculation part 19
Claims (12)
前記流路内の水中の溶存水素を除去する水素除去部と、
前記水中の溶存気体による熱伝導度の変化を検出し、電気信号に変換する1又は複数の熱伝導度検出器と、
前記水素除去部通過前の水中の溶存気体による熱伝導度の変化を前記熱伝導度検出器で変換した電気信号及び前記水素除去部通過後の水中の溶存気体による熱伝導度の変化を前記熱伝導度検出器で変換した電気信号に基づいて、前記水中の溶存水素濃度を算出する溶存水素濃度算出手段と、
を有する、溶存水素濃度測定装置。 A flow path;
A hydrogen removal unit for removing dissolved hydrogen in water in the flow path;
One or more thermal conductivity detectors that detect changes in thermal conductivity due to dissolved gas in the water and convert them into electrical signals;
An electrical signal obtained by converting a change in thermal conductivity due to dissolved gas in water before passing through the hydrogen removal unit and a change in thermal conductivity due to dissolved gas in water after passing through the hydrogen removal unit are converted into heat. A dissolved hydrogen concentration calculating means for calculating a dissolved hydrogen concentration in the water based on an electrical signal converted by a conductivity detector;
A device for measuring dissolved hydrogen concentration.
前記水素除去部通過前の水中の溶存気体による熱伝導度の変化を前記熱伝導度検出器で変換した電気信号から前記水素除去部通過前の水中の溶存気体濃度に変換し、
前記水素除去部通過後の水中の溶存気体による熱伝導度の変化を前記熱伝導度検出器で変換した電気信号から前記水素除去部通過後の水中の溶存気体濃度に変換し、
前記水素除去部通過前の水中の溶存気体濃度と前記水素除去部通過後の水中の溶存気体濃度の差分を溶存水素濃度に変換するように構成される、
請求項1に記載の溶存水素濃度測定装置。 The dissolved hydrogen concentration calculating means includes:
The change in thermal conductivity due to dissolved gas in the water before passing through the hydrogen removal unit is converted from the electrical signal converted by the thermal conductivity detector to the dissolved gas concentration in water before passing through the hydrogen removal unit,
The change in thermal conductivity due to dissolved gas in the water after passing through the hydrogen removal unit is converted from the electrical signal converted by the thermal conductivity detector to the dissolved gas concentration in water after passing through the hydrogen removal unit,
It is configured to convert the difference between the dissolved gas concentration in water before passing through the hydrogen removal unit and the dissolved gas concentration in water after passing through the hydrogen removal unit into a dissolved hydrogen concentration,
The dissolved hydrogen concentration measuring apparatus according to claim 1.
前記熱伝導度検出器で変換した電気信号を水中の溶存気体濃度に変換する1又は複数の気体濃度算出部と、
前記気体濃度算出部で変換した前記水素除去部通過前の水中の溶存気体濃度及び前記水素除去部通過後の水中の溶存気体濃度の差分を溶存水素濃度に変換する演算部と、
で構成される、請求項1又は2に記載の溶存水素濃度測定装置。 The dissolved hydrogen concentration calculating means includes:
One or more gas concentration calculators for converting the electrical signal converted by the thermal conductivity detector into dissolved gas concentration in water;
A calculation unit that converts the difference between the dissolved gas concentration in the water before passing through the hydrogen removal unit and the dissolved gas concentration in the water after passing through the hydrogen removal unit converted by the gas concentration calculation unit into a dissolved hydrogen concentration,
The dissolved hydrogen concentration measuring device according to claim 1 or 2, comprising:
前記熱伝導度検出器で変換した電気信号を水中の溶存窒素濃度に変換する1又は複数の窒素濃度算出部と、
前記窒素濃度算出部で変換した前記水素除去部通過前の水中の溶存窒素濃度及び前記水素除去部通過後の水中の溶存窒素濃度の差分を溶存水素濃度に変換する演算部と、
で構成される、請求項1〜3のいずれかに記載の溶存水素濃度測定装置。 The dissolved hydrogen concentration calculating means includes:
One or more nitrogen concentration calculators for converting the electrical signal converted by the thermal conductivity detector into dissolved nitrogen concentration in water;
A calculation unit that converts the difference between the dissolved nitrogen concentration in the water before passing through the hydrogen removal unit converted by the nitrogen concentration calculation unit and the dissolved nitrogen concentration in the water after passing through the hydrogen removal unit into a dissolved hydrogen concentration;
The dissolved hydrogen concentration measuring apparatus according to claim 1, comprising:
前記水素除去工程前の前記水中の溶存気体による熱伝導度の変化を測定する第1の測定工程と、
前記水素除去工程後の前記水中の溶存気体による熱伝導度の変化を測定する第2の測定工程と、
前記第1の測定工程及び第2の測定工程における熱伝導度の変化の測定結果に基づき、前記水中の溶存水素濃度を算出する溶存水素濃度算出工程と、
を有する、溶存水素濃度の測定方法。 A hydrogen removal step to remove dissolved hydrogen in the water;
A first measurement step of measuring a change in thermal conductivity due to dissolved gas in the water before the hydrogen removal step;
A second measurement step of measuring a change in thermal conductivity due to dissolved gas in the water after the hydrogen removal step;
A dissolved hydrogen concentration calculating step of calculating a dissolved hydrogen concentration in the water based on a measurement result of a change in thermal conductivity in the first measuring step and the second measuring step;
A method for measuring dissolved hydrogen concentration.
前記第1の測定工程で測定した前記水素除去工程前の前記水中の溶存気体による熱伝導度の変化を水中の溶存気体濃度に変換し、
前記第2の測定工程で測定した前記水素除去工程後の前記水中の溶存気体による熱伝導度の変化を水中の溶存気体濃度に変換して、
第1の測定工程と第2の測定工程における溶存気体濃度の差分から溶存水素濃度を算出する、
工程である請求項8に記載の溶存水素濃度の測定方法。 The dissolved hydrogen concentration calculating step includes:
A change in thermal conductivity due to dissolved gas in the water before the hydrogen removal step measured in the first measurement step is converted into a dissolved gas concentration in water;
Converting the change in thermal conductivity due to the dissolved gas in the water after the hydrogen removal step measured in the second measurement step into a dissolved gas concentration in the water;
Calculating the dissolved hydrogen concentration from the difference in dissolved gas concentration between the first measurement step and the second measurement step;
It is a process, The measuring method of the dissolved hydrogen concentration of Claim 8.
前記第1の測定工程で測定した前記水素除去工程前の前記水中の溶存気体による熱伝導度の変化を水中の溶存窒素濃度に変換し、
前記第2の測定工程で測定した前記水素除去工程後の前記水中の溶存気体による熱伝導度の変化を水中の溶存窒素濃度に変換して、
第1の測定工程と第2の測定工程における溶存窒素濃度の差分から溶存水素濃度を算出する、
工程である請求項8又は9に記載の溶存水素濃度の測定方法。 The dissolved hydrogen concentration calculating step includes:
A change in thermal conductivity due to dissolved gas in the water before the hydrogen removal step measured in the first measurement step is converted into a dissolved nitrogen concentration in water;
Converting the change in thermal conductivity due to the dissolved gas in the water after the hydrogen removal step measured in the second measurement step into a dissolved nitrogen concentration in the water;
Calculate the dissolved hydrogen concentration from the difference between the dissolved nitrogen concentration in the first measurement step and the second measurement step,
The method for measuring a dissolved hydrogen concentration according to claim 8 or 9, which is a step.
水素吸蔵金属及び水素吸蔵合金の少なくとも一方を含んだ充填材を含む水素除去部内に、前記水を通過させる、
工程である請求項8〜10のいずれかに記載の溶存水素濃度の測定方法。 The hydrogen removal step includes
Allowing the water to pass through a hydrogen removal portion including a filler containing at least one of a hydrogen storage metal and a hydrogen storage alloy;
It is a process, The measuring method of the dissolved hydrogen concentration in any one of Claims 8-10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010003002A JP5342463B2 (en) | 2010-01-08 | 2010-01-08 | Dissolved hydrogen concentration measuring device and dissolved hydrogen concentration measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010003002A JP5342463B2 (en) | 2010-01-08 | 2010-01-08 | Dissolved hydrogen concentration measuring device and dissolved hydrogen concentration measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011141234A JP2011141234A (en) | 2011-07-21 |
JP5342463B2 true JP5342463B2 (en) | 2013-11-13 |
Family
ID=44457177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010003002A Expired - Fee Related JP5342463B2 (en) | 2010-01-08 | 2010-01-08 | Dissolved hydrogen concentration measuring device and dissolved hydrogen concentration measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5342463B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5292136B2 (en) * | 2009-03-16 | 2013-09-18 | オルガノ株式会社 | Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration |
JP5871652B2 (en) * | 2012-02-23 | 2016-03-01 | オルガノ株式会社 | Method for removing dissolved oxygen in alcohol, alcohol supply device and cleaning liquid supply device |
CN112466491B (en) * | 2020-11-18 | 2023-03-24 | 三门核电有限公司 | Online measuring system and method for content of dissolved hydrogen in primary circuit coolant of pressurized water reactor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0501089A1 (en) * | 1991-02-25 | 1992-09-02 | Orbisphere Laboratories Neuchatel Sa | Method and apparatus for determining specific thermal conductivity parameters of gases |
JPH07260725A (en) * | 1994-03-22 | 1995-10-13 | Japan Organo Co Ltd | Organic carbon measuring device, and ultrapure water producing device with the device built-in |
JP3091389B2 (en) * | 1995-05-19 | 2000-09-25 | 神鋼パンテツク株式会社 | Dissolved hydrogen removing method for electrolysis apparatus and dissolved hydrogen removing apparatus therefor |
JP4232186B2 (en) * | 1998-10-23 | 2009-03-04 | 栗田工業株式会社 | Apparatus and method for measuring dissolved nitrogen concentration in ultrapure water |
JP2001281189A (en) * | 2000-03-30 | 2001-10-10 | Japan Organo Co Ltd | Measuring method for total organic carbon and instrument therefor |
-
2010
- 2010-01-08 JP JP2010003002A patent/JP5342463B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011141234A (en) | 2011-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100772802B1 (en) | Method for measuring fluid component concentrations and apparatus therefor | |
CN103149250B (en) | Online total organic carbon water quality analyzer and online total organic carbon water quality analyzing method | |
US8658094B2 (en) | High temperature and pressure oxidation-reduction potential measuring and monitoring device for hot water systems | |
US8658095B2 (en) | High temperature and pressure oxidation-reduction potential measuring and monitoring device for hot water systems | |
JP5222920B2 (en) | Method for calibrating an apparatus for measuring total organic carbon content | |
JP5342463B2 (en) | Dissolved hydrogen concentration measuring device and dissolved hydrogen concentration measuring method | |
JPS6291861A (en) | On-line calibrating apparatus for chemical monitor | |
CN100593718C (en) | Method and device for detecting flow injection type dissolved oxygen meter | |
US8888988B2 (en) | Method of monitoring corrosion potential of engineering alloys in aqueous systems | |
TW201945296A (en) | Manufacturing device for water with adjusted ph and oxidation-reduction potential | |
CN104897814A (en) | Method for detecting aldehyde ketone concentration in atmosphere through combination of DNPH-silica-gel adsorption small columns and HPLC-UV | |
JP2005274386A (en) | Hydrogen peroxide analyzer, and hydrogen peroxide analytical method | |
JP5292136B2 (en) | Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration | |
CN203069542U (en) | Online total organic carbon water quality analyzer | |
Diep et al. | Development of a residence time distribution method for proton exchange membrane fuel cell evaluation | |
CN106526015B (en) | Detection device and detection method for trace phosphorus impurities in hydrogen | |
US20070238188A1 (en) | Peroxide monitor | |
CN214472933U (en) | Device for calibrating trace dissolved oxygen monitor on line | |
CN112858613B (en) | Device for calibrating trace dissolved oxygen monitor on line and operation method thereof | |
JP7498785B2 (en) | Inorganic Carbon (IC) Exclusion Conductivity Measurement of Aqueous Samples | |
JP2008139205A (en) | Water quality abnormality detecting device and method, and water treatment device | |
US20160245783A1 (en) | Gas chromatograph intermediate processing apparatus and gas chromatograph | |
CN110618237A (en) | Fluorine concentration measuring device, fluorine concentration measuring method, and method for measuring adsorption efficiency of adsorbent | |
TW200946765A (en) | Engine oil consumption measurement method, engine oil consumption measuring device, and engine oil consumption measurement program | |
JP2004333280A (en) | Concentration-measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5342463 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |