JP7251498B2 - Granulated iron manufacturing equipment - Google Patents

Granulated iron manufacturing equipment Download PDF

Info

Publication number
JP7251498B2
JP7251498B2 JP2020023911A JP2020023911A JP7251498B2 JP 7251498 B2 JP7251498 B2 JP 7251498B2 JP 2020023911 A JP2020023911 A JP 2020023911A JP 2020023911 A JP2020023911 A JP 2020023911A JP 7251498 B2 JP7251498 B2 JP 7251498B2
Authority
JP
Japan
Prior art keywords
cooling water
flow control
iron
water flow
control container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020023911A
Other languages
Japanese (ja)
Other versions
JP2021127510A (en
Inventor
俊介 森
廉 ▲高▼橋
雄大 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020023911A priority Critical patent/JP7251498B2/en
Publication of JP2021127510A publication Critical patent/JP2021127510A/en
Application granted granted Critical
Publication of JP7251498B2 publication Critical patent/JP7251498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、溶鉄から粒鉄を製造する粒鉄製造装置に関する。 TECHNICAL FIELD The present invention relates to a granulated iron production apparatus for producing granulated iron from molten iron.

高炉等で製造される溶鉄から粒鉄を製造するプロセスがある。特許文献1には、溶鉄を固定板上に落下させ、液滴が固定板上に跳ね返って下の冷却浴に落ちて冷却され、これにより、粒鉄が製造される粒状金属製造方法が開示されている。また、特許文献2には、水流で溶鉄を粒化させ、液状の粒鉄を水中に投下することで冷却、凝固させ、大量の粒鉄を製造する装置が開示されている。 There is a process to produce iron granules from molten iron produced in a blast furnace or the like. Patent Literature 1 discloses a granular metal production method in which molten iron is dropped onto a fixed plate, and the droplets bounce off the fixed plate and drop into a cooling bath below to be cooled, thereby producing granular iron. ing. Further, Patent Document 2 discloses an apparatus for producing a large amount of granulated iron by granulating molten iron with a stream of water, dropping the liquid granulated iron into water, and cooling and solidifying the granulated iron.

投入される際の溶融状態の粒鉄は高温の液体である。溶鉄の温度は、1200~1500℃程度なので、このような高温の溶鉄が水に接触すると高温物体表面上に蒸気膜が生じる膜沸騰状態となって水が蒸発し、溶鉄の熱を奪っていく。この膜沸騰は冷却能力が低く、例えば、蒸気膜が生じない核沸騰の数100分の1程度の熱伝達率しかない。このため、膜沸騰が長く続くと、粒鉄が十分に冷却されず、冷却水内で粒鉄同士が融着する。粒鉄同士が融着すると、搬送しにくい大きさの粒鉄が増えて搬送が困難になる。また、粒鉄同士が融着する際に冷却水が内含されると水蒸気爆発を引き起こす原因にもなる。 The molten iron granules as they are cast are hot liquids. Since the temperature of molten iron is about 1200 to 1500°C, when such high-temperature molten iron comes into contact with water, a vapor film forms on the surface of the high-temperature object, creating a film boiling state in which the water evaporates and takes heat from the molten iron. . This film boiling has a low cooling capacity and, for example, a heat transfer coefficient that is only several hundredths of that of nucleate boiling in which no vapor film is formed. Therefore, when film boiling continues for a long time, the iron granules are not sufficiently cooled, and the iron granules fuse together in the cooling water. When the iron granules are fused together, the iron granules of sizes that are difficult to convey increase, making transportation difficult. In addition, if the cooling water is included when the iron granules are fused together, it may cause a steam explosion.

また、冷却水温が高いと水が沸騰しやすくなるので、高温物体周囲に蒸気膜が維持されやすく膜沸騰になりやすい。したがって、冷却水の水温が高くなると、粒鉄の冷却能力が著しく低下し、粒鉄同士の融着が発生しやすくなる。このような問題に対し、特許文献3には、2次冷却水の冷却水量を調整してピット内の冷却水温を68℃以下に維持し、これによりピット内に堆積した粒鉄の融着を抑制できることが開示されている。 Also, when the temperature of the cooling water is high, the water is likely to boil, so that a vapor film is likely to be maintained around the high-temperature object, and film boiling is likely to occur. Therefore, when the temperature of the cooling water rises, the ability to cool the iron granules is significantly reduced, and fusion between the iron granules is likely to occur. In order to solve such a problem, Patent Document 3 discloses that the cooling water temperature in the pit is maintained at 68°C or less by adjusting the cooling water amount of the secondary cooling water, thereby preventing the fusion of iron particles deposited in the pit. It is disclosed that it can be suppressed.

特公昭52-20948号公報Japanese Patent Publication No. 52-20948 特表2018-512499号公報Japanese Patent Application Publication No. 2018-512499 特開平9-20902号公報JP-A-9-20902

溶鉄から粒鉄製造時に粒鉄が水平方向にある程度広がることと、凝固した粒鉄の搬送装置の設置スペースとを考慮すると、粒鉄の冷却にはかなりの大きさの冷却水槽が必要になる。冷却水槽には、冷却水を供給する吐出口と、温度が上昇した冷却水を冷却設備に搬送する排水口とを設け、これにより冷却水を水槽と冷却設備とに循環させる制御を行うが、大きい水槽に冷たい冷却水をいきわたらせるように制御することは難しく、冷却水の流れによっては、水槽内によどみ領域が生じることがある。このよどみ領域に粒鉄の冷却に使用された暖かい冷却水が滞留すると、局所的に水温が高い領域ができる場合がある。この領域に粒鉄が大量に投入された場合には、膜沸騰状態が長い間維持され、十分に冷却できず、粒鉄が凝固せずに互いに融着して、冷却水槽からの取り出し搬送が困難になる。この融着物に水が内包された場合には水蒸気爆発を引き起こす場合もある、という課題があった。
本発明は上記課題を解決するためになされた発明であって、その目的は、粒鉄を効率的に冷却して、粒鉄同士の融着を抑制できる粒鉄製造装置を提供することにある。
Considering that the iron granules spread horizontally to some extent when the iron granules are produced from molten iron and the installation space for the conveying device for the solidified iron granules, a cooling water tank of a considerable size is required to cool the iron granules. The cooling water tank is provided with a discharge port for supplying cooling water and a drain port for conveying the cooling water whose temperature has risen to the cooling equipment. It is difficult to control the flow of cold cooling water through a large water tank, and the cooling water flow can create stagnant areas within the water tank. If the warm cooling water used for cooling the iron granules stays in this stagnant region, there may be a region where the water temperature is locally high. If a large amount of iron granules is thrown into this region, the film boiling state is maintained for a long time, and cooling is not possible sufficiently. become difficult. There is a problem that if water is included in the fused material, it may cause a steam explosion.
The present invention has been made to solve the above-mentioned problems, and its object is to provide a granulated iron manufacturing apparatus capable of efficiently cooling granulated iron and suppressing fusion between the granulated iron. .

上記課題を解決するための手段は、以下の通りである。
(1)溶鉄を液滴とする粒化装置と、前記液滴を受ける位置に設けられ、冷却水を収容する水流制御容器と、前記水流制御容器に接続し、前記水流制御容器に冷却水を供給する少なくとも1つの冷却水管と、を有し、前記水流制御容器は、下方に向けて前記水流制御容器の水平断面積が狭くなるように傾斜した傾斜面を有し、前記傾斜面の下方には排出口が設けられる、粒鉄製造装置。
(2)前記傾斜面の水平面に対する角度は40°以上60°以下の範囲内である、(1)に記載の粒鉄製造装置。
(3)冷却水を収容する冷却水槽をさらに有し、前記冷却水槽は、前記水流制御容器を収容する、(1)または(2)に記載の粒鉄製造装置。
(4)前記水流制御容器の下方には、冷却された粒鉄を前記冷却水槽の外に搬送する搬送装置をさらに有する、(3)に記載の粒鉄製造装置。
Means for solving the above problems are as follows.
(1) A granulating device for making droplets of molten iron, a water flow control container provided at a position to receive the droplets and containing cooling water, connected to the water flow control container, and supplying cooling water to the water flow control container. and at least one cooling water pipe for supplying cooling water, wherein the water flow control container has an inclined surface inclined downward so that the horizontal cross-sectional area of the water flow control container becomes narrower, and below the inclined surface is a granulated iron manufacturing device provided with an outlet.
(2) The iron granule manufacturing apparatus according to (1), wherein the angle of the inclined surface with respect to the horizontal plane is in the range of 40° or more and 60° or less.
(3) The apparatus for manufacturing iron granules according to (1) or (2), further comprising a cooling water tank containing cooling water, wherein the cooling water tank contains the water flow control container.
(4) The iron granule manufacturing apparatus according to (3), further comprising a conveying device below the water flow control vessel for conveying the cooled iron granules to the outside of the cooling water tank.

本発明の粒鉄製造装置では、傾斜面を有する水流制御容器内に冷却水を供給して冷却水の旋回流を形成させて粒鉄を効率的に冷却でき、さらに、粒鉄と冷却水を向流とすることで粒鉄をより効率的に冷却できる。この結果、粒鉄が十分に冷却されず、粒鉄同士が融着することを防止できる。この粒鉄同士の融着を防止することで、これらの融着物に水が内包されることによって発生する水蒸気爆発の発生も防止できる。 In the apparatus for manufacturing iron granules of the present invention, cooling water is supplied into the water flow control container having an inclined surface to form a swirling flow of the cooling water, whereby the iron granules can be efficiently cooled. The countercurrent flow can cool the iron granules more efficiently. As a result, it is possible to prevent the iron granules from being sufficiently cooled and fused together. By preventing the fusion between the iron granules, it is possible to prevent the occurrence of a steam explosion caused by the inclusion of water in these fused substances.

本実施形態に係る粒鉄製造装置10の一例を示す模式図である。1 is a schematic diagram showing an example of an iron granule manufacturing apparatus 10 according to this embodiment. FIG. 水流制御容器20の模式図である。2 is a schematic diagram of a water flow control container 20; FIG. 水流制御容器20の他の例を示す断面模式図である。4 is a schematic cross-sectional view showing another example of the water flow control container 20. FIG.

以下、本発明を発明の実施形態を通じて説明する。図1は、本実施形態に係る粒鉄製造装置10の一例を示す模式図である。粒鉄製造装置10は、溶鉄から粒鉄を製造する装置である。溶鉄は、高炉で製造された溶銑であってもよく、溶鋼であってもよく、スクラップを電気炉で溶解して製造されたものであってもよい。粒鉄製造装置10に用いられる溶鉄は、鉄を主成分とするものであればいずれの製造方法であっても用いることができる。 Hereinafter, the present invention will be described through embodiments of the invention. FIG. 1 is a schematic diagram showing an example of an iron granule manufacturing apparatus 10 according to this embodiment. The granulated iron production apparatus 10 is an apparatus for producing granulated iron from molten iron. The molten iron may be molten iron produced in a blast furnace, molten steel, or produced by melting scrap in an electric furnace. Molten iron used in the granulated iron production apparatus 10 can be produced by any production method as long as it contains iron as a main component.

本実施形態に係る粒鉄製造装置10は、溶鉄を液滴とする粒化装置12と、冷却水を収容する水流制御容器20と、冷却水40を水流制御容器20に供給する冷却水管30と、冷却水槽32と、搬送装置34とを有する。溶鉄は、溶銑鍋やトピードカー等により、粒鉄製造装置10が設けられている場所に輸送される。輸送された溶鉄は、粒化装置12により液滴にされる。粒化装置12は、例えば、タンディッシュ14および耐火物16を有し、タンディッシュ14に収容された溶鉄18を流出させ、流出された溶鉄18を耐火物16に衝突させて液滴にする装置である。なお、粒化装置12はこれに限らず、タンディッシュ14から流出された溶鉄18に水を衝突させて液滴にする装置であってもよい。これらの粒化装置12を用いることで、溶鉄を所定の粒径の粒鉄となる液滴に調整できる。 The granulated iron manufacturing apparatus 10 according to the present embodiment includes a granulating device 12 that makes droplets of molten iron, a water flow control container 20 that contains cooling water, and a cooling water pipe 30 that supplies cooling water 40 to the water flow control container 20. , a cooling water tank 32 and a conveying device 34 . Molten iron is transported to a location where the granulated iron manufacturing apparatus 10 is installed by a hot metal ladle, torpedo car, or the like. The transported molten iron is made into droplets by the granulator 12 . The granulating device 12 has, for example, a tundish 14 and a refractory 16, and makes the molten iron 18 contained in the tundish 14 flow out and collide with the refractory 16 to form droplets. is. Note that the granulating device 12 is not limited to this, and may be a device that causes water to collide with the molten iron 18 that has flowed out from the tundish 14 to form droplets. By using these granulating devices 12, the molten iron can be adjusted into droplets that become granulated iron with a predetermined particle size.

液滴の形状が大きくなると、熱容量が大きくなって凝固に時間がかかり、部分的に溶融した粒鉄同士が水流制御容器20内で互いに接触・融着し、大きな塊となって取り出し搬送がしにくくなるおそれがある。このため、粒化装置12は、溶鉄を冷却後の粒鉄の最大長さが50mm以下になる液滴にすることが好ましい。溶鉄18は、粒化装置12で液滴とされ、水流制御容器20内に落下する。 As the shape of the droplet increases, the heat capacity increases and it takes time to solidify. Partially melted iron granules come into contact with each other and fuse together in the water flow control container 20, forming a large lump that can be taken out and transported. It may become difficult. For this reason, the granulating device 12 preferably forms liquid droplets so that the maximum length of granulated iron after cooling is 50 mm or less. The molten iron 18 is made into droplets by the granulator 12 and falls into the water flow control vessel 20 .

水流制御容器20は、円筒形状の容器であって、下方に向けて水流制御容器20の水平断面積が狭くなるように傾斜した傾斜面22を有する。水流制御容器20の傾斜面22が設けられた下方端部の穴は、冷却されて凝固した粒鉄の排出口26である。水流制御容器20の傾斜面には、冷却水管30が接続する吐出口24が設けられる。 The water flow control container 20 is a cylindrical container and has an inclined surface 22 inclined downward so that the horizontal cross-sectional area of the water flow control container 20 becomes narrower. The hole at the lower end of the water flow control vessel 20 with the ramp 22 is an outlet 26 for cooled and solidified iron granules. A discharge port 24 to which a cooling water pipe 30 is connected is provided on the inclined surface of the water flow control container 20 .

冷却水管30は、不図示の冷却装置によって0℃以上35℃以下に冷却された冷却水40が通る水管である。冷却水40は、冷却水管30を通り、吐出口24から水流制御容器20内に吐出される。図1に示した例においては、1つの冷却水管30を水流制御容器20に接続した例を示したが、これに限らず、複数の冷却水管を水流制御容器20に接続してもよい。すなわち、粒鉄製造装置10は、水流制御容器20に接続する少なくとも1つ以上の冷却水管を有すればよい。 The cooling water pipe 30 is a water pipe through which the cooling water 40 cooled to 0° C. or more and 35° C. or less by a cooling device (not shown) passes. The cooling water 40 passes through the cooling water pipe 30 and is discharged into the water flow control container 20 from the discharge port 24 . In the example shown in FIG. 1, an example in which one cooling water pipe 30 is connected to the water flow control container 20 is shown. That is, the iron granule manufacturing apparatus 10 should have at least one or more cooling water pipes connected to the water flow control container 20 .

水流制御容器20は、粒化装置12によって液滴とされた溶鉄18を受ける位置に設けられる。液滴とされた溶鉄18は、水流制御容器20の上側端部から水流制御容器20内に投入される。溶鉄18の液滴は、水流制御容器20内の冷却水40によって冷却されて粒鉄となる。粒鉄は、重力により傾斜面22を降下し、排出口26から排出される。このようにして、溶鉄18から粒鉄が製造される。 A water flow control vessel 20 is provided at a position to receive the molten iron 18 dropletized by the granulator 12 . The liquid droplets of molten iron 18 are introduced into the water flow control container 20 from the upper end of the water flow control container 20 . The liquid droplets of the molten iron 18 are cooled by the cooling water 40 in the water flow control container 20 to form iron granules. Granulated iron descends on the inclined surface 22 due to gravity and is discharged from the discharge port 26 . Granulated iron is thus produced from the molten iron 18 .

傾斜面22は、製造された粒鉄を排出口26に案内する。このため、傾斜面22の水平面に対する傾斜角度は、粒鉄の安息角以上であることが好ましい。すなわち、傾斜面22の水平面に対する角度は40°以上60°以下の範囲内であることが好ましい。傾斜面22の水平面に対する傾斜角度を40°以上にすることで、粒鉄を傾斜面22に滞留させることなく排出口26に案内できる。さらに、傾斜角度を60°以下にすることで、搬送装置34に案内するための傾斜面を短くでき、水流制御容器20の深さが深くなって粒鉄製造装置10が大きくなることを抑制できる。 The inclined surface 22 guides the produced granulated iron to the discharge port 26 . For this reason, the inclination angle of the inclined surface 22 with respect to the horizontal plane is preferably equal to or greater than the angle of repose of iron granules. That is, it is preferable that the angle of the inclined surface 22 with respect to the horizontal plane is within the range of 40° or more and 60° or less. By setting the inclination angle of the inclined surface 22 with respect to the horizontal plane to 40° or more, the iron granules can be guided to the discharge port 26 without remaining on the inclined surface 22 . Furthermore, by setting the inclination angle to 60° or less, the inclined surface for guiding to the conveying device 34 can be shortened, and it is possible to suppress the increase in the size of the granulated iron manufacturing apparatus 10 due to the depth of the water flow control container 20 becoming deep. .

冷却水槽32は、冷却水40と水流制御容器20と搬送装置34とを収容する。水流制御容器20は、冷却水槽32に収容される冷却水40の中に設置される。冷却水槽32内に収容される冷却水40は、水流制御容器20から排水された冷却水40である。冷却水槽32内に収容される冷却水は、冷却水槽32の冷却水面が一定になるように、冷却水管30から吐出される冷却水量と同じ量の冷却水40が排水口33から排水される。なお、大容量の冷却水槽32を用いることによって、冷却水面を制御することが容易になり、安定して粒鉄を製造できる。 Cooling water tank 32 accommodates cooling water 40 , water flow control container 20 and carrier device 34 . The water flow control container 20 is installed in cooling water 40 contained in the cooling water tank 32 . The cooling water 40 contained in the cooling water tank 32 is the cooling water 40 drained from the water flow control container 20 . As for the cooling water contained in the cooling water tank 32, the same amount of cooling water 40 as the cooling water discharged from the cooling water pipe 30 is discharged from the drain port 33 so that the cooling water surface of the cooling water tank 32 is constant. By using the large-capacity cooling water tank 32, the cooling water surface can be easily controlled, and the iron granules can be produced stably.

搬送装置34は、排出口26から排出された粒鉄を冷却水槽32の外の所定の位置に搬送する。搬送装置34は、冷却された粒鉄を冷却水槽32の外に搬送する装置である。粒鉄を搬送できる装置であれば、搬送方法や装置構成を限定することなく搬送装置34として用いることができる。但し、冷却水40が冷却水槽32の外に搬出されないように、搬送装置34としてメッシュコンベアを用いることが好ましい。 The conveying device 34 conveys the iron granules discharged from the discharge port 26 to a predetermined position outside the cooling water tank 32 . The conveying device 34 is a device for conveying the cooled granulated iron out of the cooling water tank 32 . Any device capable of transporting iron granules can be used as the transport device 34 without limiting the transport method or device configuration. However, it is preferable to use a mesh conveyor as the conveying device 34 so that the cooling water 40 is not carried out of the cooling water tank 32 .

図2は、水流制御容器20の模式図である。図2(a)は水流制御容器20の側面断面模式図であり、図2(b)は水流制御容器20の上面模式図である。図2(a)に示すように、吐出口24から吐出された冷却水40は、傾斜面22に衝突することで冷却水40の流れ方向が変化する。この流れ方向の変化により、水流制御容器20内の水平方向に回転(図2(b)では上から見て時計回り)しながら上方へと向かう旋回流42が生じる。この旋回流42により、水流制御容器20内におけるよどみ領域の生成が抑制されるので、冷却水40の局所的な温度上昇が抑制されて粒鉄を効率的に冷却でき、粒鉄が十分に冷却されずに互いに融着することが抑制される。この旋回流42の生成の観点からも、傾斜面22の水平面に対する角度は40°以上60°以下であることが好ましい。なお、冷却水管30から吐出される冷却水40の水量が排出口26から排水される排水量よりも少ないと冷却水40は排出口26から排出されてしまうので水流制御容器20内で冷却水40の旋回流が生じなくなる。このため、冷却水管30から吐出される冷却水40の水量は、少なくとも排出口26から排水される排水量よりも多くなるように設定される。 FIG. 2 is a schematic diagram of the water flow control container 20. As shown in FIG. 2(a) is a schematic side cross-sectional view of the water flow control container 20, and FIG. 2(b) is a schematic top view of the water flow control container 20. FIG. As shown in FIG. 2( a ), the cooling water 40 discharged from the discharge port 24 collides with the inclined surface 22 to change the flow direction of the cooling water 40 . Due to this change in flow direction, an upward swirling flow 42 is generated in the water flow control container 20 while rotating in the horizontal direction (clockwise when viewed from above in FIG. 2(b)). The swirling flow 42 suppresses the formation of a stagnation region in the water flow control vessel 20, so that local temperature rise of the cooling water 40 is suppressed, and the iron granules can be efficiently cooled. fused together without being Also from the viewpoint of generating the swirling flow 42, the angle of the inclined surface 22 with respect to the horizontal plane is preferably 40° or more and 60° or less. If the amount of the cooling water 40 discharged from the cooling water pipe 30 is less than the amount of water discharged from the discharge port 26, the cooling water 40 will be discharged from the discharge port 26. Swirling flow is no longer generated. Therefore, the amount of cooling water 40 discharged from the cooling water pipe 30 is set to be at least greater than the amount of water discharged from the outlet 26 .

また、吐出口24を水流制御容器20の上下方向の中央位置よりも下方に設け、冷却水40を水流制御容器20の下方から吐出させることが好ましい。冷却水40を水流制御容器20に吐出させると、冷却水40は開口の広い上方に向かう。このため、冷却水40を下方から吐出させると水流制御容器20内を下方から上方へ流れる。一方、粒鉄は水流制御容器20の上方から下方へ降下するので、粒鉄と冷却水40とが向流となり冷却水40による粒鉄の冷却効率が高くなる。これにより、冷却水40による粒鉄の冷却がさらに促進され、粒鉄が十分に冷却されずに互いに融着することがさらに抑制される。 Moreover, it is preferable that the discharge port 24 is provided below the central position in the vertical direction of the water flow control container 20 so that the cooling water 40 is discharged from below the water flow control container 20 . When the cooling water 40 is discharged into the water flow control container 20, the cooling water 40 is directed upwards to the wide opening. Therefore, when the cooling water 40 is discharged from below, it flows from below to above inside the water flow control container 20 . On the other hand, since the iron granules descend from above the water flow control vessel 20 downward, the iron granules and the cooling water 40 flow countercurrently, and the cooling efficiency of the iron granules by the cooling water 40 increases. As a result, the cooling of the iron granules by the cooling water 40 is further promoted, and the fusion of the iron granules to each other due to insufficient cooling is further suppressed.

また、冷却水温が低すぎると、粒鉄表面の蒸気膜が不安定となり、粒鉄表面で水の自発核生成が生じて水蒸気爆発が起きる場合がある。これに対しても吐出口24を水流制御容器20の下方に設け、粒鉄と冷却水40とを向流として冷却効率を高めることで、水流制御容器20の上方における冷却水40の水温が高くなるので、冷却水温の低下による水蒸気爆発の発生を抑制できる。 On the other hand, if the cooling water temperature is too low, the steam film on the surface of the iron granules becomes unstable, and spontaneous nucleation of water occurs on the surface of the iron granules, which may cause a steam explosion. In response to this, the discharge port 24 is provided below the water flow control container 20, and the cooling efficiency is increased by counterflowing the iron granules and the cooling water 40, so that the water temperature of the cooling water 40 above the water flow control container 20 is high. Therefore, it is possible to suppress the occurrence of a steam explosion due to a decrease in cooling water temperature.

さらに、水流制御容器20が円筒形状である場合に、吐出口24から吐出される冷却水の流れ方向は、図2(b)の上面図に示すように、水流制御容器20の偏心方向(中心とは異なる偏心を通る方向)であることが好ましい。このような方向に冷却水を吐出させることで、冷却水40が対向する傾斜面22に衝突したときに水平方向の旋回流42が形成されやすくなる。一方、水流制御容器20の中心を通る方向に冷却水40を吐出させると、対向する傾斜面22に衝突したときに冷却水40の流れ方向が水平方向に変化しにくくて旋回流42が形成されづらくなる。また、水流制御容器20の中心を通る方向に冷却水40を吐出させると、傾斜面22との衝突によって冷却水流の勢いが減少するので好ましくない。 Furthermore, when the water flow control container 20 has a cylindrical shape, the flow direction of the cooling water discharged from the discharge port 24 is the eccentric direction (center direction) of the water flow control container 20 as shown in the top view of FIG. direction passing through the eccentricity different from the direction). By discharging the cooling water in such a direction, the horizontal swirling flow 42 is easily formed when the cooling water 40 collides with the opposing inclined surface 22 . On the other hand, when the cooling water 40 is discharged in the direction passing through the center of the water flow control container 20, the flow direction of the cooling water 40 is difficult to change horizontally when it collides with the opposing inclined surface 22, and a swirling flow 42 is formed. becomes difficult. Further, if the cooling water 40 is discharged in a direction passing through the center of the water flow control container 20, the impetus of the cooling water flow decreases due to collision with the inclined surface 22, which is not preferable.

本実施形態では、粒鉄製造装置10が粒化装置12と、冷却水40を収容する水流制御容器20と、冷却水40を水流制御容器20に供給する冷却水管30と、冷却水槽32と、搬送装置34とを有する例を示したが、これに限らない。粒鉄製造装置は、冷却水槽32と搬送装置34とを有しなくてもよい。また、冷却水管30は、必ずしも水流制御容器20の傾斜面に設けられていなくてもよい。冷却水槽32を設けない場合、水流制御容器20の上方および下方から冷却水40が排水される。水流制御容器20の下方において粒鉄と排水とをメッシュ状部材を用いて分離し、分離後の排水を回収することで、図1に示した粒鉄製造装置10と同様の方法で溶鉄18から粒鉄を製造できる。さらに、図1、2では、水流制御容器20が円筒形状である例を示したが、これに限らない。水流制御容器20は、筒状形状であって傾斜面22を有していれば、円筒形状でなくてもよい。 In this embodiment, the iron granule manufacturing apparatus 10 includes a granulating device 12, a water flow control container 20 containing cooling water 40, a cooling water pipe 30 supplying the cooling water 40 to the water flow control container 20, a cooling water tank 32, Although an example having the transport device 34 has been shown, the present invention is not limited to this. The iron granule manufacturing apparatus may not have the cooling water tank 32 and the conveying device 34 . Also, the cooling water pipe 30 does not necessarily have to be provided on the inclined surface of the water flow control container 20 . If the cooling water tank 32 is not provided, the cooling water 40 is drained from above and below the water flow control container 20 . Granulated iron and wastewater are separated using a mesh-like member below the water flow control container 20, and the separated wastewater is recovered from the molten iron 18 in the same manner as in the granular iron manufacturing apparatus 10 shown in FIG. Can produce iron granules. Furthermore, although FIGS. 1 and 2 show an example in which the water flow control container 20 has a cylindrical shape, it is not limited to this. The water flow control container 20 does not have to be cylindrical as long as it has a cylindrical shape and has an inclined surface 22 .

図3は、水流制御容器20の他の例を示す断面模式図である。図3(a)~(c)は、水流制御容器20の上方に冷却水管50、52または54が設けられた例を示す。図3(a)~(c)のように、水流制御容器20の上方に冷却水管50、52または54が設けられ、当該冷却水管から下方に向けて冷却水40が吐出されたとしても、傾斜面22に衝突することで冷却水40の流れ方向が変化して上下方向に回転する旋回流が生じる。この旋回流により、水流制御容器20内における冷却水の局所的な温度上昇が抑制され、粒鉄が十分に冷却されずに互いに融着することが抑制される。なお、図3(b)に示す場合であっても排出口26から排水される冷却水量よりも冷却水管52から吐出される冷却水量の方が多い場合には、排出口26から排出されない冷却水40は傾斜面22に衝突して旋回流が生じる。 FIG. 3 is a schematic cross-sectional view showing another example of the water flow control container 20. As shown in FIG. FIGS. 3(a) to 3(c) show examples in which a cooling water pipe 50, 52 or 54 is provided above the water flow control vessel 20. FIG. As shown in FIGS. 3(a) to 3(c), the cooling water pipe 50, 52 or 54 is provided above the water flow control container 20, and the cooling water 40 is discharged downward from the cooling water pipe. By colliding with the surface 22, the flow direction of the cooling water 40 is changed to generate a swirling flow that rotates in the vertical direction. This swirling flow suppresses a local temperature rise of the cooling water in the water flow control container 20, and prevents the iron granules from being sufficiently cooled and fused to each other. Even in the case shown in FIG. 3B, if the amount of cooling water discharged from the cooling water pipe 52 is larger than the amount of cooling water discharged from the discharge port 26, the cooling water that is not discharged from the discharge port 26 40 collides with the inclined surface 22 to generate a swirling flow.

図3(d)~(f)は、水流制御容器20の傾斜面に冷却水管30、56または58が接続した例を示す。図3(d)は、図1、2に示した水流制御容器20に比べて冷却水管30が高い位置にある。水流制御容器20の傾斜面に冷却水管30、56または58を接続した場合には、図2で説明したような水平方向に回転しながら上方に向かう旋回流が生じるので、水流制御容器20内における冷却水40の局所的な温度上昇が抑制され、粒鉄が十分に冷却されずに互いに融着することが抑制される。さらに、水流制御容器20の下方から上方へ流れる旋回流が形成されるので、粒鉄と冷却水40とが向流になり、冷却水40による冷却効率の向上と、冷却水温低下による水蒸気爆発の抑制とが実現される。 3(d) to (f) show an example in which the cooling water pipe 30, 56 or 58 is connected to the inclined surface of the water flow control container 20. FIG. In FIG. 3(d), the cooling water pipe 30 is positioned higher than the water flow control container 20 shown in FIGS. When the cooling water pipes 30, 56, or 58 are connected to the inclined surface of the water flow control container 20, a swirling flow is generated that rotates upward while rotating in the horizontal direction as described with reference to FIG. A local temperature rise of the cooling water 40 is suppressed, and the iron particles are prevented from being sufficiently cooled and fused to each other. Furthermore, since a swirling flow is formed that flows upward from the bottom of the water flow control vessel 20, the iron granules and the cooling water 40 flow countercurrently, improving the cooling efficiency of the cooling water 40 and reducing the temperature of the cooling water to prevent steam explosion. Suppression is realized.

図3(g)、(h)は、水流制御容器20の下方に冷却水管60または62が設けられた例を示す。図3(g)、(h)に示すように、冷却水管60、62から上方に向けて冷却水40が吐出されると、粒鉄と冷却水40とが向流になり、冷却水40による冷却効率の向上と、冷却水温低下による水蒸気爆発の抑制とが実現される。 3(g) and (h) show an example in which a cooling water pipe 60 or 62 is provided below the water flow control container 20. FIG. As shown in FIGS. 3(g) and 3(h), when the cooling water 40 is discharged upward from the cooling water pipes 60 and 62, the iron granules and the cooling water 40 flow countercurrently. Improvement of cooling efficiency and suppression of steam explosion due to cooling water temperature drop are realized.

このように、本実施形態に係る粒鉄製造装置では、冷却水40を収容し、下方に向けて水流制御容器20の水平断面積が狭くなるように傾斜した傾斜面を有する水流制御容器20を用い、当該水流制御容器20に冷却水管から冷却水40を吐出させることで、冷却水40の旋回流を形成させて、粒鉄を効率的に冷却でき、さらに、粒鉄と冷却水40を向流とすることで粒鉄をより効率的に冷却でき、粒鉄が十分に冷却されずに互いに融着することを防止できる。これにより、粒鉄の取り出し搬送が容易になるとともに、融着物に水が内包され、水蒸気爆発を引き起こすことも防止される。 As described above, in the iron granule manufacturing apparatus according to the present embodiment, the water flow control container 20 which contains the cooling water 40 and has an inclined surface inclined downward so that the horizontal cross-sectional area of the water flow control container 20 becomes narrower. By discharging the cooling water 40 from the cooling water pipe to the water flow control container 20, a swirling flow of the cooling water 40 is formed, and the iron granules can be efficiently cooled. By forming the flow, the iron granules can be cooled more efficiently, and the iron granules can be prevented from being fused together due to insufficient cooling. This makes it easier to take out and transport the iron granules, and also prevents water from being included in the melted material and causing a steam explosion.

10 粒鉄製造装置
12 粒化装置
14 タンディッシュ
16 耐火物
18 溶鉄
20 水流制御容器
22 傾斜面
24 吐出口
26 排出口
30 冷却水管
32 冷却水槽
33 排水口
34 搬送装置
40 冷却水
42 旋回流
50 冷却水管
52 冷却水管
54 冷却水管
56 冷却水管
58 冷却水管
60 冷却水管
62 冷却水管
REFERENCE SIGNS LIST 10 granulated iron manufacturing device 12 granulating device 14 tundish 16 refractory 18 molten iron 20 water flow control container 22 inclined surface 24 discharge port 26 discharge port 30 cooling water pipe 32 cooling water tank 33 drain port 34 conveying device 40 cooling water 42 swirling flow 50 cooling Water pipe 52 Cooling water pipe 54 Cooling water pipe 56 Cooling water pipe 58 Cooling water pipe 60 Cooling water pipe 62 Cooling water pipe

Claims (4)

溶鉄を液滴とする粒化装置と、
前記液滴を受ける位置に設けられ、冷却水を収容する水流制御容器と、
前記水流制御容器に接続し、前記水流制御容器に冷却水を供給する少なくとも1つの冷却水管と、
を有し、
前記水流制御容器は、下方に向けて前記水流制御容器の水平断面積が狭くなるように傾斜した傾斜面を有し、前記傾斜面の下方には排出口が設けられ、
前記冷却水管は、前記水流制御容器の上下方向の中央位置より下方に、前記水流制御容器の中心とは異なる偏心を通る方向に向けて接続される、粒鉄製造装置。
a granulating device that makes molten iron into droplets;
a water flow control container provided at a position for receiving the droplets and containing cooling water;
at least one cooling water pipe connected to the water flow control vessel and supplying cooling water to the water flow control vessel;
has
The water flow control container has an inclined surface inclined downward so that the horizontal cross-sectional area of the water flow control container becomes narrower, and a discharge port is provided below the inclined surface,
The cooling water pipe is connected downward from a vertical center position of the water flow control container in a direction passing through an eccentricity different from the center of the water flow control container.
前記傾斜面の水平面に対する角度は40°以上60°以下の範囲内である、請求項1に記載の粒鉄製造装置。 2. The iron granule manufacturing apparatus according to claim 1, wherein the angle of said inclined surface with respect to a horizontal plane is within a range of 40[deg.] or more and 60[deg.] or less. 冷却水を収容する冷却水槽をさらに有し、
前記冷却水槽は、前記水流制御容器を収容する、請求項1または請求項2に記載の粒鉄製造装置。
further comprising a cooling water tank containing cooling water;
3. The iron granule manufacturing apparatus according to claim 1, wherein said cooling water tank accommodates said water flow control container.
前記水流制御容器の下方には、冷却された粒鉄を前記冷却水槽の外に搬送する搬送装置をさらに有する、請求項3に記載の粒鉄製造装置。 4. The iron granule manufacturing apparatus according to claim 3, further comprising a conveying device for conveying the cooled iron granules to the outside of the cooling water tank below the water flow control vessel.
JP2020023911A 2020-02-17 2020-02-17 Granulated iron manufacturing equipment Active JP7251498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020023911A JP7251498B2 (en) 2020-02-17 2020-02-17 Granulated iron manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023911A JP7251498B2 (en) 2020-02-17 2020-02-17 Granulated iron manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021127510A JP2021127510A (en) 2021-09-02
JP7251498B2 true JP7251498B2 (en) 2023-04-04

Family

ID=77488059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023911A Active JP7251498B2 (en) 2020-02-17 2020-02-17 Granulated iron manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7251498B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444147B2 (en) 2021-08-26 2024-03-06 Jfeスチール株式会社 Granulated iron production equipment and granulated iron manufacturing method
AU2022400399A1 (en) * 2021-11-30 2024-05-30 Jfe Steel Corporation Apparatus and method for measuring granular objects, abnormality detection method, and method for producing granular iron
WO2023100696A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Apparatus and method for measuring granular objects, abnormality detection method, and method for producing granular iron
JP7468820B1 (en) 2022-07-19 2024-04-16 Jfeスチール株式会社 Granulated iron manufacturing apparatus and granulated iron manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE312642B (en) * 1968-02-05 1969-07-21 Uddeholms Ab
JPH0832924B2 (en) * 1990-03-20 1996-03-29 株式会社クボタ Method and apparatus for producing rapidly solidified metal powder

Also Published As

Publication number Publication date
JP2021127510A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP7251498B2 (en) Granulated iron manufacturing equipment
JP7247934B2 (en) Granulated iron manufacturing equipment
EP0522844B1 (en) Method for granulating molten metal
CN103261443B (en) The granulation of metallurgical slag
ES2801198T3 (en) Nozzle and tundish arrangement for granulating molten material
CN105612016B (en) The granulation of melted material
JP2017081814A (en) Method for producing slag material
CN112584950A (en) Granulation method and apparatus
JP7380634B2 (en) Granular pig iron production equipment and method for cooling granular pig iron
CN115815573A (en) Iron alloy casting forming method
JP7435540B2 (en) Granular pig iron manufacturing equipment and granular pig iron manufacturing method
RU2682356C2 (en) Granulation of molten ferrochromium
JPS58124528A (en) Spherical product of sublimable substance, method and apparatus for preparing same
JP7444147B2 (en) Granulated iron production equipment and granulated iron manufacturing method
KR20150136069A (en) Method and device for manufacturing shot particles
WO2024018916A1 (en) Granular iron manufacturing device and granular iron manufacturing method
KR0174749B1 (en) Method and device for making metallic powder
JP2008190017A (en) Method and device for producing spherical metal particle
JP7409576B1 (en) Granular metal manufacturing equipment
WO2024042824A1 (en) Granular metal production device
JP2002146412A (en) Trough for molten slag
WO2007093135A1 (en) Reactor primarily intended for titanium production
JPH05154607A (en) Production of granulated pig iron
JPH0920902A (en) Production of granular iron
MXPA01006941A (en) Method and device for producing bisphenol a prills and bisphenol a prills produced according to this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150