JP2021127510A - Luppe producing installation - Google Patents

Luppe producing installation Download PDF

Info

Publication number
JP2021127510A
JP2021127510A JP2020023911A JP2020023911A JP2021127510A JP 2021127510 A JP2021127510 A JP 2021127510A JP 2020023911 A JP2020023911 A JP 2020023911A JP 2020023911 A JP2020023911 A JP 2020023911A JP 2021127510 A JP2021127510 A JP 2021127510A
Authority
JP
Japan
Prior art keywords
cooling water
flow control
control container
iron
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020023911A
Other languages
Japanese (ja)
Other versions
JP7251498B2 (en
Inventor
俊介 森
Shunsuke Mori
俊介 森
廉 ▲高▼橋
廉 ▲高▼橋
Ren Takahashi
雄大 土田
Yuta Tsuchida
雄大 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020023911A priority Critical patent/JP7251498B2/en
Publication of JP2021127510A publication Critical patent/JP2021127510A/en
Application granted granted Critical
Publication of JP7251498B2 publication Critical patent/JP7251498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

To provide a luppe producing installation capable of efficiently cooling luppe and suppressing mutual fusion of luppe.SOLUTION: A luppe producing installation has a pelletizing unit that makes molten iron into droplets, a water-flow control vessel that is provided in a position to receive the droplets and accommodates cooling water, and at least one cooling water pipe that is connected to the water-flow control vessel and supplies cooling water to the water-flow control vessel. The water-flow control vessel has an inclination surface downwardly slanted to narrow the horizontal sectional area of the water-flow control vessel and is provided with a discharge port below the inclination surface.SELECTED DRAWING: Figure 1

Description

本発明は、溶鉄から粒鉄を製造する粒鉄製造装置に関する。 The present invention relates to a granular iron production apparatus for producing granular iron from molten iron.

高炉等で製造される溶鉄から粒鉄を製造するプロセスがある。特許文献1には、溶鉄を固定板上に落下させ、液滴が固定板上に跳ね返って下の冷却浴に落ちて冷却され、これにより、粒鉄が製造される粒状金属製造方法が開示されている。また、特許文献2には、水流で溶鉄を粒化させ、液状の粒鉄を水中に投下することで冷却、凝固させ、大量の粒鉄を製造する装置が開示されている。 There is a process of producing granular iron from molten iron produced in a blast furnace or the like. Patent Document 1 discloses a method for producing granular metal in which molten iron is dropped onto a fixed plate, droplets bounce off the fixed plate, fall into a cooling bath below, and are cooled, whereby granular iron is produced. ing. Further, Patent Document 2 discloses an apparatus for producing a large amount of iron granules by granulating molten iron with a water stream and dropping liquid iron granules into water to cool and solidify the iron.

投入される際の溶融状態の粒鉄は高温の液体である。溶鉄の温度は、1200〜1500℃程度なので、このような高温の溶鉄が水に接触すると高温物体表面上に蒸気膜が生じる膜沸騰状態となって水が蒸発し、溶鉄の熱を奪っていく。この膜沸騰は冷却能力が低く、例えば、蒸気膜が生じない核沸騰の数100分の1程度の熱伝達率しかない。このため、膜沸騰が長く続くと、粒鉄が十分に冷却されず、冷却水内で粒鉄同士が融着する。粒鉄同士が融着すると、搬送しにくい大きさの粒鉄が増えて搬送が困難になる。また、粒鉄同士が融着する際に冷却水が内含されると水蒸気爆発を引き起こす原因にもなる。 The molten iron granules at the time of charging are high-temperature liquids. Since the temperature of molten iron is about 1200 to 1500 ° C, when such high-temperature molten iron comes into contact with water, a steam film is formed on the surface of a high-temperature object, and the water evaporates and takes away the heat of the molten iron. .. This film boiling has a low cooling capacity, and for example, it has a heat transfer coefficient of about one hundredth of that of nucleate boiling in which a steam film is not formed. Therefore, if the film boiling continues for a long time, the granular irons are not sufficiently cooled, and the granular irons are fused together in the cooling water. When the iron grains are fused to each other, the amount of iron grains having a size that is difficult to transport increases, which makes the transfer difficult. In addition, if cooling water is contained in the iron particles when they are fused together, it may cause a steam explosion.

また、冷却水温が高いと水が沸騰しやすくなるので、高温物体周囲に蒸気膜が維持されやすく膜沸騰になりやすい。したがって、冷却水の水温が高くなると、粒鉄の冷却能力が著しく低下し、粒鉄同士の融着が発生しやすくなる。このような問題に対し、特許文献3には、2次冷却水の冷却水量を調整してピット内の冷却水温を68℃以下に維持し、これによりピット内に堆積した粒鉄の融着を抑制できることが開示されている。 Further, when the cooling water temperature is high, the water tends to boil, so that a steam film is easily maintained around a high-temperature object, and the film tends to boil. Therefore, when the temperature of the cooling water becomes high, the cooling capacity of the granular iron is remarkably lowered, and the fusion of the granular irons is likely to occur. In response to such a problem, Patent Document 3 states that the amount of cooling water for the secondary cooling water is adjusted to maintain the cooling water temperature in the pit at 68 ° C. or lower, whereby the molten iron deposited in the pit is fused. It is disclosed that it can be suppressed.

特公昭52−20948号公報Special Publication No. 52-20948 特表2018−512499号公報Special Table 2018-512499 特開平9−20902号公報Japanese Unexamined Patent Publication No. 9-20902

溶鉄から粒鉄製造時に粒鉄が水平方向にある程度広がることと、凝固した粒鉄の搬送装置の設置スペースとを考慮すると、粒鉄の冷却にはかなりの大きさの冷却水槽が必要になる。冷却水槽には、冷却水を供給する吐出口と、温度が上昇した冷却水を冷却設備に搬送する排水口とを設け、これにより冷却水を水槽と冷却設備とに循環させる制御を行うが、大きい水槽に冷たい冷却水をいきわたらせるように制御することは難しく、冷却水の流れによっては、水槽内によどみ領域が生じることがある。このよどみ領域に粒鉄の冷却に使用された暖かい冷却水が滞留すると、局所的に水温が高い領域ができる場合がある。この領域に粒鉄が大量に投入された場合には、膜沸騰状態が長い間維持され、十分に冷却できず、粒鉄が凝固せずに互いに融着して、冷却水槽からの取り出し搬送が困難になる。この融着物に水が内包された場合には水蒸気爆発を引き起こす場合もある、という課題があった。
本発明は上記課題を解決するためになされた発明であって、その目的は、粒鉄を効率的に冷却して、粒鉄同士の融着を抑制できる粒鉄製造装置を提供することにある。
Considering that the grain iron spreads to some extent in the horizontal direction during the production of grain iron from molten iron and the installation space of the solidified grain iron transport device, a cooling water tank of a considerable size is required to cool the grain iron. The cooling water tank is provided with a discharge port for supplying cooling water and a drain port for transporting the cooled water whose temperature has risen to the cooling equipment, thereby controlling the circulation of the cooling water between the water tank and the cooling equipment. It is difficult to control the distribution of cold cooling water to a large water tank, and depending on the flow of cooling water, a stagnation area may occur in the water tank. When the warm cooling water used for cooling the granular iron stays in this stagnation region, a region where the water temperature is locally high may be formed. When a large amount of iron granules are put into this region, the boiling state of the film is maintained for a long time, and the iron granules cannot be cooled sufficiently. It will be difficult. There is a problem that if water is contained in this fusion product, it may cause a steam explosion.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a granular iron production apparatus capable of efficiently cooling granular iron and suppressing fusion between the granular irons. ..

上記課題を解決するための手段は、以下の通りである。
(1)溶鉄を液滴とする粒化装置と、前記液滴を受ける位置に設けられ、冷却水を収容する水流制御容器と、前記水流制御容器に接続し、前記水流制御容器に冷却水を供給する少なくとも1つの冷却水管と、を有し、前記水流制御容器は、下方に向けて前記水流制御容器の水平断面積が狭くなるように傾斜した傾斜面を有し、前記傾斜面の下方には排出口が設けられる、粒鉄製造装置。
(2)前記傾斜面の水平面に対する角度は40°以上60°以下の範囲内である、(1)に記載の粒鉄製造装置。
(3)冷却水を収容する冷却水槽をさらに有し、前記冷却水槽は、前記水流制御容器を収容する、(1)または(2)に記載の粒鉄製造装置。
(4)前記水流制御容器の下方には、冷却された粒鉄を前記冷却水槽の外に搬送する搬送装置をさらに有する、(3)に記載の粒鉄製造装置。
The means for solving the above problems are as follows.
(1) A granulator that uses molten iron as droplets, a water flow control container provided at a position for receiving the droplets and accommodating cooling water, and a water flow control container connected to the water flow control container to supply cooling water to the water flow control container. The water flow control container has at least one cooling water pipe to be supplied, and the water flow control container has an inclined surface inclined so that the horizontal cross-sectional area of the water flow control container becomes narrower toward the lower side, and below the inclined surface. Is a grain iron manufacturing device provided with a discharge port.
(2) The grain iron manufacturing apparatus according to (1), wherein the angle of the inclined surface with respect to the horizontal plane is within the range of 40 ° or more and 60 ° or less.
(3) The granular iron production apparatus according to (1) or (2), further comprising a cooling water tank for accommodating cooling water, wherein the cooling water tank accommodates the water flow control container.
(4) The granular iron production apparatus according to (3), further including a transport device for transporting cooled granular iron to the outside of the cooling water tank below the water flow control container.

本発明の粒鉄製造装置では、傾斜面を有する水流制御容器内に冷却水を供給して冷却水の旋回流を形成させて粒鉄を効率的に冷却でき、さらに、粒鉄と冷却水を向流とすることで粒鉄をより効率的に冷却できる。この結果、粒鉄が十分に冷却されず、粒鉄同士が融着することを防止できる。この粒鉄同士の融着を防止することで、これらの融着物に水が内包されることによって発生する水蒸気爆発の発生も防止できる。 In the granular iron production apparatus of the present invention, cooling water can be supplied into a water flow control container having an inclined surface to form a swirling flow of cooling water to efficiently cool the granular iron, and further, the granular iron and cooling water can be cooled. By using a countercurrent, the grain iron can be cooled more efficiently. As a result, the grain iron is not sufficiently cooled, and it is possible to prevent the grain iron from fusing to each other. By preventing the fusion of the grain irons to each other, it is possible to prevent the occurrence of steam explosion caused by the inclusion of water in these fusions.

本実施形態に係る粒鉄製造装置10の一例を示す模式図である。It is a schematic diagram which shows an example of the grain iron production apparatus 10 which concerns on this embodiment. 水流制御容器20の模式図である。It is a schematic diagram of a water flow control container 20. 水流制御容器20の他の例を示す断面模式図である。It is sectional drawing which shows the other example of a water flow control container 20.

以下、本発明を発明の実施形態を通じて説明する。図1は、本実施形態に係る粒鉄製造装置10の一例を示す模式図である。粒鉄製造装置10は、溶鉄から粒鉄を製造する装置である。溶鉄は、高炉で製造された溶銑であってもよく、溶鋼であってもよく、スクラップを電気炉で溶解して製造されたものであってもよい。粒鉄製造装置10に用いられる溶鉄は、鉄を主成分とするものであればいずれの製造方法であっても用いることができる。 Hereinafter, the present invention will be described through embodiments of the invention. FIG. 1 is a schematic view showing an example of the grain iron manufacturing apparatus 10 according to the present embodiment. The granular iron production apparatus 10 is an apparatus for producing granular iron from molten iron. The molten iron may be hot metal produced in a blast furnace, molten steel, or may be produced by melting scrap in an electric furnace. The molten iron used in the granular iron production apparatus 10 can be used by any production method as long as it contains iron as a main component.

本実施形態に係る粒鉄製造装置10は、溶鉄を液滴とする粒化装置12と、冷却水を収容する水流制御容器20と、冷却水40を水流制御容器20に供給する冷却水管30と、冷却水槽32と、搬送装置34とを有する。溶鉄は、溶銑鍋やトピードカー等により、粒鉄製造装置10が設けられている場所に輸送される。輸送された溶鉄は、粒化装置12により液滴にされる。粒化装置12は、例えば、タンディッシュ14および耐火物16を有し、タンディッシュ14に収容された溶鉄18を流出させ、流出された溶鉄18を耐火物16に衝突させて液滴にする装置である。なお、粒化装置12はこれに限らず、タンディッシュ14から流出された溶鉄18に水を衝突させて液滴にする装置であってもよい。これらの粒化装置12を用いることで、溶鉄を所定の粒径の粒鉄となる液滴に調整できる。 The granular iron production device 10 according to the present embodiment includes a granulation device 12 that uses molten iron as droplets, a water flow control container 20 that houses cooling water, and a cooling water pipe 30 that supplies cooling water 40 to the water flow control container 20. , A cooling water tank 32 and a transport device 34. The molten iron is transported to a place where the grain iron production apparatus 10 is provided by a hot metal pan, a topedo car, or the like. The transported molten iron is atomized by the granulator 12. The granulation device 12 has, for example, a tundish 14 and a refractory material 16, and causes the molten iron 18 contained in the tundish 14 to flow out, and the discharged molten iron 18 collides with the refractory material 16 to form droplets. Is. The granulation device 12 is not limited to this, and may be a device that causes water to collide with the molten iron 18 flowing out from the tundish 14 to form droplets. By using these granulation devices 12, the molten iron can be adjusted into droplets having a predetermined particle size of iron particles.

液滴の形状が大きくなると、熱容量が大きくなって凝固に時間がかかり、部分的に溶融した粒鉄同士が水流制御容器20内で互いに接触・融着し、大きな塊となって取り出し搬送がしにくくなるおそれがある。このため、粒化装置12は、溶鉄を冷却後の粒鉄の最大長さが50mm以下になる液滴にすることが好ましい。溶鉄18は、粒化装置12で液滴とされ、水流制御容器20内に落下する。 When the shape of the droplet becomes large, the heat capacity becomes large and it takes time to solidify. It may be difficult. Therefore, it is preferable that the granulation device 12 makes the molten iron into droplets having a maximum length of the granulated iron after cooling of 50 mm or less. The molten iron 18 is made into droplets by the granulation device 12 and drops into the water flow control container 20.

水流制御容器20は、円筒形状の容器であって、下方に向けて水流制御容器20の水平断面積が狭くなるように傾斜した傾斜面22を有する。水流制御容器20の傾斜面22が設けられた下方端部の穴は、冷却されて凝固した粒鉄の排出口26である。水流制御容器20の傾斜面には、冷却水管30が接続する吐出口24が設けられる。 The water flow control container 20 is a cylindrical container, and has an inclined surface 22 that is inclined downward so that the horizontal cross-sectional area of the water flow control container 20 becomes narrower. The hole at the lower end of the water flow control container 20 provided with the inclined surface 22 is a discharge port 26 for cooled and solidified granular iron. A discharge port 24 to which the cooling water pipe 30 is connected is provided on the inclined surface of the water flow control container 20.

冷却水管30は、不図示の冷却装置によって0℃以上35℃以下に冷却された冷却水40が通る水管である。冷却水40は、冷却水管30を通り、吐出口24から水流制御容器20内に吐出される。図1に示した例においては、1つの冷却水管30を水流制御容器20に接続した例を示したが、これに限らず、複数の冷却水管を水流制御容器20に接続してもよい。すなわち、粒鉄製造装置10は、水流制御容器20に接続する少なくとも1つ以上の冷却水管を有すればよい。 The cooling water pipe 30 is a water pipe through which the cooling water 40 cooled to 0 ° C. or higher and 35 ° C. or lower by a cooling device (not shown) passes through. The cooling water 40 passes through the cooling water pipe 30 and is discharged into the water flow control container 20 from the discharge port 24. In the example shown in FIG. 1, one cooling water pipe 30 is connected to the water flow control container 20, but the present invention is not limited to this, and a plurality of cooling water pipes may be connected to the water flow control container 20. That is, the grain iron manufacturing apparatus 10 may have at least one or more cooling water pipes connected to the water flow control container 20.

水流制御容器20は、粒化装置12によって液滴とされた溶鉄18を受ける位置に設けられる。液滴とされた溶鉄18は、水流制御容器20の上側端部から水流制御容器20内に投入される。溶鉄18の液滴は、水流制御容器20内の冷却水40によって冷却されて粒鉄となる。粒鉄は、重力により傾斜面22を降下し、排出口26から排出される。このようにして、溶鉄18から粒鉄が製造される。 The water flow control container 20 is provided at a position where it receives the molten iron 18 which has been made into droplets by the granulation device 12. The molten iron 18 formed as droplets is charged into the water flow control container 20 from the upper end of the water flow control container 20. The droplets of molten iron 18 are cooled by the cooling water 40 in the water flow control container 20 to become granular iron. The grain iron descends on the inclined surface 22 due to gravity and is discharged from the discharge port 26. In this way, grain iron is produced from the molten iron 18.

傾斜面22は、製造された粒鉄を排出口26に案内する。このため、傾斜面22の水平面に対する傾斜角度は、粒鉄の安息角以上であることが好ましい。すなわち、傾斜面22の水平面に対する角度は40°以上60°以下の範囲内であることが好ましい。傾斜面22の水平面に対する傾斜角度を40°以上にすることで、粒鉄を傾斜面22に滞留させることなく排出口26に案内できる。さらに、傾斜角度を60°以下にすることで、搬送装置34に案内するための傾斜面を短くでき、水流制御容器20の深さが深くなって粒鉄製造装置10が大きくなることを抑制できる。 The inclined surface 22 guides the produced grain iron to the discharge port 26. Therefore, the inclination angle of the inclined surface 22 with respect to the horizontal plane is preferably equal to or greater than the angle of repose of the grain iron. That is, the angle of the inclined surface 22 with respect to the horizontal plane is preferably in the range of 40 ° or more and 60 ° or less. By setting the inclination angle of the inclined surface 22 with respect to the horizontal plane to 40 ° or more, the iron grains can be guided to the discharge port 26 without staying on the inclined surface 22. Further, by setting the inclination angle to 60 ° or less, the inclined surface for guiding to the transport device 34 can be shortened, and it is possible to prevent the depth of the water flow control container 20 from becoming deep and the grain iron manufacturing device 10 from becoming large. ..

冷却水槽32は、冷却水40と水流制御容器20と搬送装置34とを収容する。水流制御容器20は、冷却水槽32に収容される冷却水40の中に設置される。冷却水槽32内に収容される冷却水40は、水流制御容器20から排水された冷却水40である。冷却水槽32内に収容される冷却水は、冷却水槽32の冷却水面が一定になるように、冷却水管30から吐出される冷却水量と同じ量の冷却水40が排水口33から排水される。なお、大容量の冷却水槽32を用いることによって、冷却水面を制御することが容易になり、安定して粒鉄を製造できる。 The cooling water tank 32 accommodates the cooling water 40, the water flow control container 20, and the transport device 34. The water flow control container 20 is installed in the cooling water 40 housed in the cooling water tank 32. The cooling water 40 housed in the cooling water tank 32 is the cooling water 40 drained from the water flow control container 20. As for the cooling water accommodated in the cooling water tank 32, the same amount of cooling water 40 as the amount of cooling water discharged from the cooling water pipe 30 is drained from the drain port 33 so that the cooling water surface of the cooling water tank 32 becomes constant. By using the large-capacity cooling water tank 32, it becomes easy to control the cooling water surface, and grain iron can be stably produced.

搬送装置34は、排出口26から排出された粒鉄を冷却水槽32の外の所定の位置に搬送する。搬送装置34は、冷却された粒鉄を冷却水槽32の外に搬送する装置である。粒鉄を搬送できる装置であれば、搬送方法や装置構成を限定することなく搬送装置34として用いることができる。但し、冷却水40が冷却水槽32の外に搬出されないように、搬送装置34としてメッシュコンベアを用いることが好ましい。 The transport device 34 transports the grain iron discharged from the discharge port 26 to a predetermined position outside the cooling water tank 32. The transport device 34 is a device that transports the cooled granular iron to the outside of the cooling water tank 32. Any device capable of transporting grain iron can be used as the transport device 34 without limiting the transport method or device configuration. However, it is preferable to use a mesh conveyor as the transport device 34 so that the cooling water 40 is not carried out of the cooling water tank 32.

図2は、水流制御容器20の模式図である。図2(a)は水流制御容器20の側面断面模式図であり、図2(b)は水流制御容器20の上面模式図である。図2(a)に示すように、吐出口24から吐出された冷却水40は、傾斜面22に衝突することで冷却水40の流れ方向が変化する。この流れ方向の変化により、水流制御容器20内の水平方向に回転(図2(b)では上から見て時計回り)しながら上方へと向かう旋回流42が生じる。この旋回流42により、水流制御容器20内におけるよどみ領域の生成が抑制されるので、冷却水40の局所的な温度上昇が抑制されて粒鉄を効率的に冷却でき、粒鉄が十分に冷却されずに互いに融着することが抑制される。この旋回流42の生成の観点からも、傾斜面22の水平面に対する角度は40°以上60°以下であることが好ましい。なお、冷却水管30から吐出される冷却水40の水量が排出口26から排水される排水量よりも少ないと冷却水40は排出口26から排出されてしまうので水流制御容器20内で冷却水40の旋回流が生じなくなる。このため、冷却水管30から吐出される冷却水40の水量は、少なくとも排出口26から排水される排水量よりも多くなるように設定される。 FIG. 2 is a schematic view of the water flow control container 20. FIG. 2A is a schematic side sectional view of the water flow control container 20, and FIG. 2B is a schematic top view of the water flow control container 20. As shown in FIG. 2A, the cooling water 40 discharged from the discharge port 24 collides with the inclined surface 22, and the flow direction of the cooling water 40 changes. Due to this change in the flow direction, a swirling flow 42 is generated in the water flow control container 20 while rotating horizontally (clockwise when viewed from above in FIG. 2B) and heading upward. Since the swirling flow 42 suppresses the formation of the stagnation region in the water flow control container 20, the local temperature rise of the cooling water 40 is suppressed, the granular iron can be cooled efficiently, and the granular iron is sufficiently cooled. It is suppressed that they are fused to each other without being fused. From the viewpoint of generating the swirling flow 42, the angle of the inclined surface 22 with respect to the horizontal plane is preferably 40 ° or more and 60 ° or less. If the amount of cooling water 40 discharged from the cooling water pipe 30 is smaller than the amount of drainage discharged from the discharge port 26, the cooling water 40 will be discharged from the discharge port 26, so that the cooling water 40 is discharged in the water flow control container 20. No swirling flow is generated. Therefore, the amount of water in the cooling water 40 discharged from the cooling water pipe 30 is set to be at least larger than the amount of drainage discharged from the discharge port 26.

また、吐出口24を水流制御容器20の上下方向の中央位置よりも下方に設け、冷却水40を水流制御容器20の下方から吐出させることが好ましい。冷却水40を水流制御容器20に吐出させると、冷却水40は開口の広い上方に向かう。このため、冷却水40を下方から吐出させると水流制御容器20内を下方から上方へ流れる。一方、粒鉄は水流制御容器20の上方から下方へ降下するので、粒鉄と冷却水40とが向流となり冷却水40による粒鉄の冷却効率が高くなる。これにより、冷却水40による粒鉄の冷却がさらに促進され、粒鉄が十分に冷却されずに互いに融着することがさらに抑制される。 Further, it is preferable that the discharge port 24 is provided below the central position of the water flow control container 20 in the vertical direction, and the cooling water 40 is discharged from below the water flow control container 20. When the cooling water 40 is discharged to the water flow control container 20, the cooling water 40 goes upward with a wide opening. Therefore, when the cooling water 40 is discharged from below, it flows in the water flow control container 20 from below to above. On the other hand, since the grain iron descends from the upper side to the lower side of the water flow control container 20, the grain iron and the cooling water 40 become a countercurrent, and the cooling efficiency of the grain iron by the cooling water 40 becomes high. As a result, the cooling of the granulated iron by the cooling water 40 is further promoted, and it is further suppressed that the granular irons are not sufficiently cooled and fused to each other.

また、冷却水温が低すぎると、粒鉄表面の蒸気膜が不安定となり、粒鉄表面で水の自発核生成が生じて水蒸気爆発が起きる場合がある。これに対しても吐出口24を水流制御容器20の下方に設け、粒鉄と冷却水40とを向流として冷却効率を高めることで、水流制御容器20の上方における冷却水40の水温が高くなるので、冷却水温の低下による水蒸気爆発の発生を抑制できる。 Further, if the cooling water temperature is too low, the steam film on the surface of the iron granules becomes unstable, and spontaneous nucleation of water occurs on the surface of the iron granules, which may cause a steam explosion. Against this, the discharge port 24 is provided below the water flow control container 20 to improve the cooling efficiency by directing the grain iron and the cooling water 40 as a countercurrent, so that the water temperature of the cooling water 40 above the water flow control container 20 is high. Therefore, it is possible to suppress the occurrence of steam explosion due to a decrease in the cooling water temperature.

さらに、水流制御容器20が円筒形状である場合に、吐出口24から吐出される冷却水の流れ方向は、図2(b)の上面図に示すように、水流制御容器20の偏心方向(中心とは異なる偏心を通る方向)であることが好ましい。このような方向に冷却水を吐出させることで、冷却水40が対向する傾斜面22に衝突したときに水平方向の旋回流42が形成されやすくなる。一方、水流制御容器20の中心を通る方向に冷却水40を吐出させると、対向する傾斜面22に衝突したときに冷却水40の流れ方向が水平方向に変化しにくくて旋回流42が形成されづらくなる。また、水流制御容器20の中心を通る方向に冷却水40を吐出させると、傾斜面22との衝突によって冷却水流の勢いが減少するので好ましくない。 Further, when the water flow control container 20 has a cylindrical shape, the flow direction of the cooling water discharged from the discharge port 24 is the eccentric direction (center) of the water flow control container 20 as shown in the top view of FIG. 2 (b). It is preferable that the direction passes through an eccentricity different from that of. By discharging the cooling water in such a direction, a swirling flow 42 in the horizontal direction is likely to be formed when the cooling water 40 collides with the facing inclined surface 22. On the other hand, when the cooling water 40 is discharged in the direction passing through the center of the water flow control container 20, the flow direction of the cooling water 40 does not easily change in the horizontal direction when it collides with the opposing inclined surface 22, and a swirling flow 42 is formed. It becomes difficult. Further, if the cooling water 40 is discharged in the direction passing through the center of the water flow control container 20, the momentum of the cooling water flow is reduced due to the collision with the inclined surface 22, which is not preferable.

本実施形態では、粒鉄製造装置10が粒化装置12と、冷却水40を収容する水流制御容器20と、冷却水40を水流制御容器20に供給する冷却水管30と、冷却水槽32と、搬送装置34とを有する例を示したが、これに限らない。粒鉄製造装置は、冷却水槽32と搬送装置34とを有しなくてもよい。また、冷却水管30は、必ずしも水流制御容器20の傾斜面に設けられていなくてもよい。冷却水槽32を設けない場合、水流制御容器20の上方および下方から冷却水40が排水される。水流制御容器20の下方において粒鉄と排水とをメッシュ状部材を用いて分離し、分離後の排水を回収することで、図1に示した粒鉄製造装置10と同様の方法で溶鉄18から粒鉄を製造できる。さらに、図1、2では、水流制御容器20が円筒形状である例を示したが、これに限らない。水流制御容器20は、筒状形状であって傾斜面22を有していれば、円筒形状でなくてもよい。 In the present embodiment, the granular iron manufacturing apparatus 10 includes a granulation apparatus 12, a water flow control container 20 for accommodating the cooling water 40, a cooling water pipe 30 for supplying the cooling water 40 to the water flow control container 20, a cooling water tank 32, and the like. Although an example having the transport device 34 is shown, the present invention is not limited to this. The grain iron production apparatus does not have to have the cooling water tank 32 and the transport apparatus 34. Further, the cooling water pipe 30 does not necessarily have to be provided on the inclined surface of the water flow control container 20. When the cooling water tank 32 is not provided, the cooling water 40 is drained from above and below the water flow control container 20. By separating the grain iron and the drainage below the water flow control container 20 using a mesh-like member and collecting the drainage after the separation, the molten iron 18 is separated from the molten iron 18 in the same manner as the grain iron manufacturing apparatus 10 shown in FIG. Can produce grain iron. Further, FIGS. 1 and 2 show an example in which the water flow control container 20 has a cylindrical shape, but the present invention is not limited to this. The water flow control container 20 does not have to be cylindrical as long as it has a tubular shape and has an inclined surface 22.

図3は、水流制御容器20の他の例を示す断面模式図である。図3(a)〜(c)は、水流制御容器20の上方に冷却水管50、52または54が設けられた例を示す。図3(a)〜(c)のように、水流制御容器20の上方に冷却水管50、52または54が設けられ、当該冷却水管から下方に向けて冷却水40が吐出されたとしても、傾斜面22に衝突することで冷却水40の流れ方向が変化して上下方向に回転する旋回流が生じる。この旋回流により、水流制御容器20内における冷却水の局所的な温度上昇が抑制され、粒鉄が十分に冷却されずに互いに融着することが抑制される。なお、図3(b)に示す場合であっても排出口26から排水される冷却水量よりも冷却水管52から吐出される冷却水量の方が多い場合には、排出口26から排出されない冷却水40は傾斜面22に衝突して旋回流が生じる。 FIG. 3 is a schematic cross-sectional view showing another example of the water flow control container 20. 3 (a) to 3 (c) show an example in which a cooling water pipe 50, 52 or 54 is provided above the water flow control container 20. As shown in FIGS. 3A to 3C, even if the cooling water pipes 50, 52 or 54 are provided above the water flow control container 20 and the cooling water 40 is discharged downward from the cooling water pipes, the cooling water pipes 40 are inclined. By colliding with the surface 22, the flow direction of the cooling water 40 changes to generate a swirling flow that rotates in the vertical direction. Due to this swirling flow, the local temperature rise of the cooling water in the water flow control container 20 is suppressed, and the granular irons are suppressed from being sufficiently cooled and fused with each other. Even in the case shown in FIG. 3B, if the amount of cooling water discharged from the cooling water pipe 52 is larger than the amount of cooling water discharged from the discharge port 26, the cooling water not discharged from the discharge port 26 is not discharged. 40 collides with the inclined surface 22 to generate a swirling flow.

図3(d)〜(f)は、水流制御容器20の傾斜面に冷却水管30、56または58が接続した例を示す。図3(d)は、図1、2に示した水流制御容器20に比べて冷却水管30が高い位置にある。水流制御容器20の傾斜面に冷却水管30、56または58を接続した場合には、図2で説明したような水平方向に回転しながら上方に向かう旋回流が生じるので、水流制御容器20内における冷却水40の局所的な温度上昇が抑制され、粒鉄が十分に冷却されずに互いに融着することが抑制される。さらに、水流制御容器20の下方から上方へ流れる旋回流が形成されるので、粒鉄と冷却水40とが向流になり、冷却水40による冷却効率の向上と、冷却水温低下による水蒸気爆発の抑制とが実現される。 3 (d) to 3 (f) show an example in which the cooling water pipes 30, 56 or 58 are connected to the inclined surface of the water flow control container 20. In FIG. 3D, the cooling water pipe 30 is located higher than the water flow control container 20 shown in FIGS. 1 and 2. When the cooling water pipes 30, 56 or 58 are connected to the inclined surface of the water flow control container 20, an upward swirling flow is generated while rotating in the horizontal direction as described with reference to FIG. The local temperature rise of the cooling water 40 is suppressed, and the granular irons are suppressed from being sufficiently cooled and fused to each other. Further, since a swirling flow flowing from the lower side to the upper side of the water flow control container 20 is formed, the granular iron and the cooling water 40 become countercurrents, the cooling efficiency is improved by the cooling water 40, and the steam explosion due to the decrease in the cooling water temperature. Suppression is realized.

図3(g)、(h)は、水流制御容器20の下方に冷却水管60または62が設けられた例を示す。図3(g)、(h)に示すように、冷却水管60、62から上方に向けて冷却水40が吐出されると、粒鉄と冷却水40とが向流になり、冷却水40による冷却効率の向上と、冷却水温低下による水蒸気爆発の抑制とが実現される。 3 (g) and 3 (h) show an example in which a cooling water pipe 60 or 62 is provided below the water flow control container 20. As shown in FIGS. 3 (g) and 3 (h), when the cooling water 40 is discharged upward from the cooling water pipes 60 and 62, the grain iron and the cooling water 40 become countercurrent, and the cooling water 40 causes the cooling water 40 to flow. It is possible to improve the cooling efficiency and suppress the steam explosion due to the decrease in the cooling water temperature.

このように、本実施形態に係る粒鉄製造装置では、冷却水40を収容し、下方に向けて水流制御容器20の水平断面積が狭くなるように傾斜した傾斜面を有する水流制御容器20を用い、当該水流制御容器20に冷却水管から冷却水40を吐出させることで、冷却水40の旋回流を形成させて、粒鉄を効率的に冷却でき、さらに、粒鉄と冷却水40を向流とすることで粒鉄をより効率的に冷却でき、粒鉄が十分に冷却されずに互いに融着することを防止できる。これにより、粒鉄の取り出し搬送が容易になるとともに、融着物に水が内包され、水蒸気爆発を引き起こすことも防止される。 As described above, in the granular iron production apparatus according to the present embodiment, the water flow control container 20 which accommodates the cooling water 40 and has an inclined surface inclined so that the horizontal cross-sectional area of the water flow control container 20 becomes narrower downward is provided. By using the water flow control container 20 to discharge the cooling water 40 from the cooling water pipe, a swirling flow of the cooling water 40 can be formed to efficiently cool the granular iron, and further, the granular iron and the cooling water 40 are directed. By using a flow, the granular iron can be cooled more efficiently, and the granular iron can be prevented from being sufficiently cooled and fused to each other. This facilitates the removal and transportation of the granular iron, and also prevents water from being included in the fused material and causing a steam explosion.

10 粒鉄製造装置
12 粒化装置
14 タンディッシュ
16 耐火物
18 溶鉄
20 水流制御容器
22 傾斜面
24 吐出口
26 排出口
30 冷却水管
32 冷却水槽
33 排水口
34 搬送装置
40 冷却水
42 旋回流
50 冷却水管
52 冷却水管
54 冷却水管
56 冷却水管
58 冷却水管
60 冷却水管
62 冷却水管
10 Granular iron production equipment 12 Granulation equipment 14 Tandish 16 Fireproof material 18 Molten iron 20 Water flow control container 22 Inclined surface 24 Discharge port 26 Discharge port 30 Cooling water pipe 32 Cooling water tank 33 Drain port 34 Conveyor device 40 Cooling water 42 Swirling flow 50 Cooling Water pipe 52 Cooling water pipe 54 Cooling water pipe 56 Cooling water pipe 58 Cooling water pipe 60 Cooling water pipe 62 Cooling water pipe

Claims (4)

溶鉄を液滴とする粒化装置と、
前記液滴を受ける位置に設けられ、冷却水を収容する水流制御容器と、
前記水流制御容器に接続し、前記水流制御容器に冷却水を供給する少なくとも1つの冷却水管と、
を有し、
前記水流制御容器は、下方に向けて前記水流制御容器の水平断面積が狭くなるように傾斜した傾斜面を有し、前記傾斜面の下方には排出口が設けられる、粒鉄製造装置。
A granulator that uses molten iron as droplets and
A water flow control container provided at a position for receiving the droplets and accommodating cooling water,
At least one cooling water pipe connected to the water flow control container and supplying cooling water to the water flow control container.
Have,
The water flow control container is a grain iron manufacturing apparatus having an inclined surface that is inclined so that the horizontal cross-sectional area of the water flow control container is narrowed downward, and a discharge port is provided below the inclined surface.
前記傾斜面の水平面に対する角度は40°以上60°以下の範囲内である、請求項1に記載の粒鉄製造装置。 The grain iron manufacturing apparatus according to claim 1, wherein the angle of the inclined surface with respect to the horizontal plane is within the range of 40 ° or more and 60 ° or less. 冷却水を収容する冷却水槽をさらに有し、
前記冷却水槽は、前記水流制御容器を収容する、請求項1または請求項2に記載の粒鉄製造装置。
It also has a cooling water tank to house the cooling water,
The granular iron production apparatus according to claim 1 or 2, wherein the cooling water tank houses the water flow control container.
前記水流制御容器の下方には、冷却された粒鉄を前記冷却水槽の外に搬送する搬送装置をさらに有する、請求項3に記載の粒鉄製造装置。 The granular iron production apparatus according to claim 3, further comprising a transport device for transporting cooled granular iron to the outside of the cooling water tank below the water flow control container.
JP2020023911A 2020-02-17 2020-02-17 Granulated iron manufacturing equipment Active JP7251498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020023911A JP7251498B2 (en) 2020-02-17 2020-02-17 Granulated iron manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023911A JP7251498B2 (en) 2020-02-17 2020-02-17 Granulated iron manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021127510A true JP2021127510A (en) 2021-09-02
JP7251498B2 JP7251498B2 (en) 2023-04-04

Family

ID=77488059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023911A Active JP7251498B2 (en) 2020-02-17 2020-02-17 Granulated iron manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7251498B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255770B1 (en) * 2021-11-30 2023-04-14 Jfeスチール株式会社 Apparatus and method for measuring granular objects, method for detecting abnormality, and method for manufacturing iron granules
WO2023100696A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Apparatus and method for measuring granular objects, abnormality detection method, and method for producing granular iron
WO2024018916A1 (en) * 2022-07-19 2024-01-25 Jfeスチール株式会社 Granular iron manufacturing device and granular iron manufacturing method
JP7444147B2 (en) 2021-08-26 2024-03-06 Jfeスチール株式会社 Granulated iron production equipment and granulated iron manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220948B1 (en) * 1968-02-05 1977-06-07
JPH03271306A (en) * 1990-03-20 1991-12-03 Kubota Corp Method and apparatus for manufacturing rapidly cooled and solidified metal powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220948B1 (en) * 1968-02-05 1977-06-07
JPH03271306A (en) * 1990-03-20 1991-12-03 Kubota Corp Method and apparatus for manufacturing rapidly cooled and solidified metal powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444147B2 (en) 2021-08-26 2024-03-06 Jfeスチール株式会社 Granulated iron production equipment and granulated iron manufacturing method
JP7255770B1 (en) * 2021-11-30 2023-04-14 Jfeスチール株式会社 Apparatus and method for measuring granular objects, method for detecting abnormality, and method for manufacturing iron granules
WO2023100696A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Apparatus and method for measuring granular objects, abnormality detection method, and method for producing granular iron
WO2024018916A1 (en) * 2022-07-19 2024-01-25 Jfeスチール株式会社 Granular iron manufacturing device and granular iron manufacturing method
JP7468820B1 (en) 2022-07-19 2024-04-16 Jfeスチール株式会社 Granulated iron manufacturing apparatus and granulated iron manufacturing method

Also Published As

Publication number Publication date
JP7251498B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP2021127510A (en) Luppe producing installation
JP2021161465A (en) Granular iron manufacturing apparatus
EP3259088B1 (en) A nozzle and a tundish arrangement for the granulation of molten material
KR20130132899A (en) Granulation of metallurgical slag
CN105612016B (en) The granulation of melted material
CN112584950A (en) Granulation method and apparatus
JP2017081814A (en) Method for producing slag material
JP7380634B2 (en) Granular pig iron production equipment and method for cooling granular pig iron
JP7435540B2 (en) Granular pig iron manufacturing equipment and granular pig iron manufacturing method
JP5998845B2 (en) Heat recovery system and heat recovery method for solidified slag
JPS58124528A (en) Spherical product of sublimable substance, method and apparatus for preparing same
JP2023032091A (en) Granular iron manufacturing apparatus and granular iron manufacturing method
HU214894B (en) Device for the addition of casting agents to the surface of a melt in a continuous casting die
CN108300823A (en) A kind of slag stream conveying device and slag granulating take hot systems
JP5829990B2 (en) Sensible heat recovery apparatus and sensible heat recovery method for molten slag
WO2024018916A1 (en) Granular iron manufacturing device and granular iron manufacturing method
JP3957738B1 (en) Method and apparatus for producing spherical metal particles
CN208234930U (en) A kind of slag stream conveying device and slag granulating take hot systems
US2825642A (en) Method of producing group iv-a metals
CN110484664A (en) High-temperature liquid state slag centrifugal granulation residual neat recovering system creation method
JPS61259091A (en) High-temperature waste gas cooling device
JP4072425B2 (en) Ash melting furnace
KR102156711B1 (en) Equipment for treating slag and Method for treating slag
KR102139627B1 (en) Slag processing apparatus and method
JP2024505176A (en) Hopper with cooling element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150