JP7251444B2 - Glass plate manufacturing apparatus and glass plate manufacturing method - Google Patents

Glass plate manufacturing apparatus and glass plate manufacturing method Download PDF

Info

Publication number
JP7251444B2
JP7251444B2 JP2019192088A JP2019192088A JP7251444B2 JP 7251444 B2 JP7251444 B2 JP 7251444B2 JP 2019192088 A JP2019192088 A JP 2019192088A JP 2019192088 A JP2019192088 A JP 2019192088A JP 7251444 B2 JP7251444 B2 JP 7251444B2
Authority
JP
Japan
Prior art keywords
rotating member
glass ribbon
manufacturing
glass
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192088A
Other languages
Japanese (ja)
Other versions
JP2021066625A (en
Inventor
成明 富田
哲史 瀧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2019192088A priority Critical patent/JP7251444B2/en
Priority to CN202011101573.5A priority patent/CN112759233B/en
Publication of JP2021066625A publication Critical patent/JP2021066625A/en
Application granted granted Critical
Publication of JP7251444B2 publication Critical patent/JP7251444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/01Rolling profiled glass articles, e.g. with I, L, T cross-sectional profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/18Auxiliary means for rolling glass, e.g. sheet supports, gripping devices, hand-ladles, means for moving glass pots
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本開示は、ガラス板の製造装置、及びガラス板の製造方法に関する。 The present disclosure relates to a glass plate manufacturing apparatus and a glass plate manufacturing method.

ガラス板の製造装置は、成形炉と、成形炉の内部にて帯板状のガラスリボンの幅方向の収縮を抑制するロールとを備える。ロールは、ガラスリボンの幅方向両側に複数対配置され、ガラスリボンに対し幅方向に張力を与える。ロールは、円盤状の回転部材と、回転部材を回転させる回転軸とを有する。 A manufacturing apparatus for a glass sheet includes a forming furnace and rolls for suppressing shrinkage of a band-shaped glass ribbon in the width direction inside the forming furnace. A plurality of pairs of rolls are arranged on both sides of the glass ribbon in the width direction, and tension is applied to the glass ribbon in the width direction. The roll has a disk-shaped rotating member and a rotating shaft that rotates the rotating member.

回転部材は、その外周にて、ガラスリボンの幅方向端部を押さえ、ガラスリボンの長手方向にガラスリボンを送り出す。ガラスリボンは、成形炉の内部で、移動しながら、徐々に冷却される。回転部材は、通常、金属で形成され、外周に、ガラスリボンと接触する歯車状の凹凸を有する。金属は、耐熱性が低く、高温強度(例えば500℃以上の強度)も充分ではないので、回転部材の内部には冷媒流路が形成される。冷媒は、回転部材の熱を外部に搬送し、回転部材の温度上昇を抑制する。 The rotating member presses the widthwise end of the glass ribbon at its outer periphery and feeds the glass ribbon in the longitudinal direction of the glass ribbon. The glass ribbon is gradually cooled while moving inside the forming furnace. The rotating member is generally made of metal, and has gear-shaped unevenness on its outer periphery that contacts the glass ribbon. Metal has low heat resistance and insufficient high-temperature strength (for example, strength at 500° C. or higher), so a coolant channel is formed inside the rotating member. The coolant conveys the heat of the rotating member to the outside and suppresses the temperature rise of the rotating member.

成形炉内のガラスリボンは、下流方向に移動するにつれ温度が低くなるが、それとともにガラスリボンが硬化する。そうすると、回転部材のガラスリボンに対するグリップ力が充分に得られなくなる。 As the glass ribbon in the forming furnace cools as it moves downstream, the glass ribbon hardens as it moves. As a result, the rotating member cannot sufficiently grip the glass ribbon.

そこで、特許文献1では、セラミック製の回転部材が提案されている。セラミックは金属に比べて耐熱性に優れるので、回転部材の内部には冷媒流路が形成されない。それゆえ、回転部材を介してガラスリボンが冷却されるのを防止でき、回転部材のガラスリボンに対するグリップ力の低下を抑制できる。なお、セラミック製の回転部材は、グリップ力を得るのに、外周に、歯車状の凹凸を有しなくてよい。 Therefore, Patent Document 1 proposes a rotary member made of ceramic. Since ceramics are superior in heat resistance to metals, coolant channels are not formed inside the rotating member. Therefore, it is possible to prevent the glass ribbon from being cooled via the rotating member, and suppress a decrease in the gripping force of the rotating member with respect to the glass ribbon. It should be noted that the rotating member made of ceramic does not need to have gear-shaped irregularities on its outer periphery in order to obtain a gripping force.

国際公開第2013/073352号WO2013/073352

しかしながら、セラミック製の回転部材であっても、硬化したガラスリボンに対し、十分なグリップ力を得られないことがあった。 However, even a rotating member made of ceramic may not be able to obtain a sufficient grip on a hardened glass ribbon.

本開示の一態様は、回転部材のガラスリボンに対するグリップ力を向上できる、技術を提供する。 One aspect of the present disclosure provides a technique that can improve the gripping force of the rotating member on the glass ribbon.

本開示の一態様に係るガラス板の製造装置は、
セラミック製の回転部材と、前記回転部材を回転させる回転軸と、前記回転軸の内部に形成される冷媒流路とを有し、前記回転部材の外周にて帯板状のガラスリボンの幅方向端部を押さえ、前記ガラスリボンの長手方向に前記ガラスリボンを送り出すロールと、
前記回転部材の外周を加熱する加熱機構と、
を備え、
前記加熱機構は、レーザ光線を前記回転部材の外周に照射する照射器を含むことを特徴とする。
A glass plate manufacturing apparatus according to an aspect of the present disclosure includes:
It has a rotating member made of ceramic, a rotating shaft for rotating the rotating member, and a coolant channel formed inside the rotating shaft, and a width direction of a band-shaped glass ribbon on the outer periphery of the rotating member. A roll that presses the end portion and sends out the glass ribbon in the longitudinal direction of the glass ribbon;
a heating mechanism for heating the outer circumference of the rotating member;
with
The heating mechanism is characterized by including an irradiator that irradiates the outer circumference of the rotating member with a laser beam.

本開示の一態様によれば、回転部材のガラスリボンに対するグリップ力を向上できる。 According to one aspect of the present disclosure, it is possible to improve the gripping force of the rotating member on the glass ribbon.

図1は、一実施形態に係るガラス板の製造装置のうちの成形装置を示す鉛直断面図である。FIG. 1 is a vertical cross-sectional view showing a forming apparatus of a glass plate manufacturing apparatus according to one embodiment. 図2は、図1の成形装置の下部構造を示す平面断面図である。2 is a cross-sectional plan view showing the lower structure of the molding apparatus of FIG. 1. FIG. 図3は、図1の成形装置の一部を示す鉛直断面図である。3 is a vertical cross-sectional view showing a portion of the molding apparatus of FIG. 1; FIG. 図4は、第1変形例に係る成形装置の一部を示す鉛直断面図である。FIG. 4 is a vertical cross-sectional view showing part of a molding device according to a first modified example. 図5は、第2変形例に係る成形装置の一部を示す鉛直断面図である。FIG. 5 is a vertical sectional view showing part of a molding device according to a second modification. 図6は、第3変形例に係る成形装置の一部を示す鉛直断面図である。FIG. 6 is a vertical sectional view showing part of a molding device according to a third modified example. 図7Aは、発熱線と電極の一例を示す斜視図である。FIG. 7A is a perspective view showing an example of a heating wire and electrodes. 図7Bは、発熱線と電極の別の一例を示す斜視図である。FIG. 7B is a perspective view showing another example of the heating wire and the electrodes. 図7Cは、発熱線と電極の更に別の一例を示す斜視図である。FIG. 7C is a perspective view showing still another example of the heating wire and the electrodes.

以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each drawing, the same reference numerals are given to the same or corresponding configurations, and explanations thereof may be omitted.

各図面において、X軸方向、Y軸方向及びZ軸方向は互いに垂直な方向であって、X軸方向及びY軸方向は水平方向、Z軸方向は鉛直方向である。ガラスリボンの成形方法がフロート法である場合、X軸方向がガラスリボンの移動方向、Y軸方向がガラスリボンの幅方向である。 In each drawing, the X-axis direction, Y-axis direction and Z-axis direction are perpendicular to each other, the X-axis direction and Y-axis direction are horizontal directions, and the Z-axis direction is vertical direction. When the glass ribbon forming method is the float method, the X-axis direction is the moving direction of the glass ribbon, and the Y-axis direction is the width direction of the glass ribbon.

明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 In the specification, "-" indicating a numerical range means that the numerical values described before and after it are included as lower and upper limits.

(一実施形態に係るガラス板の製造装置及びガラス板の製造方法)
図1~3を参照して、一実施形態に係るガラス板の製造装置及びガラス板の製造方法について説明する。
(Glass plate manufacturing apparatus and glass plate manufacturing method according to one embodiment)
A glass plate manufacturing apparatus and a glass plate manufacturing method according to an embodiment will be described with reference to FIGS.

図1及び図2に示すように、ガラス板の製造装置は、成形装置1を有する。成形装置1は、溶融ガラスを帯板状に成形し、ガラスリボンGを得る。成形装置1は、例えば、フロート法でガラスリボンGを得る。フロート法は、溶融スズ等の溶融金属Mの液面の上に溶融ガラスを連続的に供給し、供給した溶融ガラスを溶融金属Mの液面の上でX軸方向負側からX軸方向正側に流動させながら、帯板状に成形する。ガラスリボンGは、成形装置1から取り出された後、徐冷装置で徐冷され、続いて、加工装置で切断される。徐冷装置及び加工装置は、一般的なものであるので、図示を省略する。加工後に、製品として、ガラス板が得られる。 As shown in FIGS. 1 and 2, the glass sheet manufacturing apparatus has a forming apparatus 1 . The forming apparatus 1 forms the molten glass into a strip shape to obtain a glass ribbon G. The forming apparatus 1 obtains the glass ribbon G by, for example, the float method. In the float method, molten glass is continuously supplied above the liquid surface of molten metal M such as molten tin, and the supplied molten glass is moved above the liquid surface of molten metal M from the negative side in the X-axis direction to the positive side in the X-axis direction. Form into a strip while flowing sideways. After the glass ribbon G is taken out from the forming apparatus 1, it is slowly cooled by a slow cooling apparatus and then cut by a processing apparatus. Since the slow cooling device and the processing device are common ones, illustration thereof is omitted. After processing, a glass plate is obtained as a product.

ガラス板は、例えば、酸化物基準の質量%表示で、SiO:50%~75%、Al:0.1%~24%、B:0%~12%、MgO:0%~10%、CaO:0%~14.5%、SrO:0%~24%、BaO:0%~13.5%、NaO:0%~20%、KO:0%~20%、ZrO:0%~5%、MgO+CaO+SrO+BaO:5%~29.5%、NaO+KO:0%~20%を含有する。 The glass plate is composed of, for example, SiO 2 : 50% to 75%, Al 2 O 3 : 0.1% to 24%, B 2 O 3 : 0% to 12%, MgO: 0% to 10%, CaO: 0% to 14.5%, SrO: 0% to 24%, BaO: 0% to 13.5%, Na 2 O: 0% to 20%, K 2 O: 0% ZrO 2 : 0% to 5%, MgO+CaO+SrO+BaO: 5% to 29.5%, Na 2 O+K 2 O: 0% to 20%.

ガラス板のガラスの種類は、ガラス板の用途に応じて選択される。ガラス板の用途は、特に限定されないが、例えば液晶ディスプレイ(LCD)や有機ELディスプレイ等のフラットパネルディスプレイ(FPD)である。ガラス板の用途がFPDである場合、ガラス板のガラスの種類は無アルカリガラスである。無アルカリガラスは、アルカリ金属酸化物(NaO、KO、LiO等)を実質的に含有しないガラスである。無アルカリガラスは、アルカリ金属酸化物の含有量の合量が0.1質量%以下でよい。 The type of glass for the glass plate is selected according to the use of the glass plate. The use of the glass plate is not particularly limited, but is, for example, a flat panel display (FPD) such as a liquid crystal display (LCD) or an organic EL display. When the application of the glass plate is FPD, the type of glass of the glass plate is non-alkali glass. Alkali-free glass is glass that does not substantially contain alkali metal oxides (Na 2 O, K 2 O, Li 2 O, etc.). The alkali-free glass may have a total content of alkali metal oxides of 0.1% by mass or less.

無アルカリガラスは、例えば、酸化物基準の質量%表示で、SiO:50%~70%(好ましくは50%~66%)、Al:10.5%~24%、B:0%~12%、MgO:0%~10%(好ましくは0%~8%)、CaO:0%~14.5%、SrO:0%~24%、BaO:0%~13.5%、ZrO:0%~5%、MgO+CaO+SrO+BaO:8%~29.5%(好ましくは9%~29.5%)を含有する。 Alkali-free glass is, for example, SiO 2 : 50% to 70% (preferably 50% to 66%), Al 2 O 3 : 10.5% to 24%, B 2 O, in terms of % by mass based on oxides. 3 : 0%-12%, MgO: 0%-10% (preferably 0%-8%), CaO: 0%-14.5%, SrO: 0%-24%, BaO: 0%-13. 5%, ZrO 2 : 0% to 5%, MgO+CaO+SrO+BaO: 8% to 29.5% (preferably 9% to 29.5%).

無アルカリガラスは、高い歪点と高い溶解性とを両立する場合、好ましくは、酸化物基準の質量%表示で、SiO:58%~66%、Al:15%~22%、B:5%~12%、MgO:0%~8%、CaO:0%~9%、SrO:3%~12.5%、BaO:0%~2%、MgO+CaO+SrO+BaO:9%~18%を含有する。 When the alkali-free glass has both a high strain point and a high solubility, it preferably contains SiO 2 : 58% to 66%, Al 2 O 3 : 15% to 22%, in terms of % by mass based on oxides. B 2 O 3 : 5% to 12%, MgO: 0% to 8%, CaO: 0% to 9%, SrO: 3% to 12.5%, BaO: 0% to 2%, MgO + CaO + SrO + BaO: 9% ~ Contains 18%.

無アルカリガラスは、特に高い歪点を得たい場合、好ましくは、酸化物基準の質量%表示で、SiO:54%~73%、Al:10.5%~22.5%、B:0%~5.5%、MgO:0%~10%、CaO:0%~9%、SrO:0%~16%、BaO:0%~2.5%、MgO+CaO+SrO+BaO:8%~26%を含有する。 When it is desired to obtain a particularly high strain point, alkali-free glass preferably contains SiO 2 : 54% to 73%, Al 2 O 3 : 10.5% to 22.5%, in terms of % by mass based on oxides. B 2 O 3 : 0% to 5.5%, MgO: 0% to 10%, CaO: 0% to 9%, SrO: 0% to 16%, BaO: 0% to 2.5%, MgO + CaO + SrO + BaO: 8 % to 26%.

ガラス板の厚みは、ガラス板の用途に応じて選択される。ガラス板の用途がFPDである場合、ガラス板の厚みは好ましくは0.7mm以下、より好ましくは0.5mm以下、さらに好ましくは0.3mm以下、さらにより好ましくは0.2mm以下、特に好ましくは0.1mm以下である。 The thickness of the glass plate is selected according to the use of the glass plate. When the application of the glass plate is FPD, the thickness of the glass plate is preferably 0.7 mm or less, more preferably 0.5 mm or less, still more preferably 0.3 mm or less, still more preferably 0.2 mm or less, and particularly preferably 0.1 mm or less.

成形装置1は、図1に示すように、成形炉2を備える。成形炉2は、溶融金属Mを収容する浴槽20、浴槽20の上方に設けられる天井21、及び浴槽20と天井21との間の隙間を塞ぐ側壁22を有する。天井21にはガス供給穴23が設けられる。ガス供給穴23は、溶融金属Mの上方空間に還元性ガスを供給し、溶融金属Mの酸化を防止する。還元性ガスは、例えば、水素ガスを1体積%~15体積%、窒素ガスを85体積%~99体積%含む。 The forming apparatus 1 includes a forming furnace 2 as shown in FIG. The forming furnace 2 has a bath 20 containing the molten metal M, a ceiling 21 provided above the bath 20 , and a side wall 22 closing a gap between the bath 20 and the ceiling 21 . A gas supply hole 23 is provided in the ceiling 21 . The gas supply hole 23 supplies a reducing gas to the space above the molten metal M to prevent the molten metal M from being oxidized. The reducing gas contains, for example, 1% to 15% by volume of hydrogen gas and 85% to 99% by volume of nitrogen gas.

成形装置1は、成形炉2の内部にて、ガラスリボンGを加熱するヒータ3を備える。ヒータ3は、例えば、天井21のガス供給穴23に挿し通され、溶融金属M及びガラスリボンGの上方にて、X軸方向及びY軸方向に行列状に配置される。ヒータ3の出力は、X軸方向負側からX軸方向正側に向かうほど、ガラスリボンGの温度が低くなるように制御される。また、ヒータ3の出力は、ガラスリボンGの厚みがY軸方向に均一になるように制御される。 The forming apparatus 1 includes a heater 3 that heats the glass ribbon G inside the forming furnace 2 . The heaters 3 are, for example, inserted through the gas supply holes 23 of the ceiling 21 and arranged in a matrix in the X-axis direction and the Y-axis direction above the molten metal M and the glass ribbon G. As shown in FIG. The output of the heater 3 is controlled such that the temperature of the glass ribbon G decreases from the negative side in the X-axis direction to the positive side in the X-axis direction. Moreover, the output of the heater 3 is controlled so that the thickness of the glass ribbon G becomes uniform in the Y-axis direction.

成形装置1は、成形炉2の内部にて、帯板状のガラスリボンGの幅方向端部を押さえ、ガラスリボンGの長手方向にガラスリボンGを送り出すロール5を備える。ガラスリボンGは、X軸方向に移動しながら、徐々に冷却され、固くなる。ロール5は、ガラスリボンGの幅方向両側に複数対設けられ、ガラスリボンGの幅方向の収縮を抑制する。ガラスリボンGの厚みを平衡厚みよりも薄くできる。 The forming apparatus 1 includes rolls 5 that press the ends of the strip-shaped glass ribbon G in the width direction inside the forming furnace 2 and send out the glass ribbon G in the longitudinal direction of the glass ribbon G. As shown in FIG. The glass ribbon G is gradually cooled and hardened while moving in the X-axis direction. A plurality of pairs of rolls 5 are provided on both sides in the width direction of the glass ribbon G to suppress contraction of the glass ribbon G in the width direction. The thickness of the glass ribbon G can be made thinner than the equilibrium thickness.

ロール5は、図2に示すように、少なくとも成形域A1にてガラスリボンGの幅方向端部を押さえ、好ましくは成形域A1と低温域の両方にてガラスリボンGの幅方向端部を押さえる。成形域A1は、ガラスリボンGの粘度が104.5dPa・s~107.5dPa・sの領域である。低温域は、成形域A1よりも低温の領域であり、ガラスリボンGの粘度が107.5dPa・s超~107.65dPa・sの粘度範囲の領域である。混合域は、成形域A1の下流域と低温域の全てを含み、ガラスリボンGの粘度が106.7dPa・s~107.65dPa・sの領域である。また、ロール5は、後述する加熱機構7によって回転部材51の外周が加熱されるので、ガラスリボンGの粘度が107.65dPa・s超の領域である徐冷域A2にてガラスリボンGの幅方向端部を押さえる。これらの粘度は、ガラスリボンGの幅方向中心にて測定する。 As shown in FIG. 2, the roll 5 presses the widthwise end of the glass ribbon G at least in the forming region A1, preferably both in the forming region A1 and the low temperature region. . The molding region A1 is a region where the glass ribbon G has a viscosity of 10 4.5 dPa·s to 10 7.5 dPa·s. The low-temperature region is a region with a temperature lower than that of the forming region A1, and is a region in which the viscosity of the glass ribbon G is in the range of more than 10 7.5 dPa·s to 10 7.65 dPa·s. The mixing zone includes all of the downstream region of the forming zone A1 and the low temperature zone, and is a region in which the viscosity of the glass ribbon G is 10 6.7 dPa·s to 10 7.65 dPa·s. In addition, since the outer periphery of the rotating member 51 of the roll 5 is heated by the heating mechanism 7, which will be described later, the width of the glass ribbon G is reduced in the slow cooling region A2, which is a region in which the viscosity of the glass ribbon G exceeds 10 7.65 dPa s. Hold the direction end. These viscosities are measured at the center of the glass ribbon G in the width direction.

無アルカリガラスの粘度と温度との関係は、例えば、下記の通りである。成形域A1の粘度104.5dPa・s~107.5dPa・sは、温度946℃~1200℃に相当する。また、低温域の粘度107.5超dPa・s~107.65dPa・sは、温度937℃以上946℃未満に相当する。また、混合域の粘度106.7dPa・s~107.65dPa・sは、温度937℃~1000℃に相当する。更に、徐冷域A2の粘度107.65dPa・s超は、温度937℃未満に相当する。これらの温度は、ガラスリボンGの幅方向中心にて測定する。 For example, the relationship between the viscosity and temperature of alkali-free glass is as follows. A viscosity of 10 4.5 dPa·s to 10 7.5 dPa·s in the molding zone A1 corresponds to a temperature of 946°C to 1200°C. Further, the viscosity of more than 10 7.5 dPa·s to 10 7.65 dPa·s in the low temperature range corresponds to a temperature of 937°C or higher and less than 946°C. Also, the viscosity of 10 6.7 dPa·s to 10 7.65 dPa·s in the mixing region corresponds to a temperature of 937°C to 1000°C. Furthermore, a viscosity of more than 10 7.65 dPa·s in the slow cooling zone A2 corresponds to a temperature of less than 937°C. These temperatures are measured at the center of the glass ribbon G in the width direction.

図3に示す構造のロール5は、混合域、低温域又は徐冷域A2にて用いられる。例えば、回転部材が金属製であるロールは成形域A1(混合域を除く)に、回転部材51がセラミック製であるロール5は混合域及び徐冷域A2にて用いられる。 The roll 5 having the structure shown in FIG. 3 is used in the mixing zone, the low temperature zone, or the slow cooling zone A2. For example, a roll whose rotating member is made of metal is used in the forming zone A1 (excluding the mixing zone), and a roll 5 whose rotating member is made of ceramic is used in the mixing zone and slow cooling zone A2.

ロール5は、回転部材51と、回転軸52と、冷媒流路53とを有する。回転部材51は、例えば円盤状であって、その外周にて、ガラスリボンGの幅方向端部を押さえ、ガラスリボンGの長手方向にガラスリボンGを送り出す。回転軸52は、駆動装置6(図1参照)によって回転駆動され、回転部材51を回転させる。回転軸52は金属で形成され、金属の耐熱性は低いので、回転軸52の内部に冷媒流路53が形成される。 The roll 5 has a rotating member 51 , a rotating shaft 52 and a coolant channel 53 . The rotating member 51 is, for example, disk-shaped, and presses the widthwise end of the glass ribbon G at its outer periphery to feed the glass ribbon G in its longitudinal direction. The rotating shaft 52 is rotationally driven by the driving device 6 (see FIG. 1) to rotate the rotating member 51 . The rotating shaft 52 is made of metal, and the heat resistance of metal is low.

回転部材51は、セラミック製である。セラミックは、金属に比べて耐熱性に優れるので、回転部材51の内部には冷媒流路が形成されない。それゆえ、冷媒が回転部材51を介してガラスリボンGを冷却するのを防止できる。混合域、特に低温域にて、グリップ力の低下を抑制できる。 The rotating member 51 is made of ceramic. Since ceramics are superior in heat resistance to metals, coolant channels are not formed inside the rotating member 51 . Therefore, it is possible to prevent the coolant from cooling the glass ribbon G via the rotating member 51 . In the mixed region, especially in the low temperature region, it is possible to suppress the deterioration of the grip force.

回転部材51のセラミックの種類は、特に限定されないが、例えば、窒化ケイ素(Si)質セラミック等である。窒化ケイ素は、溶融金属Mの飛沫や溶融金属Mの蒸気に対する耐性が高く、溶融金属Mが付着しにくく、また、高温強度やクリープ特性に優れている。窒化ケイ素質セラミックは、無アルカリガラスとの反応性が低い点でも優れている。 The type of ceramic for the rotary member 51 is not particularly limited, but for example, silicon nitride (Si 3 N 4 ) based ceramic or the like. Silicon nitride has a high resistance to droplets of the molten metal M and vapor of the molten metal M, is resistant to adhesion of the molten metal M, and is excellent in high-temperature strength and creep properties. Silicon nitride ceramics are also excellent in that they have low reactivity with alkali-free glass.

窒化ケイ素質セラミックは、窒化ケイ素の粉末と、焼結助剤の粉末とを含む混合粉末で作製した成形体を焼結した焼結体であってよい。焼結方法としては、常圧焼結法、加圧焼結法(ホットプレス焼結、ガス圧焼結を含む)等がある。焼結助剤としては、例えば、アルミナ(Al)、マグネシア(MgO)、チタニア(TiO)、ジルコニア(ZrO)及びイットリア(Y)から選ばれる少なくとも1種類が用いられる。 The silicon nitride ceramic may be a sintered body obtained by sintering a molded body made of mixed powder containing silicon nitride powder and sintering aid powder. Sintering methods include normal pressure sintering and pressure sintering (including hot press sintering and gas pressure sintering). At least one selected from alumina (Al 2 O 3 ), magnesia (MgO), titania (TiO 2 ), zirconia (ZrO 2 ) and yttria (Y 2 O 3 ) is used as the sintering aid. .

窒化ケイ素質セラミックは、アルミニウム(Al)の含有量が0.1質量%以下、好ましくは0.1質量%未満、マグネシウム(Mg)の含有量が0.7質量%以下、好ましくは0.7質量%未満、チタン(Ti)の含有量が0.9質量%以下、好ましくは0.9質量%未満である。Al含有量、Mg含有量及びTi含有量が上記の範囲であると、回転部材51とガラスリボンGとの反応性が低く、また、回転部材51とガラスリボンGとがくっつき難く、良好な耐久性が得られる。Al含有量、Mg含有量及びTi含有量は、それぞれ、0質量%であってもよい。 The silicon nitride ceramic has an aluminum (Al) content of 0.1% by mass or less, preferably less than 0.1% by mass, and a magnesium (Mg) content of 0.7% by mass or less, preferably 0.7%. less than 0.9% by mass, and the content of titanium (Ti) is 0.9% by mass or less, preferably less than 0.9% by mass. When the Al content, Mg content, and Ti content are within the above ranges, the reactivity between the rotating member 51 and the glass ribbon G is low, and the rotating member 51 and the glass ribbon G are less likely to stick to each other, resulting in good durability. You get sex. The Al content, Mg content and Ti content may each be 0% by mass.

窒化ケイ素質セラミックは、ジルコニウム(Zr)の含有量が3.5質量%以下、好ましくは3.5質量%未満、イットリウム(Y)の含有量が0.5質量%以上、好ましくは0.5質量%超、10質量%以下、好ましくは10質量%未満であってもよい。ZrやYは、AlやMg、Tiに比べて、ガラスリボンGと相互拡散し難い成分であるので、上記の範囲で含有されてよい。上記の範囲で含有されることによって、窒化ケイ素粉末の焼結を促進することができる。Zrは任意成分であって、Zr含有量は0質量%であってもよい。 The silicon nitride ceramic has a zirconium (Zr) content of 3.5% by mass or less, preferably less than 3.5% by mass, and an yttrium (Y) content of 0.5% by mass or more, preferably 0.5% by mass. It may be more than 10% by mass, preferably less than 10% by mass. Zr and Y are components that are less likely to interdiffuse with the glass ribbon G than Al, Mg, and Ti, so they may be contained within the above ranges. Sintering of the silicon nitride powder can be promoted by containing in the above range. Zr is an optional component, and the Zr content may be 0% by mass.

なお、本実施形態の窒化ケイ素質セラミックは、常圧焼結法又は加圧焼結法により得られる焼結体であるが、反応焼結法により得られる焼結体であってもよい。反応焼結法は、金属ケイ素(Si)の粉末で成形された成形体を窒素雰囲気中で加熱する方法である。反応焼結法は、焼結助剤を使用しないので、高純度の焼結体が得られ、焼結体のガラスリボンGに対する耐久性を向上できる。 The silicon nitride ceramic of the present embodiment is a sintered body obtained by normal pressure sintering or pressure sintering, but may be a sintered body obtained by reaction sintering. The reaction sintering method is a method of heating a compact made of metal silicon (Si) powder in a nitrogen atmosphere. Since the reaction sintering method does not use a sintering aid, a highly pure sintered body can be obtained, and the durability of the sintered body to the glass ribbon G can be improved.

回転部材51の外周は、図3に示すように、全周にわたって断面形状が径方向外方に凸の湾曲状であってもよい。前記凸の湾曲状の曲率半径は、例えば、1mm~100mmである。 As shown in FIG. 3, the outer periphery of the rotating member 51 may have a curved cross-sectional shape that protrudes radially outward over the entire periphery. The radius of curvature of the convex curve is, for example, 1 mm to 100 mm.

回転軸52は、図1に示すように、側壁22の開口を貫通し、成形炉2の外の駆動装置6と接続される。駆動装置6は、例えばモータと減速機とを含み、回転軸52を回転させる。回転軸52は、回転部材51の中央部の貫通孔に挿通される。 The rotating shaft 52 passes through an opening in the side wall 22 and is connected to the driving device 6 outside the molding furnace 2, as shown in FIG. The driving device 6 includes, for example, a motor and a speed reducer, and rotates the rotary shaft 52 . The rotating shaft 52 is inserted through a central through hole of the rotating member 51 .

回転軸52は、金属で形成される。金属の耐熱性は低いので、回転軸52の内部には冷媒流路53が形成される。冷媒流路53を流れる冷媒は、水等であり、回転軸52の熱を外部に搬送し、回転軸52の温度上昇を抑制する。 The rotating shaft 52 is made of metal. Since the heat resistance of metal is low, a coolant channel 53 is formed inside the rotating shaft 52 . The coolant flowing through the coolant flow path 53 is water or the like, which transfers the heat of the rotating shaft 52 to the outside and suppresses the temperature rise of the rotating shaft 52 .

図3に示すように、回転軸52の途中には、フランジ54が形成される。フランジ54は、回転軸52と一体に形成され、金属で形成される。それゆえ、フランジ54の内部には、回転軸52の内部から冷媒が供給される。フランジ54には、回転軸52に対して平行な同期軸55が設けられる。同期軸55は、回転部材51の貫通穴に挿し通され、回転部材51を回転軸52と同期して回転させる。 As shown in FIG. 3, a flange 54 is formed in the middle of the rotating shaft 52 . The flange 54 is formed integrally with the rotary shaft 52 and is made of metal. Therefore, the refrigerant is supplied to the inside of the flange 54 from the inside of the rotating shaft 52 . The flange 54 is provided with a synchronizing shaft 55 parallel to the rotating shaft 52 . The synchronous shaft 55 is inserted through the through hole of the rotating member 51 and rotates the rotating member 51 in synchronization with the rotating shaft 52 .

回転軸52は、先端にねじ軸を有する。そのねじ軸には、第1ナット56が取り付けられる。第1ナット56は、回転部材51をフランジ54とは反対側から押さえる。また、同期軸55は、先端にねじ軸を有する。そのねじ軸には、第2ナット57が取り付けられる。第2ナット57は、回転部材51をフランジ54とは反対側から押さえる。 The rotary shaft 52 has a threaded shaft at its tip. A first nut 56 is attached to the screw shaft. The first nut 56 presses the rotating member 51 from the side opposite to the flange 54 . In addition, the synchronous shaft 55 has a screw shaft at its tip. A second nut 57 is attached to the screw shaft. The second nut 57 presses the rotating member 51 from the side opposite to the flange 54 .

回転軸52及びフランジ54の金属は、例えば炭素鋼又は合金鋼で形成される。炭素鋼は、例えば、日本工業規格(JIS G4051-2016)に記載のS10C、S15C、S20C又はS25C等である。合金鋼は、例えば、日本工業規格(JIS G4053-2016)に記載のSCr420、SCM415等である。 The metal of the rotary shaft 52 and the flange 54 is formed of carbon steel or alloy steel, for example. Carbon steel is, for example, S10C, S15C, S20C or S25C described in Japanese Industrial Standards (JIS G4051-2016). The alloy steel is, for example, SCr420, SCM415, etc. described in Japanese Industrial Standards (JIS G4053-2016).

金属の表面には、保護膜が形成されてもよい。保護膜は、例えば、Cr、CrN、SiC又はSiで形成され、金属の腐食を抑制する。Cr膜は、例えばメッキ法で形成される。一方、CrN膜、SiC膜及びSi膜は、例えばCVD(Chemical Vapor Deposition)法で形成される。 A protective film may be formed on the surface of the metal. The protective film is formed of, for example, Cr, CrN, SiC or Si3N4 to suppress metal corrosion. The Cr film is formed by plating, for example. On the other hand, the CrN film, SiC film and Si3N4 film are formed by, for example , CVD (Chemical Vapor Deposition).

なお、回転軸52及びフランジ54は、溶接部分を含んだ構成としてもよい。この場合、溶接部分の耐熱性は特に低いので、冷媒により充分に冷却する必要がある。 Note that the rotating shaft 52 and the flange 54 may be configured to include welded portions. In this case, since the heat resistance of the welded portion is particularly low, it is necessary to sufficiently cool the welded portion with a coolant.

図1に示すように、成形装置1は、回転部材51の外周を加熱する加熱機構7を更に備える。回転部材51は、その外周にて、ガラスリボンGの幅方向端部を押さえ、ガラスリボンGの長手方向にガラスリボンGを送り出す。加熱機構7が回転部材51の外周を加熱するので、回転部材51がガラスリボンGに対して食い込み易く、グリップ力が向上する。 As shown in FIG. 1 , the molding apparatus 1 further includes a heating mechanism 7 that heats the outer circumference of the rotating member 51 . The rotating member 51 presses the widthwise end of the glass ribbon G at its outer periphery and feeds the glass ribbon G in the longitudinal direction of the glass ribbon G. As shown in FIG. Since the heating mechanism 7 heats the outer periphery of the rotating member 51, the rotating member 51 easily bites into the glass ribbon G, thereby improving the gripping force.

加熱機構7は、光源で発振されたレーザ光線Lを、回転部材51の外周に照射する照射器71を含む。照射器71は、レンズ又はミラー等の光学部品を含む。照射器71は、成形炉2の側壁22等に取り付けられる。照射器71は、溶融金属Mの真上に配置されないので、溶融金属Mの蒸気にほとんど曝されない。従って、照射器71の劣化を抑制できる。なお、照射器71は、側壁22の外部に設けられてもよい。 The heating mechanism 7 includes an irradiator 71 that irradiates the outer circumference of the rotating member 51 with a laser beam L oscillated by a light source. The illuminator 71 includes optical components such as lenses or mirrors. The irradiator 71 is attached to the side wall 22 of the molding furnace 2 or the like. Since the irradiator 71 is not positioned directly above the molten metal M, it is hardly exposed to the molten metal M vapor. Therefore, deterioration of the irradiator 71 can be suppressed. Note that the irradiator 71 may be provided outside the side wall 22 .

レーザ光線Lは、回転部材51の外周にて吸収され、熱に変換され、回転部材51の外周を加熱する。回転部材51の材質が窒化ケイ素質であると、窒化ケイ素の熱伝導率は低いので、回転部材51の径方向への熱移動を抑制できる。従って、回転部材51の外周の加熱効率と、回転軸52の冷却効率とが良い。 The laser beam L is absorbed by the outer circumference of the rotating member 51 and converted into heat to heat the outer circumference of the rotating member 51 . When the material of the rotating member 51 is silicon nitride, heat transfer in the radial direction of the rotating member 51 can be suppressed because silicon nitride has a low thermal conductivity. Therefore, the heating efficiency of the outer periphery of the rotating member 51 and the cooling efficiency of the rotating shaft 52 are good.

レーザ光線Lにより、回転部材51の外周が加熱されると、回転部材51がガラスリボンGと接触する部分の温度が上昇し、ガラスリボンGに対するグリップ力が向上する。従って、硬化したガラスリボンGに対し幅方向に張力を与え、ガラスリボンGの幅方向の収縮を抑制することができる。これにより、収縮による変形が低減されるため、ガラスリボンGの平坦度が向上する。 When the outer circumference of the rotating member 51 is heated by the laser beam L, the temperature of the contacting portion of the rotating member 51 with the glass ribbon G rises, and the gripping force on the glass ribbon G improves. Therefore, it is possible to apply tension to the hardened glass ribbon G in the width direction, thereby suppressing shrinkage of the glass ribbon G in the width direction. As a result, deformation due to shrinkage is reduced, so the flatness of the glass ribbon G is improved.

加熱後の回転部材51の外周の温度は、成形炉2内の雰囲気の温度よりも、例えば、1℃~200℃高い。この温度差は、好ましくは1℃~100℃、より好ましくは5℃~70℃、さらに好ましくは10℃~50℃である。また、加熱後の回転部材51の外周の温度は、例えば、600℃~1000℃の範囲、好ましくは650℃~850℃の範囲に設定することができる。 The temperature of the outer periphery of the rotating member 51 after heating is higher than the temperature of the atmosphere inside the molding furnace 2 by, for example, 1° C. to 200° C. This temperature difference is preferably 1°C to 100°C, more preferably 5°C to 70°C, even more preferably 10°C to 50°C. Further, the temperature of the outer periphery of the rotating member 51 after heating can be set, for example, in the range of 600.degree. C. to 1000.degree. C., preferably in the range of 650.degree.

レーザ光線Lの波長は、例えば10nm~10600nmである。レーザ光線Lの本数は、図1及び図3では1本であるが、複数本であってもよい。複数本のレーザ光線Lが同時に照射されてもよい。レーザ光線Lの発振方式は、連続発振でもよいし、パルス発振でもよい。 The wavelength of the laser beam L is, for example, 10 nm to 10600 nm. Although the number of laser beams L is one in FIGS. 1 and 3, it may be plural. A plurality of laser beams L may be irradiated simultaneously. The oscillation method of the laser beam L may be continuous oscillation or pulse oscillation.

レーザ光線Lの光源は、例えばCOレーザ、YAGレーザ、エキシマレーザ又はYVOレーザである。COレーザの波長は、10600nmである。YAGレーザの波長は、266nm、355nm又は1064nmである。エキシマレーザの波長は、157nm、193nm、248nm、308nm又は351nmである。YVOレーザの波長は、914nm、1064nm又は1342nmである。 The light source of the laser beam L is for example a CO2 laser, a YAG laser, an excimer laser or a YVO4 laser. The wavelength of the CO2 laser is 10600 nm. The wavelength of YAG laser is 266 nm, 355 nm or 1064 nm. The wavelength of the excimer laser is 157 nm, 193 nm, 248 nm, 308 nm or 351 nm. The wavelength of YVO4 laser is 914 nm, 1064 nm or 1342 nm.

図3に示すように、回転部材51は、円錐状のテーパ面58を含む。テーパ面58は、回転軸52の回転中心線Rに対して線対称である。従って、回転軸52の回転中に、レーザ光線Lのテーパ面58に対する入射角θを一定に維持できる。 As shown in FIG. 3, rotating member 51 includes a conical tapered surface 58 . The tapered surface 58 is line-symmetrical with respect to the rotation center line R of the rotation shaft 52 . Therefore, the incident angle θ of the laser beam L with respect to the tapered surface 58 can be kept constant while the rotary shaft 52 is rotating.

入射角θは、例えば0°~15°、好ましくは0°~10°である。レーザ光線Lが常にテーパ面58に対して略垂直に入射するので、単位面積当たりのエネルギー密度が高く、加熱効率が良い。また、テーパ面58での乱反射を防止でき、特定の方向に反射光を誘導できる。 The incident angle θ is, for example, 0° to 15°, preferably 0° to 10°. Since the laser beam L is always incident on the tapered surface 58 substantially perpendicularly, the energy density per unit area is high and the heating efficiency is good. Also, irregular reflection on the tapered surface 58 can be prevented, and the reflected light can be guided in a specific direction.

テーパ面58は、レーザ光線Lの反射率を低減すべく、仕上げの際の研磨度を落とすこと、ブラスト加工等によって粗面化されてよい。テーパ面58の算術平均粗さRaは、例えば0.1nm~50μm、好ましくは500nm~30μmである。算術平均粗さRaは、日本工業規格(JIS B0601-2013)に準拠して測定する。 In order to reduce the reflectance of the laser beam L, the tapered surface 58 may be roughened by reducing the degree of polishing during finishing, blasting, or the like. Arithmetic mean roughness Ra of the tapered surface 58 is, for example, 0.1 nm to 50 μm, preferably 500 nm to 30 μm. The arithmetic mean roughness Ra is measured according to Japanese Industrial Standards (JIS B0601-2013).

テーパ面58は、ガラスリボンGの幅方向外側(図3ではY軸方向正側)に向けて先細り状である。Y軸方向に間隔をおいて配置される一対の側壁22のうち、近い方の側壁22からレーザ光線Lを照射できる。照射器71と回転部材51との距離が近いので、回転部材51に対するレーザ光線Lの照射が容易である。なお、テーパ面58は、例えば研削により形成することができる。 The tapered surface 58 tapers outward in the width direction of the glass ribbon G (positive side in the Y-axis direction in FIG. 3). Of the pair of side walls 22 spaced apart in the Y-axis direction, the closer side wall 22 can be irradiated with the laser beam L. As shown in FIG. Since the distance between the irradiator 71 and the rotating member 51 is short, it is easy to irradiate the rotating member 51 with the laser beam L. The tapered surface 58 can be formed by grinding, for example.

(第1変形例に係る成形装置)
次に、図4を参照して、第1変形例に係る成形装置について説明する。以下、本変形例と上記実施形態との相違点について主に説明する。
(Molding device according to the first modification)
Next, with reference to FIG. 4, a molding apparatus according to a first modified example will be described. Differences between this modified example and the above-described embodiment will be mainly described below.

本変形例の加熱機構7は、回転部材51の外周に対向配置される発熱体72と、発熱体72を支持する支持部材73とを有する。発熱体72は、電力の供給によって発熱する。電力は、直流と交流のいずれでもよい。発熱体72の材質は、カンタル(kanthal)又はニクロム(nichrome)でもよいが、耐久性の観点から、好ましくはSiC又はPtである。支持部材73は、発熱体72と回転部材51の間隔を一定に保つ。 The heating mechanism 7 of this modified example has a heating element 72 arranged opposite to the outer circumference of the rotating member 51 and a support member 73 supporting the heating element 72 . The heating element 72 generates heat by being supplied with electric power. The power may be either direct current or alternating current. The material of the heating element 72 may be kanthal or nichrome, but is preferably SiC or Pt from the viewpoint of durability. The support member 73 keeps the distance between the heating element 72 and the rotating member 51 constant.

本変形例の発熱体72は、回転部材51の外周に対向配置され、回転部材51に接触しない。発熱体72は回転部材51と共に回転しないので、発熱体72への給電が容易である。発熱体72は回転部材51に接触しないので、発熱体72の熱は熱輻射によって回転部材51の外周に伝わる。回転部材51の外周がガラスリボンGに対して食い込み易く、グリップ力が向上する。回転部材51の材質が窒化ケイ素質であると、窒化ケイ素の熱伝導率は低いので、回転部材51の径方向への熱移動を抑制できる。従って、回転部材51の外周の加熱効率と、回転軸52の冷却効率とが良い。 The heating element 72 of this modification is arranged to face the outer periphery of the rotating member 51 and does not come into contact with the rotating member 51 . Since the heating element 72 does not rotate together with the rotating member 51, power supply to the heating element 72 is easy. Since the heating element 72 does not contact the rotating member 51, the heat of the heating element 72 is transmitted to the outer periphery of the rotating member 51 by thermal radiation. The outer periphery of the rotating member 51 can easily bite into the glass ribbon G, improving the gripping force. When the material of the rotating member 51 is silicon nitride, heat transfer in the radial direction of the rotating member 51 can be suppressed because silicon nitride has a low thermal conductivity. Therefore, the heating efficiency of the outer periphery of the rotating member 51 and the cooling efficiency of the rotating shaft 52 are good.

支持部材73は、水平に配置される水平部74を含む。発熱体72は、水平部74の一端に取り付けられる。水平部74の材質は、特に限定されないが、例えば窒化ケイ素質であってよい。窒化ケイ素の熱伝導率は低いので、熱伝導による放熱を防止できる。 The support member 73 includes a horizontal portion 74 arranged horizontally. A heating element 72 is attached to one end of the horizontal portion 74 . The material of the horizontal portion 74 is not particularly limited, but may be silicon nitride, for example. Since the thermal conductivity of silicon nitride is low, heat dissipation due to heat conduction can be prevented.

支持部材73は、回転軸52を回転自在に支持する軸受部75と、軸受部75と水平部74とを連結するアーム部76とを更に含む。軸受部75は、例えばすべり軸受であり、回転軸52が挿し通される貫通穴を有する。軸受部75は、回転軸52と共に回転しない。アーム部76は、斜め上に延びてもよいが、図4に示すように真上に延びてよい。 The support member 73 further includes a bearing portion 75 that rotatably supports the rotating shaft 52 and an arm portion 76 that connects the bearing portion 75 and the horizontal portion 74 . The bearing portion 75 is, for example, a slide bearing and has a through hole through which the rotating shaft 52 is inserted. The bearing portion 75 does not rotate together with the rotating shaft 52 . The arm portion 76 may extend obliquely upward, or may extend directly upward as shown in FIG.

本変形例によれば、回転軸52と発熱体72とが支持部材73によって連結される。それゆえ、回転部材51の配置を修正すべく、回転軸52を移動させると、回転軸52に追従して発熱体72も移動する。従って、回転軸52を移動させる度に回転部材51に対する発熱体72の位置を修正する手間を省ける。 According to this modification, the rotating shaft 52 and the heating element 72 are connected by the supporting member 73 . Therefore, when the rotating shaft 52 is moved to correct the arrangement of the rotating member 51 , the heating element 72 also moves following the rotating shaft 52 . Therefore, the trouble of correcting the position of the heating element 72 with respect to the rotating member 51 every time the rotating shaft 52 is moved can be saved.

支持部材73は、軸受部75及びアーム部76の回転を防止する回転防止部77を更に含む。回転防止部77の一端は、軸受部75に取り付けられてもよいが、図4に示すようにアーム部76に取り付けられてよい。回転防止部77の他端は、成形炉2の側壁22(図1参照)に取り付けられる。なお、回転防止部77の他端は、回転軸52の周囲に設けられるハウジング(不図示)に取り付けられてよい。回転防止部77の材質は、セラミック及び金属のいずれでもよい。回転防止部77の内部には、導電線用の穴が形成されてもよい。導電線は、発熱体72に対して電力を供給するものである。 The support member 73 further includes a rotation prevention portion 77 that prevents rotation of the bearing portion 75 and the arm portion 76 . One end of the rotation preventing portion 77 may be attached to the bearing portion 75, or may be attached to the arm portion 76 as shown in FIG. The other end of the anti-rotation part 77 is attached to the side wall 22 (see FIG. 1) of the molding furnace 2 . The other end of the rotation preventing portion 77 may be attached to a housing (not shown) provided around the rotating shaft 52 . The material of the anti-rotation portion 77 may be either ceramic or metal. A hole for a conductive wire may be formed inside the anti-rotation portion 77 . The conductive wire supplies power to the heating element 72 .

支持部材73は、水平部74とアーム部76とを締結するボルト78を更に含む。ボルト78は、アーム部76の貫通穴を通り、水平部74のねじ穴にねじ込まれる。水平部74とアーム部76とが分割されるので、メンテナンス性が良く、また、コストが安い。 Support member 73 further includes bolts 78 that fasten horizontal portion 74 and arm portion 76 . A bolt 78 passes through a through hole in the arm portion 76 and is screwed into a threaded hole in the horizontal portion 74 . Since the horizontal portion 74 and the arm portion 76 are separated, the maintainability is good and the cost is low.

支持部材73の全てがセラミックであってもよいが、支持部材73の少なくとも一部が金属部材であってもよい。具体的には、水平部74、軸受部75、アーム部76及び回転防止部77のうちの少なくとも一つが、金属部材であってよい。 All of the support member 73 may be ceramic, or at least a portion of the support member 73 may be a metal member. Specifically, at least one of the horizontal portion 74, the bearing portion 75, the arm portion 76, and the rotation prevention portion 77 may be a metal member.

金属部材は、例えば炭素鋼又は合金鋼で形成される。炭素鋼は、例えば、日本工業規格(JIS G4051-2016)に記載のS10C、S15C、S20C又はS25C等である。合金鋼は、例えば、日本工業規格(JIS G4053-2016)に記載のSCr420、SCM415等である。 The metal member is made of carbon steel or alloy steel, for example. Carbon steel is, for example, S10C, S15C, S20C or S25C described in Japanese Industrial Standards (JIS G4051-2016). The alloy steel is, for example, SCr420, SCM415, etc. described in Japanese Industrial Standards (JIS G4053-2016).

ところで、金属は、セラミックに比べて、加工性に優れる反面、耐食性に劣る。成形炉2の内部では、溶融金属Mの蒸気が天井21(図1参照)で凝縮し、凝縮した液滴が金属部材に落下し得る。その結果、金属部材が腐食し得る。そこで、金属部材の表面には、保護膜79(図4では回転防止部77の保護膜)が形成されてもよい。保護膜79は、例えば、Cr、CrN、SiC又はSiで形成され、金属部材の腐食を抑制する。Cr膜は、例えばメッキ法で形成される。一方、CrN膜、SiC膜及びSi膜は、例えばCVD(Chemical Vapor Deposition)法で形成される。 By the way, compared to ceramics, metals are superior in workability, but inferior in corrosion resistance. Inside the forming furnace 2, the vapor of the molten metal M condenses on the ceiling 21 (see FIG. 1) and the condensed droplets can fall on the metal members. As a result, metal members may corrode. Therefore, a protective film 79 (a protective film of the anti-rotation portion 77 in FIG. 4) may be formed on the surface of the metal member. The protective film 79 is made of, for example, Cr, CrN, SiC, or Si 3 N 4 and suppresses corrosion of metal members. The Cr film is formed by plating, for example. On the other hand, the CrN film, SiC film and Si3N4 film are formed by, for example , CVD (Chemical Vapor Deposition).

また、金属は、セラミックに比べて、耐熱性に劣る。そこで、金属部材の内部には、冷媒流路が形成されてよい。冷媒は、金属部材の熱を外部に搬送し、金属部材の温度上昇を抑制する。 Also, metals are inferior to ceramics in heat resistance. Therefore, a coolant channel may be formed inside the metal member. The coolant conveys the heat of the metal member to the outside and suppresses the temperature rise of the metal member.

なお、図4の支持部材73は、水平部74の代わりに傾斜部を有してもよい。傾斜部は、アーム部76から水平方向に対して斜め上又は斜め下に延びる態様であってもよい。 Note that the support member 73 in FIG. 4 may have an inclined portion instead of the horizontal portion 74 . The inclined portion may extend obliquely upward or obliquely downward from the arm portion 76 with respect to the horizontal direction.

また、図4の回転部材51は、上記実施形態と同様に、円錐状のテーパ面58(図3参照)を含んでもよい。この場合、回転部材51の外周の加熱効率を高めるため、発熱体72はテーパ面に対向配置されることが好ましい。 4 may include a conical tapered surface 58 (see FIG. 3) as in the above embodiment. In this case, in order to increase the heating efficiency of the outer circumference of the rotating member 51, the heating element 72 is preferably arranged to face the tapered surface.

(第2変形例に係る成形装置)
次に、図5を参照して、第2変形例に係る成形装置について説明する。以下、本変形例と上記第1変形例との相違点について主に説明する。
(Molding device according to the second modification)
Next, a molding apparatus according to a second modified example will be described with reference to FIG. Differences between this modified example and the first modified example will be mainly described below.

本変形例の支持部材73は、水平に配置される水平部74のみを含む。発熱体72は、水平部74の一端に取り付けられる。水平部74の他端は、成形炉2の側壁22(図1参照)に取り付けられる。 The support member 73 of this modified example includes only a horizontal portion 74 arranged horizontally. A heating element 72 is attached to one end of the horizontal portion 74 . The other end of the horizontal portion 74 is attached to the side wall 22 (see FIG. 1) of the molding furnace 2 .

本変形例の支持部材73は、上記第1変形例の支持部材73とは異なり、回転軸52と発熱体72とを連結しない。それゆえ、ロール5と加熱機構7のうちの片方のみを、成形炉2の外部に取り出し、メンテナンスすることが可能である。 Unlike the support member 73 of the first modification, the support member 73 of this modification does not connect the rotating shaft 52 and the heating element 72 . Therefore, only one of the rolls 5 and the heating mechanism 7 can be taken out of the molding furnace 2 for maintenance.

本変形例の水平部74は、セラミック製の第1分割部741と、金属製の第2分割部742とに分割される。発熱体72は、セラミック製の第1分割部741に取り付けられる。第1分割部741の材質は、特に限定されないが、例えば窒化ケイ素質であってよい。窒化ケイ素の熱伝導率は低いので、熱伝導による放熱を防止できる。第2分割部742は金属製であるので、内部に冷媒流路が形成される。 The horizontal portion 74 of this modified example is divided into a first dividing portion 741 made of ceramic and a second dividing portion 742 made of metal. The heating element 72 is attached to the first split portion 741 made of ceramic. The material of the first dividing portion 741 is not particularly limited, but may be silicon nitride, for example. Since the thermal conductivity of silicon nitride is low, heat dissipation due to heat conduction can be prevented. Since the second dividing portion 742 is made of metal, a coolant channel is formed inside.

なお、上記第1変形例においても、図4の水平部74がセラミック製の第1分割部と、金属製の第2分割部とに分割されてもよい。第2分割部は、ボルト78等でアーム部76に取り付けられる。 Also in the first modified example, the horizontal portion 74 in FIG. 4 may be divided into a ceramic first divided portion and a metal second divided portion. The second split portion is attached to the arm portion 76 with bolts 78 or the like.

また、図5の支持部材73は、水平部74の代わりに傾斜部を有してもよい。傾斜部は、成形炉2の側壁22(図1参照)から水平方向に対して斜め上又は斜め下に延びる態様であってもよい。 Also, the support member 73 in FIG. 5 may have an inclined portion instead of the horizontal portion 74 . The inclined portion may extend obliquely upward or downward from the horizontal direction from the side wall 22 (see FIG. 1) of the molding furnace 2 .

また、図5の回転部材51は、上記実施形態と同様に、円錐状のテーパ面58(図3参照)を含んでもよい。この場合、回転部材51の外周の加熱効率を高めるため、発熱体72はテーパ面に対向配置されることが好ましい。 5 may also include a conical tapered surface 58 (see FIG. 3) as in the above embodiment. In this case, in order to increase the heating efficiency of the outer circumference of the rotating member 51, the heating element 72 is preferably arranged to face the tapered surface.

(第3変形例に係る成形装置)
次に、図6、図7A~7Cを参照して、第3変形例に係る成形装置について説明する。以下、本変形例と上記実施形態との相違点について主に説明する。
(Molding device according to the third modification)
Next, a molding apparatus according to a third modified example will be described with reference to FIGS. 6 and 7A to 7C. Differences between this modified example and the above-described embodiment will be mainly described below.

加熱機構7は、回転部材51の表面に形成される発熱線81を有する。発熱線81は、電力の供給によって発熱する。電力は、直流と交流のいずれでもよい。発熱線81の材質は、カンタル(kanthal)又はニクロム(nichrome)でもよいが、耐久性の観点から、好ましくはSiC又はPtである。 The heating mechanism 7 has a heating wire 81 formed on the surface of the rotating member 51 . The heating wire 81 generates heat by supplying electric power. The power may be either direct current or alternating current. The material of the heating wire 81 may be kanthal or nichrome, but is preferably SiC or Pt from the viewpoint of durability.

本変形例の発熱線81は回転部材51の表面に接触するので、発熱線81の熱は熱伝導によって回転部材51の外周に伝わる。回転部材51の外周がガラスリボンGに対して食い込み易く、グリップ力が向上する。発熱線81と回転部材51との間に隙間がないので、伝熱効率が気流の乱れで変動し難く、温度制御性が良い。 Since the heating wire 81 of this modified example contacts the surface of the rotating member 51, the heat of the heating wire 81 is transmitted to the outer periphery of the rotating member 51 by heat conduction. The outer periphery of the rotating member 51 can easily bite into the glass ribbon G, improving the gripping force. Since there is no gap between the heating wire 81 and the rotating member 51, the heat transfer efficiency is less likely to fluctuate due to turbulence in the air flow, and the temperature controllability is good.

回転部材51は、回転部材51の回転中心線Rに対して垂直な2つの平坦面511、512を有する。1つの平坦面511は、ガラスリボンGの幅方向内側に向けた面である。平坦面511には凹部513が形成される。残り1つの平坦面512は、ガラスリボンGの幅方向外側に向けた面である。 The rotating member 51 has two flat surfaces 511 and 512 perpendicular to the rotation centerline R of the rotating member 51 . One flat surface 511 is a surface directed inward in the width direction of the glass ribbon G. As shown in FIG. A concave portion 513 is formed in the flat surface 511 . The remaining one flat surface 512 is a surface directed outward in the width direction of the glass ribbon G. As shown in FIG.

発熱線81は、平坦面511の凹部513に埋め込まれる。また、発熱線81は、平坦面512に形成される。なお、凹部513は、2つの平坦面511、512のどちらに形成されてもよく、また、どちらにも形成されなくてもよい。発熱線81は、図6では回転部材51の両側に形成されるが、片側にのみ形成されてもよい。 The heating wire 81 is embedded in the recess 513 of the flat surface 511 . Also, the heating wire 81 is formed on the flat surface 512 . Note that the recess 513 may be formed on either of the two flat surfaces 511 and 512, or may not be formed on either. Although the heating wire 81 is formed on both sides of the rotating member 51 in FIG. 6, it may be formed only on one side.

ところで、本変形例の発熱線81は、回転部材51の表面に形成されるので、回転部材51と共に回転する。そこで、加熱機構7は、発熱線81に電力を供給する電極として、図7A及び図7Cに示すブラシ電極82、又は図7Bに示すローラ電極83を有する。発熱線81は、回転部材51の回転中に常に電力を受給すべく、回転軸52の回転中心線Rを中心とする円環状に形成される。 By the way, since the heating wire 81 of this modification is formed on the surface of the rotating member 51 , it rotates together with the rotating member 51 . Therefore, the heating mechanism 7 has a brush electrode 82 shown in FIGS. 7A and 7C or a roller electrode 83 shown in FIG. 7B as an electrode for supplying electric power to the heating wire 81 . The heating wire 81 is formed in an annular shape around the rotation center line R of the rotating shaft 52 so as to always receive electric power while the rotating member 51 is rotating.

以上、本開示に係るガラス板の製造装置及びガラス板の製造方法について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the apparatus for manufacturing a glass sheet and the method for manufacturing a glass sheet according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments and the like. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.

例えば、上記実施形態及び上記変形例の成形装置1は、フロート法でガラスリボンGを得るが、フュージョン法でガラスリボンを得てもよい。フュージョン法は、樋の溝に溶融ガラスを連続的に供給し、樋の左右両側にあふれ出た溶融ガラスを、樋の左右両側面に沿って流下させ、樋の下縁で合流させ、帯板状に成形する。フュージョン法のロールは、鉛直方向にガラスリボンを送り出す。 For example, the forming apparatuses 1 of the above embodiments and modifications obtain the glass ribbon G by the float method, but the glass ribbon may be obtained by the fusion method. In the fusion method, molten glass is continuously supplied to the grooves of the gutter, and the molten glass that overflows on both the left and right sides of the gutter is allowed to flow down along the left and right sides of the gutter, join at the lower edge of the gutter, and form a band plate. shape. Fusion process rolls deliver the glass ribbon in the vertical direction.

1 成形装置
2 成形炉
20 浴槽
21 天井
22 側壁
3 ヒータ
5 ロール
51 回転部材
52 回転軸
53 冷媒流路
58 テーパ面
7 加熱機構
71 照射器
72 発熱体
73 支持部材
74 水平部
75 軸受部
76 アーム部
78 ボルト
79 保護膜
81 発熱線
82 ブラシ電極
83 ローラ電極
G ガラスリボン
M 溶融金属
1 Forming Device 2 Forming Furnace 20 Bathtub 21 Ceiling 22 Side Wall 3 Heater 5 Roll 51 Rotating Member 52 Rotating Shaft 53 Refrigerant Flow Path 58 Tapered Surface 7 Heating Mechanism 71 Irradiator 72 Heating Element 73 Supporting Member 74 Horizontal Section 75 Bearing Section 76 Arm Section 78 bolt 79 protective film 81 heating wire 82 brush electrode 83 roller electrode G glass ribbon M molten metal

Claims (14)

セラミック製の回転部材と、前記回転部材を回転させる回転軸と、前記回転軸の内部に形成される冷媒流路とを有し、前記回転部材の外周にて帯板状のガラスリボンの幅方向端部を押さえ、前記ガラスリボンの長手方向に前記ガラスリボンを送り出すロールと、
前記回転部材の外周を加熱する加熱機構と、
を備え、
前記加熱機構は、レーザ光線を前記回転部材の外周に照射する照射器を含むことを特徴とする、ガラス板の製造装置。
It has a rotating member made of ceramic, a rotating shaft for rotating the rotating member, and a coolant channel formed inside the rotating shaft, and a width direction of a band-shaped glass ribbon on the outer periphery of the rotating member. A roll that presses the end portion and sends out the glass ribbon in the longitudinal direction of the glass ribbon;
a heating mechanism for heating the outer circumference of the rotating member;
with
The apparatus for manufacturing a glass sheet, wherein the heating mechanism includes an irradiator that irradiates the outer circumference of the rotating member with a laser beam.
前記回転部材は、前記回転軸の回転中心線に対して線対称な円錐状のテーパ面を含み、
前記レーザ光線の前記テーパ面に対する入射角は、0°~15°である、請求項1に記載のガラス板の製造装置。
The rotating member includes a conical tapered surface that is symmetrical with respect to the center line of rotation of the rotating shaft,
2. The apparatus for manufacturing a glass sheet according to claim 1, wherein the incident angle of said laser beam to said tapered surface is 0° to 15°.
前記テーパ面は、前記ガラスリボンの幅方向外側に向けて先細り状である、請求項2に記載のガラス板の製造装置。 The apparatus for manufacturing a glass plate according to claim 2, wherein the tapered surface tapers outward in the width direction of the glass ribbon. セラミック製の回転部材と、前記回転部材を回転させる回転軸と、前記回転軸の内部に形成される冷媒流路とを有し、前記回転部材の外周にて帯板状のガラスリボンの幅方向端部を押さえ、前記ガラスリボンの長手方向に前記ガラスリボンを送り出すロールと、
前記回転部材の外周を加熱する加熱機構と、
を備え、
前記加熱機構は、前記回転部材の外周に対向配置される発熱体と、前記発熱体を支持する支持部材とを有することを特徴とする、ガラス板の製造装置。
It has a rotating member made of ceramic, a rotating shaft for rotating the rotating member, and a coolant channel formed inside the rotating shaft, and a width direction of a band-shaped glass ribbon on the outer periphery of the rotating member. A roll that presses the end portion and sends out the glass ribbon in the longitudinal direction of the glass ribbon;
a heating mechanism for heating the outer periphery of the rotating member;
with
The apparatus for manufacturing a glass sheet, wherein the heating mechanism has a heat generating element arranged opposite to the outer circumference of the rotating member, and a support member supporting the heat generating element.
前記支持部材は、水平に配置される水平部を含み、
前記発熱体は、前記水平部に取り付けられる、請求項4に記載のガラス板の製造装置。
The support member includes a horizontal portion arranged horizontally,
The apparatus for manufacturing a glass plate according to claim 4, wherein the heating element is attached to the horizontal portion.
前記支持部材は、前記回転軸を回転自在に支持する軸受部と、前記軸受部と前記水平部とを連結するアーム部とを含む、請求項5に記載のガラス板の製造装置。 The apparatus for manufacturing a glass plate according to claim 5, wherein the support member includes a bearing portion that rotatably supports the rotating shaft, and an arm portion that connects the bearing portion and the horizontal portion. 前記支持部材は、前記水平部と前記アーム部とを締結するボルトを更に含み、
前記ボルトは、前記アーム部の貫通穴を通り、前記水平部のねじ穴にねじ込まれる、請求項6に記載のガラス板の製造装置。
The support member further includes a bolt that fastens the horizontal portion and the arm portion,
7. The apparatus for manufacturing a glass sheet according to claim 6, wherein said bolt passes through a through hole of said arm portion and is screwed into a screw hole of said horizontal portion.
前記支持部材の少なくとも一部は、炭素鋼又は合金鋼で形成される金属部材であり、
前記金属部材の表面には、Cr、CrN、SiC又はSiの保護膜が形成される、請求項4~7のいずれか一項に記載のガラス板の製造装置。
At least part of the support member is a metal member made of carbon steel or alloy steel,
The glass plate manufacturing apparatus according to any one of claims 4 to 7, wherein a protective film of Cr, CrN, SiC or Si 3 N 4 is formed on the surface of the metal member.
前記発熱体の材質は、SiC又はPtである、請求項4~8のいずれか一項に記載のガラス板の製造装置。 The apparatus for manufacturing a glass plate according to any one of claims 4 to 8, wherein the material of the heating element is SiC or Pt. セラミック製の回転部材と、前記回転部材を回転させる回転軸と、前記回転軸の内部に形成される冷媒流路とを有し、前記回転部材の外周にて帯板状のガラスリボンの幅方向端部を押さえ、前記ガラスリボンの長手方向に前記ガラスリボンを送り出すロールと、
前記回転部材の外周を加熱する加熱機構と、
を備え、
前記加熱機構は、前記回転部材の表面に形成される発熱線を有することを特徴とする、ガラス板の製造装置。
It has a rotating member made of ceramic, a rotating shaft for rotating the rotating member, and a coolant channel formed inside the rotating shaft, and a width direction of a band-shaped glass ribbon on the outer periphery of the rotating member. A roll that presses the end portion and sends out the glass ribbon in the longitudinal direction of the glass ribbon;
a heating mechanism for heating the outer circumference of the rotating member;
with
The apparatus for manufacturing a glass plate, wherein the heating mechanism has a heating wire formed on the surface of the rotating member.
前記回転部材は、前記回転部材の回転中心線に対して垂直な平坦面を有し、
前記発熱線は、前記回転部材の前記平坦面に形成される、請求項10に記載のガラス板の製造装置。
The rotating member has a flat surface perpendicular to the centerline of rotation of the rotating member,
The apparatus for manufacturing a glass plate according to claim 10, wherein the heating wire is formed on the flat surface of the rotating member.
前記回転部材は、前記回転部材の回転中心線に対して垂直な平坦面と、前記平坦面に形成される凹部とを有し、
前記発熱線は、前記回転部材の前記凹部に埋め込まれる、請求項10に記載のガラス板の製造装置。
The rotating member has a flat surface perpendicular to the rotation center line of the rotating member and a recess formed in the flat surface,
The apparatus for manufacturing a glass plate according to claim 10, wherein the heating wire is embedded in the concave portion of the rotating member.
前記平坦面は、前記ガラスリボンの幅方向内側に向けた面、及び前記ガラスリボンの幅方向外側に向けた面の少なくとも一方である、請求項11又は12に記載のガラス板の製造装置。 The apparatus for manufacturing a glass plate according to claim 11 or 12, wherein the flat surface is at least one of a surface facing inward in the width direction of the glass ribbon and a surface facing outward in the width direction of the glass ribbon. 請求項1~13のいずれか一項に記載の製造装置を用い、ガラス板を製造するガラス板の製造方法。 A method for manufacturing a glass plate using the manufacturing apparatus according to any one of claims 1 to 13.
JP2019192088A 2019-10-21 2019-10-21 Glass plate manufacturing apparatus and glass plate manufacturing method Active JP7251444B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019192088A JP7251444B2 (en) 2019-10-21 2019-10-21 Glass plate manufacturing apparatus and glass plate manufacturing method
CN202011101573.5A CN112759233B (en) 2019-10-21 2020-10-15 Apparatus for manufacturing glass plate and method for manufacturing glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192088A JP7251444B2 (en) 2019-10-21 2019-10-21 Glass plate manufacturing apparatus and glass plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2021066625A JP2021066625A (en) 2021-04-30
JP7251444B2 true JP7251444B2 (en) 2023-04-04

Family

ID=75636631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192088A Active JP7251444B2 (en) 2019-10-21 2019-10-21 Glass plate manufacturing apparatus and glass plate manufacturing method

Country Status (2)

Country Link
JP (1) JP7251444B2 (en)
CN (1) CN112759233B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073352A1 (en) 2011-11-17 2013-05-23 旭硝子株式会社 Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll
JP2014193796A (en) 2013-02-26 2014-10-09 Nippon Electric Glass Co Ltd Glass plate production device and glass plate production method
JP2016135717A (en) 2013-05-16 2016-07-28 旭硝子株式会社 Apparatus and method for manufacturing sheet glass, and glass ribbon
CN106495451A (en) 2017-01-11 2017-03-15 河北省沙河玻璃技术研究院 A kind of ultrathin flexible glass edge-pulling structure
CN206418007U (en) 2017-01-11 2017-08-18 河北省沙河玻璃技术研究院 A kind of ultrathin flexible glass edge-pulling structure
JP2018193284A (en) 2017-05-22 2018-12-06 日本電気硝子株式会社 Device and method for producing glass plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013291B1 (en) * 1969-10-21 1975-05-19
EP2065345A1 (en) * 2007-11-29 2009-06-03 Corning Incorporated Apparatus and method for producing sheets of glass presenting at least one face of very high surface quality
CN105050970B (en) * 2013-05-16 2018-05-15 旭硝子株式会社 The manufacture device of glass plate and the manufacture method of glass plate
JP2015105216A (en) * 2013-12-02 2015-06-08 旭硝子株式会社 Float glass manufacturing apparatus and float glass manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073352A1 (en) 2011-11-17 2013-05-23 旭硝子株式会社 Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll
JP2014193796A (en) 2013-02-26 2014-10-09 Nippon Electric Glass Co Ltd Glass plate production device and glass plate production method
JP2016135717A (en) 2013-05-16 2016-07-28 旭硝子株式会社 Apparatus and method for manufacturing sheet glass, and glass ribbon
CN106495451A (en) 2017-01-11 2017-03-15 河北省沙河玻璃技术研究院 A kind of ultrathin flexible glass edge-pulling structure
CN206418007U (en) 2017-01-11 2017-08-18 河北省沙河玻璃技术研究院 A kind of ultrathin flexible glass edge-pulling structure
JP2018193284A (en) 2017-05-22 2018-12-06 日本電気硝子株式会社 Device and method for producing glass plate

Also Published As

Publication number Publication date
CN112759233B (en) 2023-11-17
JP2021066625A (en) 2021-04-30
CN112759233A (en) 2021-05-07

Similar Documents

Publication Publication Date Title
TWI679176B (en) Thermally tempered glass and methods and apparatuses for thermal tempering of glass
TWI582051B (en) A support roll, a forming device having a plate glass for supporting the roll, and a method of forming a plate glass using a support roll
JP2014013874A (en) Substrate supporting device
JP7251444B2 (en) Glass plate manufacturing apparatus and glass plate manufacturing method
JP4530896B2 (en) Plate type far infrared heater for vacuum heating furnace
KR20190095415A (en) Method and apparatus for managing glass ribbon cooling
CN116568644A (en) Ceramic cutting method and device
JPWO2013187179A1 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP2016183070A (en) Support roll, glass manufacturing apparatus, and glass manufacturing method
US20210175219A1 (en) Display area having tiles with improved edge strength and methods of making the same
WO2014185130A1 (en) Device for manufacturing glass plate and method for manufacturing glass plate
WO2014185127A1 (en) Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
KR102153288B1 (en) Support roller, method for molding glass plate, method for manufacturing glass plate, and device for manufacturing glass plate
KR102153290B1 (en) Device for manufacturing glass sheet and method for manufacturing glass sheet
WO2023106093A1 (en) Glass transfer device, glass article manufacturing device, and glass article manufacturing method
CN218642622U (en) Backup roll and glass plate molding device
KR101372424B1 (en) Method of forming crystalline silicone thin film and Apparatus for the same method
JP4453073B2 (en) Roll for continuous molten metal plating
CN111721130A (en) Heat-resisting cushion block fixing structure for steel rolling heating furnace
KR20240066164A (en) Glass ribbon processing method and device therefor
US20140331717A1 (en) Plate glass production device, and plate glass production method
CN118302391A (en) Glass transfer device, glass article manufacturing device, and glass article manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150