JP7248106B2 - Steam treatment method for steelmaking slag - Google Patents
Steam treatment method for steelmaking slag Download PDFInfo
- Publication number
- JP7248106B2 JP7248106B2 JP2021513603A JP2021513603A JP7248106B2 JP 7248106 B2 JP7248106 B2 JP 7248106B2 JP 2021513603 A JP2021513603 A JP 2021513603A JP 2021513603 A JP2021513603 A JP 2021513603A JP 7248106 B2 JP7248106 B2 JP 7248106B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- steelmaking slag
- slag
- bed
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims description 147
- 238000009628 steelmaking Methods 0.000 title claims description 114
- 238000000034 method Methods 0.000 title claims description 49
- 238000001931 thermography Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 238000010025 steaming Methods 0.000 claims description 8
- 238000010793 Steam injection (oil industry) Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 10
- 238000007664 blowing Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D15/00—Handling or treating discharged material; Supports or receiving chambers therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/48—Thermography; Techniques using wholly visual means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Furnace Details (AREA)
Description
本発明は、製鋼スラグを蒸気処理する蒸気処理設備の操業において、合理的な蒸気流量制御が可能な製鋼スラグの蒸気処理方法に関する。 TECHNICAL FIELD The present invention relates to a method for steaming steelmaking slag, which enables rational steam flow rate control in the operation of a steaming facility for steaming steelmaking slag.
製鋼スラグは、緻密で固く、締め固めれば大きな荷重を支持できるため、道路の路盤材として用いられる。しかし、たとえば転炉スラグをはじめとする製鋼スラグは長時間を経て膨張性を示す性質がある。そのため、路盤材として出荷する前に膨張源の反応を予め促進して大部分を反応させておくエージング処理を実施するのが通常である。 Steelmaking slag is dense and hard and can support a large load when compacted, so it is used as a roadbed material. However, steelmaking slag such as converter slag, for example, has the property of exhibiting expandability after a long period of time. For this reason, it is common to carry out an aging treatment in which the reaction of the expansion source is accelerated in advance and the majority of the material is reacted before shipment as a roadbed material.
製鋼スラグは破砕して鉄鋼スラグ路盤材として加工される。製鋼スラグ中に含まれるフリーライム(f-CaO)は水分と反応して消石灰(Ca(OH)2)となり、製鋼スラグは2倍強に膨張する。未処理で用いると数年の内に路盤を破壊する恐れがあるので、製造工程の中で蒸気により水分との反応を促進する「蒸気エージング」処理を行う。膨張率の測定方法は、非特許文献1を用いることができる。Steelmaking slag is crushed and processed as a steel slag roadbed material. Free lime (f-CaO) contained in the steelmaking slag reacts with moisture to become slaked lime (Ca(OH) 2 ), and the steelmaking slag expands more than twice. If used without treatment, the roadbed may be destroyed within a few years, so "steam aging" treatment is performed in the manufacturing process to promote the reaction with moisture using steam. Non-Patent
蒸気エージング処理においては、大気圧と平衡する飽和蒸気温度近傍で処理することが、多く実施されている。処理にあたっては、数100~数1000tの製鋼スラグをほぼ平らに積み上げたベッドにする。多くの場合、壁で仕切られたピットの中に製鋼スラグを積み上げる。その後、ピット中の製鋼スラグの下に配置された蒸気供給管から蒸気を吹き込んでベッド内の製鋼スラグを約100℃に昇温し、その後蒸気量を絞って100℃近傍で製鋼スラグを数日保持する。ここで、f-CaOが水分と反応して製鋼スラグの膨張性は大きく低減する。 In the steam aging treatment, treatment is often performed near the saturated steam temperature that is in equilibrium with the atmospheric pressure. For the treatment, several hundred to several thousand tons of steelmaking slag is placed on a bed in which it is almost flatly piled up. Steelmaking slag is often piled up in walled pits. After that, steam is blown from a steam supply pipe arranged under the steelmaking slag in the pit to raise the temperature of the steelmaking slag in the bed to about 100°C. Hold. Here, f--CaO reacts with moisture to greatly reduce the expansibility of the steelmaking slag.
そのような蒸気エージング処理の方法として、複数の温度計をベッド内の製鋼スラグに挿入して設け、温度計の測温結果に応じて蒸気供給管の蒸気流量を制御する方法が提案されている(特許文献1参照)。 As a method for such steam aging treatment, a method has been proposed in which a plurality of thermometers are inserted into the steelmaking slag in the bed and the steam flow rate of the steam supply pipe is controlled according to the temperature measurement results of the thermometers. (See Patent Document 1).
従来の蒸気エージング処理方法では、作業工数や蒸気使用量の合理化の観点からは処理設備は大型であるほどよい。しかしながら、処理設備を大型化すると、一つのピットに様々な履歴の製鋼スラグが入ることとなり、また、製鋼スラグをベッドに積み付ける重機での作業も積込みパターンを一定に持続することが困難である。そのため、箇所ごとの粗密差を内包する製鋼スラグベッドとなる。このため、下から蒸気を吹込み昇温する際に、製鋼スラグの粗密により蒸気の偏流が起きて、いずれの部分をも一定ペースで昇温して時間の過不足なく高温で保持することが困難になる。 In the conventional steam aging treatment method, the larger the treatment facility, the better, from the viewpoint of rationalization of work man-hours and the amount of steam used. However, when processing equipment is enlarged, steelmaking slag with various histories enters a single pit, and it is difficult to maintain a constant loading pattern when working with heavy equipment to stack steelmaking slag on the bed. . Therefore, it becomes a steelmaking slag bed that includes the density difference for each location. For this reason, when steam is blown in from below to raise the temperature, uneven flow of steam occurs due to the coarseness and fineness of the steelmaking slag. become difficult.
このとき、製鋼スラグの昇温が遅い部分に合わせて、蒸気供給管のバルブ制御によりベッド全体の蒸気吹込み時間を延長すると、多くの蒸気が既に100℃以上に保持された製鋼スラグの部分に更に吹き込むこととなり不合理である。全体の総量を増減しても相対的に流れにくい箇所は、結局他の箇所より少ない蒸気流量のまま変化していく。すなわち、昇温の済んだ大量の蒸気が必要でない部分にも余剰に流れることになる。こうして蒸気を無駄に使っているのに、蒸気が不十分なままの部分が残り、もっとも重要な膨脹の安定化がばらついたまま残ることとなる。 At this time, if the steam injection time for the entire bed is extended by controlling the valve of the steam supply pipe according to the part of the steelmaking slag where the temperature rise is slow, a large amount of steam will flow into the part of the steelmaking slag already held at 100°C or higher. It is unreasonable to blow more. Even if the overall amount is increased or decreased, the portion where the flow is relatively difficult eventually changes with a smaller steam flow rate than the other portions. That is, a large amount of steam whose temperature has already been raised flows excessively even in areas where it is not required. This wasteful use of steam leaves some areas with insufficient steam and, most importantly, inconsistencies in expansion stabilization.
また、特許文献1に開示された方法のように、温度計を製鋼スラグに挿入するのは数的に限界があり、温度計間の距離を広げざるを得ず、測温されない部分が生じる。そのため、ベッドの中の製鋼スラグにおいて、どの箇所が昇温不良でばらついているのか正確に把握できない。温度が十分に上がっていない箇所が見つけられずに残ってしまうことがあり、水浸膨張比は1ベッドの中で大小ばらついてしまう。
In addition, there is a numerical limit to inserting thermometers into the steelmaking slag as in the method disclosed in
本発明の目的は、従来技術の抱えている上述した課題を解決して、製鋼スラグを蒸気処理する蒸気処理方法において、ベッド中の製鋼スラグの状態によらず合理的な蒸気流量制御が可能で、蒸気使用量を抑制した製鋼スラグの蒸気処理ができる、製鋼スラグの蒸気処理方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, and to provide a steam treatment method for steaming steelmaking slag, capable of rationally controlling the steam flow rate regardless of the state of the steelmaking slag in the bed. To provide a method for steaming steelmaking slag, which can steam-treat steelmaking slag while suppressing the amount of steam used.
前記の目的を実現するため、本発明は、ベッド内の製鋼スラグの全面を測温できれば、ベッド内の製鋼スラグ全体での蒸気流量の分布が把握でき、その蒸気流量の分布に基づき供給する蒸気量を制御することを突き止め、以下に述べる新規な製鋼スラグの蒸気処理方法を開発するに至った。 In order to achieve the above-mentioned object, the present invention can measure the temperature of the entire surface of the steelmaking slag in the bed, and can grasp the distribution of the steam flow rate in the entire steelmaking slag in the bed. The inventors have found that the amount of slag can be controlled, and have developed a novel steelmaking slag steam treatment method described below.
即ち、本発明は、製鋼スラグをベッド上に積み、蒸気をベッドの下方から吹き込んで製鋼スラグを蒸気処理する製鋼スラグの蒸気処理方法において、ベッド中の製鋼スラグの表面を複数の区画に分割し、分割した各区画で、製鋼スラグ表面の温度時間推移を計測し、計測した温度時間推移に基づき、製鋼スラグの各区画における蒸気流量の分布を推定し、推定した蒸気流量の分布に基づき、製鋼スラグの各区画の蒸気吹込み量を制御する、ことを特徴とする製鋼スラグの蒸気処理方法である。 That is, the present invention relates to a steelmaking slag steam treatment method in which steelmaking slag is piled on a bed and steam is blown into the bed from below to steam-treat the steelmaking slag. , in each divided section, the temperature change over time on the steelmaking slag surface is measured, based on the measured temperature change over time, the steam flow rate distribution in each section of the steelmaking slag is estimated, and based on the estimated steam flow rate distribution, the steelmaking A steam treatment method for steelmaking slag, characterized by controlling the amount of steam blowing into each section of the slag.
なお、前記のように構成される本発明に係る製鋼スラグの蒸気処理方法においては、
(1)前記製鋼スラグ表面の各区画における温度時間推移の計測を、ベッドの上方からベッド上に積まれた製鋼スラグの上面を熱画像観測することで行うこと、
(2)前記製鋼スラグ表面の各区画における温度時間推移の計測を、製鋼スラグの表面から挿入された複数の温度計と、ベッドの上方からベッド上に積まれた製鋼スラグの上面を熱画像観測することと、の両者による計測結果に基づき行うこと、
(3)前記熱画像観測を、サーモグラフィを用いて行うこと、
(4)前記製鋼スラグ表面の区画の1辺の長さが、積まれたベッド高さの2分の1以上、2以下の長方形として、蒸気処理を行うこと、
がより好ましい解決手段となるものと考えられる。In the steelmaking slag steam treatment method according to the present invention configured as described above,
(1) Measurement of the temperature-time transition in each section of the steelmaking slag surface is performed by thermal image observation of the upper surface of the steelmaking slag stacked on the bed from above the bed;
(2) The measurement of the temperature-time transition in each section of the steelmaking slag surface was performed by observing a plurality of thermometers inserted from the surface of the steelmaking slag and thermal image observation of the top surface of the steelmaking slag stacked on the bed from above the bed. and based on the results of measurements by both;
(3) performing the thermal image observation using thermography;
(4) Steam treatment is performed as a rectangle with the length of one side of the section of the steelmaking slag surface being 1/2 or more and 2 or less of the height of the stacked bed;
is considered to be a more preferable solution.
本発明に係る製鋼スラグの蒸気処理方法によれば、ベッド中の製鋼スラグの表面を複数の区画に分割し、分割した各区画で経時的に区画ごとの全面の温度時間推移を計測し、温度時間推移に基づき各区画での蒸気流量の分布を推定し、推定した蒸気流量の分布を各区画の蒸気流量制御に反映させることで、より一定な昇温、保温が可能となる。その結果、1ベッドの中での温度保持が均一化され、水浸膨張比のばらつきが低減し、大きい水浸膨張比で残留する部分がなくなり、その平均値も低下する。そのため、合理的な蒸気流量制御が可能となり、蒸気使用量を抑制しての蒸気処理が可能となる。 According to the steam treatment method for steelmaking slag according to the present invention, the surface of the steelmaking slag in the bed is divided into a plurality of sections, and the temperature-time transition of the entire surface of each section is measured over time in each divided section. By estimating the steam flow rate distribution in each section based on the time transition and reflecting the estimated steam flow rate distribution in the steam flow rate control of each section, more constant temperature rise and heat retention can be achieved. As a result, the temperature is kept uniform in one bed, the variation in the water immersion expansion ratio is reduced, there is no portion remaining with a large water immersion expansion ratio, and the average value is also lowered. Therefore, rational steam flow rate control becomes possible, and steam treatment can be performed while suppressing the amount of steam used.
<一般的な製鋼スラグの蒸気処理方法について>
図1(a)、(b)は、それぞれ、本発明の対象となる製鋼スラグの蒸気処理方法を説明するための斜視図および断面図である。図1(a)、(b)に示す例において、1はスラグ処理槽、2は蒸気供給管、3は蒸気処理される製鋼スラグ、である。図1(a)、(b)に示すように、本発明に係る製鋼スラグの蒸気処理方法では、製鋼スラグ3をスラグ処理槽1のベッド上に積み、蒸気供給管2を介して蒸気をベッドの下方から吹き込んで製鋼スラグ3を蒸気処理している。蒸気供給管2は、床敷と呼ばれる比較的粗粒のスラグの充填層の中に埋設されることがある。その場合は、床敷の上に製鋼スラグ3を積む。床敷を設ける目的は、蒸気供給管2の直上以外の場所の製鋼スラグ3にも蒸気が分散して吹き込まれるようにすることと、重機などによる製鋼スラグ3の積み付けと搬出の際に蒸気供給管2が破損しないようにすることである。前者の目的のためには、床敷には例えば目開き5mmの篩の篩上を用いて通気性を向上させることが望ましい。なお、スラグ処理槽1のベッド上に積まれた製鋼スラグ3の表面には、上方を向く上面と端部で徐々に厚みが薄くなる斜面とがあるが、その両者が本発明でいう製鋼スラグの表面の概念に含まれる。<General steam treatment method for steelmaking slag>
1(a) and 1(b) are a perspective view and a cross-sectional view, respectively, for explaining the steam treatment method for steelmaking slag, which is the subject of the present invention. In the example shown in FIGS. 1(a) and 1(b), 1 is a slag treatment tank, 2 is a steam supply pipe, and 3 is steelmaking slag to be steamed. As shown in FIGS. 1(a) and 1(b), in the steelmaking slag steam treatment method according to the present invention,
本発明に係る製鋼スラグの蒸気処理方法は、図1(a)、(b)に示す例において、スラグ処理槽1のベッド中の製鋼スラグ3の表面を複数の区画に分割し、分割した各区画で、製鋼スラグ表面の温度時間推移を計測し、計測した温度時間推移に基づき、製鋼スラグの各区画における蒸気流量の分布を推定し、推定した蒸気流量の分布に基づき、製鋼スラグの各区画の蒸気吹込み量を制御する点に特徴がある。 In the method for steaming steelmaking slag according to the present invention, in the example shown in FIGS. In each section, the temperature change over time on the surface of the steelmaking slag is measured. Based on the measured temperature change over time, the steam flow rate distribution in each section of steelmaking slag is estimated. Based on the estimated steam flow rate distribution, each section of steelmaking slag It is characterized by controlling the amount of steam blowing in.
<製鋼スラグ表面を複数の区画に分割する工程について>
図2は、本発明に係る製鋼スラグの蒸気処理方法において、ベッド中の製鋼スラグの表面を複数の区画に分割する方法の一例を説明するための図である。図2に示す例においては、スラグ処理槽1のベッド中の製鋼スラグ3の表面を、幅方向に同じ幅で5分割し、奥行き方向に同じ幅で3分割し、全体で15区画に分割している。本発明において、上記分割数は一例であり、他の分割数とすることもできる。<Regarding the process of dividing the steelmaking slag surface into a plurality of sections>
FIG. 2 is a diagram for explaining an example of a method of dividing the surface of steelmaking slag in a bed into a plurality of sections in the steelmaking slag steam treatment method according to the present invention. In the example shown in FIG. 2, the surface of the
図3(a)、(b)は、それぞれ、本発明に係る製鋼スラグの蒸気処理方法において、製鋼スラグの表面を複数の区画に分割する際に、矩形の1辺の長さの範囲を、製鋼スラグの積み付け高さに対する比率で決定する例を説明するための図である。ここで、図3(a)、(b)に示す例において、表面の区画の適正な大きさは、スラグ積み付けの高さ(Hとする)により異なる。各区画を矩形とした場合、1辺の長さが2分の1H未満では、幅が狭すぎ、蒸気の拡散の影響を受け、区画直下にある蒸気供給管と、隣接する蒸気供給配管のどこに問題があるか判断が困難となる場合がある。1辺の長さが2H超だと、区画が大きすぎ、区画の内部で蒸気ばらつきが生じうるため、区画全体の蒸気量制御では問題解消が困難になる場合がある。そのため、製鋼スラグ表面の区画の1辺の長さ(aまたはb)が、積まれたベッド高さの2分の1以上、2以下の長方形として、蒸気処理を行うことが好ましい。 3(a) and 3(b) respectively show, in the steelmaking slag steam treatment method according to the present invention, when dividing the surface of the steelmaking slag into a plurality of sections, the range of the length of one side of the rectangle is FIG. 4 is a diagram for explaining an example of determination by a ratio to the stowage height of steelmaking slag. Here, in the examples shown in FIGS. 3(a) and 3(b), the proper size of the surface section differs depending on the height (assumed to be H) of the slag stack. If each section is rectangular, if the length of one side is less than 1/2H, the width is too narrow and affected by vapor diffusion. It may be difficult to determine whether there is a problem. If the length of one side exceeds 2H, the compartment is too large, and steam variation may occur within the compartment, making it difficult to solve the problem by controlling the amount of steam in the entire compartment. Therefore, it is preferable to perform the steam treatment in a rectangular shape in which the length of one side (a or b) of the section of the surface of the steelmaking slag is 1/2 or more and 2 or less of the height of the stacked bed.
<製鋼スラグ表面の温度時間推移を計測する工程について>
図4は、本発明に係る製鋼スラグの蒸気処理方法において、製鋼スラグ表面の温度時間推移を計測する方法の一例を説明するための図である。図4に示す例では、製鋼スラグ3の表面の温度を計測するために、サーモグラフィ11をスラグ処理槽1のベッド上に設けている。そして、ベッド上の製鋼スラグ3の表面および斜面の各区画の温度推移を、サーモグラフィ11による熱画像イメージにより測定している。<Regarding the process of measuring the temperature change over time on the steelmaking slag surface>
FIG. 4 is a diagram for explaining an example of a method for measuring the temperature-time transition of the steelmaking slag surface in the steelmaking slag steam treatment method according to the present invention. In the example shown in FIG. 4 , a
本例では、サーモグラフィ11の代わりに、1本で長さ方向の位置毎に測温が可能な光ファイバを緊密な間隔で並べて、製鋼スラグ3の表面の温度を計測することもできる。光ファイバは、網の目のように並べても良いが、長さ方向は分割して測温できるので、いずれかの方向に光ファイバを平行に並べれば良い。製鋼スラグ3の表面全面を計測するためには、スラグ処理槽1のベッドの端にまで並べる必要がある。光ファイバを並べる間隔は0.5m以下で、0.2m程度まで間隔を狭めることが望ましい。
In this example, instead of the
図4に示す例のように、サーモグラフィ11を使用する場合、熱画像のデジタルイメージを一定期間(数10秒)の間に複数回観測し、区画内の熱画像のデジタルイメージにおける各画素(ベッドの座標点に相当)の期間内の最高温度を各画素の温度として求める。これにより、ベッドから立ち上がる湯気の観測干渉を回避することができ、製鋼スラグ3の表面の各区画の温度分布を正確に測定できる。このように、一定期間内の各画素の最高温度から、各区画の温度分布を求める。そして、温度分布の変化を経時的に計測することで、製鋼スラグ3の表面における各区画の蒸気流量分布を推定することができる。推定した各区画の蒸気流量分布を、区画ごとの蒸気量制御に反映させる。
As in the example shown in FIG. 4, when using the
本例では、製鋼スラグ3の表面の各区画の温度を経時的に計測することで、各区画の蒸気流量の分布が推算される。そして、得られた各区画の蒸気流量の分布を各区画の蒸気流量の制御に反映させることで、蒸気吹込みを減量して構わない区画と蒸気吹込みの増量が必要な区画とがわかり、合理的に蒸気を吹込むことができる。その結果、製鋼スラグ3に対し、より一定な昇温、保温が可能となり、蒸気使用量を抑制しての蒸気処理が可能となる。
In this example, by measuring the temperature of each section on the surface of the
図5は、本発明に係る製鋼スラグの蒸気処理方法において、製鋼スラグ表面の温度時間推移を計測する方法の他の例を説明するための図である。図5に示す例では、サーモグラフィ11による各区画の製鋼スラグの表面温度の計測に加えて、温度計12により各区画の表面温度を測温している。この例によれば、温度計12による各区画の表面温度の測定を併用することで、製鋼スラグの昇温過程で下方の昇温が行われているより早い段階から蒸気流量の分布を求めることが可能となる。また、蒸気流量の分布の推定をより多くの深度の測定データに基づき行うことができ、測定の制度を増し、より合理的な蒸気流量制御が可能となるため好ましい。
FIG. 5 is a diagram for explaining another example of the method of measuring the temperature-time transition of the steelmaking slag surface in the steelmaking slag steam treatment method according to the present invention. In the example shown in FIG. 5, in addition to measuring the surface temperature of the steelmaking slag in each section with the
<蒸気吹込み量を制御する工程について>
図6は、本発明に係る製鋼スラグの蒸気処理方法において、推定した蒸気流量の分布に基づき、製鋼スラグの各区画の蒸気吹込み量を制御する方法の一例を説明するための図である。図6に示す例では、スラグ処理槽1のベッドの裏面の構造を示している。図6示す例において、蒸気供給管2は、その上流側に主流量調整バルブ21を備えるとともに、その下流側に5つの第1の枝管22を備えている。各第1の枝管22には、3つの第2の枝管23が設けられている。各第2の枝管23は、上流側から流量調整バルブ24と流量計25と、蒸気噴出孔のない配管部26と、蒸気噴出孔のある配管部27と、を備えている。製鋼スラグの表面の区画は、全部で15区画の例となっている。<Regarding the process of controlling the amount of steam blowing>
FIG. 6 is a diagram for explaining an example of a method of controlling the amount of steam blown into each section of steelmaking slag based on the estimated steam flow rate distribution in the steelmaking slag steam treatment method according to the present invention. The example shown in FIG. 6 shows the structure of the rear surface of the bed of the
主流量調整バルブ21および流量調整バルブ24の制御は、以下のようにして実施されている。まず、スラグ処理槽1上に積まれた製鋼スラグ(図示せず)の表面の各区画の熱画像イメージを、サーモグラフィ11で撮像する。次に、画像処理部31により、撮像した熱画像イメージから、各区画の蒸気流量の分布を推定するとともに、推定した各区画の蒸気流量分布に基づき各区画の蒸気吹込み量を決定する。そして、決定された各区画の蒸気吹込み量に応じて、バルブ制御部32により、主流量調整バルブ21および流量調整バルブ24を制御し、15区画のそれぞれの区画で個別に蒸気吹込みを実施する。
Control of the main
以上の構成により、主流量調整バルブ21および流量調整バルブ24のそれぞれの開度を一定時間ごとに自動調節して、蒸気流量が他より低い区画では蒸気を多量に流し、反対に蒸気流量が他よりも多いあるいは過剰な区画では蒸気流量を抑制する。ベッド全体での製鋼スラグの昇温速度均衡のため、単純に昇温が悪い区画の蒸気量を増やすだけでなく、流れやすい区画群を選んで蒸気流量を抑制することで、ベッド全体の蒸気流量を、部分ごとの制御のない場合に比べて低下させることができる。
With the above configuration, the degree of opening of each of the main
蒸気供給管2、第1の枝管22、第2の枝管23などの蒸気配管と測温箇所とは離れている。そのため、蒸気流量を変化させてから測定される温度が変化するまでには時間差が生じるので、注意が必要である。測温に基づいて推定した蒸気流量の分布の高低によって蒸気流量を制御する場合には、上述した時間差を考慮した制御が必要である。例えば、PID制御においては事前に蒸気流量と温度とを測定して各パラメータを決定することが望ましい。しかし、スラグの粒径分布や充填状況は必ずしも一定でないため、パラメータの最適値は処理毎に変化する。そのため、事前の測定から決定したパラメータに対して、P時間とI時間とを1.2~1.5倍程度長く設定してオーバーシュートを防ぐことが望ましい。
The steam pipes such as the
図1(a)、(b)に示す蒸気処理方法に従って、粒度範囲0~40mmの転炉スラグを蒸気処理し、蒸気処理した転炉スラグからCS-40の下層路盤材を製造した。転炉スラグの蒸気処理にあたっては、準備した転炉スラグをスラグ処理槽のベッド上2.5mの高さに積んだ。積まれた転炉スラグのスラグ処理槽入口側の斜面は約40°であった。転炉スラグの表面を、同一面積の15区画に分割し、15区画の各区画に対し本発明の蒸気処理方法に従って蒸気吹込み量を制御して、転炉スラグの蒸気処理を実施した。なお、区画の大きさは図3(a)、(b)に示すa、bにつき、a=1.8H、b=1.6Hとした。 According to the steam treatment method shown in FIGS. 1(a) and 1(b), converter slag with a particle size range of 0 to 40 mm was steam treated, and a subbase course material of CS-40 was produced from the steam treated converter slag. For the steam treatment of the converter slag, the prepared converter slag was stacked at a height of 2.5 m above the bed of the slag treatment tank. The slope of the stacked converter slag on the inlet side of the slag treatment tank was about 40°. The surface of the converter slag was divided into 15 sections with the same area, and the amount of steam injected into each of the 15 sections was controlled according to the steam treatment method of the present invention, and the converter slag was subjected to steam treatment. The sizes of the partitions were a=1.8H and b=1.6H for a and b shown in FIGS. 3(a) and 3(b).
発明例1は、図3に示すように、サーモグラフィのみで転炉スラグの表面温度を測定した。発明例2は、図4に示すように、サーモグラフィに加えて温度計(熱電対)を転炉スラグ上部から1m深度に四方1.5m間隔で挿入して、サーモグラフィと温度計とにより転炉スラグの表面温度を測定した。比較例は、従来のように、上記発明例2と同様に配置した温度計のみで転炉スラグの表面温度を測定し、蒸気吹き込み量の15区画個別の調整はおこなわず、全区画合計の調整をおこなった。 In Invention Example 1, as shown in FIG. 3, the surface temperature of converter slag was measured only by thermography. In Invention Example 2, as shown in FIG. 4, in addition to the thermography, thermometers (thermocouples) were inserted at 1 m depth from the top of the converter slag at intervals of 1.5 m in all directions, and the thermograph and the thermometer were used to measure the converter slag. was measured. In the comparative example, as in the conventional example, the surface temperature of the converter slag was measured only with a thermometer arranged in the same manner as in the above invention example 2, and the steam injection amount was not adjusted individually for each of the 15 sections, but the total adjustment for all sections was performed. performed.
発明例1、発明例2および比較例において、昇温期間は、初期0.6kg/t-スラグで開始し、全点(発明例1、2では全座標)が100℃に達するまでとした。ここで、発明例1および発明例2では、測温結果から中途で100℃に到達した区画では100℃を保つように蒸気吹き込み量を減らした。また、保温期間は、初期0.6kg/t-スラグで開始し、48時間保持とした。ここで、発明例1および発明例2では、中途で100℃に到達した区画では100℃を保つように蒸気吹き込み量を減らした。蒸気処理終了後、各区画の転炉スラグから10点の試料を採取し、水浸膨張比を非特許文献1に記載の方法に従って求めた。結果を、以下の表1に示す。
In Invention Examples 1, 2 and Comparative Examples, the temperature rising period was started at an initial 0.6 kg/t-slag and continued until all points (all coordinates in Invention Examples 1 and 2) reached 100°C. Here, in Inventive Example 1 and Inventive Example 2, the amount of steam blowing was reduced so as to maintain 100°C in the section where the temperature reached 100°C halfway through according to the temperature measurement results. In addition, the heat retention period was started with 0.6 kg/t-slag and held for 48 hours. Here, in Inventive Examples 1 and 2, the amount of steam blowing was reduced so as to maintain 100°C in the section where the temperature reached 100°C in the middle. After completion of the steam treatment, 10 samples were taken from the converter slag in each section, and the water immersion expansion ratio was determined according to the method described in
表1の結果から、発明例1および発明例2と比較例とを比較すると、昇温期間中に転炉スラグの表面での昇温状況に応じて蒸気量を変化させるため、昇温の遅れやバラツキを緩和でき、発明例1および発明例2では比較例と比較して、100℃到達時間が短縮し、蒸気原単位も低下することがわかった。また、発明例1と発明例2とを比較すると、発明例2では発明例1と比べて、昇温のさらに早い時期から蒸気量制御に入るため、昇温時間や蒸気原単位がさらに低減できることがわかった。その結果、発明例1および発明例2では比較例にくらべて、より信頼性の高い路盤材製品の製造が可能となることがわかった。 From the results in Table 1, when comparing the invention examples 1 and 2 with the comparative example, the temperature rise delays because the steam amount is changed according to the temperature rise condition on the surface of the converter slag during the temperature rise period. It was found that the 100° C. reaching time was shortened in Invention Examples 1 and 2 compared to Comparative Example, and the steam consumption rate was also reduced. In addition, when comparing Invention Example 1 and Invention Example 2, it is found that, compared to Invention Example 1, Invention Example 2 starts controlling the amount of steam at an earlier stage of temperature rise, so that the temperature rise time and the steam consumption rate can be further reduced. I found out. As a result, it was found that invention examples 1 and 2 enabled production of roadbed material products with higher reliability than the comparative example.
本発明の製鋼スラグの蒸気処理方法によれば、製鋼スラグだけでなく、蒸気処理を必要とするその他の塊状または粉状の粒体の処理においても、合理的な蒸気流量制御が可能で、蒸気使用量を抑制した蒸気処理ができる。 According to the steam treatment method for steelmaking slag of the present invention, rational steam flow rate control is possible not only for steelmaking slag but also for treatment of other lumps or powdery granules that require steam treatment. Steam treatment can be performed with reduced consumption.
1 スラグ処理槽
2 蒸気供給管
3 製鋼スラグ
11 サーモグラフィ
12 温度計
21 主流量調整バルブ
22 第1の枝管
23 第2の枝管
24 流量調整バルブ
25 流量計
26 蒸気噴出孔のない配管部
27 蒸気噴出孔のある配管部
31 画像処理部
32 バルブ制御部
Claims (3)
ベッド中の製鋼スラグの表面を複数の区画に分割し、
分割した各区画で、製鋼スラグの表面から挿入された複数の温度計による計測と、ベッドの上方からベッド上に積まれた製鋼スラグの上面の熱画像観測による計測と、の両者による温度時間推移の計測結果を求め、
温度計の計測結果と熱画像観測の計測結果との両方の結果に基づき、製鋼スラグの各区画における蒸気流量の分布を推定し、
推定した蒸気流量の分布に基づき、製鋼スラグの各区画の蒸気吹込み量を制御する、
ことを特徴とする製鋼スラグの蒸気処理方法。 In a steam treatment method for steelmaking slag, the steelmaking slag is piled on a bed and steam is blown into the bed from below to steam-treat the steelmaking slag,
dividing the surface of the steelmaking slag in the bed into multiple compartments,
Temperature time measured by multiple thermometers inserted from the surface of the steelmaking slag in each divided section, and measurement by thermal image observation of the top surface of the steelmaking slag stacked on the bed from above the bed. Obtain the measurement results of the transition ,
Estimate the steam flow distribution in each section of the steelmaking slag based on both the results of the measurement results of the thermometer and the measurement results of the thermal image observation ,
Based on the estimated steam flow rate distribution, control the amount of steam injection in each section of the steelmaking slag,
A steam treatment method for steelmaking slag, characterized by:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019074905 | 2019-04-10 | ||
JP2019074905 | 2019-04-10 | ||
PCT/JP2020/015197 WO2020209174A1 (en) | 2019-04-10 | 2020-04-02 | Steam processing method for steel-making slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020209174A1 JPWO2020209174A1 (en) | 2020-10-15 |
JP7248106B2 true JP7248106B2 (en) | 2023-03-29 |
Family
ID=72751655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021513603A Active JP7248106B2 (en) | 2019-04-10 | 2020-04-02 | Steam treatment method for steelmaking slag |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7248106B2 (en) |
WO (1) | WO2020209174A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012057369A (en) | 2010-09-09 | 2012-03-22 | Yokogawa Bridge Corp | Concrete construction method using thermal image |
JP2017081814A (en) | 2015-10-29 | 2017-05-18 | Jfeスチール株式会社 | Method for producing slag material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04175250A (en) * | 1990-11-06 | 1992-06-23 | Sumitomo Metal Ind Ltd | Aging treatment of steel-making slag and apparatus therefor |
JPH05311213A (en) * | 1992-05-08 | 1993-11-22 | Nkk Corp | Production of water granulated slag |
JP3320540B2 (en) * | 1993-12-29 | 2002-09-03 | 新日本製鐵株式会社 | Aging method for steelmaking slag |
US5463222A (en) * | 1994-01-24 | 1995-10-31 | Colorado Seminary | Thermal imaging system for internal combustion engines |
-
2020
- 2020-04-02 WO PCT/JP2020/015197 patent/WO2020209174A1/en active Application Filing
- 2020-04-02 JP JP2021513603A patent/JP7248106B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012057369A (en) | 2010-09-09 | 2012-03-22 | Yokogawa Bridge Corp | Concrete construction method using thermal image |
JP2017081814A (en) | 2015-10-29 | 2017-05-18 | Jfeスチール株式会社 | Method for producing slag material |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020209174A1 (en) | 2020-10-15 |
WO2020209174A1 (en) | 2020-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Amini et al. | Experimental study of frost formation on a fin-and-tube heat exchanger by natural convection | |
TWI324949B (en) | ||
KR101376565B1 (en) | Method and apparatus for controlling the temperature of strip in the rapid cooling section of continuous annealing line | |
US20170294013A1 (en) | Normalized Defect Characterization of Pulse Thermographic Nondestructive Evaluation | |
JP7248106B2 (en) | Steam treatment method for steelmaking slag | |
JP5642612B2 (en) | Heat treatment apparatus and heat treatment method | |
CN111705174A (en) | Method for detecting blast furnace wall junction thickness | |
CN104503510A (en) | Temperature synchronizing system and method used for metallurgic performance measuring device | |
RU2423559C2 (en) | Procedure for growth of mono crystal of sapphire on seed left in melt under automatic mode | |
JP2004025202A (en) | Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium | |
KR102531803B1 (en) | Method for monitoring wear of refractory linings of blast furnaces | |
JP7252523B2 (en) | Steam treatment operation method for steelmaking slag | |
WO2007093481A1 (en) | A process for manufacturing ceramic tiles | |
CN206330916U (en) | The hot load of key device of mineral wool | |
JP2011173153A (en) | Cooling controller for thick steel plate, cooling control method, and manufacturing method | |
CN110820747B (en) | Temperature difference control method in concrete bin | |
JP4762758B2 (en) | Linear heating method and linear heating control system | |
JP3728050B2 (en) | Blast furnace bottom condition estimation method | |
CN104583367A (en) | Coke oven temperature control device and coke oven temperature control method | |
KR100936357B1 (en) | Decision method of the position and the quantity of the temperature sensor and of the heating zone in a reheating furnace | |
US11926104B2 (en) | Monitoring during additive manufacturing process using thermocouples | |
TWI803197B (en) | A method of stabilizing steel slag by steam aging treatment | |
JP6367756B2 (en) | Thick steel plate cooling method and thick steel plate cooling device | |
KR101056774B1 (en) | Method for measuring temperature gradient of chamber using ptcr | |
CN107314678A (en) | A kind of method for measuring sintering machine temperature matrices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7248106 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |