JP7246648B2 - 作業療法支援装置、作業療法支援装置のための人工知能学習装置、作業療法支援方法、作業療法支援装置のための人工知能学習方法、作業療法支援プログラム、及び人工知能学習プログラム - Google Patents
作業療法支援装置、作業療法支援装置のための人工知能学習装置、作業療法支援方法、作業療法支援装置のための人工知能学習方法、作業療法支援プログラム、及び人工知能学習プログラム Download PDFInfo
- Publication number
- JP7246648B2 JP7246648B2 JP2021098380A JP2021098380A JP7246648B2 JP 7246648 B2 JP7246648 B2 JP 7246648B2 JP 2021098380 A JP2021098380 A JP 2021098380A JP 2021098380 A JP2021098380 A JP 2021098380A JP 7246648 B2 JP7246648 B2 JP 7246648B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- sleep
- artificial intelligence
- occupational therapy
- support device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001584 occupational therapy Methods 0.000 title claims description 376
- 238000013473 artificial intelligence Methods 0.000 title claims description 308
- 238000000034 method Methods 0.000 title claims description 106
- 230000007958 sleep Effects 0.000 claims description 221
- 230000000694 effects Effects 0.000 claims description 162
- 238000011156 evaluation Methods 0.000 claims description 101
- 230000004622 sleep time Effects 0.000 claims description 96
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 76
- 230000033001 locomotion Effects 0.000 claims description 52
- 230000007613 environmental effect Effects 0.000 claims description 13
- 230000013872 defecation Effects 0.000 claims description 10
- 238000012549 training Methods 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- 230000002618 waking effect Effects 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 3
- 230000003863 physical function Effects 0.000 description 36
- 238000004891 communication Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 11
- 238000010801 machine learning Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 230000036578 sleeping time Effects 0.000 description 5
- 206010041349 Somnolence Diseases 0.000 description 4
- 230000001149 cognitive effect Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000000474 nursing effect Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 230000036387 respiratory rate Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 206010011416 Croup infectious Diseases 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 201000010549 croup Diseases 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000003370 grooming effect Effects 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 230000027939 micturition Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003997 social interaction Effects 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 1
- 206010021079 Hypopnoea Diseases 0.000 description 1
- 206010062519 Poor quality sleep Diseases 0.000 description 1
- 208000032140 Sleepiness Diseases 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003903 pelvic floor Anatomy 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000037321 sleepiness Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/70—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Psychiatry (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Pathology (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Rehabilitation Tools (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
この構成によれば、例えば食事に関して「水分の摂取量を抑える」といった、日常生活動作に関する項目のうちの少なくとも1つの項目についての動作指導をも含めて、作業療法計画の立案に役立てることができる。基礎となるデータが、評価者に依存しない客観的なデータであるので、得られる動作指導を表現するデータも評価者に依存しない客観的なデータとなる。
本発明のうち第4の態様によるものは、第1から第3のいずれかの態様による作業療法支援装置であって、前記睡眠データは、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のうちの少なくとも1つを含む、睡眠に関する項目のデータであり、
前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである。
この構成によれば、入力データ及び推定データに、推定データの演算に好適なデータが含まれるので、推定データの演算が相応の精度で行われる。なお、本構成において、「機能的自立度評価法に定められる評価項目のうちの少なくとも1つ」は、「複数段階で評価されるデータ」であれば足り、7段階に限定されない。
この構成によれば、入力データに、推定データの演算に一層好適なデータが含まれるので、推定データの演算がより良好な精度で行われる。なお、本構成において、「睡眠時間」から「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」まで列挙される様々なデータは、それらの冒頭に「所定時間毎の」と記載される通り、いずれも所定時間毎のデータである。例えば、「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」は、「所定睡眠時間帯」内における「所定時間」毎の「最大呼吸数-平均呼吸数」を意味する。
本発明のうち第6の態様によるものは、第1から第5のいずれかの態様による作業療法支援装置であって、前記日常生活動作データは、食事、トイレ、排便、移乗トイレ、移動歩行、理解、問題解決、及び記憶のうち少なくとも1つを含む、日常生活動作に関する項目のデータである。
この構成によれば、作業療法評価を行うのに有益な最小限の項目を含む、日常生活動作データの推定データが演算される。
この構成によれば、日常生活動作データの推定データだけでなく、例えば握力などの身体機能に関するデータの推定データが演算されるので、より精度の高い、作業療法評価又は作業療法計画の立案に役立つデータが得られる。入力データである睡眠データは、評価者に依存しない客観的なデータであるから、身体機能データの推定データも、評価者に依存しない客観的なデータとなる。
本発明のうち第8の態様によるものは、第1から第7のいずれかの態様による作業療法支援装置であって、前記日常生活動作データは、転倒の可能性である転倒リスクを含んでいる。
この構成によれば、転倒リスクを含めて日常生活動作データの推定データが演算されるので、より精度の高い、作業療法評価又は作業療法計画の立案に役立つデータが得られる。
この構成によれば、睡眠データが、例えば「よく眠れた」などの、対象者の主観評価データを含むので、より精度の高い、作業療法評価又は作業療法計画の立案に役立つデータが得られる。また、対象者の主観評価データは、評価者に依存しないので、評価者に依存しない客観的な、作業療法評価又は作業療法計画の立案に役立つデータを得ることを妨げない。
本発明のうち第10の態様によるものは、第1から第9のいずれかの態様による作業療法支援装置であって、前記入力データは、前記対象者の睡眠時の環境に関するデータである環境データを、さらに含んでいる。
この構成によれば、入力データが、例えば睡眠時の照度など、対象者の環境データを含むので、より精度の高い、作業療法評価又は作業療法計画の立案に役立つデータが得られる。また、対象者の環境データは、評価者に依存しないので、評価者に依存しない客観的な、作業療法評価又は作業療法計画の立案に役立つデータを得ることを妨げない。
この構成によれば、作業療法評価の対象者の睡眠データなど(但し基本データを含まない)の履歴をも考慮した、より精度の高い、作業療法評価又は作業療法計画の立案に役立つデータが得られる。
本発明のうち第12の態様によるものは、第1から第11のいずれかの態様による作業療法支援装置であって、前記入力データは、過去の時点における前記対象者の前記日常生活動作データを含んでいる。
この構成によれば、作業療法評価の対象者の過去の時点における日常生活動作データをも考慮した、より精度の高い、作業療法評価又は作業療法計画の立案に役立つデータが得られる。
本発明のうち第13の態様によるものは、第12の態様による作業療法支援装置であって、前記過去の時点における前記対象者の前記日常生活動作データは、前記作業療法支援装置それ自身によって過去に推定された推定データである。
この構成によれば、入力データに含められる過去の時点における日常生活動作データが、容易に得られる。
この構成によれば、第1の態様による作業療法支援装置に使用可能な人工知能が、学習により構築される。なお、人工知能は、本構成の人工知能学習装置の一部であってもよく、例えば外部のクラウドサーバに置かれるものなど、外部の装置であってもよい。
この構成によれば、第4の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。なお、本構成において、「機能的自立度評価法に定められる評価項目のうちの少なくとも1つ」は、「複数段階で評価されるデータ」であれば足り、7段階に限定されない。
本発明のうち第16の態様によるものは、第15の態様による作業療法支援装置のための人工知能学習装置であって、前記睡眠データは、所定時間毎の、睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数、心拍数の所定以上の変動の有無、睡眠時の平均心拍数-非睡眠時の平均心拍数、所定睡眠時間帯内の平均心拍数、前記所定睡眠時間帯内の最大心拍数-前記所定睡眠時間帯内の平均心拍数、睡眠時の平均呼吸数-非睡眠時の平均呼吸数、前記所定睡眠時間帯内の平均呼吸数、前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数、のうちの少なくとも1つを含んでいる。
この構成によれば、第5の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。なお、本構成において、「睡眠時間」から「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」まで列挙される様々なデータは、それらの冒頭に「所定時間毎の」と記載される通り、いずれも所定時間毎のデータである。例えば、「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」は、「所定睡眠時間帯」内における「所定時間」毎の「最大呼吸数-平均呼吸数」を意味する。
本発明のうち第17の態様によるものは、第14から第16のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記日常生活動作データは、食事、トイレ、排便、移乗トイレ、移動歩行、理解、問題解決、及び記憶のうち少なくとも1つを含む、日常生活動作に関する項目のデータである。
この構成によれば、第6の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
この構成によれば、第7の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
本発明のうち第19の態様によるものは、第14から第18のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記日常生活動作データは、転倒の可能性である転倒リスクを含んでいる。
この構成によれば、第8の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
本発明のうち第20の態様によるものは、第14から第19のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記睡眠データは、睡眠に関する質問への前記対象者の回答を、さらに含んでいる。
この構成によれば、第9の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
本発明のうち第21の態様によるものは、第14から第20のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記入力データは、前記対象者の睡眠時の環境に関するデータである環境データを、さらに含んでいる。
この構成によれば、第10の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
この構成によれば、第11の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
本発明のうち第23の態様によるものは、第14から第22のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記入力データは、過去の時点における前記対象者の前記日常生活動作データを含んでいる。
この構成によれば、第12の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
本発明のうち第24の態様によるものは、第23の態様による作業療法支援装置のための人工知能学習装置であって、前記過去の時点における前記対象者の前記日常生活動作データは、前記作業療法支援装置それ自身によって過去に推定された推定データである。
この構成によれば、第13の態様による作業療法支援装置において、対象者の日常生活動作データを含むデータの、推定データを演算させるのに使用可能な人工知能が、学習により構築される。
この構成によれば、第2の態様による作業療法支援装置において、第2の人工知能として使用可能な人工知能が、学習により構築される。なお、人工知能は、本構成の人工知能学習装置の一部であってもよく、例えば外部のクラウドサーバに置かれるものなど、外部の装置であってもよい。
この構成によれば、第4の態様による作業療法支援装置において、第2の人工知能として使用可能な人工知能が、学習により構築される。なお、本構成において、「機能的自立度評価法に定められる評価項目のうちの少なくとも1つ」は、「複数段階で評価されるデータ」であれば足り、7段階に限定されない。
本発明のうち第27の態様によるものは、第25又は第26の態様による作業療法支援装置のための人工知能学習装置であって、前記日常生活動作データは、食事、トイレ、排便、移乗トイレ、移動歩行、理解、問題解決、及び記憶のうち少なくとも1つを含む、日常生活動作に関する項目のデータである。
この構成によれば、第6の態様による作業療法支援装置において、第2の人工知能として使用可能な人工知能が、学習により構築される。
本発明のうち第28の態様によるものは、第25から第27のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記処方データは、前記日常生活動作データに含まれる少なくとも1つの日常生活動作の項目についての、動作指導を表現するデータを、さらに含んでいる。
この構成によれば、第3の態様による作業療法支援装置において、第2の人工知能として使用可能な人工知能が、学習により構築される。
本発明のうち第29の態様によるものは、第25から第28のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記入力データは、前記対象者の身体機能に関するデータである身体機能データを、さらに含んでいる。
この構成によれば、第7の態様による作業療法支援装置において、第2の人工知能として使用可能な人工知能が、学習により構築される。
本発明のうち第30の態様によるものは、第25から第29のいずれかの態様による作業療法支援装置のための人工知能学習装置であって、前記日常生活動作データは、転倒の可能性である転倒リスクを含んでいる。
この構成によれば、第8の態様による作業療法支援装置において、第2の人工知能として使用可能な人工知能が、学習により構築される。
この構成による方法は、第1の態様による作業療法支援装置により実現される作業療法支援方法に相当する。
本発明のうち第32の態様によるものは、作業療法支援方法であって、(a)作業療法支援装置が、作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付けることと、(b)前記作業療法支援装置が、入力を受け付けた前記入力データを、学習済みの第1の人工知能に入力することにより、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータの、推定データを前記第1の人工知能に演算させることと、(c)前記作業療法支援装置が、前記第1の人工知能が演算した前記推定データを、学習済みの第2の人工知能に入力することにより、前記対象者への作業療法の処方データの推定データを前記第2の人工知能に演算させることと、(d)前記作業療法支援装置が、前記第2の人工知能が演算した前記処方データの推定データを出力することと、を備えている。そして、前記処方データは、運動、マッサージ、ストレッチ、及び、寝具の条件のうちの少なくとも1つの項目についての、処方すべき内容を表現するデータを含んでおり、前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含んでおり、前記日常生活動作データは、段階的に評価されるデータを含んでいる。
この構成による方法は、第2の態様による作業療法支援装置により実現される作業療法支援方法に相当する。
本発明のうち第33の態様によるものは、第32の態様による作業療法支援方法であって、前記処方データは、前記日常生活動作データに含まれる少なくとも1つの日常生活動作の項目についての、動作指導を表現するデータを、さらに含んでいる。
この構成による方法は、第3の態様による作業療法支援装置により実現される作業療法支援方法に相当する。
本発明のうち第34の態様によるものは、第31から第33のいずれかの態様による作業療法支援方法であって、前記睡眠データは、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のうちの少なくとも1つを含む、睡眠に関する項目のデータである。また、前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである。
この構成による方法は、第4の態様による作業療法支援装置により実現される作業療法支援方法に相当する。なお、本構成において、「機能的自立度評価法に定められる評価項目のうちの少なくとも1つ」は、「複数段階で評価されるデータ」であれば足り、7段階に限定されない。
本発明のうち第35の態様によるものは、第34の態様による作業療法支援方法であって、前記睡眠データは、所定時間毎の、睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数、心拍数の所定以上の変動の有無、睡眠時の平均心拍数-非睡眠時の平均心拍数、所定睡眠時間帯内の平均心拍数、前記所定睡眠時間帯内の最大心拍数-前記所定睡眠時間帯内の平均心拍数、睡眠時の平均呼吸数-非睡眠時の平均呼吸数、前記所定睡眠時間帯内の平均呼吸数、前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数、のうちの少なくとも1つを含んでいる。
この構成による方法は、第5の態様による作業療法支援装置により実現される作業療法支援方法に相当する。なお、本構成において、「睡眠時間」から「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」まで列挙される様々なデータは、それらの冒頭に「所定睡眠時間毎の」と記載される通り、いずれも所定時間毎のデータである。例えば、「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」は、「所定時間帯」内における「所定時間」毎の「最大呼吸数-平均呼吸数」を意味する。
本発明のうち第36の態様によるものは、第31から第35のいずれかの態様による作業療法支援方法であって、前記入力データは、現在から過去にわたる複数時点における、前記対象者の前記睡眠データを含むデータを、対応する前記複数時点の時間データと互いに関連付けて含んでいる。
この構成による方法は、第11の態様による作業療法支援装置により実現される作業療法支援方法に相当する。
本発明のうち第37の態様によるものは、第1の態様による作業療法支援装置が用いる前記人工知能を学習させる、作業療法支援装置のための人工知能学習方法であって、(a)人工知能学習装置が、作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付けることと、(b)前記人工知能学習装置が、前記入力データに対応する、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータである、教師データの入力を受け付けることと、(c)前記人工知能学習装置が、入力を受け付けた前記入力データと、入力を受け付けた前記教師データとを、前記人工知能に入力することにより、前記入力データから前記教師データを推定するように、前記人工知能を学習させることと、を備えている。そして、前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含んでおり、前記日常生活動作データは、段階的に評価されるデータを含んでいる。
この構成による方法は、第14の態様による作業療法支援装置のための人工知能学習装置により実現される人工知能学習方法に相当する。
本発明のうち第38の態様によるものは、第37の態様による作業療法支援装置のための人工知能学習方法であって、前記睡眠データは、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のうちの少なくとも1つを含む、睡眠に関する項目のデータである。また、前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである。
この構成による方法は、第15の態様による作業療法支援装置のための人工知能学習装置により実現される人工知能学習方法に相当する。なお、本構成において、「機能的自立度評価法に定められる評価項目のうちの少なくとも1つ」は、「複数段階で評価されるデータ」であれば足り、7段階に限定されない。
本発明のうち第39の態様によるものは、第38の態様による作業療法支援装置のための人工知能学習方法であって、前記睡眠データは、所定時間毎の、睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数、心拍数の所定以上の変動の有無、睡眠時の平均心拍数-非睡眠時の平均心拍数、所定睡眠時間帯内の平均心拍数、前記所定睡眠時間帯内の最大心拍数-前記所定睡眠時間帯内の平均心拍数、睡眠時の平均呼吸数-非睡眠時の平均呼吸数、前記所定睡眠時間帯内の平均呼吸数、前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数、のうちの少なくとも1つを含んでいる。
この構成による方法は、第16の態様による作業療法支援装置のための人工知能学習装置により実現される人工知能学習方法に相当する。なお、本構成において、「睡眠時間」から「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」まで列挙される様々なデータは、それらの冒頭に「所定時間毎の」と記載される通り、いずれも所定時間毎のデータである。例えば、「前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数」は、「所定睡眠時間帯」内における「所定時間」毎の「最大呼吸数-平均呼吸数」を意味する。
本発明のうち第40の態様によるものは、第37から第39のいずれかの態様による作業療法支援装置のための人工知能学習方法であって、前記入力データは、現在から過去にわたる複数時点における、前記対象者の前記睡眠データを含むデータを、対応する前記複数時点の時間データと互いに関連付けて含んでいる。
この構成による方法は、第22の態様による作業療法支援装置のための人工知能学習装置により実現される人工知能学習方法に相当する。
本発明のうち第41の態様によるものは、第2の態様による作業療法支援装置が用いる前記第2の人工知能を学習させる、作業療法支援装置のための人工知能学習方法であって、(a)人工知能学習装置が、作業療法評価の対象者の日常生活動作に関するデータである日常生活動作データを含む、入力データの入力を受け付けることと、(b)前記人工知能学習装置が、前記入力データに対応する、前記対象者への作業療法の処方データである教師データの入力を受け付けることと、(c)前記人工知能学習装置が、入力を受け付けた前記入力データと、入力を受け付けた前記教師データとを、前記第2の人工知能である人工知能に入力することにより、前記入力データから前記教師データを推定するように、前記人工知能を学習させることと、を備えている。そして、前記処方データは、運動、マッサージ、ストレッチ、及び、寝具の条件のうちの少なくとも1つの項目についての、処方すべき内容を表現するデータを含んでいる。また、前記日常生活動作データは、段階的に評価されるデータを含んでいる。
この構成による方法は、第25の態様による作業療法支援装置のための人工知能学習装置により実現される人工知能学習方法に相当する。
本発明のうち第42の態様によるものは、第41の態様による作業療法支援装置のための人工知能学習方法であって、前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである。
この構成による方法は、第26の態様による作業療法支援装置のための人工知能学習装置により実現される人工知能学習方法に相当する。なお、本構成において、「機能的自立度評価法に定められる評価項目のうちの少なくとも1つ」は、「複数段階で評価されるデータ」であれば足り、7段階に限定されない。
本発明のうち第43の態様によるものは、第41又は第42の態様による作業療法支援装置のための人工知能学習方法であって、前記処方データは、前記日常生活動作データに含まれる少なくとも1つの日常生活動作の項目についての、動作指導を表現するデータをさらに含んでいる。
この構成による方法は、第28の態様による作業療法支援装置のための人工知能学習装置により実現される人工知能学習方法に相当する。
本発明のうち第44の態様によるものは、作業療法支援プログラムであって、コンピュータに読み取られることにより、前記コンピュータに第31から第36のいずれかの態様による作業療法支援方法を、前記作業療法支援装置として実行させる。
この構成によるプログラムによれば、第31から第36のいずれかの態様による作業療法支援方法が、コンピュータにより実現される。
本発明のうち第45の態様によるものは、人工知能学習プログラムであって、コンピュータに読み取られることにより、前記コンピュータに第37から第43のいずれかの態様による人工知能学習方法を、前記人工知能学習装置として実行させる。
この構成によるプログラムによれば、第37から第43のいずれかの態様による人工知能学習方法が、コンピュータにより実現される。
実証試験に使用した睡眠センサ1は、市販のセンサであり、16Hzのサンプリング周期で、内蔵する圧力センサのデータを取得する。睡眠センサ1は、取得した複数のサンプリングデータに基づいて、ソフトウェア処理により、呼吸数(回/分)、心拍数(回/分)、活動量(体動検出回数)(カウント/分)、呼吸イベントが発生した回数(回/分)、痙攣の検出回数(回/分)、1分間ごとの離床・臥床・睡眠状態判定のデータを、計測データとして、1分毎に演算し出力する。「活動量」とは、体動(呼吸・心拍より大きな身体の動き)の頻度・強度を意味し、実証試験では「頻度」のみを用いている。「呼吸イベント」とは、無呼吸又は低呼吸を意味する。「離床・臥床・睡眠状態判定」における「睡眠状態」とは、臥床状態にあるだけでなく、さらに睡眠状態にあることを意味する。1分間ごとの離床・臥床・睡眠状態判定のデータは、値が「0」又は「1」であるフラグにより、それぞれ表示される。
睡眠センサ1により出力される、これらの計測データの、3時間毎の最大値、最小値、平均値、分散値が計算され、入力データとして、入力データ受付部15(図7参照)に入力される。また、計測データのうち、1分間ごとの離床・臥床・睡眠状態判定のデータから、3時間毎の睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数が計算され、入力データとして、入力データ受付部15(図7参照)に入力される。さらに、計測データのうち心拍数(回/分)から、心拍数に関して、10bpm/1分以上の変動の有無、睡眠時の平均-非睡眠時の平均、睡眠推奨時間内の平均、睡眠推奨時間内の最大-睡眠推奨時間内の平均が3時間毎に計算され、入力データとして、入力データ受付部15(図7参照)に入力される。また、計測データのうち呼吸数(回/分)から、呼吸数に関して、睡眠時の平均-非睡眠時の平均、睡眠推奨時間内の平均、睡眠推奨時間内の最大-睡眠推奨時間内の平均が3時間毎に計算され、入力データとして、入力データ受付部15(図7参照)に入力される。
「離床回数」とは、臥位から離床に移った回数を意味する。「中途覚醒回数」とは、臥位状態にあって、睡眠から醒めた回数を意味する。「10bpm/1分以上の変動の有無」とは、1分間の心拍数に10拍以上の変動があるか否か、を意味する。例えば、1分間に60拍であり、次の1分間に70拍であれば、10bpmの変動があったこととなり、「10bpm/1分以上の変動の有無」は「有り」と判定される。「有り・無し」は、一例として、値が「1」、「0」であるフラグにより表現した。また、「有り・無し」の判定は、3時間毎に、当該3時間の間に「10bpm/1分以上の変動」が有ったか否かを判定することにより行った。
心拍数及び呼吸数に関して、「睡眠時の平均」、「非睡眠時の平均」は、臥位状態にあるときの3時間毎の平均である。また、「睡眠推奨時間」とは、あらかじめ定めた睡眠時間帯であり、実証試験では、病院における消灯時間として一般的な、午後9:00~翌日午前6:00の時間帯を、「睡眠推奨時間」とした。従って、「睡眠推奨時間内の平均」、「睡眠推奨時間内の最大」とは、「睡眠推奨時間」における3時間毎の(すなわち、午後9:00~翌日午前0:00、午前0:00~午前3:00、午前3:00~午前6:00の各々の時間内の)平均、最大を意味する。
なお、実証試験では、1日分のデータを1回分の入力データとし、1日の範囲は午前6:00から翌日の午前6:00までの時間とした。
以上において、作業療法支援装置101、102、103として、入力データが基本データ(図3(b)参照)を含む例を示した。これに対し、本発明は、入力データが基本データを含まない形態により実施することも可能である。かかる形態においても、相応に確度の高い推定データが得られる。
睡眠データとして、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のいずれか1つを選択すること、あるいは、それらの少なくとも1つを選択することも可能である。このように、作業療法評価の対象者の睡眠データのうち、最小限の項目に基づいて、日常生活動作データの推定データを演算することも可能であり、それによっても、相応の精度の推定データが得られる。
作業療法支援装置103に例示した、人工知能23が出力する推定データ、すなわち過去の推定データに代えて、推定データではない過去のFIM値を、人工知能23の新たな入力データに加えてもよい。それによっても、推定データの精度が高められる。
人工知能23が出力する推定データ、あるいは、推定データではない過去のFIM値を、人工知能23の新たな入力データに加える形態は、作業療法支援装置102にも適用可能である。
以上において、日常生活動作データとして、機能的自立度評価法(FIM)に定められる評価項目の評価データを採用する例を示した。これに対し、日常生活動作データとして、FIMに限らず、日常生活動作に関する他の評価項目の評価データを採用することも可能である。
次に、作業療法支援装置101,102,103は、ユーザの指示等に基づき処理を反復すべきときには(S27においてYes)、処理をS21へ戻す。それにより、入力データ受付部15,16は、新たな入力データの入力を受け付け、教師データ受付部17,18は、新たな教師データの入力を受け付ける。作業療法支援装置101,102,103は、処理を反復すべきでないときには(S27においてNo)、処理を終了する。
Claims (45)
- 作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付ける入力データ受付部と、
前記入力データ受付部が入力を受け付けた前記入力データを、学習済みの人工知能に入力することにより、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータの、推定データを前記人工知能に演算させる推定部と、
前記人工知能が演算した前記推定データを出力する推定データ出力部と、を備え、
前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援装置。 - 作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付ける入力データ受付部と、
前記入力データ受付部が入力を受け付けた前記入力データを、学習済みの第1の人工知能に入力することにより、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータの、推定データを前記第1の人工知能に演算させる第1の推定部と、
前記第1の人工知能が演算した前記推定データを、学習済みの第2の人工知能に入力することにより、前記対象者への作業療法の処方データの推定データを前記第2の人工知能に演算させる第2の推定部と、
前記第2の人工知能が演算した前記処方データの推定データを出力する推定データ出力部と、を備え、
前記処方データは、運動、マッサージ、ストレッチ、及び、寝具の条件のうちの少なくとも1つの項目についての、処方すべき内容を表現するデータを含み、
前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援装置。 - 前記処方データは、前記日常生活動作データに含まれる少なくとも1つの日常生活動作の項目についての、動作指導を表現するデータを、さらに含む、請求項2に記載の作業療法支援装置。
- 前記睡眠データは、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のうちの少なくとも1つを含む、睡眠に関する項目のデータであり、
前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである、請求項1から3のいずれかに記載の作業療法支援装置。 - 前記睡眠データは、所定時間毎の、睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数、心拍数の所定以上の変動の有無、睡眠時の平均心拍数-非睡眠時の平均心拍数、所定睡眠時間帯内の平均心拍数、前記所定睡眠時間帯内の最大心拍数-前記所定睡眠時間帯内の平均心拍数、睡眠時の平均呼吸数-非睡眠時の平均呼吸数、前記所定睡眠時間帯内の平均呼吸数、前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数、のうちの少なくとも1つを含む、請求項4に記載の作業療法支援装置。
- 前記日常生活動作データは、食事、トイレ、排便、移乗トイレ、移動歩行、理解、問題解決、及び記憶のうち少なくとも1つを含む、日常生活動作に関する項目のデータである、請求項1から5のいずれかに記載の作業療法支援装置。
- 前記日常生活動作データを含むデータは、前記対象者の身体機能に関するデータである身体機能データを、さらに含む、請求項1から6のいずれかに記載の作業療法支援装置。
- 前記日常生活動作データは、転倒の可能性である転倒リスクを含む、請求項1から7のいずれかに記載の作業療法支援装置。
- 前記睡眠データは、睡眠に関する質問への前記対象者の回答を、さらに含む、請求項1から8のいずれかに記載の作業療法支援装置。
- 前記入力データは、前記対象者の睡眠時の環境に関するデータである環境データを、さらに含む、請求項1から9のいずれかに記載の作業療法支援装置。
- 前記入力データは、現在から過去にわたる複数時点における、前記対象者の前記睡眠データを含むデータを、対応する前記複数時点の時間データと互いに関連付けて含む、請求項1から10のいずれかに記載の作業療法支援装置。
- 前記入力データは、過去の時点における前記対象者の前記日常生活動作データを含む、請求項1から11のいずれかに記載の作業療法支援装置。
- 前記過去の時点における前記対象者の前記日常生活動作データは、前記作業療法支援装置それ自身によって過去に推定された推定データである、請求項12に記載の作業療法支援装置。
- 請求項1に記載の作業療法支援装置が用いる前記人工知能を学習させる、作業療法支援装置のための人工知能学習装置であって、
作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付ける入力データ受付部と、
前記入力データに対応する、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータである、教師データの入力を受け付ける教師データ受付部と、
前記入力データ受付部が入力を受け付けた前記入力データと、前記教師データ受付部が入力を受け付けた前記教師データとを、人工知能に入力することにより、前記入力データから前記教師データを推定するように、前記人工知能を学習させる学習部と、を備え、
前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援装置のための人工知能学習装置。 - 前記睡眠データは、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のうちの少なくとも1つを含む、睡眠に関する項目のデータであり、
前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである、請求項14に記載の作業療法支援装置のための人工知能学習装置。 - 前記睡眠データは、所定時間毎の、睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数、心拍数の所定以上の変動の有無、睡眠時の平均心拍数-非睡眠時の平均心拍数、所定睡眠時間帯内の平均心拍数、前記所定睡眠時間帯内の最大心拍数-前記所定睡眠時間帯内の平均心拍数、睡眠時の平均呼吸数-非睡眠時の平均呼吸数、前記所定睡眠時間帯内の平均呼吸数、前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数、のうちの少なくとも1つを含む、請求項15に記載の人工知能学習装置。
- 前記日常生活動作データは、食事、トイレ、排便、移乗トイレ、移動歩行、理解、問題解決、及び記憶のうち少なくとも1つを含む、日常生活動作に関する項目のデータである、請求項14から16のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記日常生活動作データを含むデータは、前記対象者の身体機能に関するデータである身体機能データを、さらに含む、請求項14から17のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記日常生活動作データは、転倒の可能性である転倒リスクを含む、請求項14から18のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記睡眠データは、睡眠に関する質問への前記対象者の回答を、さらに含む、請求項14から19のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記入力データは、前記対象者の睡眠時の環境に関するデータである環境データを、さらに含む、請求項14から20のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記入力データは、現在から過去にわたる複数時点における、前記対象者の前記睡眠データを含むデータを、対応する前記複数時点の時間データと互いに関連付けて含む、請求項14から21のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記入力データは、過去の時点における前記対象者の前記日常生活動作データを含む、請求項14から22のいずれかに記載の人工知能学習装置。
- 前記過去の時点における前記対象者の前記日常生活動作データは、前記作業療法支援装置それ自身によって過去に推定された推定データである、請求項23に記載の人工知能学習装置。
- 請求項2に記載の作業療法支援装置が用いる前記第2の人工知能を学習させる、作業療法支援装置のための人工知能学習装置であって、
作業療法評価の対象者の日常生活動作に関するデータである日常生活動作データを含む、入力データの入力を受け付ける入力データ受付部と、
前記入力データに対応する、前記対象者への作業療法の処方データである教師データの入力を受け付ける教師データ受付部と、
前記入力データ受付部が入力を受け付けた前記入力データと、前記教師データ受付部が入力を受け付けた前記教師データとを、前記第2の人工知能である人工知能に入力することにより、前記入力データから前記教師データを推定するように、前記人工知能を学習させる学習部と、を備え、
前記処方データは、運動、マッサージ、ストレッチ、及び、寝具の条件のうちの少なくとも1つの項目についての、処方すべき内容を表現するデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援装置のための人工知能学習装置。 - 前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである、請求項25に記載の作業療法支援装置のための人工知能学習装置。
- 前記日常生活動作データは、食事、トイレ、排便、移乗トイレ、移動歩行、理解、問題解決、及び記憶のうち少なくとも1つを含む、日常生活動作に関する項目のデータである、請求項25又は26に記載の作業療法支援装置のための人工知能学習装置。
- 前記処方データは、前記日常生活動作データに含まれる少なくとも1つの日常生活動作の項目についての、動作指導を表現するデータをさらに含む、請求項25から27のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記入力データは、前記対象者の身体機能に関するデータである身体機能データを、さらに含む、請求項25から28のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 前記日常生活動作データは、転倒の可能性である転倒リスクを含む、請求項25から29のいずれかに記載の作業療法支援装置のための人工知能学習装置。
- 作業療法支援装置が、作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付けることと、
前記作業療法支援装置が、入力を受け付けた前記入力データを、学習済みの人工知能に入力することにより、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータの、推定データを前記人工知能に演算させることと、
前記作業療法支援装置が、前記人工知能が演算した前記推定データを出力することと、を備え、
前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援方法。 - 作業療法支援装置が、作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付けることと、
前記作業療法支援装置が、入力を受け付けた前記入力データを、学習済みの第1の人工知能に入力することにより、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータの、推定データを前記第1の人工知能に演算させることと、
前記作業療法支援装置が、前記第1の人工知能が演算した前記推定データを、学習済みの第2の人工知能に入力することにより、前記対象者への作業療法の処方データの推定データを前記第2の人工知能に演算させることと、
前記作業療法支援装置が、前記第2の人工知能が演算した前記処方データの推定データを出力することと、を備え、
前記処方データは、運動、マッサージ、ストレッチ、及び、寝具の条件のうちの少なくとも1つの項目についての、処方すべき内容を表現するデータを含み、
前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援方法。 - 前記処方データは、前記日常生活動作データに含まれる少なくとも1つの日常生活動作の項目についての、動作指導を表現するデータを、さらに含む、請求項32に記載の作業療法支援方法。
- 前記睡眠データは、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のうちの少なくとも1つを含む、睡眠に関する項目のデータであり、
前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである、請求項31から33のいずれかに記載の作業療法支援方法。 - 前記睡眠データは、所定時間毎の、睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数、心拍数の所定以上の変動の有無、睡眠時の平均心拍数-非睡眠時の平均心拍数、所定睡眠時間帯内の平均心拍数、前記所定睡眠時間帯内の最大心拍数-前記所定睡眠時間帯内の平均心拍数、睡眠時の平均呼吸数-非睡眠時の平均呼吸数、前記所定睡眠時間帯内の平均呼吸数、前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数、のうちの少なくとも1つを含む、請求項34に記載の作業療法支援方法。
- 前記入力データは、現在から過去にわたる複数時点における、前記対象者の前記睡眠データを含むデータを、対応する前記複数時点の時間データと互いに関連付けて含む、請求項31から35のいずれかに記載の作業療法支援方法。
- 請求項1に記載の作業療法支援装置が用いる前記人工知能を学習させる、作業療法支援装置のための人工知能学習方法であって、
人工知能学習装置が、作業療法評価の対象者の睡眠に関するデータである睡眠データを含み、前記対象者の身体に関するデータである基本データを含まない入力データの入力を受け付けることと、
前記人工知能学習装置が、前記入力データに対応する、前記対象者の日常生活動作に関するデータである日常生活動作データを含むデータである、教師データの入力を受け付けることと、
前記人工知能学習装置が、入力を受け付けた前記入力データと、入力を受け付けた前記教師データとを、前記人工知能に入力することにより、前記入力データから前記教師データを推定するように、前記人工知能を学習させることと、を備え、
前記睡眠データは、睡眠センサによって計測されたデータに基づく、数値で表されたデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援装置のための人工知能学習方法。 - 前記睡眠データは、心拍に関する情報、呼吸に関する情報、及び体動に関する情報のうちの少なくとも1つを含む、睡眠に関する項目のデータであり、
前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである、請求項37に記載の作業療法支援装置のための人工知能学習方法。 - 前記睡眠データは、所定時間毎の、睡眠時間、臥位中非睡眠時間、離床時間、臥位時間、睡眠時間/臥位時間、離床回数、中途覚醒回数、心拍数の所定以上の変動の有無、睡眠時の平均心拍数-非睡眠時の平均心拍数、所定睡眠時間帯内の平均心拍数、前記所定睡眠時間帯内の最大心拍数-前記所定睡眠時間帯内の平均心拍数、睡眠時の平均呼吸数-非睡眠時の平均呼吸数、前記所定睡眠時間帯内の平均呼吸数、前記所定睡眠時間帯内の最大呼吸数-前記所定睡眠時間帯内の平均呼吸数、のうちの少なくとも1つを含む、請求項38に記載の作業療法支援装置のための人工知能学習方法。
- 前記入力データは、現在から過去にわたる複数時点における、前記対象者の前記睡眠データを含むデータを、対応する前記複数時点の時間データと互いに関連付けて含む、請求項37から39のいずれかに記載の作業療法支援装置のための人工知能学習方法。
- 請求項2に記載の作業療法支援装置が用いる前記第2の人工知能を学習させる、作業療法支援装置のための人工知能学習方法であって、
人工知能学習装置が、作業療法評価の対象者の日常生活動作に関するデータである日常生活動作データを含む、入力データの入力を受け付けることと、
前記人工知能学習装置が、前記入力データに対応する、前記対象者への作業療法の処方データである教師データの入力を受け付けることと、
前記人工知能学習装置が、入力を受け付けた前記入力データと、入力を受け付けた前記教師データとを、前記第2の人工知能である人工知能に入力することにより、前記入力データから前記教師データを推定するように、前記人工知能を学習させることと、を備え、
前記処方データは、運動、マッサージ、ストレッチ、及び、寝具の条件のうちの少なくとも1つの項目についての、処方すべき内容を表現するデータを含み、
前記日常生活動作データは、段階的に評価されるデータを含む、作業療法支援装置のための人工知能学習方法。 - 前記日常生活動作データは、機能的自立度評価法に定められる評価項目のうちの少なくとも1つについて、複数段階で評価されるデータを含む、日常生活動作に関する項目のデータである、請求項41に記載の作業療法支援装置のための人工知能学習方法。
- 前記処方データは、前記日常生活動作データに含まれる少なくとも1つの日常生活動作の項目についての、動作指導を表現するデータをさらに含む、請求項41又は42に記載の作業療法支援装置のための人工知能学習方法。
- コンピュータに読み取られることにより、前記コンピュータに請求項31から36のいずれかに記載の作業療法支援方法を、前記作業療法支援装置として実行させる、作業療法支援プログラム。
- コンピュータに読み取られることにより、前記コンピュータに請求項37から43のいずれかに記載の人工知能学習方法を、前記人工知能学習装置として実行させる、人工知能学習プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021098380A JP7246648B2 (ja) | 2021-06-13 | 2021-06-13 | 作業療法支援装置、作業療法支援装置のための人工知能学習装置、作業療法支援方法、作業療法支援装置のための人工知能学習方法、作業療法支援プログラム、及び人工知能学習プログラム |
US17/886,131 US20230030655A1 (en) | 2021-06-13 | 2022-08-11 | Occupational therapy support device, artificial intelligence training device for occupational therapy support device, occupational therapy support method, artificial intelligence training method for occupational therapy support device, occupational therapy support program, and artificial intelligence training program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021098380A JP7246648B2 (ja) | 2021-06-13 | 2021-06-13 | 作業療法支援装置、作業療法支援装置のための人工知能学習装置、作業療法支援方法、作業療法支援装置のための人工知能学習方法、作業療法支援プログラム、及び人工知能学習プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022190181A JP2022190181A (ja) | 2022-12-23 |
JP7246648B2 true JP7246648B2 (ja) | 2023-03-28 |
Family
ID=84533319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021098380A Active JP7246648B2 (ja) | 2021-06-13 | 2021-06-13 | 作業療法支援装置、作業療法支援装置のための人工知能学習装置、作業療法支援方法、作業療法支援装置のための人工知能学習方法、作業療法支援プログラム、及び人工知能学習プログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230030655A1 (ja) |
JP (1) | JP7246648B2 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009288933A (ja) | 2008-05-28 | 2009-12-10 | Sony Corp | 学習装置、学習方法、及びプログラム |
JP2010020446A (ja) | 2008-07-09 | 2010-01-28 | Sony Corp | 学習装置、学習方法、およびプログラム |
JP2015159935A (ja) | 2014-02-27 | 2015-09-07 | 株式会社東芝 | リハビリテーション支援装置 |
WO2018151173A2 (ja) | 2017-02-14 | 2018-08-23 | バイオフィリア研究所有限会社 | 最適運動情報自動判定を実現する創動運動訓練装置 |
JP2019057282A (ja) | 2017-09-20 | 2019-04-11 | メディア株式会社 | 患者プロファイル情報システム、患者プロファイル情報システムの制御方法、プログラム、及び記録媒体 |
WO2020234957A1 (ja) | 2019-05-20 | 2020-11-26 | 日本電信電話株式会社 | リハビリ支援システム、およびリハビリ支援方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8979730B2 (en) * | 2009-06-04 | 2015-03-17 | Koninklijke Philips N.V. | Method and system for providing behavioural therapy for insomnia |
WO2014197443A1 (en) * | 2013-06-03 | 2014-12-11 | Kacyvenski Isaiah | Motion sensor and analysis |
US9866507B2 (en) * | 2015-04-27 | 2018-01-09 | Agt International Gmbh | Method of monitoring well-being of semi-independent persons and system thereof |
US10736544B2 (en) * | 2015-09-09 | 2020-08-11 | The Regents Of The University Of California | Systems and methods for facilitating rehabilitation therapy |
US11687800B2 (en) * | 2017-08-30 | 2023-06-27 | P Tech, Llc | Artificial intelligence and/or virtual reality for activity optimization/personalization |
US11147459B2 (en) * | 2018-01-05 | 2021-10-19 | CareBand Inc. | Wearable electronic device and system for tracking location and identifying changes in salient indicators of patient health |
WO2020004102A1 (ja) * | 2018-06-25 | 2020-01-02 | 日本電信電話株式会社 | 機能回復訓練支援システムおよび方法 |
US11731723B2 (en) * | 2018-07-09 | 2023-08-22 | Shimano Inc. | Rider recognition device for human-powered vehicle and control system of human-powered vehicle |
-
2021
- 2021-06-13 JP JP2021098380A patent/JP7246648B2/ja active Active
-
2022
- 2022-08-11 US US17/886,131 patent/US20230030655A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009288933A (ja) | 2008-05-28 | 2009-12-10 | Sony Corp | 学習装置、学習方法、及びプログラム |
JP2010020446A (ja) | 2008-07-09 | 2010-01-28 | Sony Corp | 学習装置、学習方法、およびプログラム |
JP2015159935A (ja) | 2014-02-27 | 2015-09-07 | 株式会社東芝 | リハビリテーション支援装置 |
WO2018151173A2 (ja) | 2017-02-14 | 2018-08-23 | バイオフィリア研究所有限会社 | 最適運動情報自動判定を実現する創動運動訓練装置 |
JP2019057282A (ja) | 2017-09-20 | 2019-04-11 | メディア株式会社 | 患者プロファイル情報システム、患者プロファイル情報システムの制御方法、プログラム、及び記録媒体 |
WO2020234957A1 (ja) | 2019-05-20 | 2020-11-26 | 日本電信電話株式会社 | リハビリ支援システム、およびリハビリ支援方法 |
Non-Patent Citations (1)
Title |
---|
デイサービス事業者向けリハビリ支援クラウドシステムを開発,[online],パナソニック株式会社,2019年09月25日,p.1-3,https://news.panasonic.com/jp/press/data/2019/09/jn190925-1/jn190925-1.pdf,[令和3年4月19日検索], インターネット |
Also Published As
Publication number | Publication date |
---|---|
JP2022190181A (ja) | 2022-12-23 |
US20230030655A1 (en) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Smith et al. | Early onset of stabilizing strategies for gait and obstacles: Older adults with Down syndrome | |
Jette et al. | Physical therapists’ management of patients in the acute care setting: an observational study | |
WO2021166605A1 (ja) | 作業療法支援装置、作業療法支援装置のための人工知能学習装置、及び作業療法支援装置の使用方法 | |
Rigby et al. | Changes in cardiorespiratory responses and kinematics with hippotherapy in youth with and without cerebral palsy | |
Zukowski et al. | Relationships between gait variability and ambulatory activity post stroke | |
Chakravarthy et al. | Reliability and validity testing of the MotionWatch 8 in older adults | |
JP6864460B2 (ja) | 疾病予測装置 | |
Gendle et al. | Wheelchair-mounted accelerometers for measurement of physical activity | |
JP7246648B2 (ja) | 作業療法支援装置、作業療法支援装置のための人工知能学習装置、作業療法支援方法、作業療法支援装置のための人工知能学習方法、作業療法支援プログラム、及び人工知能学習プログラム | |
Cesar et al. | Cardiorespiratory fitness, balance and walking improvements in an adolescent with cerebral palsy (GMFCS II) and autism after motor-assisted elliptical training | |
Fatone et al. | Identifying instruments to assess care quality for individuals with custom ankle foot orthoses: a scoping review | |
Dunn et al. | Using consumer-grade wearables and novel measures of sleep and activity to analyze changes in behavioral health during an 8-month simulated Mars mission | |
Munck et al. | Evaluation of Self-Trackers for Use in Telerehabilitation. | |
Chen et al. | Establishing the waist as the better location for attaching a single accelerometer to estimate center of pressure trajectories | |
Lee et al. | Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise | |
Tsang | Using wearable sensors for physical activity measurement and promotion in manual wheelchair users | |
Wentz | The Impact of an Early and Intense Prone Positioning Program in Infants With and Without Down Syndrome. | |
JP7307432B1 (ja) | 情報処理装置、排泄予測方法及びプログラム | |
WO2023157855A1 (ja) | 運動機能指標値変化量の推定方法、推定装置、及び推定プログラム、並びに、運動機能指標値変化量推定モデルの生成方法、生成装置、及び生成プログラム | |
JP2019024665A (ja) | 健康管理システム | |
Islam | Wearable technologies to support lower limb rehabilitation and clinical practice: user requirements, design, and evaluation | |
Takahashi et al. | A system for collecting motion data on patients’ activities of daily living | |
Kim et al. | Initial Evidence on the Impact of Performance-Based Treadmill Training on Pulmonary Function and Physical Performance in a Child with Bronchopulmonary Dysplasia: Single-Subject Experimental Study | |
Davis et al. | The international classification of function and health | |
Haaren | Objective quantification of in-hospital patient mobilisation after cardiac surgery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20210628 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20220407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220407 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221030 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20221030 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20221117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7246648 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |