JP7245953B2 - COMPOSITION FOR FORMING HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE MULTILAYER SHEET, AND DEVICE WITH HEAT CONDUCTIVE LAYER - Google Patents

COMPOSITION FOR FORMING HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE MULTILAYER SHEET, AND DEVICE WITH HEAT CONDUCTIVE LAYER Download PDF

Info

Publication number
JP7245953B2
JP7245953B2 JP2022501717A JP2022501717A JP7245953B2 JP 7245953 B2 JP7245953 B2 JP 7245953B2 JP 2022501717 A JP2022501717 A JP 2022501717A JP 2022501717 A JP2022501717 A JP 2022501717A JP 7245953 B2 JP7245953 B2 JP 7245953B2
Authority
JP
Japan
Prior art keywords
group
thermally conductive
composition
general formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022501717A
Other languages
Japanese (ja)
Other versions
JPWO2021166541A1 (en
Inventor
大介 林
誠一 人見
輝樹 新居
慶太 高橋
信 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2021166541A1 publication Critical patent/JPWO2021166541A1/ja
Application granted granted Critical
Publication of JP7245953B2 publication Critical patent/JP7245953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Description

本発明は、熱伝導材料形成用組成物、熱伝導シート、熱伝導性多層シート、及び、熱伝導層付きデバイスに関する。 TECHNICAL FIELD The present invention relates to a composition for forming a thermally conductive material, a thermally conductive sheet, a thermally conductive multilayer sheet, and a device with a thermally conductive layer.

パーソナルコンピュータ、一般家電、及び自動車等の様々な電気機器に用いられているパワー半導体デバイスは、近年、小型化が急速に進んでいる。小型化に伴い高密度化されたパワー半導体デバイスから発生する熱の制御が困難になっている。
このような問題に対応するため、パワー半導体デバイスからの放熱を促進する熱伝導材料が用いられている。
例えば、特許文献1には、放熱シートに用いられる熱伝導材料として、下記一般式(XII)で表される化合物を含有する熱伝導材料が記載されている([請求項1][請求項8][請求項19][請求項20])

Figure 0007245953000001
2. Description of the Related Art In recent years, power semiconductor devices used in various electrical equipment such as personal computers, general household appliances, and automobiles have rapidly been miniaturized. It is becoming difficult to control the heat generated from high-density power semiconductor devices due to miniaturization.
In order to deal with such problems, thermally conductive materials are used to promote heat dissipation from power semiconductor devices.
For example, Patent Document 1 describes a thermally conductive material containing a compound represented by the following general formula (XII) as a thermally conductive material used in a heat dissipation sheet ([Claim 1] [Claim 8 ] [Claim 19] [Claim 20])
Figure 0007245953000001

国際公開第2017/131007号WO2017/131007

本発明者らは、特許文献1に記載された熱伝導材料について、一般式(XII)中の、A、AおよびAをそれぞれ-N=とし、トリアジン環を有する化合物について検討したところ、熱伝導性について改善の余地があることを知見した。The present inventors have investigated a compound having a triazine ring in which each of A 2 , A 3 and A 4 in the general formula (XII) is -N= and which has a thermally conductive material described in Patent Document 1. , found that there is room for improvement in terms of thermal conductivity.

そこで、本発明は、熱伝導性に優れる熱伝導材料を形成するための組成物を提供することを課題とする。
また、本発明は、上記組成物により形成される、熱伝導シート、熱伝導性多層シート、及び、熱伝導層付きデバイスを提供することをも課題とする。
Accordingly, an object of the present invention is to provide a composition for forming a thermally conductive material having excellent thermal conductivity.
Another object of the present invention is to provide a thermally conductive sheet, a thermally conductive multilayer sheet, and a device with a thermally conductive layer formed from the above composition.

本発明者らは、トリアジン環を2個以上有する化合物を配合した熱伝導材料形成用組成物を用いることにより、形成される熱伝導材料の熱伝導性が向上することを見出し、本発明を完成させた。
すなわち、以下の構成により上記課題を達成することができることを見出した。
The present inventors have found that the thermal conductivity of the formed thermally conductive material is improved by using a composition for forming a thermally conductive material containing a compound having two or more triazine rings, and have completed the present invention. let me
That is, the inventors have found that the above object can be achieved by the following configuration.

[1] 無機粒子と一般式(1)で表される化合物とを含む、熱伝導材料形成用組成物。

Figure 0007245953000002
上記一般式(1)中、
~Eは、それぞれ独立に、単結合、-NH-、又は、-NR-を表す。Rは、置換基を表す。
、B、B、及びBは、それぞれ、k+1価、l+1価、m+1価、及びn+1価の有機基を表し、それらの少なくとも1つが、置換基を有していてもよいk+1価、l+1価、m+1価、又は、n+1価の芳香環基を表す。
Lは、2価の有機基を表す。
k、l、m、及び、nは、それぞれ独立に、0以上の整数を表す。
kが2以上の場合、k個存在するXは、それぞれ同一でも異なっていてもよい。
lが2以上の場合、l個存在するXは、それぞれ同一でも異なっていてもよい。
mが2以上の場合、m個存在するXは、それぞれ同一でも異なっていてもよい。
nが2以上の場合、n個存在するX4は、それぞれ同一でも異なっていてもよい。
また、k、l、m、及び、nの合計は2以上である。
~X4は、それぞれ独立に、一般式(2)で表される基を表す。
Figure 0007245953000003
上記一般式(2)中、*は、結合位置を表す。
は、単結合又は2価の連結基を表す。
は、置換基を有していてもよい芳香環基、又は、置換基を有していてもよい脂肪族環基を表す。
Q及びYは、それぞれ独立に、水酸基、エポキシ基を有する1価の基、アミノ基、チオール基、カルボン酸基、イソシアネート基、及び、オキセタニル基を有する1価の基からなる群から選択される特定官能基を表す。
pは、0以上の整数を表す。
qは、0~2の整数を表す。
上記一般式(2)中、Dが複数存在する場合、複数存在するDは、それぞれ同一でも異なっていてもよい。Aが複数存在する場合、複数存在するAは、それぞれ同一でも異なっていてもよい。Qが複数存在する場合、複数存在するQは、それぞれ同一でも異なっていてもよい。
rは、1以上の整数である。
[2] 上記一般式(1)中のLが、置換基を有していてもよい2価の芳香環基、置換基を有していてもよい2価の脂肪族環基、及び、炭素数2以上の分岐を有していてもよいアルキレン基からなる群から選択される少なくとも1種を有する2価の有機基である、[1]に記載の熱伝導材料形成用組成物。
[3] 上記一般式(1)中のLが、置換基を有していてもよい2価の芳香環基を有する2価の有機基である、[1]又は[2]に記載の熱伝導材料形成用組成物。
[4] 上記一般式(1)で表される化合物のハンセン溶解度パラメーター値が28MPa0.5以下である、[1]~[3]のいずれかに記載の熱伝導材料形成用組成物。
[5] 上記一般式(1)で表される化合物のハンセン溶解度パラメーター値が26MPa0.5以下である、[1]~[4]のいずれかに記載の熱伝導材料形成用組成物。
[6] 更に、硬化促進剤を含む、[1]~[5]のいずれかに記載の熱伝導材料形成用組成物。
[7] 上記無機粒子が、無機窒化物である、[1]~[6]のいずれかに記載の熱伝導材料形成用組成物。
[8] 上記無機粒子が、窒化ホウ素である、[1]~[7]のいずれかに記載の熱伝導材料形成用組成物。
[9] 上記熱伝導材料形成用組成物の全固形分に対して、上記一般式(1)で表される化合物の含有量が3~40質量%である、[1]~[8]のいずれかに記載の熱伝導材料形成用組成物。
[10] [1]~[9]のいずれかに記載の熱伝導材料形成用組成物を硬化して形成される熱伝導シート。
[11] [10]に記載の上記熱伝導シートと、
上記熱伝導シートの片面又は両面に設けられた、接着剤層又は粘着剤層と、を有する、熱伝導性多層シート。
[12] デバイスと、
上記デバイス上に配置された、[10]に記載の熱伝導シート又は[11]に記載の熱伝導性多層シートを含む熱伝導層と、を有する、熱伝導層付きデバイス。[1] A composition for forming a thermally conductive material, containing inorganic particles and a compound represented by formula (1).
Figure 0007245953000002
In the above general formula (1),
E 1 to E 6 each independently represent a single bond, -NH- or -NR-. R represents a substituent.
B 1 , B 2 , B 3 , and B 4 each represent a k+1-valent, l+1-valent, m+1-valent, and n+1-valent organic group, at least one of which optionally has a substituent k+1 represents a valent, l+1-valent, m+1-valent, or n+1-valent aromatic ring group.
L represents a divalent organic group.
k, l, m, and n each independently represent an integer of 0 or greater.
When k is 2 or more, k X 1 's may be the same or different.
When l is 2 or more, l occurrences of X 2 may be the same or different.
When m is 2 or more, m X 3 may be the same or different.
When n is 2 or more, n occurrences of X 4 may be the same or different.
Also, the sum of k, l, m, and n is 2 or more.
X 1 to X 4 each independently represent a group represented by general formula (2).
Figure 0007245953000003
In the above general formula (2), * represents a bonding position.
D 1 represents a single bond or a divalent linking group.
A 1 represents an optionally substituted aromatic ring group or an optionally substituted aliphatic ring group.
Q and Y 1 are each independently selected from the group consisting of a monovalent group having a hydroxyl group, an epoxy group, an amino group, a thiol group, a carboxylic acid group, an isocyanate group, and a monovalent group having an oxetanyl group. represents a specific functional group.
p represents an integer of 0 or more.
q represents an integer of 0 to 2;
In the above general formula (2), when there are a plurality of D 1 's, the plurality of D 1 's may be the same or different. When there are multiple A 1 's, the multiple A 1 's may be the same or different. When there are multiple Q's, the multiple Q's may be the same or different.
r is an integer of 1 or more.
[2] L in the general formula (1) is a divalent aromatic ring group which may have a substituent, a divalent aliphatic ring group which may have a substituent, and carbon The composition for forming a thermally conductive material according to [1], which is a divalent organic group having at least one selected from the group consisting of alkylene groups which may have two or more branches.
[3] The heat according to [1] or [2], wherein L in the general formula (1) is a divalent organic group having a divalent aromatic ring group which may have a substituent. A composition for forming a conductive material.
[4] The composition for forming a heat conductive material according to any one of [1] to [3], wherein the compound represented by the general formula (1) has a Hansen solubility parameter value of 0.5 or less at 28 MPa.
[5] The composition for forming a thermally conductive material according to any one of [1] to [4], wherein the compound represented by the general formula (1) has a Hansen solubility parameter value of 0.5 or less at 26 MPa.
[6] The composition for forming a thermally conductive material according to any one of [1] to [5], further comprising a curing accelerator.
[7] The composition for forming a thermally conductive material according to any one of [1] to [6], wherein the inorganic particles are inorganic nitrides.
[8] The composition for forming a thermally conductive material according to any one of [1] to [7], wherein the inorganic particles are boron nitride.
[9] The composition of [1] to [8], wherein the content of the compound represented by the general formula (1) is 3 to 40% by mass with respect to the total solid content of the composition for forming a thermally conductive material. A composition for forming a thermally conductive material according to any one of the above.
[10] A thermally conductive sheet formed by curing the composition for forming a thermally conductive material according to any one of [1] to [9].
[11] The heat conductive sheet according to [10];
A thermally conductive multilayer sheet having an adhesive layer or a pressure-sensitive adhesive layer provided on one side or both sides of the thermally conductive sheet.
[12] a device;
A device with a heat conductive layer, comprising: a heat conductive layer including the heat conductive sheet of [10] or the heat conductive multilayer sheet of [11] disposed on the device.

本発明によれば、熱伝導性に優れる熱伝導材料を形成するための組成物を提供することができる。
また、本発明によれば、上記組成物により形成される熱伝導シート、熱伝導性多層シート、及び、熱伝導層付きデバイスを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the composition for forming the thermally-conductive material which is excellent in thermal conductivity can be provided.
Moreover, according to the present invention, it is possible to provide a thermally conductive sheet, a thermally conductive multilayer sheet, and a device with a thermally conductive layer formed from the above composition.

以下、本発明の熱伝導材料形成用組成物、熱伝導シート、熱伝導性多層シート、及び、熱伝導層付きデバイスについて詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
また、本明細書において、エポキシ基は、オキシラニル基とも呼ばれる官能基であり、例えば、飽和炭化水素環基の隣接する炭素原子2個がオキソ基(-O-)により結合してオキシラン環を形成している基等もエポキシ基に含む。エポキシ基は、可能な場合、置換基(メチル基等)を有していてもよいし有していなくてもよい。
Hereinafter, the composition for forming a thermally conductive material, the thermally conductive sheet, the thermally conductive multilayer sheet, and the device with a thermally conductive layer of the present invention will be described in detail.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
In the present specification, an epoxy group is a functional group also called an oxiranyl group. For example, two adjacent carbon atoms of a saturated hydrocarbon ring group are bonded by an oxo group (--O--) to form an oxirane ring. Epoxy groups also include groups such as Epoxy groups may or may not have substituents (such as methyl groups) where possible.

本明細書において、酸無水物基は、特段の記載が無い場合、1価の基であってもよく、2価の基であってもよい。なお、酸無水物基が1価の基を表す場合、無水マレイン酸、無水フタル酸、無水ピロメリット酸、及び、無水トリメリット酸等の酸無水物から任意の水素原子を除いて得られる置換基が挙げられる。また、酸無水物基が2価の基を表す場合、*-CO-O-CO-*で表される基を意図する(*は結合位置を表す)。 In the present specification, the acid anhydride group may be a monovalent group or a divalent group unless otherwise specified. When the acid anhydride group represents a monovalent group, substitution obtained by removing any hydrogen atom from acid anhydrides such as maleic anhydride, phthalic anhydride, pyromellitic anhydride, and trimellitic anhydride groups. Also, when the acid anhydride group represents a divalent group, it is intended to be a group represented by *--CO--O--CO--* (* represents a bonding position).

なお、本明細書において、置換又は無置換を明記していない置換基等については、可能な場合、目的とする効果を損なわない範囲で、その基に更に置換基(例えば、後述する置換基群Y)を有していてもよい。例えば、「アルキル基」という表記は、目的とする効果を損なわない範囲で、置換又は無置換のアルキル基を意味する。
なお、本明細書において「してもよい」、及び、「していてもよい」等といった表現は、「してもよい」、及び、「していてもよい」とされた条件を満たしてもよく、満たさなくてもよいことを意図する。例えば、「置換基を有していてもよい」とは、「置換基を有さなくてもよい」ことをも含む。
また、本明細書において、「置換基を有していてもよい」という場合の置換基の種類、置換基の位置、及び置換基の数は特に制限されない。置換基の数は例えば、1個、又は、2個以上が挙げられる。置換基の例としては水素原子を除く1価の非金属原子団が挙げられ、例えば、以下の置換基群Yから選択できる。
本明細書において、ハロゲン原子としては、例えば、塩素原子、フッ素原子、臭素原子、及び、ヨウ素原子が挙げられる。
In the present specification, for substituents and the like that are not specified as substituted or unsubstituted, if possible, further substituents (for example, the group of substituents described later) within the range that does not impair the intended effect Y). For example, the notation "alkyl group" means a substituted or unsubstituted alkyl group as long as the desired effect is not impaired.
In this specification, expressions such as "may be" and "may be" satisfy the conditions set as "may be" and "may be". It is intended that it may or may not be satisfied. For example, "optionally having a substituent" also includes "optionally having no substituent".
Moreover, in the present specification, the type of substituent, the position of the substituent, and the number of substituents in the case of "optionally having a substituent" are not particularly limited. The number of substituents may be, for example, 1 or 2 or more. Examples of substituents include monovalent nonmetallic atomic groups excluding hydrogen atoms, which can be selected from the following substituent group Y, for example.
As used herein, the halogen atom includes, for example, a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.

置換基群Y:
ハロゲン原子(-F、-Br、-Cl、-I等)、水酸基、アミノ基、カルボン酸基及びその共役塩基基、無水カルボン酸基、シアネートエステル基、不飽和重合性基、エポキシ基、オキセタニル基、アジリジニル基、チオール基、イソシアネート基、チオイソシアネート基、アルデヒド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、N-アリールアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールウレイド基、N’,N’-ジアリールウレイド基、N’-アルキル-N’-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールウレイド基、N’,N’-ジアルキル-N-アルキルウレイド基、N’,N’-ジアルキル-N-アリールウレイド基、N’-アリール-N-アルキルウレイド基、N’-アリール-N-アリールウレイド基、N’,N’-ジアリール-N-アルキルウレイド基、N’,N’-ジアリール-N-アリールウレイド基、N’-アルキル-N’-アリール-N-アルキルウレイド基、N’-アルキル-N’-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SOH)及びその共役塩基基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、N-アシルスルファモイル基及びその共役塩基基、N-アルキルスルホニルスルファモイル基(-SONHSO(alkyl))及びその共役塩基基、N-アリールスルホニルスルファモイル基(-SONHSO(aryl))及びその共役塩基基、N-アルキルスルホニルカルバモイル基(-CONHSO(alkyl))及びその共役塩基基、N-アリールスルホニルカルバモイル基(-CONHSO(aryl))及びその共役塩基基、アルコキシシリル基(-Si(Oalkyl))、アリーロキシシリル基(-Si(Oaryl))、ヒドロキシシリル基(-Si(OH))及びその共役塩基基、ホスホノ基(-PO)及びその共役塩基基、ジアルキルホスホノ基(-PO(alkyl))、ジアリールホスホノ基(-PO(aryl))、アルキルアリールホスホノ基(-PO(alkyl)(aryl))、モノアルキルホスホノ基(-POH(alkyl))及びその共役塩基基、モノアリールホスホノ基(-POH(aryl))及びその共役塩基基、ホスホノオキシ基(-OPO)及びその共役塩基基、ジアルキルホスホノオキシ基(-OPO(alkyl))、ジアリールホスホノオキシ基(-OPO(aryl))、アルキルアリールホスホノオキシ基(-OPO(alkyl)(aryl))、モノアルキルホスホノオキシ基(-OPOH(alkyl))及びその共役塩基基、モノアリールホスホノオキシ基(-OPOH(aryl))及びその共役塩基基、シアノ基、ニトロ基、アリール基、アルケニル基、アルキニル基、及びアルキル基。
また、これらの置換基は、可能であるならば置換基同士、又は置換している基と結合して環を形成してもよいし、していなくてもよい。
また、本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
Substituent group Y:
Halogen atoms (-F, -Br, -Cl, -I, etc.), hydroxyl groups, amino groups, carboxylic acid groups and their conjugate base groups, carboxylic anhydride groups, cyanate ester groups, unsaturated polymerizable groups, epoxy groups, oxetanyl group, aziridinyl group, thiol group, isocyanate group, thioisocyanate group, aldehyde group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, N-alkylamino group, N,N-dialkylamino group, N-arylamino group, N,N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N,N -dialkylcarbamoyloxy group, N,N-diarylcarbamoyloxy group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acylthio group, acylamino group, N-alkylacylamino group, N -aryl acylamino group, ureido group, N'-alkylureido group, N',N'-dialkylureido group, N'-arylureido group, N',N'-diarylureido group, N'-alkyl-N' -arylureido group, N-alkylureido group, N-arylureido group, N'-alkyl-N-alkylureido group, N'-alkyl-N-arylureido group, N',N'-dialkyl-N-alkyl ureido group, N',N'-dialkyl-N-arylureido group, N'-aryl-N-alkylureido group, N'-aryl-N-arylureido group, N',N'-diaryl-N-alkyl ureido group, N',N'-diaryl-N-arylureido group, N'-alkyl-N'-aryl-N-alkylureido group, N'-alkyl-N'-aryl-N-arylureido group, alkoxy carbonylamino group, aryloxycarbonylamino group, N-alkyl-N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl-N- aryloxycarbonylamino group, formyl group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N,N-dialkylcarbamoyl group, N-arylcarbamoyl group, N,N-diaryl carbamoyl group, N-alkyl-N-arylcarbamoyl group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, sulfo group (—SO 3 H) and its conjugate base group, alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkylsulfinamoyl group, N,N-dialkylsulfinamoyl group, N-arylsulfinamoyl group, N,N-diarylsulfinamoyl group, N-alkyl-N-arylsulfina moyl group, sulfamoyl group, N-alkylsulfamoyl group, N,N-dialkylsulfamoyl group, N-arylsulfamoyl group, N,N-diarylsulfamoyl group, N-alkyl-N-arylsulfamoyl group famoyl group, N-acylsulfamoyl group and its conjugate base group, N-alkylsulfonylsulfamoyl group (—SO 2 NHSO 2 (alkyl)) and its conjugate base group, N-arylsulfonylsulfamoyl group ( —SO 2 NHSO 2 (aryl)) and its conjugate base group, N-alkylsulfonylcarbamoyl group (—CONHSO 2 (alkyl)) and its conjugate base group, N-arylsulfonylcarbamoyl group (—CONHSO 2 (aryl)) and Its conjugate base group, alkoxysilyl group (-Si(Oalkyl) 3 ), aryloxysilyl group (-Si(Oaryl) 3 ), hydroxysilyl group (-Si(OH) 3 ) and its conjugate base group, phosphono group ( —PO 3 H 2 ) and its conjugate base group, dialkylphosphono group (—PO 3 (alkyl) 2 ), diarylphosphono group (—PO 3 (aryl) 2 ), alkylarylphosphono group (—PO 3 ( alkyl) (aryl)), a monoalkylphosphono group (—PO 3 H(alkyl)) and its conjugate base group, a monoarylphosphono group (—PO 3 H(aryl)) and its conjugate base group, a phosphonooxy group ( —OPO 3 H 2 ) and its conjugate base group, dialkylphosphonoxy group (—OPO 3 (alkyl) 2 ), diarylphosphonoxy group (—OPO 3 (aryl) 2 ), alkylarylphosphonoxy group (— OPO 3 (alkyl)(aryl)), monoalkylphosphonoxy groups (—OPO 3 H(alkyl)) and their conjugate base groups, monoarylphosphorus a nooxy group (--OPO 3 H(aryl)) and its conjugate base group, a cyano group, a nitro group, an aryl group, an alkenyl group, an alkynyl group and an alkyl group;
In addition, these substituents may or may not form a ring by bonding with each other or with the group substituting them, if possible.
Moreover, in this specification, each component may use the substance applicable to each component individually by 1 type, or may use 2 or more types together. Here, when two or more substances are used in combination for each component, the content of the component refers to the total content of the substances used in combination unless otherwise specified.

[熱伝導材料形成用組成物]
本発明の熱伝導材料形成用組成物(以下、「本発明の組成物」とも略す。)は、無機粒子と後述する一般式(1)で表される化合物(以下、「特定化合物」とも略す。)とを含む。
[Composition for Forming Thermal Conductive Material]
The composition for forming a thermally conductive material of the present invention (hereinafter also abbreviated as "the composition of the present invention") comprises inorganic particles and a compound represented by the general formula (1) described later (hereinafter also abbreviated as "specific compound" .) and including.

このような構成を有する本発明の熱伝導材料形成用組成物は、熱伝導性に優れた熱伝導材料を形成することができる。
これは、詳細には明らかではないが、本発明者らは以下のように推測している。
すなわち、特定化合物は、トリアジン環を2つ以上有する化合物であるため、無機粒子との親和性が高いと考えられる。
また、特定化合物は、所定の基(特定官能基)を少なくとも2個有しているため、親和性の高い無機粒子との間だけでなく、特定化合物同士の間、特定化合物と所望に応じて加えるその他の成分(例えば、フェノール化合物及び/又はエポキシ化合物)との間などでも相互作用が生じていると考えられる。
そのため、特定化合物の特定官能基を介した相互作用によって特定化合物を介した熱伝導のパスが形成されるため、本発明の組成物を用いて形成される熱伝導材料の熱伝導性が向上している、と本発明者らは推測している。
The composition for forming a thermally conductive material of the present invention having such a structure can form a thermally conductive material having excellent thermal conductivity.
Although this is not clear in detail, the present inventors presume as follows.
That is, since the specific compound is a compound having two or more triazine rings, it is considered to have a high affinity with the inorganic particles.
In addition, since the specific compound has at least two predetermined groups (specific functional groups), not only between the inorganic particles with high affinity, but also between the specific compounds, between the specific compounds and as desired Interactions may also occur with other components added (eg, phenolic compounds and/or epoxy compounds).
Therefore, a thermal conduction path is formed via the specific compound by the interaction via the specific functional group of the specific compound, so that the thermal conductivity of the thermally conductive material formed using the composition of the present invention is improved. The inventors speculate that

以下、組成物に含まれる成分について詳述する。 The components contained in the composition are described in detail below.

〔特定化合物〕
本発明の熱伝導材料形成用組成物は特定化合物を含む。
特定化合物は、一般式(1)で表される化合物である。

Figure 0007245953000004
[Specific compound]
The composition for forming a thermally conductive material of the present invention contains a specific compound.
A specific compound is a compound represented by general formula (1).
Figure 0007245953000004

一般式(1)中、E~Eは、それぞれ独立に、単結合、-NH-、又は、-NR-を表す。
Rは、置換基を表す。Rの表す置換基としては、例えば、炭素数1~5の直鎖状又は分岐鎖状のアルキル基などが挙げられる。E~Eのうちに-NR-が複数存在する場合、複数存在するRはそれぞれ同一でも異なっていてもよい。
中でも、一般式(1)中、得られる熱伝導材料の熱伝導性がより優れる点から、E~Eは、それぞれ独立に、-NH-、又は、-NR-が好ましく、-NH-がより好ましい。
In general formula (1), E 1 to E 6 each independently represent a single bond, -NH- or -NR-.
R represents a substituent. Examples of substituents represented by R include linear or branched alkyl groups having 1 to 5 carbon atoms. When a plurality of -NR- are present among E 1 to E 6 , the plurality of R's may be the same or different.
Among them, in the general formula (1), E 1 to E 6 are each independently preferably -NH- or -NR-, and -NH- is more preferred.

一般式(1)中、B、B、B、及びBは、それぞれ、k+1価、l+1価、m+1価、及びn+1価の有機基を表し、それらの少なくとも1つが、置換基を有していてもよいk+1価、l+1価、m+1価、又は、n+1価の芳香環基を表す。In general formula (1), B 1 , B 2 , B 3 , and B 4 each represent a k+1-valent, l+1-valent, m+1-valent, and n+1-valent organic group, at least one of which represents a substituent It represents a k+1-valent, l+1-valent, m+1-valent, or n+1-valent aromatic ring group which may have.

~Bが表す有機基としては、例えば、炭素数1~20のヘテロ原子を有していてもよい炭化水素基からj個の水素原子を除いた基などが挙げられる。なお、j個とは、k+1個、l+1個、m+1個、又は、n+1個のことをいう。
ここで、j個の水素原子を除く前の炭化水素基としては、例えば、置換基を有していてもよい炭素数1~20の脂肪族炭化水素基、置換基を有していてもよい炭素数3~20の脂肪族環基、及び、置換基を有していてもよい炭素数3~20の芳香環基などが挙げられる。
炭素数1~20の脂肪族炭化水素基としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、及び、ヘプタンなどが挙げられる。
炭素数3~20の脂肪族環基としては、例えば、シクロヘキサン環基、シクロヘプタン環基、ノルボルナン環基、及び、アダマンタン環基などが挙げられる。
炭素数3~20の芳香環基としては、例えば、炭素数6~20の芳香族炭化水素基、及び、炭素数3~20の芳香族複素環基などが挙げられる。
炭素数6~20の芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環などが挙げられ、炭素数3~20の芳香族複素環基としては、例えば、フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、カルバゾール環、インドール環、及び、ベンゾチアゾール環などが挙げられる。
The organic group represented by B 1 to B 4 includes, for example, a group obtained by removing j hydrogen atoms from a hydrocarbon group having 1 to 20 carbon atoms and optionally having a heteroatom. Note that j means k+1, l+1, m+1, or n+1.
Here, the hydrocarbon group before removal of j hydrogen atoms is, for example, an aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, or an aliphatic hydrocarbon group which may have a substituent. Aliphatic cyclic groups having 3 to 20 carbon atoms and aromatic cyclic groups having 3 to 20 carbon atoms which may have a substituent are included.
Examples of aliphatic hydrocarbon groups having 1 to 20 carbon atoms include methane, ethane, propane, butane, pentane, hexane and heptane.
Examples of the aliphatic cyclic group having 3 to 20 carbon atoms include cyclohexane ring group, cycloheptane ring group, norbornane ring group and adamantane ring group.
Examples of aromatic ring groups having 3 to 20 carbon atoms include aromatic hydrocarbon groups having 6 to 20 carbon atoms and aromatic heterocyclic groups having 3 to 20 carbon atoms.
Examples of aromatic hydrocarbon groups having 6 to 20 carbon atoms include benzene ring, naphthalene ring, and anthracene ring. Examples of aromatic heterocyclic groups having 3 to 20 carbon atoms include furan ring and pyrrole ring. , thiophene ring, pyridine ring, thiazole ring, carbazole ring, indole ring, and benzothiazole ring.

これらのうち、B~Bが表す有機基としては、熱伝導材料の熱伝導性がより優れる点から、置換基を有していてもよい芳香環基からj個の水素原子を除いた基であることが好ましく、ベンゼン環からj個の水素原子を除いた基であることがより好ましい。Among these, the organic group represented by B 1 to B 4 is an aromatic ring group optionally having a substituent from which j hydrogen atoms are removed, since the thermal conductivity of the thermal conductive material is more excellent. is preferably a group, more preferably a group obtained by removing j hydrogen atoms from a benzene ring.

一般式(1)中、k、l、m、及び、nは、それぞれ独立に、0以上の整数を表す。ただし、k、l、m、及び、nの合計は2以上である。
l、m、及び、nは、それぞれ独立に、0~5が好ましく、1~2がより好ましい。
なお、kが0の場合、BはXを有さない。lが0の場合、BはXを有さない。mが0の場合、BはXを有さない。nが0の場合、BはXを有さない。
In general formula (1), k, l, m and n each independently represent an integer of 0 or greater. However, the sum of k, l, m and n is 2 or more.
l, m and n are each independently preferably 0 to 5, more preferably 1 to 2.
Note that B 1 does not have X 1 when k is 0. When l is 0, B 2 has no X 2 . When m is 0, B3 has no X3 . When n is 0, B 4 has no X 4 .

kが2以上の場合(つまり、Xが複数存在する場合)、複数(k個)存在するXは、それぞれ同一でも異なっていてもよい。lが2以上の場合(つまり、Xが複数存在する場合)、複数(l個)存在するXは、それぞれ同一でも異なっていてもよい。mが2以上の場合(つまり、Xが複数存在する場合)、複数(m個)存在するXは、それぞれ同一でも異なっていてもよい。nが2以上の場合(つまり、Xが複数存在する場合)、複数(n個)存在するXは、それぞれ同一でも異なっていてもよい。When k is 2 or more (that is, when there are a plurality of X 1 's), the plurality (k) of X 1's may be the same or different. When l is 2 or more (that is, when there are a plurality of X 2 ), the plurality (l) of X 2 may be the same or different. When m is 2 or more (that is, when there are a plurality of X 3 's), the plurality (m) of X 3's may be the same or different. When n is 2 or more (that is, when there are multiple X 4 's), the multiple (n) X 4's may be the same or different.

一般式(1)中、k、l、m、及び、nの合計数は、2以上であり、2~12の整数であることが好ましく、4~8の整数であることがより好ましい。
言い換えると、それぞれ複数存在してもよいX1~Xの合計数は2以上であり、2~12の整数であることが好ましく、4~8の整数であることがより好ましい。
In general formula (1), the total number of k, l, m and n is 2 or more, preferably an integer of 2-12, more preferably an integer of 4-8.
In other words, the total number of each of X 1 to X 4 , which may be plural, is 2 or more, preferably an integer of 2 to 12, more preferably an integer of 4 to 8.

例えば、kが1以上(より好ましくは1~2)であるのが好ましく、lが1以上(より好ましくは1~2)であるのが好ましく、mが1以上(より好ましくは1~2)であるのが好ましく、nが1以上(より好ましくは1~2)であるのが好ましい。
つまり、Bが、Xを1個以上(より好ましくは1~2個)有するのが好ましく、Bが、Xを1個以上(好ましくは1~2個)有するのが好ましく、Bが、Xを1個以上(好ましくは1~2個)有するのが好ましい。
For example, k is preferably 1 or more (more preferably 1 to 2), l is preferably 1 or more (more preferably 1 to 2), and m is 1 or more (more preferably 1 to 2). and n is preferably 1 or more (more preferably 1 to 2).
That is, B 1 preferably has 1 or more (more preferably 1 to 2) X 1 , B 2 preferably has 1 or more (preferably 1 to 2) X 2, and B 3 preferably has 1 or more (preferably 1 to 2) X 3 .

Lは、2価の有機基を表す。
有機基としては、例えば、置換基を有していてもよい芳香環基、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい脂肪族環基、-O-、-S-、-N(R)-若しくは-C(=O)-、又は、これらを組み合わせた基が挙げられる。
は、置換基を表す。Rの表す置換基としては、例えば、炭素数1~5の直鎖状又は分岐鎖状のアルキル基などが挙げられる。
また、芳香環基、脂肪族炭化水素基、及び、脂肪族環基が有していてもよい置換基としては、例えば、炭素数1~5の直鎖状又は分岐鎖状のアルキル基などが挙げられる。
L represents a divalent organic group.
Examples of the organic group include an optionally substituted aromatic ring group, an optionally substituted aliphatic hydrocarbon group, an optionally substituted aliphatic ring group, - O-, -S-, -N(R N )- or -C(=O)-, or a group combining these.
RN represents a substituent. Examples of substituents represented by R N include linear or branched alkyl groups having 1 to 5 carbon atoms.
Further, the aromatic ring group, the aliphatic hydrocarbon group, and the substituent which the aliphatic ring group may have include, for example, a linear or branched alkyl group having 1 to 5 carbon atoms. mentioned.

芳香環基としては、例えば、炭素数6~20の芳香族炭化水素基、及び、炭素数3~20の芳香族複素環基などが挙げられる。
炭素数6~20の芳香族炭化水素基としては、例えば、ベンゼン環などの単環式芳香環基;ナフタレン環、及び、アントラセン環などの多環式芳香環基;などが挙げられ、炭素数3~20の芳香族複素環基としては、例えば、フラン環、ピロール環、チオフェン環、ピリジン環、及び、チアゾール環などの単環式芳香環基;ベンゾチアゾール環、カルバゾール環、及び、インドール環などの多環式芳香環基;などが挙げられる。
なお、Lとしての芳香環基は、上記例示から2個の水素原子を除いた基が挙げられる。
Examples of aromatic ring groups include aromatic hydrocarbon groups having 6 to 20 carbon atoms and aromatic heterocyclic groups having 3 to 20 carbon atoms.
Examples of aromatic hydrocarbon groups having 6 to 20 carbon atoms include monocyclic aromatic ring groups such as benzene ring; polycyclic aromatic ring groups such as naphthalene ring and anthracene ring; 3-20 aromatic heterocyclic groups include, for example, monocyclic aromatic ring groups such as furan ring, pyrrole ring, thiophene ring, pyridine ring and thiazole ring; benzothiazole ring, carbazole ring and indole ring Polycyclic aromatic ring groups such as;
In addition, examples of the aromatic ring group for L include groups obtained by removing two hydrogen atoms from the above examples.

脂肪族炭化水素基としては、例えば、炭素数1~12のアルキレン基などが挙げられ、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、メチルヘキシレン基、および、へプチレン基などが挙げられる。 Examples of the aliphatic hydrocarbon group include alkylene groups having 1 to 12 carbon atoms, and specific examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, and methylhexylene group. , and a heptylene group.

脂肪族環基としては、例えば、シクロヘキサン環基、シクロヘプタン環基、ノルボルナン環基、及び、アダマンタン環基などが挙げられる。
なお、Lとしての脂肪族環基は、上記例示から2個の水素原子を除いた基が挙げられる。
Examples of aliphatic ring groups include cyclohexane ring groups, cycloheptane ring groups, norbornane ring groups, and adamantane ring groups.
In addition, the aliphatic ring group as L includes groups obtained by removing two hydrogen atoms from the above examples.

置換基を有していてもよい芳香環基、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい脂肪族環基、又は、-O-、-S-、-N(R)-若しくは-C(=O)-を組み合わせた基としては、これらの2つ以上の組み合わせからなる2価の連結基だけでなく、同種の基(例えば、芳香環基)を単結合を介して2つ以上組み合わせた2価の連結基であってもよい。optionally substituted aromatic ring group, optionally substituted aliphatic hydrocarbon group, optionally substituted aliphatic ring group, or -O-, -S Groups in which -, -N(R N )- or -C(=O)- are combined include not only divalent linking groups consisting of a combination of two or more of these, but also groups of the same type (e.g., aromatic ring group) in combination of two or more via a single bond.

本発明においては、熱伝導材料の熱伝導性がより優れる点から、Lの両末端が炭素原子であることが好ましい。末端の炭素原子は環状構造の一部でもよい。
また、本発明においては、熱伝導材料の熱伝導性がより優れる点から、上記一般式(1)中のLが、置換基を有していてもよい2価の芳香環基、置換基を有していてもよい2価の脂肪族環基、及び、炭素数2以上の分岐を有していてもよいアルキレン基からなる群から選択される少なくとも1種を有する2価の有機基であることが好ましく、熱伝導性がより優れるとの理由から置換基を有していてもよい2価の芳香環基を有する2価の有機基がより好ましい。
In the present invention, it is preferable that both terminals of L are carbon atoms, in order to improve the thermal conductivity of the thermally conductive material. The terminal carbon atom may be part of a ring structure.
Further, in the present invention, from the viewpoint that the thermal conductivity of the thermally conductive material is more excellent, L in the general formula (1) is a divalent aromatic ring group optionally having a substituent, a substituent A divalent organic group having at least one selected from the group consisting of an optionally divalent aliphatic cyclic group and an optionally branched alkylene group having 2 or more carbon atoms. A divalent organic group having a divalent aromatic ring group which may have a substituent is more preferable because of its superior thermal conductivity.

一般式(1)中、rは1以上の整数である。
rは1~20の整数であることが好ましく、1~10の整数であることがより好ましい。
In general formula (1), r is an integer of 1 or more.
r is preferably an integer of 1-20, more preferably an integer of 1-10.

一般式(1)中、X~X4は、それぞれ独立に、一般式(2)で表される基を表す。In general formula (1), X 1 to X 4 each independently represent a group represented by general formula (2).

Figure 0007245953000005
Figure 0007245953000005

上記一般式(2)中、*は、B~Bのいずれかとの結合位置を表す。In the above general formula (2), * represents the bonding position with any one of B 1 to B 4 .

上記一般式(2)中、Dは、単結合又は2価の連結基を表す。
上記2価の連結基としては、例えば、-O-、-S-、-CO-、-NR-、-SO-、アルキレン基、又は、これらの組み合わせからなる基が挙げられる。-NR-におけるRは、水素原子又は置換基を表す。上記アルキレン基は、炭素数1~8の直鎖状又は分岐鎖状のアルキレン基が好ましい。
中でも、Dは、「単結合」又は「-O-、-CO-、及び、アルキレン基からなる群から選択される組み合わせからなる基」が好ましく、単結合、*-アルキレン基-O-CO-*、*-CO-O-アルキレン基-*、*-O-アルキレン基-O-*、*-CO-O-アルキレン基-O-CO-*、*-CO-O-アルキレン基-O-*、又は、*-O-アルキレン基-O-CO-*がより好ましい。
は、Aとは反対側の結合位置であり、*は、Aとの結合位置である。
In general formula (2) above, D 1 represents a single bond or a divalent linking group.
Examples of the divalent linking group include -O-, -S-, -CO-, -NR N -, -SO 2 -, an alkylene group, and a group consisting of a combination thereof. R N in -NR N - represents a hydrogen atom or a substituent. The alkylene group is preferably a linear or branched alkylene group having 1 to 8 carbon atoms.
Among them, D 1 is preferably a "single bond" or a "group consisting of a combination selected from the group consisting of -O-, -CO- and an alkylene group", a single bond, * A -alkylene group -O- CO-* B , * A -CO-O-alkylene group-* B , * A -O-alkylene group-O-* B , * A -CO-O-alkylene group-O-CO-* B , * A -CO-O-alkylene group -O-* B or * A -O-alkylene group -O-CO-* B is more preferred.
* A is the point of attachment opposite to A1 and * B is the point of attachment to A1 .

上記一般式(2)中、Aは、置換基を有していてもよい芳香環基、又は、置換基を有していてもよい脂肪族環基を表す。
なお、Aは、D、Y、及び、Qに対して、上記芳香環基又は上記脂肪族環基を構成する原子で結合する。
In general formula (2) above, A 1 represents an optionally substituted aromatic ring group or an optionally substituted aliphatic ring group.
In addition, A 1 is bonded to D 1 , Y 1 and Q through an atom constituting the aromatic ring group or the aliphatic ring group.

の一態様である、置換基を有していてもよい芳香環基は、単環式芳香環基でも多環式芳香環基でもよい。
上記単環式芳香環基の員環数は6~10が好ましい。
上記多環式芳香環基を構成する環の数は2~4が好ましく、2がより好ましい。上記多環式芳香環基を構成する環の員環数は、それぞれ独立に、5~10が好ましい。
上記芳香環基は、芳香族炭化水素環基でも芳香族複素環基でもよい。
上記芳香族複素環基が有するヘテロ原子の数は、1~5が好ましい。ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及び、ホウ素原子が挙げられる。中でも、窒素原子、硫黄原子、又は、酸素原子が好ましい。
上記芳香環基としては、例えば、ベンゼン環基、ナフタレン環基、アントラセン環基、ベンゾチアゾール環基、カルバゾール環基、及び、インドール環基等が挙げられる。
The optionally substituted aromatic ring group, which is one aspect of A1 , may be a monocyclic aromatic ring group or a polycyclic aromatic ring group.
The monocyclic aromatic ring group preferably has 6 to 10 membered rings.
The number of rings constituting the polycyclic aromatic ring group is preferably 2 to 4, more preferably 2. The number of ring members constituting the polycyclic aromatic ring group is preferably 5 to 10 independently.
The aromatic ring group may be either an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
The number of heteroatoms possessed by the aromatic heterocyclic group is preferably 1-5. Heteroatoms include, for example, nitrogen, sulfur, oxygen, selenium, tellurium, phosphorus, silicon, and boron atoms. Among them, a nitrogen atom, a sulfur atom, or an oxygen atom is preferable.
Examples of the aromatic ring group include benzene ring group, naphthalene ring group, anthracene ring group, benzothiazole ring group, carbazole ring group, and indole ring group.

の一態様である、置換基を有していてもよい脂肪族環基は、単環でも、多環でもよい。
上記単環の脂肪族環基の員環数は6~10が好ましい。
上記多環の脂肪族環基を構成する環の数は2~4が好ましく、2がより好ましい。上記多環のシクロアルカン環基を構成する環の員環数は、それぞれ独立に、5~10が好ましい。
上記脂肪族環基の、環員原子である炭素原子の数は6以上が好ましく、6~12がより好ましい。上記環員原子である炭素原子の数とは、脂肪族環を構成する環員原子である炭素原子の数を意図する。
上記脂肪族環基としては、例えば、シクロヘキサン環基、シクロヘプタン環基、ノルボルナン環基、及び、アダマンタン環基が挙げられる。
An optionally substituted aliphatic cyclic group, which is one embodiment of A 1 , may be monocyclic or polycyclic.
The monocyclic aliphatic ring group preferably has 6 to 10 membered rings.
The number of rings constituting the polycyclic aliphatic ring group is preferably 2 to 4, more preferably 2. The number of ring members constituting the polycyclic cycloalkane ring group is preferably 5 to 10 independently.
The number of carbon atoms as ring member atoms in the above aliphatic ring group is preferably 6 or more, more preferably 6 to 12. The number of carbon atoms that are ring-member atoms means the number of carbon atoms that are ring-member atoms constituting an aliphatic ring.
Examples of the aliphatic ring group include a cyclohexane ring group, a cycloheptane ring group, a norbornane ring group, and an adamantane ring group.

上記一般式(2)中、Q及びYは、それぞれ独立に、水酸基(-OH)、エポキシ基を有する1価の基、アミノ基、チオール基(-SH)、カルボン酸基(-COOH)、イソシアネート基(-NCO)、及び、オキセタニル基を有する1価の基からなる群から選択される特定官能基を表す。
つまり、一般式(2)で表される基は、少なくとも1個の特定官能基を有する基である。ここで、一般式(2)で表される基が「特定官能基を有する基である」とは、一般式(2)で表される基が一部分として特定官能基を含む基であってもよく、一般式(2)で表される基が特定官能基そのものであってもよい。
In the above general formula (2), Q and Y 1 are each independently a hydroxyl group (-OH), a monovalent group having an epoxy group, an amino group, a thiol group (-SH), a carboxylic acid group (-COOH). , an isocyanate group (--NCO), and a specific functional group selected from the group consisting of a monovalent group having an oxetanyl group.
That is, the group represented by general formula (2) is a group having at least one specific functional group. Here, the group represented by the general formula (2) "is a group having a specific functional group", even if the group represented by the general formula (2) is a group containing a specific functional group as a part Well, the group represented by general formula (2) may be the specific functional group itself.

上記特定官能基としての、エポキシ基を有する1価の基は、例えば、「-Leo-エポキシ基」で表される基が好ましい。Leoは、単結合又は2価の連結基であり、酸素原子、アルキレン基(好ましくは炭素数1~6の直鎖状又は分岐鎖状のアルキレン基)、又は、これらの組み合わせからなる基が好ましい。
中でも、上記エポキシ基を有する1価の基は、「-O-アルキレン基-エポキシ基」が好ましい。
なお、エポキシ基が有していてもよい置換基としては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましい。
The monovalent group having an epoxy group as the specific functional group is preferably, for example, a group represented by " --Leo --epoxy group". L eo is a single bond or a divalent linking group, an oxygen atom, an alkylene group (preferably a linear or branched alkylene group having 1 to 6 carbon atoms), or a group consisting of a combination thereof preferable.
Among them, the monovalent group having an epoxy group is preferably "--O-alkylene group-epoxy group".
As a substituent which the epoxy group may have, a linear or branched alkyl group having 1 to 6 carbon atoms is preferable.

上記特定官能基としての、アミノ基としては特に限定されず、1級、2級、及び、3級のいずれであってもよい。例えば、-N(R(Rは、それぞれ独立して、水素原子又はアルキル基(直鎖状でも分岐鎖状でもよい))が挙げられる。アルキル基中の炭素数は、1~10が好ましく、1~6がより好ましく、1~3が更に好ましい。なお、アルキル基は、更に置換基を有していてもよい。The amino group as the specific functional group is not particularly limited, and may be primary, secondary or tertiary. Examples thereof include -N(R E ) 2 (each R E is independently a hydrogen atom or an alkyl group (which may be linear or branched)). The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-6, and even more preferably 1-3. In addition, the alkyl group may further have a substituent.

上記特定官能基としての、オキセタニル基を有する1価の基は、例えば、「-Leo-オキセタニル基」で表される基が好ましい。Leoは、単結合又は2価の連結基であり、酸素原子、アルキレン基(好ましくは炭素数1~6の直鎖状又は分岐鎖状のアルキレン基)、又は、これらの組み合わせからなる基が好ましい。
中でも、上記オキセタニル基を有する1価の基は、「-O-アルキレン基-オキセタニル基」が好ましい。
なお、オキセタニル基が有していてもよい置換基としては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましい。
The monovalent group having an oxetanyl group as the specific functional group is preferably, for example, a group represented by " --Leo -oxetanyl group". L eo is a single bond or a divalent linking group, an oxygen atom, an alkylene group (preferably a linear or branched alkylene group having 1 to 6 carbon atoms), or a group consisting of a combination thereof preferable.
Among them, the monovalent group having an oxetanyl group is preferably "--O-alkylene group-oxetanyl group".
As the substituent which the oxetanyl group may have, a linear or branched alkyl group having 1 to 6 carbon atoms is preferable.

中でも、特定官能基は、水酸基、又は、エポキシ基を有する1価の基が好ましい。 Among them, the specific functional group is preferably a hydroxyl group or a monovalent group having an epoxy group.

上記一般式(2)中、pは、0以上の整数を表す。
中でも、pは、0~5が好ましく、0~1がより好ましい。
pが0である場合、Yは、B~Bのいずれかと直接結合する。つまり、X~Xは、特定官能基そのものであってもよい。
In the general formula (2), p represents an integer of 0 or more.
Among them, p is preferably 0 to 5, more preferably 0 to 1.
When p is 0, Y 1 directly bonds to any of B 1 -B 4 . That is, X 1 to X 4 may be the specific functional groups themselves.

上記一般式(2)中、qは、0~2の整数を表す。
中でも、qは、0~1が好ましい。
In the above general formula (2), q represents an integer of 0-2.
Among them, q is preferably 0 to 1.

なお、特定化合物中に、一般式(2)で表される基が複数存在する場合、複数の一般式(2)で表される基は、それぞれ同一でも異なっていてもよい。
例えば、一般式(2)中、Dが複数存在する場合、複数存在するDは、それぞれ同一でも異なっていてもよい。Aが複数存在する場合、複数存在するAは、それぞれ同一でも異なっていてもよい。Qが複数存在する場合、複数存在するQは、それぞれ同一でも異なっていてもよい。
When a plurality of groups represented by general formula (2) are present in the specific compound, the groups represented by general formula (2) may be the same or different.
For example, in general formula (2), when there are multiple D 1 's, the multiple D 1 's may be the same or different. When there are multiple A 1 's, the multiple A 1 's may be the same or different. When there are multiple Q's, the multiple Q's may be the same or different.

特定化合物は一般式(2)で表される基を1種単独で有していてもよく、2種以上有していてもよい。
中でも、特定化合物は、「特定官能基として水酸基のみを有する化合物」、又は「特定官能基としてエポキシ基を有する1価の基のみを有する化合物」であるのが好ましい。
The specific compound may have one type of group represented by general formula (2) alone, or may have two or more types.
Among them, the specific compound is preferably "a compound having only a hydroxyl group as a specific functional group" or "a compound having only a monovalent group having an epoxy group as a specific functional group".

本発明においては、耐水性が向上するとの理由から、一般式(1)で表される化合物のハンセン溶解度パラメーター(以下、「HSP」とも略す。)値が28MPa0.5以下であることが好ましく、26MPa0.5以下であることがより好ましい。特定化合物のHSP値の下限は制限されず、例えば、10MPa0.5以上が好ましい。
特定化合物のHSP値は、下記式から計算した値を採用する。
HSP値=(HSP +HSP +HSP 0.5
HSP、HSP、HSPは、それぞれ、HSP値の分散項、極性項、水素結合項を表わす(単位はそれぞれMPa0.5
HSP、HSP、HSPは、HSPiP(Hansen Solubility Paramet
In the present invention, the Hansen solubility parameter (hereinafter also abbreviated as "HSP") of the compound represented by the general formula (1) is preferably 28 MPa 0.5 or less for the reason that water resistance is improved. , 26 MPa 0.5 or less. The lower limit of the HSP value of the specific compound is not limited, and is preferably 10 MPa 0.5 or more, for example.
As the HSP value of a specific compound, a value calculated from the following formula is adopted.
HSP value = (HSP d 2 +HSP p 2 +HSP h 2 ) 0.5
HSP d , HSP p , and HSP h represent the dispersion term, polar term, and hydrogen bond term, respectively, of the HSP value (each unit is MPa 0.5 ).
HSP d , HSP p , HSP h are HSPiP (Hansen Solubility Parameter

本発明の熱伝導材料形成用組成物において、熱伝導材料の熱伝導性がより優れる点から、特定化合物の含有量は組成物の全固形分に対して、3~40質量%が好ましく、8~25質量%がより好ましい。 In the composition for forming a thermally conductive material of the present invention, the content of the specific compound is preferably 3 to 40% by mass with respect to the total solid content of the composition from the viewpoint that the thermal conductivity of the thermally conductive material is more excellent. ~25% by mass is more preferred.

また、本発明の組成物中、特定化合物の含有量は、無機粒子の質量に対して、4~60質量%が好ましく、10~35質量%がより好ましく、12~30質量%が更に好ましい。
特定化合物は1種単独で使用してもよく、2種以上を使用してもよい。
In addition, the content of the specific compound in the composition of the present invention is preferably 4 to 60% by mass, more preferably 10 to 35% by mass, and even more preferably 12 to 30% by mass, relative to the mass of the inorganic particles.
A specific compound may be used individually by 1 type, and may use 2 or more types.

〔フェノール化合物〕
本発明の組成物は、更に、フェノール化合物を含んでもよい。
なお、フェノール化合物は、特定化合物以外の化合物である。例えば、特定化合物がフェノール性水酸基を有する場合でも、特定化合物は、フェノール化合物には該当しない。
得られる熱伝導材料の熱伝導性がより優れる点から、フェノール化合物としては、一般式(P1)で表される化合物、又は、一般式(P2)で表される化合物からなる群から選択される1種以上であるのが好ましい。
[Phenolic compound]
Compositions of the present invention may further comprise a phenolic compound.
In addition, a phenol compound is a compound other than a specific compound. For example, even if a specific compound has a phenolic hydroxyl group, the specific compound does not correspond to a phenol compound.
The phenolic compound is selected from the group consisting of compounds represented by the general formula (P1) or compounds represented by the general formula (P2), since the resulting thermally conductive material has better thermal conductivity. One or more is preferred.

<一般式(P1)で表される化合物>
一般式(P1)を以下に示す。
<Compound Represented by General Formula (P1)>
General formula (P1) is shown below.

Figure 0007245953000006
Figure 0007245953000006

一般式(P1)中、m1は0以上の整数を表す。
m1は、0~10が好ましく、0~3がより好ましく、0又は1が更に好ましく、1が特に好ましい。
In general formula (P1), m1 represents an integer of 0 or more.
m1 is preferably 0 to 10, more preferably 0 to 3, still more preferably 0 or 1, and particularly preferably 1.

一般式(P1)中、na及びncは、それぞれ独立に、1以上の整数を表す。
na及びncは、それぞれ独立に、1~4が好ましい。
In general formula (P1), na and nc each independently represent an integer of 1 or more.
na and nc are each independently preferably 1-4.

一般式(P1)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、カルボン酸基、ボロン酸基、アルデヒド基、アルキル基、アルコキシ基、又は、アルコキシカルボニル基を表す。
上記アルキル基は、直鎖状でも分岐鎖状でもよい。上記アルキル基の炭素数は、1~10が好ましい。上記アルキル基は、置換基を有していても有していなくてもよい。
上記アルコキシ基におけるアルキル基部分、及び、上記アルコキシカルボニル基におけるアルキル基部分は、上記アルキル基と同様である。
及びRは、それぞれ独立に、水素原子又はハロゲン原子が好ましく、水素原子又は塩素原子がより好ましく、水素原子が更に好ましい。
In general formula (P1), R 1 and R 6 each independently represent a hydrogen atom, a halogen atom, a carboxylic acid group, a boronic acid group, an aldehyde group, an alkyl group, an alkoxy group, or an alkoxycarbonyl group.
The above alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10. The alkyl group may or may not have a substituent.
The alkyl group portion of the alkoxy group and the alkyl group portion of the alkoxycarbonyl group are the same as the alkyl group.
R 1 and R 6 are each independently preferably a hydrogen atom or a halogen atom, more preferably a hydrogen atom or a chlorine atom, and still more preferably a hydrogen atom.

一般式(P1)中、Rは、水素原子又は水酸基を表す。
が複数存在する場合、複数存在するRは、それぞれ同一でも異なっていてもよい。
が複数存在する場合、複数存在するRのうち、少なくとも1個のRが水酸基を表すのも好ましい。
In general formula (P1), R7 represents a hydrogen atom or a hydroxyl group.
When multiple R 7 are present, the multiple R 7 may be the same or different.
When a plurality of R 7 are present, it is also preferred that at least one R 7 among the plurality of R 7 present represents a hydroxyl group.

一般式(P1)中、Lx1は、単結合、-C(R)(R)-、又は、-CO-を表し、-C(R)(R)-又は-CO-が好ましい。
x2は、単結合、-C(R)(R)-、又は、-CO-を表し、-C(R)(R)-、又は、-CO-が好ましい。
~Rは、それぞれ独立に、水素原子又は置換基を表す。
上記置換基は、それぞれ独立に、水酸基、フェニル基、ハロゲン原子、カルボン酸基、ボロン酸基、アルデヒド基、アルキル基、アルコキシ基、又は、アルコキシカルボニル基が好ましく、水酸基、ハロゲン原子、カルボン酸基、ボロン酸基、アルデヒド基、アルキル基、アルコキシ基、又は、アルコキシカルボニル基がより好ましい。
上記アルキル基は、直鎖状でも分岐鎖状でもよい。上記アルキル基の炭素数は、1~10が好ましい。上記アルキル基は、置換基を有していても有していなくてもよい。
上記アルコキシ基におけるアルキル基部分、及び、上記アルコキシカルボニル基におけるアルキル基部分は、上記アルキル基と同様である。
上記フェニル基は、置換基を有していても有していなくてもよく、置換基を有する場合は1~3個の水酸基を有するのがより好ましい。
~Rは、それぞれ独立に、水素原子又は水酸基が好ましく、水素原子がより好ましい。
x1及びLx2は、それぞれ独立に、-CH-、-CH(OH)-、-CO-、又は、
-CH(Ph)-が好ましい。
上記Phは置換基を有していてもよいフェニル基を表す。
なお、一般式(P1)中に、Rが複数存在する場合、複数存在するRは、それぞれ同一でも異なっていてもよい。Rが複数存在する場合、複数存在するRは、それぞれ同一でも異なっていてもよい。
In general formula (P1), L x1 represents a single bond, —C(R 2 )(R 3 )—, or —CO—, and —C(R 2 )(R 3 )— or —CO— is preferable.
L x2 represents a single bond, -C(R 4 )(R 5 )- or -CO-, preferably -C(R 4 )(R 5 )- or -CO-.
R 2 to R 5 each independently represent a hydrogen atom or a substituent.
The above substituents are each independently preferably a hydroxyl group, a phenyl group, a halogen atom, a carboxylic acid group, a boronic acid group, an aldehyde group, an alkyl group, an alkoxy group, or an alkoxycarbonyl group, and a hydroxyl group, a halogen atom, or a carboxylic acid group. , a boronic acid group, an aldehyde group, an alkyl group, an alkoxy group, or an alkoxycarbonyl group are more preferred.
The above alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10. The alkyl group may or may not have a substituent.
The alkyl group portion of the alkoxy group and the alkyl group portion of the alkoxycarbonyl group are the same as the alkyl group.
The phenyl group may or may not have a substituent, and when it has a substituent, it preferably has 1 to 3 hydroxyl groups.
R 2 to R 5 are each independently preferably a hydrogen atom or a hydroxyl group, more preferably a hydrogen atom.
L x1 and L x2 are each independently -CH 2 -, -CH(OH)-, -CO-, or
-CH(Ph)- is preferred.
Ph above represents a phenyl group which may have a substituent.
In general formula (P1), when a plurality of R 4 are present, the plurality of R 4 may be the same or different. When there are multiple R 5 's, the multiple R 5 's may be the same or different.

一般式(P1)中、Ar及びArは、それぞれ独立に、ベンゼン環基又はナフタレン環基を表す。
Ar及びArは、それぞれ独立に、ベンゼン環基が好ましい。
In general formula (P1), Ar 1 and Ar 2 each independently represent a benzene ring group or a naphthalene ring group.
Ar 1 and Ar 2 are each independently preferably a benzene ring group.

一般式(P1)中、Qは、水素原子、アルキル基、フェニル基、ハロゲン原子、カルボン酸基、ボロン酸基、アルデヒド基、アルコキシ基、又は、アルコキシカルボニル基を表す。
上記アルキル基は、直鎖状でも分岐鎖状でもよい。上記アルキル基の炭素数は、1~10が好ましい。上記アルキル基は、置換基を有していても有していなくてもよい。
上記アルコキシ基におけるアルキル基部分、及び、上記アルコキシカルボニル基におけるアルキル基部分は、上記アルキル基と同様である。
上記フェニル基は、置換基を有していても有していなくてもよい。
は、Qが結合するベンゼン環基が有していてもよい水酸基に対して、パラ位に結合するのが好ましい。
は、水素原子又はアルキル基が好ましい。上記アルキル基はメチル基が好ましい。
In general formula (P1), Qa represents a hydrogen atom, an alkyl group, a phenyl group, a halogen atom, a carboxylic acid group, a boronic acid group, an aldehyde group, an alkoxy group, or an alkoxycarbonyl group.
The above alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10. The alkyl group may or may not have a substituent.
The alkyl group portion of the alkoxy group and the alkyl group portion of the alkoxycarbonyl group are the same as the alkyl group.
The phenyl group may or may not have a substituent.
Q a is preferably bonded at the para-position with respect to the hydroxyl group which the benzene ring group to which Q a is bonded may have.
Qa is preferably a hydrogen atom or an alkyl group. The above alkyl group is preferably a methyl group.

なお、一般式(P1)中にR、Lx2、及び/又は、Qが複数存在する場合、複数存在するR、Lx2、及び/又は、Qは、それぞれ同一でも異なっていてもよい。In general formula (P1), when a plurality of R 7 , L x2 and/or Q a are present, the plurality of R 7 , L x2 and/or Q a may be the same or different. good too.

<一般式(P2)で表される化合物>
一般式(P2)を以下に示す。
<Compound Represented by Formula (P2)>
General formula (P2) is shown below.

Figure 0007245953000007
Figure 0007245953000007

一般式(P2)中、m2は0以上の整数を表す。
m2は、0~10が好ましく、0~4がより好ましい。
In general formula (P2), m2 represents an integer of 0 or more.
m2 is preferably 0 to 10, more preferably 0 to 4.

一般式(P2)中、nxは、0~4の整数を表す。
nxは、1~2が好ましく、2がより好ましい。
In general formula (P2), nx represents an integer of 0-4.
nx is preferably 1 to 2, more preferably 2.

一般式(P2)中、nyは、0~2の整数を表す。
nyが複数存在する場合、複数存在するnyは、それぞれ同一でも異なっていてもよい。
複数存在してもよいnyのうち、少なくとも1個のnyは1を表すのが好ましい。例えば、m2が1を表す場合、1個存在するnyが1を表すのが好ましい。m2が4を表す場合、4個存在するnyの少なくとも1個のnyが1を表すのが好ましく、2個のnyが1を表すのがより好ましい。
In general formula (P2), ny represents an integer of 0-2.
When there are a plurality of ny, the plurality of ny may be the same or different.
It is preferable that at least one ny represents 1 among ny which may exist in plurality. For example, when m2 represents 1, it is preferable that one ny present represents 1. When m2 represents 4, at least one ny among four nys preferably represents 1, and two nys more preferably represent 1.

一般式(P2)中、nzは、0~2の整数を表す。
nzは、1が好ましい。
In general formula (P2), nz represents an integer of 0-2.
nz is preferably 1.

一般式(P2)中で、nxと、複数存在し得るnyと、nzとの合計数は、2以上が好ましく、2~10がより好ましい。 In general formula (P2), the total number of nx, ny which may be present in plurality, and nz is preferably 2 or more, more preferably 2-10.

一般式(P2)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、カルボン酸基、ボロン酸基、アルデヒド基、アルキル基、アルコキシ基、又は、アルコキシカルボニル基を表す。
一般式(P2)中のR及びRは、一般式(1)中のR及びRとそれぞれ同様である。
が複数存在する場合、複数存在するRは、それぞれ同一でも異なっていてもよい。Rが複数存在する場合、複数存在するRは、それぞれ同一でも異なっていてもよい。
In general formula (P2), R 1 and R 6 each independently represent a hydrogen atom, a halogen atom, a carboxylic acid group, a boronic acid group, an aldehyde group, an alkyl group, an alkoxy group, or an alkoxycarbonyl group.
R 1 and R 6 in general formula (P2) are the same as R 1 and R 6 in general formula (1), respectively.
When there are multiple R 1 's, the multiple R 1 's may be the same or different. When multiple R 6 are present, the multiple R 6 may be the same or different.

一般式(P2)中、Qは、水素原子、アルキル基、フェニル基、ハロゲン原子、カルボン酸基、ボロン酸基、アルデヒド基、アルコキシ基、又は、アルコキシカルボニル基を表す。
上記アルキル基は、直鎖状でも分岐鎖状でもよい。上記アルキル基の炭素数は、1~10が好ましい。上記アルキル基は、置換基を有していても有していなくてもよい。
上記アルコキシ基におけるアルキル基部分、及び、上記アルコキシカルボニル基におけるアルキル基部分は、上記アルキル基と同様である。
上記フェニル基は、置換基を有していても有していなくてもよい。
は、水素原子が好ましい。
が複数存在する場合、複数存在するQは、それぞれ同一でも異なっていてもよい。
In general formula (P2), Qb represents a hydrogen atom, an alkyl group, a phenyl group, a halogen atom, a carboxylic acid group, a boronic acid group, an aldehyde group, an alkoxy group, or an alkoxycarbonyl group.
The above alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10. The alkyl group may or may not have a substituent.
The alkyl group portion of the alkoxy group and the alkyl group portion of the alkoxycarbonyl group are the same as the alkyl group.
The phenyl group may or may not have a substituent.
Q b is preferably a hydrogen atom.
When there are multiple Q bs , the multiple Q bs may be the same or different.

一般式(P2)で表される化合物の具体例としては、ベンゼントリオール(好ましくは1,3,5-ベンゼントリオール)が挙げられる。 Specific examples of the compound represented by formula (P2) include benzenetriol (preferably 1,3,5-benzenetriol).

その他のフェノール化合物としては、例えば、ビフェニルアラルキル型フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、多価ヒドロキシ化合物とホルムアルデヒドとから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトールフェノール共縮ノボラック樹脂、ナフトールクレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び、アルコキシ基含有芳香環変性ノボラック樹脂などが好ましい。 Other phenolic compounds include, for example, biphenylaralkyl-type phenolic resins, phenolic novolac resins, cresol novolak resins, aromatic hydrocarbon-formaldehyde resin-modified phenolic resins, dicyclopentadiene phenol addition-type resins, phenolic aralkyl resins, and polyhydric hydroxy compounds. polyhydric phenol novolac resins synthesized from formaldehyde, naphthol aralkyl resins, trimethylolmethane resins, tetraphenylolethane resins, naphthol novolac resins, naphthol phenol co-condensed novolac resins, naphthol cresol co-condensed novolak resins, biphenyl-modified phenol resins, Biphenyl-modified naphthol resins, aminotriazine-modified phenol resins, and alkoxy group-containing aromatic ring-modified novolac resins are preferred.

フェノール化合物の水酸基含有量の下限値は、3.0mmol/g以上が好ましく、8.0mmol/g以上がより好ましく、11.0mmol/g以上が更に好ましく、12.0mmol/g以上が特に好ましく、13.0mmol/g以上が最も好ましい。上限値は、25.0mmol/g以下が好ましく、23.0mmol/g以下がより好ましい。
なお、上記水酸基含有量は、フェノール化合物1gが有する、水酸基(好ましくはフェノール性水酸基)の数を意図する。
また、フェノール化合物は、水酸基以外にも、エポキシ化合物と重合反応できる活性水素含有基(カルボン酸基等)を有していてもよいし、有していなくてもよい。フェノール化合物の活性水素の含有量(水酸基及びカルボン酸基等における水素原子の合計含有量)の下限値は、8.0mmol/g以上が好ましく、10.5mmol/g以上がより好ましく、11.0mmol/g以上が更に好ましく、12.0mmol/g以上が特に好ましく、13.0mmol/g以上が最も好ましい。上限値は、25.0mmol/g以下が好ましく、23.0mmol/g以下がより好ましい。
The lower limit of the hydroxyl group content of the phenol compound is preferably 3.0 mmol/g or more, more preferably 8.0 mmol/g or more, still more preferably 11.0 mmol/g or more, and particularly preferably 12.0 mmol/g or more. 13.0 mmol/g or more is most preferred. The upper limit is preferably 25.0 mmol/g or less, more preferably 23.0 mmol/g or less.
In addition, the said hydroxyl group content intends the number of the hydroxyl groups (preferably phenolic hydroxyl groups) which 1g of phenol compounds have.
In addition to the hydroxyl group, the phenol compound may or may not have an active hydrogen-containing group (such as a carboxylic acid group) capable of polymerizing with the epoxy compound. The lower limit of the content of active hydrogen in the phenol compound (total content of hydrogen atoms in hydroxyl groups, carboxylic acid groups, etc.) is preferably 8.0 mmol/g or more, more preferably 10.5 mmol/g or more, and 11.0 mmol. /g or more is more preferable, 12.0 mmol/g or more is particularly preferable, and 13.0 mmol/g or more is most preferable. The upper limit is preferably 25.0 mmol/g or less, more preferably 23.0 mmol/g or less.

フェノール化合物の分子量の上限値は、600以下が好ましく、500以下がより好ましく、450以下が更に好ましく、400以下が特に好ましい。下限値は、110以上が好ましく、300以上がより好ましい。 The upper limit of the molecular weight of the phenol compound is preferably 600 or less, more preferably 500 or less, even more preferably 450 or less, and particularly preferably 400 or less. 110 or more are preferable and, as for a lower limit, 300 or more are more preferable.

フェノール化合物は、1種単独で使用してもよく、2種以上を使用してもよい。
本発明の組成物がフェノール化合物を含む場合、フェノール化合物の含有量は、組成物の全固形分に対して、1.0~25.0質量%が好ましく、3.0~20.0質量%がより好ましい。
なお、本発明の組成物は、フェノール化合物及び特定化合物以外の化合物として、後述のエポキシ化合物と反応可能な基を有する化合物(「その他の活性水素含有化合物」ともいう)を含んでもよい。
本発明の組成物が、フェノール化合物を含み、かつ、その他の活性水素含有化合物を含む場合、本発明の組成物中における、フェノール化合物の含有量に対する、その他の活性水素含有化合物の含有量の質量比(その他の活性水素含有化合物の含有量/フェノール化合物の含有量)は、0~1が好ましく、0~0.1がより好ましく、0~0.05が更に好ましい。
A phenol compound may be used individually by 1 type, and may use 2 or more types.
When the composition of the present invention contains a phenolic compound, the content of the phenolic compound is preferably 1.0 to 25.0% by mass, and 3.0 to 20.0% by mass, based on the total solid content of the composition. is more preferred.
The composition of the present invention may contain, as a compound other than the phenolic compound and the specific compound, a compound having a group capable of reacting with the epoxy compound described later (also referred to as "another active hydrogen-containing compound").
When the composition of the present invention contains a phenolic compound and also contains other active hydrogen-containing compounds, the mass of the content of the other active hydrogen-containing compounds with respect to the content of the phenolic compound in the composition of the present invention The ratio (content of other active hydrogen-containing compound/content of phenolic compound) is preferably 0 to 1, more preferably 0 to 0.1, and even more preferably 0 to 0.05.

〔エポキシ化合物〕
本発明の組成物は、更に、エポキシ化合物を含んでもよい。
なお、エポキシ化合物は、特定化合物以外の化合物である。例えば、特定化合物がエポキシ基を有する場合でも、特定化合物は、エポキシ化合物には該当しない。
エポキシ化合物は、1分子中に、少なくとも1個のエポキシ基(オキシラニル基)を有する化合物である。エポキシ基は、可能な場合、置換基を有していても有していなくてもよい。
エポキシ化合物が有するエポキシ基の数は、1分子中、2以上が好ましく、2~40がより好ましく、2~10が更に好ましく、2が特に好ましい。
エポキシ化合物の分子量は、150~10000が好ましく、150~2000がより好ましく、250~400が更に好ましい。
[Epoxy compound]
The composition of the invention may further contain an epoxy compound.
In addition, an epoxy compound is a compound other than a specific compound. For example, even if the specific compound has an epoxy group, the specific compound is not an epoxy compound.
An epoxy compound is a compound having at least one epoxy group (oxiranyl group) in one molecule. Epoxy groups may be substituted or unsubstituted where possible.
The number of epoxy groups in the epoxy compound is preferably 2 or more, more preferably 2 to 40, still more preferably 2 to 10, and particularly preferably 2, in one molecule.
The epoxy compound preferably has a molecular weight of 150 to 10,000, more preferably 150 to 2,000, and even more preferably 250 to 400.

エポキシ化合物のエポキシ基含有量の下限値は、2.0mmol/g以上が好ましく、4.0mmol/g以上がより好ましく、5.0mmol/g以上が更に好ましい。上限値としては、20.0mmol/g以下が好ましく、15.0mmol/g以下がより好ましい。
なお、上記エポキシ基含有量は、エポキシ化合物1gが有する、エポキシ基の数を意図する。
エポキシ化合物は、常温(23℃)で、液状であるのが好ましい。
The lower limit of the epoxy group content of the epoxy compound is preferably 2.0 mmol/g or more, more preferably 4.0 mmol/g or more, and even more preferably 5.0 mmol/g or more. The upper limit is preferably 20.0 mmol/g or less, more preferably 15.0 mmol/g or less.
In addition, the said epoxy group content intends the number of epoxy groups which 1g of epoxy compounds have.
The epoxy compound is preferably liquid at normal temperature (23° C.).

エポキシ化合物は、液晶性を示してもよく示さなくてもよい。
つまり、エポキシ化合物は、液晶化合物であってよい。言い換えれば、エポキシ基を有する液晶化合物もエポキシ化合物として使用できる。
エポキシ化合物(液晶性のエポキシ化合物であってもよい)としては、例えば、少なくとも部分的に棒状構造を含む化合物(棒状化合物)、及び、少なくとも部分的に円盤状構造を含む化合物円盤状化合物が挙げられる。
中でも、得られる熱伝導材料の熱伝導性がより優れる点から棒状化合物が好ましい。
以下、棒状化合物及び円盤状化合物について詳述する。
The epoxy compound may or may not exhibit liquid crystallinity.
That is, the epoxy compound may be a liquid crystal compound. In other words, a liquid crystal compound having an epoxy group can also be used as the epoxy compound.
The epoxy compound (which may be a liquid crystalline epoxy compound) includes, for example, a compound at least partially containing a rod-like structure (rod-like compound), and a compound discotic compound at least partially including a discotic structure. be done.
Among them, a rod-shaped compound is preferable because the thermal conductivity of the obtained thermally conductive material is more excellent.
The rod-like compound and discotic compound are described in detail below.

(棒状化合物)
棒状化合物であるエポキシ化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及び、アルケニルシクロヘキシルベンゾニトリル類が挙げられる。以上のような低分子化合物だけではなく、高分子化合物も使用できる。上記高分子化合物は、低分子の反応性基を有する棒状化合物が重合した高分子化合物である。
好ましい棒状化合物としては、下記一般式(XXI)で表される棒状化合物が挙げられる。
一般式(XXI):Q-L111-A111-L113-M-L114-A112-L112-Q
(Rod-shaped compound)
Epoxy compounds that are rod-like compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenyl Examples include pyrimidines, phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles. Not only low-molecular-weight compounds as described above, but also high-molecular-weight compounds can be used. The polymer compound is a polymer compound in which a rod-shaped compound having a low-molecular-weight reactive group is polymerized.
Preferred rod-shaped compounds include rod-shaped compounds represented by the following general formula (XXI).
General formula (XXI): Q 1 -L 111 -A 111 -L 113 -ML 114 -A 112 -L 112 -Q 2

一般式(XXI)中、Q及びQはそれぞれ独立に、エポキシ基であり、L111、L112、L113、及び、L114はそれぞれ独立に、単結合又は2価の連結基を表す。A111及びA112はそれぞれ独立に、炭素数1~20の2価の連結基(スペーサ基)を表す。Mはメソゲン基を表す。
及びQのエポキシ基は、置換基を有していてもよいし、有していなくてもよい。
In general formula (XXI), Q 1 and Q 2 are each independently an epoxy group, and L 111 , L 112 , L 113 and L 114 each independently represent a single bond or a divalent linking group. . A 111 and A 112 each independently represent a divalent linking group (spacer group) having 1 to 20 carbon atoms. M represents a mesogenic group.
The epoxy groups of Q 1 and Q 2 may or may not have a substituent.

一般式(XXI)中、L111、L112、L113、及び、L114はそれぞれ独立に、単結合又は2価の連結基を表す。
111、L112、L113、及び、L114で表される2価の連結基としては、それぞれ独立に、-O-、-S-、-CO-、-NR112-、-CO-O-、-O-CO-O-、-CO-NR112-、-NR112-CO-、-O-CO-、-CH-O-、-O-CH-、-O-CO-NR112-、-NR112-CO-O-、及び、-NR112-CO-NR112-からなる群より選ばれる2価の連結基であるのが好ましい。上記R112は炭素数1~7のアルキル基又は水素原子である。
中でも、L113及びL114は、それぞれ独立に、-O-が好ましい。
111及びL112は、それぞれ独立に、単結合が好ましい。
In general formula (XXI), L 111 , L 112 , L 113 and L 114 each independently represent a single bond or a divalent linking group.
The divalent linking groups represented by L 111 , L 112 , L 113 and L 114 are each independently -O-, -S-, -CO-, -NR 112 - and -CO-O -, -O-CO-O-, -CO-NR 112 -, -NR 112 -CO-, -O-CO-, -CH 2 -O-, -O-CH 2 -, -O-CO-NR It is preferably a divalent linking group selected from the group consisting of 112- , -NR 112 -CO-O- and -NR 112 -CO-NR 112- . R 112 above is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom.
Among them, L 113 and L 114 are each independently preferably -O-.
L 111 and L 112 are each independently preferably a single bond.

一般式(XXI)中、A111及びA112は、それぞれ独立に、炭素数1~20の2価の連結基を表す。
2価の連結基は、隣接していない酸素原子及び硫黄原子等のヘテロ原子を含んでいてもよい。中でも、炭素数1~12の、アルキレン基、アルケニレン基、又は、アルキニレン基が好ましい。上記、アルキレン基、アルケニレン基、又は、アルキニレン基がエステル基を有していてもよいし、有していなくてもよい。
2価の連結基は直鎖状であるのが好ましく、また、上記2価の連結基は置換基を有していてもよいし、有していなくてもよい。置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、及び、臭素原子)、シアノ基、メチル基、及び、エチル基が挙げられる。
中でも、A111及びA112は、それぞれ独立に、炭素数1~12のアルキレン基が好ましく、メチレン基がより好ましい。
In general formula (XXI), A 111 and A 112 each independently represent a divalent linking group having 1 to 20 carbon atoms.
The divalent linking group may contain non-adjacent heteroatoms such as oxygen and sulfur atoms. Among them, an alkylene group, an alkenylene group, or an alkynylene group having 1 to 12 carbon atoms is preferable. The above alkylene group, alkenylene group, or alkynylene group may or may not have an ester group.
The divalent linking group is preferably linear, and the divalent linking group may or may not have a substituent. Examples of substituents include halogen atoms (fluorine, chlorine and bromine atoms), cyano groups, methyl groups and ethyl groups.
Among them, A 111 and A 112 are each independently preferably an alkylene group having 1 to 12 carbon atoms, more preferably a methylene group.

一般式(XXI)中、Mはメソゲン基を表し、上記メソゲン基としては、公知のメソゲン基が挙げられる。中でも、下記一般式(XXII)で表される基が好ましい。
一般式(XXII):-(W-L115-W
In general formula (XXI), M represents a mesogenic group, and examples of the mesogenic group include known mesogenic groups. Among them, a group represented by the following general formula (XXII) is preferable.
general formula (XXII): -(W 1 -L 115 ) n -W 2 -

一般式(XXII)式中、W及びWは、それぞれ独立に、2価の環状アルキレン基、2価の環状アルケニレン基、アリーレン基、又は、2価のヘテロ環基を表す。L115は、単結合又は2価の連結基を表す。nは、1~4の整数を表す。In formula (XXII), W 1 and W 2 each independently represent a divalent cyclic alkylene group, a divalent cyclic alkenylene group, an arylene group, or a divalent heterocyclic group. L 115 represents a single bond or a divalent linking group. n represents an integer of 1-4.

及びWとしては、例えば、1,4-シクロヘキセンジイル、1,4-シクロヘキサンジイル、1,4-フェニレン、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、1,3,4-チアジアゾール-2,5-ジイル、1,3,4-オキサジアゾール-2,5-ジイル、ナフタレン-2,6-ジイル、ナフタレン-1,5-ジイル、チオフェン-2,5-ジイル、及び、ピリダジン-3,6-ジイルが挙げられる。1,4-シクロヘキサンジイルの場合、トランス体及びシス体の構造異性体のどちらの異性体であってもよく、任意の割合の混合物でもよい。中でも、トランス体が好ましい。
及びWは、それぞれ置換基を有していてもよい。置換基としては、例えば、上述した置換基群Yで例示された基が挙げられ、より具体的には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子)、シアノ基、炭素数1~10のアルキル基(例えば、メチル基、エチル基、及び、プロピル基等)、炭素数1~10のアルコキシ基(例えば、メトキシ基、及び、エトキシ基等)、炭素数1~10のアシル基(例えば、ホルミル基、及び、アセチル基等)、炭素数1~10のアルコキシカルボニル基(例えば、メトキシカルボニル基、及び、エトキシカルボニル基等)、炭素数1~10のアシルオキシ基(例えば、アセチルオキシ基、及び、プロピオニルオキシ基等)、ニトロ基、トリフルオロメチル基、及び、ジフルオロメチル基等が挙げられる。
が複数存在する場合、複数存在するWは、それぞれ同一でも異なっていてもよい。
Examples of W 1 and W 2 include 1,4-cyclohexenediyl, 1,4-cyclohexanediyl, 1,4-phenylene, pyrimidine-2,5-diyl, pyridine-2,5-diyl, 1,3, 4-thiadiazole-2,5-diyl, 1,3,4-oxadiazole-2,5-diyl, naphthalene-2,6-diyl, naphthalene-1,5-diyl, thiophene-2,5-diyl, and pyridazine-3,6-diyl. In the case of 1,4-cyclohexanediyl, it may be either trans- or cis-structural isomers, or may be a mixture of any ratio. Among them, the trans form is preferred.
W 1 and W 2 may each have a substituent. Examples of substituents include groups exemplified in the above-described substituent group Y, more specifically, halogen atoms (fluorine atom, chlorine atom, bromine atom, and iodine atom), cyano group, carbon 1 to 10 alkyl groups (e.g., methyl group, ethyl group, and propyl group), alkoxy groups with 1 to 10 carbon atoms (e.g., methoxy group, ethoxy group, etc.), 1 to 10 carbon atoms acyl group (e.g., formyl group, acetyl group, etc.), alkoxycarbonyl group having 1 to 10 carbon atoms (e.g., methoxycarbonyl group, ethoxycarbonyl group, etc.), acyloxy group having 1 to 10 carbon atoms (e.g., acetyloxy group, propionyloxy group, etc.), nitro group, trifluoromethyl group, difluoromethyl group and the like.
When there are multiple W1 's, the multiple W1 's may be the same or different.

一般式(XXII)式中、L115は、単結合又は2価の連結基を表す。L115で表される2価の連結基としては、上述したL111~L114で表される2価の連結基の具体例が挙げられ、例えば、-CO-O-、-O-CO-、-CH-O-、及び、-O-CH-が挙げられる。
115が複数存在する場合、複数存在するL115は、それぞれ同一でも異なっていてもよい。
In general formula (XXII), L115 represents a single bond or a divalent linking group. The divalent linking group represented by L 115 includes specific examples of the divalent linking groups represented by L 111 to L 114 described above, such as -CO-O-, -O-CO- , —CH 2 —O—, and —O—CH 2 —.
When multiple L 115 are present, the multiple L 115 may be the same or different.

上記一般式(XXII)で表されるメソゲン基の基本骨格で好ましい骨格を、以下に例示する。上記メソゲン基は、これらの骨格に置換基が置換していてもよい。 Preferred basic skeletons of the mesogenic group represented by the above general formula (XXII) are exemplified below. In the mesogenic group, these skeletons may be substituted with a substituent.

Figure 0007245953000008
Figure 0007245953000008

Figure 0007245953000009
Figure 0007245953000009

上記骨格の中でも、得られる熱伝導シートの熱伝導性がより優れる点でビフェニル骨格が好ましい。
なお、一般式(XXI)で表される化合物は、特表平11-513019号公報(WO97/00600)に記載の方法を参照して合成できる。
棒状化合物は、特開平11-323162号公報及び特許4118691号に記載のメソゲン基を有するモノマーであってもよい。
Among the above skeletons, a biphenyl skeleton is preferable because the obtained thermally conductive sheet has more excellent thermal conductivity.
Incidentally, the compound represented by the general formula (XXI) can be synthesized by referring to the method described in JP-A-11-513019 (WO97/00600).
The rod-shaped compound may be a monomer having a mesogenic group as described in JP-A-11-323162 and JP-A-4118691.

中でも、棒状化合物は、一般式(E1)で表される化合物であるのが好ましい。 Among them, the rod-shaped compound is preferably a compound represented by general formula (E1).

Figure 0007245953000010
Figure 0007245953000010

一般式(E1)中、LE1は、それぞれ独立に、単結合又は2価の連結基を表す。
中でも、LE1は、2価の連結基が好ましい。
2価の連結基は、-O-、-S-、-CO-、-NH-、-CH=CH-、-C≡C-、-CH=N-、-N=CH-、-N=N-、置換意を有していてもよいアルキレン基、又は、これらの2以上の組み合わせからなる基が好ましく、-O-アルキレン基-又は-アルキレン基-O-がより好ましい。
なお上記アルキレン基は、直鎖状、分岐鎖状、及び、環状のいずれでもよいが、炭素数1~2の直鎖状アルキレン基が好ましい。
複数存在するLE1は、それぞれ同一でも異なっていてもよい。
In general formula (E1), each L E1 independently represents a single bond or a divalent linking group.
Among them, L E1 is preferably a divalent linking group.
Divalent linking groups are -O-, -S-, -CO-, -NH-, -CH=CH-, -C≡C-, -CH=N-, -N=CH-, -N= N-, an optionally substituted alkylene group, or a group consisting of a combination of two or more of these is preferred, and -O-alkylene group- or -alkylene group -O- is more preferred.
The alkylene group may be linear, branched, or cyclic, but a linear alkylene group having 1 to 2 carbon atoms is preferred.
Multiple L E1 may be the same or different.

一般式(E1)中、LE2は、それぞれ独立に、単結合、-CH=CH-、-CO-O-、-O-CO-、-C(-CH)=CH-、-CH=C(-CH)-、-CH=N-、-N=CH-、-N=N-、-C≡C-、-N=N(-O)-、-N(-O)=N-、-CH=N(-O)-、-N(-O)=CH-、-CH=CH-CO-、-CO-CH=CH-、-CH=C(-CN)-、又は、-C(-CN)=CH-を表す。
中でも、LE2は、それぞれ独立に、単結合、-CO-O-、又は、-O-CO-が好ましい。
E2が複数存在する場合、複数存在するLE2は、それぞれ同一でも異なっていてもよい。
In general formula (E1), L E2 is each independently a single bond, -CH=CH-, -CO-O-, -O-CO-, -C(-CH 3 )=CH-, -CH= C(-CH 3 )-, -CH=N-, -N=CH-, -N=N-, -C≡C-, -N=N + (-O - )-, -N + (-O - )=N-, -CH=N + (-O - )-, -N + (-O - )=CH-, -CH=CH-CO-, -CO-CH=CH-, -CH=C represents (-CN)- or -C(-CN)=CH-.
Among them, each L E2 is preferably independently a single bond, —CO—O—, or —O—CO—.
When a plurality of LE2 are present, the plurality of LE2 may be the same or different.

一般式(E1)中、LE3は、それぞれ独立に、単結合、又は、置換基を有していてもよい、5員環若しくは6員環の芳香族環基又は5員環若しくは6員環の非芳香族環基、又は、これらの環からなる多環基を表す。
E3で表される芳香族環基及び非芳香族環基の例としては、置換基を有していてもよい、1,4-シクロヘキサンジイル基、1,4-シクロヘキセンジイル基、1,4-フェニレン基、ピリミジン-2,5-ジイル基、ピリジン-2,5-ジイル基、1,3,4-チアジアゾール-2,5-ジイル基、1,3,4-オキサジアゾール-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,5-ジイル基、チオフェン-2,5-ジイル基、及び、ピリダジン-3,6-ジイル基が挙げられる。1,4-シクロヘキサンジイル基の場合、トランス体及びシス体の構造異性体のどちらの異性体であってもよく、任意の割合の混合物でもよい。中でも、トランス体であるのが好ましい。
中でも、LE3は、単結合、1,4-フェニレン基、又は、1,4-シクロヘキセンジイル基が好ましい。
E3で表される基が有する置換基は、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、又は、アセチル基が好ましく、アルキル基(好ましくは炭素数1)がより好ましい。
なお、置換基が複数存在する場合、置換基は、それぞれ同一でも異なっていてもよい。
E3が複数存在する場合、複数存在するLE3は、それぞれ同一でも異なっていてもよい。
In general formula (E1), L E3 is each independently a single bond, or an optionally substituted 5- or 6-membered aromatic ring group or a 5- or 6-membered ring or a polycyclic group consisting of these rings.
Examples of the aromatic ring group and non-aromatic ring group represented by L E3 include optionally substituted 1,4-cyclohexanediyl group, 1,4-cyclohexenediyl group, 1,4 -phenylene group, pyrimidine-2,5-diyl group, pyridine-2,5-diyl group, 1,3,4-thiadiazole-2,5-diyl group, 1,3,4-oxadiazole-2,5 -diyl group, naphthalene-2,6-diyl group, naphthalene-1,5-diyl group, thiophene-2,5-diyl group, and pyridazine-3,6-diyl group. In the case of a 1,4-cyclohexanediyl group, it may be either a trans or cis structural isomer, or a mixture of any ratio. Among them, the trans form is preferred.
Among them, L E3 is preferably a single bond, a 1,4-phenylene group, or a 1,4-cyclohexenediyl group.
The substituents possessed by the group represented by L E3 are each independently preferably an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group, or an acetyl group, more preferably an alkyl group (preferably having 1 carbon atom). preferable.
In addition, when a plurality of substituents are present, the substituents may be the same or different.
When there are a plurality of LE3s , the plurality of LE3s may be the same or different.

一般式(E1)中、peは、0以上の整数を表す。
peが2以上の整数である場合、複数存在する(-LE3-LE2-)は、それぞれ同一でも異なっていてもよい。
中でも、peは、0~2が好ましく、0又は1がより好ましく、0が更に好ましい。
In general formula (E1), pe represents an integer of 0 or more.
When pe is an integer of 2 or more, a plurality of (-L E3 -L E2 -) may be the same or different.
Among them, pe is preferably 0 to 2, more preferably 0 or 1, and still more preferably 0.

一般式(E1)中、LE4は、それぞれ独立に、置換基を表す。
置換基は、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、又は、アセチル基が好ましく、アルキル基(好ましくは炭素数1)がより好ましい。
複数存在するLE4は、それぞれ同一でも異なっていてもよい。また、次に説明するleが2以上の整数である場合、同一の(LE4le中に複数存在するLE4も、それぞれ同一でも異なっていてもよい。
In general formula (E1), L E4 each independently represents a substituent.
The substituents are each independently preferably an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group, or an acetyl group, and more preferably an alkyl group (preferably having 1 carbon atom).
A plurality of LE4 may be the same or different. Further, when le, which will be described below, is an integer of 2 or more, multiple LE4s present in the same (L E4 ) le may be the same or different.

一般式(E1)中、leは、それぞれ独立に、0~4の整数を表す。
中でも、leは、それぞれ独立に、0~2が好ましい。
複数存在するleは、それぞれ同一でも異なっていてもよい。
In general formula (E1), each le independently represents an integer of 0 to 4.
Among them, each le is preferably independently 0 to 2.
A plurality of le's may be the same or different.

棒状化合物は、ビフェニル骨格を有するのが好ましい。
言い換えると、エポキシ化合物は、ビフェニル骨格を有するのが好ましく、この場合のエポキシ化合物は棒状化合物であるのがより好ましい。
The rodlike compound preferably has a biphenyl skeleton.
In other words, the epoxy compound preferably has a biphenyl skeleton, and in this case the epoxy compound is more preferably a rod-shaped compound.

(円盤状化合物)
円盤状化合物であるエポキシ化合物は、少なくとも部分的に円盤状構造を有する。
円盤状構造は、少なくとも、脂環又は芳香族環を有する。特に、円盤状構造が、芳香族環を有する場合、円盤状化合物は、分子間のπ-π相互作用によるスタッキング構造の形成により柱状構造を形成しうる。
円盤状構造として、具体的には、Angew.Chem.Int.Ed.2012,51,7990-7993又は特開平7-306317号公報に記載のトリフェニレン構造、並びに、特開2007-2220号公報及び特開2010-244038号公報に記載の3置換ベンゼン構造等が挙げられる。
(disc-shaped compound)
Epoxy compounds that are discotic compounds have at least partially a discotic structure.
The discotic structure has at least an alicyclic or aromatic ring. In particular, when the discotic structure has an aromatic ring, the discotic compound can form a columnar structure through the formation of a stacking structure due to intermolecular π-π interactions.
As a disk-shaped structure, specifically, Angew. Chem. Int. Ed. 2012,51,7990-7993 or the triphenylene structure described in JP-A-7-306317, and 3-substituted benzene structures described in JP-A-2007-2220 and JP-A-2010-244038.

上記円盤状化合物は、エポキシ基を3個以上有するのが好ましい。3個以上のエポキシ基を有する円盤状化合物を含むエポキシ化合物の硬化物はガラス転移温度が高く、耐熱性が高い傾向がある。
円盤状化合物が有するエポキシ基の数は、8以下が好ましく、6以下より好ましい。
The discotic compound preferably has 3 or more epoxy groups. A cured product of an epoxy compound containing a discotic compound having three or more epoxy groups tends to have a high glass transition temperature and high heat resistance.
The number of epoxy groups possessed by the discotic compound is preferably 8 or less, more preferably 6 or less.

円盤状化合物の具体例としては、C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994)、及び特許第4592225号に記載されている化合物等において末端の少なくとも1個(好ましくは3個以上)をエポキシ基とした化合物が挙げられる。
円盤状化合物としては、Angew.Chem.Int. Ed. 2012, 51, 7990-7993、及び特開平7-306317号公報に記載のトリフェニレン構造、並びに特開2007-2220号公報、及び、特開2010-244038号公報に記載の3置換ベンゼン構造において末端の少なくとも1個(好ましくは3個以上)をエポキシ基とした化合物等が挙げられる。
Specific examples of discotic compounds include C.I. Destrade et al. , Mol. Crysr. Liq. Cryst. , vol. 71, page 111 (1981); edited by The Chemical Society of Japan, Quarterly Kagaku Sosetsu, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10 Section 2 (1994); Kohne et al. , Angew. Chem. Soc. Chem. Comm. , page 1794 (1985); Zhang et al. , J. Am. Chem. Soc. , vol. 116, page 2655 (1994), and compounds having at least one (preferably three or more) epoxy groups in the compounds described in Japanese Patent No. 4,592,225.
As the discotic compound, Angew. Chem. Int. Ed. 2012, 51, 7990-7993, and the triphenylene structure described in JP-A-7-306317, and JP-A-2007-2220, and the terminal in the trisubstituted benzene structure described in JP-A-2010-244038 Examples include compounds having at least one (preferably three or more) epoxy groups.

(その他のエポキシ化合物)
上述のエポキシ化合物以外の、その他のエポキシ化合物としては、例えば、一般式(BN)で表されるエポキシ化合物が挙げられる。
(Other epoxy compounds)
Other epoxy compounds other than the epoxy compounds described above include, for example, epoxy compounds represented by general formula (BN).

Figure 0007245953000011
Figure 0007245953000011

一般式(DN)中、nDNは、0以上の整数を表し、0~5が好ましく、1がより好ましい。
DNは、単結合又は2価の連結基を表す。2価の連結基としては、-O-、-O-CO-、-CO-O-、-S-、アルキレン基(炭素数は、1~10が好ましい。)、アリーレン基(炭素数は、6~20が好ましい。)、又は、これらの組み合わせからなる基が好ましく、アルキレン基がより好ましく、メチレン基がより好ましい。
In general formula (DN), n DN represents an integer of 0 or more, preferably 0 to 5, more preferably 1.
R DN represents a single bond or a divalent linking group. The divalent linking group includes -O-, -O-CO-, -CO-O-, -S-, an alkylene group (having preferably 1 to 10 carbon atoms), an arylene group (having a carbon number of 6 to 20 are preferred.) or a group consisting of a combination thereof, more preferably an alkylene group, and more preferably a methylene group.

その他のエポキシ化合物としては、エポキシ基が、縮環している化合物も挙げられる。このような化合物としては、例えば、3,4:8,9-ジエポキシビシクロ[4.3.0]ノナン等が挙げられる。 Other epoxy compounds include compounds in which the epoxy group is ring-condensed. Examples of such compounds include 3,4:8,9-diepoxybicyclo[4.3.0]nonane and the like.

その他のエポキシ化合物としては、他にも、例えば、ビスフェノールA、F、S、AD等のグリシジルエーテルであるビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールAD型エポキシ化合物等;水素添加したビスフェノールA型エポキシ化合物、水素添加したビスフェノールAD型エポキシ化合物等;フェノールノボラック型のグリシジルエーテル(フェノールノボラック型エポキシ化合物)、クレゾールノボラック型のグリシジルエーテル(クレゾールノボラック型エポキシ化合物)、ビスフェノールAノボラック型のグリシジルエーテル等;ジシクロペンタジエン型のグリシジルエーテル(ジシクロペンタジエン型エポキシ化合物);ジヒドロキシペンタジエン型のグリシジルエーテル(ジヒドロキシペンタジエン型エポキシ化合物);ポリヒドロキシベンゼン型のグリシジルエーテル(ポリヒドロキシベンゼン型エポキシ化合物);ベンゼンポリカルボン酸型のグリシジルエステル(ベンゼンポリカルボン酸型エポキシ化合物);及び、トリスフェノールメタン型エポキシ化合物が挙げられる。 Other epoxy compounds include, for example, bisphenol A-type epoxy compounds, bisphenol F-type epoxy compounds, bisphenol S-type epoxy compounds, and bisphenol AD-type epoxy compounds, which are glycidyl ethers of bisphenol A, F, S, and AD. etc.; hydrogenated bisphenol A-type epoxy compound, hydrogenated bisphenol AD-type epoxy compound, etc.; A novolac type glycidyl ether, etc.; dicyclopentadiene type glycidyl ether (dicyclopentadiene type epoxy compound); dihydroxypentadiene type glycidyl ether (dihydroxypentadiene type epoxy compound); polyhydroxybenzene type glycidyl ether (polyhydroxybenzene type epoxy compounds); benzenepolycarboxylic acid-type glycidyl esters (benzenepolycarboxylic acid-type epoxy compounds); and trisphenolmethane-type epoxy compounds.

エポキシ化合物は、1種単独で使用してもよく、2種以上を使用してもよい。
本発明の組成物がエポキシ化合物を含む場合、エポキシ化合物の含有量は、組成物の全固形分に対して、1.0~25.0質量%が好ましく、3.0~20.0質量%がより好ましい。
An epoxy compound may be used individually by 1 type, and may use 2 or more types.
When the composition of the present invention contains an epoxy compound, the content of the epoxy compound is preferably 1.0 to 25.0% by mass, preferably 3.0 to 20.0% by mass, based on the total solid content of the composition. is more preferred.

本発明の組成物は、上述のフェノール化合物及びエポキシ化合物の、少なくとも一方を含むのが好ましい。
この場合、組成物は、上述の通り、フェノール化合物及びエポキシ化合物のうちの、フェノール化合物のみを含んでもよい(エポキシ化合物を実質的に含まなくてもよい)し、エポキシ化合物のみを含んでもよい(フェノール化合物を実質的に含まなくてもよい)し、それぞれの両方を含んでもよい。
本発明の組成物が、エポキシ化合物及びフェノール化合物をそれぞれ含む場合、組成物における、エポキシ化合物の含有量とフェノール化合物の含有量との比は、エポキシ化合物のエポキシ基と、フェノール化合物の水酸基との当量比(エポキシ基の数/水酸基の数)が、30/70~70/30となる量が好ましく、35/65~65/35となる量がより好ましい。
また、本発明の組成物が、エポキシ化合物及びフェノール化合物をそれぞれ含む場合、組成物における、エポキシ化合物の含有量とフェノール化合物の含有量との比は、エポキシ化合物のエポキシ基と、フェノール化合物の活性水素(水酸基における水素原子等)との当量比(エポキシ基の数/活性水素の数)が、30/70~70/30となる量が好ましく、35/65~65/35となる量がより好ましい。
The composition of the present invention preferably contains at least one of the above phenolic compounds and epoxy compounds.
In this case, the composition, as described above, of the phenol compound and the epoxy compound, may contain only the phenol compound (may not substantially contain the epoxy compound) or may contain only the epoxy compound ( may be substantially free of phenolic compounds) or may contain both of each.
When the composition of the present invention contains an epoxy compound and a phenol compound, respectively, the ratio of the content of the epoxy compound to the content of the phenol compound in the composition is the ratio of the epoxy group of the epoxy compound to the hydroxyl group of the phenol compound. The equivalent ratio (number of epoxy groups/number of hydroxyl groups) is preferably 30/70 to 70/30, more preferably 35/65 to 65/35.
In addition, when the composition of the present invention contains an epoxy compound and a phenol compound, respectively, the ratio of the content of the epoxy compound to the content of the phenol compound in the composition is determined by the activity of the epoxy group of the epoxy compound and the activity of the phenol compound. The equivalent ratio (number of epoxy groups/number of active hydrogens) to hydrogen (such as hydrogen atoms in hydroxyl groups) is preferably 30/70 to 70/30, more preferably 35/65 to 65/35. preferable.

また、組成物における、フェノール化合物に含まれる水酸基の数と特定化合物に含まれる水酸基の数とを合計した水酸基数に対する、エポキシ化合物に含まれるエポキシ基の数と特定化合物に含まれるエポキシ基の数とを合計したエポキシ基数の比(エポキシ基の数/水酸基の数)は、30/70~70/30となる量が好ましく、40/60~60/40となる量がより好ましく、42/58~58/42となる量が更に好ましい。
この場合、組成物は、エポキシ化合物及びフェノール化合物の一方のみを含んでいてもよいし、両方とも含んでいてもよいし、両方とも含んでいなくてもよい。
In addition, the number of epoxy groups contained in the epoxy compound and the number of epoxy groups contained in the specific compound with respect to the total number of hydroxyl groups contained in the phenol compound and the number of hydroxyl groups contained in the specific compound in the composition The ratio of the total number of epoxy groups (number of epoxy groups/number of hydroxyl groups) is preferably 30/70 to 70/30, more preferably 40/60 to 60/40, and 42/58. An amount of ~58/42 is more preferred.
In this case, the composition may contain only one of the epoxy compound and the phenol compound, may contain both, or may contain neither.

また、組成物が、エポキシ基を有する特定化合物、活性水素を有する特定化合物、及び/又は、その他の活性水素含有化合物を含む場合、エポキシ化合物、及び、エポキシ基を有する特定化合物の合計含有量と、フェノール化合物、活性水素を有する特定化合物、及び、その他の活性水素含有化合物の合計含有量との比は、系中のエポキシ基と活性水素(水酸基における水素原子等)との当量比(エポキシ基の数/活性水素の数)が、30/70~70/30となる量が好ましく、40/60~60/40となる量がより好ましく、42/58~58/42となる量が更に好ましい。 Further, when the composition contains a specific compound having an epoxy group, a specific compound having an active hydrogen, and/or other active hydrogen-containing compounds, the total content of the epoxy compound and the specific compound having an epoxy group and , the ratio of the total content of phenol compounds, specific compounds having active hydrogen, and other active hydrogen-containing compounds is the equivalent ratio of epoxy groups and active hydrogen (hydrogen atoms in hydroxyl groups, etc.) in the system (epoxy group / number of active hydrogen) is preferably 30/70 to 70/30, more preferably 40/60 to 60/40, and even more preferably 42/58 to 58/42. .

本発明の組成物が、エポキシ化合物及びフェノール化合物の両方を含む場合、組成物において、フェノール化合物とエポキシ化合物との合計含有量は、固形分の全質量に対して、5~90質量%が好ましく、10~50質量%がより好ましく、15~40質量%が更に好ましい。 When the composition of the present invention contains both an epoxy compound and a phenolic compound, the total content of the phenolic compound and the epoxy compound in the composition is preferably 5 to 90% by mass based on the total mass of the solid content. , more preferably 10 to 50% by mass, and even more preferably 15 to 40% by mass.

〔無機粒子〕
本発明の熱伝導材料形成用組成物は無機粒子を含む。
無機粒子としては、例えば、酸化鉄、シリカ(SiO)、アルミナ(Al)、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;モンモリロナイトなどの粘土;などの微粒子が挙げられる。
[Inorganic particles]
The composition for forming a thermally conductive material of the present invention contains inorganic particles.
Examples of inorganic particles include inorganic oxides such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), TiO 2 , BaTiO 3 and ZrO 2 ; inorganic nitrides such as aluminum nitride and silicon nitride; Poorly soluble ionic crystals such as calcium chloride, barium fluoride, and barium sulfate; clays such as montmorillonite; and fine particles.

本発明においては得られる熱伝導材料の熱伝導性がより優れるとの理由から、上記無機粒子が、無機窒化物又は無機酸化物であることが好ましく、無機窒化物であることがより好ましい。
無機窒化物としては、具体的には、例えば、窒化ホウ素(BN)、窒化炭素(C)、窒化ケイ素(Si)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム(AlN)、窒化クロム(CrN)、窒化銅(CuN)、窒化鉄(FeN又はFeN)、窒化ランタン(LaN)、窒化リチウム(LiN)、窒化マグネシウム(Mg)、窒化モリブデン(MoN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化チタン(TiN)、窒化タングステン(WN、WN、又は、WN)、窒化イットリウム(YN)、及び、窒化ジルコニウム(ZrN)等が挙げられる。
上記の無機窒化物は、単独で用いてもよく、複数を組み合わせて用いてもよい。
無機窒化物は、得られる熱伝導材料の熱伝導性がより優れる点で、ホウ素原子、アルミニウム原子、及び、珪素原子からなる群より選択される少なくとも1種を含むことが好ましい。より具体的には、無機窒化物は、窒化ホウ素、窒化アルミニウム、又は、窒化ケイ素であるのが好ましく、窒化ホウ素又は窒化アルミニウムであるのがより好ましく、窒化ホウ素であるのが更に好ましい。
In the present invention, the inorganic particles are preferably inorganic nitrides or inorganic oxides, more preferably inorganic nitrides, because the resulting thermally conductive material has better thermal conductivity.
Specific examples of inorganic nitrides include boron nitride (BN), carbon nitride (C 3 N 4 ), silicon nitride (Si 3 N 4 ), gallium nitride (GaN), indium nitride (InN), nitride Aluminum (AlN), chromium nitride ( Cr2N ), copper nitride ( Cu3N ), iron nitride ( Fe4N or Fe3N ), lanthanum nitride (LaN), lithium nitride ( Li3N ), magnesium nitride ( Mg 3 N 2 ), molybdenum nitride (Mo 2 N), niobium nitride (NbN), tantalum nitride (TaN), titanium nitride (TiN), tungsten nitride (W 2 N, WN 2 or WN), yttrium nitride ( YN), and zirconium nitride (ZrN).
The above inorganic nitrides may be used singly or in combination.
The inorganic nitride preferably contains at least one selected from the group consisting of boron atoms, aluminum atoms, and silicon atoms in that the resulting thermally conductive material has better thermal conductivity. More specifically, the inorganic nitride is preferably boron nitride, aluminum nitride, or silicon nitride, more preferably boron nitride or aluminum nitride, and even more preferably boron nitride.

無機粒子の形状は特に限定されず、例えば、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、及び、不定形状等が挙げられる。中でも粒子の形状は鱗片状と凝集状が好ましい。
また、形状の異なる無機粒子を1種単独で使用してもよく、2種以上を使用してもよい。
The shape of the inorganic particles is not particularly limited, and examples thereof include rice grain-like, spherical, cubic, spindle-like, scale-like, aggregated, and irregular shapes. Among them, the shape of the particles is preferably scaly or agglomerated.
Moreover, one type of inorganic particles having different shapes may be used alone, or two or more types may be used.

無機粒子の大きさは特に限定されないが、無機粒子の分散性がより優れる点で、無機粒子の平均粒径は500μm以下が好ましく、300μm以下がより好ましく、200μm以下が更に好ましい。下限は特に限定されないが、取り扱い性の点で、10nm以上が好ましく、100nm以上がより好ましい。
上記平均粒径の測定方法としては、電子顕微鏡を用いて、100個の無機粒子を無作為に選択して、それぞれの無機粒子の粒径(長径)を測定し、それらを算術平均して求める。なお、市販品を用いる場合、カタログ値を用いてもよい。
Although the size of the inorganic particles is not particularly limited, the average particle size of the inorganic particles is preferably 500 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less, in terms of better dispersibility of the inorganic particles. Although the lower limit is not particularly limited, it is preferably 10 nm or more, more preferably 100 nm or more, in terms of handleability.
As a method for measuring the average particle size, an electron microscope is used to randomly select 100 inorganic particles, measure the particle size (major axis) of each inorganic particle, and obtain by arithmetically averaging them. . In addition, when using a commercial item, you may use a catalog value.

本発明の組成物中、無機粒子の含有量は、組成物の全固形分に対して、60~90質量%が好ましく、70~85質量%がより好ましく、75~80質量%が更に好ましい。
本明細書で組成物の固形分とは、組成物が溶媒を含有する場合に、溶媒を除いたすべての成分を意図し、溶媒以外の成分であれば液状成分であっても固形分とみなす。
The content of the inorganic particles in the composition of the present invention is preferably 60 to 90% by mass, more preferably 70 to 85% by mass, and even more preferably 75 to 80% by mass, based on the total solid content of the composition.
As used herein, the solid content of the composition refers to all components other than the solvent when the composition contains a solvent, and even liquid components other than the solvent are considered solid. .

熱伝導材料の熱伝導性がより優れる点で、組成物に含まれる無機粒子の平均粒径は3μmより大きいことが好ましく、4~50μmがより好ましい。 The average particle size of the inorganic particles contained in the composition is preferably larger than 3 μm, more preferably 4 to 50 μm, in order to improve the thermal conductivity of the thermally conductive material.

また、無機物は、平均粒径が異なる無機物をそれぞれ有するのも好ましく、例えば、平均粒径が20μm以上の無機物である無機物Xと、平均粒径が20μm未満の無機物である無機物Yとの両方を含むのも好ましい。
上記無機物Xの平均粒径は、20~300μmが好ましく、30~200μmがより好ましい。上記無機物Yの平均粒径は、10nm以上20μm未満が好ましく、100nm以上15μm以下がより好ましい。
無機物Xは、無機窒化物又は無機酸化物が好ましく、無機窒化物がより好ましく、窒化ホウ素が更に好ましい。
無機物Yは、無機窒化物又は無機酸化物が好ましく、窒化ホウ素又は酸化アルミニウムがより好ましく、窒化ホウ素が更に好ましい。
無機物X及び無機物Yは、それぞれ、1種単独で使用してもよく、2種以上を使用してもよい。
無機物中、無機物Xの含有量と無機物Yの含有量との質量比(無機物Xの含有量/無機物Yの含有量)は、50/50~99/1が好ましく、75/25~97/3が更に好ましい。
また、組成物により形成される熱伝導材料の熱伝導性がより優れるとの理由から、無機粒子中の窒化ホウ素の含有量は55%以上が好ましく、75%以上がさらに好ましい。
In addition, it is also preferable that the inorganic substances have different average particle diameters. It is also preferred to include
The average particle size of the inorganic substance X is preferably 20-300 μm, more preferably 30-200 μm. The average particle size of the inorganic substance Y is preferably 10 nm or more and less than 20 μm, more preferably 100 nm or more and 15 μm or less.
The inorganic substance X is preferably an inorganic nitride or an inorganic oxide, more preferably an inorganic nitride, and still more preferably boron nitride.
The inorganic substance Y is preferably inorganic nitride or inorganic oxide, more preferably boron nitride or aluminum oxide, and still more preferably boron nitride.
Each of the inorganic substance X and the inorganic substance Y may be used alone or in combination of two or more.
In the inorganic substance, the mass ratio of the content of inorganic substance X to the content of inorganic substance Y (content of inorganic substance X/content of inorganic substance Y) is preferably 50/50 to 99/1, and 75/25 to 97/3. is more preferred.
Further, the content of boron nitride in the inorganic particles is preferably 55% or more, more preferably 75% or more, because the thermal conductivity of the thermally conductive material formed from the composition is more excellent.

〔硬化促進剤〕
本発明の組成物は、更に、熱伝導材料の熱伝導性がより優れる点から、硬化促進剤を含んでいてもよい。
硬化促進剤としては、例えば、トリフェニルホスフィン、三フッ化ホウ素アミン錯体、及び、特開2012-67225号公報の段落0052に記載の化合物が挙げられる。その他にも、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11-Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)、及び、1-シアノエチル-2-フェニルイミダゾール(商品名;2PZ-CN)などのイミダゾール系硬化促進剤等が挙げられる(いずれも四国化成工業(株)製)。
硬化促進剤は、1種単独で使用してもよく2種以上使用してもよい。
組成物が硬化促進剤を含む場合、エポキシ化合物及びエポキシ基を有する特定化合物の合計含有量に対する、硬化促進剤の含有量は、0.01~10質量%が好ましく、0.1~5質量%がより好ましい。
[Curing accelerator]
The composition of the present invention may further contain a curing accelerator in order to improve the thermal conductivity of the thermally conductive material.
Examples of curing accelerators include triphenylphosphine, boron trifluoride amine complexes, and compounds described in paragraph 0052 of JP-A-2012-67225. In addition, 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11-Z), 2-heptadecylimidazole (trade name; C17Z), 1,2-dimethylimidazole (trade name) ; 1.2DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (trade name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl -2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-cyanoethyl-2- undecylimidazole (trade name; C11Z-CN), 1-cyanoethyl-2-phenylimidazolium trimellitate (trade name; 2PZCNS-PW), 2,4-diamino-6-[2'-methylimidazolyl-(1 ')]-ethyl-s-triazine (trade name; 2MZ-A), 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine (trade name; C11Z -A), 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine (trade name; 2E4MZ-A), 2,4-diamino- 6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazineisocyanuric acid adduct (trade name; 2MA-OK), 2-phenyl-4,5-dihydroxymethylimidazole (trade name; 2PHZ- PW), 2-phenyl-4-methyl-5-hydroxymethylimidazole (trade name; 2P4MHZ-PW), and 1-cyanoethyl-2-phenylimidazole (trade name; 2PZ-CN) and other imidazole curing accelerators etc. (both manufactured by Shikoku Kasei Co., Ltd.).
A single curing accelerator may be used alone, or two or more curing accelerators may be used.
When the composition contains a curing accelerator, the content of the curing accelerator is preferably 0.01 to 10% by mass, and 0.1 to 5% by mass, based on the total content of the epoxy compound and the specific compound having an epoxy group. is more preferred.

〔分散剤〕
本発明の組成物は、更に、分散剤を含んでいてもよい。
組成物が分散剤を含むと、組成物中での無機物の分散性が向上し、より優れた熱伝導率と接着性を実現できる。
[Dispersant]
The composition of the invention may further contain a dispersant.
When the composition contains a dispersant, the dispersibility of the inorganic material in the composition is improved, and superior thermal conductivity and adhesion can be achieved.

分散剤としては、通常使用される分散剤から適宜選択できる。例えば、DISPERBYK-106(BYK-Chemie GmbH製)、DISPERBYK-111(BYK-Chemie GmbH製)、ED-113(楠本化成株式会社製)、アジスパーPN-411(味の素ファインテクノ製)、及び、REB122-4(日立化成工業製)等が挙げられる。
分散剤は1種単独で使用してもよく、2種以上を使用してもよい。
本発明の組成物が分散剤を含む場合、無機物の含有量に対する、分散剤の含有量は、0.01~10質量%が好ましく、0.1~5質量%がより好ましい。
The dispersant can be appropriately selected from commonly used dispersants. For example, DISPERBYK-106 (manufactured by BYK-Chemie GmbH), DISPERBYK-111 (manufactured by BYK-Chemie GmbH), ED-113 (manufactured by Kusumoto Kasei Co., Ltd.), Ajisper PN-411 (manufactured by Ajinomoto Fine Techno), and REB122- 4 (manufactured by Hitachi Chemical Co., Ltd.) and the like.
A dispersant may be used individually by 1 type, and may use 2 or more types.
When the composition of the present invention contains a dispersant, the content of the dispersant is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the content of the inorganic substance.

〔溶媒〕
本発明の組成物は、更に、溶媒を含んでいてもよい。
溶媒の種類は特に制限されず、有機溶媒であるのが好ましい。有機溶媒としては、例えば、シクロペンタノン、シクロヘキサノン、酢酸エチル、メチルエチルケトン、ジクロロメタン、及び、テトラヒドロフラン等が挙げられる。
本発明の組成物が溶媒を含む場合、溶媒の含有量は、組成物の固形分濃度を、20~90質量%とする量が好ましく、30~85質量%とする量がより好ましく、40~85質量%とする量が更に好ましい。
〔solvent〕
The composition of the invention may further contain a solvent.
The type of solvent is not particularly limited, and an organic solvent is preferred. Examples of organic solvents include cyclopentanone, cyclohexanone, ethyl acetate, methyl ethyl ketone, dichloromethane, and tetrahydrofuran.
When the composition of the present invention contains a solvent, the content of the solvent is preferably an amount that makes the solid content concentration of the composition 20 to 90% by mass, more preferably an amount that makes 30 to 85% by mass. An amount of 85% by mass is more preferred.

〔組成物の製造方法〕
本発明の組成物の製造方法は特に制限されず、公知の方法を採用でき、例えば、上述した各種成分を混合して製造できる。混合する際には、各種成分を一括で混合しても、順次混合してもよい。
成分を混合する方法に特に制限はなく、公知の方法を使用できる。混合に使用する混合装置は、液中分散機が好ましく、例えば、自転公転ミキサー、高速回転せん断型撹拌機等の撹拌機、コロイドミル、ロールミル、高圧噴射式分散機、超音波分散機、ビーズミル、及び、ホモジナイザーが挙げられる。混合装置は1種単独で使用してもよく、2種以上使用してもよい。混合の前後、及び/又は、同時に、脱気処理を行ってもよい。
[Method for producing composition]
The method for producing the composition of the present invention is not particularly limited, and a known method can be employed. For example, the composition can be produced by mixing the various components described above. When mixing, various components may be mixed together or sequentially.
There is no particular limitation on the method of mixing the components, and known methods can be used. The mixing device used for mixing is preferably a submerged disperser. and a homogenizer. One type of mixing device may be used alone, or two or more types may be used. Degassing may be performed before, after and/or at the same time as mixing.

〔熱伝導材料の製造方法〕
本発明の組成物を硬化処理して熱伝導材料が得られる。
本発明の組成物の硬化方法は、特に制限されないが、熱硬化反応が好ましい。
熱硬化反応の際の加熱温度は特に制限されない。例えば、50~250℃の範囲で適宜選択すればよい。また、熱硬化反応を行う際には、温度の異なる加熱処理を複数回にわたって実施してもよい。
硬化処理は、フィルム状又はシート状とした組成物について行うのが好ましい。具体的には、例えば、組成物を塗布成膜し硬化反応を行えばよい。
硬化処理を行う際は、基材上に組成物を塗布して塗膜を形成してから硬化させるのが好ましい。この際、基材上に形成した塗膜に、更に異なる基材を接触させてから硬化処理を行ってもよい。硬化後に得られた硬化物(熱伝導材料)は、基材の一方又は両方と分離してもよいし分離しなくてもよい。
また、硬化処理を行う際に、別々の基材上に組成物を塗布して、それぞれ塗膜を形成し、得られた塗膜同士を接触させた状態で硬化処理を行ってもよい。硬化後に得られた硬化物(熱伝導材料)は、基材の一方又は両方と分離してもよいし分離しなくてもよい。
[Method for producing thermally conductive material]
A thermally conductive material is obtained by curing the composition of the present invention.
The method for curing the composition of the present invention is not particularly limited, but thermosetting reaction is preferred.
The heating temperature during the thermosetting reaction is not particularly limited. For example, the temperature may be appropriately selected within the range of 50 to 250°C. Moreover, when performing a thermosetting reaction, heat treatment at different temperatures may be performed a plurality of times.
The curing treatment is preferably carried out on the composition in the form of a film or sheet. Specifically, for example, the composition may be applied to form a film, followed by a curing reaction.
When the curing treatment is performed, it is preferable to apply the composition on the substrate to form a coating film and then cure the composition. In this case, the coating film formed on the substrate may be brought into contact with another substrate before the curing treatment. The cured product (thermal conductive material) obtained after curing may or may not be separated from one or both of the substrates.
In addition, when performing the curing treatment, the composition may be applied on separate substrates to form coating films, respectively, and the curing treatment may be performed in a state in which the obtained coating films are brought into contact with each other. The cured product (thermal conductive material) obtained after curing may or may not be separated from one or both of the substrates.

硬化処理は、組成物を半硬化状態にした時点で終了してもよい。また、組成物を半硬化状態にした後、更に硬化処理を実施して、硬化を完全にしてもよい。
組成物を半硬化状態にするための硬化処理(以下、「半硬化処理」とも略す。)と、硬化を完全にするための硬化処理(以下、「本硬化処理」とも略す。)とを、別々の工程に分けて行ってもよい。
The curing treatment may be terminated when the composition is in a semi-cured state. Further, after the composition is in a semi-cured state, a curing treatment may be further performed to complete curing.
Curing treatment for making the composition semi-cured (hereinafter also abbreviated as “semi-curing treatment”) and curing treatment for complete curing (hereinafter also abbreviated as “main curing treatment”), It may be carried out in separate steps.

例えば、半硬化処理では、基材上に組成物を塗布して塗膜を形成した後、そのまま無加圧で基材上の塗膜を加熱等して半硬化状態の熱伝導材料(以下、「半硬化膜」とも略す。)としてもよいし、プレス加工を併用しながら基材上の塗膜を加熱等して半硬化膜としてもよい。プレス加工をする場合、プレス加工は、上記加熱等の、前後に実施されてもよいし、最中に実施されてもよい。半硬化処理においてプレス加工を実施すると、得られる半硬化膜の膜厚の調整、及び/又は、半硬化膜中のボイド量の低減をしやすい場合がある。
半硬化処理において、別々の基材上に形成した塗膜同士を積層させた状態で半硬化処理を行ってもよいし、塗膜同士を積層させずに半硬化処理を行ってもよい。半硬化処理は、組成物から形成された塗膜と、更に、上記塗膜以外の材料とを接触させた状態で実施してもよい。
For example, in the semi-curing treatment, after the composition is applied on the substrate to form a coating film, the coating film on the substrate is heated as it is without pressure to form a semi-cured thermally conductive material (hereinafter referred to as Also abbreviated as a “semi-cured film”), or by heating the coating film on the base material while press working in combination, to form a semi-cured film. When press working is performed, the press working may be performed before or after the heating or the like, or may be performed during the heating. If pressing is performed in the semi-curing treatment, it may be easier to adjust the film thickness of the resulting semi-cured film and/or reduce the amount of voids in the semi-cured film.
In the semi-curing treatment, the semi-curing treatment may be performed in a state in which the coating films formed on separate substrates are laminated with each other, or the semi-curing treatment may be performed without laminating the coating films. The semi-curing treatment may be performed while the coating film formed from the composition is in contact with a material other than the coating film.

得られた、半硬化膜を、そのまま熱伝導材料として使用してもよいし、半硬化膜に更に本硬化処理を施してから完全に硬化した熱伝導材料として使用してもよい。
本硬化処理においては、半硬化膜を、そのまま無加圧で加熱等してもよいし、プレス加工を行ってから、又は、行いながら加熱等してもよい。この際、本硬化処理において、別々の半硬化膜同士を積層させた状態で本硬化処理を行ってもよいし、半硬化膜同士を積層させずに本硬化処理を行ってもよい。
また、本硬化処理は、半硬化膜を、使用されるデバイス等に接触するように配置した状態で実施してもよい。本硬化処理によって、デバイスと本発明の熱伝導材料とが接着するのも好ましい。
The obtained semi-cured film may be used as a heat conductive material as it is, or may be used as a completely cured heat conductive material after being further subjected to a main curing treatment.
In the main curing treatment, the semi-cured film may be heated as it is without pressure, or may be heated after or while being pressed. At this time, in the main curing treatment, the main curing treatment may be performed in a state in which separate semi-cured films are laminated, or the main curing treatment may be performed without laminating the semi-cured films.
Further, the main curing treatment may be performed while the semi-cured film is placed in contact with the device or the like to be used. It is also preferred that the device and the thermally conductive material of the present invention adhere to each other through the main curing treatment.

半硬化処理及び/又は本硬化処理等における硬化処理の際に行ってもよいプレス加工に使用するプレスに制限はなく、例えば、平板プレスを使用してもよいしロールプレスを使用してもよい。
ロールプレスを使用する場合は、例えば、基材上に塗膜を形成して得た塗膜付き基材を、2本のロールが対向する1対のロールに挟持し、上記1対のロールを回転させて上記塗膜付き基材を通過させながら、上記塗膜付き基材の膜厚方向に圧力を付加するのが好ましい。上記塗膜付き基材は、塗膜の片面にのみ基材が存在していてもよいし、塗膜の両面に基材が存在していてもよい。上記塗膜付き基材は、ロールプレスに1回だけ通過させてもよいし複数回通過させてもよい。
半硬化処理及び/又は本硬化処理等における硬化処理の際に、平板プレスによる処理とロールプレスによる処理とは一方のみを実施してもよいし両方を実施してもよい。
There is no limitation on the press used for the pressing that may be performed during the hardening treatment in the semi-hardening treatment and/or the main hardening treatment, and for example, a flat press or a roll press may be used. .
When using a roll press, for example, a substrate with a coating film obtained by forming a coating film on the substrate is sandwiched between a pair of rolls facing each other, and the pair of rolls is sandwiched. It is preferable to apply pressure in the film thickness direction of the substrate with the coating film while rotating to pass the substrate with the coating film. The base material with the coating film may have the base material on only one side of the coating film, or may have the base material on both sides of the coating film. The coated substrate may be passed through the roll press only once or may be passed multiple times.
At the time of hardening treatment such as the semi-hardening treatment and/or the main hardening treatment, either one or both of flat press treatment and roll press treatment may be performed.

硬化反応を含む熱伝導材料の作製については、「高熱伝導性コンポジット材料」(シーエムシー出版、竹澤由高著)を参照できる。 For the preparation of thermally conductive materials including curing reactions, reference can be made to "Highly Thermally Conductive Composite Materials" (by Yoshitaka Takezawa, published by CMC Publishing).

熱伝導材料の形状に特に制限はなく、用途に応じて様々な形状に成形できる。成形された熱伝導材料の典型的な形状としては、例えば、シート状が挙げられる。
つまり、本発明の組成物を用いて得られる熱伝導材料は、熱伝導シート(以下、「本発明の熱伝導シート」とも略す。)であるのも好ましい。
また、本発明の組成物を用いて得られる熱伝導材料の熱伝導性は異方的ではなく等方的であるのが好ましい。
There are no particular restrictions on the shape of the heat-conducting material, and it can be molded into various shapes depending on the application. A typical shape of the molded thermally conductive material includes, for example, a sheet shape.
That is, the thermally conductive material obtained using the composition of the present invention is also preferably a thermally conductive sheet (hereinafter also abbreviated as "the thermally conductive sheet of the present invention").
Also, the thermal conductivity of the thermally conductive material obtained using the composition of the present invention is preferably isotropic rather than anisotropic.

熱伝導材料は、絶縁性(電気絶縁性)であるのが好ましい。言い換えると、本発明の組成物は、熱伝導性絶縁組成物であるのが好ましい。
例えば、熱伝導材料の23℃相対湿度65%における体積抵抗率は、1010Ω・cm以上が好ましく、1012Ω・cm以上がより好ましく、1014Ω・cm以上が更に好ましい。上限は特に制限されないが、通常1018Ω・cm以下である。
Preferably, the thermally conductive material is insulating (electrically insulating). In other words, the compositions of the present invention are preferably thermally conductive insulating compositions.
For example, the volume resistivity of the heat conductive material at 23° C. and 65% relative humidity is preferably 10 10 Ω·cm or more, more preferably 10 12 Ω·cm or more, and even more preferably 10 14 Ω·cm or more. Although the upper limit is not particularly limited, it is usually 10 18 Ω·cm or less.

[熱伝導シート]
本発明の組成物を用いて得られる熱伝導材料は、本発明の組成物から形成される部材以外の、他の部材と組み合わせて使用されてもよい。
例えば、シート状の熱伝導材料(熱伝導シート)は、本発明の組成物から形成された層の他の、シート状の支持体と組み合わせられていてもよい。
シート状の支持体としては、プラスチックフィルム、金属フィルム、又は、ガラス板が挙げられる。プラスチックフィルムの材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、及び、シリコーンが挙げられる。金属フィルムとしては、銅フィルムが挙げられる。
シート状の熱伝導材料(熱伝導シート)の膜厚は、100~300μmが好ましく、150~250μmがより好ましい。
[Thermal conductive sheet]
The thermally conductive material obtained using the composition of the present invention may be used in combination with members other than members formed from the composition of the present invention.
For example, a sheet-like heat-conducting material (heat-conducting sheet) may be combined with a sheet-like support other than the layer formed from the composition of the present invention.
Sheet-like supports include plastic films, metal films, and glass plates. Examples of plastic film materials include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, and silicones. Metal films include copper films.
The film thickness of the sheet-like thermally conductive material (thermally conductive sheet) is preferably 100 to 300 μm, more preferably 150 to 250 μm.

さらに、本発明の熱伝導シートの片面又は両面に接着剤層又は粘着剤層を配した熱伝導性多層シート(以下、「本発明の熱伝導性多層シート」とも略す。)に成形することができる。
このような接着剤層及び/又は粘着剤層を介して、熱伝導材料をデバイスのような熱を移動させるべき対象物と接合することで、熱伝導材料と対象物との、より強固な接合を実現できる。
例えば、本発明の熱伝導性多層シートとして、本発明の熱伝導シートと、上記熱伝導シートの片面又は両面に設けられた、接着剤層又は粘着剤層と、を有する、熱伝導性多層シートを作製してもよい。
なお、上記熱伝導シートの片面又は両面には、それぞれ接着剤層及び粘着剤層の一方が設けられていてもよく、両方が設けられていてもよい。上記熱伝導シートの一面に接着剤層が設けられていて、他の面に粘着剤層が設けられていてもよい。また、上記熱伝導シートの片面又は両面には、接着剤層及び/又は粘着剤層が部分的に設けられていてもよく、全面的に設けられていてもよい。
なお、上述の通り、本発明において熱伝導シート等の熱伝導材料は半硬化状態(半硬化膜)であってもよく、熱伝導性多層シートにおける熱伝導シートが半硬化状態であってもよい。熱伝導性多層シートにおける接着剤層は硬化していてもよく半硬化状態であってもよく未硬化状態であってもよい。
Furthermore, it is possible to form a thermally conductive multilayer sheet (hereinafter also abbreviated as "the thermally conductive multilayer sheet of the present invention") in which an adhesive layer or a pressure-sensitive adhesive layer is arranged on one or both sides of the thermally conductive sheet of the present invention. can.
By bonding the thermally conductive material to an object such as a device to which heat is to be transferred through such an adhesive layer and/or adhesive layer, the thermally conductive material and the object can be more strongly bonded. can be realized.
For example, as the thermally conductive multilayer sheet of the present invention, a thermally conductive multilayer sheet having the thermally conductive sheet of the present invention and an adhesive layer or pressure-sensitive adhesive layer provided on one or both sides of the thermally conductive sheet. may be made.
One or both of an adhesive layer and a pressure-sensitive adhesive layer may be provided on one side or both sides of the heat conductive sheet. An adhesive layer may be provided on one surface of the heat conductive sheet, and an adhesive layer may be provided on the other surface. In addition, an adhesive layer and/or a pressure-sensitive adhesive layer may be partially provided on one side or both sides of the heat conductive sheet, or may be provided entirely.
As described above, in the present invention, the thermally conductive material such as the thermally conductive sheet may be in a semi-cured state (semi-cured film), and the thermally conductive sheet in the thermally conductive multilayer sheet may be in a semi-cured state. . The adhesive layer in the thermally conductive multilayer sheet may be cured, semi-cured, or uncured.

<接着剤層>
接着剤層は接着性を有する化合物(樹脂及び/又は低分子量体等)を少なくとも1種含むのが好ましい。
接着剤層は、必要に応じてフィラー等のその他の成分を更に含んでもよい。
<Adhesive layer>
The adhesive layer preferably contains at least one adhesive compound (resin and/or low-molecular-weight substance, etc.).
The adhesive layer may further contain other components such as fillers as necessary.

上記接着性を有する化合物としては、接着時において、絶縁性、接着性、及び/又は、柔軟性を有する化合物が好ましい。
中でも接着性及び絶縁性の観点から、ポリイミド樹脂、変性ポリイミド樹脂、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂、及び、エポキシ化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。
エポキシ化合物は、アクリル変性ゴムを含有するエポキシ樹脂であってもよい。
As the adhesive compound, a compound having insulating properties, adhesive properties, and/or flexibility at the time of adhesion is preferable.
Among them, from the viewpoint of adhesiveness and insulation, it is preferable to include at least one selected from the group consisting of polyimide resins, modified polyimide resins, polyamideimide resins, modified polyamideimide resins, and epoxy compounds.
The epoxy compound may be an epoxy resin containing an acrylic modified rubber.

上記ポリイミド樹脂及び変性ポリイミド樹脂としては、例えば、ユピコートFS-100L(宇部興産株式会社製)、セミコファインSP-300、SP-400、SP-800(東レ株式会社製)、及び、Uイミドシリーズ(ユニチカ株式会社製)等に代表される製品等が挙げられる。 Examples of the polyimide resin and modified polyimide resin include, for example, Upicoat FS-100L (manufactured by Ube Industries, Ltd.), Semicofine SP-300, SP-400, SP-800 (manufactured by Toray Industries, Inc.), and U-imide series ( manufactured by Unitika Ltd.).

上記ポリアミドイミド樹脂や変性ポリアミドイミド樹脂としては、例えば、KSシリーズ(日立化成工業株式会社製)、バイロマックスシリーズ(東洋紡績株式会社製)、及び、トーロン(ソルベイアドバンスドポリマーズ社製)等が挙げられる。
中でも、高耐熱性及び高接着性の観点から、KSシリーズ(日立化成工業株式会社製)に代表される変性ポリアミドイミド樹脂を用いることが好ましい。
Examples of the polyamideimide resin and modified polyamideimide resin include KS series (manufactured by Hitachi Chemical Co., Ltd.), Vylomax series (manufactured by Toyobo Co., Ltd.), and Torlon (manufactured by Solvay Advanced Polymers). .
Among them, from the viewpoint of high heat resistance and high adhesiveness, it is preferable to use a modified polyamideimide resin represented by the KS series (manufactured by Hitachi Chemical Co., Ltd.).

上記接着剤層に用いられる、ポリイミド樹脂、ポリアミドイミド樹脂、及び、変性ポリアミドイミド樹脂は、1種単独で使用してもよく、2種以上を使用してもよい。
またこれらの樹脂は、通常、樹脂が溶剤に溶解したワニス状態であり、PETフィルム等の支持体に直接塗布し溶剤を乾燥させることによりフィルム化して接着剤層として用いることもできる。
The polyimide resin, polyamideimide resin, and modified polyamideimide resin used in the adhesive layer may be used singly or in combination of two or more.
These resins are usually in the form of a varnish in which the resin is dissolved in a solvent, and can be used as an adhesive layer by coating directly on a support such as a PET film and drying the solvent to form a film.

また、接着性を有する化合物としてエポキシ化合物を用いてもよい。具体的には、例えば、エポキシ化合物、その硬化剤、及び、硬化剤促進剤を含むエポキシ組成物を接着剤層としてもよい。上記エポキシ組成物には、グリシジルアクリレートを添加することも好ましい。
エポキシ組成物の詳細については、例えば、特開2002-134531号公報、特開2002-226796号公報、及び、2003-221573号公報等の記載を参照することもできる。
Also, an epoxy compound may be used as the adhesive compound. Specifically, for example, an epoxy composition containing an epoxy compound, its curing agent, and a curing agent accelerator may be used as the adhesive layer. It is also preferable to add glycidyl acrylate to the epoxy composition.
For details of the epoxy composition, it is also possible to refer to, for example, JP-A-2002-134531, JP-A-2002-226796, and JP-A-2003-221573.

接着剤層に使用されるエポキシ化合物は、硬化して接着作用を呈するものであればよく、特に制限はない。例えば、分子量が500以下のビスフェノールA型又はビスフェノールF型の液状であるエポキシ化合物を用いると積層時の流動性を向上させられる。高Tg(ガラス転移温度)化を目的に多官能のエポキシ化合物を加えてもよく、多官能エポキシ化合物としては、例えば、フェノールノボラック型のエポキシ化合物、クレゾールノボラック型のエポキシ化合物等が挙げられる。
接着剤層に使用されるエポキシ化合物として、本発明の組成物において使用できるエポキシ化合物として説明したエポキシ化合物を使用してもよい。
The epoxy compound used for the adhesive layer is not particularly limited as long as it cures and exhibits an adhesive action. For example, if a bisphenol A type or bisphenol F type liquid epoxy compound having a molecular weight of 500 or less is used, the fluidity during lamination can be improved. A polyfunctional epoxy compound may be added for the purpose of increasing the Tg (glass transition temperature). Examples of the polyfunctional epoxy compound include phenol novolak type epoxy compounds and cresol novolak type epoxy compounds.
As the epoxy compound used in the adhesive layer, the epoxy compounds described as the epoxy compounds that can be used in the composition of the present invention may be used.

エポキシ化合物の硬化剤としては、例えば、ポリアミド、ポリアミン、酸無水物、ポリスルフィド、三弗化硼素、又は、フェノール化合物(フェノールノボラック樹脂、フェノール性水酸基を1分子中に2個以上有する化合物であるビスフェノールA、ビスフェノールF、若しくは、ビスフェノールS等)が挙げられる。吸湿時の耐電食性に優れる観点から、フェノール化合物であるフェノールノボラック樹脂、ビスフェノールノボラック樹脂、又は、クレゾールノボラック樹脂等を用いるのも好ましい。
また、上記硬化剤として、本発明の組成物において使用できるフェノール化合物として説明したフェノール化合物を使用してもよい。
Curing agents for epoxy compounds include, for example, polyamides, polyamines, acid anhydrides, polysulfides, boron trifluoride, or phenolic compounds (phenolic novolak resins, bisphenols, which are compounds having two or more phenolic hydroxyl groups per molecule. A, bisphenol F, or bisphenol S). It is also preferable to use a phenol novolak resin, a bisphenol novolak resin, or a cresol novolak resin, which is a phenol compound, from the viewpoint of excellent electrolytic corrosion resistance when moisture is absorbed.
Moreover, as the curing agent, the phenol compound described as the phenol compound that can be used in the composition of the present invention may be used.

硬化剤を用いる場合は、硬化剤とともに硬化促進剤を用いることが好ましい。硬化促進剤としては、トリフェニルホスフィンやイミダゾールを用いるのも好ましい。イミダゾールとしては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、及び、1-シアノエチル-2-フェニルイミダゾリウムトリメリテートが挙げられる。イミダゾール類は、例えば、四国化成工業株式会社から2E4MZ、2PZ-CN、2PZ-CNSという商品名で市販されている。 When using a curing agent, it is preferable to use a curing accelerator together with the curing agent. It is also preferable to use triphenylphosphine or imidazole as the curing accelerator. Imidazoles include, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-phenylimidazolium trimellitate. Imidazoles are commercially available, for example, from Shikoku Kasei Co., Ltd. under the trade names of 2E4MZ, 2PZ-CN, and 2PZ-CNS.

接着剤層に用いるエポキシ化合物は、エポキシ化合物と相溶性がある高分子量樹脂と併用されることも好ましい。
エポキシ化合物と相溶性がある高分子量樹脂としては、例えば、高分子量エポキシ化合物、極性の大きい官能基含有ゴム、及び、極性の大きい官能基含有反応性ゴムが挙げられる。
上記極性の大きい官能基含有反応性ゴムとしては、アクリルゴムにカルボキシル基のような極性が大きい官能基を付加したアクリル変性ゴムが挙げられる。
The epoxy compound used for the adhesive layer is preferably used in combination with a high molecular weight resin compatible with the epoxy compound.
High-molecular-weight resins compatible with epoxy compounds include, for example, high-molecular-weight epoxy compounds, highly polar functional group-containing rubbers, and highly polar functional group-containing reactive rubbers.
Examples of the highly polar functional group-containing reactive rubber include acrylic modified rubber obtained by adding a highly polar functional group such as a carboxyl group to an acrylic rubber.

ここで、エポキシ化合物と相溶性があるとは、硬化後にエポキシ化合物と分離して二つ以上の相に分かれることなく、均質混和物を形成する性質を言う。
上記高分子量樹脂の重量平均分子量は特に制限されない。Bステージにおける接着剤のタック性の低減や硬化時の可撓性を向上させる観点から、重量平均分子量が3万以上であることが好ましい。
Here, compatibility with an epoxy compound refers to the property of forming a homogeneous mixture without separating from the epoxy compound into two or more phases after curing.
The weight average molecular weight of the high molecular weight resin is not particularly limited. From the viewpoint of reducing the tackiness of the adhesive in the B stage and improving the flexibility during curing, the weight average molecular weight is preferably 30,000 or more.

高分子量エポキシ化合物は、分子量が3万~8万の高分子量エポキシ化合物、さらには、分子量が8万を超える超高分子量エポキシ化合物(特公平7-59617号、特公平7-59618号、特公平7-59619号、特公平7-59620号、特公平7-64911号、特公平7-68327号公報参照)があり、いずれも日立化成工業株社で製造している。極性の大きい官能基含有反応性ゴムとして、カルボキシル基含有アクリルゴムは、例えば、ナガセケムテックス社から、HTR-860P(商品名)が販売されている。 High-molecular-weight epoxy compounds include high-molecular-weight epoxy compounds having a molecular weight of 30,000 to 80,000, and ultra-high-molecular-weight epoxy compounds having a molecular weight exceeding 80,000 (JP-B-7-59617, JP-B-7-59618, JP-B-7-59618, No. 7-59619, Japanese Patent Publication No. 7-59620, Japanese Patent Publication No. 7-64911, and Japanese Patent Publication No. 7-68327), all of which are manufactured by Hitachi Chemical Co., Ltd. As a highly polar functional group-containing reactive rubber, a carboxyl group-containing acrylic rubber is sold by Nagase ChemteX Corporation, for example, HTR-860P (trade name).

上記エポキシ化合物と相溶性がありかつ重量平均分子量が3万以上の高分子量樹脂を用いる場合、その添加量は、接着剤層を構成する樹脂を100質量部とした場合に、10質量部以上であることが好ましい、また、40重量部以下であることが好ましい。
10質量部以上であると、エポキシ化合物を主成分とする相(以下エポキシ化合物相という)の可撓性の向上、タック性の向上、及び/又は、クラック抑制等を実現しやすく、絶縁性が低下しにくい。40重量部以下であると、エポキシ化合物相のTgを向上させられる。
When a high molecular weight resin that is compatible with the epoxy compound and has a weight average molecular weight of 30,000 or more is used, the amount added is 10 parts by mass or more when the resin constituting the adhesive layer is 100 parts by mass. preferably 40 parts by weight or less.
When the amount is 10 parts by mass or more, it is easy to improve the flexibility, improve the tackiness, and/or suppress cracks of the phase containing the epoxy compound as the main component (hereinafter referred to as the epoxy compound phase), and the insulation is improved. difficult to decrease. When it is 40 parts by weight or less, the Tg of the epoxy compound phase can be improved.

高分子量エポキシ化合物の重量平均分子量は、2万以上50万以下であることが好ましい。この範囲では、シート状態及び/又はフィルム状態での強度及び/又は可撓性が向上し、タック性も抑制しやすい。 The weight-average molecular weight of the high molecular weight epoxy compound is preferably 20,000 or more and 500,000 or less. Within this range, strength and/or flexibility in a sheet state and/or film state are improved, and tackiness is easily suppressed.

上記接着剤層に好適に用いられる、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂及び、エポキシ化合物は、1種単独で使用してもよく、2種以上を使用してもよい。
またこれらの化合物は、化合物が溶媒に溶解したワニス状態の混合物にしてもよい。このような混合物を、PETフィルム等の支持体に直接塗布し、溶媒を乾燥させることにより、化合物をフィルム化して接着剤層として用いることができる。
The polyamideimide resin, modified polyamideimide resin, and epoxy compound that are preferably used for the adhesive layer may be used alone or in combination of two or more.
These compounds may also be a varnish mixture in which the compounds are dissolved in a solvent. By directly coating such a mixture on a support such as a PET film and drying the solvent, the compound can be formed into a film and used as an adhesive layer.

(シランカップリング剤)
接着剤層には、異種材料間の界面結合をよくするために、シランカップリング剤を配合してもよい。
上記シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-ウレイドプロピルトリエトキシシラン、及び、N-β-アミノエチル-γ-アミノプロピルトリメトキシシランが挙げられる。
中でも、接着強度の観点から、γ-メルカプトプロピルトリメトキシシラン、又は、γ-アミノプロピルトリエトキシシランが好ましい。
接着剤層がシランカップリング剤を含む場合、その配合量は、添加による効果及び/又は耐熱性への影響の観点から、上記接着性を有する化合物100質量部に対し、0.1~10質量部が好ましい。
(Silane coupling agent)
The adhesive layer may contain a silane coupling agent in order to improve interfacial bonding between different materials.
Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, and N-β- Aminoethyl-γ-aminopropyltrimethoxysilane can be mentioned.
Among them, γ-mercaptopropyltrimethoxysilane or γ-aminopropyltriethoxysilane is preferable from the viewpoint of adhesive strength.
When the adhesive layer contains a silane coupling agent, the amount to be added is 0.1 to 10 parts by mass with respect to 100 parts by mass of the adhesive compound, from the viewpoint of the effect of addition and/or the effect on heat resistance. part is preferred.

(フィラー)
接着剤層は、フィラー(好ましくは無機フィラー)を含んでもよい。
接着剤層がフィラーを含むことで、接着剤層の取扱い性や熱伝導性が向上する。また難燃性を与えること、溶融粘度を調整すること、チクソトロピック性を付与すること、及び/又は、表面硬度を向上すること等が可能になる。
(filler)
The adhesive layer may contain a filler (preferably an inorganic filler).
Including a filler in the adhesive layer improves the handleability and thermal conductivity of the adhesive layer. It is also possible to impart flame retardancy, adjust melt viscosity, impart thixotropic properties, and/or improve surface hardness.

接着剤層がフィラーを含む場合、その含有量は特に制限されない。中でも上記含有量は、接着剤層に含まれる上記接着性を有する化合物100体積部に対して、20~50体積部が好ましい。
配合の効果の点から上記含有量が30体積部以上であることがより好ましい。また接着剤の貯蔵弾性率の好適化、接着性の向上、及び/又は、ボイド抑制などを実現して絶縁性の低下等を抑制する観点から、上記含有量が50体積部以下であることも好ましい。
When the adhesive layer contains a filler, its content is not particularly limited. Above all, the content is preferably 20 to 50 parts by volume with respect to 100 parts by volume of the adhesive compound contained in the adhesive layer.
From the viewpoint of blending effects, the content is more preferably 30 parts by volume or more. In addition, from the viewpoint of optimizing the storage elastic modulus of the adhesive, improving the adhesiveness, and/or suppressing voids, etc., and suppressing the deterioration of the insulation properties, etc., the content may be 50 parts by volume or less. preferable.

無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ(酸化アルミニウム)、窒化アルミニウム、ほう酸アルミウィスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、窒化ケイ素、タルク、マイカ、及び、硫酸バリウムが挙げられる。
中でも、熱伝導率が高いため放熱性が良く、不純物を制御しやすく、耐熱性及び絶縁性が良好な点で、アルミナ、窒化ホウ素、又は、窒化アルミニウムが好ましい。
フィラーは、1種類単独で使用してもよく、2種類以上を使用してもよい。
Examples of inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina (aluminum oxide), aluminum nitride, aluminum borate whiskers, and boron nitride. , crystalline silica, amorphous silica, silicon nitride, talc, mica, and barium sulfate.
Among them, alumina, boron nitride, or aluminum nitride is preferable because of its high thermal conductivity, good heat dissipation, easy control of impurities, and good heat resistance and insulating properties.
A filler may be used individually by 1 type, and may use 2 or more types.

接着剤層に含まれるフィラーの平均粒子径は特に制限されない。例えば、熱伝導性の観点から、0.1~10μmが好ましく、0.2~5μmがより好ましい。 The average particle size of the filler contained in the adhesive layer is not particularly limited. For example, from the viewpoint of thermal conductivity, it is preferably 0.1 to 10 μm, more preferably 0.2 to 5 μm.

接着剤層におけるフィラーの含有量は、接着性と熱伝導性のバランスをとる観点から、接着剤層の全体積に対して、50体積%以下(例えば20体積%以上50体積%以下)であることも好ましい。 The content of the filler in the adhesive layer is 50% by volume or less (for example, 20% by volume or more and 50% by volume or less) relative to the total volume of the adhesive layer from the viewpoint of balancing adhesiveness and thermal conductivity. is also preferred.

特に、接着剤層が接着性を有する化合物としてエポキシ化合物及び変性ポリアミドイミド樹脂からなる群より選択される少なくとも1種を含み、フィラーとしてアルミナ及び酸化ケイ素からなる群より選択される少なくとも1種を含み、フィラーの含有量は接着性を有する化合物100体積部に対して25体積部以上100体積部以下であり、フィラーの平均粒子径は0.2~5μmであることが、接着強度と熱伝導率の観点から好ましい。 In particular, the adhesive layer contains at least one selected from the group consisting of epoxy compounds and modified polyamideimide resins as a compound having adhesiveness, and at least one selected from the group consisting of alumina and silicon oxide as a filler. , The content of the filler is 25 parts by volume or more and 100 parts by volume or less with respect to 100 parts by volume of the compound having adhesiveness, and the average particle size of the filler is 0.2 to 5 μm. is preferable from the viewpoint of

接着剤層の膜厚は熱伝導率と接着性の観点から、1~16μmが好ましく、2~15μmがより好ましく、3~14μmが更に好ましく、4~12μmが特に好ましい。
接着剤層の膜厚は、マイクロメータ、触針式膜厚計、針式膜厚計等を用いて測定することができる。
The thickness of the adhesive layer is preferably 1 to 16 μm, more preferably 2 to 15 μm, even more preferably 3 to 14 μm, particularly preferably 4 to 12 μm, from the viewpoint of thermal conductivity and adhesion.
The film thickness of the adhesive layer can be measured using a micrometer, a stylus film thickness meter, a needle film thickness meter, or the like.

<粘着剤層>
上記粘着剤層の材料としては、各種粘着剤及び/又は熱硬化系材料等で、必要とする耐熱性能及び熱伝導性能を有するものであれば、特に限定することなく使用できる。また、粘着剤層中に各種熱伝導性フィラーを混合して熱伝導性を高めた粘着剤を用いてもよい。
<Adhesive layer>
As the material of the pressure-sensitive adhesive layer, various pressure-sensitive adhesives and/or thermosetting materials can be used without particular limitation as long as they have the required heat resistance performance and heat conduction performance. Moreover, you may use the adhesive which mixed various heat conductive fillers in the adhesive layer, and improved thermal conductivity.

粘着剤層を形成する粘着剤としては、例えば、アクリル系粘着剤、オレフィン系粘着剤、シリコーン系粘着剤、天然ゴム系粘着剤、及び、合成ゴム系粘着剤が挙げられる。
電子機器における半導体付近での使用用途では、アウトガスが発生しにくい点で、アクリル系粘着剤又はオレフィン系粘着剤が好ましい。また耐熱性の観点からは、シリコーン樹脂を主原料とするシリコーン系粘着剤が好ましい。
なお、「シリコーン樹脂を主原料とする粘着剤」とは、シリコーン樹脂を60質量%以上(好ましくは80質量%以上)含む粘着剤のことである。
シリコーン樹脂を主原料とする粘着剤としては、例えば、過酸化物架橋(硬化)型シリコーン系粘着剤及び付加反応型シリコーン系粘着剤が挙げられる。中でも、薄層にした場合の厚み精度が高く、転写法での粘着剤層形成が容易な点で、付加反応型シリコーン系粘着剤が好ましい。
Examples of adhesives forming the adhesive layer include acrylic adhesives, olefin adhesives, silicone adhesives, natural rubber adhesives, and synthetic rubber adhesives.
For applications near semiconductors in electronic devices, acrylic pressure-sensitive adhesives or olefin-based pressure-sensitive adhesives are preferable because outgassing is less likely to occur. Moreover, from the viewpoint of heat resistance, a silicone-based pressure-sensitive adhesive containing a silicone resin as a main raw material is preferable.
The "adhesive containing a silicone resin as a main raw material" is an adhesive containing 60% by mass or more (preferably 80% by mass or more) of a silicone resin.
Examples of adhesives containing silicone resin as a main raw material include peroxide cross-linking (curing) silicone adhesives and addition reaction silicone adhesives. Among them, the addition reaction type silicone-based pressure-sensitive adhesive is preferable because it has high thickness accuracy when formed into a thin layer and is easy to form a pressure-sensitive adhesive layer by a transfer method.

付加反応型シリコーン系粘着剤としては、例えば、シリコーンゴムとシリコーンレジンとを含有し、さらに必要に応じて架橋剤、充填剤、可塑剤、老化防止剤、帯電防止剤、及び/又は、着色剤(顔料、染料など)等の添加剤を含有する粘着剤が挙げられる。 The addition-reactive silicone pressure-sensitive adhesive, for example, contains a silicone rubber and a silicone resin, and if necessary, a cross-linking agent, a filler, a plasticizer, an anti-aging agent, an antistatic agent, and/or a coloring agent. Adhesives containing additives such as (pigments, dyes, etc.) can be mentioned.

上記シリコーンゴムとしては、シリコーン系のゴム成分であれば特に制限されないが、フェニル基を有しているオルガノポリシロキサン(特に、メチルフェニルシロキサンを主な構成単位としているオルガノポリシロキサン)を含むシリコーンゴムが好ましい。このようなシリコーンゴムにおけるオルガノポリシロキサンには、必要に応じて、ビニル基などの各種官能基が導入されていてもよい。 The silicone rubber is not particularly limited as long as it is a silicone-based rubber component, but a silicone rubber containing an organopolysiloxane having a phenyl group (in particular, an organopolysiloxane having methylphenylsiloxane as a main constituent unit). is preferred. Various functional groups such as a vinyl group may be introduced into the organopolysiloxane in such a silicone rubber, if necessary.

上記シリコーンレジンとしては、シリコーン系粘着剤に使用されているシリコーン系のレジンであれば特に制限されないが、例えば、構成単位「RSiO1/2」からなる単位、構成単位「SiO」からなる単位、構成単位「RSiO3/2」からなる単位、及び、構成単位「RSiO」からなる単位からなる群より選択される少なくともいずれか1種の単位を有する(共)重合体からなるオルガノポリシロキサンを含むシリコーンレジンが挙げられる。なお、上記構成単位におけるRは、炭化水素基又はヒドロキシル基を示す。 The silicone resin is not particularly limited as long as it is a silicone-based resin that is used in silicone-based pressure -sensitive adhesives. A (co)polymer having at least one unit selected from the group consisting of a unit consisting of a unit consisting of a structural unit "RSiO 3/2 " and a unit consisting of a structural unit "R 2 SiO" Examples include silicone resins containing organopolysiloxanes. In addition, R in the above structural unit represents a hydrocarbon group or a hydroxyl group.

アクリル系粘着剤は、(メタ)アクリル酸、及び/又は、(メタ)アクリル酸エステルの単独重合体及び共重合体が挙げられる。 Examples of acrylic pressure-sensitive adhesives include homopolymers and copolymers of (meth)acrylic acid and/or (meth)acrylic acid esters.

中でも、柔軟性、化学的安定性、加工性、及び/又は、粘着性のコントロール可能性に優れる点で、アクリル系粘着剤は、アクリル酸ブチル、又は、アクリル酸2-エチルヘキシル等を主な原料成分としたポリ(メタ)アクリル酸エステル系の高分子化合物が好ましい。 Among them, acrylic pressure-sensitive adhesives are mainly made of butyl acrylate or 2-ethylhexyl acrylate, etc., in terms of excellent flexibility, chemical stability, workability, and/or controllability of adhesiveness. A poly(meth)acrylic acid ester-based polymer compound as a component is preferred.

上記高分子化合物は、アクリル酸ブチル、アクリル酸エチル、及び、アクリル酸2エチルヘキシル等から選ばれる1以上のモノマーと、アクリル酸、アクリロニトリル、及び/又は、ヒドロキシエチルアクリレート等とを共重合し、-COOH基、-CN基、-OH基等の極性基を導入した構造を有する共重合体が好ましい。 The polymer compound is obtained by copolymerizing one or more monomers selected from butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, and the like, with acrylic acid, acrylonitrile, and/or hydroxyethyl acrylate, and the like; A copolymer having a structure in which a polar group such as a COOH group, --CN group, or --OH group is introduced is preferred.

また、アクリル系粘着剤には、柔軟性を損なわない範囲で架橋構造を導入してもよい。架橋構造を導入することで、長期間の密着保持性及び膜強度を改善しやすい。例えば、-OH基等の極性基を有するポリマーに、複数のイソシアネート基やエポキシ基等の上記極性基と結合する官能基を持つ化合物を、上記極性基と反応させることで、架橋構造を導入できる。 In addition, a crosslinked structure may be introduced into the acrylic pressure-sensitive adhesive within a range that does not impair flexibility. By introducing a crosslinked structure, it is easy to improve long-term adhesion retention and film strength. For example, a crosslinked structure can be introduced by reacting a polymer having a polar group such as an —OH group with a compound having a functional group that binds to the polar group, such as a plurality of isocyanate groups or epoxy groups, with the polar group. .

[熱伝導層付きデバイス]
本発明の組成物を用いて得られる熱伝導材料は放熱シート等の放熱材として使用でき、各種デバイスの放熱用途に使用できる。より具体的には、デバイス上に本発明の熱伝導材料を含む熱伝導層を配置して熱伝導層付きデバイスを作製して、デバイスからの発熱を効率的に熱伝導層で放熱できる。上記熱伝導層は、上述した熱伝導性多層シート含む熱伝導層であってもよい。
本発明の組成物を用いて得られる熱伝導材料は十分な熱伝導性を有するとともに、高い耐熱性を有しているため、パーソナルコンピュータ、一般家電、及び、自動車等の様々な電気機器に用いられているパワー半導体デバイスの放熱用途に適している。
更に、本発明の組成物を用いて得られる熱伝導材料は、半硬化状態であっても十分な熱伝導性を有するため、各種装置の部材の隙間等の、光硬化のための光を到達させるのが困難な部位に配置する放熱材としても使用できる。また、接着性にも優れるため、熱伝導性を有する接着剤としての使用も可能である。
[Device with thermal conductive layer]
A thermally conductive material obtained using the composition of the present invention can be used as a heat dissipation material such as a heat dissipation sheet, and can be used for heat dissipation of various devices. More specifically, a heat conductive layer containing the heat conductive material of the present invention is arranged on a device to produce a device with a heat conductive layer, and heat generated from the device can be efficiently radiated by the heat conductive layer. The thermally conductive layer may be a thermally conductive layer containing the thermally conductive multilayer sheet described above.
Since the thermally conductive material obtained using the composition of the present invention has sufficient thermal conductivity and high heat resistance, it can be used in various electrical devices such as personal computers, general home appliances, and automobiles. It is suitable for heat dissipation applications of power semiconductor devices.
Furthermore, the thermally conductive material obtained using the composition of the present invention has sufficient thermal conductivity even in a semi-cured state, so that light for photocuring can reach the gaps between members of various devices. It can also be used as a heat dissipating material to be placed in areas where it is difficult to dissipate heat. Moreover, since it is excellent in adhesiveness, it can be used as an adhesive having thermal conductivity.

以下に、実施例を挙げて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples. The materials, amounts used, proportions, treatment details, treatment procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the examples shown below.

[実施例1~40及び比較例1~12(組成物の調製)]
〔各種成分〕
以下に、実施例及び比較例で使用した各種成分を示す。
<特定化合物及び比較用化合物>
以下に、実施例で使用した特定化合物を示す。以下のC-1~C-11が特定化合物であり、D-1~D-2が特定化合物に該当しない化合物(比較用化合物)である。

Figure 0007245953000012

Figure 0007245953000013

Figure 0007245953000014

Figure 0007245953000015

Figure 0007245953000016

Figure 0007245953000017

Figure 0007245953000018

Figure 0007245953000019

Figure 0007245953000020
[Examples 1 to 40 and Comparative Examples 1 to 12 (preparation of compositions)]
[Various components]
Various components used in Examples and Comparative Examples are shown below.
<Specific compound and comparative compound>
Specific compounds used in the examples are shown below. The following C-1 to C-11 are specific compounds, and D-1 to D-2 are compounds (comparative compounds) that do not correspond to the specific compounds.
Figure 0007245953000012

Figure 0007245953000013

Figure 0007245953000014

Figure 0007245953000015

Figure 0007245953000016

Figure 0007245953000017

Figure 0007245953000018

Figure 0007245953000019

Figure 0007245953000020

<フェノール化合物>
以下に、実施例で使用したフェノール化合物A-1~A~3を示す。
なお、実施例で使用したフェノール化合物A-1は、米国特許第4992596号明細書を参考に合成した。
<Phenol compound>
Phenolic compounds A-1 to A-3 used in the examples are shown below.
The phenol compound A-1 used in the examples was synthesized with reference to US Pat. No. 4,992,596.

Figure 0007245953000021
Figure 0007245953000021

<エポキシ化合物>
以下に、実施例及び比較例で使用したエポキシ化合物を示す。以下のC-11が特定化合物であり、B-1~B-3が特定化合物に該当しない化合物である。
なお、下記B-2は2種類のエポキシ化合物の混合物である(商品名:エポトートZX-1059、東都化成株式会社製)。
<Epoxy compound>
The epoxy compounds used in Examples and Comparative Examples are shown below. C-11 below is a specific compound, and B-1 to B-3 are compounds that do not fall under the specific compound.
B-2 below is a mixture of two types of epoxy compounds (trade name: Epotato ZX-1059, manufactured by Tohto Kasei Co., Ltd.).

Figure 0007245953000022
Figure 0007245953000022

<無機物(無機窒化物、及び、その他の無機物)>
以下に、実施例及び比較例で使用した無機物を示す。
「AA-3」:酸化アルミニウム(平均粒径:3μm、住友化学製)
「AA-04」:酸化アルミニウム(平均粒径:0.4μm、住友化学製)
「HP-40 MF100」:凝集状窒化ホウ素(平均粒径:40μm、水島合金鉄製)
「SP-3」:鱗片状窒化ホウ素(平均粒径:4μm、デンカ株式会社製)
<Inorganic substances (inorganic nitrides and other inorganic substances)>
Inorganic substances used in Examples and Comparative Examples are shown below.
"AA-3": aluminum oxide (average particle size: 3 μm, manufactured by Sumitomo Chemical)
"AA-04": aluminum oxide (average particle size: 0.4 μm, manufactured by Sumitomo Chemical)
“HP-40 MF100”: aggregated boron nitride (average particle size: 40 μm, made by Mizushima ferroalloy)
“SP-3”: Scale-like boron nitride (average particle size: 4 μm, manufactured by Denka Co., Ltd.)

<硬化促進剤>
硬化促進剤として、PPh(トリフェニルホスフィン)を使用した。
<Curing accelerator>
PPh 3 (triphenylphosphine) was used as curing accelerator.

<溶媒>
溶媒として、シクロペンタノンを使用した。
<Solvent>
Cyclopentanone was used as solvent.

<分散剤>
分散剤として、DISPERBYK-106(酸性基を有するポリマー塩)を使用した。
<Dispersant>
DISPERBYK-106 (a polymer salt having an acidic group) was used as a dispersant.

<酸化アルミニウム用表面修飾剤(有機シラン分子)>
酸化アルミニウム用表面修飾剤として、下記化合物を使用した。

Figure 0007245953000023
<Surface modifier for aluminum oxide (organosilane molecule)>
The following compounds were used as surface modifiers for aluminum oxide.
Figure 0007245953000023

[実施例1~40及び比較例1~12(組成物の調製)]
下記表1~表3に示す組み合わせのエポキシ化合物とフェノール化合物とを、下記表1~表3に記載の添加量(g)で配合した硬化液を調製した。
得られた硬化液の全量、溶媒、分散剤、表面修飾剤(酸化アルミニウム用表面修飾剤)、及び、硬化促進剤の順で混合した後、無機物(無機窒化物、無機酸化物)を添加した。得られた混合物を自転公転ミキサー(THINKY社製、あわとり練太郎ARE-310)で5分間処理して、各実施例又は比較例の組成物(熱伝導材料形成用組成物)を得た。
なお、下記表1~表3中、例えば、実施例1および実施例31は、それぞれ同様の組成物であるが、後述する評価対象の作製方法がそれぞれ異なる例である。
[Examples 1 to 40 and Comparative Examples 1 to 12 (preparation of compositions)]
A curing liquid was prepared by blending the epoxy compound and the phenol compound in the combinations shown in Tables 1 to 3 below in the amounts (g) shown in Tables 1 to 3 below.
After mixing the total amount of the obtained curing liquid, solvent, dispersant, surface modifier (surface modifier for aluminum oxide), and curing accelerator in this order, inorganic substances (inorganic nitrides, inorganic oxides) were added. . The resulting mixture was processed for 5 minutes in a rotation-revolution mixer (Awatori Mixer ARE-310, manufactured by THINKY) to obtain a composition (composition for forming a heat conductive material) of each example or comparative example.
In Tables 1 to 3 below, for example, Example 1 and Example 31 have the same composition, but are examples in which the methods for preparing the evaluation objects described later are different.

ここで、溶媒の添加量は、組成物の固形分濃度が50~80質量%になる量とした。
なお、組成物の固形分濃度は、組成物の粘度がそれぞれ同程度になるように、上記範囲内で組成物ごとに調整した。
硬化促進剤の添加量は、組成物中の硬化促進剤の含有量が、エポキシ化合物及びエポキシ基を有する特定化合物の合計含有量に対して、1質量%となる量とした。
無機物の添加量(無機窒化物とその他の無機物との合計添加量)は、下記表1~表3に示す添加量(g)とした。
また、無機物は、各無機物の含有量の比(質量比)が下記表1~表3に示す関係を満たすように混合して使用した。
分散剤の添加量は、組成物中の分散剤の含有量が、無機物の含有量に対して、0.2質量%となる量とした。
酸化アルミニウム用表面修飾剤の添加量は、組成物中の酸化アルミニウム用表面修飾剤の含有量が、酸化アルミニウムの含有量(AA-3とAA-04との合計含有量)に対して、0.2質量%となる量とした。なお、組成物が酸化アルミニウムを含まない場合、酸化アルミニウム用表面修飾剤は使用しない。
Here, the amount of solvent added was such that the solid content concentration of the composition was 50 to 80% by mass.
The solid content concentration of the composition was adjusted for each composition within the above range so that the viscosities of the compositions were approximately the same.
The amount of the curing accelerator added was such that the content of the curing accelerator in the composition was 1% by mass with respect to the total content of the epoxy compound and the specific compound having an epoxy group.
The amount of inorganic material added (total amount of inorganic nitride and other inorganic material added) was the amount (g) shown in Tables 1 to 3 below.
In addition, the inorganic substances were mixed and used so that the content ratio (mass ratio) of each inorganic substance satisfies the relationships shown in Tables 1 to 3 below.
The amount of the dispersant added was such that the content of the dispersant in the composition was 0.2% by mass with respect to the content of the inorganic substance.
The amount of the surface modifier for aluminum oxide added is such that the content of the surface modifier for aluminum oxide in the composition is 0 with respect to the content of aluminum oxide (total content of AA-3 and AA-04). .2% by mass. When the composition does not contain aluminum oxide, no surface modifier for aluminum oxide is used.

[作製方法A:実施例1~15、18~19、22~25、28~29及び比較例1~2(熱伝導シートの作製)]
<熱伝導シートの作製>
アプリケーターを用いて、離型処理したポリエステルフィルム(NP-100A パナック社製、膜厚100μm)の離型面上に、調製した下記表1~表3に記載の組成物を均一に塗布し、120℃で5分間放置して塗膜を得た。
このような塗膜付きポリエステルフィルムを2枚作製し、2枚の塗膜付きポリエステルフィルム同士を塗膜面同士で貼り合せてから、空気下で平板の熱プレス(熱板温度65℃、圧力12MPaで1分間処理)することで半硬化膜を得た。
得られた半硬化膜を空気下で熱プレス(熱板温度160℃、圧力12MPaで20分間処理した後、更に、常圧下で180℃90分)で処理して塗膜を硬化し、樹脂シートを得た。樹脂シートの両面にあるポリエステルフィルムを剥がし、平均膜厚200μmの熱伝導シートを得た。
[Production method A: Examples 1 to 15, 18 to 19, 22 to 25, 28 to 29 and Comparative Examples 1 and 2 (production of heat conductive sheets)]
<Preparation of heat conductive sheet>
Using an applicator, on the release surface of a release-treated polyester film (NP-100A manufactured by Panac, film thickness 100 μm), the prepared composition shown in Tables 1 to 3 below is uniformly applied, and 120 C. for 5 minutes to obtain a coating film.
Two such polyester films with a coating film are prepared, and the two polyester films with a coating film are laminated to each other at the coating film surfaces, and then a flat plate is hot pressed under air (hot plate temperature 65 ° C., pressure 12 MPa for 1 minute) to obtain a semi-cured film.
The resulting semi-cured film is hot-pressed in air (hot plate temperature 160° C., pressure 12 MPa for 20 minutes, and then under normal pressure 180° C. for 90 minutes) to cure the coating film and form a resin sheet. got The polyester films on both sides of the resin sheet were peeled off to obtain a thermal conductive sheet with an average thickness of 200 μm.

[作製方法A:実施例16~17、20~21及び26~27(熱伝導性多層シートの作製)]
<半硬化膜の作製>
アプリケーターを用いて、離型処理したポリエステルフィルム(NP-100A パナック社製、膜厚100μm)の離型面上に、調製した下記表1~表3に記載の組成物を均一に塗布し、120℃で5分間放置して塗膜を得た。
このような塗膜付きポリエステルフィルムを2枚作製し、2枚の塗膜付きポリエステルフィルム同士を塗膜面同士で貼り合せてから、空気下で平板の熱プレス(熱板温度65℃、圧力12MPaで1分間処理)することで半硬化膜を得た。
[Production method A: Examples 16-17, 20-21 and 26-27 (production of thermally conductive multilayer sheets)]
<Preparation of semi-cured film>
Using an applicator, on the release surface of a release-treated polyester film (NP-100A manufactured by Panac, film thickness 100 μm), the prepared composition shown in Tables 1 to 3 below is uniformly applied, and 120 C. for 5 minutes to obtain a coating film.
Two such polyester films with a coating film are prepared, and the two polyester films with a coating film are laminated to each other at the coating film surfaces, and then a flat plate is hot pressed under air (hot plate temperature 65 ° C., pressure 12 MPa for 1 minute) to obtain a semi-cured film.

<接着剤層フィルム1の調製(エポキシ系接着材層、フィラー無)>
エポキシ樹脂としてB-3を21.6部、硬化剤としてA-1を13.3部、硬化促進剤としてPPh(トリフェニルホスフィン)を0.21部、シクロペンタノン64.9部を混合して接着材層用塗工液を得た。
アプリケーターを用いて、離型処理したポリエステルフィルム(NP-100A パナック社製、膜厚100μm)の離型面上に、調製した接着材層用塗工液を均一に塗布し、120℃で5分間放置して塗膜を得た。尚、接着材層の膜厚は5μmとなるようにした。
<Preparation of Adhesive Layer Film 1 (Epoxy Adhesive Layer, No Filler)>
21.6 parts of B-3 as an epoxy resin, 13.3 parts of A-1 as a curing agent, 0.21 parts of PPh 3 (triphenylphosphine) as a curing accelerator, and 64.9 parts of cyclopentanone are mixed. Thus, an adhesive layer coating liquid was obtained.
Using an applicator, the prepared adhesive layer coating solution is uniformly applied on the release surface of a release-treated polyester film (NP-100A manufactured by Panac, film thickness 100 μm), and heated at 120° C. for 5 minutes. It was left to stand to obtain a coating film. The film thickness of the adhesive layer was set to 5 μm.

<接着剤層フィルム2の調製(エポキシ系接着材層、フィラー有)>
エポキシ樹脂としてB-3を21.6部、硬化剤としてA-1を13.3部、硬化促進剤としてPPhを0.21部、アルミナAA-04を35部、シクロペンタノン100部を混合して接着材層用塗工液を得た。
アプリケーターを用いて、離型処理したポリエステルフィルム(NP-100A パナック社製、膜厚100μm)の離型面上に、調製した接着材層用塗工液を均一に塗布し、120℃で5分間放置して塗膜を得た。尚、接着材層の膜厚は5μmとなるようにした。
<Preparation of Adhesive Layer Film 2 (Epoxy Adhesive Layer, with Filler)>
21.6 parts of B-3 as an epoxy resin, 13.3 parts of A-1 as a curing agent, 0.21 parts of PPh 3 as a curing accelerator, 35 parts of alumina AA-04, and 100 parts of cyclopentanone By mixing, a coating liquid for an adhesive layer was obtained.
Using an applicator, the prepared adhesive layer coating solution is uniformly applied on the release surface of a release-treated polyester film (NP-100A manufactured by Panac, film thickness 100 μm), and heated at 120° C. for 5 minutes. It was left to stand to obtain a coating film. The film thickness of the adhesive layer was set to 5 μm.

<多層シートの作製>
上記で作製した半硬化膜の両面に設置された離型PETを剥離し、下記表1~表3に記載する接着剤層を有する接着剤層フィルムを接着材層が半硬化膜に対向するようにそれぞれ重ね、ラミネータを用いて、温度120℃、圧力0.7MPa、真空度≦1kPa、時間15秒間の条件で、接着剤層を貼り付けて、多層シートを得た。
<Preparation of multilayer sheet>
The release PET placed on both sides of the semi-cured film prepared above was peeled off, and adhesive layer films having adhesive layers described in Tables 1 to 3 below were placed so that the adhesive layers faced the semi-cured film. , and an adhesive layer was attached using a laminator under conditions of a temperature of 120° C., a pressure of 0.7 MPa, a degree of vacuum of ≦1 kPa, and a time of 15 seconds to obtain a multilayer sheet.

<多層シート硬化物の作製>
得られた多層シートを空気下で熱プレス(熱板温度160℃、圧力12MPaで20分間処理した後、更に、常圧下で180℃90分)で処理して塗膜を硬化し、樹脂シートを得た。樹脂シートの両面にあるポリエステルフィルムを剥がし、平均膜厚200μmの多層シート硬化物(熱伝導性多層シート)を得た。
<Production of Cured Multilayer Sheet>
The resulting multilayer sheet is hot-pressed in air (hot plate temperature 160° C., pressure 12 MPa for 20 minutes, then under normal pressure 180° C. for 90 minutes) to cure the coating film and form a resin sheet. Obtained. The polyester films on both sides of the resin sheet were peeled off to obtain a cured multilayer sheet (heat conductive multilayer sheet) having an average film thickness of 200 μm.

[作製方法B:実施例31、34~35及び比較例3~5(熱伝導シートの作製)]
<熱伝導シートの作製>
アプリケーターを用いて、離型処理したPETフィルム(PET756501、リンテック社製、膜厚75μm)の離型面上に、調製した下記表1~表3に記載の組成物を均一に塗布し、120℃で4分間放置して塗膜を得た。
上記塗膜の表面に、更に、新たな上記ポリエステルフィルムを、離型面側を対抗させて貼り合わせた。ポリエステルフィルムに挟まれた塗膜を、空気下でロールプレスすることで半硬化膜を得た。ロールプレスの際は、塗膜の膜面の温度が100℃になるように加熱し、線圧は544N/cmとした。
得られた半硬化膜を空気下で熱プレス(熱板温度160℃、圧力12MPaで20分間処理した後、更に、常圧下で180℃90分)で処理して塗膜を硬化し、樹脂シートを得た。樹脂シートの両面にあるポリエステルフィルムを剥がし、平均膜厚200μmの熱伝導シートを得た。
[Production method B: Examples 31, 34 to 35 and Comparative Examples 3 to 5 (production of heat conductive sheets)]
<Preparation of heat conductive sheet>
Using an applicator, on the release surface of a release-treated PET film (PET756501, manufactured by Lintec Corporation, film thickness 75 μm), the prepared composition shown in Tables 1 to 3 below is uniformly applied and heated at 120 ° C. and left for 4 minutes to obtain a coating film.
On the surface of the coating film, a new polyester film was further laminated with the mold release side facing each other. A semi-cured film was obtained by roll-pressing the coating film sandwiched between the polyester films in air. During roll pressing, the film surface of the coating film was heated to 100° C., and the linear pressure was 544 N/cm.
The resulting semi-cured film is hot-pressed in air (hot plate temperature 160° C., pressure 12 MPa for 20 minutes, and then under normal pressure 180° C. for 90 minutes) to cure the coating film and form a resin sheet. got The polyester films on both sides of the resin sheet were peeled off to obtain a thermal conductive sheet with an average thickness of 200 µm.

[作製方法B:実施例32~33及び比較例6~7(熱伝導性多層シートの作製)]
以下の方法で作製した半硬化膜を用いた以外は、実施例16と同様の方法で、多層シート硬化物(熱伝導性多層シート)を得た。
<半硬化膜の作製>
アプリケーターを用いて、離型処理したPETフィルム(PET756501、リンテック社製、膜厚75μm)の離型面上に、調製した下記表1~表3に記載の組成物を均一に塗布し、120℃で4分間放置して塗膜を得た。
上記塗膜の表面に、更に、新たな上記ポリエステルフィルムを、離型面側を対抗させて貼り合わせた。ポリエステルフィルムに挟まれた塗膜を、空気下でロールプレスすることで半硬化膜を得た。ロールプレスの際は、塗膜の膜面の温度が100℃になるように加熱し、線圧は544N/cmとした。
[Production method B: Examples 32-33 and Comparative Examples 6-7 (production of thermally conductive multilayer sheets)]
A cured multilayer sheet (thermally conductive multilayer sheet) was obtained in the same manner as in Example 16, except that a semi-cured film prepared by the following method was used.
<Preparation of semi-cured film>
Using an applicator, on the release surface of a release-treated PET film (PET756501, manufactured by Lintec Corporation, film thickness 75 μm), the prepared composition shown in Tables 1 to 3 below is uniformly applied and heated at 120 ° C. and left for 4 minutes to obtain a coating film.
On the surface of the coating film, a new polyester film was further laminated with the mold release side facing each other. A semi-cured film was obtained by roll-pressing the coating film sandwiched between the polyester films in air. During roll pressing, the film surface of the coating film was heated to 100° C., and the linear pressure was 544 N/cm.

[作製方法C:実施例36、39~40及び比較例8~10(熱伝導シートの作製)]
<熱伝導シートの作製>
アプリケーターを用いて、離型処理したPETフィルム(PET756501、リンテック社製、膜厚75μm)の離型面上に、調製した下記表1~表3に記載の組成物を均一に塗布し、120℃で4分間加熱してから、さらに80℃で2分間加熱することで、半硬化膜を得た。
得られた半硬化膜を空気下で熱プレス(熱板温度160℃、圧力12MPaで20分間処理した後、更に、常圧下で180℃90分)で処理して塗膜を硬化し、樹脂シートを得た。樹脂シートの両面にあるポリエステルフィルムを剥がし、平均膜厚200μmの熱伝導シートを得た。
[Production method C: Examples 36, 39 to 40 and Comparative Examples 8 to 10 (production of thermally conductive sheets)]
<Preparation of heat conductive sheet>
Using an applicator, on the release surface of a release-treated PET film (PET756501, manufactured by Lintec Corporation, film thickness 75 μm), the prepared composition shown in Tables 1 to 3 below is uniformly applied and heated at 120 ° C. After heating for 4 minutes at 80° C. for 2 minutes, a semi-cured film was obtained.
The resulting semi-cured film is hot-pressed in air (hot plate temperature 160° C., pressure 12 MPa for 20 minutes, and then under normal pressure 180° C. for 90 minutes) to cure the coating film and form a resin sheet. got The polyester films on both sides of the resin sheet were peeled off to obtain a thermal conductive sheet with an average thickness of 200 µm.

[作製方法C:実施例37~38及び比較例11~12(熱伝導性多層シートの作製)]
以下の方法で作製した半硬化膜を用いた以外は、実施例16と同様の方法で、多層シート硬化物(熱伝導性多層シート)を得た。
<半硬化膜の作製>
アプリケーターを用いて、離型処理したPETフィルム(PET756501、リンテック社製、膜厚75μm)の離型面上に、調製した下記表1~表3に記載の組成物を均一に塗布し、120℃で4分間加熱してから、さらに80℃で2分間加熱することで、半硬化膜を得た。
[Production method C: Examples 37-38 and Comparative Examples 11-12 (production of thermally conductive multilayer sheets)]
A cured multilayer sheet (thermally conductive multilayer sheet) was obtained in the same manner as in Example 16, except that a semi-cured film prepared by the following method was used.
<Preparation of semi-cured film>
Using an applicator, on the release surface of a release-treated PET film (PET756501, manufactured by Lintec Corporation, film thickness 75 μm), the prepared composition shown in Tables 1 to 3 below is uniformly applied and heated at 120 ° C. After heating for 4 minutes at 80° C. for 2 minutes, a semi-cured film was obtained.

[実施例1~40及び比較例1~12(熱伝導シート及び熱伝導性多層シートの評価)]
<熱伝導性>
各組成物を用いて得られた、それぞれの熱伝導シート及び熱伝導性多層シートを用いて、熱伝導性評価を実施した。下記の方法で熱伝導率の測定を行い、下記の基準に従って熱伝導性を評価した。
[Examples 1 to 40 and Comparative Examples 1 to 12 (evaluation of thermally conductive sheets and thermally conductive multilayer sheets)]
<Thermal conductivity>
Thermal conductivity evaluation was performed using each thermally conductive sheet and thermally conductive multilayer sheet obtained using each composition. Thermal conductivity was measured by the following method, and thermal conductivity was evaluated according to the following criteria.

(熱伝導率(W/m・k)の測定)
(1)NETZSCH社製の「LFA467」を用いて、レーザーフラッシュ法で熱伝導シートの厚み方向の熱拡散率を測定した。
(2)メトラー・トレド社製の天秤「XS204」を用いて、熱伝導シートの比重をアルキメデス法(「固体比重測定キット」使用)で測定した。
(3)セイコーインスツル社製の「DSC320/6200」を用い、10℃/分の昇温条件の下、25℃における熱伝導シートの比熱を求めた。
(4)得られた熱拡散率に比重及び比熱を乗じて、熱伝導シートの熱伝導率を算出した。
(Measurement of thermal conductivity (W/m·k))
(1) Using "LFA467" manufactured by NETZSCH, the thermal diffusivity in the thickness direction of the thermal conductive sheet was measured by the laser flash method.
(2) Using a balance “XS204” manufactured by Mettler-Toledo, the specific gravity of the heat conductive sheet was measured by the Archimedes method (using “solid specific gravity measurement kit”).
(3) Using "DSC320/6200" manufactured by Seiko Instruments Inc., the specific heat of the thermally conductive sheet at 25°C was determined under the condition of temperature increase of 10°C/min.
(4) The obtained thermal diffusivity was multiplied by the specific gravity and the specific heat to calculate the thermal conductivity of the thermal conductive sheet.

(評価基準)
測定された熱伝導率を下記基準に照らして区分し、熱伝導性の評価とした。
「A」:17W/m・K以上
「B」:13W/m・K以上17W/m・K未満
「C」:10W/m・K以上13W/m・K未満
「D」:10W/m・K未満
結果を下記表1~表3に示す。
(Evaluation criteria)
The measured thermal conductivity was categorized according to the following criteria, and the thermal conductivity was evaluated.
"A": 17 W/m·K or more "B": 13 W/m·K or more and less than 17 W/m·K "C": 10 W/m·K or more and less than 13 W/m·K "D": 10 W/m·K or more Less than K The results are shown in Tables 1 to 3 below.

<耐水性>
各組成物を用いて得られた、それぞれの熱伝導シート及び熱伝導性多層シートを用いて、耐水性評価を実施した。下記の方法で含水率の測定を行い、下記の基準に従って耐水性を評価した。
<Water resistance>
Water resistance was evaluated using each thermally conductive sheet and thermally conductive multilayer sheet obtained using each composition. The water content was measured by the method described below, and the water resistance was evaluated according to the criteria below.

(耐水性の測定)
硬化後の熱伝導シートを85℃85%の湿熱条件下に48時間曝し、前後のシート重量変化から含水率を算出した。
「A」:0.6%未満
「B」:0.6%以上0.8%未満
「C」:0.8%以上1.0%未満
「D」:1.0%以上
結果を下記表1~表3に示す。
(Measurement of water resistance)
The heat conductive sheet after curing was exposed to wet heat conditions of 85° C. and 85% for 48 hours, and the moisture content was calculated from the change in sheet weight before and after.
"A": Less than 0.6% "B": 0.6% or more and less than 0.8% "C": 0.8% or more and less than 1.0% "D": 1.0% or more The results are shown in the table below. 1 to Table 3.

[結果]
以下、下記表1~表3に各熱伝導シート及び熱伝導性多層シートで使用したフェノール化合物、エポキシ化合物、無機物、硬化促進剤、接着剤層の種類と添加量(g)及び分散剤の添加量(g)とともに、評価結果を示す。
[result]
Tables 1 to 3 below show the types and amounts (g) of phenolic compounds, epoxy compounds, inorganic substances, curing accelerators, and adhesive layers used in each thermally conductive sheet and thermally conductive multilayer sheet, and the addition of dispersants. The evaluation results are shown together with the amount (g).

Figure 0007245953000024
Figure 0007245953000024

Figure 0007245953000025
Figure 0007245953000025

Figure 0007245953000026
Figure 0007245953000026

上記表1~表3に示す結果から、本発明の組成物を用いれば、熱伝導性に優れる熱伝導シート及び熱伝導性多層シートが得られることが確認された。また、組成物を用いて得られる熱伝導シート及び熱伝導性多層シートは耐水性に優れることが確認された。
また、平板プレス又はロールプレス等のプレスを用いて半硬化膜を作製した場合でも、プレスを用いずに半硬化膜を作製した場合でも、本発明の組成物から形成される熱伝導材料は本発明の効果を実現できることが確認された。
From the results shown in Tables 1 to 3, it was confirmed that a thermally conductive sheet and a thermally conductive multilayer sheet having excellent thermal conductivity can be obtained by using the composition of the present invention. Moreover, it was confirmed that the thermally conductive sheet and the thermally conductive multilayer sheet obtained using the composition are excellent in water resistance.
In addition, even when a semi-cured film is produced using a press such as a flat plate press or a roll press, or when a semi-cured film is produced without using a press, the thermally conductive material formed from the composition of the present invention is the same. It was confirmed that the effects of the invention can be realized.

特定化合物のLが、「2価の芳香環基を有する2価の有機基」である条件において、得られる熱伝導シートの熱伝導性がより優れることが確認された(実施例1~6、9~10と、実施例7及び8との比較)。 It was confirmed that the thermal conductivity of the resulting thermally conductive sheet is superior under the condition that L of the specific compound is "a divalent organic group having a divalent aromatic ring group" (Examples 1 to 6, 9-10 with Examples 7 and 8).

特定化合物のハンセン溶解度パラメーターが28以下である場合、得られる熱伝導シート及び熱伝導性多層シートが耐水性に優れることが確認された(実施例1~30及び比較例2と、比較例1との比較)。
また、特定化合物のハンセン溶解度パラメーターが26以下である場合、得られる熱伝導シート及び熱伝導性多層シートが耐水性により優れることが確認された(実施例1、3~6、8、13~15及び比較例1と、実施例2、7、9~12、16~30及び比較例2との比較)。
It was confirmed that when the specific compound has a Hansen solubility parameter of 28 or less, the resulting thermally conductive sheet and thermally conductive multilayer sheet are excellent in water resistance (Examples 1 to 30 and Comparative Example 2, Comparative Example 1 and comparison).
It was also confirmed that when the specific compound has a Hansen solubility parameter of 26 or less, the obtained thermally conductive sheet and thermally conductive multilayer sheet are more excellent in water resistance (Examples 1, 3 to 6, 8, 13 to 15 and comparison of Comparative Example 1 with Examples 2, 7, 9-12, 16-30 and Comparative Example 2).

熱伝導シートが含む無機物の構成が75質量%以上は窒化ホウ素である条件において、熱伝導性により優れることが確認された(実施例18~19と、実施例22~23との比較)。
また、熱伝導性多層シートが含む無機物の構成が80質量%以上は窒化ホウ素である条件において、熱伝導性により優れることが確認された(実施例16~17と実施例20~21との比較)。
It was confirmed that the thermal conductivity was superior under the condition that 75% by mass or more of the inorganic material contained in the thermal conductive sheet was boron nitride (comparison between Examples 18-19 and Examples 22-23).
In addition, it was confirmed that the thermal conductivity was superior under the condition that the composition of the inorganic substance contained in the thermally conductive multilayer sheet was 80% by mass or more of boron nitride (comparison between Examples 16-17 and Examples 20-21). ).

Claims (12)

無機粒子と一般式(1)で表される化合物とを含む、熱伝導材料形成用組成物。
Figure 0007245953000027
前記一般式(1)中、
~Eは、それぞれ独立に、-NH-、又は、-NR-を表す。Rは、置換基を表す。
、B、B、及びBは、それぞれ、k+1価、l+1価、m+1価、及びn+1価の有機基を表し、それらの少なくとも1つが、置換基を有していてもよいk+1価、l+1価、m+1価、又は、n+1価の芳香環基を表す。
Lは、2価の有機基を表す。
k、l、m、及び、nは、それぞれ独立に、0以上の整数を表す。
kが2以上の場合、k個存在するXは、それぞれ同一でも異なっていてもよい。
lが2以上の場合、l個存在するXは、それぞれ同一でも異なっていてもよい。
mが2以上の場合、m個存在するXは、それぞれ同一でも異なっていてもよい。
nが2以上の場合、n個存在するXは、それぞれ同一でも異なっていてもよい。
また、k、l、m、及び、nの合計は2以上である。
~Xは、それぞれ独立に、一般式(2)で表される基を表す。
Figure 0007245953000028
前記一般式(2)中、*は、結合位置を表す。
は、単結合又は2価の連結基を表す。
は、置換基を有していてもよい芳香環基、又は、置換基を有していてもよい脂肪族環基を表す。
Q及びYは、それぞれ独立に、水酸基、エポキシ基を有する1価の基、アミノ基、チオール基、カルボン酸基、イソシアネート基、及び、オキセタニル基を有する1価の基からなる群から選択される特定官能基を表す。
pは、0以上の整数を表す。
qは、0~2の整数を表す。
前記一般式(2)中、Dが複数存在する場合、複数存在するDは、それぞれ同一でも異なっていてもよい。Aが複数存在する場合、複数存在するAは、それぞれ同一でも異なっていてもよい。Qが複数存在する場合、複数存在するQは、それぞれ同一でも異なっていてもよい。
rは、1以上の整数である。
A composition for forming a thermally conductive material, comprising inorganic particles and a compound represented by general formula (1).
Figure 0007245953000027
In the general formula (1),
E 1 to E 6 each independently represent -NH- or -NR-. R represents a substituent.
B 1 , B 2 , B 3 , and B 4 each represent a k+1-valent, l+1-valent, m+1-valent, and n+1-valent organic group, at least one of which optionally has a substituent k+1 represents a valent, l+1-valent, m+1-valent, or n+1-valent aromatic ring group.
L represents a divalent organic group.
k, l, m, and n each independently represent an integer of 0 or greater.
When k is 2 or more, k X 1 's may be the same or different.
When l is 2 or more, l occurrences of X 2 may be the same or different.
When m is 2 or more, m X 3 may be the same or different.
When n is 2 or more, n X 4 may be the same or different.
Also, the sum of k, l, m, and n is 2 or more.
X 1 to X 4 each independently represent a group represented by general formula (2).
Figure 0007245953000028
In the general formula (2), * represents a bonding position.
D 1 represents a single bond or a divalent linking group.
A 1 represents an optionally substituted aromatic ring group or an optionally substituted aliphatic ring group.
Q and Y 1 are each independently selected from the group consisting of a monovalent group having a hydroxyl group, an epoxy group, an amino group, a thiol group, a carboxylic acid group, an isocyanate group, and a monovalent group having an oxetanyl group. represents a specific functional group.
p represents an integer of 0 or more.
q represents an integer of 0 to 2;
In general formula (2), when there are a plurality of D 1 's, the plurality of D 1 's may be the same or different. When there are multiple A 1 's, the multiple A 1 's may be the same or different. When there are multiple Q's, the multiple Q's may be the same or different.
r is an integer of 1 or more.
前記一般式(1)中のLが、置換基を有していてもよい2価の芳香環基、置換基を有していてもよい2価の脂肪族環基、及び、炭素数2以上の分岐を有していてもよいアルキレン基からなる群から選択される少なくとも1種を有する2価の有機基である、請求項1に記載の熱伝導材料形成用組成物。 L in the general formula (1) is a divalent aromatic ring group which may have a substituent, a divalent aliphatic ring group which may have a substituent, and a carbon number of 2 or more 2. The composition for forming a thermally conductive material according to claim 1, which is a divalent organic group having at least one selected from the group consisting of an alkylene group which may have a branch of . 前記一般式(1)中のLが、置換基を有していてもよい2価の芳香環基を有する2価の有機基である、請求項1又は2に記載の熱伝導材料形成用組成物。 3. The composition for forming a heat conductive material according to claim 1, wherein L in the general formula (1) is a divalent organic group having an optionally substituted divalent aromatic ring group. thing. 前記一般式(1)で表される化合物のハンセン溶解度パラメーター値が28MPa0.5以下である、請求項1~3のいずれか1項に記載の熱伝導材料形成用組成物。 4. The composition for forming a thermally conductive material according to claim 1, wherein the compound represented by the general formula (1) has a Hansen solubility parameter value of 28 MPa 0.5 or less. 前記一般式(1)で表される化合物のハンセン溶解度パラメーター値が26MPa0.5以下である、請求項1~4のいずれか1項に記載の熱伝導材料形成用組成物。 The composition for forming a thermally conductive material according to any one of claims 1 to 4, wherein the compound represented by the general formula (1) has a Hansen solubility parameter value of 26 MPa 0.5 or less. 更に、硬化促進剤を含む、請求項1~5のいずれか1項に記載の熱伝導材料形成用組成物。 The composition for forming a thermally conductive material according to any one of claims 1 to 5, further comprising a curing accelerator. 前記無機粒子が、無機窒化物である、請求項1~6のいずれか1項に記載の熱伝導材料形成用組成物。 7. The composition for forming a thermally conductive material according to claim 1, wherein said inorganic particles are inorganic nitrides. 前記無機粒子が、窒化ホウ素である、請求項1~7のいずれか1項に記載の熱伝導材料形成用組成物。 8. The composition for forming a thermally conductive material according to claim 1, wherein said inorganic particles are boron nitride. 前記熱伝導材料形成用組成物の全固形分に対して、前記一般式(1)で表される化合物の含有量が3~40質量%である、請求項1~8のいずれか1項に記載の熱伝導材料形成用組成物。 The compound according to any one of claims 1 to 8, wherein the content of the compound represented by the general formula (1) is 3 to 40% by mass with respect to the total solid content of the composition for forming a thermally conductive material. A composition for forming a thermally conductive material as described. 請求項1~9のいずれか1項に記載の熱伝導材料形成用組成物を硬化して形成される熱伝導シート。 A thermally conductive sheet formed by curing the composition for forming a thermally conductive material according to any one of claims 1 to 9. 請求項10に記載の前記熱伝導シートと、
前記熱伝導シートの片面又は両面に設けられた、接着剤層又は粘着剤層と、を有する、熱伝導性多層シート。
The heat conductive sheet according to claim 10;
A thermally conductive multilayer sheet having an adhesive layer or a pressure-sensitive adhesive layer provided on one side or both sides of the thermally conductive sheet.
デバイスと、
前記デバイス上に配置された、請求項10に記載の熱伝導シート又は請求項11に記載の熱伝導性多層シートを含む熱伝導層と、を有する、熱伝導層付きデバイス。
a device;
A device with a thermally conductive layer, comprising: a thermally conductive layer comprising the thermally conductive sheet according to claim 10 or the thermally conductive multilayer sheet according to claim 11, disposed on the device.
JP2022501717A 2020-02-19 2021-01-21 COMPOSITION FOR FORMING HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE MULTILAYER SHEET, AND DEVICE WITH HEAT CONDUCTIVE LAYER Active JP7245953B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020026006 2020-02-19
JP2020026006 2020-02-19
JP2020070944 2020-04-10
JP2020070944 2020-04-10
PCT/JP2021/002045 WO2021166541A1 (en) 2020-02-19 2021-01-21 Heat conductive material forming composition, heat conductive sheet, heat conductive multilayer sheet, and device having heat conductive sheet

Publications (2)

Publication Number Publication Date
JPWO2021166541A1 JPWO2021166541A1 (en) 2021-08-26
JP7245953B2 true JP7245953B2 (en) 2023-03-24

Family

ID=77391965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022501717A Active JP7245953B2 (en) 2020-02-19 2021-01-21 COMPOSITION FOR FORMING HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE MULTILAYER SHEET, AND DEVICE WITH HEAT CONDUCTIVE LAYER

Country Status (2)

Country Link
JP (1) JP7245953B2 (en)
WO (1) WO2021166541A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143243A (en) 2012-01-10 2013-07-22 Noritake Co Ltd Conductive bonding material, bonding method of ceramic electronic material using the same, and ceramic electronic device
WO2018147425A1 (en) 2017-02-09 2018-08-16 富士フイルム株式会社 Curable composition, thermally conductive material, and device with thermally conductive layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143243A (en) 2012-01-10 2013-07-22 Noritake Co Ltd Conductive bonding material, bonding method of ceramic electronic material using the same, and ceramic electronic device
WO2018147425A1 (en) 2017-02-09 2018-08-16 富士フイルム株式会社 Curable composition, thermally conductive material, and device with thermally conductive layer

Also Published As

Publication number Publication date
WO2021166541A1 (en) 2021-08-26
JPWO2021166541A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP7221307B2 (en) COMPOSITION, HEAT CONDUCTIVE SHEET, DEVICE WITH HEAT CONDUCTIVE LAYER
JP7191988B2 (en) COMPOSITION FOR HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE MATERIAL
JP7245953B2 (en) COMPOSITION FOR FORMING HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE MULTILAYER SHEET, AND DEVICE WITH HEAT CONDUCTIVE LAYER
JP7472135B2 (en) Composition for forming thermally conductive material, thermally conductive material, surface-modified inorganic material
JP7182692B2 (en) composition, thermally conductive material
JP7367063B2 (en) Boron nitride particles, compositions for forming thermally conductive materials, thermally conductive materials, thermally conductive sheets, devices with thermally conductive layers
JP7183307B2 (en) COMPOSITION FOR HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, DEVICE WITH HEAT CONDUCTIVE LAYER
JP7257529B2 (en) COMPOSITION FOR HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, DEVICE WITH HEAT CONDUCTIVE LAYER
JP7297109B2 (en) Composition, thermally conductive material, thermally conductive sheet, device with thermally conductive layer
WO2022070718A1 (en) Surface-modified boron nitride particles, method of producing surface-modified boron nitride particles, thermally conductive material-forming composition, thermally conductive material, thermally conductive sheet, and device having thermally conductive layer
JP7324283B2 (en) COMPOSITION FOR HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, DEVICE WITH HEAT CONDUCTIVE LAYER
JP7136906B2 (en) Composition for forming thermally conductive material, thermally conductive material, thermally conductive sheet, device with thermally conductive layer, film
JP7303319B2 (en) Method for producing thermally conductive material, thermally conductive material, thermally conductive sheet, device with thermally conductive layer
WO2022137994A1 (en) Thermally conductive layer-forming sheet and method for producing thermally conductive layer-forming sheet
JP2023082904A (en) Curable composition, thermally conductive material, thermally conductive sheet, device with thermally conductive layer, and compound
JP2023104228A (en) Curable composition, thermally conductive material, thermally conductive sheet and device with thermally conductive layer
JP2023055252A (en) Curable composition, production method of composite particle, heat-conductive material, heat-conductive sheet, and device with heat-conductive layer
JP2023082946A (en) Curable composition, thermally conductive material, thermally conductive sheet, device with thermally conductive layer, and compound
TW202237689A (en) Curable composition, thermally conductive material, thermally conductive sheet, device with thermally conductive layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7245953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150