JP7240961B2 - 測量装置 - Google Patents

測量装置 Download PDF

Info

Publication number
JP7240961B2
JP7240961B2 JP2019107780A JP2019107780A JP7240961B2 JP 7240961 B2 JP7240961 B2 JP 7240961B2 JP 2019107780 A JP2019107780 A JP 2019107780A JP 2019107780 A JP2019107780 A JP 2019107780A JP 7240961 B2 JP7240961 B2 JP 7240961B2
Authority
JP
Japan
Prior art keywords
image
optical axis
measurement
surveying instrument
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019107780A
Other languages
English (en)
Other versions
JP2020201112A (ja
Inventor
文夫 大友
哲治 穴井
薫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2019107780A priority Critical patent/JP7240961B2/ja
Priority to EP20177932.9A priority patent/EP3754297B1/en
Priority to US16/896,511 priority patent/US11421989B2/en
Publication of JP2020201112A publication Critical patent/JP2020201112A/ja
Application granted granted Critical
Publication of JP7240961B2 publication Critical patent/JP7240961B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors
    • G01C15/006Detectors therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、簡単な設置作業で測定が可能な、測量装置に関するものである。
測量装置を用いて測量を実施する場合、先ず測量装置を基準点上に設置する必要がある。
一般に測量装置を基準点上に設置する場合、三脚を用いて設置されるが、測量装置は三脚上で水平に整準され、又、測量装置の機械中心が前記基準点を通過する鉛直線上に正確に位置決めされなければならない。更に、基準点から前記機械中心迄の高さ(測量装置の器械高)も測定されなければならない。この為、測量装置の設置作業は、煩雑で時間と熟練が必要とされた。
又、測定対象物を測距光でスキャン(走査)する場合、測量装置の姿勢を安定させた状態でスキャンする必要があった。従って、測量装置を設置する際には、三脚を用いて測量装置を安定して固定することが重要であった。
特開2017-90244号公報 特開2016-151423号公報 特開2016-161411号公報 特開2016-151422号公報 特開2017-106813号公報
本発明は、姿勢が不安定であった場合でも測定を可能とする測量装置を提供するものである。
本発明は、基準光軸を有する測量装置本体と、前記基準光軸と所定の関係を有する第1撮像光軸に沿って測定対象を含む第1画像を取得する測定方向撮像部と、測距光を照射し前記測定対象迄の距離を測定する測距部と、前記測距光の射出方向を検出する射出方向検出部と、基準時刻の信号を発する時間測定器と、前記基準光軸に対して所定の角度で下方に延出する第2撮像光軸に沿って第2画像を取得する下方撮像部と、前記測量装置本体の傾斜を検出する姿勢検出器と、表示部と、演算制御部とを具備し、該演算制御部は、前記姿勢検出器の検出結果に基づき前記第2画像上に鉛直下位置を表示させる様前記表示部を制御すると共に、前記第1画像と前記第2画像を所定時間間隔で取得して少なくともいずれか一方の画像間の変化を検出し、該画像間の変化と前記測距部と前記射出方向検出部の検出結果を前記基準時刻に基づき関連付け、前記鉛直下位置に対する前記測定対象の測定点を確定する様構成した測量装置に係るものである。
又本発明は、基準点に設置された既知の形状の基準マーカを有する設置基準板を更に具備し、前記測量装置本体は前記基準マーカが前記第2画像中に含まれる様保持され、前記演算制御部は、前記第2画像中での前記基準点と前記鉛直下位置との偏差に基づき前記基準点を基準とした確定した前記測定点が前記第1画像上に表示される様前記表示部を制御する様構成された測量装置に係るものである。
又本発明は、前記演算制御部は、前記第2画像中での前記基準マーカの大きさと形状に基づき前記基準点に対する機械中心の位置を演算し、該位置に基づき前記基準点を基準とした前記測定対象を測定する様構成された測量装置に係るものである。
更に又本発明は、前記演算制御部は、前記姿勢検出器の検出結果を所定時間毎に平均し、演算された平均傾斜に基づき前記第1画像上に水平を示す基準視標と、前記第2画像上に下方視標との少なくとも一方を表示させる様前記表示部を制御する測量装置に係るものである。
本発明によれば、基準光軸を有する測量装置本体と、前記基準光軸と所定の関係を有する第1撮像光軸に沿って測定対象を含む第1画像を取得する測定方向撮像部と、測距光を照射し前記測定対象迄の距離を測定する測距部と、前記測距光の射出方向を検出する射出方向検出部と、基準時刻の信号を発する時間測定器と、前記基準光軸に対して所定の角度で下方に延出する第2撮像光軸に沿って第2画像を取得する下方撮像部と、前記測量装置本体の傾斜を検出する姿勢検出器と、表示部と、演算制御部とを具備し、該演算制御部は、前記姿勢検出器の検出結果に基づき前記第2画像上に鉛直下位置を表示させる様前記表示部を制御すると共に、前記第1画像と前記第2画像を所定時間間隔で取得して少なくともいずれか一方の画像間の変化を検出し、該画像間の変化と前記測距部と前記射出方向検出部の検出結果を前記基準時刻に基づき関連付け、前記鉛直下位置に対する前記測定対象の測定点を確定する様構成したので、前記測量装置本体の姿勢が不安定であった場合でも測定を可能とするという優れた効果を発揮する。
本発明の実施例を示す概略図である。 本発明の実施例に係る測量装置本体を示す概略ブロック図である。 2次元の閉ループスキャンパターンの一例を示す説明図である。 (A)はスキャンの前半で取得されるスキャン軌跡を示す説明図であり、(B)はスキャンの後半で取得されるスキャン軌跡を示す説明図である。 測量装置本体の変位方向を示す説明図である。 設置基準板を示す説明図である。 測定方向撮像部、下方撮像部で取得した画像と測量装置本体によるスキャン軌跡との関係を示す説明図である。 (A)はスキャン中に測量装置本体が変位しなかった場合を示す説明図であり、(B)はスキャン中に測量装置本体が変位した場合を示す説明図である。 取得された画像間に於ける3方向の変位量に基づく近似曲線を示すグラフである。 2つの花びらパターンの軌跡を1つの画像に集約した状態を示す説明図である。 2つの花びらパターンの軌跡を2つの画像を連結した画像に集約した状態を示す説明図である。 局所的な円パターンによるスキャン中に測量装置本体が変位した場合を示す説明図である。 複数の局所的な円パターンを1つの画像に集約した状態を示す説明図である。 第1画像と第2画像とを連結した連結画像を示す説明図である。
以下、図面を参照しつつ本発明の実施例を説明する。
図1は、本発明の実施例の概略を示す図である。図1中、1は測量装置を示し、2は測定対象を示す。
前記測量装置1は、主に、ハンドポール3、該ハンドポール3の上端に設けられた測量装置本体4、該測量装置本体4又は前記ハンドポール3に設けられた下方撮像部5、基準点R(測定の基準となる点)に設置される設置基準板6を有する。
前記ハンドポール3は、前記測量装置本体4、前記下方撮像部5の支持部材であると共に、測定作業を行う為の操作ハンドルである。尚、前記ハンドポール3は、棒状のものに限らず、鉤状或はリング状の取手等、適宜な形状でよい。
前記測量装置本体4は、測定方向撮像部7(後述)、測距部8(後述)を有している。又、前記測量装置本体4と前記下方撮像部5とは既知の位置関係となっている。
前記測距部8の光学系は、基準光軸Oを有している。前記測定方向撮像部7の光学系の光軸(以下、第1撮像光軸9)は前記基準光軸Oに対して所定角度(例えば6°)上方に傾斜している。又、前記測定方向撮像部7と前記測距部8との距離及び位置関係は既知となっている。前記測距部8と前記測定方向撮像部7は前記測量装置本体4の筐体内部に収納されている。
該筐体の背面(作業者と対向する面)には、表示部11(図2参照)、操作部が設けられる。尚、前記表示部11をタッチパネルとし、操作部と表示部とを兼用してもよい。以下は、前記表示部11をタッチパネルとし、該表示部11が操作部を兼用している場合を説明している。
前記測量装置本体4と前記下方撮像部5は、CCD、CMOS等の撮像素子を有し、それぞれの撮像素子中の画素の位置が特定できる様になっている。例えば、前記測定方向撮像部7は前記第1撮像光軸9を原点とした画素座標を有し、前記下方撮像部5は該下方撮像部5の光軸(以下、第2撮像光軸13)を原点とした画素座標を有し、各画素は該画素座標によって画像素子上での位置が特定される。前記下方撮像部5としては、例えば、市販のデジタルカメラが用いられてもよい。該下方撮像部5は、無線、有線等所要の手段により電気的に前記測量装置本体4と接続されている。前記撮像素子から入力される画像信号は、演算制御部16(図2参照)を介して画像処理部15(図2参照)に入力される。
又、前記下方撮像部5は、前記演算制御部16によって画像取得の制御が行われ、該演算制御部16によって前記下方撮像部5による画像取得と前記測定方向撮像部7による画像取得についての同期制御が行われる。
前記下方撮像部5は前記測量装置本体4の筐体に固定され、該測量装置本体4と一体化される。尚、前記下方撮像部5は前記筐体に内蔵されてもよい。前記下方撮像部5(即ち、該下方撮像部5の像形成位置)は前記測量装置本体4の機械中心に対して既知の位置に設けられる。前記第2撮像光軸13は、下方に向けられ、前記基準光軸Oに対して所定の既知の角度に設定され、前記第2撮像光軸13と前記基準光軸Oとは既知の関係となっている。尚、前記基準光軸O、前記第1撮像光軸9、前記第2撮像光軸13は、所定の関係に設定される。
前記測定方向撮像部7の画角はθ1であり、前記下方撮像部5の画角はθ2である。θ1とθ2とは等しくてもよく、又異なっていてもよい。又、前記測定方向撮像部7の画角と前記下方撮像部5の画角はオーバラップしていなくてもよいが、所定量オーバラップすることが望ましい。又、前記下方撮像部5の画角、前記第2撮像光軸13の方向は、前記設置基準板6が画像中に含まれる様設定される。
図2を参照して、前記測量装置本体4の概略構成を説明する。
該測量装置本体4は、前記測距部8、前記演算制御部16、記憶部17、前記画像処理部15、光軸偏向部18、時間測定器19、姿勢検出器20、前記測定方向撮像部7、射出方向検出部21、前記表示部11を具備し、これらは筐体22に収納され、一体化されている。
前記基準光軸O上に、前記測距部8、前記光軸偏向部18が配設される。前記測距部8は、前記光軸偏向部18の中心を通過する測距光軸23を有している。前記測距部8は、前記測距光軸23上にレーザ光線として測距光24を発し、前記測距光軸23上から入射する反射測距光25を受光し、該反射測距光25に基づき前記測定対象2の測定を行う。尚、前記測距部8は光波距離計として機能する。又、該測距部8で得られた測距データは、後述する基準時刻に関連付けられて前記記憶部17に格納される。
前記光軸偏向部18は、前記測距光軸23を偏向し、前記測距光24を前記測定対象2に視準させる。前記光軸偏向部18が前記測距光軸23を偏向しない状態では、該測距光軸23と前記基準光軸Oとは合致する。尚、前記光軸偏向部18については、特許文献1、特許文献4、特許文献5に開示されたものを使用することができる。
レーザ光線としては、連続光或はパルス光、或は特許文献3に示される断続変調測距光(バースト光)のいずれが用いられてもよい。尚、パルス光及び断続変調光を総称してパルス光と称する。
前記記憶部17には、撮像の制御プログラム、表示プログラム、前記姿勢検出器20からの姿勢検出結果に基づき前記測量装置本体4の傾斜角、傾斜方向を演算し、更に傾斜角の鉛直成分(前記測量装置本体4の前記測定対象2に対する前後方向の傾斜角)、傾斜角の水平成分(前記測量装置本体4の前記測定対象2に対する左右方向の傾斜角)を演算する傾斜演算プログラム、測距を実行する為の測定プログラム、前記光軸偏向部18の偏向作動を制御する為の偏向制御プログラム、前記下方撮像部5で取得した画像と前記測定方向撮像部7で取得した画像の合成、所定時間毎に取得された画像の変位検出等の処理を行う画像処理プログラム、各種演算を実行する演算プログラム等の各種プログラムが格納される。又、前記記憶部17には、測距データ、測角データ、画像データ等の各種データが格納される。
前記演算制御部16は、前記測量装置本体4の作動状態に応じて、前記各種プログラムを展開、実行して前記測距部8の制御、前記光軸偏向部18の制御、前記測定方向撮像部7の制御、前記下方撮像部5の制御等を行い、測定を実行する。尚、前記演算制御部16としては、本装置に特化したCPU、或は汎用CPUが用いられる。
又、前記記憶部17としては、例えば、磁気記憶装置としてのHDD、半導体記憶装置としての内蔵メモリ、メモリカード、USBメモリ等種々の記憶手段が用いられる。前記記憶部17は、前記筐体22に対して着脱可能であってもよい。或は、前記記憶部17は、所望の通信手段を介して外部記憶装置或は外部データ処理装置にデータを送出可能としてもよい。
前記光軸偏向部18について説明する。該光軸偏向部18は、一対の光学プリズム26,27を具備する。該光学プリズム26,27は、それぞれ同径の円板形であり、前記測距光軸23上に該測距光軸23と直交して同心に配置され、所定間隔で平行に配置されている。前記光学プリズム26,27のそれぞれの回転を制御することで、前記基準光軸Oを基準として0°から最大偏角迄の任意の角度に前記測距光軸23を偏向することができる。
又、前記測距光24を連続して照射しつつ、前記光学プリズム26,27を連続的に駆動し、連続的に偏向することで、前記基準光軸Oを中心に前記測距光24を所定のパターンで2次元スキャンさせることができる。
例えば、前記光学プリズム26と前記光学プリズム27のうち、一方の光学プリズムを17.5Hzで正回転させ、他方の光学プリズムを5Hzで逆回転させることで、図3に示される様な、花びら状の2次元の閉ループスキャンパターン(花びらパターン28(内トロコイド曲線))が得られる。
上記の条件で前記光学プリズム26,27を回転させる場合、前半(0~0.2sec)では、図4(A)に示される様な前記花びらパターン28の前半の軌跡28aが得られる。又、後半(0.2~0.4sec)では、図4(B)に示される様な前記花びらパターン28の後半の軌跡28bが得られる。前記前半の軌跡28aと前記後半の軌跡28bとが組合わせられることで、1周期0.4secの前記花びらパターン28が形成される。
又、該花びらパターン28は、前記光軸偏向部18の全偏向範囲で形成されるが、前記光軸偏向部18で偏向された光軸(偏向光軸)に対して所定角度を維持する様、前記光学プリズム26と前記光学プリズム27の回転を制御すれば、前記偏向光軸を中心に円スキャンが実行される。
尚、局所円スキャンは、前記全偏向範囲内の一部で小さく往復回転を実行される2次元閉ループスキャンであり、スキャンの形状は円に限られることはなく、前記光学プリズム26,27の個別制御により任意の形状とすることができる。
前記時間測定器19は、基準時刻信号を発する。該基準時刻信号は測定開始から連続して発せられるクロック信号でもよく、或はタイマーであってもよい。更に、前記時間測定器19がGNSS受信機を具備し、該GNSS受信機から取得されるGNSS時刻を基準時刻信号としてもよい。
基準時刻信号は前記演算制御部16に入力され、該演算制御部16は測距データ、画像データ、射出方向検出結果、姿勢検出結果等、各種データ、検出結果と基準時刻信号との関連付けを行う。
次に、前記姿勢検出器20について説明する。該姿勢検出器20は、前記筐体22(即ち、前記測量装置本体4)の水平に対する傾斜角をリアルタイムで検出する。前記姿勢検出器20としては、例えばチルトセンサや加速度センサが用いられ、或は特許文献2に開示された姿勢検出装置を使用することもできる。前記姿勢検出器20の検出結果は、前記演算制御部16に入力され、基準時刻と関連付けられて前記記憶部17に格納される。
又、前記姿勢検出器20の出力は、前記演算制御部16に所定時間間隔で検出される。従って、時間に対する前記測量装置本体4の傾斜変化を求められると共に、所定の時間内での平均傾斜角も演算される。
前記射出方向検出部21は、前記光学プリズム26,27の相対回転角、該光学プリズム26,27の一体回転角を検出し、前記測距光軸23の偏向方向(射出方向)をリアルタイムで検出する。
射出方向検出結果(測角結果)は、測距結果に関連付けられて前記演算制御部16に入力され、該演算制御部16は測距結果、射出方向検出結果と前記基準時刻信号とを関連付けて前記記憶部17に格納する。尚、前記測距光24がバースト発光される場合は、断続測距光毎に測距、測角、更に基準時刻信号との関連付けが実行される。
前記測定方向撮像部7は前記第1撮像光軸9を有している。一例として前記測定方向撮像部7は、前記光学プリズム26,27による最大偏角θ/2(例えば±30°)と略等しい、50°~60°の画角を有するカメラである。前記第1撮像光軸9と前記測距光軸23及び前記基準光軸Oとの関係は既知であり、又各光軸間の距離も既知の値となっている。
又、前記測定方向撮像部7は、静止画像又は連続画像或は動画像がリアルタイムで取得可能である。前記測定方向撮像部7で取得された画像(観察画像)は、前記表示部11に送信される。本実施例では、前記画像は前記表示部11に静止画像の観察画像として表示され、作業者は前記表示部11に表示された前記観察画像を観察して測定作業を実行できる。前記観察画像の中心は、前記第1撮像光軸9と合致し、前記基準光軸Oは前記第1撮像光軸9との既知の関係に基づき前記観察画像の中心に対して所定画角ずれた位置となる。
前記演算制御部16は、前記測定方向撮像部7の撮像を制御する。前記演算制御部16は、前記測定方向撮像部7が前記動画像、又は連続画像を撮像する場合に、該動画像、又は連続画像を構成するフレーム画像を取得するタイミングと、前記測量装置本体4でスキャンするタイミングとの同期を取っている。
上記した様に、前記演算制御部16は、基準時刻に基づき画像と測定データ(測距、測角データ)との関連付けも実行する。又、前記測定方向撮像部7と前記下方撮像部5との同期制御を行っている。
前記測定方向撮像部7の前記第1撮像光軸9と前記基準光軸Oとの関係(距離)が既知であるので、前記測距部8による測定位置と前記撮像素子上での位置(画素)との相互関連付けが可能である。前記撮像素子からの画像信号と画素に関連付けられた座標情報は、前記演算制御部16を介して前記画像処理部15に入力される。
前記演算制御部16は、前記姿勢検出器20からの検出結果に基づき、前記測量装置本体4の左右方向の傾斜角、前後方向(前記測定対象2に対して近接離反する方向)の傾斜角を演算する。前後方向の傾斜角は、前記基準光軸Oの水平に対する傾斜角として現れ、左右方向の傾斜角は、前記測定方向撮像部7で取得する画像の傾き(回転)として現れる。
前記下方撮像部5について説明する。
該下方撮像部5は、前記測量装置本体4と電気的に接続されており、前記下方撮像部5で取得された画像データは前記測量装置本体4に入力される。
前記下方撮像部5の撮像は、前記演算制御部16によって前記測定方向撮像部7の撮像、前記測距部8の測距と同期制御される。前記下方撮像部5は、前記測量装置本体4の機械中心に対して既知の位置に設けられており、前記下方撮像部5と前記ハンドポール3の下端との距離も既知となっている。
更に、前記下方撮像部5の前記第2撮像光軸13は、前記基準光軸Oとの成す角、基準光軸Oと前記第2撮像光軸13との交点の位置が既知の関係にある。前記演算制御部16は、前記下方撮像部5で取得した画像データと、前記測定方向撮像部7で取得した画像、前記測距部8で測定した測距データを、前記基準時刻信号と関連付けて前記記憶部17に格納する。
前記表示部11は、前記測量装置本体4の測定状態、測定結果等を表示し、又前記下方撮像部5、前記測定方向撮像部7が取得した画像、スキャン軌跡等を表示する。更に、前記表示部11から前記測量装置本体4に測定作業に関する司令等、各種指令を入力できる様になっている。
次に、図6を参照して前記設置基準板6について説明する。
該設置基準板6自体の形状は、円板であっても矩形の板であっても、或は他の形状であってもよい。前記設置基準板6の上面に、基準マーカ31が形成される。
該基準マーカ31は、中心と水平方向の方向を示す形状を有している。前記基準マーカ31は、該基準マーカ31の中心と同心で、且つ既知の直径を有する真円の外円線32、該外円線32と同心で、且つ既知の直径を有する真円の内円線33、更に前記基準マーカ31の中心から放射状に延出し、前記外円線32と前記内円線33との間に形成された放射線から構成されている。該放射線は円周を等分割した位置に形成されている。例えば、放射線は円周が16等分(22.5°間隔)された位置に設けられている。前記放射線の1つは、方向基準線34aであり、該方向基準線34aを基準として円周4等分した位置の放射線は副方向基準線34bであり、残りの放射線は方向補助線34cとなっている。又、前記方向基準線34a、前記副方向基準線34b、前記方向補助線34cは、識別可能な様に、前記方向基準線34aは太線、前記副方向基準線34bは中太線、前記方向補助線34cは細線となっている。
尚、識別の方法としては、前記下方撮像部5が取得する画像が色彩を有する場合は、前記方向基準線34a、前記副方向基準線34b、前記方向補助線34cは色分けしてもよい。又、形状で識別する場合は、前記の方向線(34a,34b,34c)の代りに方向基準を狭角とした二等辺三角形にしてもよい。
前記設置基準板6は、該設置基準板6の中心が前記基準点Rに合致する様に設置される。従って、該設置基準板6の中心と前記基準点Rとを合致させ易い様に、前記設置基準板6が透明板であり、或は前記内円線33の内部が刳貫かれている。
図7は、前記測定方向撮像部7の画像取得範囲、前記下方撮像部5の画像取得範囲、スキャンの関係を示す。
図7中、35は前記測定方向撮像部7の第1画像取得範囲、36は前記下方撮像部5の第2画像取得範囲、37は前記光軸偏向部18による前記測距光軸23の偏向範囲、28は前記測距光24を複数回照射しつつ、前記光軸偏向部18により花びらパターンでスキャンした場合の軌跡を示している。前記花びらパターン28に示されるドットは複数回の前記測距光24の照射点を示す。即ち、前記花びらパターン28の軌跡上の測定点を示す。又、38は前記第1画像取得範囲35の画像中心(該画像中心38は前記第1撮像光軸9と合致する)、39は前記第2画像取得範囲36の画像中心(該画像中心39は前記第2撮像光軸13と合致する)を示している。
又、前記第1画像取得範囲35内には、水平及び鉛直を示す十字状の基準視標41が表示されている。前記測量装置本体4が水平である場合には、前記画像中心38と基準視標41の交点とが合致する。前記第2画像取得範囲36内には、前記測量装置本体4の機械中心の鉛直下位置を示す十字状の下方視標42が表示される。尚、該下方視標42の十字の交点が前記鉛直下位置となる。
又、図1に於いて、θ1は前記測定方向撮像部7の画角、θ2は前記下方撮像部5の画角、θ3は前記測量装置本体4のスキャン範囲をそれぞれ示している。
更に、図7は、前記第1撮像光軸9と前記第2撮像光軸13との間の角度が例えば60°に設定され、前記基準光軸Oが前記第1撮像光軸9に対して例えば6°下方に傾斜している。つまり、θ4は54°となる。
前記第2撮像光軸13は下方に向けられ、前記第2画像取得範囲36が前記基準マーカ31を含む様に、前記下方撮像部5の方向が設定されている。従って、前記下方撮像部5が取得する画像には、前記基準点Rを含み、更に測定者側の範囲(図示では略80°)の画像が含まれる。
前記基準点Rを中心とした所定半径の画像を回転角検出用の回転検出画像43として設定し、所定時間間隔で取得する。前記演算制御部16が回転前後の前記回転検出画像43の回転変位を演算することで、前記測量装置本体4の回転角が求められる。尚、前記基準視標41及び前記下方視標42は、前記演算制御部16が前記姿勢検出器20の出力を所定時間毎に平均し、算出した平均傾斜に基づき演算したものとなっている。
図1~図7を参照して、前記測量装置1の測定作用について説明する。以下の測定作用は、前記記憶部17に格納されたプログラムを、前記演算制御部16が実行することでなされる。
測定を行う場合、先ず前記設置基準板6の中心を前記基準点Rに位置決めし、前記方向基準線34aを所定或は任意の方向に向ける。
前記測定方向撮像部7、前記下方撮像部5を作動させ、第1画像と第2画像を前記表示部11に表示させた状態で、前記ハンドポール3を略垂直として作業者が保持する。作業者は、前記表示部11に表示された画像を観察し、前記設置基準板6が前記第2画像中に含まれていることを確認しつつ、前記測定対象2を前記第1画像の例えば中心に捉え、前記表示部11を介して測距を実行する。
前記光軸偏向部18により、前記測距光軸23が前記第1撮像光軸9に沿う様に向けられて測距する。又、測距値取得時の前記下方撮像部5による画像が取得され、画像処理で前記基準マーカ31に基づき前記下方撮像部5(即ち、前記測量装置本体4)の前記基準点Rに対する斜距離、前記設置基準板6の面に対する傾斜角、傾斜方向が演算される。
前記下方撮像部5の前記第2撮像光軸13が傾斜していた場合、前記下方撮像部5で取得される像は楕円形となる。楕円の長径は、元の円の直径に等しいので、例えば前記外円線32の像の直径を求めれば、該外円線32の第2画像中での直径を求めることができる。又、第2画像上での前記外円線32の大きさと前記基準マーカ31と前記下方撮像部5間の距離の関係を予め求めておくことで、前記基準マーカ31と前記下方撮像部5間の斜距離を演算することができる。
更に、前記外円線32の長径と短径の比率を求めることで、前記第2撮像光軸13の前記設置基準板6の面に対する傾斜角を演算することができる。又、前記外円線32の長径又は短径が前記基準マーカ31のどの位置に現れるかを求めることで、前記第2撮像光軸13が前記測定対象2に対してどの方向に傾斜しているかを演算することができる。
上記説明は、前記基準マーカ31が真円である場合を説明したが、真円に限らず、既知の形状を有する基準マーカであればよい。正対している時の基準マーカの形状(画像)に対して基準マーカが傾斜した場合の形状(画像)の変化を求めれば、傾斜角、傾斜方向が求められる。尚、使用される基準マーカとしては、左右、上下対象であることが好ましい。
前記測量装置本体4により前記測定対象2を測定すると、該測定対象2迄の距離が測定され、更に前記第1撮像光軸9に対する前記基準光軸Oの偏角(図7では6°)と前記基準光軸Oに対する前記測距光軸23の偏角が前記射出方向検出部21によって検出される。又、前記測量装置本体4の水平に対する傾斜角が、前記基準マーカ31の図形から、或は前記姿勢検出器20の検出結果から検出され、前記測距光軸23の水平に対する傾斜角が演算される。更に前記測量装置本体4の回転変化が前記回転検出画像43から検出される。
前記測距光軸23の水平に対する傾斜角に基づき、前記斜距離が水平距離に補正され、前記測距光軸23の水平に対する傾斜角が演算され、検出された回転角に基づき方向角が演算され、前記基準点Rと前記測量装置本体4との斜距離が演算され、前記第2撮像光軸13の倒れ角が演算され、前記基準点Rを基準とした前記測定対象2の3次元座標が求められる。
上記説明では、前記測距光軸23が前記第1撮像光軸9に沿う様に向けられて測定する場合について説明したが、前記測量装置本体4をレーザスキャナとして測定することもできる。該測量装置本体4をレーザスキャナとして用いる場合、前記光学プリズム26,27の回転を制御し、前記花びらパターン28の軌跡でスキャンしつつ、スキャン過程でパルス測距光を照射する。これにより、前記花びらパターン28の軌跡に沿った各照射点(各測定点)について3次元測距データを取得することができる。又、スキャンと並行して、前記測定方向撮像部7による第1画像と、前記下方撮像部5による第2画像とが所定間隔で取得される。
前記第1画像、前記第2画像が取得されるフレームレートが10フレーム/secで発光レートが10KHz(10,000回/sec)の場合、フレーム画像が取得される度に1,000回のパルス測距光が発光される様、前記演算制御部16により同期制御される。又、フレーム画像の取得時刻とパルス測距光による測距時刻とはそれぞれ前記基準時刻と関連付けられる。尚、前記第1画像、前記第2画像の撮像素子がCMOSの場合、グローバルシャッタのタイプが望ましい。
尚、フレーム画像の取得時刻と、パルス測距光による測距時刻と、前記基準時刻との関連付けが正確に実行されれば、スキャンと前記第1画像、前記第2画像の取得との同期は厳密でなくてもよい。
又、前記第1画像と前記第2画像を合成する場合は、両画像のオーバラップ部分を用いて行うことができる。或は、図7に示される様に、前記花びらパターン28の一部が前記第2画像取得範囲36に含まれる様にスキャンを実行し、前記第1画像中の軌跡に沿った測距データ、前記第2画像中の軌跡に沿った測距データを用いて直ちに前記第1画像と前記第2画像との合成が可能である。
前記第1画像と前記第2画像を合成することで、前記基準点Rから前記測定対象2を含む広範囲の観察画像を取得でき、測定範囲、測定位置の確認が容易になり、作業性が向上する。又、前記第1画像、或は合成画像と2次元スキャンで得られた軌跡に沿ったデータとを関連付けることで、3次元データ付きの画像が取得できる。
ここで、前記測量装置本体4は、前記ハンドポール3を介して作業者が手で保持している。従って、前記測量装置本体4が安定して支持されず、小さく揺れている。一方で、前記測量装置本体4の小さな揺れは主に手ブレであり、測定中に前記測距光軸23に直交する面内で、或は該測距光軸23と平行な方向に大きく変位することはないと考えられる。従って、前記測量装置本体4の時間に対する変位は、図5に示される様に、概ね前記測距光軸23に直交する面内での回転(φ)、前記測距光軸23を含む鉛直面内での回転(κ)、前記測距光軸23を含む水平面内での回転(ω)と考えてよい。
前記測距光24をスキャンし、測定を実行している状態で、前記測量装置本体4に変位がない場合は、図8(A)に示される様に、前記測定方向撮像部7で取得される画像44にも変位を生じず、前記画像中心38を中心とした綺麗な花びらパターン28が形成される。
一方、前記測量装置本体4の支持が不安定であり、スキャン途中で該測量装置本体4が回転(角度:κ,ω,φ)した場合、前記測定方向撮像部7の前記第1撮像光軸9も一体に回転(角度:κ,ω,φ)するので、取得される画像は前記測定対象2に対して(角度:κ,ω,φ)だけ回転する。
この回転の傾き変化は前記姿勢検出器20の検出でも得られるが、一般に姿勢検出器20は重力方向と横方向の加速度が合成され、横方向の変動がある場合には真の鉛直に対する傾斜検出が難しい為、少なくとも1秒間以上平均して加速度成分の影響を軽減する。又、前記姿勢検出器20では左右方向の回転(図5に於けるω)及び平行移動成分を検出できないので、変位の検出にあたっては画像による方法と併用する。
尚、前記花びらパターン28のスキャン軌跡と前記測定方向撮像部7の画角(視界)との関係は固定となっている。従って、取得画像間で変位(回転)があれば(即ち、前記測定対象2に対して撮像位置の変位があれば)、スキャン軌跡も取得画像間の変位と同じだけ前記測定対象2に対して変位を生じる。
図8(B)は、取得画像間で変位を生じた場合を示している。図8(B)中、実線で示す画像44aは変位前の状態を示し、破線で示す画像44bは元の前記画像44aに対して変位した状態を示している。
前記回転(角度:κ,ω,φ)は画像の変位を検出することでリアルタイムに求めることができる。画像の変位を検出する代表的な方法としては、特徴抽出によるマッチングや、位相限定法、回転不変位相限定法が知られている。画像上、κは縦方向、ωは横方向、φは回転として検出される。又、前記回転(角度:κ,ω,φ)を所定時間間隔で平均化し、平均回転角を算出することもできる。
所定の画像が取得されてから次の画像が取得される迄の間に測定される測定点については、演算により求めることができる。
以下、図9を参照して説明する。図9中、横軸は基準時刻を示し、縦軸はκ,ω,φの変位角を示している。図示ではフレームレートが10フレーム/sec、パルス測距光の発光レートは10KHz(10,000回/sec)として説明する。尚、フレームレート、発光レートは、装置の性能、測定環境により適宜変更されることは言う迄もない。
0.1秒毎に画像が取得され、測距が1,000回実行される。画像の取得と測距とは同期されている。
前述の画像の変位を検出により、前画像に対する次画像の回転角(κ,ω,φ)(即ち、測距光軸23のκ,ω,φ)が求められる。従って、測定点の位置はκ,ω,φに基づき演算し、補正することができる。
又、画像取得毎に回転角(κ,ω,φ)を求めることで、時間に対する(κ,ω,φ)の変化が求められ、図9に示される様に、κ,ω,φそれぞれを含む近似曲線を作成することができる。従って、内挿により前記近似曲線から回転角を求めることができる。例えば、時刻t1と時刻t2との間の時刻t′については、前記近似曲線からκ′,ω′,φ′を得ることができる。このκ′,ω′,φ′に基づき測定点の位置を特定でき、又高低角、水平角を演算することができる。
尚、スタート点は、前記姿勢検出器20の検出結果を1秒間以上平均して得られた傾斜角が基準となっている。又、画像間の(κ,ω,φ)の変化は、直線で近似させてもよい。更に、上記説明では測距と画像取得とを同期させたが、κ,ω,φの近似曲線が得られれば、測距時刻に基づき近似曲線より測距時刻でのκ,ω,φが得られるので、必ずしも同期させなくてもよい。
上記した様に、前記測量装置本体4は、基準時刻信号を発する前記時間測定器19を有し、前記測距部8による測距時刻、前記測定方向撮像部7、前記下方撮像部5による画像取得時刻、前記射出方向検出部21による射出方向検出時刻、前記姿勢検出器20による姿勢検出時刻は、それぞれ共通の基準時刻に関連付けられている。従って、前記記憶部17に格納されたデータについて同一の基準時刻に対応する測距データ、画像データ、方向検出データ等を選択すれば、同一時刻に取得したデータを得ることができる。
全ての測距時刻を基に、各測距時刻に於ける内挿により前記近似曲線から全ての測定点のκ,ω,φが求められることで、各測定点の位置が補正演算により確定し、又高低角、水平角の演算、更には各測定点の3次元座標を演算することができる。
ここで、例えば、図10は1つの画像44に2つの花びらパターン28の軌跡を補正し、確定した軌跡を集約表示したものである。又、図11は、連結した2つの画像44,44に前記花びらパターン28の補正後の確定した軌跡を集約表示したものである。
尚、前記設置基準板6を設けない場合、確定される各測定点は、前記下方視標42の交点を基準とした測定点となる。又、前記設置基準板6を設ける場合には、基準点Rと前記下方視標42を合致させるか、或は前記基準マーカ31の形状に基づき傾斜角と傾斜方向を演算することで、前記基準点Rを基準とした測定点が特定される。
上述の様に、本実施例では、各測定点の測定後に、測定点の位置の確定、高低角、水平角の演算、3次元座標の演算を行うので、前記測量装置本体4が安定に保持されていなくとも測定を実行することができる。
又、本実施例では、前記下方撮像部5で取得した画像中の前記基準マーカ31の大きさ及び形状に基づき、前記基準点Rに対する前記測量装置本体4の機械中心の位置を演算している。従って、前記基準点Rに前記設置基準板6を設置し、前記下方撮像部5で前記基準マーカ31を撮像できる様前記測量装置本体4を保持するだけでよいので、前記測量装置1を容易に設置することができる。
又、本実施例では、前記表示部11に水平を示す前記基準視標41を表示させているので、前記測量装置本体4が傾いているかどうかを前記表示部11を見ながら作業者が容易に判断することができ、作業性を向上させることができる。
尚、前記測量装置本体4を回転させ、或は該測量装置本体4を大きく傾斜させ、測定方向、測定範囲を変更する場合がある。或は、外的要因で大きく姿勢が変化した場合等、鮮明な測定方向の画像が得られず、κ,ω,φを求めることが困難になる場合がある。この場合、前記姿勢検出器20の検出結果、前記回転検出画像43の検出結果に基づき、前記演算制御部16が前記測量装置本体4に急激な姿勢変化を判断し、測定を中止し、急激な姿勢変化がなくなったとき測定を再開する。
上記した急激な姿勢変化の有無の判断は、前記姿勢検出器20の検出結果の変化率、前記回転検出画像43の検出結果の変化率について閾値を設けて行ってもよい。
尚、本実施例では、画像変位検出によるスキャン軌跡の確定処理を行う為、前記花びらパターン28を用いているが、2次元閉ループのスキャンパターンであれば他のスキャンパターンを用いてもよい。例えば、図12に示される様な、局所的な円パターン45等、任意のスキャンパターンを選択することができる。
尚、図13は、1つの画像に複数の局所的な円パターン45の補正後の確定した軌跡を集約した状態を示している。又、図14は、前記測定方向撮像部7が取得した第1画像と、前記下方撮像部5が取得した第2画像とを連結した連結画像46であり、前記測量装置本体4の鉛直下方(前記下方視標42)と前記局所的な円パターン45の補正後の確定した軌跡との関係を示している。
1 測量装置
2 測定対象
3 ハンドポール
4 測量装置本体
5 下方撮像部
6 設置基準板
7 測定方向撮像部
8 測距部
9 第1撮像光軸
13 第2撮像光軸
15 画像処理部
16 演算制御部
17 記憶部
18 光軸偏向部
19 時間測定器
20 姿勢検出器
21 射出方向検出部
24 測距光
31 基準マーカ

Claims (3)

  1. 基準光軸を有する測量装置本体と、前記基準光軸と所定の関係を有する第1撮像光軸に沿って測定対象を含む第1画像を取得する測定方向撮像部と、測距光を照射し前記測定対象迄の距離を測定する測距部と、前記測距光の射出方向を検出する射出方向検出部と、基準時刻の信号を発する時間測定器と、前記基準光軸に対して所定の角度で下方に延出する第2撮像光軸に沿って第2画像を取得する下方撮像部と、前記測量装置本体の傾斜を検出する姿勢検出器と、表示部と、演算制御部とを具備し、該演算制御部は、前記姿勢検出器の検出結果に基づき前記第2画像上に鉛直下位置を表示させる様前記表示部を制御すると共に、前記第1画像と前記第2画像を所定時間間隔で取得して少なくともいずれか一方の画像間の変化を検出し、該画像間の変化と前記測距部と前記射出方向検出部の検出結果を前記基準時刻に基づき関連付け、前記鉛直下位置に対する前記測定対象の測定点を確定する様構成され、
    基準点に設置された既知の形状の基準マーカを有する設置基準板を更に具備し、前記測量装置本体は前記基準マーカが前記第2画像中に含まれる様保持され、前記演算制御部は、前記第2画像中での前記基準点と前記鉛直下位置との偏差に基づき前記基準点を基準とした確定した前記測定点が前記第1画像上に表示される様前記表示部を制御する様構成された測量装置。
  2. 前記演算制御部は、前記第2画像中での前記基準マーカの大きさと形状に基づき前記基準点に対する機械中心の位置を演算し、該位置に基づき前記基準点を基準とした前記測定対象を測定する様構成された請求項1に記載の測量装置。
  3. 前記演算制御部は、前記姿勢検出器の検出結果を所定時間毎に平均し、演算された平均傾斜に基づき前記第1画像上に水平を示す基準視標と、前記第2画像上に下方視標との少なくとも一方を表示させる様前記表示部を制御する請求項1又は請求項2に記載の測量装置。
JP2019107780A 2019-06-10 2019-06-10 測量装置 Active JP7240961B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019107780A JP7240961B2 (ja) 2019-06-10 2019-06-10 測量装置
EP20177932.9A EP3754297B1 (en) 2019-06-10 2020-06-03 Surveying instrument
US16/896,511 US11421989B2 (en) 2019-06-10 2020-06-09 Surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107780A JP7240961B2 (ja) 2019-06-10 2019-06-10 測量装置

Publications (2)

Publication Number Publication Date
JP2020201112A JP2020201112A (ja) 2020-12-17
JP7240961B2 true JP7240961B2 (ja) 2023-03-16

Family

ID=70977365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107780A Active JP7240961B2 (ja) 2019-06-10 2019-06-10 測量装置

Country Status (3)

Country Link
US (1) US11421989B2 (ja)
EP (1) EP3754297B1 (ja)
JP (1) JP7240961B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039388B2 (ja) * 2018-05-24 2022-03-22 株式会社トプコン 測量装置
JP7202261B2 (ja) 2019-06-10 2023-01-11 株式会社トプコン 測量装置
CN110411408A (zh) * 2019-07-11 2019-11-05 浙江大学 一种基于计算机视觉的地表沉降监测方法
JP2024049688A (ja) * 2022-09-29 2024-04-10 株式会社トプコン 測量装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109458A (ja) 2007-11-01 2009-05-21 Topcon Corp 測量機
JP2012225697A (ja) 2011-04-18 2012-11-15 Topcon Corp 水平位置案内機
WO2016063419A1 (ja) 2014-10-24 2016-04-28 株式会社ニコン・トリンブル 測量機及びプログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2622089B2 (ja) * 1994-07-08 1997-06-18 株式会社オフィスツーワン 測量装置
US7647197B2 (en) 2002-08-09 2010-01-12 Surveylab Group Limited Mobile instrument, viewing device, and methods of processing and storing information
EP2240740B1 (en) * 2008-02-12 2014-10-08 Trimble AB Localization of a surveying instrument in relation to a ground mark
WO2009100774A1 (en) 2008-02-12 2009-08-20 Trimble Ab Localizing a surveying instrument in relation to a ground mark
US9109889B2 (en) * 2011-06-24 2015-08-18 Trimble Navigation Limited Determining tilt angle and tilt direction using image processing
EP2806248B1 (de) * 2013-04-12 2018-09-12 Leica Geosystems AG Verfahren zur Kalibrierung einer Erfassungseinrichtung und Erfassungseinrichtung
JP6541365B2 (ja) 2015-02-16 2019-07-10 株式会社トプコン 姿勢検出装置及びデータ取得装置
JP6616077B2 (ja) 2015-02-16 2019-12-04 株式会社トプコン 測定装置及び3次元カメラ
JP6410258B2 (ja) 2015-03-02 2018-10-24 株式会社トプコン 光波距離計
JP6621305B2 (ja) 2015-11-10 2019-12-18 株式会社トプコン 測量システム
JP6777987B2 (ja) 2015-12-10 2020-10-28 株式会社トプコン 測定装置
JP6680553B2 (ja) * 2016-02-08 2020-04-15 株式会社トプコン 測量装置
EP3660451B1 (de) * 2018-11-28 2022-04-27 Hexagon Technology Center GmbH Intelligentes stationierungs-modul
JP7202261B2 (ja) 2019-06-10 2023-01-11 株式会社トプコン 測量装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109458A (ja) 2007-11-01 2009-05-21 Topcon Corp 測量機
JP2012225697A (ja) 2011-04-18 2012-11-15 Topcon Corp 水平位置案内機
WO2016063419A1 (ja) 2014-10-24 2016-04-28 株式会社ニコン・トリンブル 測量機及びプログラム

Also Published As

Publication number Publication date
EP3754297B1 (en) 2023-07-26
EP3754297A1 (en) 2020-12-23
US20200386547A1 (en) 2020-12-10
JP2020201112A (ja) 2020-12-17
US11421989B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP7240961B2 (ja) 測量装置
JP7039388B2 (ja) 測量装置
EP3258212B1 (en) Surveying system
JP6877946B2 (ja) レーザスキャナ
US11402207B2 (en) Surveying instrument
JP7032846B2 (ja) 測量装置
US11512957B2 (en) Surveying instrument
JP7191643B2 (ja) 測量装置
EP3677870B1 (en) Surveying instrument and photogrammetric method
US11598637B2 (en) Surveying instrument
JP6996961B2 (ja) 測量装置
JP2022054848A (ja) 追尾方法及びレーザスキャナ及び追尾プログラム
JP2019174229A (ja) 測量装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7240961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150