JP7240552B1 - Organic acid production method and organic acid iron production method - Google Patents

Organic acid production method and organic acid iron production method Download PDF

Info

Publication number
JP7240552B1
JP7240552B1 JP2022198477A JP2022198477A JP7240552B1 JP 7240552 B1 JP7240552 B1 JP 7240552B1 JP 2022198477 A JP2022198477 A JP 2022198477A JP 2022198477 A JP2022198477 A JP 2022198477A JP 7240552 B1 JP7240552 B1 JP 7240552B1
Authority
JP
Japan
Prior art keywords
organic acid
steam
pressure vessel
iron
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022198477A
Other languages
Japanese (ja)
Other versions
JP2023091756A (en
Inventor
浩 水口
Original Assignee
テラサークルテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テラサークルテクノロジーズ株式会社 filed Critical テラサークルテクノロジーズ株式会社
Application granted granted Critical
Publication of JP7240552B1 publication Critical patent/JP7240552B1/en
Publication of JP2023091756A publication Critical patent/JP2023091756A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

【課題】 廃棄物から効率よくフルボ酸を含む有機酸を抽出・分離する方法を提供する。【解決手段】有機系廃棄物を圧力槽1に投入したら、圧力槽1内に過熱蒸気または過熱蒸気と飽和蒸気との混合気体を供給し、密閉状態にして、温度100~300℃、圧力0.1~4.0MPaの条件で、外部加熱装置と過熱蒸気(乾燥蒸気)にて水分調整しつつ撹拌し廃棄物からフルボ酸を含む有機酸を抽出する。圧力槽1からの蒸気中には、固形物は含まれず、フルボ酸を含む有機酸が多量に含まれているので、蒸気を排出蒸気配管8を介して熱交換器(冷却器)9に送り込み、冷却することでフルボ酸を含む有機酸が分離回収される。【選択図】 図2A method for efficiently extracting and separating organic acids including fulvic acid from waste is provided. SOLUTION: After the organic waste is put into the pressure vessel 1, superheated steam or a mixed gas of superheated steam and saturated steam is supplied into the pressure vessel 1, the pressure vessel 1 is sealed, and the temperature is 100 to 300° C. and the pressure is 0. Organic acids including fulvic acid are extracted from the waste by stirring under conditions of 1 to 4.0 MPa while adjusting the water content with an external heating device and superheated steam (dry steam). Since the steam from the pressure vessel 1 does not contain solid matter and contains a large amount of organic acids including fulvic acid, the steam is sent to the heat exchanger (cooler) 9 through the exhaust steam pipe 8. By cooling, organic acids including fulvic acid are separated and recovered. [Selection drawing] Fig. 2

Description

本発明は高温高圧条件下で農林系廃棄物などの有機系廃棄物からフルボ酸や木酢液を含む有機酸を抽出し、更に抽出した有機酸から有機酸鉄を製造する方法に関する。
ここで、有機系廃棄物には農林系廃棄物の他にプラスチックや生ごみが含まれる。また農林系廃棄物には、例えばフルボ酸を含有する木片(チップ)やきのこの廃菌床の他に、広葉樹の落ち葉や剪定枝なども含まれる。
The present invention relates to a method for extracting organic acids including fulvic acid and pyroligneous acid from organic wastes such as agricultural and forestry wastes under high temperature and high pressure conditions, and producing organic acid iron from the extracted organic acids.
Here, organic wastes include plastics and garbage in addition to agricultural and forestry wastes. Agricultural and forestry wastes include, for example, wood chips containing fulvic acid and waste mushroom beds, as well as fallen leaves and pruned branches of broad-leaved trees.

フルボ酸は植物などが微生物によって分解される際に生成される腐食物質で、化学構造がただ一つ決まった分子ではなく、その分子内にカルボキシル基、フェノール性水酸基を多く含んだ多価有機酸であり、キレート力により有害物質を挟み込むキレート力に優れた土壌改良剤である。人体投与にいたっては、研究者が少ないが、フルボ酸と結合したミネラル成分を永続的にイオン交換できることから、ガンが治ったなどの効果が見られたとの報告もある。 Fulvic acid is a corrosive substance produced when plants, etc. are decomposed by microorganisms. It is not a single molecule with a fixed chemical structure, but a polyvalent organic acid containing many carboxyl groups and phenolic hydroxyl groups in its molecule. It is a soil improver with excellent chelating power that traps harmful substances by chelating power. When it comes to administration to the human body, although there are few researchers, there are also reports that effects such as curing cancer have been observed because mineral components bound to fulvic acid can be permanently ion-exchanged.

木酢液は、木炭を焼くときに出る水蒸気や煙を冷やして液体にしたものを指し、木酢液に含まれている酢酸やアルコールには、殺菌作用や防虫作用があるとされている。木酢液のどのような成分が作用するかは未だ解明されてはいないものの、土壌改良や植物の生長促進にも役立つと言われている。 Pyroligneous liquid refers to a liquid obtained by cooling the steam and smoke emitted when burning charcoal, and the acetic acid and alcohol contained in pyroligneous liquid are said to have bactericidal and insect repellent effects. Although it has not yet been clarified what components of pyroligneous acid act, it is said to be useful for improving soil and promoting plant growth.

また、フルボ酸鉄(有機酸鉄)は、悪臭および生物の有害となる硫化水素イオンと反応し無害な硫化鉄となり、硫化水素の発生を抑制し、生物の生息しやすい環境を形成し、生物量や生物の多様性を向上すると言われている。 In addition, iron fulvic acid (iron organic acid) reacts with hydrogen sulfide ions, which are odorous and harmful to organisms, to become harmless iron sulfide. It is said to improve the amount and biodiversity.

フルボ酸の製造方法としては、土壌からアルカリまたは弱酸のアルカリ塩でフミン酸(腐植物質)とともに抽出後、酸を加えてフミン酸を沈殿させて分離する方法や、木質系廃棄物(伐採樹木、腐朽菌が付着した樹木、きのこやきくらげ廃菌床など)から得る方法が提案されている。具体的な先行技術としては以下のものが挙げられる。 Fulvic acid can be produced by extracting humic acid (humic substance) from soil with an alkaline or weak acid alkali salt, and then adding acid to precipitate and separate humic acid. It has been proposed to obtain it from trees with decaying fungi attached, waste mushrooms and wood ear mushroom beds, etc.). Specific prior art includes the following.

特許文献1には、高温高圧の蒸気噴出手段を備えた密閉容器内に木材チップなどの原料を投入し、温度120~250℃、圧力12~35atmの蒸気を密閉容器内に導入し、原料を攪拌しつつ亜臨界水反応処理し、冷却することで、フルボ酸とフミン酸を含有する溶液を得ることが記載されている。 In Patent Document 1, a raw material such as wood chips is put into a closed container equipped with a high-temperature and high-pressure steam ejection means, and steam at a temperature of 120 to 250 ° C. and a pressure of 12 to 35 atm is introduced into the closed container, and the raw material is introduced. It is described that a solution containing fulvic acid and humic acid is obtained by performing subcritical water reaction treatment while stirring and cooling.

特許文献2には、主成分が木質チップの菌床を木酢液、竹酢液又は木酢竹酢混合液とともに容器に封入し、前記容器底部に溶液を溶出させるフルボ酸の製造方法が記載されている。 Patent Document 2 describes a method for producing fulvic acid, in which a fungal bed whose main component is wood chips is enclosed in a container together with wood vinegar, bamboo vinegar, or a mixture of wood vinegar and bamboo vinegar, and the solution is eluted at the bottom of the container. there is

特許文献3には、アルカリ性電解水に腐植物質を含有する固形原料を浸漬することにより、その腐植物質のうちフルボ酸およびフミン酸をアルカリ性電解水中に抽出し、ヒューミンと分離するフルボ酸およびフミン酸の抽出方法が提案されている。 In Patent Document 3, by immersing a solid raw material containing humic substances in alkaline electrolyzed water, fulvic acid and humic acid among the humic substances are extracted into alkaline electrolyzed water, and fulvic acid and humic acid are separated from humin. has been proposed.

特許第6285605号公報Japanese Patent No. 6285605 特許第6331206号公報Japanese Patent No. 6331206 特開2018-127413号公報JP 2018-127413 A

特許文献2、3に示される酸を用いた抽出法による場合は、効率が悪く且つ抽出に用いた酸の後処理の問題も生じる。この点、特許文献1に開示される亜臨界水反応処理が産業的には優れている。 In the case of the extraction method using an acid as shown in Patent Documents 2 and 3, the efficiency is low and the problem of post-treatment of the acid used for the extraction also arises. In this regard, the subcritical water reaction treatment disclosed in Patent Document 1 is industrially excellent.

しかしながら、特許文献1では、密閉容器内に導入する蒸気の温度と圧力について、温度120~250℃、圧力12~35atmと記載している。
最も低圧の圧力12atm(1.22MPa)で気体状態となるのは温度が188℃以上の場合であり、温度が120~188℃の範囲では水(高温水)の状態である。また、水は圧力12atm以上では更に蒸気の状態を維持しにくい。
このことを考慮すると、特許文献1の条件では、密閉容器内には大量の凝縮水で満たされていることになり、殆どが液化水の中での処理と考えられる。又、我々の実験では、液化した水の中で有機物を分解しようとすると、本来ラジカル状態でなければならない物質が安定化状態になることで、有機物は分解し難いことが分かっている。
However, Patent Document 1 describes the temperature and pressure of the steam introduced into the sealed container as 120 to 250° C. and 12 to 35 atm.
At the lowest pressure of 12 atm (1.22 MPa), it becomes gaseous when the temperature is 188° C. or higher, and when the temperature is in the range of 120 to 188° C., it is in the state of water (high-temperature water). Moreover, it is even more difficult for water to maintain the vapor state at a pressure of 12 atm or higher.
Taking this into consideration, under the conditions of Patent Document 1, the sealed container is filled with a large amount of condensed water, and most of the treatment is considered to be in liquefied water. In addition, our experiments have shown that when we try to decompose organic substances in liquefied water, the substances that should be in a radical state are stabilized, making it difficult to decompose organic substances.

物質を分解するには、反応物質すなわち、水(HО)がプロトン(H)とヒドロキシ基(-ОH)に分かれ、結合と分離を繰り返すことにより、有機物などの分解を行う。水中においての分解はプロトンと水が反応し、ヒドロニウム(HО+)が形成され安定化状態になってしまい反応が遅くなる。加えて、親水性の高いヒドロキシ基においても安定物質が形成されてしまい、有機物の分解が遅くなっている。 To decompose a substance, the reactant, that is, water (H 2 O) is divided into protons (H) and hydroxy groups (-OH), and the combination and separation are repeated to decompose organic substances. Decomposition in water causes a reaction between protons and water to form hydronium (H 3 O + ), which slows down the reaction. In addition, the highly hydrophilic hydroxy group also forms a stable substance, slowing down the decomposition of organic matter.

フルボ酸は水に溶けやすいため、蒸気だけでなく凝縮水や固形物質にも含まれることになる。凝縮水にはフルボ酸以外にも浮遊固形物なども含まれ、この凝縮水から浮遊固形物などを除去するのが困難である。 Because fulvic acid is highly soluble in water, it will be found in condensate and solid matter as well as steam. Condensed water contains suspended solids and the like in addition to fulvic acid, and it is difficult to remove suspended solids and the like from this condensed water.

このように、特許文献1の亜臨界水処理でフルボ酸を溶出すると、処理物質に対する重量比で約30%以上の水分が増加し、フルボ酸の大半は凝縮水に溶出し、希釈されたフルボ酸溶液が排出され、フルボ酸を抽出するには大量の水から分離処理しなければならない。同様にフルボ酸を分離した後の水処理量も増えることになる。 Thus, when fulvic acid is eluted in the subcritical water treatment of Patent Document 1, the water content increases by about 30% or more in terms of weight ratio to the treated substance, most of the fulvic acid is eluted into the condensed water, and diluted fulvic acid The acid solution is discharged and must be separated from large volumes of water to extract the fulvic acid. Similarly, the amount of water treated after separating fulvic acid also increases.

きのこを生産する際には可食部のおよそ2~3倍量の「廃菌床」が残渣として発生する。長野県中野市は日本有数のきのこ産地で年間5万トン以上のきのこ生産があり、それに伴い15万トン以上の廃菌床が廃棄物とされている。
これら廃棄物としての廃菌床を消費する方法として、バイオエタノール精製やペレット燃料化などが検討されているが、いずれも再資源化に伴うコストが非常に大きく、実用化には至っていない。
一番簡単な方法は焼却することであるが、燃焼エネルギーが低いので、単に燃やすだけになってしまい、膨大な量のCO2排出に繋がり、地球温暖化への影響が大きい点や最終的に残ってしまう焼却灰が環境に与える影響も相当量であることを考えると適切な処理方法とは言いがたい。
その結果、従来から行われてきた、堆肥として農地に還元する方法が、一番よいと考えられた。しかし、菌が残っていることや廃菌床の原料がオガクズなどの繊維質であり、自然界では非常に難分解な物質を含むことから、農地圃場に施用可能な状態に腐食発酵させられるまでに通常は最低でも1年以上の期間がかかり、この点がボトルネックとなって廃菌床の廃棄量に再資源化処理が追いついていない現状がある。
そのため、きのこの生産量を維持する面から、廃菌床を未熟堆肥のまま流通させ、周辺の農地圃場に深刻な土壌酸性化を引き起こしてしまっている。
さらに廃菌床中にはきのこ菌が残留しており、自然放置でも腐植熟成させることは可能であるが、「原料が難分解性である」「堆肥化管理が難しい」「腐敗しやすく悪臭が出やすい」「強酸性で土壌酸性化を起こしやすい」等の問題を併せ持つため、精通者でなければ取扱いは極めて難しい。
When mushrooms are produced, a "waste mushroom bed" is generated as a residue, which is about two to three times the amount of the edible part. Nakano City, Nagano Prefecture is one of Japan's leading mushroom-producing areas, producing more than 50,000 tons of mushrooms annually.
As a method of consuming these waste fungal beds as waste, bioethanol refining and pelletization have been studied, but the costs involved in recycling are extremely high, and they have not yet been put to practical use.
The simplest method is incineration, but since the combustion energy is low, it is simply burned, which leads to a huge amount of CO2 emissions, and has a large impact on global warming. Considering the fact that the incinerated ash, which is produced by the incinerator, has a considerable impact on the environment, it is difficult to say that it is an appropriate disposal method.
As a result, it was thought that the best method would be to return it to the farmland as compost, which has been practiced in the past. However, since the fungus remains and the raw material of the waste fungus bed is fiber such as sawdust, it contains substances that are extremely difficult to decompose in the natural world. Usually, it takes at least one year or more, and this point becomes a bottleneck, and there is a current situation where the recycling process cannot catch up with the amount of discarded fungal bed.
Therefore, in order to maintain the production of mushrooms, waste mushroom beds are distributed as immature compost, causing serious soil acidification in the surrounding farmlands.
In addition, mushroom fungi remain in the waste mushroom bed, and it is possible to humus ripen even if left unattended. It is very difficult to handle unless you are familiar with it because it has problems such as easy to release and easy to acidify the soil due to its strong acidity.

以上のことから、きのこ菌床などの処理が必要不可欠なものとなっている。
ここで、きのこ菌床の原料は広葉樹であり、すでに菌類が接種されていることから、フルボ酸量が増えていることが分かった。
木質系廃棄物の間伐材や剪定枝や雑草などは、回収しても有価物として流通しないので、処理に困っている。
これら放置された木材系農林業廃棄物は、腐朽菌などの菌類が繁殖していれば、フルボ酸溶出量を増やすことができる。
For these reasons, the treatment of mushroom beds and the like is essential.
Here, the raw material of the mushroom bed is a broad-leaved tree, and since the fungus has already been inoculated, it was found that the amount of fulvic acid increased.
Thinned wood, pruned branches, weeds, etc., which are woody wastes, are difficult to dispose of because they are not distributed as valuables even if they are collected.
If fungi such as rotting fungi are propagated in these abandoned wood-based agricultural and forestry wastes, the elution amount of fulvic acid can be increased.

上記課題を解決するため本発明に係るフルボ酸や木酢液を含む有機酸の産生方法は、有機系廃棄物を高温高圧処理用の圧力槽に投入し、圧力槽内に飽和蒸気及び乾燥蒸気(過熱蒸気)を導入し、密閉状態で温度100~300℃、圧力0.1~4.0MPaの条件で、高温高圧処理システムが持つ水分調整機能で水分調整しつつ蒸気に触れさせ、有機酸を有機系廃棄物から抽出し、抽出したフルボ酸を含む有機酸を含む蒸気を圧力槽から導出した後、冷却してフルボ酸や木酢液を含む有機酸を分離する。 In order to solve the above problems, the method for producing an organic acid containing fulvic acid and pyroligneous acid according to the present invention involves putting organic waste into a pressure vessel for high-temperature and high-pressure treatment, and adding saturated steam and dry steam ( Superheated steam) is introduced, and the temperature is 100 to 300 ° C and the pressure is 0.1 to 4.0 MPa in a sealed state. After extracting from the organic waste and extracting the vapor containing the organic acid containing the extracted fulvic acid from the pressure vessel, the vapor is cooled to separate the organic acid containing the fulvic acid and pyroligneous acid.

有機酸の分離は固液分離装置を用い、液体と炭化物質を含む固形成分に分離する。液体のみでなく固形成分にもフルボ酸や木酢液を含む有機酸が含まれているので、固形成分から有機酸を回収してもよい。 A solid-liquid separator is used to separate the organic acid into a liquid and a solid component containing carbonized substances. Since organic acids including fulvic acid and pyroligneous acid are contained not only in the liquid but also in the solid component, the organic acid may be recovered from the solid component.

本発明では、フルボ酸や木酢液を含む有機酸を主として気相中から抽出するが、凝縮水や固形物質にも有機酸は溶け込む。この凝縮水や固形物質に溶解した有機酸は遠心分離やボルテックスなどにより抽出し、固形成分と分離する。 In the present invention, organic acids including fulvic acid and pyroligneous acid are mainly extracted from the gas phase, but the organic acids also dissolve in condensed water and solid substances. Organic acids dissolved in the condensed water or solid substances are extracted by centrifugation, vortexing, or the like, and separated from the solid components.

前記有機系廃棄物としては、伐採樹木、腐朽菌が付着した樹木、きのこ類やきくらげ廃菌床が考えられるが、これに限定されずフルボ酸が含まれるものであればよい。また腐朽菌などの菌類が繁殖したもの方がフルボ酸の収率が高まる。 Examples of the organic waste include felled trees, trees with rotting fungi, mushrooms, and waste mushroom beds, but are not limited to these, as long as they contain fulvic acid. In addition, the yield of fulvic acid is higher when fungi such as rotting fungi are propagated.

また本発明に係る有機酸からの有機酸鉄の製造方法は、フルボ酸や木酢液を含む有機酸とイオン化鉄とを高温高圧処理用の圧力槽に投入し、この圧力槽内に飽和蒸気及び過熱蒸気を導入し、密閉状態で温度100~300℃、圧力0.1~4.0MPaの条件で有機酸とイオン化鉄とを反応させ、フルボ酸鉄を含む有機酸鉄(キレート鉄、二価鉄)を得る。 Further, in the method for producing an organic acid iron from an organic acid according to the present invention, an organic acid containing fulvic acid or pyroligneous acid and ionized iron are put into a pressure vessel for high-temperature and high-pressure treatment, and saturated steam and Superheated steam is introduced, and the organic acid and ionized iron are reacted under the conditions of a temperature of 100 to 300 ° C. and a pressure of 0.1 to 4.0 MPa in a closed state, and an organic acid iron containing iron fulvic acid (chelated iron, divalent iron).

本発明によれば、高濃度のフルボ酸や木酢液を含む有機酸を、酸などを用いることなく効率よく製造することができる。例えば木片やキノコ類の廃菌床、落ち葉や剪定枝などから得られるラジカル物質とプラスチックを含む一般有機系廃棄物を合わせた混合廃棄物から、高濃度のフルボ酸を含む固体やフルボ酸液や木酢液などの有機酸を用途に合わせて、自在に取り出すことができる。 According to the present invention, an organic acid containing high-concentration fulvic acid or pyroligneous acid can be efficiently produced without using an acid or the like. For example, from mixed waste that combines radical substances obtained from wood chips and mushroom waste mushroom beds, fallen leaves and pruned branches, and general organic waste including plastics, solids containing high concentrations of fulvic acid, fulvic acid liquids, and Organic acids such as pyroligneous acid can be freely extracted according to the application.

即ち、過熱蒸気(乾燥蒸気)の水分含有量を、0.59~5.15kg/mとする。これは飽和蒸気の水分含有量に比較し50~65%になる。加えて、凝縮水である排出水量は1/20程度になるので、飽和蒸気を使用した従来の溶出法に比較し、フルボ酸や木酢液の過熱蒸気(気相)への抽出比率は最低でも35%以上増加する。加えて、過熱蒸気などで水分を調整しつつ固形成分に水分を吸収させることにより、水分の排出量0を達成できる。 That is, the moisture content of superheated steam (dry steam) is set to 0.59 to 5.15 kg/m 3 . This amounts to 50-65% compared to the moisture content of saturated steam. In addition, the amount of discharged water, which is condensed water, is about 1/20. More than 35% increase. In addition, by allowing the solid component to absorb water while adjusting the water content with superheated steam or the like, zero water discharge can be achieved.

また、高温高圧処理装置には従来の亜臨界水処理装置に無い、水分調整能力と過熱蒸気発生装置を備えていることから、同装置を使用して、フルボ酸を抽出すると、水分量が少ない状態の抽出液を採取でき、水処理工程がほとんど必要無くなる。更に、処理媒体は水だけなので、酸性物質などに比較し調達費用や廃液処理費用も安い、同時に短時間処理が可能で単位時間当たりの処理能力が高く、加えて処理温度圧力も低いことからランニングコストも低廉、装置の初期投資も低額となる。 In addition, the high-temperature and high-pressure treatment equipment is equipped with a moisture adjustment capability and a superheated steam generator, which are not available in conventional subcritical water treatment equipment. It is possible to collect the extract of the state, and the water treatment process is almost unnecessary. Furthermore, since the treatment medium is only water, procurement costs and waste liquid treatment costs are lower than those of acidic substances, etc. At the same time, treatment can be performed in a short period of time, and the treatment capacity per unit time is high. The cost is low, and the initial investment for the equipment is also low.

又、本発明の高温高圧処理用の圧力槽として、独特の加熱構造(二重構造)を採ることで、大半の排水は汚染されていないことから廃熱利用でき、環境に優しい処理方法となる。 In addition, by adopting a unique heating structure (double structure) as the pressure vessel for high temperature and high pressure treatment of the present invention, most of the waste water is not polluted, so waste heat can be used, making it an environmentally friendly treatment method. .

本発明によれば、有機酸を形成するラジカル物質とラジカル物質を結合するカルボニル基とヒドロキシ基が反応し、フルボ酸での構成要素カルボキシル基が形成され、前述したラジカル物質に結合し、さらに収率が高まる。 According to the present invention, a radical substance forming an organic acid reacts with a carbonyl group and a hydroxy group that bind the radical substance to form a carboxyl group that is a component of fulvic acid, which is bound to the above-mentioned radical substance, and further absorbed. rate increases.

又、高温高圧槽の中で、ラジカル物質であるプロトンとヒドロキシ基が高速で移動するため、物理的に炭素成分が小径化され、植物が吸収し易い状態を作り出すことができる。 In addition, since protons and hydroxy groups, which are radical substances, move at high speed in the high-temperature and high-pressure tank, the diameter of the carbon component is physically reduced, and a state in which plants can easily absorb it can be created.

フルボ酸が植物を活性化することと、有機物の基本構成体である炭素及びミネラル成分が同時に供給されるため、植物は、耐性を持ち、冬季でも枯れ難い植物を育成できる。 Since fulvic acid activates plants and supplies carbon and mineral components, which are the basic constituents of organic matter, at the same time, the plants can grow plants that are resistant and do not wither even in winter.

本発明に係る有機酸または有機酸鉄の製造に用いる高温高圧処理システムの全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram of a high-temperature and high-pressure treatment system used for producing an organic acid or an organic acid iron according to the present invention; 第2実施例に係る高温高圧処理システムの全体構成図。The whole block diagram of the high-temperature/high-pressure processing system which concerns on 2nd Example. 有機酸処理フロー図。Organic acid treatment flowchart. 有機酸鉄処理フロー図。Organic acid iron processing flow chart. 第3実施例に係る高温高圧処理システムの全体構成図。The whole block diagram of the high-temperature/high-pressure processing system which concerns on 3rd Example. 第3実施例に係るシステムを用いた有機酸処理フロー図。FIG. 11 is an organic acid treatment flowchart using the system according to the third embodiment. 第3実施例に係るシステムを用いた処理手順を説明した図。The figure explaining the processing procedure using the system which concerns on 3rd Example.

第1実施例に係る高温高圧処理システムは、図1に示すように、高温高圧処理を行うための圧力槽1を備える。この圧力槽1の内部には撹拌装置が配置され、上部中央には原料であるフルボ酸を含む廃棄物の投入口2が設けられ、下部中央には凝縮水などの排出口3が設けられている。 The high-temperature and high-pressure processing system according to the first embodiment, as shown in FIG. 1, includes a pressure vessel 1 for performing high-temperature and high-pressure processing. A stirring device is arranged inside the pressure vessel 1, an inlet 2 for waste containing fulvic acid, which is a raw material, is provided in the upper center, and an outlet 3 for condensed water, etc. is provided in the lower center. there is

圧力槽1に隣接して飽和蒸気発生ボイラー4が配置され、この飽和蒸気発生ボイラー4で発生した飽和蒸気は配管5を介して過熱蒸気発生装置(加熱部)6に送られ、過熱蒸気または過熱蒸気と飽和蒸気との混合気体として配管7を介して圧力槽1に供給される。供給方法は圧力槽1の天井部からに限らず、撹拌装置の中空軸を介して供給してもよい。 A saturated steam generating boiler 4 is arranged adjacent to the pressure vessel 1, and the saturated steam generated by this saturated steam generating boiler 4 is sent to a superheated steam generator (heating unit) 6 via a pipe 5, and is converted into superheated steam or superheated steam. It is supplied to the pressure vessel 1 through the pipe 7 as a mixed gas of steam and saturated steam. The supply method is not limited to the ceiling portion of the pressure vessel 1, but may be supplied through the hollow shaft of the stirring device.

圧力槽1の天井部からは排出蒸気配管8が導出され、この排出蒸気配管8は蒸気から熱を奪う熱交換器(冷却器)9に接続される。熱交換器(冷却器)9で吸収した熱(廃熱)は前記ボイラー4に循環し、熱交換器(冷却器)9において蒸気は液化して配管10を介して取り出される。 A steam discharge pipe 8 is led out from the ceiling of the pressure vessel 1 and connected to a heat exchanger (cooler) 9 for removing heat from the steam. The heat (waste heat) absorbed by the heat exchanger (cooler) 9 is circulated to the boiler 4 , and the steam is liquefied in the heat exchanger (cooler) 9 and taken out through the pipe 10 .

図2は別実施例に係る高温高圧処理システムの全体構成図であり、この別実施例では圧力槽1を外殻の一部または全部が二重構造になっている。この二重構造となった部分に配管11を介して過熱蒸気発生装置(加熱部)6からの過熱蒸気または過熱蒸気と飽和蒸気との混合気体を送り込み、加熱ムラが生じないようにしている。 FIG. 2 is a general block diagram of a high-temperature and high-pressure treatment system according to another embodiment. In this another embodiment, the pressure vessel 1 has a double structure partially or wholly of the outer shell. Superheated steam or a mixed gas of superheated steam and saturated steam from a superheated steam generator (heating unit) 6 is fed into this double-structured portion through a pipe 11 to prevent uneven heating.

更に、二重構造の部分で生じた凝結水は、配管12を介して飽和蒸気発生ボイラー4に戻すことで凝結水(エネルギー)の有効利用を図る構成となっている。
即ち、配管11を介して供給された蒸気の保有する熱は、圧力槽1のみを温めることに使用され、また外郭二重構造部を通した蒸気は圧力槽内部を通らないので汚染されず、熱量を持ったままリユースすることができる。
Further, the condensed water generated in the double structure portion is returned to the saturated steam generating boiler 4 through the pipe 12, thereby effectively utilizing the condensed water (energy).
That is, the heat possessed by the steam supplied through the pipe 11 is used to heat only the pressure vessel 1, and the steam passing through the outer double structure does not pass through the inside of the pressure vessel, so it is not polluted. It can be reused while retaining its heat.

以上において、伐採樹木、腐朽菌が付着した樹木、きのこやきくらげ廃菌床などの農林業などで生じた廃棄物(好ましくは、腐朽菌などの菌類が繁殖したもの)を投入口2から圧力槽1に投入する。 In the above, waste generated in agriculture and forestry, such as felled trees, trees with decaying fungi attached, mushrooms and cloud ear waste mushroom beds (preferably, wastes with fungi such as decaying fungi propagated) are fed from the inlet 2 into the pressure tank. Put in 1.

廃棄物を圧力槽1に投入したら、圧力槽1内に過熱蒸気または過熱蒸気と飽和蒸気との混合気体を供給し、密閉状態にして、温度100~300℃、圧力0.1~4.0MPaの条件で、外部加熱装置と過熱蒸気(乾燥蒸気)にて水分調整しつつ撹拌する。上記の温度及び圧力下で廃棄物に含まれているフルボ酸などの有機酸は混合気体中に抽出される。また、廃棄物は圧力槽1内である程度加水分解される。 After the waste is put into the pressure vessel 1, superheated steam or a mixed gas of superheated steam and saturated steam is supplied into the pressure vessel 1, sealed, and the temperature is 100 to 300° C. and the pressure is 0.1 to 4.0 MPa. Under the conditions of , stir while adjusting the water content with an external heating device and superheated steam (dry steam). Under the above temperature and pressure, organic acids such as fulvic acid contained in the waste are extracted into the mixed gas. Also, the waste is hydrolyzed to some extent in the pressure vessel 1 .

圧力槽1内の水分量は適切に保つ必要がある。水分量の調整は飽和蒸気や過熱蒸気や凝縮水によって賄われる。廃棄物に含まれる水分量が過多と判断される場合には、外部加熱装置を稼働させながら、飽和蒸気を加えず加熱蒸気のみを加え、水分が不足していると判断される場合には、飽和蒸気の量を多くする。また、処理時間は廃棄物の量や腐朽具合によって異なる。 The amount of water in the pressure vessel 1 must be maintained appropriately. Adjustment of the moisture content is covered by saturated steam, superheated steam and condensed water. If it is judged that the amount of water contained in the waste is excessive, only heating steam is added without adding saturated steam while operating the external heating device. Increase the amount of saturated steam. Also, the processing time varies depending on the amount of waste and the state of decay.

圧力槽1内の蒸気中には、固形物は含まれず、フルボ酸を含む有機酸が多量に含まれている。そこで、反応後の蒸気を排出蒸気配管8を介して熱交換器(冷却器)9に送り込み、冷却することでフルボ酸を含む有機酸を分離回収する。 The steam in the pressure vessel 1 does not contain solid matter and contains a large amount of organic acids including fulvic acid. Therefore, the steam after the reaction is sent to the heat exchanger (cooler) 9 through the exhaust steam pipe 8 and cooled to separate and recover organic acids including fulvic acid.

一方、排出口3からはフルボ酸を含む有機酸が溶けた凝縮水と固形物である炭化物質や灰質や無機物等が排出される。このため、固液分離装置によって凝縮水と炭化物質とに分離する。 On the other hand, condensed water in which organic acids including fulvic acid are dissolved, and carbonized substances, ash, inorganic substances, etc., which are solid substances, are discharged from the discharge port 3 . Therefore, it is separated into condensed water and carbonized substances by a solid-liquid separator.

分離した炭化物質は燃料や土壌改良剤として利用する。一方、フルボ酸を含む有機酸が溶けた凝縮水からは、フルボ酸やフミン酸を個別に精製するか、更に利用しやすい有機酸鉄の形態にする。 The separated carbonized material is used as a fuel or soil conditioner. On the other hand, from the condensed water in which the organic acid containing fulvic acid is dissolved, fulvic acid and humic acid are separately purified, or they are made into the form of organic acid iron which is more easily used.

図4は利用しやすい有機酸鉄の形態にする手段を説明したフロー図であり、圧力槽1からの蒸気中及び凝縮水には、フルボ酸を含む有機酸が含まれている。これらからフルボ酸を含む有機酸を回収する。 FIG. 4 is a flow diagram illustrating a means for forming an easily usable form of organic acid iron, and the steam and condensed water from the pressure vessel 1 contain organic acids including fulvic acid. Organic acids including fulvic acid are recovered from these.

この回収した有機酸にイオン化鉄を加え、再度圧力槽1内に投入する。そして圧力槽1内に過熱蒸気または過熱蒸気と飽和蒸気との混合気体を供給し、密閉状態にして、温度100~300℃、圧力0.1~4.0MPaの条件で撹拌する。又、この工程は、常温でも反応するが、大幅な時間増となる。 Ionized iron is added to the recovered organic acid, and the mixture is put into the pressure vessel 1 again. Then, superheated steam or a mixed gas of superheated steam and saturated steam is supplied into the pressure vessel 1, sealed, and stirred at a temperature of 100 to 300° C. and a pressure of 0.1 to 4.0 MPa. In addition, this step can be reacted even at room temperature, but the time is greatly increased.

上記処理によって有機酸と鉄とが反応し、フルボ酸を含むキレート鉄、二価鉄などの利用しやすい形態の有機酸鉄が得られる。 By the above-mentioned treatment, the organic acid and iron react with each other to obtain readily available forms of organic acid iron such as chelated iron containing fulvic acid and divalent iron.

図5~図7は第1、第2実施例を更に改良した第3実施例を示す。前記実施例と同一の部材については同一の番号を付し、説明を省略する。
この第3実施例では、廃棄物の投入口2として下半部が筒状になったホッパーとし、圧力槽1の内部にはスクープ(撹拌)装置を配置している。
5 to 7 show a third embodiment which is a further improvement of the first and second embodiments. The same reference numerals are given to the same members as those of the above embodiment, and the description thereof is omitted.
In this third embodiment, a hopper having a cylindrical lower half is used as a waste inlet 2, and a scoop (stirring) device is arranged inside the pressure vessel 1. As shown in FIG.

また、この実施例では圧力槽1の廃熱を利用して飽和蒸気発生ボイラー4を加熱し、熱交換器(冷却器)9の廃熱を利用して圧力槽1を加熱する構成としている。 In this embodiment, the waste heat of the pressure vessel 1 is used to heat the boiler 4 for generating saturated steam, and the waste heat of the heat exchanger (cooler) 9 is used to heat the pressure vessel 1 .

更に、圧力槽1に隣接して熱媒ボイラー13を配置している。この熱媒ボイラー13は圧力槽1の外側に設けた外部加熱装置14に送り込む熱媒体を加熱するものである。熱媒体としては例えば沸点の低いオイルを用いる。また、外部加熱装置14の構造としては、前記実施例と同様に圧力槽1の外郭を二重構造とするか、別途独立して圧力槽1の外側に配置してもよい。 Furthermore, a heat medium boiler 13 is arranged adjacent to the pressure vessel 1 . This heat medium boiler 13 heats a heat medium sent to an external heating device 14 provided outside the pressure vessel 1 . Oil with a low boiling point, for example, is used as the heat medium. As for the structure of the external heating device 14, the outer shell of the pressure vessel 1 may have a double structure as in the above-described embodiment, or it may be arranged independently outside the pressure vessel 1 separately.

外部加熱装置14の熱媒体は圧力槽1に熱を伝えたのち、回収配管15から熱媒ボイラー13に戻され、熱媒ボイラー13で加熱された後、配管16を介して外部加熱装置14に再び送り込まれる。 After transferring heat to the pressure vessel 1, the heat medium in the external heating device 14 is returned to the heat medium boiler 13 through the recovery pipe 15, heated in the heat medium boiler 13, and then sent to the external heating device 14 through the pipe 16. sent again.

熱媒体の保有する熱は、圧力槽を温めることに使用され、処理物の温度上昇や圧力槽の温度を維持する蓄熱器の役割も果たす。熱媒体は圧力槽内部を通らないので汚染されず、熱量を150℃以上の温度と熱媒体量に応じた熱量を保ったまま循環する。 The heat possessed by the heat transfer medium is used to heat the pressure vessel, and also serves as a heat accumulator that increases the temperature of the treated material and maintains the temperature of the pressure vessel. Since the heat medium does not pass through the inside of the pressure vessel, it is not polluted and circulates while maintaining a temperature of 150° C. or higher and a heat amount corresponding to the amount of heat medium.

以上において、第3実施例では、伐採樹木、腐朽菌が付着した樹木、きのこやきくらげ廃菌床などの農林業系廃棄物(好ましくは、腐朽菌などの菌類が繁殖したもの)と一般有機系廃棄物をホッパー2に順次蓄積し、投入口3から圧力槽1に投入する。 In the above, in the third embodiment, agricultural and forestry waste (preferably, fungi such as decaying fungi are propagated) such as felled trees, trees with decaying fungi attached, mushrooms and cloud ear waste mushroom beds, and general organic waste Waste materials are sequentially accumulated in a hopper 2 and introduced into a pressure vessel 1 through an inlet 3.

混合廃棄物を圧力槽1に投入したら、密閉状態にして、圧力槽1内に飽和蒸気や過熱蒸気や過熱蒸気と飽和蒸気との混合気体を供給し、温度100~300℃、圧力0.1~4.0MPaの条件で、外部加熱装置14と過熱蒸気(乾燥蒸気)にて水分調整しつつスクープ機能にて蒸気に均一に触れさせながら加水分解する。 After the mixed waste is introduced into the pressure vessel 1, the pressure vessel 1 is sealed, and saturated steam, superheated steam, or a mixed gas of superheated steam and saturated steam is supplied into the pressure vessel 1 at a temperature of 100 to 300° C. and a pressure of 0.1. Under the condition of up to 4.0 MPa, hydrolysis is performed while adjusting the water content with the external heating device 14 and superheated steam (dry steam) and uniformly touching the steam with the scoop function.

圧力槽1内での反応は、混合廃棄物を構成するカルボニル基とヒドロキシ基が結合し、有機酸の構成要素であるカルボキシル基が形成される。これにより有機酸の産生量が増加する。 In the reaction within the pressure vessel 1, carbonyl groups and hydroxyl groups constituting the mixed waste are combined to form carboxyl groups, which are constituents of organic acids. This increases the production of organic acids.

圧力槽1内で行われる反応は加水分解反応であるので、飽和蒸気や乾燥蒸気を維持するための、適切な水分量が必要になるが、これらは飽和蒸気や過熱蒸気や凝縮水や分解される物質の水分含有量によって賄われる。廃棄物に含まれる水分量が過多と判断される場合には、外部加熱装置を稼働させながら、飽和蒸気を加えず過熱蒸気のみを加え、水分が不足していると判断される場合には、飽和蒸気の量を多くする。また、処理時間は難分解性廃棄物の量や腐朽具合や排出状態、液状か固形かによって異なる。 Since the reaction performed in the pressure vessel 1 is a hydrolysis reaction, an appropriate amount of water is required to maintain saturated steam and dry steam, but these are saturated steam, superheated steam, condensed water, and decomposed It is covered by the moisture content of the If it is judged that the amount of water contained in the waste is excessive, only superheated steam is added without adding saturated steam while operating the external heating device. Increase the amount of saturated steam. Also, the treatment time varies depending on the amount of persistent waste, the state of decay, the state of discharge, and whether it is liquid or solid.

圧力槽1内での加水分解処理が終了したならば、排出口3から反応後の処理物を取り出す。排出口3からはフルボ酸等を含む凝縮水とフルボ酸等を含む固形物である炭化物質を排出し、操作によってはフルボ酸を含む固形物のみを排出し、その他物質としては灰質や無機物等が排出される。このため、固液分離装置によって凝縮水と炭化物質とを分離することもある。 After the hydrolysis treatment in the pressure vessel 1 is completed, the product after the reaction is taken out from the discharge port 3 . From the discharge port 3, condensed water containing fulvic acid, etc., and carbonized substances, which are solids containing fulvic acid, etc., are discharged. is discharged. For this reason, the condensed water and the carbonized substance are sometimes separated by a solid-liquid separator.

分離した固形物は燃料やフルボ酸等を含む土壌改良剤として利用する。一方、フルボ酸等を含む凝縮水からは、フルボ酸やフミン酸を個別に精製するか、更に利用しやすい有機酸鉄の形態にする。 The separated solid matter is used as a soil conditioner containing fuel and fulvic acid. On the other hand, from the condensed water containing fulvic acid and the like, fulvic acid and humic acid are separately purified, or they are made into the form of organic acid iron which is more easily used.

圧力槽1内での加水分解処理が終了した蒸気中には、固形物は含まれず、フルボ酸等が多量に含まれている。そこで、反応後の蒸気を排出蒸気配管8を介して熱交換器(冷却器)9に送り込み、冷却することでフルボ酸等を分離回収する。 The steam that has undergone the hydrolysis treatment in the pressure vessel 1 does not contain solid matter, but contains a large amount of fulvic acid and the like. Therefore, the steam after the reaction is sent to the heat exchanger (cooler) 9 through the exhaust steam pipe 8 and cooled to separate and recover fulvic acid and the like.

図6は利用しやすい有機酸鉄の形態にする手段を説明したフロー図であり、圧力槽1内での加水分解処理が終了した蒸気中及び凝縮水には、フルボ酸等が含まれている。これらからフルボ酸等を回収する。 FIG. 6 is a flow chart explaining the means for making the form of organic acid iron that is easy to use, and the steam and condensed water after the hydrolysis treatment in the pressure vessel 1 contains fulvic acid and the like. . Fulvic acid and the like are recovered from these.

第二工程(フルボ酸等の有機酸から有機酸鉄を作る工程)では、図7に示すように回収した有機酸にイオン化鉄を加え、再度圧力槽1内に投入する。そして圧力槽1内に飽和蒸気または過熱蒸気または過熱蒸気と飽和蒸気との混合気体を供給し、密閉状態にして、温度100~300℃、圧力0.1~4.0MPaの条件でスクープすることにより、有機酸鉄を製造することができる。又、この工程は、常温でも反応するが、その場合大幅な時間増となる。 In the second step (step of making organic acid iron from organic acid such as fulvic acid), as shown in FIG. Then, saturated steam, superheated steam, or a mixed gas of superheated steam and saturated steam is supplied into the pressure vessel 1, sealed, and scooped under conditions of a temperature of 100 to 300 ° C. and a pressure of 0.1 to 4.0 MPa. By, organic acid iron can be produced. In addition, this step also reacts at room temperature, but in that case, the time is greatly increased.

上記処理によって有機酸と鉄とが反応し、フルボ酸鉄やキレート鉄、二価鉄などの利用しやすい形態の有機酸鉄が得られる。 By the above treatment, the organic acid and iron react with each other to obtain readily available forms of organic acid iron such as fulvic acid iron, chelated iron, and divalent iron.

1…圧力槽、2…廃棄物の投入口、3…凝縮水などの排出口、4…飽和蒸気発生ボイラー、5…配管、6…過熱蒸気発生装置(加熱部)、7…配管、8…排出蒸気配管、9…熱交換器(冷却器)、10…配管、11…外部加熱装置からの配管、12…ボイラーへのエネルギー循環用配管、13…熱媒ボイラー、14…外部加熱装置、15…回収配管、16…配管。 DESCRIPTION OF SYMBOLS 1... Pressure tank, 2... Waste inlet, 3... Condensed water outlet, 4... Saturated steam generating boiler, 5... Piping, 6... Superheated steam generator (heating unit), 7... Piping, 8... Exhaust steam piping 9 Heat exchanger (cooler) 10 Piping 11 Piping from external heating device 12 Energy circulation piping to boiler 13 Heat medium boiler 14 External heating device 15 ... collection piping, 16 ... piping.

Claims (5)

有機系廃棄物を高温高圧処理用の圧力槽に投入し、この圧力槽内に飽和蒸気及び過熱蒸気を導入し、密閉状態で温度100~300℃、圧力0.1~4.0MPaの条件下で、前記過熱蒸気で水分調整された蒸気の中で撹拌し、フルボ酸を含む有機酸を有機系廃棄物から前記飽和蒸気と過熱蒸気との混合蒸気中に抽出し、この抽出された有機酸を含む蒸気を圧力槽から取り出し冷却し、冷却後の液状物質から有機酸を得ることを特徴とする有機酸の産生方法。 Put the organic waste into a pressure vessel for high-temperature and high-pressure treatment, introduce saturated steam and superheated steam into the pressure vessel, and seal it under conditions of a temperature of 100 to 300 ° C. and a pressure of 0.1 to 4.0 MPa. Then, the organic acid containing fulvic acid is extracted from the organic waste into the mixed steam of the saturated steam and the superheated steam by stirring in the steam whose moisture content is adjusted with the superheated steam, and the extracted organic acid A method for producing an organic acid, characterized in that the vapor containing is taken out from the pressure vessel and cooled, and the organic acid is obtained from the liquid substance after cooling. 請求項1に記載の有機酸の産生方法において、前記圧力槽内での有機酸の抽出は、気相におけるプロトンとヒドロキシ基の動きが活発化し、カルボニル基とヒドロキシ基が結合し、有機酸の構成要素であるカルボキシル基が形成され、これにより有機酸の産生量が増加することを特徴とする有機酸の産生方法。 2. In the method for producing an organic acid according to claim 1, the extraction of the organic acid in the pressure vessel activates the movement of protons and hydroxyl groups in the gas phase, bonds the carbonyl group and the hydroxyl group, and produces the organic acid. A method for producing an organic acid, characterized in that a carboxyl group, which is a constituent, is formed, thereby increasing the amount of production of the organic acid. 請求項1に記載の有機酸の産生方法において、蒸気の水分率を制御することで、液状有機酸と固形物質に含まれた状態の有機酸を任意に取り出すことを特徴とする有機酸の産生方法。 2. The method for producing an organic acid according to claim 1, wherein the liquid organic acid and the organic acid contained in the solid substance are arbitrarily extracted by controlling the moisture content of the steam. Method. 請求項1に記載の有機酸の産生方法において、前記圧力槽の外部に加熱装置を設け、圧力槽を外側からも加熱することを特徴とする有機酸の産生方法。 2. The method for producing an organic acid according to claim 1, wherein a heating device is provided outside said pressure vessel so that said pressure vessel is also heated from outside. 請求項1に記載の方法によって得た有機酸にイオン化鉄を加え、次いでイオン化鉄を加えた有機酸を高温高圧処理用の圧力槽に投入し、この圧力槽内に飽和蒸気及び過熱蒸気を導入し、密閉状態で温度100~300℃、圧力0.1~4.0MPaの条件化の蒸気の中で有機酸とイオン化鉄とを反応させ、フルボ酸鉄を含む有機酸鉄(キレート鉄、二価鉄)を得ることを特徴とする有機酸鉄の製造方法。
Ionized iron is added to the organic acid obtained by the method according to claim 1, then the organic acid to which the ionized iron is added is put into a pressure vessel for high-temperature and high-pressure treatment, and saturated steam and superheated steam are introduced into this pressure vessel. Then, in a sealed state, the organic acid and ionized iron are reacted in steam conditioned at a temperature of 100 to 300 ° C. and a pressure of 0.1 to 4.0 MPa, and an organic acid iron containing iron fulvic acid (chelated iron, di A method for producing an organic acid iron, characterized by obtaining a valuable iron).
JP2022198477A 2021-12-20 2022-12-13 Organic acid production method and organic acid iron production method Active JP7240552B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021205808 2021-12-20
JP2021205808 2021-12-20

Publications (2)

Publication Number Publication Date
JP7240552B1 true JP7240552B1 (en) 2023-03-15
JP2023091756A JP2023091756A (en) 2023-06-30

Family

ID=85569500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022198477A Active JP7240552B1 (en) 2021-12-20 2022-12-13 Organic acid production method and organic acid iron production method

Country Status (1)

Country Link
JP (1) JP7240552B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081150A (en) 2017-10-31 2019-05-30 G−8 International Trading 株式会社 Manufacturing method of fulvic acid solution and fulvic acid solution
JP2019129709A (en) 2018-01-29 2019-08-08 G−8 International Trading 株式会社 Method for manufacturing fulvic acid iron solution
JP2019129710A (en) 2018-01-29 2019-08-08 G−8 International Trading 株式会社 Method for manufacturing fulvic acid iron hydroxide solution
JP2019130434A (en) 2018-01-29 2019-08-08 G−8 International Trading 株式会社 Manufacturing method of fulvic acid polysilica iron solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081150A (en) 2017-10-31 2019-05-30 G−8 International Trading 株式会社 Manufacturing method of fulvic acid solution and fulvic acid solution
JP2019129709A (en) 2018-01-29 2019-08-08 G−8 International Trading 株式会社 Method for manufacturing fulvic acid iron solution
JP2019129710A (en) 2018-01-29 2019-08-08 G−8 International Trading 株式会社 Method for manufacturing fulvic acid iron hydroxide solution
JP2019130434A (en) 2018-01-29 2019-08-08 G−8 International Trading 株式会社 Manufacturing method of fulvic acid polysilica iron solution

Also Published As

Publication number Publication date
JP2023091756A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
Szogi et al. Methods for treatment of animal manures to reduce nutrient pollution prior to soil application
JP4866845B2 (en) Methods and systems for conversion of biomass to carboxylic acids and alcohols
Iwuozor et al. A review on the thermochemical conversion of sugarcane bagasse into biochar
Vakili et al. A review on composting of oil palm biomass
JP2012228683A (en) Method for treating tropical plant waste or wood waste and recycling method thereof
Van Nguyen et al. Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil
US20110127778A1 (en) Method and apparatus for extracting energy from biomass
CN101508603A (en) High-speed composting process and apparatus
CN102320873B (en) Method for preparing composite slow-release fertilizer by common utilization of biomass and sludge
CN104229797B (en) Pyrolysis activation combustion gasification all-in-one oven, refuse landfill Coordination Treatment system, activated carbon manufacture method
CN101591130A (en) The treatment process of the whole recycling and zero discharges of active sludge
KR102319965B1 (en) Recycling method of organic waste and eco friendly-high functional Neo Humus Soil produced by the method
JP2002105466A (en) Manufacturing method of fuel gas
EP1688475A1 (en) A method of treating manure slurry, a fibrous product produced from manure slurry, uses of such a fibrous product
CN103124792A (en) A process for the conversion of biomass of plant origen, and a combustion process
JP7240552B1 (en) Organic acid production method and organic acid iron production method
KR100822377B1 (en) Method for fertilization treatment of byproduct accompanying digestion treatability of livestock excretion and device for using the same
CN106459796A (en) Processed biomass pellets from beneficiated organic-carbon-containing feedstock
JP4164658B2 (en) Method for producing fuel gas
JP2011205934A (en) Method for producing organic acid, organic acid, biodegradable plastic, snow melting agent and recycle system
CN103333716A (en) Method for preparing hydrogen-rich gas with sludge as raw material and product
CN101463424A (en) Method for extracting valuable metal from heavy metal-enriched hyper-accumulator
US10781390B2 (en) Method of production of fuels from biomass, from low quality coals and from wastes, residues and sludges from sew age treatment plants
Yu et al. Influences of hydrothermal carbonization on phosphorus availability of swine manure-derived hydrochar: Insights into reaction time and temperature
EP1683766A1 (en) Method of reducing the pollution load of purines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230303

R150 Certificate of patent or registration of utility model

Ref document number: 7240552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350