JP2019130434A - Manufacturing method of fulvic acid polysilica iron solution - Google Patents

Manufacturing method of fulvic acid polysilica iron solution Download PDF

Info

Publication number
JP2019130434A
JP2019130434A JP2018012268A JP2018012268A JP2019130434A JP 2019130434 A JP2019130434 A JP 2019130434A JP 2018012268 A JP2018012268 A JP 2018012268A JP 2018012268 A JP2018012268 A JP 2018012268A JP 2019130434 A JP2019130434 A JP 2019130434A
Authority
JP
Japan
Prior art keywords
fulvic acid
raw material
polysilica iron
steam
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018012268A
Other languages
Japanese (ja)
Other versions
JP7030259B2 (en
Inventor
松井 三郎
Saburo Matsui
三郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G8 International Trading Co Ltd
Original Assignee
G8 International Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G8 International Trading Co Ltd filed Critical G8 International Trading Co Ltd
Priority to JP2018012268A priority Critical patent/JP7030259B2/en
Priority to US16/961,992 priority patent/US20210070794A1/en
Priority to PCT/JP2019/001951 priority patent/WO2019146610A1/en
Priority to EP19743476.4A priority patent/EP3747262B1/en
Priority to TW108103372A priority patent/TWI765137B/en
Publication of JP2019130434A publication Critical patent/JP2019130434A/en
Application granted granted Critical
Publication of JP7030259B2 publication Critical patent/JP7030259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To provide a manufacturing method of a fulvic acid polysilica iron solution capable of efficiently manufacturing fulvic acid iron in a short time.SOLUTION: A manufacturing method of a fulvic acid polysilica iron solution comprises a process of preparing a processing device 10 having a closed vessel 12 having a closable treatment space on the inside, steam jetting means 14 for jetting high temperature-high pressure steam, a supply part for supplying a raw material and a discharge part 16 for discharging a processing liquid to an external part, a raw material input process of inputting a woody material and/or a grass material and polysilica iron from the supply part in the treatment space of the closed vessel 12, a processing process of providing a mixed solution including fulvic acid polysilica iron by subcritical water reaction treating while agitating a raw material by introducing steam of 2-35 atm in pressure at 120-250°C in the temperature of the woody material and steam of 2-25 atm in pressure at 100-200°C of the grass material and a process of providing a fulvic acid polysilica iron solution by separating fulvic acid polysilica iron from the mixed solution.SELECTED DRAWING: Figure 1

Description

本発明は、フルボ酸ポリシリカ鉄溶液の製造方法に関する。   The present invention relates to a method for producing a fulvic acid polysilica iron solution.

フルボ酸は、自然界では、植物の葉や茎の部分が腐植してできた腐植物質中に生成される。そして、このフルボ酸が、土中での無酸素状態で、水に溶けている鉄とキレート作用により、結びついてフルボ酸鉄が生成される。このフルボ酸鉄は、河川により海へ運ばれ、植物プランクトンや海藻の生育に寄与する。近年では、このフルボ酸鉄により、海の磯焼け防止、海底の堆積物の分解、河川の浄化を行うことが報告されている。   In the natural world, fulvic acid is produced in humic substances formed by humming plant leaves and stems. Then, this fulvic acid is combined with iron dissolved in water in an oxygen-free state in the soil, and iron fulvic acid is generated. This fulvic acid iron is transported to the sea by rivers and contributes to the growth of phytoplankton and seaweed. In recent years, it has been reported that the iron fulvic acid can prevent the burning of the sea, decompose the sediment on the seabed, and purify the river.

また、フルボ酸は珪酸とも結合して河川から海へ運ばれている。海の植物プランクトンの中で、珪藻類が食物連鎖において重要な役割はたしているが、珪藻類は増殖に珪素を必要とする。珪素を効率良く供給するにはフルボ酸鉄に加えて珪酸が結合したフルボ酸ポリシリカ鉄が最適である。 In addition, fulvic acid is combined with silicic acid and transported from rivers to the sea. Among sea phytoplankton, diatoms play an important role in the food chain, but diatoms require silicon for growth. In order to efficiently supply silicon, fulvic acid polysilica iron combined with silicic acid in addition to iron fulvic acid is optimal.

上記のように、自然界においては、フルボ酸と鉄、フルボ酸とシリカとの出会いは偶然性に支配され、また、特許文献1,2に記載された製造方法では、フルボ酸鉄の生成量も不明で、その生成量をコントロールすることは困難で、フルボ酸鉄含有物質やフルボ酸鉄を安定して供給できず、製造コストも高いという問題も解決できない。   As described above, in the natural world, the encounter between fulvic acid and iron, and fulvic acid and silica are governed by chance, and in the production methods described in Patent Documents 1 and 2, the production amount of fulvic acid iron is unknown. Therefore, it is difficult to control the production amount, and it is impossible to stably supply iron fulvic acid-containing substances and iron fulvic acid, and the problem of high manufacturing cost cannot be solved.

そこで、特許文献3では、上記の従来の問題を解決すべく、フルボ酸鉄含有物の製造方法が提案され、この提案されたフルボ酸鉄含有物の製造方法は、有機廃棄物の発酵・殺菌処理によりフルボ酸が生成した発酵処理物へシリカ鉄系からなる液体物質を混合・熟成することを特徴とするものである。   Therefore, in Patent Document 3, a method for producing an iron fulvic acid-containing material is proposed in order to solve the above-described conventional problems, and the proposed method for producing an iron fulvic acid-containing material is used for fermentation / sterilization of organic waste. A liquid substance composed of silica iron is mixed and aged in a fermented processed product in which fulvic acid is generated by the treatment.

この製造方法によれば、有機廃棄物を発酵・殺菌処理したものにポリシリカ鉄から成る液体物質を混合し、熟成処理中に有機廃棄物の発酵・殺菌過程で生成するフルボ酸とシリカ鉄系の鉄成分とキレート反応することで、水溶性シリカを含んだフルボ酸ポリシリカ鉄資材を安定的に、安価に製造することができる可能性がある。
ところで、自然界におけるシリカの欠乏による警鐘がなされているが、有用物質であるフルボ酸シリカ鉄あるいはフルボ酸シリカは、自然界に存在するのみで、新たに作りだす方法は、未だ確立されていない。
前記特許文献3の製造方法の対象は、あくまでも水溶性ポリシリカを含んだフルボ酸ポリシリカ鉄資材であって、生成したフルボ酸ポリシリカ鉄ではない。
According to this manufacturing method, a liquid substance composed of polysilica iron is mixed with fermented and sterilized organic waste, and the fulvic acid and silica iron-based material produced in the fermentation and sterilization process of organic waste during the aging process are mixed. By chelating with an iron component, there is a possibility that a fulvic acid polysilica iron material containing water-soluble silica can be produced stably and inexpensively.
By the way, although there is a warning due to the lack of silica in the natural world, a useful substance, iron iron or fulvic acid silica, exists only in the natural world, and a new method for producing it has not yet been established.
The object of the production method of Patent Document 3 is a fulvic acid polysilica iron material containing water-soluble polysilica, and not the produced fulvic acid polysilica iron.

特開2005−34140号公報JP 2005-34140 A 特許第4710036号公報Japanese Patent No. 4710036 再表2014−38596号公報No. 2014-38596

そこで、本発明は、フルボ酸ポリシリカ鉄を効率よく短時間で製造することのできるフルボ酸ポリシリカ鉄の製造方法を提供することを目的とするものである。   Then, this invention aims at providing the manufacturing method of the fulvic acid polysilica iron which can manufacture fulvic acid polysilica iron efficiently in a short time.

上記目的は、下記(1)〜(24)の構造の本発明によるワーク移送装置により達成することができる。
(1)
内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、木本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が120〜250℃で、圧力が5〜35atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液を得る処理工程、および、
取得した混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸ポリシリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
(2)
内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、木本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が120〜250℃で、圧力が5〜35atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液と、該混合溶液内に残留する固形残留物を得る処理工程、
前処理工程で取得した固形残留物を混合溶液から分離して、固形残留物を取得する固形残留物取得工程、および
固形残留物が分離された混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸ポリシリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
(3)
前記木材が伐採材または廃材である前記(1)または(2)のフルボ酸ポリシリカ鉄溶液の製造方法。
(4)
前記伐採材が、広葉樹または針葉樹によるものである前記(3)のフルボ酸ポリシリカ鉄溶液の製造方法。
(5)
前記広葉樹が白樺、柳、栗、ナラまたはブナである前記(4)のフルボ酸フルボ酸ポリシリカ鉄溶液の製造方法。
(6)
前記針葉樹が、松、杉、ヒノキまたはあすなろである前記(4)のフルボ酸ポリシリカ鉄溶液の製造方法。
(7)
前記廃材が無垢材または合板材である前記(3)のフルボ酸ポリシリカ鉄溶液の製造方法。
(8)
前記処理工程が、30分〜12時間 行われる前記(1)〜(7)のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。
(9)
前記主原料が広葉樹であり、前記処理工程において導入される蒸気の圧力が5〜25atmである前記(3)のフルボ酸ポリシリカ鉄溶液の製造方法。
(10)
前記主原料が針葉樹であり、前記処理工程において導入される蒸気の圧力が20〜35atmである前記(3)のフルボ酸ポリシリカ鉄溶液の製造方法。
(11)
内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、イネ科の植物からなる草本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が100〜200℃で、圧力が2〜25atmの蒸気を、前記原料が投入されている前記処理空間内に導入しつつ、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液を得る処理工程、および、
取得した混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸ポリシリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
(12)
内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、イネ科の植物からなる草本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が100〜200℃で、圧力が5〜25atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液と、該混合溶液内に残留する固形残留物を得る処理工程、
前処理工程で取得した固形残留物を混合溶液から分離して、固形残留物取得工程、および
固形残留物が分離された混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸シリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
(13)
前記草本材が、伐採または刈り取り材、または廃材である前記(11)または(12)のフルボ酸ポリシリカ鉄溶液の製造方法。
(14)
前記伐採または刈り取り材が、イネ・コムギ・オオムギ・カラスムギ・ライムギ・キビ・アワ・ヒエ・トウモロコシ・シコクビエ・モロコシ・タケ・マコモ・サトウキビ・ハトムギ・ヨシ・ススキ・ササ・ダンチク・シロガネヨシ・シバのいずれか一種以上によるものである前記(13)のフルボ酸ポリシリカ鉄溶液の製造方法。
(15)
前記伐採または刈り取り材が、イネわらまたは麦わらである前記(14)のフルボ酸ポリシリカ鉄溶液の製造方法。
(16)
前記伐採または刈り取り材が、竹材である前記(15)のフルボ酸ポリシリカ鉄溶液の製造方法。
(17)
前記竹材がチップ状となっている前記(16)のフルボ酸ポリシリカ鉄溶液の製造方法。
(18)
原料が、使用済みの廃材である前記(11)のフルボ酸ポリシリカ鉄溶液の製造方法。
(19)
廃材が古くなった畳の床である前記(18)のフルボ酸ポリシリカ鉄溶液の製造方法。
(20)
前記処理工程が、30分―12時間行われる前記(11)〜(19)のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。
(21)
容積割合で、原料を前記処理空間の90%以下導入する前記(1)〜(20)のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。
(22)
容積割合で、原料を前記処理空間の50〜80%導入する前記(1)〜(20)のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。
(23)
前記処理工程における撹拌が、前記処理空間内に配置された回転する撹拌部材により行われる前記(1)〜(22)のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。
(24)
前記原料投入工程において、添加物として、アルカリ性溶液を添加する前記(1)〜(23)のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。
The above object can be achieved by the workpiece transfer apparatus according to the present invention having the following structures (1) to (24).
(1)
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
A raw material charging step of charging a raw material mainly composed of wood material and polysilica iron from the supply unit into the processing space of the closed container of the processing device,
Steam having a temperature of 120 to 250 ° C. and a pressure of 5 to 35 atm is introduced into the processing space in which the raw material is charged, and the raw material is subjected to a subcritical water reaction treatment while stirring the raw material. A treatment step to obtain a mixed solution containing acid polysilica iron, and
A method for producing a fulvic acid polysilica iron solution, comprising: obtaining a fulvic acid polysilica iron solution by separating fulvic acid polysilica iron from the obtained mixed solution to obtain a fulvic acid polysilica iron solution.
(2)
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
A raw material charging step of charging a raw material mainly composed of wood material and polysilica iron from the supply unit into the processing space of the closed container of the processing device,
Steam having a temperature of 120 to 250 ° C. and a pressure of 5 to 35 atm is introduced into the processing space in which the raw material is charged, and the raw material is subjected to a subcritical water reaction treatment while stirring the raw material. A mixed solution containing acid polysilica iron and a treatment step for obtaining a solid residue remaining in the mixed solution;
The solid residue obtained in the pretreatment step is separated from the mixed solution, the solid residue obtaining step for obtaining the solid residue, and the fulvic acid polysilica iron is separated from the mixed solution from which the solid residue is separated, A fulvic acid polysilica iron solution obtaining step for obtaining a fulvic acid polysilica iron solution is provided.
(3)
The method for producing a fulvic acid polysilica iron solution according to the above (1) or (2), wherein the wood is felled wood or waste wood.
(4)
(3) The method for producing a fulvic acid polysilica iron solution according to (3) above, wherein the felled material is made of hardwood or softwood.
(5)
(4) The method for producing a fulvic acid fulvic acid polysilica iron solution according to (4) above, wherein the broad-leaved tree is white birch, willow, chestnut, oak or beech.
(6)
(4) The method for producing a fulvic acid polysilica iron solution according to (4) above, wherein the conifer is pine, cedar, hinoki or tomato.
(7)
The method for producing a fulvic acid polysilica iron solution according to (3), wherein the waste material is a solid material or a plywood material.
(8)
The method for producing a fulvic acid polysilica iron solution according to any one of (1) to (7), wherein the treatment step is performed for 30 minutes to 12 hours.
(9)
The method for producing a fulvic acid polysilica iron solution according to (3), wherein the main raw material is hardwood and the pressure of the steam introduced in the treatment step is 5 to 25 atm.
(10)
The method for producing a fulvic acid polysilica iron solution according to (3), wherein the main raw material is conifer and the pressure of the steam introduced in the treatment step is 20 to 35 atm.
(11)
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
Into the processing space of the closed container of the processing apparatus, a raw material charging step of charging a raw material mainly composed of herbaceous material made of gramineous plants and polysilica iron from the supply unit,
While introducing the steam at a temperature of 100 to 200 ° C. and a pressure of 2 to 25 atm into the treatment space into which the raw material has been charged, the raw material is subjected to a subcritical water reaction treatment while stirring the raw material, A treatment step to obtain a mixed solution containing fulvic acid polysilica iron, and
A method for producing a fulvic acid polysilica iron solution, comprising: obtaining a fulvic acid polysilica iron solution by separating fulvic acid polysilica iron from the obtained mixed solution to obtain a fulvic acid polysilica iron solution.
(12)
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
Into the processing space of the closed container of the processing apparatus, a raw material charging step of charging a raw material mainly composed of herbaceous material made of gramineous plants and polysilica iron from the supply unit,
Steam having a temperature of 100 to 200 ° C. and a pressure of 5 to 25 atm is introduced into the treatment space where the raw material is charged, and the raw material is subjected to a subcritical water reaction treatment while stirring the raw material. A mixed solution containing acid polysilica iron and a treatment step for obtaining a solid residue remaining in the mixed solution;
The solid residue obtained in the pretreatment step is separated from the mixed solution, and the fulvic acid polysilica iron is separated from the solid residue obtaining step and the mixed solution from which the solid residue has been separated to obtain a fulvic acid silica iron solution. A method for producing a fulvic acid polysilica iron solution, comprising: obtaining a fulvic acid polysilica iron solution.
(13)
The method for producing a fulvic acid polysilica iron solution according to (11) or (12), wherein the herbaceous material is a felling or cutting material or a waste material.
(14)
The harvested or harvested material is any one of rice, wheat, barley, oats, rye, millet, millet, millet, sorghum, sorghum, bamboo shoot, sugar cane, pearl barley, reed, suki, sasa, danchiku, shiroganeyoshi and shiba. (13) The method for producing a fulvic acid polysilica iron solution according to the above (13).
(15)
The method for producing a fulvic acid polysilica iron solution according to (14), wherein the felling or cutting material is rice straw or wheat straw.
(16)
(15) The method for producing a fulvic acid polysilica iron solution according to (15), wherein the felling or cutting material is bamboo.
(17)
The method for producing a fulvic acid polysilica iron solution according to (16), wherein the bamboo material is in a chip shape.
(18)
The manufacturing method of the fulvic acid polysilica iron solution of said (11) whose raw material is a used waste material.
(19)
(18) The method for producing a fulvic acid polysilica iron solution according to (18), wherein the waste material is an old tatami floor.
(20)
The method for producing a fulvic acid polysilica iron solution according to any one of (11) to (19), wherein the treatment step is performed for 30 minutes to 12 hours.
(21)
The method for producing a fulvic acid polysilica iron solution according to any one of (1) to (20), wherein the raw material is introduced in a volume ratio of 90% or less of the treatment space.
(22)
The method for producing a fulvic acid polysilica iron solution according to any one of (1) to (20), wherein the raw material is introduced in an amount of 50 to 80% by volume.
(23)
The method for producing a fulvic acid polysilica iron solution according to any one of (1) to (22), wherein the stirring in the processing step is performed by a rotating stirring member arranged in the processing space.
(24)
The method for producing a fulvic acid polysilica iron solution according to any one of (1) to (23), wherein an alkaline solution is added as an additive in the raw material charging step.

本発明は、フルボ酸ポリシリカ鉄の製造方法を初めて提供するものであって、また、本方法によれば、フルボ酸ポリシリカ鉄の製造過程において、発酵や熟成といった時間が掛かる工程を必要としないので、極めて短時間で安定してフルボ酸ポリシリカ鉄を製造することができる。   The present invention provides for the first time a method for producing fulvic acid polysilica iron, and according to the present method, the production process of fulvic acid polysilica iron does not require time-consuming processes such as fermentation and aging. The fulvic acid polysilica iron can be produced stably in an extremely short time.

本発明の実施の形態によるフルボ酸ポリシリカ鉄溶液の製造方法を実施するための製造装置の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing apparatus for enforcing the manufacturing method of the fulvic acid polysilica iron solution by embodiment of this invention.

以下、本発明のフルボ酸ポリシリカ鉄溶液の製造方法の実施の形態を説明する。
先ず、本発明の実施の形態によるフルボ酸ポリシリカ鉄溶液の製造方法を実施するための製造装置(処理装置)10の一例について説明する。
図1は、当該製造装置の断面図である。
Hereinafter, an embodiment of a method for producing a fulvic acid polysilica iron solution of the present invention will be described.
First, an example of the manufacturing apparatus (processing apparatus) 10 for implementing the manufacturing method of the fulvic acid polysilica iron solution by embodiment of this invention is demonstrated.
FIG. 1 is a sectional view of the manufacturing apparatus.

前記製造装置10は、内部に木本材またはイネ科である植物の破断材である原料を収容する閉鎖空間S1を有する密閉容器12と、密閉容器12内に、亜臨界水である高温高圧の蒸気を噴出する蒸気噴出手段14と、密閉容器12の底側に設けられ開閉機構26を有する排出口16と、排出口16からの直接排出操作のみで処理された原料と液体とを分離して回収する分離回収手段18と、を備えている。密閉容器12の形状は、例えば、矩形箱形、立体多角筒形、円筒形、樽型、ドラム型等その他任意形状でよいが、下面側に設けられている排出口16から重力を利用して排出されるような形状が好ましい。密閉容器の下面が排出口へ向けて下り傾斜に設けられていると好適である。   The manufacturing apparatus 10 includes a sealed container 12 having a closed space S1 that accommodates a raw material that is a broken material of a wood material or a plant belonging to the family Gramineae, and a high-temperature and high-pressure that is subcritical water in the sealed container 12. The steam jetting means 14 for jetting steam, the discharge port 16 provided on the bottom side of the sealed container 12 and having an opening / closing mechanism 26, and the raw material and liquid processed only by direct discharge operation from the discharge port 16 are separated. And a separation and recovery means 18 for recovery. The shape of the airtight container 12 may be, for example, a rectangular box shape, a three-dimensional polygonal cylinder shape, a cylindrical shape, a barrel shape, a drum shape, or any other arbitrary shape, but using gravity from the discharge port 16 provided on the lower surface side. A shape that is discharged is preferred. It is preferable that the bottom surface of the sealed container is provided with a downward slope toward the discharge port.

分離回収手段18は、密閉容器12の閉鎖空間S1とは異なる他の閉鎖空間S2を有し、排出口16を介して該密閉容器12内部に連通する液体の回収部50と、密閉容器12内の液体のみを排出口16を介して自然流下により回収部50へ回収させる自然流下回収機構52と、を有することとしてもよい。排出口16付近で処理された固形分としての原料は密閉容器12内にそのまま残り、液体のみが重力を利用して回収部50へ自然流下することにより、原料と液体とを分離回収できる。回収部50の構成は、例えば、金属製タンクや立体多角形状の箱体、管状体等、液体を回収する閉鎖空間S2を有するものであれば任意のものでもよい。収容部を複数個形成してもよい。   The separation / recovery means 18 has another closed space S2 different from the closed space S1 of the sealed container 12, a liquid recovery unit 50 communicating with the inside of the sealed container 12 through the discharge port 16, and the inside of the sealed container 12 It is good also as having the natural flow collection | recovery mechanism 52 which collects only the liquid of this to the collection | recovery part 50 by natural flow through the discharge port 16. The raw material as solid content processed in the vicinity of the discharge port 16 remains in the sealed container 12 as it is, and only the liquid naturally flows down to the recovery unit 50 using gravity, whereby the raw material and the liquid can be separated and recovered. The configuration of the recovery unit 50 may be arbitrary as long as it has a closed space S2 for recovering liquid, such as a metal tank, a three-dimensional polygonal box, or a tubular body. A plurality of accommodating portions may be formed.

自然流下回収機構52は、液体の回収操作前に、密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S1とを同圧にさせる同圧形成手段62を含むこととしてもよい。密閉容器12と回収部50とを常時同圧にさせる構成とすると、処理後に液体の回収作業を直ちに行え、作業時間の短縮が図れる。
なお、上の例では、分離手段を処理装置に組み込んだ例について説明したが、処理装置自体には、分離手段を設けること無く、別体で設けてもよい。
The natural flow recovery mechanism 52 may include the same pressure forming means 62 that makes the closed space S1 of the sealed container 12 and the closed space S1 of the recovery unit 50 have the same pressure before the liquid recovery operation. If the sealed container 12 and the recovery unit 50 are configured to always have the same pressure, the liquid recovery operation can be performed immediately after the processing, and the operation time can be shortened.
In the above example, the example in which the separation means is incorporated in the processing apparatus has been described. However, the processing apparatus itself may be provided separately without providing the separation means.

また、前記密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2を同圧にするための同圧形成手段62を設けてもよい。この同圧形成手段62は、排出口16を介した液体の回収経路と異なる別の経路で密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2とを連通させる同圧連通管64を有することとしてもよい。この同圧連通管64は、前記閉鎖空間S1と閉鎖空間S2と常時連通させて、密閉容器12内と回収部50内とを常時同圧状態にしておいてもよい。なお、同圧連通管64は、少なくとも液体の回収操作前に密閉容器12と回収部50とを連通させて同圧にすればよく、該同圧連通管を連通・遮断するための開閉機構が設けられていても良い。   Moreover, you may provide the same pressure formation means 62 for making the closed space S1 of the said airtight container 12 and the closed space S2 of the collection | recovery part 50 into the same pressure. The same-pressure forming means 62 has a same-pressure communication pipe 64 that communicates the closed space S1 of the sealed container 12 and the closed space S2 of the recovery unit 50 through another path different from the liquid recovery path via the discharge port 16. It is good as well. The same pressure communication pipe 64 may be in constant communication with the closed space S1 and the closed space S2 so that the inside of the sealed container 12 and the collection unit 50 are always at the same pressure. The same-pressure communication pipe 64 may be at the same pressure by communicating the closed container 12 and the recovery unit 50 at least before the liquid recovery operation, and an open / close mechanism for connecting and blocking the same-pressure communication pipe. It may be provided.

また、別の経路を形成する同圧連通管64と密閉容器50との連通は、密閉容器12の上端側に設定された連通接続部68を介して行なわれることとしてもよい。   Further, the communication between the same-pressure communication pipe 64 forming another path and the sealed container 50 may be performed via a communication connection portion 68 set on the upper end side of the sealed container 12.

また、自然流下回収機構52は、密閉容器12の排出口16と回収部50とを連通接続する液体回収流路54を含み、該液体回収流路54は排出口16との連通側から回収部50側に向けて、水平又は下り傾斜状に設けられたこととしてもよい。   The natural flow recovery mechanism 52 includes a liquid recovery channel 54 that connects the discharge port 16 of the sealed container 12 and the recovery unit 50 in communication, and the liquid recovery channel 54 is connected to the recovery unit from the communication side with the discharge port 16. It may be provided horizontally or downwardly inclined toward the 50 side.

また、処理された原料の排出口16からの排出経路R1途中に開閉機構26が設けられ、開閉機構26よりも排出上流側に液体回収流路54の液体導入口58が連通接続されていることとしてもよい。   In addition, an opening / closing mechanism 26 is provided in the middle of the discharge path R1 from the processed raw material discharge port 16, and the liquid introduction port 58 of the liquid recovery passage 54 is connected to the discharge upstream side of the opening / closing mechanism 26. It is good.

また、液体回収流路54には、密閉容器12内での原料の処理中には流路を遮断するとともに、処理後に液体のみを回収する際には流路を連通させるように連通状態を選択的に切り替える開閉機構60が設けられていてもよい。   In addition, the liquid recovery channel 54 is selected so that the channel is shut off during processing of the raw material in the sealed container 12 and the channel is connected when only the liquid is recovered after the processing. An opening / closing mechanism 60 for switching between the two may be provided.

また、回収部50の閉鎖空間S2の底面が密閉容器12の排出口16の位置より低く設けられたこととしてもよい。   In addition, the bottom surface of the closed space S <b> 2 of the collection unit 50 may be provided lower than the position of the discharge port 16 of the sealed container 12.

また、回収部50は、その閉鎖空間S2内に回収した液体の液面WLが常に排出口16より低くなるように設けられたこととしてもよい。   The recovery unit 50 may be provided such that the liquid level WL of the liquid recovered in the closed space S2 is always lower than the discharge port 16.

密閉容器12内には、原料を撹拌する撹拌手段30を有することとしてもよい。   It is good also as having the stirring means 30 which stirs a raw material in the airtight container 12. FIG.

また、密閉容器12は、左右中央部の底側に排出口16が設けられつつ、径が左右中央部から左右両端側に向けて次第に縮径された横倒し樽型形状に形成され、撹拌手段30は、密閉容器12内に横長に設けられて回転自在に軸支された回転軸49と、回転軸49に取り付けられ同回転軸49の周方向に広がる部位を有する撹拌羽根48と、を有し、撹拌羽根48の回転軸49から羽根先端までの長さは、密閉容器12の横倒し樽型形状に対応して、回転軸49の長手方向の中央位置で長く、両端側に行くにしたがって次第に短くなるように形成されたこととしてもよい。   Further, the sealed container 12 is formed in a side-down barrel shape in which the discharge port 16 is provided on the bottom side of the left and right center part, and the diameter is gradually reduced from the left and right center part toward both left and right sides. Includes a rotating shaft 49 that is provided horizontally in the sealed container 12 and rotatably supported, and a stirring blade 48 that is attached to the rotating shaft 49 and has a portion that extends in the circumferential direction of the rotating shaft 49. The length from the rotating shaft 49 of the stirring blade 48 to the tip of the blade is long at the central position in the longitudinal direction of the rotating shaft 49 corresponding to the sideways barrel shape of the sealed container 12, and gradually decreases toward both ends. It is good also as having been formed.

また、蒸気噴出手段14は、回転軸49を中空管とし、該中空管の周面に複数個の蒸気噴出孔44を形成して構成された回転軸兼蒸気噴出管28を含むこととしてもよい。   Further, the steam jetting means 14 includes a rotary shaft / steam jet pipe 28 constituted by forming the rotary shaft 49 as a hollow tube and forming a plurality of steam jet holes 44 on the peripheral surface of the hollow tube. Also good.

本例では、密閉容器12は、支持脚13で地面からある程度の高さに配置されるように支持されている。密閉容器12は、その径が左右方向中央部から左右両端側の端壁12a側に向けて次第に縮径された横倒し樽型形状に形成されている。密閉容器12は、例えば、耐熱耐圧性を有するように金属板を加工して形成され、原料を約2m収容できる程度の大きさで設けられている。密閉容器12には、中央部の上方に投入部20が、中央部の底側に排出部22がそれぞれ設けられており、それぞれ開閉機構24,26により開閉されるように設けられている。密閉容器12の閉鎖空間S1内には、蒸気噴出手段14を構成している蒸気噴出管28と、原料を撹拌する撹拌手段30と、が配置されている。なお、密閉容器12には、内部圧力が設定値よりも高くなると内部蒸気を開放させる、例えば設定圧を調整可能な安全弁32が設けられている。また、安全弁32に接続された排気用管の途中には、消音・消臭装置34が設けられており、安全弁32を介して排気される蒸気は消音消臭されて、外気側に排出される。 In this example, the sealed container 12 is supported by the support legs 13 so as to be arranged at a certain height from the ground. The sealed container 12 is formed in a side-down barrel shape whose diameter is gradually reduced from the central portion in the left-right direction toward the end walls 12a on the left and right ends. The sealed container 12 is formed, for example, by processing a metal plate so as to have heat and pressure resistance, and is provided with a size that can accommodate about 2 m 3 of raw materials. The closed container 12 is provided with an input part 20 above the center part and a discharge part 22 at the bottom side of the center part, and is provided to be opened and closed by opening / closing mechanisms 24 and 26, respectively. In the closed space S <b> 1 of the hermetic container 12, a steam ejection pipe 28 constituting the steam ejection means 14 and a stirring means 30 for stirring the raw material are disposed. The sealed container 12 is provided with a safety valve 32 that can release the internal steam when the internal pressure becomes higher than a set value, for example, the set pressure can be adjusted. Further, a silencer / deodorizer 34 is provided in the middle of the exhaust pipe connected to the safety valve 32, and the steam exhausted through the safety valve 32 is silenced and deodorized and discharged to the outside air side. .

排出口16は、図に示すように、密閉容器12の左右方向中央部の底面側に開口されており、原料の排出方向を下方にして設けられている。排出口16の径は、例えば、300mm程度に設けられている。排出口16には、下方に突設された排出筒36が接続されて処理された原料の排出経路R1を形成しているとともに、該排出経路R1の途中に設けられて排出口16を開閉する開閉機構26が設けられている。すなわち、排出部22は、排出口16と、排出筒36と、開閉機構26と、を含む構成となっている。密閉容器12が横倒し樽型形状に形成されているから、重力により内部の原料は排出口16が設けられている中央部に向けて集まりやすく、開閉機構26を開くだけで簡便に原料を排出口16から排出させることができる。   As shown in the figure, the discharge port 16 is opened on the bottom side of the central portion in the left-right direction of the sealed container 12 and is provided with the raw material discharge direction downward. The diameter of the discharge port 16 is, for example, about 300 mm. The discharge port 16 is connected to a discharge tube 36 projecting downward to form a discharge path R1 for processed raw material, and is provided in the middle of the discharge path R1 to open and close the discharge port 16. An opening / closing mechanism 26 is provided. That is, the discharge unit 22 includes a discharge port 16, a discharge tube 36, and an opening / closing mechanism 26. Since the sealed container 12 is laid sideways and formed into a barrel shape, the raw materials inside easily gather toward the center where the discharge port 16 is provided due to gravity, and the material can be easily discharged just by opening the opening / closing mechanism 26. 16 can be discharged.

投入部20には、密閉容器12に上側に投入口42が開口されており、投入口42には上方へ突設された投入筒43が取り付けられ、投入筒43内を開閉するように例えばボールバルブ等の開閉機構24が設けられている。開閉機構24を介して、投入口42を開いて原料を密閉容器内に投入でき、処理時には閉鎖して密閉容器12内の閉鎖空間S1の閉鎖状態を維持する。   An input port 42 is opened on the upper side of the closed container 12 in the input unit 20, and an input tube 43 protruding upward is attached to the input port 42, for example, a ball so as to open and close the inside of the input tube 43. An opening / closing mechanism 24 such as a valve is provided. Through the opening / closing mechanism 24, the inlet 42 can be opened and the raw material can be charged into the sealed container, and is closed during processing to keep the closed space S1 in the sealed container 12 closed.

蒸気噴出手段14は、密閉容器12内に高温高圧の蒸気を噴出するとともに、該密閉容器12内を高温高圧状態とし、原料を蒸気を介して処理させる。図1に示すように、蒸気噴出手段14は、密閉容器12内に配置され周面側に多数の蒸気噴出孔44が形成された中空管からなる蒸気噴出管28と、ボイラー等の蒸気発生装置46と、蒸気発生装置46から蒸気噴出管28内に蒸気を供給する蒸気送管47と、を含む。蒸気噴出手段14から密閉容器12内に噴出される蒸気は、原料を適正に処理するため、亜臨界水であるような高温高圧に設定される。例えば、蒸気噴出管28から噴出される蒸気は、温度が100〜250℃、圧力が5〜35atm程度に設定されている。そして、密閉容器12内を、温度100〜250℃、圧力5〜35atm程度にするようになっている。蒸気噴出管28は、密閉容器12の上下方向略中央位置で横方向に長く配置され、密閉容器の両端壁12aに設けられた軸受45を介して回転自在に軸支されている。すなわち、蒸気噴出管28は、横軸周りに回転しながら放射状に蒸気を噴出しつつ蒸気を原料に直接に当てるようになっている。なお、蒸気噴出管28は、モータ等の回転駆動装置51からチェーン等を介して回転駆動力を得て回転するようになっている。さらに、蒸気噴出管28には、撹拌手段を構成する撹拌羽根48が取り付けられており、蒸気噴出管28が撹拌手段の回転軸49を兼用している。すなわち、本実施形態では、蒸気噴出手段14は、撹拌手段の回転軸49を中空管とし、該中空管の周面に複数個の蒸気噴出孔を形成して構成された回転軸兼蒸気噴出管28を含む。なお、蒸気噴出手段は、この形態の構成に限らず、例えば、密閉容器内に差し込んだ管の先端から蒸気を噴出する構成、複数の蒸気噴出管を配置させた構成等、その他任意の構成でもよい。   The steam ejecting means 14 ejects high-temperature and high-pressure steam into the sealed container 12, puts the inside of the sealed container 12 into a high-temperature and high-pressure state, and processes the raw material through the steam. As shown in FIG. 1, the steam ejection means 14 includes a steam ejection pipe 28 formed of a hollow pipe disposed in the hermetic container 12 and formed with a large number of steam ejection holes 44 on the peripheral surface side, and steam generation such as a boiler. And a steam feed pipe 47 for supplying steam from the steam generator 46 into the steam jet pipe 28. The steam ejected from the steam ejecting means 14 into the sealed container 12 is set to a high temperature and high pressure such as subcritical water in order to properly process the raw material. For example, the steam ejected from the steam ejection pipe 28 is set to a temperature of 100 to 250 ° C. and a pressure of about 5 to 35 atm. And the inside of the airtight container 12 is made into the temperature of 100-250 degreeC, and the pressure of about 5-35 atm. The steam ejection pipe 28 is long in the horizontal direction at a substantially central position in the vertical direction of the sealed container 12 and is rotatably supported via bearings 45 provided on both end walls 12a of the sealed container. That is, the steam ejection pipe 28 is configured to directly apply the steam to the raw material while ejecting the steam radially while rotating around the horizontal axis. Note that the steam ejection pipe 28 is rotated by obtaining a rotational driving force from a rotational driving device 51 such as a motor via a chain or the like. Further, the steam jet pipe 28 is provided with a stirring blade 48 constituting a stirring means, and the steam jet pipe 28 also serves as the rotating shaft 49 of the stirring means. That is, in the present embodiment, the steam jetting means 14 is a rotating shaft / steam that is configured by forming the rotating shaft 49 of the stirring means as a hollow tube and forming a plurality of steam jetting holes on the peripheral surface of the hollow tube. A jet pipe 28 is included. Note that the steam ejection means is not limited to this configuration, and may be any other configuration such as a configuration for ejecting steam from the tip of a tube inserted into a sealed container, a configuration in which a plurality of steam ejection tubes are arranged, and the like. Good.

撹拌手段30は、密閉容器内で処理される原料を撹拌する手段であり、原料をむらなく、早期に処理できる。撹拌手段30は、上記の蒸気噴出管28からなる回転軸49と、該回転軸49に取り付けられ同回転軸の周方向に広がる部位を有する撹拌羽根48と、を含む。本実施形態では、撹拌羽根48は、回転軸49の軸方向略中央位置で互いに逆巻きに設けられた、右巻き螺旋羽根48aと、左巻き螺旋羽根48bと、で形成されている。撹拌羽根48は、回転軸から羽根先端までの長さが左右中央部から両端側に向けて次第に縮径されるように設けられている。これにより密閉容器12の横倒し樽型形状に対応して原料を確実に撹拌できる。さらに、羽根先端と密閉容器12の内壁との間にある程度の隙間Hを形成するように設けられている。螺旋羽根48a、48bは、原料を中央部から両端壁側に向けて搬送しつつ、固形状の原料を破砕しながら原料を撹拌する。撹拌羽根48により両端壁12a側に搬送された原料は、該端壁12a側で後から搬送されてくる原料によって押送され、密閉容器12の内壁に沿いつつ隙間Hを介してから中央に戻るように搬送される。なお、撹拌手段30は、上記の構成のものに限らず、その他任意の構成でもよい。   The stirring means 30 is a means for stirring the raw material to be processed in the sealed container, and can process the raw material at an early stage without unevenness. The stirring means 30 includes a rotating shaft 49 composed of the steam ejection pipe 28 and a stirring blade 48 attached to the rotating shaft 49 and having a portion extending in the circumferential direction of the rotating shaft. In the present embodiment, the stirring blade 48 is formed of a right-handed spiral blade 48a and a left-handed spiral blade 48b that are provided in a reversely wound manner at approximately the center position in the axial direction of the rotating shaft 49. The stirring blade 48 is provided such that the length from the rotating shaft to the blade tip is gradually reduced from the left and right central portions toward both ends. Thereby, a raw material can be reliably stirred corresponding to the sideways barrel shape of the airtight container 12. Furthermore, a certain gap H is provided between the blade tip and the inner wall of the sealed container 12. The spiral blades 48a and 48b agitate the raw material while crushing the solid raw material while conveying the raw material from the central part toward the both end walls. The raw material conveyed to the both end walls 12a side by the stirring blade 48 is pushed by the raw material conveyed later on the end wall 12a side so as to return to the center through the gap H along the inner wall of the hermetic container 12. It is conveyed to. The stirring means 30 is not limited to the above configuration, and may have any other configuration.

分離回収手段18は、排出口からの直接操作のみで、蒸気処理後の密閉容器12内の処理された原料と液体とを分離して回収する分離回収手段である。分離回収手段18は、図1に示すように、排出口16を介して密閉容器12内部に連通する液体の回収部50と、排出口16を介して液体を自然流下により回収部50に回収させる自然流下回収機構52と、を有する。   The separation / recovery means 18 is a separation / recovery means for separating and recovering the processed raw material and the liquid in the sealed container 12 after the steam treatment only by direct operation from the discharge port. As shown in FIG. 1, the separation / recovery means 18 collects the liquid recovery unit 50 communicating with the inside of the sealed container 12 through the discharge port 16 and the recovery unit 50 by natural flow through the discharge port 16. And a natural flow recovery mechanism 52.

回収部50は、密閉容器12の閉鎖空間S1とは異なる他の閉鎖空間S2を内部に有した第2の閉鎖容器である。回収部50は、例えば、耐熱耐圧性を有する金属製の円筒形状の密閉タンクからなる。回収部50は、例えば金属製管部材等から形成される液体回収流路54を介して密閉容器12の排出口16と連通接続されている。回収部50は、その閉鎖空間S2の底面が密閉容器12の排出口16の位置より低く設けられているとともに、閉鎖空間S2内に回収した液体の液面WLが常に排出口16より低くなるように設けられており、排出口側の液体が回収部側へスムーズに自然流下しやすいようになっている。なお、回収部50には、回収した液体の取出ドレン56が設けられており、開閉弁により開閉するように設けられている。   The collection unit 50 is a second closed container having inside another closed space S2 different from the closed space S1 of the closed container 12. The collection unit 50 is made of, for example, a metal cylindrical sealed tank having heat and pressure resistance. The collection unit 50 is connected to the discharge port 16 of the sealed container 12 through a liquid collection channel 54 formed of, for example, a metal pipe member. The recovery unit 50 is provided such that the bottom surface of the closed space S <b> 2 is lower than the position of the discharge port 16 of the sealed container 12, and the liquid level WL of the liquid recovered in the closed space S <b> 2 is always lower than the discharge port 16. So that the liquid on the discharge port side can easily flow naturally to the collection unit side. The recovery unit 50 is provided with a recovered liquid extraction drain 56 that is opened and closed by an on-off valve.

自然流下回収機構52は、密閉容器12内に溜まる液体の重力による自然流下により、液体のみを排出口から回収部50へ流下させる自然流下回収手段である。自然流下回収機構52は、液体回収流路54を含む構成であり、液体回収流路54はその液体導入口58を排出口16に連通接続させて、処理された原料の排出経路R1から分岐した液体の回収経路R2を形成している。本実施形態では、液体回収流路54は、例えば、その内径が6mm程度の金属製管で設けられている。液体回収流路54には、流路の連通状態を選択的に切り替える開閉機構60が設けられている。開閉機構60は、密閉容器内での原料の処理中には流路を遮断するとともに、処理後に液体のみを分離回収する際には流路を連通させるように切り替えられる。これにより、原料と同時に原料中に含まれる水分や蒸気が液化して原料中の細菌や悪臭成分等を含んで状態の液体は、高温高圧の蒸気で処理させることができる。そして、処理後に分離回収される液体は、殺菌や、悪臭・有害成分の分解等された状態で回収することができ、分離回収した液体を二次処理する必要がなく、労力がかからず、時間短縮を図ることができる。   The natural flow recovery mechanism 52 is natural flow recovery means that causes only the liquid to flow from the discharge port to the recovery unit 50 by natural flow due to the gravity of the liquid accumulated in the sealed container 12. The natural flow recovery mechanism 52 is configured to include a liquid recovery flow path 54, and the liquid recovery flow path 54 is branched from the discharge path R 1 of the processed raw material by connecting the liquid introduction port 58 to the discharge port 16. A liquid recovery path R2 is formed. In the present embodiment, the liquid recovery channel 54 is provided by a metal pipe having an inner diameter of about 6 mm, for example. The liquid recovery channel 54 is provided with an opening / closing mechanism 60 that selectively switches the communication state of the channel. The opening / closing mechanism 60 is switched so as to shut off the flow path during processing of the raw material in the hermetic container and to connect the flow path when only the liquid is separated and recovered after the processing. As a result, the liquid in a state containing moisture and vapor contained in the raw material at the same time as the raw material and containing bacteria, malodorous components and the like in the raw material can be treated with high-temperature and high-pressure steam. And the liquid that is separated and recovered after the treatment can be recovered in a state of sterilization, decomposition of malodorous and harmful components, etc., it is not necessary to perform the secondary treatment of the separated and recovered liquid, and labor is not required, Time can be reduced.

液体回収流路54は、液体導入口58が開閉機構26よりも排出上流側の位置に連通接続されている。よって、排出口16の開閉機構26を閉じた状態で、液体回収流路54の開閉機構60を開いて流路を連通状態にすることにより、排出口から液体を分離して回収させる。液体回収流路54は排出筒36と直交方向に接続されており、液体の回収経路R2が原料の排出経路R1に対して直交方向に設けられている。すなわち、開閉機構26の閉鎖状態では、密閉容器内の原料の堆積圧がかかる方向に対して交差方向に液体が流れるようになっている。これにより、簡単な構造で、液体導入口58に原料が入りにくい構造となり、液体のみを液体回収路54に自然流下させて、液体の分離回収を良好に行なうことができる。なお、密閉容器12内の液体が液体導入口56へ流れる勢いが強すぎると、液体の流れの力によって原料がともに流れされるおそれがあるので、好適には、処理された原料を流し運ばない程度の緩やかな流れになるように、液体回収路や液体導入口等の接続構成が設定される。液体回収流路54は、排出口16との連通側(液体導入口側)から回収部側に向けて全体的に水平に設けられている。これにより、液体回収流路での液体の流れはスムーズに行われ、排出口から回収部へ自然流下される。液体回収流路54を回収部側に向けて下り傾斜状に設けて、液体回収路54内で液体の流れがよりスムーズに行くようにしてもよい。この際、例えば、液体導入口58側をある程度の長さまで水平に設けて、その後下り傾斜に設けることとしてもよい。また、液体導入口58には、必要に応じてフィルタ等を設けることとしてもよい。   In the liquid recovery channel 54, the liquid inlet 58 is connected in communication with a position upstream of the opening / closing mechanism 26. Therefore, with the opening / closing mechanism 26 of the discharge port 16 closed, the opening / closing mechanism 60 of the liquid recovery channel 54 is opened to bring the channel into a communication state, whereby the liquid is separated and recovered from the discharge port. The liquid recovery flow path 54 is connected in a direction orthogonal to the discharge cylinder 36, and a liquid recovery path R2 is provided in a direction orthogonal to the raw material discharge path R1. That is, in the closed state of the opening / closing mechanism 26, the liquid flows in a direction crossing the direction in which the deposition pressure of the raw material in the sealed container is applied. Thereby, it becomes a structure with a simple structure and it is hard to enter a raw material into the liquid inlet 58, and only a liquid can be naturally flowed down to the liquid collection | recovery path 54, and a liquid can be separated and collected favorably. It should be noted that if the momentum in which the liquid in the sealed container 12 flows to the liquid inlet 56 is too strong, the raw materials may flow together due to the force of the liquid flow. Therefore, the processed raw materials are preferably not carried away. The connection configuration such as the liquid recovery path and the liquid inlet is set so that the flow is moderate. The liquid recovery channel 54 is provided horizontally horizontally from the communication side (liquid inlet side) to the discharge port 16 toward the recovery unit. Thereby, the flow of the liquid in the liquid recovery channel is smoothly performed, and the liquid flows naturally from the discharge port to the recovery unit. The liquid recovery channel 54 may be provided in a downwardly inclined manner toward the recovery unit so that the liquid flows more smoothly in the liquid recovery channel 54. At this time, for example, the liquid inlet 58 side may be provided horizontally up to a certain length and then provided with a downward slope. The liquid inlet 58 may be provided with a filter or the like as necessary.

さらに、図1に示すように、自然流下機構52は、液体の回収操作前に、密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2とを同圧に形成させる同圧形成手段62を含む。通常では、処理後の密閉容器12内は高圧であるから、液体回収流路では、密閉容器内に比べて低圧である回収部の閉鎖空間S2に向けて圧力差による圧送力が働く。このような圧送力が働くと液体と原料とがともに液体回収流路54に流れこむこととなり、液体と原料との分離回収が困難となるとともに、原料が液体回収流路内に詰まるおそれが高い。同圧形成手段62により、液体の回収操作前に密閉容器12と回収部50との2つの閉鎖空間S1,S2を同圧にしておくことにより、該2つの閉鎖空間S1、S2の気圧の差により生じる原料が圧送されるのを防止でき、液体の自然流下作用を利用して、原料と分離しながら良好に回収部に回収できる。また、処理後の密閉容器内の高圧状態でも分離回収作業を行えるので、作業時間を短縮できる。   Further, as shown in FIG. 1, the natural flow mechanism 52 includes the same pressure forming means 62 that forms the closed space S <b> 1 of the sealed container 12 and the closed space S <b> 2 of the recovery unit 50 at the same pressure before the liquid recovery operation. Including. Normally, since the inside of the sealed container 12 after processing is at a high pressure, in the liquid recovery flow path, a pumping force due to a pressure difference acts toward the closed space S2 of the recovery unit having a lower pressure than in the sealed container. When such a pumping force is applied, both the liquid and the raw material flow into the liquid recovery flow path 54, making it difficult to separate and recover the liquid and the raw material, and the possibility that the raw material is clogged in the liquid recovery flow path is high. . By making the two closed spaces S1 and S2 of the closed container 12 and the recovery part 50 have the same pressure before the liquid recovery operation by the same pressure forming means 62, the difference in air pressure between the two closed spaces S1 and S2 is achieved. Can be prevented from being pumped, and can be successfully recovered in the recovery section while being separated from the raw material by utilizing the natural flow action of the liquid. Moreover, since the separation and recovery operation can be performed even in a high-pressure state in the sealed container after processing, the operation time can be shortened.

同圧形成手段62は、排出口16を介した液体の回収経路R2(液体回収流路54)とは異なる別の経路R3で密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2とを連通させる同圧連通管64を含む。同圧連通管64は、例えば、金属製管からなり、簡単な構造でしかも効率的に2つの閉鎖空間S1,S2を同圧にできる。図1では、同圧連通管64は、一端側が密閉容器12の左右中央部の上端側に連通接続され、他端側を回収部50の上端側に連通接続されている。別の経路R3を形成する同圧連通管64と密閉容器12との連通は、密閉容器12の上端側に設定された連通接続部68を介して行なわれるようになっている。連通接続部68の密閉容器との接続口が下方に向けて設定されている。これにより、同圧連通管64内に密閉容器12内で堆積している原料が管内に入りにくくなっており、原料が管内に詰まるのを防止して同圧連通管の連通状態を保持し、密閉容器12と回収部50とを確実に同圧にさせることができる。同圧連通管64は、常時連通状態となっており、液体回収流路54の開閉機構60を閉じた状態では、密閉容器12内、回収部50、液体回収流路54内が同じ圧力状態になる。これにより、液体回収流路54の開閉機構60を開いた直後にも排出口16の液体導入口58側で圧力差による原料の圧送を防止できる。さらに、開閉機構60を開いて液体が回収する際にも、密閉容器12内と回収部50内は常時同圧状態が保持される。したがって、回収前から回収終了後まで同圧状態となり、良好に液体のみを排出口16から自然流下させて分離回収することができる。なお、同圧形成手段62は、この形態の構成に限らず任意の構成でよい。例えば、同圧形成手段62は、回収部内を高圧にする他の高圧形成装置を設け、密閉容器内の圧力をセンサーで監視しながら回収部内の圧力を調整して、密閉容器内の圧力と同圧にするようにしてもよい。また、密閉容器内を減圧することとしてもよい。   The same-pressure forming means 62 establishes the closed space S1 of the sealed container 12 and the closed space S2 of the recovery unit 50 through another path R3 different from the liquid recovery path R2 (liquid recovery flow path 54) via the discharge port 16. The same pressure communication pipe 64 to be communicated is included. The same pressure communication pipe 64 is made of, for example, a metal pipe, and has a simple structure and can efficiently make the two closed spaces S1 and S2 have the same pressure. In FIG. 1, one end side of the same-pressure communication pipe 64 is connected to the upper end side of the left and right central part of the sealed container 12, and the other end side is connected to the upper end side of the recovery part 50. The communication between the same-pressure communication pipe 64 that forms another path R3 and the sealed container 12 is performed via a communication connection portion 68 set on the upper end side of the sealed container 12. The connection port of the communication connection portion 68 with the sealed container is set downward. Thereby, the raw material accumulated in the closed container 12 in the same pressure communication pipe 64 is difficult to enter the pipe, the raw material is prevented from clogging in the pipe, and the communication state of the same pressure communication pipe is maintained. The airtight container 12 and the collection | recovery part 50 can be made into the same pressure reliably. The same pressure communication pipe 64 is always in a communication state, and when the opening / closing mechanism 60 of the liquid recovery channel 54 is closed, the inside of the sealed container 12, the recovery unit 50, and the liquid recovery channel 54 are in the same pressure state. Become. Thereby, it is possible to prevent the raw material from being pumped due to a pressure difference on the liquid inlet 58 side of the discharge port 16 immediately after opening the opening / closing mechanism 60 of the liquid recovery channel 54. Further, even when the opening / closing mechanism 60 is opened to collect the liquid, the inside of the sealed container 12 and the inside of the collection unit 50 are always kept at the same pressure. Therefore, the same pressure state is maintained from before collection to after completion of collection, and only the liquid can be separated and collected by naturally flowing down from the discharge port 16 satisfactorily. Note that the same pressure forming means 62 is not limited to this configuration, and may have any configuration. For example, the same pressure forming means 62 is provided with another high pressure forming device that makes the inside of the recovery unit high pressure, and adjusts the pressure in the recovery unit while monitoring the pressure in the closed container with a sensor, so Pressure may be applied. Further, the inside of the sealed container may be decompressed.

次に、以上説明した製造装置10を用いての本発明の実施の形態によるフルボ酸鉄溶液の製造方法について説明する。
本発明の実施の形態によるフルボ酸ポリシリカ鉄溶液の製造方法は、
前記のような処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、木本材および/またはイネ科の植物からなる草本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
原料が木本材の場合、温度が120〜250℃で、圧力が12〜35atm(広葉樹の場合:12〜25atm、針葉樹の場合:20〜35atm)の蒸気、原料が草本材の場合、温度が100〜200℃で、圧力が5〜25atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液を得る処理工程、および、
取得した混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸ポリシリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えている。
Next, the manufacturing method of the fulvic acid iron solution by embodiment of this invention using the manufacturing apparatus 10 demonstrated above is demonstrated.
A method for producing a fulvic acid polysilica iron solution according to an embodiment of the present invention includes:
An apparatus preparation step for preparing the processing apparatus as described above;
A raw material charging step for charging a raw material mainly composed of woody material and / or gramineous plant and polysilica iron into the processing space of the closed container of the processing device,
When the raw material is wood material, the temperature is 120 to 250 ° C., the pressure is 12 to 35 atm (12 to 25 atm for hardwood, 20 to 35 atm for conifer), and the temperature is herb for the raw material. A vapor having a pressure of 5 to 25 atm at 100 to 200 ° C. is introduced into the processing space in which the raw material is charged, and the raw material is subjected to a subcritical water reaction treatment while stirring the raw material to obtain a fulvic acid polysilica. Processing steps to obtain a mixed solution containing iron, and
A fulvic acid polysilica iron solution obtaining step of separating the fulvic acid polysilica iron from the obtained mixed solution to obtain a fulvic acid polysilica iron solution is provided.

以下、上記した各工程について詳細に説明する。
《装置準備工程》
図を参照しつつ、上で説明したような製造装置(処理装置)を準備する。
Hereinafter, each process described above will be described in detail.
<< Device preparation process >>
A manufacturing apparatus (processing apparatus) as described above is prepared with reference to the drawings.

《原料投入工程》
主原料としての木本材
木本材(幹、枝、葉等)を破断したものであるチップを主原料とすることができる。チップのサイズは、長辺が5〜150cm程度、短辺2が〜5cm程度のものとするのが好ましい。
前記木材としては、一般に、伐採材または廃材を用いることができる。
前記伐採材といては、広葉樹および針葉樹のいずれであってもよい。
広葉樹としては、いずれの広葉樹であってもよいが、現在のところ、例えば、白樺、柳、栗、ナラまたはブナ等が好ましく使用できている。
前記針葉樹としては、現在のところ、例えば、松、杉、ヒノキまたはあすなろ等が好ましく使用できている。
なお、伐採材を用いる場合、皮等を取り除く必要はない。
<Raw material input process>
Wood material as main material Chips made by breaking wood material (trunks, branches, leaves, etc.) can be used as the main material. The chip size is preferably about 5 to 150 cm for the long side and about 5 cm for the short side 2.
As the wood, generally, felled wood or waste wood can be used.
The logging material may be either broad-leaved trees or coniferous trees.
As the broad-leaved tree, any broad-leaved tree may be used, but at present, for example, birch, willow, chestnut, oak or beech can be preferably used.
At present, for example, pine, cedar, cypress or asunaro can be preferably used as the conifer.
When using felled timber, it is not necessary to remove the skin.

廃材としては、木造建築の家屋の解体の際に生じた木くず(角材、板材:無垢材、貼り合わせ材・合板材(ベニヤ板))等が挙げられる。このような木くずは、通常、チップとされるので、原料としてそのまま用いることができる。
上記の原料は、混合して用いても良い。例えば、通常の家庭において、伐採を行うと、いろいろな種類の樹木の伐採材が排出されるが、これらは、仕分けることなく、そのまま、全体を混合したままチップとし、原料としてもよい。勿論、その中に廃材チップを混合しても良い。
Examples of the waste material include wood waste (corner, plate material: solid material, bonded material / plywood material (plywood)) generated during the dismantling of a wooden building house. Such wood chips are usually used as chips and can be used as raw materials.
The above raw materials may be mixed and used. For example, when logging is performed in a normal household, various types of felled timber are discharged. These may be used as raw materials by mixing them as they are without sorting. Of course, waste chip may be mixed therein.

主原料としてのイネ科の植物からなる草本材
イネ科の植物からなる草本材(茎(捍)、枝、葉等)を破断したものである破断材を主原料とすることができる。破断材の長さは、400mm以下、特に50mm〜200mmとするのが好ましい。前記範囲を超えて長いと、処理空間内に投入しにくくなったり、撹拌部材に絡みついたりして、生産能力が低下する。前記範囲未満の長さであっても、フルボ酸鉄の生産処理には差し支えがないが、破断に手間が掛かる。
A herbaceous material made of a grass family plant as the main material A herbaceous material made of a grass family plant (stem (spear), branch, leaf, etc.) can be used as a main material. The length of the breakable material is preferably 400 mm or less, particularly 50 mm to 200 mm. If it is longer than the above range, it will be difficult to put it into the processing space, or it will become entangled with the stirring member, resulting in a decrease in production capacity. Even if the length is less than the above range, there is no problem in the production process of iron fulvic acid, but it takes time to break.

前記草本材としては、畳の床等の古くなったものであってもよい。   The herbaceous material may be an old material such as a tatami floor.

イネ科の植物としては、イネ・コムギ・オオムギ・カラスムギ・ライムギ・キビ・アワ・ヒエ・トウモロコシ・シコクビエ・モロコシ・タケ・マコモ・サトウキビ・ハトムギ・ヨシ・ススキ・ササ・ダンチク・シロガネヨシ・シバ等が挙げられる。   Rice plants include rice, wheat, barley, oats, rye, millet, millet, millet, sorghum, sorghum, bamboo, macomo, sugar cane, pearl barley, reed, susuki, sasa, danchiku, shiroganeyoshi, shiba, etc. Can be mentioned.

以上説明した植物系の主原料については、混合して用いることができる。混合割合は、任意であってよい。   About the plant main raw material demonstrated above, it can mix and use. The mixing ratio may be arbitrary.

主原料としてのシリカ鉄
ポリシリカ鉄は、溶液の形で用いられる。ポリシリカ鉄の酸化を進めることを防止するには、密閉容器に注入する蒸気中の酸素があらかじめ除去されていることが重要である。一般に高温水蒸気は酸素を放出することが分かっている。
Silica iron Polysilica iron as the main raw material is used in the form of a solution. In order to prevent the oxidation of polysilica iron from proceeding, it is important that the oxygen in the steam injected into the sealed container is removed in advance. In general, high temperature steam has been found to release oxygen.

副材または添加物
副材もしくは添加物としては、より多くのフルボ酸ポリシリカ鉄を効率よく生成するために、アルカ性溶液を添加することができる。アルカリ性溶液を添加する場合の蒸気の圧力、温度は、添加しない場合と同様であって良い。
The Fukuzai or additives <br/> secondary timber or additives, in order to efficiently generate more fulvic acid polysilica iron, it can be added alkanoate solution. The pressure and temperature of the vapor when adding the alkaline solution may be the same as when not adding.

以上説明したようなチップまたは破断材である草・木本材である主原料を、処理空間に投入するが、この主原料の量は、密閉容器12の閉鎖空間S1すなわち処理空間の90%以下、特に、50〜80%であることが好ましい。原料の投入量がこの範囲より低い場合には、処理効率が悪く、越える場合には、蒸気が原料に上手く作用できず、フルボ酸ポリシリカ鉄の生成が十分でなくなるおそれがある。
また、この原料投入時、他の主原料であるポリシリカ鉄を溶液の形で投入するが、容積2mの処理空間で10〜30kg程度(反応としてポリシリカ鉄分を十分にいれる。例えば直治薬品株式会社 鉄系無機凝集剤 PSI―100を使う場合は、シリカ/鉄比が1.0%であることから)投入することが望ましい。
The main raw material which is the grass or the wood material which is the chip or the rupture material as described above is put into the processing space, and the amount of the main raw material is 90% or less of the closed space S1 of the sealed container 12, that is, the processing space. In particular, it is preferably 50 to 80%. When the input amount of the raw material is lower than this range, the processing efficiency is poor, and when it exceeds, the steam cannot act well on the raw material, and there is a possibility that the production of polysilica fulvic acid iron is not sufficient.
Further, when the raw material input, is to introduce polysilicato iron is another main raw material in the form of a solution, sufficiently put polysilica iron as 10~30kg about (reaction processing space volume 2m 3. For example Naoji Pharmaceutical Co., Ltd When the iron-based inorganic flocculant PSI-100 is used, it is desirable to add it (since the silica / iron ratio is 1.0%).

《処理工程》
この工程においては、前記原料が投入されている処理空間内に蒸気を導入する。この蒸気は、木本材とシリカ鉄の場合、温度が120〜250℃で、圧力が12〜35atm(広葉樹の場合:12〜25atm、針葉樹の場合:20〜35atm)、草本材とシリカ鉄の場合、温度が100〜200℃で、圧力が5〜25atmとする。混合の場合は、混合割合に応じて、温度、圧力を勘案する。蒸気の導入量は、処理空間の容積、処理する原料の量にもよるが、余剰空間(処理空間から投入された原料の容積を減算した値の空間)に完全に充填される量とするのが好ましい。
《Processing process》
In this step, steam is introduced into the processing space in which the raw material is charged. In the case of wood material and silica iron, this steam has a temperature of 120 to 250 ° C. and a pressure of 12 to 35 atm (for hardwood: 12 to 25 atm, for conifer: 20 to 35 atm). In this case, the temperature is 100 to 200 ° C. and the pressure is 5 to 25 atm. In the case of mixing, the temperature and pressure are taken into account according to the mixing ratio. The amount of steam introduced depends on the volume of the processing space and the amount of raw material to be processed, but is an amount that completely fills the surplus space (the space obtained by subtracting the volume of the raw material charged from the processing space). Is preferred.

この処理工程では、上記のように、原料が投入された処理空間に蒸気を導入しつつ、前記原料を攪拌して、前記原料を亜臨界水反により処理を行う。
処理工程の時間は、原料が木本材とシリカ鉄の場合30分〜12時間、草本材の場合30〜10時間が好ましい。処理時間が上記の範囲より短い場合には、反応時間が十分でなく、すなわち、フルボ酸の生成が少なく、フルボ酸ポリシリカ鉄の生成も十分でなくなる。上記時間範囲を超えると、フルボ酸がフミン酸に変化してフルボ酸ポリシリカ鉄の生成量が少なくなるか、さらに原料の木本、草本が炭化する。
In this processing step, as described above, the raw material is stirred while introducing steam into the processing space into which the raw material has been charged, and the raw material is processed by subcritical water reaction.
The treatment process time is preferably 30 minutes to 12 hours when the raw materials are wood material and silica iron, and 30 to 10 hours when the raw material is herb material. When the treatment time is shorter than the above range, the reaction time is not sufficient, that is, the production of fulvic acid is small, and the production of fulvic acid polysilica iron is not sufficient. When the above time range is exceeded, the fulvic acid changes to humic acid and the amount of fulvic acid polysilica iron is reduced, or the raw wood and herb are carbonized.

この処理工程における処理空間内の温度は、用いる原料の種類、状態によっても異なるが、木本材とシリカ鉄の場合、温度が120〜250℃で、圧力が12〜35atm。 草本材とポリシリカ鉄の場合、温度が100〜200℃で、圧力が2〜25atmに保たれるようにする。   The temperature in the treatment space in this treatment step varies depending on the type and state of the raw material used, but in the case of wood material and silica iron, the temperature is 120 to 250 ° C. and the pressure is 12 to 35 atm. In the case of herbaceous material and polysilica iron, the temperature is 100 to 200 ° C. and the pressure is maintained at 2 to 25 atm.

この処理工程において、原料は、亜臨界水反応処理され、フルボ酸とフルボ酸ポリシリカ鉄とフミン酸、重合珪酸が、溶液中に含有される。この溶液は、フルボ酸とフルボ酸ポリシリカ鉄と、フミン酸との混合溶液と、木本材または草木本材/およびその破片の懸濁物と重合珪酸の沈殿物を含有する混合溶液が得られる。 In this treatment step, the raw material is subjected to a subcritical water reaction treatment, and fulvic acid, fulvic acid polysilica iron, humic acid, and polymerized silicic acid are contained in the solution. This solution is a mixed solution containing fulvic acid, polysilica iron fulvic acid, and humic acid, and a mixed solution containing a suspension of wood or plant wood / and fragments thereof and a precipitate of polymerized silica. .

この工程で取得した混合溶液中には、フルボ酸ポリシリカ鉄とフミン酸の総量(固形分量中)のうち、フルボ酸ポリシリカ鉄は、主原料の一方が木本材の場合、全体の3〜12%、草本材の場合、2〜10%含まれる。   In the mixed solution obtained in this step, among the total amount of fulvic acid polysilica iron and humic acid (in the solid content), fulvic acid polysilica iron is 3 to 12 in total when one of the main raw materials is woody material. %, In the case of herb wood, 2 to 10% is included.

《冷却工程》
前記処理工程の後に、冷却工程を行っても良い。この冷却工程では、上記処理空間内を冷却し、すなわち、前記蒸気を冷却して、フルボ酸とフルボ酸ポリシリカ鉄とフミン酸を含有する溶液を得る。この冷却は、通常、自然冷却で行われる。
《Cooling process》
A cooling step may be performed after the treatment step. In this cooling step, the inside of the treatment space is cooled, that is, the steam is cooled to obtain a solution containing fulvic acid, fulvic acid polysilica iron, and humic acid. This cooling is usually performed by natural cooling.

《フルボ酸ポリシリカ鉄溶液取得工程》
この工程では、まず、溶液分を固体分から分離する。この分離は、例えば、溶液分を自然落下させ、固形分を密閉容器内に残留させることにより行われる。この残留固形物は、重合シリカが付着して木材チップ等である。一方、分離した混合溶液から、フミン酸とフルボ酸ポリシリカ鉄とフルボ酸を分離処理して、フルボ酸ポリシリカ鉄溶液を取得する。
前記フルボ酸ポリシリカ鉄の溶液取得工程におけるフミン酸とフルボ酸ポリシリカ鉄を分離処理する方法は、溶液のpH酸性にして、フミン酸を沈殿分離してその液を濾過する。溶液のpHは、2〜3とするのが好ましい。
《Fulvic acid polysilica iron solution acquisition process》
In this step, first, the solution is separated from the solid. This separation is performed, for example, by allowing the solution component to fall naturally and leaving the solid component in the sealed container. This residual solid is a wood chip or the like to which polymerized silica adheres. On the other hand, humic acid, fulvic acid polysilica iron and fulvic acid are separated from the separated mixed solution to obtain a fulvic acid polysilica iron solution.
In the method for separating humic acid and fulvic acid polysilica iron in the solution obtaining step of the fulvic acid polysilica iron, the solution is acidified to pH, the humic acid is precipitated and separated, and the liquid is filtered. The pH of the solution is preferably 2 to 3.

[実施例]
先ず、密閉容器中の処理空間の容積が2mの、図1に示すような構造の処理装置を準備した。
前記処理空間中に、原料として白樺伐採材チップとシリカ鉄溶液(実施例1)、柳伐採材チップとポリシリカ鉄溶液(実施例2)を用いてそれぞれ、フルボ酸ポリシリカ鉄溶液の製造の実験を行った。
木本材の大きさは、両者ともに長辺が平均10cm程度であった。
木本材チップの投入量は、両者ともに、同じで、1.6m(処理空間の容積の80%)とした。また、ポリシリカ鉄溶液の投入量は、両者ともに、同じで、1kgとした。
[Example]
First, a processing apparatus having a structure as shown in FIG. 1 in which the volume of the processing space in the sealed container is 2 m 3 was prepared.
In the treatment space, white timber cutting chips and silica iron solution (Example 1), and willow cutting chips and polysilica iron solution (Example 2) were used as raw materials, respectively. went.
The average length of the wood material was about 10 cm in both long sides.
The input amount of the wood chip was the same for both, and was 1.6 m 3 (80% of the volume of the processing space). The amount of the polysilica iron solution input was the same for both, and was 1 kg.

これらの原料の投入後、処理空間内に、温度が 200℃、圧力が20atmの蒸気を導入しつつ、撹拌手段で撹拌して、原料の蒸気による亜臨界水反応処理を行った。処理時間は、両原料ともに1時間とした。
この処理工程における処理空間内の状態は、処理工程の保持工程において、温度が200℃、圧力が20atmであった。
処理後、処理空間を大気と導通して、処理空間内を大気圧力とし、この後、処理装置から混合溶液のみを取り出した。
After the introduction of these raw materials, a subcritical water reaction treatment was performed with the raw material steam by stirring with stirring means while introducing steam having a temperature of 200 ° C. and a pressure of 20 atm into the treatment space. The treatment time was 1 hour for both raw materials.
The state in the processing space in this processing step was a temperature of 200 ° C. and a pressure of 20 atm in the holding step of the processing step.
After the treatment, the treatment space was brought into conduction with the atmosphere, and the treatment space was brought to atmospheric pressure. Thereafter, only the mixed solution was taken out from the treatment apparatus.

その後、それらの混合溶液を、下記の方法により分析し、フルボ酸ポリシリカ鉄の存在等の確認を行った。
混合液を最初にメンブランフィルター(孔径0.45μm)で濾過を行い、濾液を3 次元蛍光分光光度法でフルボ酸分析を行った。
次に 濾液100mlを毎分5ml未満の速さで陰イオン交換樹脂を詰めたカラムに流した。カラムの内側を蒸留水で洗浄後、1M塩酸40mlで鉄錯体を溶出させ、ICP発光分光分析法で、鉄、シリカを定量した。
その結果、前者においてフルボ酸を測定し、後者においてフルボ酸と結合している鉄およびシリカを測定した結果、両者の濃度を確認してフルボ酸ポリシリカ鉄が生成していることを確認した。
以上により、本発明の効果が明らかである。
Then, these mixed solutions were analyzed by the following method, and the presence of fulvic acid polysilica iron was confirmed.
The mixture was first filtered through a membrane filter (pore size 0.45 μm), and the filtrate was subjected to fulvic acid analysis by three-dimensional fluorescence spectrophotometry.
Next, 100 ml of the filtrate was passed through a column packed with an anion exchange resin at a rate of less than 5 ml per minute. After washing the inside of the column with distilled water, the iron complex was eluted with 40 ml of 1M hydrochloric acid, and iron and silica were quantified by ICP emission spectroscopy.
As a result, fulvic acid was measured in the former, and iron and silica bonded to fulvic acid were measured in the latter. As a result, the concentration of both was confirmed to confirm that fulvic acid polysilica iron was produced.
From the above, the effect of the present invention is clear.

また、針葉樹である松、杉について、処理温度および圧力を広葉樹の場合に比べて高くした以外は同様の条件で試験を行った。広葉樹の場合と比べて、より多くのフルボ酸シリカ鉄が得られた。   In addition, the test was conducted on the coniferous pine and cedar under the same conditions except that the treatment temperature and pressure were increased as compared with the case of the hardwood. More silica iron fulvic acid was obtained than in the case of hardwood.

次に、前記処理空間中に、原料としてイネわらの破断材とポリシリカ鉄溶液(実施例3)、タケ材の破断材とポリシリカ鉄溶液(実施例4)を用いてそれぞれ、フルボ酸鉄溶液の製造の実験を行った。
破断材の大きさは、両者ともに長辺が平均10cm程度であった。
投入量は、両者ともに、同じで、1.6m(処理空間の容積の80%)とした。シリカ鉄は両者ともに、1kg投入した。イネ、タケともに乾燥したものを用いたため、それぞれ原料と共に、適量の水を導入した。
Next, in the treatment space, a rice rupture material and a polysilica iron solution (Example 3), a bamboo material rupture material and a polysilica iron solution (Example 4) were used as raw materials, respectively. Manufacturing experiments were conducted.
As for the size of the ruptured material, the long side was about 10 cm on average in both cases.
The input amount was the same in both cases, and was 1.6 m 3 (80% of the volume of the processing space). In both cases, 1 kg of silica iron was added. Since rice and bamboo were dried, an appropriate amount of water was introduced together with the raw materials.

この原料の投入後、処理空間内に、温度がイネとシリカ鉄、タケとポリシリカ鉄共に180℃、圧力がイネの場合7atm、タケの場合12atmの蒸気を導入しつつ、撹拌手段で撹拌して、原料の蒸気による亜臨界水反応処理を行った。処理時間は、原料としてイネを用いたもので30分とし、タケを用いたもので60
分とした。
この処理工程における処理空間内の状態は、処理工程の保持工程において、温度がイネ、タケ共に180℃、圧力がイネの場合7atm、タケの場合12atmとした。
After the introduction of this raw material, the steam is stirred by the stirring means while introducing steam at a temperature of 180 ° C. for both rice and silica iron, bamboo and polysilica iron, pressure of 7 atm for rice and 12 atm for bamboo. Then, a subcritical water reaction treatment with raw material steam was performed. The treatment time is 30 minutes for rice as a raw material and 60 minutes for bamboo.
Minutes.
The state in the processing space in this processing step was set to 7 atm when the temperature was 180 ° C. and the pressure was rice, and 12 atm for the bamboo in the holding step of the processing step.

処理後、処理空間を大気と導通して、処理空間内を大気圧力とし、この後、処理装置から混合溶液のみを取り出した。
この混合溶液を、前記木材の場合と同様にして処理し、次いで分析を行った。
After the treatment, the treatment space was brought into conduction with the atmosphere, and the treatment space was brought to atmospheric pressure. Thereafter, only the mixed solution was taken out from the treatment apparatus.
This mixed solution was treated in the same manner as for the wood and then analyzed.

その結果、前者において、フルボ酸ポリシリカ鉄が生成していることを確認した。
以上により、本発明の効果が明らかである。
As a result, it was confirmed in the former that fulvic acid polysilica iron was produced.
From the above, the effect of the present invention is clear.

10 有機系廃棄物の処理装置
12 密閉容器
14 蒸気噴出手段
16 排出口
18 分離回収手段
26 開閉機構
30 撹拌手段
50 回収部
52 自然流下回収機構
54 液体回収流路
58 液体導入口
60 開閉機構
62 同圧形成手段
64 同圧連通管
DESCRIPTION OF SYMBOLS 10 Organic waste processing device 12 Sealed container 14 Steam ejection means 16 Discharge port 18 Separation and recovery means 26 Opening and closing mechanism 30 Stirring means 50 Recovery section 52 Natural flow recovery mechanism 54 Liquid recovery flow path 58 Liquid inlet 60 Opening and closing mechanism 62 Pressure forming means 64 Same pressure communication pipe

Claims (24)

内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、木本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が120〜250℃で、圧力が5〜35atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液を得る処理工程、および、
取得した混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸ポリシリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
A raw material charging step of charging a raw material mainly composed of wood material and polysilica iron from the supply unit into the processing space of the closed container of the processing device,
Steam having a temperature of 120 to 250 ° C. and a pressure of 5 to 35 atm is introduced into the processing space in which the raw material is charged, and the raw material is subjected to a subcritical water reaction treatment while stirring the raw material. A treatment step to obtain a mixed solution containing acid polysilica iron, and
A method for producing a fulvic acid polysilica iron solution, comprising: obtaining a fulvic acid polysilica iron solution by separating fulvic acid polysilica iron from the obtained mixed solution to obtain a fulvic acid polysilica iron solution.
内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、木本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が120〜250℃で、圧力が5〜35atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液と、該混合溶液内に残留する固形残留物を得る処理工程、
前処理工程で取得した固形残留物を混合溶液から分離して、固形残留物を取得する固形残留物取得工程、および
固形残留物が分離された混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸ポリシリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
A raw material charging step of charging a raw material mainly composed of wood material and polysilica iron from the supply unit into the processing space of the closed container of the processing device,
Steam having a temperature of 120 to 250 ° C. and a pressure of 5 to 35 atm is introduced into the processing space in which the raw material is charged, and the raw material is subjected to a subcritical water reaction treatment while stirring the raw material. A mixed solution containing acid polysilica iron and a treatment step for obtaining a solid residue remaining in the mixed solution;
The solid residue obtained in the pretreatment step is separated from the mixed solution, the solid residue obtaining step for obtaining the solid residue, and the fulvic acid polysilica iron is separated from the mixed solution from which the solid residue is separated, A fulvic acid polysilica iron solution obtaining step for obtaining a fulvic acid polysilica iron solution is provided.
前記木材が伐採材または廃材である請求項1または2のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 1 or 2, wherein the wood is felled wood or waste wood. 前記伐採材が、広葉樹または針葉樹によるものである請求項3のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 3, wherein the felled material is hardwood or softwood. 前記広葉樹が白樺、柳、栗、ナラまたはブナである請求項4のフルボ酸フルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid fulvic acid polysilica iron solution according to claim 4, wherein the broad-leaved tree is birch, willow, chestnut, oak or beech. 前記針葉樹が、松、杉、ヒノキまたはあすなろである請求項4のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 4, wherein the conifer is pine, cedar, hinoki or tomato. 前記廃材が無垢材または合板材である請求項3のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 3, wherein the waste material is a solid material or a plywood material. 前記処理工程が、30分〜12時間 行われる請求項1〜7のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to any one of claims 1 to 7, wherein the treatment step is performed for 30 minutes to 12 hours. 前記主原料が広葉樹であり、前記処理工程において導入される蒸気の圧力が5〜25atmである請求項3のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 3, wherein the main raw material is hardwood and the pressure of the steam introduced in the treatment step is 5 to 25 atm. 前記主原料が針葉樹であり、前記処理工程において導入される蒸気の圧力が20〜35atmである請求項3のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 3, wherein the main raw material is conifer and the pressure of the steam introduced in the treatment step is 20 to 35 atm. 内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、イネ科の植物からなる草本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が100〜200℃で、圧力が2〜25atmの蒸気を、前記原料が投入されている前記処理空間内に導入しつつ、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液を得る処理工程、および、
取得した混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸ポリシリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
Into the processing space of the closed container of the processing apparatus, a raw material charging step of charging a raw material mainly composed of herbaceous material made of gramineous plants and polysilica iron from the supply unit,
While introducing the steam at a temperature of 100 to 200 ° C. and a pressure of 2 to 25 atm into the treatment space into which the raw material has been charged, the raw material is subjected to a subcritical water reaction treatment while stirring the raw material, A treatment step to obtain a mixed solution containing fulvic acid polysilica iron, and
A method for producing a fulvic acid polysilica iron solution, comprising: obtaining a fulvic acid polysilica iron solution by separating fulvic acid polysilica iron from the obtained mixed solution to obtain a fulvic acid polysilica iron solution.
内部に閉鎖可能な処理空間を有する密閉容器と、該密閉容器内に高温高圧の蒸気を噴出する蒸気噴出手段と、前記密閉容器内に原料を供給するための供給部と、前記蒸気による原料の処理により生成された処理液を外部に排出するための排出部とを備えた処理装置を準備する装置準備工程、
前記処理装置の密閉容器の処理空間内に、前記供給部から、イネ科の植物からなる草本材とポリシリカ鉄を主原料とする原料を投入する原料投入工程、
温度が100〜200℃で、圧力が5〜25atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、フルボ酸ポリシリカ鉄を含有する混合溶液と、該混合溶液内に残留する固形残留物を得る処理工程、
前処理工程で取得した固形残留物を混合溶液から分離して、固形残留物取得工程、および
固形残留物が分離された混合溶液から、フルボ酸ポリシリカ鉄を分離して、フルボ酸シリカ鉄溶液を取得するフルボ酸ポリシリカ鉄溶液取得工程
を備えていることを特徴とするフルボ酸ポリシリカ鉄溶液の製造方法。
A sealed container having a process space capable of being closed inside, a steam ejection means for ejecting high-temperature and high-pressure steam into the sealed container, a supply unit for supplying the raw material into the sealed container, and the raw material by the steam An apparatus preparation step of preparing a processing apparatus including a discharge unit for discharging the processing liquid generated by the processing to the outside;
Into the processing space of the closed container of the processing apparatus, a raw material charging step of charging a raw material mainly composed of herbaceous material made of gramineous plants and polysilica iron from the supply unit,
Steam having a temperature of 100 to 200 ° C. and a pressure of 5 to 25 atm is introduced into the treatment space where the raw material is charged, and the raw material is subjected to a subcritical water reaction treatment while stirring the raw material. A mixed solution containing acid polysilica iron and a treatment step for obtaining a solid residue remaining in the mixed solution;
The solid residue obtained in the pretreatment step is separated from the mixed solution, and the fulvic acid polysilica iron is separated from the solid residue obtaining step and the mixed solution from which the solid residue has been separated to obtain a fulvic acid silica iron solution. A method for producing a fulvic acid polysilica iron solution, comprising: obtaining a fulvic acid polysilica iron solution.
前記草本材が、伐採または刈り取り材、または廃材である請求項11
または12のフルボ酸ポリシリカ鉄溶液の製造方法。
The herbaceous material is a felling or cutting material, or a waste material.
Or the manufacturing method of 12 fulvic acid polysilica iron solutions.
前記伐採または刈り取り材が、イネ・コムギ・オオムギ・カラスムギ・ライムギ・キビ・アワ・ヒエ・トウモロコシ・シコクビエ・モロコシ・タケ・マコモ・サトウキビ・ハトムギ・ヨシ・ススキ・ササ・ダンチク・シロガネヨシ・シバのいずれか一種以上によるものである請求項13のフルボ酸ポリシリカ鉄溶液の製造方法。   The harvested or harvested material is any one of rice, wheat, barley, oats, rye, millet, millet, millet, sorghum, sorghum, bamboo shoot, sugar cane, pearl barley, reed, suki, sasa, danchiku, shiroganeyoshi and shiba. The method for producing a fulvic acid polysilica iron solution according to claim 13, which is based on one or more kinds. 前記伐採または刈り取り材が、イネわらまたは麦わらである請求項14のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 14, wherein the felling or cutting material is rice straw or wheat straw. 前記伐採または刈り取り材が、竹材である請求項15のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 15, wherein the felling or cutting material is bamboo. 前記竹材がチップ状となっている請求項16のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 16, wherein the bamboo material is in a chip shape. 原料が、使用済みの廃材である請求項11のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 11, wherein the raw material is a used waste material. 廃材が古くなった畳の床である請求項18のフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to claim 18, wherein the waste material is an old tatami floor. 前記処理工程が、30分―12時間行われる請求項11〜19のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to any one of claims 11 to 19, wherein the treatment step is performed for 30 minutes to 12 hours. 容積割合で、原料を前記処理空間の90%以下導入する請求項1〜20のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to any one of claims 1 to 20, wherein the raw material is introduced at a volume ratio of 90% or less of the treatment space. 容積割合で、原料を前記処理空間の50〜80%導入する請求項1〜20のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to any one of claims 1 to 20, wherein the raw material is introduced at a volume ratio of 50 to 80% of the treatment space. 前記処理工程における撹拌が、前記処理空間内に配置された回転する撹拌部材により行われる請求項1〜22のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。   The method for producing a fulvic acid polysilica iron solution according to any one of claims 1 to 22, wherein the stirring in the processing step is performed by a rotating stirring member arranged in the processing space. 前記原料投入工程において、添加物として、アルカリ性溶液を添加する請求項1〜23のいずれかのフルボ酸ポリシリカ鉄溶液の製造方法。   24. The method for producing a fulvic acid polysilica iron solution according to claim 1, wherein an alkaline solution is added as an additive in the raw material charging step.
JP2018012268A 2018-01-29 2018-01-29 Method for manufacturing fulvic acid polysilica iron solution Active JP7030259B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018012268A JP7030259B2 (en) 2018-01-29 2018-01-29 Method for manufacturing fulvic acid polysilica iron solution
US16/961,992 US20210070794A1 (en) 2018-01-29 2019-01-23 Production methods for iron fulvate solution, iron hydroxide fulvate solution and polysilica-iron fulvate solution
PCT/JP2019/001951 WO2019146610A1 (en) 2018-01-29 2019-01-23 Production method for iron fulvate solution, iron hydroxide fulvate solution, and polysilica iron fulvate solution
EP19743476.4A EP3747262B1 (en) 2018-01-29 2019-01-23 Production method for iron fulvate solution, iron hydroxide fulvate solution, and polysilica iron fulvate solution
TW108103372A TWI765137B (en) 2018-01-29 2019-01-29 The manufacture method of fulvic acid iron solution, fulvic acid ferric hydroxide solution and fulvic acid polyiron silicate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012268A JP7030259B2 (en) 2018-01-29 2018-01-29 Method for manufacturing fulvic acid polysilica iron solution

Publications (2)

Publication Number Publication Date
JP2019130434A true JP2019130434A (en) 2019-08-08
JP7030259B2 JP7030259B2 (en) 2022-03-07

Family

ID=67545346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012268A Active JP7030259B2 (en) 2018-01-29 2018-01-29 Method for manufacturing fulvic acid polysilica iron solution

Country Status (1)

Country Link
JP (1) JP7030259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240552B1 (en) 2021-12-20 2023-03-15 テラサークルテクノロジーズ株式会社 Organic acid production method and organic acid iron production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081332A (en) * 2003-09-11 2005-03-31 Osaka Industrial Promotion Organization Method for treating waste originated from plant
JP2011121788A (en) * 2009-12-08 2011-06-23 Sanko Kk Iron fulvate-containing composition, method for producing it, fertilizer and seawater damage inhibitor
JP2012254450A (en) * 2011-05-18 2012-12-27 Sagaken Kankyo Seibi Jigyo Kyodo Kumiai Method for producing humus containing iron fulvate
JP2016022468A (en) * 2014-07-24 2016-02-08 株式会社ピーシーエス Subcritical water treatment method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081332A (en) * 2003-09-11 2005-03-31 Osaka Industrial Promotion Organization Method for treating waste originated from plant
JP2011121788A (en) * 2009-12-08 2011-06-23 Sanko Kk Iron fulvate-containing composition, method for producing it, fertilizer and seawater damage inhibitor
JP2012254450A (en) * 2011-05-18 2012-12-27 Sagaken Kankyo Seibi Jigyo Kyodo Kumiai Method for producing humus containing iron fulvate
JP2016022468A (en) * 2014-07-24 2016-02-08 株式会社ピーシーエス Subcritical water treatment method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240552B1 (en) 2021-12-20 2023-03-15 テラサークルテクノロジーズ株式会社 Organic acid production method and organic acid iron production method
JP2023091756A (en) * 2021-12-20 2023-06-30 テラサークルテクノロジーズ株式会社 Organic acid production method and organic acid iron production method

Also Published As

Publication number Publication date
JP7030259B2 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
KR102591363B1 (en) Method for Preparing Mixed Solution of Fulvic Acid and Humic Acid and Method for Preparing Humic Acid
JP6285605B1 (en) Method for producing fulvic acid solution
US10557105B1 (en) Extraction systems and methods
CN101353611A (en) Rose essential oil and rose pure dew extraction equipment
JP7030258B2 (en) Method for manufacturing iron fulvic acid hydroxide solution
JP7030256B2 (en) How to make fulvic acid solution
JP2019130434A (en) Manufacturing method of fulvic acid polysilica iron solution
TWI765137B (en) The manufacture method of fulvic acid iron solution, fulvic acid ferric hydroxide solution and fulvic acid polyiron silicate solution
JP2019129709A (en) Method for manufacturing fulvic acid iron solution
CN106459796A (en) Processed biomass pellets from beneficiated organic-carbon-containing feedstock
US20210199287A1 (en) Process and apparatus for removing impurities from solid biomass feeds
JP2016534197A (en) BENEFICITED Raw material containing organic carbon
WO2023063287A1 (en) Method and apparatus for producing useful substance
CN206828868U (en) A kind of combination unit for separating cellulose, lignin and carbohydrate
US20210070794A1 (en) Production methods for iron fulvate solution, iron hydroxide fulvate solution and polysilica-iron fulvate solution
JP2022058353A (en) Method for manufacturing mixed solution of fulvic acid and humic acid, and humic acid manufacturing method
KR200287694Y1 (en) manufacturing apparatus of tree sap
JP2022185169A (en) Long-lasting hydrophilic film forming agent and forming method of long-lasting hydrophilic film
GB2616613A (en) Obtaining fibrous material comprising cellulosic fibres
CN109661371A (en) Integrated approach for biomass pretreatment and bio oil production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119

R150 Certificate of patent or registration of utility model

Ref document number: 7030259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150