JP7239701B2 - 人工神経網を利用する臓器の体積測定方法及びその装置 - Google Patents
人工神経網を利用する臓器の体積測定方法及びその装置 Download PDFInfo
- Publication number
- JP7239701B2 JP7239701B2 JP2021533353A JP2021533353A JP7239701B2 JP 7239701 B2 JP7239701 B2 JP 7239701B2 JP 2021533353 A JP2021533353 A JP 2021533353A JP 2021533353 A JP2021533353 A JP 2021533353A JP 7239701 B2 JP7239701 B2 JP 7239701B2
- Authority
- JP
- Japan
- Prior art keywords
- images
- organ
- neural network
- image
- network model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000000056 organ Anatomy 0.000 title claims description 221
- 238000000691 measurement method Methods 0.000 title claims description 12
- 238000013528 artificial neural network Methods 0.000 title description 71
- 238000000034 method Methods 0.000 claims description 82
- 238000003062 neural network model Methods 0.000 claims description 77
- 238000005259 measurement Methods 0.000 claims description 58
- 238000003384 imaging method Methods 0.000 claims description 55
- 238000012549 training Methods 0.000 claims description 48
- 238000002372 labelling Methods 0.000 claims description 34
- 238000013527 convolutional neural network Methods 0.000 claims description 29
- 238000007781 pre-processing Methods 0.000 claims description 25
- 238000004891 communication Methods 0.000 claims description 22
- 229940079593 drug Drugs 0.000 claims description 11
- 239000003814 drug Substances 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 9
- 238000013434 data augmentation Methods 0.000 claims description 7
- 230000003190 augmentative effect Effects 0.000 claims description 4
- 210000003734 kidney Anatomy 0.000 description 79
- 210000004185 liver Anatomy 0.000 description 79
- 238000012360 testing method Methods 0.000 description 76
- 238000013136 deep learning model Methods 0.000 description 32
- 208000030761 polycystic kidney disease Diseases 0.000 description 20
- 238000010586 diagram Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 13
- 208000021033 autosomal dominant polycystic liver disease Diseases 0.000 description 11
- 208000028589 polycystic liver disease Diseases 0.000 description 11
- 238000009966 trimming Methods 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 201000010099 disease Diseases 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000000971 hippocampal effect Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 238000012952 Resampling Methods 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 208000031513 cyst Diseases 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 208000026372 Congenital cystic kidney disease Diseases 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013503 de-identification Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 208000028208 end stage renal disease Diseases 0.000 description 1
- 201000000523 end stage renal failure Diseases 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000008085 renal dysfunction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/20—Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
- A61B5/201—Assessing renal or kidney functions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/42—Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
- A61B5/4222—Evaluating particular parts, e.g. particular organs
- A61B5/4244—Evaluating particular parts, e.g. particular organs liver
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/585—Calibration of detector units
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
- A61B2576/02—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30056—Liver; Hepatic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30084—Kidney; Renal
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- Geometry (AREA)
- Gastroenterology & Hepatology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Urology & Nephrology (AREA)
- Quality & Reliability (AREA)
- Endocrinology (AREA)
- Pulmonology (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
一実施例において、前記複数の画像の不確実性数値は、前記神経網モデルの推論手順での結果データの分散推定値に基づいて測定してもよい。
図13は、一実施例に係る医療用電子装置が、腎臓又は肝臓の体積を推定する方法を示すフローチャートである。
したがって、他の実装、他の実施例、及び特許請求の範囲と均等なものも、後述する「特許請求の範囲」の範囲に属する。
Claims (9)
- コンピューティング装置によって実行される臓器の体積測定方法であって、前記臓器を撮像した複数の画像及び撮像メタデータを取得し、前記複数の画像を前処理して指定したサイズの複数の画像パッチ(patch)を取得するステップと、前記複数の画像パッチを3D CNN(Convolutional Neural Network)に基づく神経網モデルに入力し、前記複数の画像パッチのそれぞれに対応する臓器領域を推定するステップと、前記推定された臓器領域の面積及び前記撮像メタデータを用いて前記臓器の体積を測定するステップと、前記神経網モデルの推定結果に基づいて、神経網モデルの不確実性数値及び複数の画像の不確実性数値を測定するステップと、前記複数の画像の不確実性数値に基づいて、前記複数の画像のうちの少なくとも一つの画像を変更するステップと、前記神経網モデルの不確実性数値に基づいて、前記神経網モデルのラベリングポリシーを変更するステップとを含む、臓器の体積測定方法。
- 前記臓器を撮像した複数の画像は、ダイコム(DICOM(Digital Imaging and Communications in Medicine))ファイルから取得したCT画像及び前記臓器に対するラベリング画像を含み、前記撮像メタデータは、前記複数の画像のそれぞれに対する画素間隔データ及び画像の深さデータを含む、請求項1に記載の臓器の体積測定方法。
- 前記複数の画像パッチを取得するステップは、前記複数の画像に含まれている第1画像に対して、データの拡張(Data Augmentation)を実行し、前記第1画像から複数の画像を生成し、前記生成した複数の画像を前処理して複数の画像パッチを取得するステップを含み、前記データの拡張は、前記画像の空間拡大、カラー増強、騒音増強、及びトリミングのうちの一つ以上を含む、請求項1に記載の臓器の体積測定方法。
- 前記複数の画像は、前記の臓器を撮像した複数の3D画像であり、前記複数の画像パッチを取得するステップは、前記複数の3D画像に対して深さ(depth)方向にスライドし、指定したサイズを有する前記複数の画像パッチを取得するステップを含む、請求項1に記載の臓器の体積測定方法。
- 前記神経網モデルは、学習手順及び推論手順でドロップアウト(Dropout)を実行し、前記神経網モデルの不確実性数値は、前記神経網モデルの推論手順での結果データの確率分布に対する分散値に基づいて測定される、請求項1に記載の臓器の体積測定方法。
- 前記複数の画像の不確実性数値は、前記神経網モデルの推論手順での結果データの分散推定値に基づいて測定される、請求項5に記載の臓器の体積測定方法。
- 前記複数の画像の不確実性数値に基づいて前記複数の画像のうちの少なくとも一つの画像を変更するステップは、前記複数の画像の不確実性数値が基準値以上である一つ以上の画像を検出するステップと、前記検出した画像の前記臓器領域に対するユーザーの入力に基づいて、前記検出した画像を変更するステップとを含む、請求項1に記載の臓器の体積測定方法。
- 前記変更されたラベリングポリシーに基づいて、複数の画像の加重値を設定し、前記変更された画像に対して変更前の画像よりも大きい加重値を付与して前記神経網モデルを学習させるステップをさらに含む、請求項7に記載の臓器の体積測定方法。
- 少なくとも一つのプロセッサを含む臓器体積測定装置であって、
前記少なくとも一つのプロセッサは、
前記臓器を撮像した複数の画像及び撮像メタデータを取得し、前記複数の画像を前処理して指定したサイズの複数の画像パッチ(patch)を取得し、
前記複数の画像パッチを3D CNN(Convolutional Neural Network)に基づく神経網モデルに入力し、前記複数の画像パッチのそれぞれに対応する臓器領域を推定し、
前記推定された臓器領域の面積及び前記撮像メタデータを用いて前記臓器の体積を測定し、
前記神経網モデルの推定結果に基づいて、神経網モデルの不確実性数値及び複数の画像の不確実性数値を測定し、
前記複数の画像の不確実性数値に基づいて、前記複数の画像のうちの少なくとも一つの画像を変更し、
前記神経網モデルの不確実性数値に基づいて、前記神経網モデルのラベリングポリシーを変更するように構成される臓器体積測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023031702A JP7521834B2 (ja) | 2018-12-11 | 2023-03-02 | 人工神経網を利用する臓器の体積測定方法及びその装置 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180158812A KR102237009B1 (ko) | 2018-12-11 | 2018-12-11 | 다낭 신 또는 다낭 간의 진행 상태를 판단하는 방법 및 이를 수행하기 위한 의료용 전자 장치 |
KR10-2018-0158812 | 2018-12-11 | ||
KR10-2019-0162842 | 2019-12-09 | ||
KR1020190162842A KR102328198B1 (ko) | 2019-12-09 | 2019-12-09 | 인공신경망을 이용한 장기의 부피 측정 방법 및 그 장치 |
PCT/KR2019/017514 WO2020122606A1 (ko) | 2018-12-11 | 2019-12-11 | 인공신경망을 이용한 장기의 부피 측정 방법 및 그 장치 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023031702A Division JP7521834B2 (ja) | 2018-12-11 | 2023-03-02 | 人工神経網を利用する臓器の体積測定方法及びその装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022511965A JP2022511965A (ja) | 2022-02-01 |
JP7239701B2 true JP7239701B2 (ja) | 2023-03-14 |
Family
ID=71077346
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021533353A Active JP7239701B2 (ja) | 2018-12-11 | 2019-12-11 | 人工神経網を利用する臓器の体積測定方法及びその装置 |
JP2023031702A Active JP7521834B2 (ja) | 2018-12-11 | 2023-03-02 | 人工神経網を利用する臓器の体積測定方法及びその装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023031702A Active JP7521834B2 (ja) | 2018-12-11 | 2023-03-02 | 人工神経網を利用する臓器の体積測定方法及びその装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12056890B2 (ja) |
EP (1) | EP3895600A4 (ja) |
JP (2) | JP7239701B2 (ja) |
CN (1) | CN113412082A (ja) |
WO (1) | WO2020122606A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11763934B1 (en) * | 2018-02-09 | 2023-09-19 | Robert Edwin Douglas | Method and apparatus for a simulated physiologic change for CT and MRI examinations |
KR102241724B1 (ko) * | 2020-05-22 | 2021-04-19 | 주식회사 루닛 | 레이블 정보를 보정하는 방법 및 시스템 |
US11842485B2 (en) * | 2021-03-04 | 2023-12-12 | GE Precision Healthcare LLC | System and methods for inferring thickness of anatomical classes of interest in two-dimensional medical images using deep neural networks |
KR102682936B1 (ko) * | 2022-10-27 | 2024-07-09 | 주식회사 아이도트 | 요로위치 추정 시스템 |
CN116311086B (zh) * | 2023-05-23 | 2023-08-22 | 苏州浪潮智能科技有限公司 | 植物监测方法、植物监测模型的训练方法、装置及设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002230518A (ja) | 2000-11-29 | 2002-08-16 | Fujitsu Ltd | 診断支援プログラム、診断支援プログラムを記録したコンピュータ読取可能な記録媒体、診断支援装置及び診断支援方法 |
JP2015205164A (ja) | 2014-04-10 | 2015-11-19 | 株式会社東芝 | 医用画像表示装置および医用画像表示システム |
JP2017202031A (ja) | 2016-05-09 | 2017-11-16 | 東芝メディカルシステムズ株式会社 | 医用情報処理装置 |
US20180099152A1 (en) | 2016-10-07 | 2018-04-12 | Siemens Healthcare Gmbh | Method for supporting radiation treatment planning for a patient |
US20180330518A1 (en) | 2017-05-11 | 2018-11-15 | Verathon Inc. | Probability map-based ultrasound scanning |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100332072B1 (ko) * | 1999-02-18 | 2002-04-10 | 박종원 | 단층촬영 영상으로부터의 장기 추출 및 체적산출방법 |
JP5133505B2 (ja) | 2005-06-24 | 2013-01-30 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 画像判定装置およびx線ct装置 |
EP2194504A1 (en) * | 2008-12-02 | 2010-06-09 | Koninklijke Philips Electronics N.V. | Generation of a depth map |
US10339648B2 (en) | 2013-01-18 | 2019-07-02 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Quantitative predictors of tumor severity |
KR20150049585A (ko) * | 2013-10-30 | 2015-05-08 | 삼성전자주식회사 | 용종 검출 장치 및 그 동작방법 |
AU2015246630A1 (en) * | 2014-04-15 | 2016-10-13 | 4DMedical Limited | Method of imaging |
KR101659578B1 (ko) * | 2015-09-01 | 2016-09-23 | 삼성전자주식회사 | 자기 공명 영상 처리 방법 및 장치 |
CN108882896B (zh) | 2015-09-23 | 2022-05-27 | 史赛克欧洲运营有限公司 | 用于评定组织的治愈的方法和系统 |
US10517678B2 (en) | 2015-10-02 | 2019-12-31 | Heartflow, Inc. | System and method for diagnosis and assessment of cardiovascular disease by comparing arterial supply capacity to end-organ demand |
KR102510760B1 (ko) | 2016-02-15 | 2023-03-16 | 삼성전자주식회사 | 영상처리장치, 영상처리방법 및 이를 기록한 기록매체 |
EP3471623B1 (en) * | 2016-06-20 | 2023-01-25 | Butterfly Network, Inc. | Automated image acquisition for assisting a user to operate an ultrasound device |
US10304198B2 (en) * | 2016-09-26 | 2019-05-28 | Siemens Healthcare Gmbh | Automatic medical image retrieval |
US10096109B1 (en) * | 2017-03-31 | 2018-10-09 | The Board Of Trustees Of The Leland Stanford Junior University | Quality of medical images using multi-contrast and deep learning |
EP3629898A4 (en) * | 2017-05-30 | 2021-01-20 | Arterys Inc. | AUTOMATED LESION DETECTION, SEGMENTATION AND LONGITUDINAL IDENTIFICATION |
US10478134B2 (en) * | 2017-09-26 | 2019-11-19 | General Electric Company | Systems and methods for improved diagnostics for nuclear medicine imaging |
KR101864380B1 (ko) | 2017-12-28 | 2018-06-04 | (주)휴톰 | 수술영상데이터 학습시스템 |
KR102215805B1 (ko) | 2018-01-30 | 2021-02-17 | 연세대학교 원주산학협력단 | 딥러닝 기술을 통한 흉부 물질 분리 영상 획득 방법 및 시스템 |
KR102683757B1 (ko) * | 2018-02-20 | 2024-07-10 | 삼성전자주식회사 | 심층 신경망의 학습을 수행시키는 방법 및 그에 대한 장치 |
EP3660741B1 (en) * | 2018-11-29 | 2022-05-04 | Koninklijke Philips N.V. | Feature identification in medical imaging |
US11275976B2 (en) * | 2019-04-05 | 2022-03-15 | Siemens Healthcare Gmbh | Medical image assessment with classification uncertainty |
-
2019
- 2019-12-11 WO PCT/KR2019/017514 patent/WO2020122606A1/ko unknown
- 2019-12-11 US US17/312,342 patent/US12056890B2/en active Active
- 2019-12-11 JP JP2021533353A patent/JP7239701B2/ja active Active
- 2019-12-11 CN CN201980091771.7A patent/CN113412082A/zh active Pending
- 2019-12-11 EP EP19897034.5A patent/EP3895600A4/en active Pending
-
2023
- 2023-03-02 JP JP2023031702A patent/JP7521834B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002230518A (ja) | 2000-11-29 | 2002-08-16 | Fujitsu Ltd | 診断支援プログラム、診断支援プログラムを記録したコンピュータ読取可能な記録媒体、診断支援装置及び診断支援方法 |
JP2015205164A (ja) | 2014-04-10 | 2015-11-19 | 株式会社東芝 | 医用画像表示装置および医用画像表示システム |
JP2017202031A (ja) | 2016-05-09 | 2017-11-16 | 東芝メディカルシステムズ株式会社 | 医用情報処理装置 |
US20180099152A1 (en) | 2016-10-07 | 2018-04-12 | Siemens Healthcare Gmbh | Method for supporting radiation treatment planning for a patient |
US20180330518A1 (en) | 2017-05-11 | 2018-11-15 | Verathon Inc. | Probability map-based ultrasound scanning |
Also Published As
Publication number | Publication date |
---|---|
EP3895600A4 (en) | 2022-03-02 |
US20220036575A1 (en) | 2022-02-03 |
EP3895600A1 (en) | 2021-10-20 |
US12056890B2 (en) | 2024-08-06 |
WO2020122606A1 (ko) | 2020-06-18 |
JP7521834B2 (ja) | 2024-07-24 |
JP2023078193A (ja) | 2023-06-06 |
CN113412082A (zh) | 2021-09-17 |
JP2022511965A (ja) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7239701B2 (ja) | 人工神経網を利用する臓器の体積測定方法及びその装置 | |
JP7134962B2 (ja) | 解剖学的画像処理における確率的セグメンテーションのためのシステム及び方法 | |
US10810512B1 (en) | Validating a machine learning model prior to deployment | |
JP7170145B2 (ja) | 情報処理装置、プログラム、学習済みモデル、診断支援装置、学習装置及び予測モデルの生成方法 | |
EP3791316A1 (en) | Localization and classification of abnormalities in medical images | |
EP3861560A1 (en) | Method for detecting adverse cardiac events | |
WO2019051356A1 (en) | SYSTEM AND METHOD FOR AUTOMATICALLY LABELING AND ANNOUNTING NON-STRUCTURED MEDICAL DATA SETS | |
KR102328198B1 (ko) | 인공신경망을 이용한 장기의 부피 측정 방법 및 그 장치 | |
CN110866909A (zh) | 图像生成网络的训练方法、图像预测方法和计算机设备 | |
CN110751187B (zh) | 异常区域图像生成网络的训练方法和相关产品 | |
Babarenda Gamage et al. | An automated computational biomechanics workflow for improving breast cancer diagnosis and treatment | |
KR102043829B1 (ko) | 병변 발생 시점 추정 방법, 장치 및 프로그램 | |
CN112750110A (zh) | 基于神经网络对肺部病灶区进行评估的评估系统和相关产品 | |
US20230126877A1 (en) | Synthetic data generation and annotation for tumor diagnostics and treatment | |
CN114092427B (zh) | 一种基于多序列mri图像的克罗病与肠结核分类方法 | |
CN115841476A (zh) | 肝癌患者生存期预测方法、装置、设备及介质 | |
Wijerathna et al. | Brain Tumor Detection Using Image Processing | |
KR20210145359A (ko) | 신부전증의 진단에 대한 정보 제공 방법 및 이를 이용한 디바이스 | |
KR102671699B1 (ko) | 신장암의 진단에 필요한 정보를 제공하는 방법 및 장치 | |
CN114450752A (zh) | 用于利用深度学习模型的计算机辅助诊断的方法和系统 | |
Anima et al. | On the Automated unruptured Intracranial Aneurysm segmentation from TOF-MRA using Deep Learning Techniques. | |
US20240268699A1 (en) | Automated quantitative joint and tissue analysis and diagnosis | |
US20240186022A1 (en) | Progression profile prediction | |
US20240203039A1 (en) | Interpretable task-specific dimensionality reduction | |
US20230274424A1 (en) | Appartus and method for quantifying lesion in biometric image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230302 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7239701 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |