JP7239505B2 - Failure detection device - Google Patents

Failure detection device Download PDF

Info

Publication number
JP7239505B2
JP7239505B2 JP2020010884A JP2020010884A JP7239505B2 JP 7239505 B2 JP7239505 B2 JP 7239505B2 JP 2020010884 A JP2020010884 A JP 2020010884A JP 2020010884 A JP2020010884 A JP 2020010884A JP 7239505 B2 JP7239505 B2 JP 7239505B2
Authority
JP
Japan
Prior art keywords
pressure
opening
amount
failure detection
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020010884A
Other languages
Japanese (ja)
Other versions
JP2021116748A (en
Inventor
勇気 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2020010884A priority Critical patent/JP7239505B2/en
Publication of JP2021116748A publication Critical patent/JP2021116748A/en
Application granted granted Critical
Publication of JP7239505B2 publication Critical patent/JP7239505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関が備えるセンサの故障を検知する故障検知装置に関し、特に、内燃機関が備える吸気圧センサの故障を検知する故障検知装置に関する。 TECHNICAL FIELD The present invention relates to a failure detection device for detecting failure of a sensor provided in an internal combustion engine, and more particularly to a failure detection device for detecting failure of an intake pressure sensor provided in an internal combustion engine.

近年、車両の走行性能や環境性能等の向上への要請に対応して、車両に搭載されている内燃機関であるエンジンの回転数等の運転状態を制御するエンジン制御装置が提案されてきている。このようなエンジン制御装置では、温度センサ等の種々のセンサの検出信号から算出される値に基づいてエンジンの燃料供給量、吸気量及び点火時期等を制御してその運転状態を制御する構成を採用している。しかしながら、これらの種々のセンサに故障等の異常が発生した場合には、エンジンの運転状態を最適に制御することができなくなる事象が発生することがある。従って、このような異常を検出して部品の交換を促す表示をすること等により、エンジンの運転状態を最適に制御することが行われている。 In recent years, in response to the demand for improved running performance and environmental performance of vehicles, there have been proposals for engine control devices that control the operating conditions such as the number of revolutions of an internal combustion engine mounted on a vehicle. . Such an engine control device controls the fuel supply amount, intake air amount, ignition timing, etc. of the engine based on values calculated from detection signals of various sensors such as a temperature sensor, thereby controlling the operating state of the engine. We are hiring. However, when an abnormality such as failure occurs in these various sensors, an event may occur in which the operating state of the engine cannot be optimally controlled. Therefore, the operating state of the engine is optimally controlled by detecting such an abnormality and displaying a prompt to replace the parts.

また、車両の故障診断機能であるOBD(On Board Diagnostic)に関する規約では、車両に搭載されている各種のセンサの故障等の異常状態を検出し、異常履歴情報の管理を行うことが規定されている。OBDに関する規約におけるセンサの故障等の異常状態の検出は、四輪の自動車において義務化されており、二輪の自動車においても義務化される傾向にある。 In addition, the regulations regarding OBD (On Board Diagnostic), which is a vehicle failure diagnosis function, stipulate that abnormal conditions such as failures of various sensors installed in the vehicle should be detected and abnormal history information should be managed. there is Detection of abnormal conditions such as sensor failures in the OBD regulations is mandatory for four-wheeled vehicles, and tends to be mandatory for two-wheeled vehicles as well.

かかる状況下で、特許文献1は、自動二輪車及び車両の制御装置に関し、電子制御式スロットル装置のスロットル弁の実開度を取得する1又は複数の実開度取得部11a及び11bと、エンジンの吸気圧を取得する吸気圧取得部12と、エンジンの回転速度を取得する回転速度取得部13と、吸気圧及び回転速度に基づいて、電子制御式スロットル装置の推定開度を算出する推定開度算出部14と、実開度が不具合条件を満たす場合に、推定開度に基づいて、フィードバック値として使用する開度を決定する使用開度決定部16と、実開度が不具合条件を満たす場合に、予め定められた上限値を超える目標開度の生成を制限する目標開度決定部17と、を備える構成を開示する。 Under such circumstances, Patent Document 1 relates to a control device for a motorcycle and a vehicle. An intake pressure acquisition unit 12 that acquires the intake pressure, a rotation speed acquisition unit 13 that acquires the rotation speed of the engine, and an estimated opening that calculates the estimated opening of the electronically controlled throttle device based on the intake pressure and the rotation speed. A calculation unit 14, a use opening determination unit 16 that determines an opening to be used as a feedback value based on the estimated opening when the actual opening satisfies the failure condition, and a use opening determining unit 16 when the actual opening satisfies the failure condition. and a target opening determination unit 17 that restricts generation of a target opening exceeding a predetermined upper limit value.

特開2015-45284号公報JP 2015-45284 A

しかしながら、本発明者の検討によれば、特許文献1が開示する構成では、スロットルポジションセンサーに不具合が生じても電子制御式スロットル装置を制御すること企図したものであるが、あくまでも電子制御式スロットル装置を前提として、スロットル弁の開度と吸気圧との間に相関関係があることに着目したもので、安価な機械式スロットル装置に対する具体的な構成を何等開示等しているものではない。 However, according to the study of the present inventor, the configuration disclosed in Patent Document 1 is intended to control the electronically controlled throttle device even if a problem occurs in the throttle position sensor. Assuming the device, it focuses on the fact that there is a correlation between the opening of the throttle valve and the intake pressure, and does not disclose any specific configuration for an inexpensive mechanical throttle device.

また、本発明者の検討によれば、機械式スロットル装置においては、スロットル弁は機械的に駆動されるため、吸気圧センサの故障等の異常状態の検出が必要となると考えられる。また、機械式スロットル装置においては、冷間時の始動性向上やアイドル回転の安定性向上等を考慮して、本来の吸気通路の他にスロットル弁をバイパスしてその上流側とその下流側であって吸気圧センサの吸気圧の検出部位の上流側とを連通するバイパス通路を付加して、バイパス通路を通過する吸気の方の流入量を調整する構成を採用することが一般的であるため、このようなバイパス通路を採用した場合であっても、高精度に吸気圧センサの故障等の異常状態の検出をすることが必要となると考えられる。 Further, according to the studies of the present inventors, in the mechanical throttle device, the throttle valve is mechanically driven, so it is considered necessary to detect an abnormal state such as failure of the intake pressure sensor. In addition, in the mechanical throttle device, in consideration of the improvement of cold startability and the improvement of idling stability, the throttle valve is bypassed in addition to the original intake passage, and the upstream and downstream sides are Therefore, it is common to add a bypass passage that communicates with the upstream side of the intake pressure detection part of the intake pressure sensor, and to adopt a configuration that adjusts the inflow amount of the intake air passing through the bypass passage. Even if such a bypass passage is adopted, it is considered necessary to detect an abnormal state such as failure of the intake pressure sensor with high accuracy.

また、本発明者の更なる検討によれば、このようなバイパス通路を採用した場合には、スロットル弁が低開度や中開度である場合に、吸気圧センサが検出する吸気圧の検出値に対してバイパス通路の開閉の影響が相対的に大きいため、例えば、スロットル弁が最も低開度である全閉である場合には吸気圧センサの故障等の異常状態の検出を中止することが考えられるが、これでは異常状態の検出の機会の減少に繋がってしまうため、改善の余地がある。 Further, according to further studies by the present inventors, when such a bypass passage is adopted, the intake pressure detected by the intake pressure sensor is detected when the throttle valve is opened at a low or medium opening. Since the opening and closing of the bypass passage has a relatively large effect on the value, for example, when the throttle valve is fully closed, which is the lowest degree of opening, the detection of abnormal conditions such as failure of the intake pressure sensor should be stopped. However, this leads to a decrease in the chances of detecting an abnormal state, so there is room for improvement.

また、本発明者の更なる検討によれば、このようなバイパス通路を採用した場合には、バイパス通路の開度、エンジン回転数及びスロットル弁の開度の関係から吸気圧を推定するいわゆる負荷推定を行うことも可能であるため、予め求めておいた吸気圧の推定値と吸気圧センサより検出される吸気圧の実測値とを比較して、これらに所定値以上の乖離があると、吸気圧センサに故障等の異常状態が生じていると判断することも可能である。しかしながら、このような構成によれば、バイパス通路の開度、エンジン回転数及びスロットル弁の開度という三種類のパラメータを複数回扱う必要があって、そのために予め行う必要のある実測回数やその結果得られるデータ数が増大してしまい、特に安価であることが求められる自動二輪車においてコストの増加等が発生するという事態に繋がってしまうため、改善の余地がある。 Further, according to further studies by the present inventors, when such a bypass passage is adopted, a so-called load pressure is estimated from the relationship between the degree of opening of the bypass passage, the engine speed, and the degree of opening of the throttle valve. Since it is also possible to make an estimation, an estimated value of the intake pressure obtained in advance is compared with an actually measured value of the intake pressure detected by the intake pressure sensor. It is also possible to determine that the intake pressure sensor is in an abnormal state such as failure. However, according to such a configuration, it is necessary to handle three types of parameters, namely, the degree of opening of the bypass passage, the number of engine revolutions, and the degree of opening of the throttle valve, a plurality of times. As a result, the amount of data obtained increases, which leads to an increase in cost, etc., especially for motorcycles, which are required to be inexpensive, so there is room for improvement.

本発明は、以上の検討を経てなされたものであり、自動二輪車等の車両に適切に採用することができるようにコストを抑制した簡素な構成で、精度よく吸気圧センサの故障検知を行うことができる実用的な故障検知装置を提供することを目的とする。 The present invention has been made through the above studies, and has a simple configuration that suppresses costs so that it can be appropriately adopted in vehicles such as motorcycles, etc., and accurately detects a failure of an intake pressure sensor. An object of the present invention is to provide a practical failure detection device capable of

以上の目的を達成するべく、本発明は、内燃機関が備えるセンサの故障を検知する故障検知部を有する故障検知装置であって、前記センサは、前記内燃機関の燃焼室に吸入される吸気が流入する吸気管の内部に可動に設けられ前記吸気管を開閉し前記吸気の量を調整する弁体の開度を検出する開度センサと、前記弁体よりも前記吸気管の下流側の圧力を検出する圧力センサと、前記内燃機関の回転数を検出する回転センサと、を含み、前記吸気管には、前記弁体よりも上流側と、前記弁体よりも下流側と、を連通するバイパス通路が設けられ、前記バイパス通路には、前記バイパス通路を開閉して前記バイパス通路に流入する前記吸気の量を調整するバイパス弁が設けられ、前記バイパス弁は、駆動制御されるアクチュエータによって前記バイパス通路を開閉するように移動され、前記バイパス弁は、前記アクチュエータが駆動制御される制御量に応じて移動され、前記故障検知部は、前記圧力センサによって検出される前記圧力である測定圧と、前記測定圧が検出される際の前記回転数、前記開度及び前記制御量に対応する値としての推定圧と、を比較して、前記測定圧と前記推定圧との差の絶対値が所定の閾値よりも大きい場合に前記圧力センサに故障が発生したと判断し、前記推定圧は、前記回転数及び前記開度に対応して、前記吸気管の前記下流側の前記圧力を予め検出して得られた値である基準推定圧から算出され、前記推定圧を算出する際の前記開度としては、前記制御量に応じて前記開度を補正した補正開度が用いられ、前記故障検知装置は、前記基準推定圧を格納した記憶部を更に有し、前記故障検知部は、前記記憶部内の前記基準推定圧を参照して、前記測定圧が検出された際の前記回転数及び前記開度に対応した前記基準推定圧の値である前記推定圧を算出する際に、前記開度として用いる前記補正開度を、前記制御量に応じて前記開度を補正することにより算出し、前記バイパス弁は、前記制御量に比例した移動量で移動されて前記バイパス通路の流路面積を増減するように開閉し、前記バイパス弁の前記移動量が前記圧力の変化量の大きさに対して影響する影響度合係数は、前記弁体の前記開度が全閉開度のとき最も大きくなり、前記故障検知装置は、基準補正量及び前記影響度合係数を前記記憶部に格納し、前記基準補正量は、前記弁体の前記開度を前記全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに前記圧力が変化する第一圧力変化量と前記第一開度量との比である第一基準比と、前記全閉開度において前記バイパス弁を第一の移動量となるように移動させたときに前記圧力が変化する第二圧力変化量と前記第一の移動量との比である第二基準比と、の比として予め算出され、前記影響度合係数は、前記回転数に対応して得られた前記第二圧力変化量と、前記回転数及び前記弁体の前記開度に各々対応して得られると共に前記バイパス弁を前記第一の移動量となるように移動させたときに前記圧力が変化する変化量と、の比として予め算出され、前記弁体の前記補正開度は、前記基準補正量と前記バイパス弁の前記移動量と前記影響度合係数との積と、前記開度センサによって検出される測定開度と、の和によって算出されることを第1の局面とする。 In order to achieve the above objects, the present invention provides a failure detection device having a failure detection unit for detecting a failure of a sensor provided in an internal combustion engine, wherein the sensor detects an amount of intake air drawn into a combustion chamber of the internal combustion engine. an opening degree sensor for detecting an opening degree of a valve body which is movably provided inside an inflowing intake pipe and which opens and closes the intake pipe and adjusts the amount of intake air; and a rotation sensor for detecting the number of revolutions of the internal combustion engine, and the intake pipe communicates between the upstream side of the valve body and the downstream side of the valve body. A bypass passage is provided, and the bypass passage is provided with a bypass valve that opens and closes the bypass passage to adjust the amount of the intake air flowing into the bypass passage. The bypass valve is moved according to a control amount by which the actuator is driven and controlled, and the failure detection unit measures the pressure detected by the pressure sensor and the measured pressure. , and an estimated pressure as a value corresponding to the rotational speed, the opening degree, and the control amount when the measured pressure is detected, and the absolute value of the difference between the measured pressure and the estimated pressure is If it is larger than a predetermined threshold value, it is determined that a failure has occurred in the pressure sensor , and the estimated pressure is the pressure on the downstream side of the intake pipe in advance corresponding to the rotational speed and the opening degree. It is calculated from the reference estimated pressure which is a value obtained by detection, and as the opening degree when calculating the estimated pressure, a corrected opening degree obtained by correcting the opening degree according to the control amount is used . The failure detection device further has a storage unit storing the reference estimated pressure, and the failure detection unit refers to the reference estimated pressure in the storage unit to determine the rotational speed when the measured pressure is detected. and calculating the corrected opening used as the opening when calculating the estimated pressure, which is the value of the reference estimated pressure corresponding to the opening, by correcting the opening according to the control amount. The bypass valve is moved by a movement amount proportional to the control amount to open and close so as to increase or decrease the passage area of the bypass passage, and the movement amount of the bypass valve is the magnitude of the pressure change amount. is the largest when the degree of opening of the valve body is fully closed, and the failure detection device stores the reference correction amount and the degree of influence coefficient in the storage unit, The reference correction amount adjusts the opening of the valve body from the fully closed opening to the reference opening, which is a predetermined value. A first reference ratio, which is a ratio of the first pressure change amount at which the pressure changes when the pressure is changed by the first opening amount, to the first opening amount, and the bypass valve at the fully closed opening degree. A second reference ratio, which is a ratio of a second pressure change amount at which the pressure changes when the pressure is moved to the movement amount and the first movement amount, is calculated in advance as a ratio of the influence degree coefficient is obtained corresponding to the second pressure change amount obtained corresponding to the rotation speed, the rotation speed and the opening degree of the valve body, and the bypass valve as the first movement amount. The corrected opening degree of the valve body is calculated in advance as a ratio of the change amount by which the pressure changes when the pressure is moved so as to be the reference correction amount, the movement amount of the bypass valve, and the degree of influence A first aspect is to be calculated by the sum of the product of the coefficient and the measured opening detected by the opening sensor .

また、本発明は、第の局面に加えて、前記回転数及び前記弁体の前記開度と、前記回転数及び前記開度に各々対応して、前記吸気管の前記下流側の前記圧力を予め検出して得られた前記値である前記基準推定圧と、は、それらの対応関係に則ったマップデータの形式で用意されることを第の局面とする。 Further, in addition to the first aspect, the present invention is characterized in that, in addition to the first aspect, the pressure on the downstream side of the intake pipe is changed corresponding to the number of revolutions and the degree of opening of the valve body, and the number of revolutions and the degree of opening, respectively. A second aspect is that the reference estimated pressure, which is the value obtained by detecting in advance, is prepared in the form of map data in accordance with the correspondence between them.

また、本発明は、内燃機関が備えるセンサの故障を検知する故障検知部を有する故障検知装置であって、前記センサは、前記内燃機関の燃焼室に吸入される吸気が流入する吸気管の内部に可動に設けられ前記吸気管を開閉し前記吸気の量を調整する弁体の開度を検出する開度センサと、前記弁体よりも前記吸気管の下流側の圧力を検出する圧力センサと、前記内燃機関の回転数を検出する回転センサと、を含み、前記吸気管には、前記弁体よりも上流側と、前記弁体よりも下流側と、を連通するバイパス通路が設けられ、前記バイパス通路には、前記バイパス通路を開閉して前記バイパス通路に流入する前記吸気の量を調整するバイパス弁が設けられ、前記バイパス弁は、駆動制御されるアクチュエータによって前記バイパス通路を開閉するように移動され、前記バイパス弁は、前記アクチュエータが駆動制御される制御量に応じて移動され、前記故障検知部は、前記圧力センサによって検出される前記圧力である測定圧と、前記測定圧が検出される際の前記回転数、前記開度及び前記制御量に対応する値としての推定圧と、を比較して、前記測定圧と前記推定圧との差の絶対値が所定の閾値よりも大きい場合に前記圧力センサに故障が発生したと判断し、前記推定圧は、前記回転数及び前記開度に対応して、前記吸気管の前記下流側の前記圧力を予め検出して得られた値である基準推定圧から算出され、前記推定圧を算出する際の前記開度としては、前記制御量に応じて前記開度を補正した補正開度が用いられ、前記故障検知装置は、前記推定圧を格納した記憶部を更に有し、前記回転数と前記弁体の前記開度とに対応して、前記弁体よりも下流側の圧力の実測値である基準推定圧が測定されて、前記回転数の値と前記開度の値と前記基準推定圧の値との対応関係を示すデータが予め用意され、前記制御量に応じて前記開度が補正された補正開度の値を前記開度の前記値として用いて前記データの前記基準推定圧の前記値から前記推定圧の値が算出され、算出された前記推定圧の前記値が前記記憶部に記憶され、前記バイパス弁は、前記制御量に比例した移動量で移動されて前記バイパス通路の流路面積を増減するように開閉し、前記バイパス弁の前記移動量が前記圧力の変化量の大きさに対して影響する影響度合係数は、前記弁体の前記開度が全閉開度のとき最も大きくなり、前記補正開度の算出は、基準補正量及び前記影響度合係数を使って予め算出され、前記基準補正量は、前記弁体の前記開度を前記全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに前記圧力が変化する第一圧力変化量と前記第一開度量との比である第一基準比と、前記全閉開度において前記バイパス弁を第一の移動量となるように移動させたときに前記圧力が変化する第二圧力変化量と前記第一の移動量との比である第二基準比と、の比として予め算出され、前記影響度合係数は、前記回転数に対応して得られた前記第二圧力変化量と、前記回転数及び前記弁体の前記開度に各々対応して得られると共に前記バイパス弁を前記第一の移動量となるように移動させたときに前記圧力が変化する変化量と、の比として予め算出され、前記弁体の前記補正開度は、前記基準補正量と前記バイパス弁の前記移動量と前記影響度合係数との積と、前記弁体の前記開度と、の和によって予め算出されることを第の局面とする。 Further, the present invention is a failure detection device having a failure detection unit for detecting failure of a sensor provided in an internal combustion engine, wherein the sensor is located inside an intake pipe through which intake air flows into a combustion chamber of the internal combustion engine. an opening degree sensor for detecting the degree of opening of a valve element that is movably provided to open and close the intake pipe and adjust the amount of intake air; and a pressure sensor for detecting the pressure downstream of the valve element in the intake pipe. and a rotation sensor for detecting the rotation speed of the internal combustion engine, wherein the intake pipe is provided with a bypass passage that communicates between an upstream side of the valve body and a downstream side of the valve body, The bypass passage is provided with a bypass valve that opens and closes the bypass passage to adjust the amount of the intake air flowing into the bypass passage, and the bypass valve is driven and controlled to open and close the bypass passage. and the bypass valve is moved according to a control amount by which the actuator is driven and controlled, and the failure detection unit detects a measured pressure that is the pressure detected by the pressure sensor and and an estimated pressure as a value corresponding to the rotational speed, the opening degree, and the control amount, and the absolute value of the difference between the measured pressure and the estimated pressure is larger than a predetermined threshold and the estimated pressure is a value obtained by previously detecting the pressure on the downstream side of the intake pipe corresponding to the rotational speed and the degree of opening. is calculated from the reference estimated pressure, and a corrected opening obtained by correcting the opening according to the control amount is used as the opening when calculating the estimated pressure. A reference estimated pressure, which is an actual measured value of the pressure on the downstream side of the valve body, is measured corresponding to the rotational speed and the opening degree of the valve body, and Data indicating the correspondence relationship between the value of the rotation speed, the value of the opening, and the value of the reference estimated pressure is prepared in advance. The value of the estimated pressure is calculated from the value of the reference estimated pressure of the data, which is used as the value of the degree of opening, and the calculated value of the estimated pressure is stored in the storage unit. The bypass valve is moved by a movement amount proportional to the control amount and opens and closes so as to increase or decrease the passage area of the bypass passage, and the degree of influence of the movement amount of the bypass valve on the magnitude of the pressure change amount The coefficient is the largest when the opening of the valve body is the fully closed opening. The reference correction amount is calculated in advance using the influence degree coefficient, and the reference correction amount is obtained when the opening of the valve body is changed from the fully closed opening to the reference opening, which is a predetermined value, by the first opening amount. When the bypass valve is moved to the first movement amount at the first reference ratio, which is the ratio between the first pressure change amount by which the pressure changes and the first opening amount, and the fully closed opening amount It is calculated in advance as a ratio of the second pressure change amount by which the pressure changes and the second reference ratio that is the ratio of the first movement amount, and the influence degree coefficient is obtained corresponding to the rotation speed. The second pressure change amount is obtained corresponding to the rotation speed and the opening degree of the valve body, and the pressure is obtained when the bypass valve is moved to the first movement amount. The corrected opening degree of the valve body is the product of the reference correction amount, the movement amount of the bypass valve, and the influence degree coefficient, and the valve body's A third aspect is that it is calculated in advance by the sum of the opening degree and .

以上の本発明の第1の局面にかかる故障検知装置によれば、故障検知部が圧力センサによって検出される測定圧と比較する推定圧が、内燃機関の回転数及び吸気管を開閉する弁体の開度に対応して、吸気管の下流側の圧力を予め検出して得られた値である基準推定圧から算出され、推定圧を算出する際の弁体の開度としては、バイパス通路を開閉するバイパス弁を移動させるアクチュエータが駆動制御される制御量に応じて弁体の開度を補正した補正開度が用いられるものであるため、基準推定圧のデータ数が増大することを避けつつ実用上充分な精度で故障検知を行うことができる。これにより、自動二輪車等の車両に適切に採用することができるようにコストを抑制した簡素な構成で、精度よく吸気圧センサの故障検知を行うことができる実用的な故障検知装置を提供することができる。 According to the failure detection device according to the first aspect of the present invention, the estimated pressure that the failure detection unit compares with the measured pressure detected by the pressure sensor is determined by the number of revolutions of the internal combustion engine and the valve body that opens and closes the intake pipe. is calculated from the reference estimated pressure, which is a value obtained by detecting the pressure downstream of the intake pipe in advance, corresponding to the degree of opening of the bypass passage. Since the corrected opening is used by correcting the opening of the valve body according to the control amount that drives and controls the actuator that moves the bypass valve that opens and closes the bypass valve, an increase in the number of data of the reference estimated pressure However, failure detection can be performed with practically sufficient accuracy. Thus, to provide a practical failure detection device capable of accurately detecting a failure of an intake pressure sensor with a simple configuration that suppresses costs so that it can be appropriately adopted in a vehicle such as a motorcycle. can be done.

また、本発明の第の局面にかかる故障検知装置によれば、故障検知装置が、基準推定圧を格納した記憶部を更に有し、記憶部内の基準推定圧を参照して、測定圧が検出された際の内燃機関の回転数及び弁体の開度に対応した基準推定圧の値である推定圧を算出する際に、弁体の開度として用いる補正開度を、バイパス弁を移動させるアクチュエータが駆動制御される制御量に応じて開度を補正することにより算出するものであるため、記憶部内の基準推定圧から推定圧を算出しつつ実用上充分な精度で故障検知を行うことができる。 Further, according to the failure detection device according to the first aspect of the present invention, the failure detection device further has a storage unit storing the reference estimated pressure, and refers to the reference estimated pressure in the storage unit so that the measured pressure is When calculating the estimated pressure, which is the value of the reference estimated pressure corresponding to the rotational speed of the internal combustion engine and the opening of the valve disc at the time of detection, the correction opening used as the opening of the valve disc is moved by moving the bypass valve. Since it is calculated by correcting the opening according to the control amount that drives the actuator to be driven and controlled, it is possible to calculate the estimated pressure from the reference estimated pressure in the storage unit and perform failure detection with practically sufficient accuracy. can be done.

また、本発明の第の局面にかかる故障検知装置によれば、基準補正量及び影響度合係数を記憶部に格納し、基準補正量が、弁体の開度を全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに圧力が変化する第一圧力変化量と第一開度量との比である第一基準比と、全閉開度においてバイパス弁を第一の移動量となるように移動させたときに圧力が変化する第二圧力変化量と第一の移動量との比である第二基準比と、の比として予め算出され、影響度合係数が、内燃機関の回転数に対応して得られた第二圧力変化量と、内燃機関の回転数及び弁体の開度に各々対応して得られると共にバイパス弁を第一の移動量となるように移動させたときに圧力が変化する変化量と、の比として予め算出され、弁体の補正開度が、基準補正量とバイパス弁の移動量と影響度合係数との積と、開度センサによって検出される測定開度と、の和によって算出されるものであるため、記憶部内の基準補正量及び影響度合係数をも用いて、より確実に精度よく故障検知を行うことができる。 Further, according to the failure detection device according to the first aspect of the present invention, the reference correction amount and the influence degree coefficient are stored in the storage unit, and the reference correction amount changes the opening degree of the valve body from the fully closed opening degree to the predetermined value. The first reference ratio, which is the ratio of the first pressure change amount at which the pressure changes when the pressure is changed by the first opening amount to the reference opening, and the first opening amount, and the bypass valve at the fully closed opening is the first It is calculated in advance as a ratio of the second reference ratio, which is the ratio of the first movement amount to the second pressure change amount at which the pressure changes when moving so as to be one movement amount, and the influence degree coefficient is , a second pressure change amount obtained corresponding to the number of revolutions of the internal combustion engine, a second amount of change in pressure obtained corresponding to the number of revolutions of the internal combustion engine and the degree of opening of the valve body, and the bypass valve to the first movement amount. The corrected opening of the valve body is calculated in advance as a ratio of the amount of change in pressure when the pressure is moved to Since it is calculated by the sum of the measured opening detected by and the reference correction amount and the influence degree coefficient in the storage unit, failure detection can be performed more reliably and accurately.

また、本発明の第の局面にかかる故障検知装置によれば、内燃機関の回転数及び弁体の開度と、内燃機関の回転数及び開度に各々対応して、吸気管の下流側の圧力を予め検出して得られた値である基準推定圧と、が、それらの対応関係に則ったマップデータの形式で用意されるものであるため、基準推定圧のデータを用意するための測定数を減らすことができる。 Further, according to the failure detection device according to the second aspect of the present invention, the downstream side of the intake pipe is detected in accordance with the rotational speed and the opening degree of the internal combustion engine, and the rotational speed and the opening degree of the internal combustion engine. The reference estimated pressure, which is a value obtained by detecting the pressure in advance, is prepared in the form of map data in accordance with the correspondence relationship between them. The number of measurements can be reduced.

また、本発明の第の局面にかかる故障検知装置によれば、故障検知部が圧力センサによって検出される測定圧と比較する推定圧が、内燃機関の回転数及び吸気管を開閉する弁体の開度に対応して、吸気管の下流側の圧力を予め検出して得られた値である基準推定圧から算出され、推定圧を算出する際の弁体の開度としては、バイパス通路を開閉するバイパス弁を移動させるアクチュエータが駆動制御される制御量に応じて弁体の開度を補正した補正開度が用いられるものであるため、基準推定圧のデータ数が増大することを避けつつ実用上充分な精度で故障検知を行うことができるため、これにより、自動二輪車等の車両に適切に採用することができるようにコストを抑制した簡素な構成で、精度よく吸気圧センサの故障検知を行うことができる実用的な故障検知装置を提供することができると共に、故障検知装置、推定圧を格納した記憶部を更に有し、内燃機関の回転数と弁体の開度とに対応して、弁体よりも下流側の圧力の実測値である基準推定圧が測定されて、内燃機関の回転数の値と開度の値と基準推定圧の値との対応関係を示すデータが予め用意され、バイパス弁を移動させるアクチュエータが駆動制御される制御量に応じて開度が補正された補正開度の値を開度の値として用いて、データの基準推定圧の値から推定圧の値が予め算出され、算出された推定圧の値が記憶部に記憶されるものであるため、記憶部内の推定圧を用いて実用上充分な精度で故障検知を行うことができる。 Further, according to the failure detection device according to the third aspect of the present invention, the estimated pressure that the failure detection unit compares with the measured pressure detected by the pressure sensor depends on the number of revolutions of the internal combustion engine and the valve body that opens and closes the intake pipe. is calculated from the reference estimated pressure, which is a value obtained by detecting the pressure downstream of the intake pipe in advance, corresponding to the degree of opening of the bypass passage. Since the corrected opening is used by correcting the opening of the valve body according to the control amount that drives and controls the actuator that moves the bypass valve that opens and closes the bypass valve, an increase in the number of data of the reference estimated pressure In addition, it is possible to detect failures with sufficient accuracy for practical use. Therefore, it is possible to accurately detect failure of an intake pressure sensor with a simple configuration that suppresses costs so that it can be appropriately adopted in vehicles such as motorcycles. It is possible to provide a practical failure detection device that can perform detection, and the failure detection device further has a storage unit that stores the estimated pressure, and the rotational speed of the internal combustion engine and the opening of the valve body. Correspondingly, the reference estimated pressure, which is the measured value of the pressure on the downstream side of the valve body, is measured, and data indicating the correspondence relationship between the rotational speed value of the internal combustion engine, the opening value, and the reference estimated pressure value. is prepared in advance and the actuator that moves the bypass valve is driven and controlled according to the control amount. Since the pressure value is calculated in advance and the calculated estimated pressure value is stored in the storage unit, failure detection can be performed with practically sufficient accuracy using the estimated pressure in the storage unit.

また、本発明の第局面にかかる故障検知装置によれば、補正開度の算出が、基準補正量及び影響度合係数を使って予め算出され、基準補正量が、弁体の開度を全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに圧力が変化する第一圧力変化量と第一開度量との比である第一基準比と、全閉開度においてバイパス弁を第一の移動量となるように移動させたときに圧力が変化する第二圧力変化量と第一の移動量との比である第二基準比と、の比として予め算出され、影響度合係数が、内燃機関の回転数に対応して得られた第二圧力変化量と、内燃機関の回転数及び弁体の開度に各々対応して得られると共にバイパス弁を第一の移動量となるように移動させたときに圧力が変化する変化量と、の比として予め算出され、弁体の補正開度が、基準補正量とバイパス弁の移動量と影響度合係数との積と、測定される開度と、の和によって予め算出されるものであるため、記憶部内に基準補正量及び影響度合係数を格納することなく、これらを予め算出しておいて、より確実に精度よく故障検知を行うことができる。 Further, according to the failure detection device according to the third aspect of the present invention, the correction opening is calculated in advance using the reference correction amount and the influence degree coefficient, and the reference correction amount is the valve body opening. A first reference ratio, which is the ratio of the first opening amount and the first pressure change amount at which the pressure changes when the pressure is changed from the closed opening amount to the reference opening amount, which is a predetermined value, and fully closed open. Calculated in advance as a ratio of the second reference ratio, which is the ratio of the first movement amount to the second pressure change amount at which the pressure changes when the bypass valve is moved to the first movement amount in degrees and the influence degree coefficient is obtained corresponding to the second pressure change amount obtained corresponding to the rotation speed of the internal combustion engine, the rotation speed of the internal combustion engine and the opening degree of the valve body, and the bypass valve is first is calculated in advance as a ratio of the amount of change in pressure when moved to a movement amount of , and the correction opening of the valve body is the reference correction amount, the movement amount of the bypass valve, and the degree of influence coefficient. Since it is calculated in advance by the sum of the product and the opening degree to be measured, the reference correction amount and the influence degree coefficient can be calculated in advance without storing them in the storage unit, so that they can be more reliably calculated. Failure detection can be performed with high accuracy.

図1は、本発明の実施形態における故障検知装置をそれが適用される内燃機関であるエンジンと共に示す概略図である。FIG. 1 is a schematic diagram showing a failure detection device according to an embodiment of the present invention together with an internal combustion engine to which it is applied. 図2は、本実施形態における故障検知装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the failure detection device according to this embodiment. 図3(a)は、本実施形態における故障検知装置の細部構成を示すブロック図であり、図3(b)は、本実施形態における故障検知装置のバタフライ開度補正処理で実行されるバタフライ開度への影響度合係数の算出の考え方を説明するためのグラフである。FIG. 3A is a block diagram showing the detailed configuration of the failure detection device according to the present embodiment, and FIG. FIG. 10 is a graph for explaining the concept of calculation of the coefficient of degree of influence on intensity; FIG. 図4は、本実施形態における故障検知装置でのバタフライ開度補正処理の流れの一例を説明するためのフローチャートである。FIG. 4 is a flowchart for explaining an example of the flow of butterfly opening degree correction processing in the failure detection device according to the present embodiment. 図5は、本実施形態における故障検知装置で付加的に実行される吸気圧センサ及び大気圧センサの故障検知処理の流れの一例を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining an example of the flow of failure detection processing for the intake pressure sensor and the atmospheric pressure sensor additionally executed by the failure detection device according to the present embodiment. 図6は、本実施形態における故障検知装置で付加的に実行される吸気圧センサ及び大気圧センサの故障検知処理の流れの一例を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining an example of the flow of failure detection processing for an intake pressure sensor and an atmospheric pressure sensor additionally executed by the failure detection device according to the present embodiment.

以下、図面を適宜参照して、本発明の実施形態における故障検知装置につき、詳細に説明する。 Hereinafter, a failure detection device according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.

〔エンジンの構成〕
まず、図1を参照して、本発明の実施形態における故障検知装置が適用される内燃機関であるエンジンの構成について説明する。
[Engine configuration]
First, referring to FIG. 1, the configuration of an engine, which is an internal combustion engine, to which a failure detection device according to an embodiment of the present invention is applied will be described.

図1は、本実施形態における故障検知装置をそれが適用される内燃機関であるエンジンと共に示す概略図である。 FIG. 1 is a schematic diagram showing a failure detection device according to the present embodiment together with an engine, which is an internal combustion engine to which it is applied.

図1に示すように、本実施形態における故障検知装置は、典型的にはECU(Electronic Control Unit)100の一部に含まれ、ECU100が適用されるエンジン1は、典型的には、図示を省略する自動二輪車等の車両に搭載される内燃機関であり、代表的に1つのみ図示した気筒2aを有するシリンダブロック2を備えている。気筒2aの内部には、ピストン3が配置されている。ピストン3は、コンロッド4を介してクランクシャフト5に連結されている。クランクシャフト5には、それと共に同軸に回転するリラクタ6が設けられている。 As shown in FIG. 1, the failure detection device in the present embodiment is typically included in part of an ECU (Electronic Control Unit) 100, and the engine 1 to which the ECU 100 is applied is typically shown in the figure. The engine is an internal combustion engine mounted on a vehicle such as a motorcycle (not shown), and includes a cylinder block 2 having only one cylinder 2a, which is representatively illustrated. A piston 3 is arranged inside the cylinder 2a. Piston 3 is connected to crankshaft 5 via connecting rod 4 . The crankshaft 5 is provided with a reluctor 6 that rotates coaxially therewith.

シリンダブロック2には、クランクシャフト5の回転に伴って回転するリラクタ6の外周面に形成された歯部を検出することによって、クランクシャフト5の回転速度をエンジン1の回転数(エンジン回転数)NEとして検出するクランク角センサ7が設けられている。クランク角センサ7は、このように検出したエンジン回転数NEを示す電気信号をECU100に入力する。 In the cylinder block 2, by detecting the teeth formed on the outer peripheral surface of the reluctor 6 that rotates with the rotation of the crankshaft 5, the rotation speed of the crankshaft 5 is determined as the rotation speed of the engine 1 (engine speed). A crank angle sensor 7 is provided for detection as NE. The crank angle sensor 7 inputs to the ECU 100 an electrical signal indicating the detected engine speed NE.

シリンダブロック2の内壁面及びピストン3の上面は協働して気筒2aの燃焼室8を画成している。シリンダブロック2には、燃焼室8内の燃料及び空気から成る混合気に点火する点火プラグ9が設けられている。シリンダブロック2には、燃焼室8に吸入される吸気が流入する吸気管10が組み付けられている。燃焼室8へ開口した吸気管10の開口部10aには、開口部10aを開閉する吸気バルブ11が設けられている。 The inner wall surface of the cylinder block 2 and the upper surface of the piston 3 cooperate to define a combustion chamber 8 of the cylinder 2a. The cylinder block 2 is provided with a spark plug 9 that ignites a mixture of fuel and air in the combustion chamber 8 . The cylinder block 2 is assembled with an intake pipe 10 into which the intake air taken into the combustion chamber 8 flows. An intake valve 11 that opens and closes the opening 10a of the intake pipe 10 that opens to the combustion chamber 8 is provided at the opening 10a.

吸気管10の内部には、可動に設けられて吸気管10を開閉して吸気の量を調整する機械式のスロットル弁12が設けられている。スロットル弁12は、運転者が操作するアクセルグリップ等のアクセル操作部材に機械的に接続された操作ワイヤ等を介して、運転者によって直接的に駆動される。なお、図示しないが、スロットル弁12と吸気バルブ11との間の吸気管10には、燃焼室8に燃料を供給すべく燃料を噴射するインジェクタが設けられている。 A mechanical throttle valve 12 is movably provided inside the intake pipe 10 to open and close the intake pipe 10 to adjust the amount of intake air. The throttle valve 12 is directly driven by the driver via an operation wire or the like mechanically connected to an accelerator operation member such as an accelerator grip operated by the driver. Although not shown, the intake pipe 10 between the throttle valve 12 and the intake valve 11 is provided with an injector for injecting fuel to supply the fuel to the combustion chamber 8 .

吸気管10には、スロットル弁12の開度をバタフライ開度THとして検出するバタフライ開度センサ13と、スロットル弁12よりも下流側の吸気管10内の圧力を吸気圧(測定圧)PBとして検出する吸気圧センサ14と、が設けられている。バタフライ開度センサ13及び吸気圧センサ14はそれぞれ、このように検出したバタフライ開度TH及び吸気圧PBを示す電気信号をECU100に入力する。 The intake pipe 10 is equipped with a butterfly opening sensor 13 that detects the opening of the throttle valve 12 as a butterfly opening TH, and a pressure in the intake pipe 10 on the downstream side of the throttle valve 12 as an intake pressure (measurement pressure) PB. An intake pressure sensor 14 for detecting is provided. The butterfly opening sensor 13 and the intake pressure sensor 14 respectively input electric signals indicating the detected butterfly opening TH and the intake pressure PB to the ECU 100 .

吸気管10には、スロットル弁12よりも上流側と、スロットル弁12よりも下流側と、を連通するバイパス通路15が設けられている。バイパス通路15には、バイパス通路15を開閉してバイパス通路15に流入する吸気の量を調整するバイパス弁16が設けられている。バイパス弁16は、ECU100によって駆動制御されるバイパス調整モータ(ステッピングモータ)17によってバイパス通路15を開閉するように、つまりバイパス通路15の流路断面積を全開にする全開位置とそれを全閉にする全閉位置との間で、バイパス通路15内を直線的に往復移動される。このようにエンジン1には機械式スロットル装置が設けられている。 The intake pipe 10 is provided with a bypass passage 15 that communicates between the upstream side of the throttle valve 12 and the downstream side of the throttle valve 12 . The bypass passage 15 is provided with a bypass valve 16 that opens and closes the bypass passage 15 to adjust the amount of intake air flowing into the bypass passage 15 . The bypass valve 16 is operated to open and close the bypass passage 15 by a bypass adjustment motor (stepping motor) 17 driven and controlled by the ECU 100. is linearly reciprocated in the bypass passage 15 between the fully closed position. Thus, the engine 1 is provided with a mechanical throttle device.

シリンダブロック2には、燃焼室8と対応して連通する排気管18が組み付けられている。燃焼室8へ開口した排気管18の開口部18aには、開口部18aを開閉する排気バルブ19が設けられている。 An exhaust pipe 18 that communicates with the combustion chamber 8 is assembled to the cylinder block 2 . An exhaust valve 19 that opens and closes the opening 18a of the exhaust pipe 18 that opens to the combustion chamber 8 is provided at the opening 18a.

〔故障検知装置の構成〕
次に、図1に加え、更に図2及び図3を参照して、本実施形態における故障検知装置の構成について説明する。
[Configuration of failure detection device]
Next, referring to FIG. 2 and FIG. 3 in addition to FIG. 1, the configuration of the failure detection device according to the present embodiment will be described.

図2は、本実施形態における故障検知装置の構成を示すブロック図である。図3(a)は、本実施形態における故障検知装置の細部構成を示すブロック図であり、図3(b)は、本実施形態における故障検知装置のバタフライ開度補正処理で実行されるバタフライ開度への影響度合係数の算出の考え方を説明するためのグラフである。なお、図3(b)は、エンジン回転数を5000rpmに設定した一例として示している。 FIG. 2 is a block diagram showing the configuration of the failure detection device according to this embodiment. FIG. 3A is a block diagram showing the detailed configuration of the failure detection device according to the present embodiment, and FIG. FIG. 10 is a graph for explaining the concept of calculation of the coefficient of degree of influence on intensity; FIG. In addition, FIG.3(b) has shown as an example which set engine rotation speed to 5000 rpm.

図2に示すように、本実施形態における故障検知装置Sは、クランク角センサ7、バタフライ開度センサ13、及び吸気圧センサ14に電気的に接続されたECU100の一部を成すものであるが、ECU100は、機能ブロックとして各々示される制御部110及び故障検知部120を備えている。 As shown in FIG. 2, the failure detection device S in this embodiment forms a part of the ECU 100 electrically connected to the crank angle sensor 7, the butterfly opening sensor 13, and the intake pressure sensor 14. , the ECU 100 includes a control unit 110 and a failure detection unit 120, each of which is shown as a functional block.

制御部110は、クランク角センサ7から入力された電気信号が示すエンジン回転数NE、バタフライ開度センサ13から入力された電気信号が示すバタフライ開度TH、吸気圧センサ14から入力された電気信号が示す吸気圧PB、及び図示しない大気圧センサ(エンジン周囲の気圧センサ)から入力された電気信号が示す大気圧PAに基づいて、エンジン1の点火系、燃料系、及びバイパス調整モータ17の動作を制御することによって、エンジン1の運転状態を制御する。また、制御部110は、モータ制御部(駆動制御装置)111及びドライバ112を備えている。モータ制御部111は、エンジン回転数NE、バタフライ開度TH、吸気圧PB、及び大気圧PAに基づいてドライバ112を介してバイパス調整モータ(アクチュエータ)17を駆動制御することにより、バイパス通路15を開閉するようにバイパス弁16を移動させる。本実施形態では、バイパス弁16は、モータ制御部111から入力されるバイパス調整モータ17のステップ数(制御量)stpに比例した移動量で移動されてバイパス通路15の流路断面積を増減するように開閉される。モータ制御部111は、バイパス調整モータ17のステップ数stpを示す電気信号を故障検知部120に入力する。 The control unit 110 controls the engine speed NE indicated by the electrical signal input from the crank angle sensor 7, the butterfly opening TH indicated by the electrical signal input from the butterfly opening sensor 13, and the electrical signal input from the intake pressure sensor 14. and the atmospheric pressure PA indicated by an electrical signal input from an atmospheric pressure sensor (air pressure sensor around the engine) (not shown). The operating state of the engine 1 is controlled by controlling . The controller 110 also includes a motor controller (drive controller) 111 and a driver 112 . A motor control unit 111 drives and controls a bypass adjustment motor (actuator) 17 via a driver 112 based on the engine speed NE, the butterfly opening TH, the intake pressure PB, and the atmospheric pressure PA, thereby opening the bypass passage 15. Bypass valve 16 is moved to open and close. In this embodiment, the bypass valve 16 is moved by a movement amount proportional to the number of steps (control amount) stp of the bypass adjustment motor 17 input from the motor control unit 111 to increase or decrease the cross-sectional area of the bypass passage 15. It is opened and closed like this. The motor control unit 111 inputs an electric signal indicating the number of steps stp of the bypass adjustment motor 17 to the failure detection unit 120 .

図2及び図3に示すように、故障検知部120は、本実施形態の故障検知装置Sとして機能するものであり、メモリ121、内圧推定部122、及び比較判定部123を備え、クランク角センサ7、バタフライ開度センサ13、及び圧力センサ14の故障を検知する。 As shown in FIGS. 2 and 3, the failure detection unit 120 functions as the failure detection device S of the present embodiment, and includes a memory 121, an internal pressure estimation unit 122, and a comparison/determination unit 123, and a crank angle sensor. 7. Detect failure of butterfly opening sensor 13 and pressure sensor 14 .

メモリ121は、制御プログラムや制御データを格納する不揮発性の記憶装置によって構成され、基準補正量121a、基準マップ121b、及び影響度合テーブル121cといったデータを格納している。かかる基準補正量121a、基準マップ121b、及び影響度合テーブル121cは、本実施形態における故障検知装置Sが搭載された車両と同仕様の車両で共通する共用データであってもよいし、本実施形態における故障検知装置S100が搭載された車両毎に各々用意する個別データであってもよい。 The memory 121 is composed of a nonvolatile storage device that stores control programs and control data, and stores data such as a reference correction amount 121a, a reference map 121b, and an influence level table 121c. The reference correction amount 121a, the reference map 121b, and the influence degree table 121c may be shared data common to a vehicle having the same specifications as the vehicle equipped with the failure detection device S according to the present embodiment. may be individual data prepared for each vehicle in which the failure detection device S100 is mounted.

ここで、基準補正量121aは、予め、バイパス弁16がバイパス調整モータ17の基準ステップ数(エンジン回転数NEをアイドル回転数にするためのバイパス弁16の位置を規定するためのステップ数)で移動された位置にあるときにバタフライ開度THを吸気管10の流路断面積を最小にする全閉開度から所定の値である基準開度まで第一開度量だけ変化させたときの吸気圧PBの変化量(バタフライ開度THの単位開度当たりの変化量)である第一圧力変化量とその第一開度量との比である第一基準比と、バタフライ開度THが全閉開度であるときにバイパス弁16を第一の移動量となるように移動させたときの吸気圧PBの変化量である第二圧力変化量とその第一の移動量との比である第二基準比と、の比の値として算出されてメモリ121に格納されているものである。バタフライ開度THの基準開度とは、典型的には全閉開度に近い開度であって吸気圧PBが安定して検出される開度を意味し、例えば全閉開度を0°とすると5°程度の開度に相当する。また、バイパス弁16の第一の移動量とは、典型的にはバイパス弁16がバイパス通路15を全閉状態にする全閉位置とバイパス弁16がバイパス通路15を全開状態にする全開位置との間の移動量を意味する。また、第一圧力変化量及び第二圧力変化量は、各々、エンジン回転数NEを典型的にはアイドル回転数にして得られたものである。 Here, the reference correction amount 121a is set in advance by the reference number of steps of the bypass valve 16 of the bypass adjusting motor 17 (the number of steps for defining the position of the bypass valve 16 for setting the engine speed NE to the idle speed). The intake when the butterfly opening TH is changed from the fully closed opening that minimizes the passage cross-sectional area of the intake pipe 10 to the reference opening that is a predetermined value by the first opening amount. The first reference ratio, which is the ratio of the first pressure change amount that is the amount of change in the atmospheric pressure PB (the amount of change per unit opening of the butterfly opening TH) to the first opening amount, and the butterfly opening TH is the fully closed A second pressure change amount, which is the amount of change in the intake pressure PB when the bypass valve 16 is moved to the first movement amount when the opening is at the opening, and the first movement amount, which is the ratio of the second pressure change amount. It is calculated as a value of the ratio between the two reference ratios and is stored in the memory 121 . The reference opening of the butterfly opening TH is typically close to the fully closed opening, and means the opening at which the intake pressure PB is stably detected. This corresponds to an opening degree of about 5°. Further, the first movement amount of the bypass valve 16 typically includes a fully closed position where the bypass valve 16 fully closes the bypass passage 15 and a fully open position where the bypass valve 16 fully opens the bypass passage 15. means the amount of movement between Also, the first pressure change amount and the second pressure change amount are each obtained by setting the engine speed NE to typically the idling speed.

基準マップ121bは、予め、エンジン回転数NEの値及びバタフライ開度THの値と、エンジン回転数NEの値及びバタフライ開度THの値に各々対応して得られた吸気圧PBの値である基準推定圧と、が、それらの対応関係に則ったマップデータの形式で用意されてメモリ121に格納されているものである。なお、基準マップ121bは、必要に応じて、マップデータの形式ではなくテーブルデータの形式とした基準テーブルとしてもよい。 The reference map 121b is the value of the engine speed NE and the value of the butterfly opening TH, and the values of the intake pressure PB obtained corresponding to the value of the engine speed NE and the value of the butterfly opening TH. , are prepared in the form of map data according to their corresponding relationship and stored in the memory 121 . Note that the reference map 121b may be a reference table in the form of table data instead of the form of map data, if necessary.

影響度合テーブル121cは、予め、バタフライ開度THが全閉開度であるときにエンジン回転数NEに対応してバイパス弁16を第一の移動量となるように移動させたときの吸気圧PBの変化量(エンジン回転数NEに対応して得られた第二圧力変化量)と、エンジン回転数NE及びバタフライ開度THに各々対応してバイパス弁16を第一の移動量となるように移動させたときの吸気圧PBの変化量と、の比として算出された影響度合係数の値が、バタフライ開度THの値に対応するように、それらの対応関係に則ったテーブルデータの形式で、バタフライ開度THの値毎に用意されて、メモリ121に格納されているものであり、このように算出される影響度合係数とは、バイパス弁16の移動量が吸気圧PBの変化量の大きさに対して影響する度合を示す係数である。その一例として、図3(b)に示すように、影響度合係数は、バタフライ開度THが全閉開度(0°)であるときに最大値の100%を示し、バタフライ開度THが5°、10°と大きくなるに連れて100%よりも小さくなっていき、バタフライ開度THが30°になるとほぼ0%になっている。なお、図3(b)は、一例としてエンジン回転数NEを5000rpmに設定したときのバタフライ開度THと吸気圧PBとの関係を表す曲線を示し、曲線L1はバイパス弁16が全開状態であるときの関係を表す曲線、曲線L2はバイパス弁16がアイドル基準開度であるときの関係を表す曲線、及び曲線L3はバイパス弁16が全開状態であるときの関係を表す曲線を示している。ここで、各々のバタフライ開度THにおける曲線L1が示す吸気圧PBの値と曲線L3が示す吸気圧PBの値との差が影響度合係数の値に対応しており、このように想定された所定のエンジン回転数NEの値においてバタフライ開度THの値に対応する影響度合係数の値が、一つのテーブルデータを構成している。なお、影響度合テーブル121cは、必要に応じて、テーブルデータの形式ではなく、複数のエンジン回転数NEの値毎に複数用意されるマップデータの形式とした影響度合マップとしてもよい。 The degree of influence table 121c shows in advance the intake pressure PB when the bypass valve 16 is moved to the first movement amount corresponding to the engine speed NE when the butterfly opening TH is the fully closed opening. (the second pressure change amount obtained corresponding to the engine speed NE), the engine speed NE, and the butterfly opening TH so that the bypass valve 16 is moved to the first movement amount. The amount of change in the intake pressure PB when moved and the value of the effect degree coefficient calculated as a ratio correspond to the value of the butterfly opening TH, in the form of table data according to the correspondence relationship between them. , and stored in the memory 121 for each value of the butterfly opening TH. This is a coefficient that indicates the degree of influence on the size. As one example, as shown in FIG. ° and 10°, it becomes smaller than 100%, and when the butterfly opening TH reaches 30°, it becomes almost 0%. FIG. 3(b) shows, as an example, a curve representing the relationship between the butterfly opening TH and the intake pressure PB when the engine speed NE is set to 5000 rpm. A curve L2 represents the relationship when the bypass valve 16 is at the idle reference opening, and a curve L3 represents the relationship when the bypass valve 16 is fully open. Here, the difference between the value of the intake pressure PB indicated by the curve L1 and the value of the intake pressure PB indicated by the curve L3 at each butterfly opening TH corresponds to the value of the influence degree coefficient. The value of the influence degree coefficient corresponding to the value of the butterfly opening TH at a predetermined value of the engine speed NE constitutes one table data. Note that the influence degree table 121c may be an influence degree map in the form of map data prepared for each of a plurality of values of the engine speed NE instead of the form of table data, if necessary.

内圧推定部122には、クランク角センサ7からエンジン回転数NEを示す電気信号、バタフライ開度センサ13からバタフライ開度THを示す電気信号、及びモータ制御部111からバイパス調整モータ17のステップ数stpを示す電気信号が入力され、内圧推定部122は、エンジン回転数NE、バタフライ開度TH、及びメモリ121に格納されている基準マップ121bに基づいて、吸気圧PBが検出された際のエンジン回転数NEの値及びバタフライ開度THの値に対応した基準推定圧の値を参照し、この参照した値を推定圧の値とすることにより推定圧を算出する。内圧推定部122は、いわゆる負荷推定を行う際に、このように推定圧を算出し、このように算出された推定圧を示す電気信号は比較判定部123に入力される。 The internal pressure estimator 122 receives an electrical signal indicating the engine speed NE from the crank angle sensor 7, an electrical signal indicating the butterfly opening TH from the butterfly opening sensor 13, and the step number stp of the bypass adjustment motor 17 from the motor control unit 111. is input, and the internal pressure estimating unit 122 calculates the engine rotation speed when the intake pressure PB is detected based on the engine speed NE, the butterfly opening TH, and the reference map 121b stored in the memory 121. The estimated pressure is calculated by referring to the value of the reference estimated pressure corresponding to the value of the number NE and the value of the butterfly opening TH, and using this referred value as the value of the estimated pressure. The internal pressure estimating section 122 calculates the estimated pressure in this way when performing so-called load estimation, and an electric signal indicating the estimated pressure calculated in this way is input to the comparing/determining section 123 .

また、内圧推定部122は、補正開度算出部122aを備えている。補正開度算出部122aは、バイパス調整モータ17の制御量であるステップ数stpに応じてバタフライ開度THを補正して補正開度を算出するバタフライ開度補正処理を実行する。具体的には、かかる補正開度の値は、基準補正量121aの値とバイパス弁16の移動量の値(基準ステップ数におけるバイパス弁16の位置と現在のバイパス弁16の位置との偏差の値、つまり基準ステップ数と入力されたバイパス弁16の位置を規定するステップ数との偏差に比例した値)と影響度合テーブル121cから得られた影響度合係数の値との積と、バタフライ開度センサ13によって検出されるバタフライ開度THの値と、の和によって算出される。また、かかる補正開度は、吸気圧PBが検出された際のエンジン回転数NE及びバタフライ開度THに対応した推定圧を算出する際のバタフライ開度THとして用いられる。なお、バイパス弁16の移動量とバタフライ開度THの補正開度との関係を予め求めてデータ化しておき、この関係を利用してバタフライ開度THの補正開度を算出してもよい。 The internal pressure estimator 122 also includes a corrected opening degree calculator 122a. The corrected opening degree calculation unit 122a executes a butterfly opening degree correction process of correcting the butterfly opening degree TH according to the number of steps stp, which is the control amount of the bypass adjustment motor 17, and calculating the corrected opening degree. Specifically, the value of the corrected opening degree is the value of the reference correction amount 121a and the value of the amount of movement of the bypass valve 16 (the deviation between the position of the bypass valve 16 in the reference number of steps and the current position of the bypass valve 16). value (that is, a value proportional to the deviation between the reference number of steps and the input number of steps defining the position of the bypass valve 16) and the value of the influence degree coefficient obtained from the influence degree table 121c, and the degree of opening of the butterfly. and the value of the butterfly opening TH detected by the sensor 13. Further, the corrected opening is used as the butterfly opening TH when calculating the estimated pressure corresponding to the engine speed NE and the butterfly opening TH when the intake pressure PB is detected. Note that the relationship between the amount of movement of the bypass valve 16 and the corrected opening of the butterfly opening TH may be determined in advance and converted into data, and the corrected opening of the butterfly opening TH may be calculated using this relationship.

比較判定部123には、吸気圧センサ14から吸気圧PBを示す電気信号、及び内圧推定部122から推定圧を示す電気信号が入力され、比較判定部123は、吸気圧PBと推定圧とを比較し、吸気圧PBと推定圧との差の絶対値が所定の閾値よりも大きい場合、吸気圧センサ14に故障が発生したと判断する。そして、吸気圧センサ14に故障が発生したと判断した場合、比較判定部123は、吸気圧センサ14の故障が判断した旨を示す情報を、図示を省略する表示部に表示することにより、吸気圧センサ14に故障が発生した旨を報知する。なお、かかる所定の閾値は、固定値ではなく、エンジン回転数NE等のエンジン1の運転状態を示す各種パラメータを基に算出される可変値としてもよい。 An electric signal indicating the intake pressure PB from the intake pressure sensor 14 and an electric signal indicating the estimated pressure from the internal pressure estimating unit 122 are input to the comparing/determining unit 123, and the comparing/determining unit 123 compares the intake pressure PB and the estimated pressure. When the absolute value of the difference between the intake pressure PB and the estimated pressure is larger than a predetermined threshold, it is determined that the intake pressure sensor 14 has failed. When it is determined that the intake pressure sensor 14 has failed, the comparison/determination unit 123 displays information indicating that the intake pressure sensor 14 has failed on a display unit (not shown). It notifies that the atmospheric pressure sensor 14 has failed. The predetermined threshold value may be a variable value calculated based on various parameters indicating the operating state of the engine 1, such as the engine speed NE, instead of a fixed value.

〔バタフライ開度補正処理〕
次に、図4を参照して、バタフライ開度補正処理を実行する際の故障検知装置Sの動作について説明する。
[Butterfly opening correction process]
Next, with reference to FIG. 4, the operation of the failure detection device S when executing the butterfly opening correction process will be described.

図4は、本実施形態における故障検知装置Sでのバタフライ開度補正処理の流れの一例を説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining an example of the flow of butterfly opening correction processing in the failure detection device S according to this embodiment.

図4に示すフローチャートは、図示を省略するイグニッションスイッチがオンされて故障検知装置Sが稼働したタイミングで開始となり、バタフライ開度補正処理はステップS1の処理に進む。バタフライ開度補正処理は、故障検知装置Sが稼働している間、所定の制御周期毎に繰り返し実行される。 The flowchart shown in FIG. 4 starts when an ignition switch (not shown) is turned on and the failure detection device S is activated, and the butterfly opening correction process proceeds to step S1. The butterfly opening degree correction process is repeatedly executed at each predetermined control period while the failure detection device S is in operation.

ステップS1の処理では、内圧推定部122が、エンジン回転数NEをアイドル回転数にするためのモータ制御部111のステップ数(制御量)stpである基準ステップ数とモータ制御部111から入力されているステップ数stpとの偏差の値(バイパス弁16の移動量の値と比例する)を算出する。これにより、ステップS1の処理は完了し、バタフライ開度補正処理はステップS2の処理に進む。 In the process of step S1, the internal pressure estimating unit 122 receives input from the motor control unit 111 and a reference step number, which is the step number (control amount) stp of the motor control unit 111 for bringing the engine speed NE to the idle speed. The value of deviation from the current step number stp (proportional to the value of the amount of movement of the bypass valve 16) is calculated. Thereby, the process of step S1 is completed, and the butterfly opening correction process proceeds to the process of step S2.

ステップS2の処理では、内圧推定部122が、メモリ121に格納されている基準補正量121aの値を読み出す。これにより、ステップS2の処理は完了し、バタフライ開度補正処理はステップS3の処理に進む。 In the process of step S<b>2 , the internal pressure estimator 122 reads the value of the reference correction amount 121 a stored in the memory 121 . Thereby, the process of step S2 is completed, and the butterfly opening correction process proceeds to the process of step S3.

ステップS3の処理では、内圧推定部122が、バタフライ開度THと影響度合係数との関係を示すと共にメモリ121に格納されている影響度合テーブル121cから、バタフライ開度センサ13から入力されたバタフライ開度THの値に対応する影響度合係数の値を読み出す。これにより、ステップS3の処理は完了し、バタフライ開度補正処理はステップS4の処理に進む。なお、複数のエンジン回転数NEの値毎に複数用意されるマップデータの形式とした影響度合マップを使用する場合には、ステップS3の処理では、内圧推定部122が、エンジン回転数NE毎にバタフライ開度THと影響度合係数との関係を示すと共にメモリ121に格納されている影響度合テーブル121cから、クランク角センサ7から入力されたエンジン回転数NEの値及びバタフライ開度センサ13から入力されたバタフライ開度THの値に対応する影響度合係数の値を読み出すことにより、より高精度の影響度合係数を読み出すことができる。 In the process of step S3, the internal pressure estimating unit 122 determines the relationship between the butterfly opening TH and the degree of influence coefficient, and uses the influence degree table 121c stored in the memory 121 to determine the degree of opening of the butterfly input from the butterfly opening degree sensor 13. Read out the value of the influence degree coefficient corresponding to the value of degree TH. Thereby, the process of step S3 is completed, and the butterfly opening degree correction process proceeds to the process of step S4. Note that when using a plurality of influence degree maps in the form of map data prepared for each of a plurality of values of the engine speed NE, in the process of step S3, the internal pressure estimating unit 122 calculates The value of the engine speed NE inputted from the crank angle sensor 7 and the value of the engine speed NE inputted from the butterfly opening sensor 13 are obtained from the influence degree table 121c which shows the relationship between the butterfly opening TH and the influence degree coefficient and is stored in the memory 121. By reading the value of the influence degree coefficient corresponding to the value of the butterfly opening TH, the influence degree coefficient can be read with higher accuracy.

ステップS4の処理では、補正開度算出部122aが、ステップS2の処理において得られた基準補正量の値とステップS1の処理において得られた偏差の値とステップS3の処理において得られた影響度合係数の値との積と、バタフライ開度センサ13から入力されて得られたバタフライ開度THの値と、の和をバタフライ開度THの補正開度の値として算出する。以後、内圧推定部122は、メモリ121に格納されている基準マップ121bから、吸気圧センサ14が吸気圧PBを検出した際のエンジン回転数NEの値及びバタフライ開度THの補正開度の値に対応する推定圧を基準推定圧の値を参照して読み出し、読み出した推定圧の値を比較判定部123に入力する。これにより、ステップS4の処理は完了し、今回の一連のバタフライ開度補正処理は終了する。 In the process of step S4, the correction opening calculation unit 122a calculates the value of the reference correction amount obtained in the process of step S2, the deviation value obtained in the process of step S1, and the degree of influence obtained in the process of step S3. The sum of the product of the coefficient value and the value of the butterfly opening TH obtained by input from the butterfly opening sensor 13 is calculated as the corrected opening value of the butterfly opening TH. Thereafter, the internal pressure estimator 122 obtains the value of the engine speed NE and the value of the corrected butterfly opening TH when the intake pressure sensor 14 detects the intake pressure PB from the reference map 121b stored in the memory 121. is read with reference to the value of the reference estimated pressure, and the read estimated pressure value is input to the comparison/determination unit 123 . As a result, the processing of step S4 is completed, and the current series of butterfly opening correction processing ends.

以上の説明から明らかなように、本実施形態における故障検知装置Sでは、故障検知部120が測定圧PBと比較する推定圧が、内燃機関1の回転数NE及び弁体(スロットル弁)12の開度THに対応して、吸気管10の下流側の圧力を予め検出して得られた値である基準推定圧から算出され、推定圧を算出する際の開度THとしては、バイパス通路15を開閉するバイパス弁16を移動させるアクチュエータ17が駆動制御される制御量に応じて開度THを補正した補正開度が用いられるものであるため、基準推定圧のデータ数が増大することを避けつつ実用上充分な精度で故障検知を行うことができる。これにより、自動二輪車等の車両に適切に採用することができるようにコストを抑制した簡素な構成で、精度よく吸気圧センサ14の故障検知を行うことができる実用的な構成を実現することができる。 As is clear from the above description, in the failure detection device S according to the present embodiment, the estimated pressure that the failure detection unit 120 compares with the measured pressure PB is the rotational speed NE of the internal combustion engine 1 and the pressure of the valve body (throttle valve) 12. Corresponding to the degree of opening TH, it is calculated from the reference estimated pressure, which is a value obtained by detecting the pressure on the downstream side of the intake pipe 10 in advance. Since the corrected opening TH is corrected according to the control amount for driving and controlling the actuator 17 that moves the bypass valve 16 that opens and closes the bypass valve 16, an increase in the number of data of the reference estimated pressure However, failure detection can be performed with practically sufficient accuracy. As a result, it is possible to realize a practical configuration that can accurately detect a failure of the intake pressure sensor 14 with a simple configuration that suppresses costs so that it can be appropriately used in a vehicle such as a motorcycle. can.

また、本実施形態における故障検知装置Sでは、基準推定圧を格納した記憶部121を更に有し、記憶部121内の基準推定圧を参照して、測定圧が検出された際の内燃機関1の回転数NE及び弁体12の開度THに対応した基準推定圧の値である推定圧を算出する際に、開度THとして用いる補正開度を、バイパス弁16を移動させるアクチュエータ17が駆動制御される制御量に応じて開度を補正することにより算出するものであるため、記憶部121内の基準推定圧から推定圧を算出しつつ実用上充分な精度で故障検知を行うことができる。 Further, the failure detection device S according to the present embodiment further includes a storage unit 121 that stores the reference estimated pressure, and refers to the reference estimated pressure in the storage unit 121 to determine the internal combustion engine 1 when the measured pressure is detected. The actuator 17 that moves the bypass valve 16 drives the corrected opening used as the opening TH when calculating the estimated pressure, which is the value of the reference estimated pressure corresponding to the rotation speed NE of the valve body 12 and the opening TH of the valve body 12. Since it is calculated by correcting the opening according to the control amount to be controlled, the estimated pressure can be calculated from the reference estimated pressure in the storage unit 121 and the failure can be detected with practically sufficient accuracy. .

また、本実施形態における故障検知装置Sでは、基準補正量及び影響度合係数を記憶部121に格納し、基準補正量が、弁体12の開度THを全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに圧力PBが変化する第一圧力変化量と第一開度量との比である第一基準比と、全閉開度においてバイパス弁16を第一の移動量となるように移動させたときに圧力PBが変化する第二圧力変化量と第一の移動量との比である第二基準比と、の比として予め算出され、影響度合係数が、内燃機関1の回転数NEに対応して得られた第二圧力変化量と、回転数NE及び開度THに各々対応して得られると共にバイパス弁16を第一の移動量となるように移動させたときに圧力PBが変化する変化量と、の比として予め算出され、弁体12の補正開度が、基準補正量とバイパス弁16の移動量と影響度合係数との積と、開度センサ13によって検出される測定開度THと、の和によって算出されるものであるため、記憶部121内の基準補正量及び影響度合係数をも用いて、より確実に精度よく故障検知を行うことができる。 Further, in the failure detection device S according to the present embodiment, the reference correction amount and the degree of influence coefficient are stored in the storage unit 121, and the reference correction amount is a reference that the opening TH of the valve body 12 is a predetermined value from the fully closed opening. The first reference ratio, which is the ratio of the first pressure change amount at which the pressure PB changes when the pressure PB is changed to the opening by the first opening amount, and the first opening amount, and the bypass valve 16 at the fully closed opening. is calculated in advance as a ratio of the second reference ratio, which is the ratio of the second pressure change amount at which the pressure PB changes when the pressure PB is moved to the movement amount of and the first movement amount, and the influence degree coefficient is , a second pressure change amount obtained corresponding to the rotation speed NE of the internal combustion engine 1, and a second pressure change amount obtained corresponding to the rotation speed NE and the opening TH of the internal combustion engine 1, and the bypass valve 16 is moved to the first movement amount. The amount of change in the pressure PB when it is moved is calculated in advance as a ratio of the corrected opening degree of the valve body 12, and the corrected opening degree of the valve body 12 is the product of the reference correction amount, the movement amount of the bypass valve 16, and the degree of influence coefficient, and the opening Since it is calculated by the sum of the measured opening TH detected by the degree sensor 13 and the reference correction amount and the influence degree coefficient in the storage unit 121, more reliable and accurate failure detection is performed. be able to.

また、本実施形態における故障検知装置Sでは、内燃機関の回転数NE及び弁体12の開度THと、回転数NE及び開度THに各々対応して吸気管10の下流側の圧力を予め検出して得られた値である基準推定圧と、が、それらの対応関係に則ったマップデータの形式で用意されるものであるため、基準推定圧のデータを用意するための測定数を減らすことができる。 Further, in the failure detection device S according to the present embodiment, the pressure on the downstream side of the intake pipe 10 is adjusted in advance corresponding to the rotational speed NE and the opening TH of the valve body 12 of the internal combustion engine, and the rotational speed NE and the opening TH. Since the reference estimated pressure, which is a value obtained by detection, is prepared in the form of map data according to their corresponding relationship, the number of measurements for preparing data of the reference estimated pressure is reduced. be able to.

さて、ここまでは、故障検知装置Sのメモリ121内に各々格納された基準補正量121a、基準推定圧を示す基準マップ121b、及び影響度合い係数を示す影響度合テーブル121cを用いて、運転中のエンジン1が備えるスロットル弁12の開度TH、バイパス弁16の移動量、及びエンジン1の回転数NEに応じて、推定圧を算出する一例を説明してきたが、本実施形態においては、予め推定圧の値までをデータ化しておき、基準補正量121a、基準マップ121b、及び影響度合テーブル121cではなく、予め算出されて設定された推定圧の値のデータ自体がメモリ121内に直接的に格納されていてもよい。 Up to this point, using the reference correction amount 121a, the reference map 121b indicating the reference estimated pressure, and the influence degree table 121c indicating the influence degree coefficient, which are stored in the memory 121 of the failure detection device S, the An example of calculating the estimated pressure according to the opening TH of the throttle valve 12 provided in the engine 1, the amount of movement of the bypass valve 16, and the rotation speed NE of the engine 1 has been described. Data up to the pressure value is stored directly in the memory 121 instead of the reference correction amount 121a, the reference map 121b, and the influence degree table 121c. may have been

つまり、本変形例において、推定圧は、基準補正量121aや影響度合テーブル121cが示す影響度合い係数を用いて故障検知装置Sの内部で算出されるものではなく、故障検知装置Sをセッティングする段階において、予め故障検知装置Sのメモリ121に格納されている。かかる推定圧をメモリ121に格納するためのその設定は、本実施形態において前述したものと同様の基準推定圧、基準補正量及び影響度合い係数を用いることにより実施される。 That is, in this modified example, the estimated pressure is not calculated inside the failure detection device S using the reference correction amount 121a and the influence degree coefficient indicated by the influence degree table 121c, but is set at the stage of setting the failure detection device S. , is stored in the memory 121 of the failure detection device S in advance. The setting for storing such estimated pressure in the memory 121 is performed by using the same reference estimated pressure, reference correction amount and influence degree coefficient as described above in this embodiment.

具体的には、まず、本実施形態において前述したものと同様に、予めエンジン1を運転中として、その際の実測値から、基準補正量121a、基準推定圧を示す基準マップ121b、及び影響度合い係数を示す影響度合テーブル121cを求めてメモリ121外に用意する。次に、本実施形態において前述したものと同様に、基準補正量121aの値とバイパス弁16の移動量の値と影響度合テーブル121cから得られた影響度合係数の値との積と、バタフライ開度THの値と、の和によって、補正開度の値を、所要の個数だけ算出する。そして、本実施形態において前述したものと同様に、かかる所要の個数の補正開度の値を用いて基準推定圧の値を参照し、このように参照した値を推定圧の値とすることにより、所要の個数の推定圧の値を算出する。つまり、バタフライ開度TH、回転数NE及びバイパス弁の移動量の所望の組み合わせの個数だけ補正開度を予め計算をして実車の故障検知装置Sのメモリ121内に格納しておけば、実車の故障検知装置Sで推定圧を算出する演算負荷が大幅に低減されることになる。 Specifically, first, as in the case of the present embodiment, the engine 1 is assumed to be in operation in advance, and from the actual measurement values at that time, the reference correction amount 121a, the reference map 121b indicating the reference estimated pressure, and the degree of influence are calculated. An influence degree table 121 c indicating coefficients is obtained and prepared outside the memory 121 . Next, in the same manner as described above in the present embodiment, the product of the value of the reference correction amount 121a, the value of the movement amount of the bypass valve 16, and the value of the influence degree coefficient obtained from the influence degree table 121c, and the butterfly opening A required number of correction opening degree values are calculated from the sum of the value of the degree TH and the value of the degree TH. Then, in the same manner as described above in the present embodiment, the values of the required number of corrected opening degrees are used to refer to the value of the reference estimated pressure, and the value thus referred to is used as the value of the estimated pressure. , to calculate the required number of estimated pressure values. That is, if correction openings are calculated in advance for the number of desired combinations of the butterfly opening TH, rotation speed NE, and bypass valve movement amount and stored in the memory 121 of the failure detection device S of the actual vehicle, The calculation load for calculating the estimated pressure in the failure detection device S is greatly reduced.

以上の説明から明らかなように、本変形例における故障検知装置Sでは、推定圧を格納した記憶部121を更に有し、内燃機関1の回転数NEと弁体12の開度THとに対応して、弁体12よりも下流側の圧力の実測値である基準推定圧が測定されて、回転数NEの値と開度THの値と基準推定圧の値との対応関係を示すデータが予め用意され、バイパス弁16を移動させるアクチュエータ17が駆動制御される制御量に応じて開度THが補正された補正開度の値を開度THの値として用いて、データの基準推定圧の値から推定圧の値が予め算出され、算出された推定圧の値が記憶部121に記憶されるものであるため、記憶部121内の推定圧を用いて実用上充分な精度で故障検知を行うことができる。 As is clear from the above description, the failure detection device S according to this modification further includes a storage unit 121 that stores the estimated pressure, and corresponds to the rotational speed NE of the internal combustion engine 1 and the opening TH of the valve body 12. Then, the reference estimated pressure, which is the measured value of the pressure on the downstream side of the valve body 12, is measured, and data indicating the correspondence relationship between the value of the rotational speed NE, the value of the opening TH, and the value of the reference estimated pressure is obtained. The value of the corrected opening TH is prepared in advance and is obtained by correcting the opening TH in accordance with the control amount by which the actuator 17 that moves the bypass valve 16 is driven and controlled. The value of the estimated pressure is calculated in advance from the value, and the calculated estimated pressure value is stored in the storage unit 121. Therefore, the estimated pressure in the storage unit 121 is used to detect a failure with a practically sufficient accuracy. It can be carried out.

また、本変形例における故障検知装置Sでは、補正開度の算出が、基準補正量及び影響度合係数を使って予め算出され、基準補正量が、弁体12の開度THを全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに圧力が変化する第一圧力変化量と第一開度量との比である第一基準比と、全閉開度においてバイパス弁16を第一の移動量となるように移動させたときに圧力PBが変化する第二圧力変化量と第一の移動量との比である第二基準比と、の比として予め算出され、影響度合係数が、内燃機関1の回転数NEに対応して得られた第二圧力変化量と、回転数NE及び開度THに各々対応して得られると共にバイパス弁16を第一の移動量となるように移動させたときに圧力PBが変化する変化量と、の比として予め算出され、弁体12の補正開度が、基準補正量とバイパス弁16の移動量と影響度合係数との積と、弁体12の開度THと、の和によって予め算出されるものであるため、記憶部121内に基準補正量及び影響度合係数を格納することなく、これらを予め算出しておいて、より確実に精度よく故障検知を行うことができる。 Further, in the failure detection device S according to the present modification, the correction opening is calculated in advance using the reference correction amount and the influence degree coefficient, and the reference correction amount is the opening TH of the valve body 12 and the fully closed opening. to the reference opening, which is a predetermined value, when the pressure changes by the first opening amount, the first reference ratio, which is the ratio of the first pressure change amount and the first opening amount, and the bypass at the fully closed opening It is calculated in advance as a ratio of the second reference ratio, which is the ratio of the first movement amount to the second pressure change amount by which the pressure PB changes when the valve 16 is moved to the first movement amount. , the influence degree coefficient is obtained corresponding to the second pressure change amount obtained corresponding to the rotation speed NE of the internal combustion engine 1, the rotation speed NE and the opening TH, and the first movement of the bypass valve 16. is calculated in advance as a ratio of the amount of change in the pressure PB when the pressure PB is moved to the amount of and the opening degree TH of the valve body 12. Therefore, these are calculated in advance without storing the reference correction amount and the degree of influence coefficient in the storage unit 121. Therefore, failure detection can be performed more reliably and accurately.

更に、以上の変形例を含む本実施形態における故障検知装置Sは、付加的に吸気圧センサ14及び図示しない大気圧センサの故障検知を実行してもよい。ここで、吸気圧センサ14は、エンジン1の停止中においては、吸気管中の気圧である大気圧相当の気圧を検出することになるため、吸気圧センサ14及び大気圧センサ共に大気圧相当の気圧を検出することとなって、互いの検出値を確認することで、それらの故障検知が可能となる。しかし、本実施形態における故障検知装置Sが搭載される車両が自動二輪車等の比較的軽量な車両である場合には、運転者による押しがけ等が生じる場合もあり、かかる場合には、エンジン1は完爆してはいなくても回転して結果的に吸気圧が変動してしまうため、吸気圧センサ14及び大気圧センサの正確な故障検知ができない事態も考えられることになる。そこで、本実施形態における故障検知装置Sにおいては、エンジン1の停止時に加えて、エンジン1の動作時やその動作時から停止時に向かう際に必要なデータの格納処理等を行うECU100のセルフシャットダウン処理時でも、吸気圧センサ14及び大気圧センサの故障検知をする故障検知処理を実行することにより故障検知の判定機会を増やし、吸気圧センサ14及び大気圧センサのより確実な故障検知を企図したものである。以下、図5及び図6を参照して、付加的に吸気圧センサ14及び図示しない大気圧センサの故障検知を実行する際の故障検知装置Sの動作について説明する。なお、故障検知装置Sは、図5及び図6に示す処理の双方を実行してもよいし、図5及び図6に示す処理の何れか一方のみを選択して実行してもよい。 Furthermore, the failure detection device S in this embodiment including the above modifications may additionally perform failure detection of the intake pressure sensor 14 and an atmospheric pressure sensor (not shown). Here, while the engine 1 is stopped, the intake pressure sensor 14 detects the pressure equivalent to the atmospheric pressure, which is the pressure in the intake pipe. By detecting the atmospheric pressure and confirming each other's detected values, it becomes possible to detect their failures. However, if the vehicle in which the failure detection device S according to the present embodiment is mounted is a relatively lightweight vehicle such as a motorcycle, the driver may push the engine 1. Even if the engine does not explode completely, it will rotate and the intake pressure will fluctuate as a result. Therefore, in the failure detection device S according to the present embodiment, self-shutdown processing of the ECU 100 for storing necessary data when the engine 1 is in operation and when the engine 1 is stopped is performed in addition to when the engine 1 is stopped. By executing a failure detection process for detecting failures of the intake pressure sensor 14 and the atmospheric pressure sensor even when the engine is in the air pressure sensor 14, the chances of failure detection are increased, and failure detection of the intake pressure sensor 14 and the atmospheric pressure sensor is intended to be more reliable. is. 5 and 6, the operation of the failure detection device S when additionally performing failure detection of the intake pressure sensor 14 and an atmospheric pressure sensor (not shown) will be described. The failure detection device S may execute both of the processes shown in FIGS. 5 and 6, or may select and execute only one of the processes shown in FIGS.

図5は、本実施形態における故障検知装置Sで付加的に実行される吸気圧センサ14及び大気圧センサの故障検知処理の流れの一例を説明するためのフローチャートである。 FIG. 5 is a flowchart for explaining an example of the flow of failure detection processing for the intake pressure sensor 14 and the atmospheric pressure sensor additionally executed by the failure detection device S in this embodiment.

図5に示すフローチャートは、故障検知装置Sが稼働されたタイミングで開始となり、故障検知処理はイニシャル処理におけるステップS11の処理に進む。故障検知処理は、故障検知装置Sが稼働されている間、所定の制御周期毎に繰り返し実行される。 The flowchart shown in FIG. 5 starts when the failure detection device S is activated, and the failure detection process proceeds to step S11 in the initial process. The failure detection process is repeatedly executed at predetermined control cycles while the failure detection device S is in operation.

ステップS11の処理では、故障検知装置Sが、エンスト中(エンジン1の停止中)であるか否かを判別する。判別の結果、エンスト中である場合(ステップS11:Yes)、故障検知装置Sは、図6に示す故障検知処理を実行する。一方、エンスト中でない場合には(ステップS11:No)、故障検知装置Sは、故障検知処理をステップS12の処理に進める。 In the process of step S11, the failure detection device S determines whether or not the engine is stalling (while the engine 1 is stopped). As a result of determination, if the engine is stalling (step S11: Yes), the failure detection device S executes failure detection processing shown in FIG. On the other hand, if the engine is not stalled (step S11: No), the failure detection device S advances the failure detection process to step S12.

ステップS12の処理では、故障検知装置Sが、メモリ121等に格納された履歴情報を読み出して大気圧センサの故障履歴があるか否かを判別する。判別の結果、大気圧センサの故障履歴がある場合(ステップS12:Yes)、故障検知装置Sは、故障検知処理をステップS13の処理に進める。一方、大気圧センサの故障履歴がない場合には(ステップS12:No)、故障検知装置Sは、故障検知処理をステップS21の処理に進める。 In the processing of step S12, the failure detection device S reads the history information stored in the memory 121 or the like and determines whether or not there is a failure history of the atmospheric pressure sensor. As a result of determination, if there is a failure history of the atmospheric pressure sensor (step S12: Yes), the failure detection device S advances the failure detection process to step S13. On the other hand, if there is no failure history of the atmospheric pressure sensor (step S12: No), the failure detection device S advances the failure detection process to step S21.

ステップS13の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定結果を示す故障判定フラグの状態を未判定状態に設定する(PA:未判定、PB:未判定)。これにより、ステップS13の処理は完了し、故障検知処理はステップS14の処理に進む。 In the processing of step S13, the failure detection device S sets the state of the failure determination flag indicating the failure determination result of the intake pressure sensor 14 and the atmospheric pressure sensor to the undetermined state (PA: undetermined, PB: undetermined). Thereby, the process of step S13 is completed, and the failure detection process proceeds to the process of step S14.

ステップS14の処理では、故障検知装置Sが、エンジン1が始動して始動後処理に入りエンジン動作中に検出された吸気圧PBの変動状態に基づいて吸気圧センサ14が故障しているか否かを判別する。判別の結果、所定レベル以上の吸気圧PBの変動が検出されて吸気圧センサ14が正常である場合(ステップS14:正常)、故障検知装置Sは、故障検知処理をステップS16の処理に進める。一方、所定レベル未満の吸気圧PBの変動が検出され又は吸気圧PBの変動が検出されないで吸気圧センサ14が故障している場合(ステップS14:故障)、故障検知装置Sは、故障検知処理をステップS15の処理に進める。 In the processing of step S14, the failure detection device S determines whether or not the intake pressure sensor 14 is out of order based on the fluctuation state of the intake pressure PB detected during engine operation after the engine 1 is started and the post-start processing is started. determine. If the intake pressure sensor 14 is normal (step S14: normal), the failure detection device S advances the failure detection process to step S16. On the other hand, if the intake pressure sensor 14 fails because the intake pressure sensor 14 detects a change in the intake pressure PB that is less than the predetermined level or does not detect a change in the intake pressure PB (step S14: failure), the failure detection device S performs failure detection processing. to the process of step S15.

ステップS15の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグの状態を故障状態に設定し、大気圧センサの故障判定フラグの状態を未判定状態に設定する。これにより、ステップS15の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S15, the failure detection device S sets the state of the failure determination flag of the intake pressure sensor 14 to the failure state, and sets the state of the failure determination flag of the atmospheric pressure sensor to the undetermined state. As a result, the processing of step S15 is completed, and the current series of failure detection processing ends.

ステップS16の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグの状態を正常状態に仮設定し(PB:仮正常)、大気圧センサの故障判定フラグの状態を未判定状態に設定する(PA:未判定)。これにより、ステップS16の処理は完了し、故障検知処理はステップS17の処理に進める。 In the process of step S16, the failure detection device S temporarily sets the state of the failure determination flag of the intake pressure sensor 14 to the normal state (PB: temporary normal), and sets the state of the failure determination flag of the atmospheric pressure sensor to the undetermined state. Set (PA: undetermined). As a result, the process of step S16 is completed, and the failure detection process proceeds to the process of step S17.

ステップS17の処理では、故障検知装置Sが、エンジン1が停止する際に故障検知装置Sの電源をオフするときのセルフシャットダウン処理に備え、吸気圧センサ14の故障判定フラグの状態を正常状態に再度仮設定し、大気圧センサの故障判定フラグの状態を未判定状態に再度設定する。これにより、ステップS17の処理は完了し、故障検知処理はステップS18の処理に進める。なお、本ステップの処理は、必要に応じて省略することも可能である。 In the processing of step S17, the failure detection device S sets the failure determination flag of the intake pressure sensor 14 to the normal state in preparation for self-shutdown processing when the power supply of the failure detection device S is turned off when the engine 1 stops. Temporary setting is performed again, and the state of the failure determination flag of the atmospheric pressure sensor is again set to the undetermined state. Thereby, the process of step S17 is completed, and the failure detection process proceeds to the process of step S18. Note that the processing of this step can be omitted as necessary.

ステップS18の処理では、故障検知装置Sが、セルフシャットダウン処理に入り、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致するか否かを判別することにより、吸気圧センサ14及び大気圧センサが故障しているか否かを判別する。判別の結果、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致して吸気圧センサ14及び大気圧センサが正常である場合(ステップS18:正常)、故障検知装置Sは、故障検知処理をステップS19の処理に進める。一方、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致せずに吸気圧センサ14及び大気圧センサが故障している場合(ステップS18:故障)、故障検知装置Sは、故障検知処理をステップS20の処理に進める。 In the processing of step S18, the failure detection device S enters self-shutdown processing and determines whether or not the intake pressure PB detected by the intake pressure sensor 14 matches the atmospheric pressure PA detected by the atmospheric pressure sensor. Thereby, it is determined whether or not the intake pressure sensor 14 and the atmospheric pressure sensor are malfunctioning. When the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor match as a result of determination, and the intake pressure sensor 14 and the atmospheric pressure sensor are normal (step S18: normal) , the failure detection device S advances the failure detection process to the process of step S19. On the other hand, if the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor do not match and the intake pressure sensor 14 and the atmospheric pressure sensor are malfunctioning (step S18: failure). , the failure detection device S advances the failure detection process to the process of step S20.

ステップS19の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグの状態を正常状態に仮設定し(PB:仮正常)、大気圧センサの故障判定フラグの状態を正常状態に設定する(PA:正常)。これにより、ステップS19の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S19, the failure detection device S temporarily sets the state of the failure determination flag of the intake pressure sensor 14 to the normal state (PB: temporary normal), and sets the state of the failure determination flag of the atmospheric pressure sensor to the normal state. (PA: normal). As a result, the processing of step S19 is completed, and the current series of failure detection processing ends.

ステップS20の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を故障状態に設定する(PA:故障、PB:故障)。これにより、ステップS20の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S20, the failure detection device S sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to failure states (PA: failure, PB: failure). As a result, the processing of step S20 is completed, and the current series of failure detection processing ends.

ステップS21の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグの状態を未判定状態に設定し(PB:未判定)、大気圧センサの故障判定フラグの状態を正常状態に仮設定する(PA:仮正常)。これにより、ステップS21の処理は完了し、故障検知処理はステップS22の処理に進める。 In the process of step S21, the failure detection device S sets the state of the failure determination flag of the intake pressure sensor 14 to the undetermined state (PB: undetermined), and temporarily sets the state of the failure determination flag of the atmospheric pressure sensor to the normal state. Set (PA: temporary normal). Thereby, the process of step S21 is completed, and the failure detection process proceeds to the process of step S22.

ステップS22の処理では、故障検知装置Sが、エンジン1が始動して始動後処理に入りエンジン動作中に検出された吸気圧PBの変動状態に基づいて吸気圧センサ14が故障しているか否かを判別する。判別の結果、所定レベル以上の吸気圧PBの変動が検出されて吸気圧センサ14が正常である場合(ステップS22:正常)、故障検知装置Sは、故障検知処理をステップS24の処理に進める。一方、所定レベル未満の吸気圧PBの変動が検出され又は吸気圧PBの変動が検出されないで吸気圧センサ14が故障している場合(ステップS22:故障)、故障検知装置Sは、故障検知処理をステップS23の処理に進める。 In the process of step S22, the failure detection device S determines whether or not the intake pressure sensor 14 is out of order based on the fluctuation state of the intake pressure PB detected during engine operation after the engine 1 is started and the post-start process is started. determine. If the intake pressure sensor 14 is normal (step S22: normal), the failure detection device S advances the failure detection process to step S24. On the other hand, if the intake pressure sensor 14 fails because the intake pressure sensor 14 detects a change in the intake pressure PB that is less than the predetermined level or does not detect a change in the intake pressure PB (step S22: failure), the failure detection device S performs failure detection processing. to the process of step S23.

ステップS23の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグの状態を故障状態に設定し(PB:故障)、大気圧センサの故障判定フラグの状態を正常状態に仮設定する(PA:仮正常)。これにより、ステップS23の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S23, the failure detection device S sets the state of the failure determination flag of the intake pressure sensor 14 to the failure state (PB: failure), and temporarily sets the state of the failure determination flag of the atmospheric pressure sensor to the normal state. (PA: provisional normal). As a result, the processing of step S23 is completed, and the current series of failure detection processing ends.

ステップS24の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を正常状態に仮設定する(PA:仮正常、PB:仮正常)。これにより、ステップS24の処理は完了し、故障検知処理はステップS25の処理に進める。 In the processing of step S24, the failure detection device S provisionally sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to normal states (PA: temporary normal, PB: temporary normal). Thereby, the process of step S24 is completed, and the failure detection process proceeds to the process of step S25.

ステップS25の処理では、故障検知装置Sが、内圧推定部122の負荷推定において算出された推定圧と吸気圧センサ14によって検出された吸気圧PBとに基づいて吸気圧センサ14が故障しているか否かを判別する。判別の結果、吸気圧PBと推定圧との差の絶対値が所定の閾値よりも小さく吸気圧センサ14が正常である場合(ステップS25:正常)、故障検知装置Sは、故障検知処理をステップS26の処理に進める。一方、吸気圧PBと推定圧との差の絶対値が所定の閾値よりも大きく吸気圧センサ14が故障している場合(ステップS25:故障)、故障検知装置Sは、故障検知処理をステップS30の処理に進める。 In the process of step S25, the failure detection device S determines whether the intake pressure sensor 14 has failed based on the estimated pressure calculated in the load estimation of the internal pressure estimating unit 122 and the intake pressure PB detected by the intake pressure sensor 14. determine whether or not As a result of determination, if the absolute value of the difference between the intake pressure PB and the estimated pressure is smaller than the predetermined threshold value and the intake pressure sensor 14 is normal (step S25: normal), the failure detection device S performs the failure detection process. Proceed to the processing of S26. On the other hand, if the absolute value of the difference between the intake pressure PB and the estimated pressure is larger than the predetermined threshold value and the intake pressure sensor 14 is faulty (step S25: fault), the fault detection device S performs the fault detection process in step S30. Proceed to the processing of

ステップS26の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を正常状態に仮設定する(PA:仮正常、PB:仮正常)。これにより、ステップS26の処理は完了し、故障検知処理はステップS27の処理に進める。 In the process of step S26, the failure detection device S provisionally sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to normal states (PA: temporary normal, PB: temporary normal). Thereby, the process of step S26 is completed, and the failure detection process proceeds to the process of step S27.

ステップS27の処理では、故障検知装置Sが、セルフシャットダウン処理に入り、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致するか否かを判別することにより、吸気圧センサ14及び大気圧センサが故障しているか否かを判別する。判別の結果、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致し吸気圧センサ14及び大気圧センサが正常である場合(ステップS27:正常)、故障検知装置Sは、故障検知処理をステップS28の処理に進める。一方、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致せず吸気圧センサ14及び大気圧センサが共に故障している可能性がある場合(ステップS27:故障)、故障検知装置Sは、故障検知処理をステップS29の処理に進める。 In the processing of step S27, the failure detection device S enters self-shutdown processing and determines whether or not the intake pressure PB detected by the intake pressure sensor 14 matches the atmospheric pressure PA detected by the atmospheric pressure sensor. Thereby, it is determined whether or not the intake pressure sensor 14 and the atmospheric pressure sensor are malfunctioning. As a result of determination, if the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor match and the intake pressure sensor 14 and the atmospheric pressure sensor are normal (step S27: Normal), The failure detection device S advances the failure detection process to the process of step S28. On the other hand, if the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor do not match and there is a possibility that both the intake pressure sensor 14 and the atmospheric pressure sensor are malfunctioning (step S27: failure), the failure detection device S advances the failure detection process to step S29.

ステップS28の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を正常状態に設定する(PA:正常、PB:正常)。これにより、ステップS28の処理は完了し、今回の一連の故障検知処理は終了する。 In the processing of step S28, the failure detection device S sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to normal states (PA: normal, PB: normal). As a result, the processing of step S28 is completed, and the current series of failure detection processing ends.

ステップS29の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を故障状態に設定する(PA:故障、PB:故障)。これにより、ステップS29の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S29, the failure detection device S sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to the failure state (PA: failure, PB: failure). As a result, the processing of step S29 is completed, and the current series of failure detection processing ends.

ステップS30の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を故障状態に仮設定する(PA:仮故障、PB:仮故障)。これにより、ステップS30の処理は完了し、故障検知処理はステップS31の処理に進む。 In the process of step S30, the failure detection device S provisionally sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to failure states (PA: temporary failure, PB: temporary failure). Thereby, the process of step S30 is completed, and the failure detection process proceeds to the process of step S31.

ステップS31の処理では、故障検知装置Sが、セルフシャットダウン処理に入り、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致するか否かを判別することにより、吸気圧センサ14及び大気圧センサが故障しているか否かを判別する。判別の結果、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致し吸気圧センサ14及び大気圧センサが正常である場合(ステップS31:正常)、故障検知装置Sは、故障検知処理をステップS32の処理に進める。一方、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致せず吸気圧センサ14及び大気圧センサが共に故障している可能性がある場合(ステップS31:故障)、故障検知装置Sは、故障検知処理をステップS33の処理に進める。 In the processing of step S31, the failure detection device S enters self-shutdown processing and determines whether or not the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor match. Thereby, it is determined whether or not the intake pressure sensor 14 and the atmospheric pressure sensor are malfunctioning. As a result of determination, if the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor match and the intake pressure sensor 14 and the atmospheric pressure sensor are normal (step S31: Normal), The failure detection device S advances the failure detection process to the process of step S32. On the other hand, if the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor do not match and there is a possibility that both the intake pressure sensor 14 and the atmospheric pressure sensor are malfunctioning (step S31: failure), the failure detection device S advances the failure detection process to step S33.

ステップS32の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグを故障状態に仮設定し(PB:仮故障)、大気圧センサの故障判定フラグの状態を正常状態に設定する(PA:正常)。これにより、ステップS32の処理は完了し、今回の一連の故障検知処理は終了する。 In the processing of step S32, the failure detection device S temporarily sets the failure determination flag of the intake pressure sensor 14 to the failure state (PB: temporary failure), and sets the failure determination flag of the atmospheric pressure sensor to the normal state ( PA: normal). As a result, the processing of step S32 is completed, and the current series of failure detection processing ends.

ステップS33の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を故障状態に設定する(PA:故障、PB:故障)。これにより、ステップS33の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S33, the failure detection device S sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to the failure state (PA: failure, PB: failure). As a result, the processing of step S33 is completed, and the current series of failure detection processing ends.

図6は、本実施形態における故障検知装置Sで付加的に実行される吸気圧センサ及び大気圧センサの故障検知処理の流れの一例を説明するためのフローチャートである。 FIG. 6 is a flowchart for explaining an example of the flow of failure detection processing for the intake pressure sensor and the atmospheric pressure sensor additionally executed by the failure detection device S according to the present embodiment.

図6に示すフローチャートは、故障検知装置Sが稼働されたタイミングで開始となり、故障検知処理はステップS41の処理に進む。 The flowchart shown in FIG. 6 starts when the failure detection device S is activated, and the failure detection process proceeds to step S41.

ステップS41の処理では、故障検知装置Sが、エンスト中であるか否かを判別する。判別の結果、エンスト中である場合(ステップS41:Yes)、故障検知装置Sは、故障検知処理をステップS42の処理に進める。一方、エンスト中でない場合には(ステップS41:No)、故障検知装置Sは、図5に示す故障検知処理を実行する。 In the process of step S41, the failure detection device S determines whether or not the engine is stalling. As a result of determination, when the engine is stalling (step S41: Yes), the failure detection device S advances the failure detection process to step S42. On the other hand, if the engine is not stalled (step S41: No), the failure detection device S executes the failure detection process shown in FIG.

ステップS42の処理では、故障検知装置Sが、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致するか否かを判別することにより、吸気圧センサ14及び大気圧センサが故障しているか否かを判別する。判別の結果、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致し吸気圧センサ14及び大気圧センサが正常である場合(ステップS42:正常)、故障検知装置Sは、故障検知処理をステップS43の処理に進める。一方、吸気圧センサ14によって検出された吸気圧PBと大気圧センサによって検出された大気圧PAとが一致せず吸気圧センサ14及び大気圧センサが故障している場合(ステップS42:故障)、故障検知装置Sは、故障検知処理をステップS47の処理に進める。 In the processing of step S42, the failure detection device S determines whether or not the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor match. 14 and atmospheric pressure sensor are faulty. As a result of determination, if the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor match and the intake pressure sensor 14 and the atmospheric pressure sensor are normal (step S42: Normal), The failure detection device S advances the failure detection process to step S43. On the other hand, if the intake pressure PB detected by the intake pressure sensor 14 and the atmospheric pressure PA detected by the atmospheric pressure sensor do not match and the intake pressure sensor 14 and the atmospheric pressure sensor are malfunctioning (step S42: failure), The failure detection device S advances the failure detection process to step S47.

ステップS43の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグを正常状態に仮設定し(PB:仮正常)、大気圧センサの故障判定フラグの状態を正常状態に設定する(PA:正常)。これにより、ステップS43の処理は完了し、故障検知処理はステップS44の処理に進める。 In the processing of step S43, the failure detection device S temporarily sets the failure determination flag of the intake pressure sensor 14 to a normal state (PB: temporary normal), and sets the state of the failure determination flag of the atmospheric pressure sensor to a normal state ( PA: normal). Thereby, the process of step S43 is completed, and the failure detection process proceeds to the process of step S44.

ステップS44の処理では、故障検知装置Sが、エンジン1が始動して始動後処理に入り内圧推定部122の負荷推定において算出された推定圧と、吸気圧センサ14によって検出された吸気圧PBとに基づいて吸気圧センサ14が故障しているか否かを判別する。判別の結果、吸気圧PBと推定圧との差の絶対値が所定の閾値よりも小さく吸気圧センサ14が正常である場合(ステップS44:正常)、故障検知装置Sは、故障検知処理をステップS45の処理に進める。一方、吸気圧PBと推定圧との差の絶対値が所定の閾値よりも大きく吸気圧センサ14が故障している場合(ステップS44:故障)、故障検知装置Sは、故障検知処理をステップS46の処理に進める。 In the processing of step S44, the failure detection device S detects the estimated pressure calculated in the load estimation of the internal pressure estimating unit 122 and the intake pressure PB detected by the intake pressure sensor 14 when the engine 1 starts and enters post-start processing. , it is determined whether the intake pressure sensor 14 is out of order. As a result of determination, if the absolute value of the difference between the intake pressure PB and the estimated pressure is smaller than the predetermined threshold value and the intake pressure sensor 14 is normal (step S44: normal), the failure detection device S performs the failure detection process. The process proceeds to S45. On the other hand, if the absolute value of the difference between the intake pressure PB and the estimated pressure is larger than the predetermined threshold value and the intake pressure sensor 14 has failed (step S44: failure), the failure detection device S performs failure detection processing at step S46. Proceed to the processing of

ステップS45の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を正常状態に設定する(PA:正常、PB:正常)。これにより、ステップS45の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S45, the failure detection device S sets the states of failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to normal states (PA: normal, PB: normal). As a result, the processing of step S45 is completed, and the current series of failure detection processing ends.

ステップS46の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグの状態を故障状態に設定し(PB:故障)、大気圧センサの故障判定フラグの状態を正常状態に設定する(PA:正常)。これにより、ステップS46の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S46, the failure detection device S sets the state of the failure determination flag of the intake pressure sensor 14 to the failure state (PB: failure), and sets the state of the failure determination flag of the atmospheric pressure sensor to the normal state ( PA: normal). As a result, the processing of step S46 is completed, and the current series of failure detection processing ends.

ステップS47の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を故障状態に仮設定する(PA:仮故障、PB:仮故障)。これにより、ステップS47の処理は完了し、故障検知処理はステップS48の処理に進める。 In the process of step S47, the failure detection device S provisionally sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to failure states (PA: temporary failure, PB: temporary failure). Thereby, the process of step S47 is completed, and the failure detection process proceeds to the process of step S48.

ステップS48の処理では、故障検知装置Sが、エンジン動作中に始動後処理において検出された吸気圧PBの変動状態に基づいて吸気圧センサ14が故障しているか否かを判別する。判別の結果、所定レベル以上の吸気圧PBの変動が検出されて吸気圧センサ14が正常である場合(ステップS48:正常)、故障検知装置Sは、故障検知処理をステップS49の処理に進める。一方、所定レベル未満の吸気圧PBの変動が検出され又は吸気圧PBの変動が検出されないで吸気圧センサ14が故障している場合(ステップS48:故障)、故障検知装置Sは、故障検知処理をステップS50の処理に進める。 In the process of step S48, the failure detection device S determines whether or not the intake pressure sensor 14 is out of order based on the fluctuation state of the intake pressure PB detected in the post-start process during engine operation. If the intake pressure sensor 14 is normal (step S48: normal), the failure detection device S advances the failure detection process to step S49. On the other hand, if the intake pressure sensor 14 fails because the intake pressure sensor 14 detects a change in the intake pressure PB that is less than the predetermined level or does not detect a change in the intake pressure PB (step S48: failure), the failure detection device S performs failure detection processing. to the process of step S50.

ステップS49の処理では、故障検知装置Sが、吸気圧センサ14及び大気圧センサの故障判定フラグの状態を故障状態に設定する(PA:故障、PB:故障)。これにより、ステップS49の処理は完了し、今回の一連の故障検知処理は終了する。 In the process of step S49, the failure detection device S sets the states of the failure determination flags of the intake pressure sensor 14 and the atmospheric pressure sensor to failure states (PA: failure, PB: failure). As a result, the processing of step S49 is completed, and the current series of failure detection processing ends.

ステップS50の処理では、故障検知装置Sが、吸気圧センサ14の故障判定フラグの状態を故障状態に設定し(PB:故障)、大気圧センサの故障判定フラグの状態を故障状態に仮設定する(PA:仮故障)。これにより、ステップS50の処理は完了し、今回の一連の故障検知処理は終了する。 In the processing of step S50, the failure detection device S sets the state of the failure determination flag of the intake pressure sensor 14 to the failure state (PB: failure), and temporarily sets the state of the failure determination flag of the atmospheric pressure sensor to the failure state. (PA: temporary failure). As a result, the processing of step S50 is completed, and the current series of failure detection processing ends.

以上の変形例を含む本実施形態における故障検知装置Sにおいては、エンジン1の停止時に加えて、エンジン1の動作時やその動作時から停止時に向かうセルフシャットダウン処理時でも、吸気圧センサ14及び大気圧センサの故障検知をする故障検知処理を実行することにより、吸気圧センサ14及び大気圧センサの正確な故障検知をすることができることになる。 In the failure detection device S according to the present embodiment, including the above modified examples, the intake pressure sensor 14 and the large pressure sensor 14 are detected not only when the engine 1 is stopped, but also when the engine 1 is operating and during self-shutdown processing from operating to stopping. By executing the failure detection process for detecting the failure of the air pressure sensor, it is possible to perform accurate failure detection of the intake pressure sensor 14 and the atmospheric pressure sensor.

なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 It should be noted that the present invention is not limited to the above-described embodiments in terms of the types, shapes, arrangements, numbers, etc. of the members, and the gist of the invention can be changed by appropriately replacing the constituent elements with those having equivalent effects. Needless to say, it can be changed as appropriate within a range that does not deviate.

以上のように、本発明は、自動二輪車等の車両に適切に採用することができるようにコストを抑制した簡素な構成で、精度よく吸気圧センサの故障検知を行うことができる実用的な故障検知装置を提供することができるものであり、その汎用普遍的な性格から自動二輪車等の車両に広く適用され得るものと期待される。 INDUSTRIAL APPLICABILITY As described above, the present invention is a practical failure sensor that can accurately detect a failure of an intake pressure sensor with a simple configuration that suppresses costs so that it can be appropriately adopted in a vehicle such as a motorcycle. It is possible to provide a detection device, and it is expected to be widely applied to vehicles such as motorcycles due to its general-purpose and universal character.

1…エンジン
2…シリンダブロック
2a…気筒
3…ピストン
4…コンロッド
5…クランクシャフト
6…リラクタ
7…クランク角センサ
8…燃焼室
9…点火プラグ
10…吸気管
10a…開口部
11…吸気バルブ
12…スロットル弁
13…バタフライ開度センサ
14…吸気圧センサ
15…バイパス通路
16…バイパス弁
17…バイパス調整モータ
18…排気管
18a…開口部
19…排気バルブ
100…ECU(Electronic Control Unit)
110…制御部
111…モータ制御部
112…ドライバ
120…故障検知部
121…メモリ
121a…基準補正量
121b…影響度合テーブル
121c…基準マップ
122…内圧推定部
122a…補正開度算出部
123…比較判定部
DESCRIPTION OF SYMBOLS 1... Engine 2... Cylinder block 2a... Cylinder 3... Piston 4... Connecting rod 5... Crankshaft 6... Reluctor 7... Crank angle sensor 8... Combustion chamber 9... Spark plug 10... Intake pipe 10a... Opening 11... Intake valve 12... Throttle valve 13 Butterfly opening sensor 14 Intake pressure sensor 15 Bypass passage 16 Bypass valve 17 Bypass adjustment motor 18 Exhaust pipe 18a Opening 19 Exhaust valve 100 ECU (Electronic Control Unit)
DESCRIPTION OF SYMBOLS 110... Control part 111... Motor control part 112... Driver 120... Failure detection part 121... Memory 121a... Reference correction amount 121b... Influence degree table 121c... Reference map 122... Internal pressure estimation part 122a... Correction opening calculation part 123... Comparison determination Department

Claims (3)

内燃機関が備えるセンサの故障を検知する故障検知部を有する故障検知装置であって、
前記センサは、前記内燃機関の燃焼室に吸入される吸気が流入する吸気管の内部に可動に設けられ前記吸気管を開閉し前記吸気の量を調整する弁体の開度を検出する開度センサと、前記弁体よりも前記吸気管の下流側の圧力を検出する圧力センサと、前記内燃機関の回転数を検出する回転センサと、を含み、
前記吸気管には、前記弁体よりも上流側と、前記弁体よりも下流側と、を連通するバイパス通路が設けられ、
前記バイパス通路には、前記バイパス通路を開閉して前記バイパス通路に流入する前記吸気の量を調整するバイパス弁が設けられ、
前記バイパス弁は、駆動制御されるアクチュエータによって前記バイパス通路を開閉するように移動され、
前記バイパス弁は、前記アクチュエータが駆動制御される制御量に応じて移動され、
前記故障検知部は、前記圧力センサによって検出される前記圧力である測定圧と、前記測定圧が検出される際の前記回転数、前記開度及び前記制御量に対応する値としての推定圧と、を比較して、前記測定圧と前記推定圧との差の絶対値が所定の閾値よりも大きい場合に前記圧力センサに故障が発生したと判断し、
前記推定圧は、前記回転数及び前記開度に対応して、前記吸気管の前記下流側の前記圧力を予め検出して得られた値である基準推定圧から算出され、
前記推定圧を算出する際の前記開度としては、前記制御量に応じて前記開度を補正した補正開度が用いられ
前記故障検知装置は、前記基準推定圧を格納した記憶部を更に有し、
前記故障検知部は、前記記憶部内の前記基準推定圧を参照して、前記測定圧が検出された際の前記回転数及び前記開度に対応した前記基準推定圧の値である前記推定圧を算出する際に、前記開度として用いる前記補正開度を、前記制御量に応じて前記開度を補正することにより算出し、
前記バイパス弁は、前記制御量に比例した移動量で移動されて前記バイパス通路の流路面積を増減するように開閉し、
前記バイパス弁の前記移動量が前記圧力の変化量の大きさに対して影響する影響度合係数は、前記弁体の前記開度が全閉開度のとき最も大きくなり、
前記故障検知装置は、基準補正量及び前記影響度合係数を前記記憶部に格納し、
前記基準補正量は、前記弁体の前記開度を前記全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに前記圧力が変化する第一圧力変化量と前記第一開度量との比である第一基準比と、前記全閉開度において前記バイパス弁を第一の移動量となるように移動させたときに前記圧力が変化する第二圧力変化量と前記第一の移動量との比である第二基準比と、の比として予め算出され、
前記影響度合係数は、前記回転数に対応して得られた前記第二圧力変化量と、前記回転数及び前記弁体の前記開度に各々対応して得られると共に前記バイパス弁を前記第一の移動量となるように移動させたときに前記圧力が変化する変化量と、の比として予め算出され、
前記弁体の前記補正開度は、前記基準補正量と前記バイパス弁の前記移動量と前記影響度合係数との積と、前記開度センサによって検出される測定開度と、の和によって算出されることを特徴とする故障検知装置。
A failure detection device having a failure detection unit that detects a failure of a sensor provided in an internal combustion engine,
The sensor is movably provided inside an intake pipe into which intake air is drawn into the combustion chamber of the internal combustion engine, and detects an opening degree of a valve body that opens and closes the intake pipe and adjusts the amount of the intake air. a sensor, a pressure sensor that detects the pressure downstream of the valve body in the intake pipe, and a rotation sensor that detects the rotation speed of the internal combustion engine,
The intake pipe is provided with a bypass passage that communicates between an upstream side of the valve body and a downstream side of the valve body,
The bypass passage is provided with a bypass valve that opens and closes the bypass passage to adjust the amount of the intake air flowing into the bypass passage,
the bypass valve is moved to open and close the bypass passage by an actuator that is driven and controlled;
The bypass valve is moved according to a control amount by which the actuator is driven and controlled,
The failure detection unit includes a measured pressure, which is the pressure detected by the pressure sensor, and an estimated pressure as a value corresponding to the rotational speed, the opening, and the control amount when the measured pressure is detected. , and determining that the pressure sensor has failed if the absolute value of the difference between the measured pressure and the estimated pressure is greater than a predetermined threshold;
The estimated pressure is calculated from a reference estimated pressure, which is a value obtained by previously detecting the pressure on the downstream side of the intake pipe, corresponding to the rotational speed and the opening,
A corrected opening obtained by correcting the opening according to the control amount is used as the opening when calculating the estimated pressure ,
The failure detection device further has a storage unit that stores the reference estimated pressure,
The failure detection unit refers to the reference estimated pressure in the storage unit, and determines the estimated pressure, which is the value of the reference estimated pressure corresponding to the rotational speed and the opening when the measured pressure is detected. when calculating, the corrected opening used as the opening is calculated by correcting the opening according to the control amount;
the bypass valve is moved by a movement amount proportional to the control amount to open and close so as to increase or decrease the flow area of the bypass passage;
The degree of influence coefficient by which the amount of movement of the bypass valve affects the magnitude of the amount of change in pressure is greatest when the degree of opening of the valve body is the degree of fully closed,
The failure detection device stores the reference correction amount and the influence degree coefficient in the storage unit,
The reference correction amount includes a first pressure change amount by which the pressure changes when the opening of the valve body is changed from the fully closed opening to a reference opening, which is a predetermined value, by a first opening amount. A first reference ratio that is a ratio to the first opening amount, and a second pressure change amount that changes the pressure when the bypass valve is moved to the first movement amount at the fully closed opening amount. Calculated in advance as a ratio of the second reference ratio, which is the ratio to the first movement amount,
The influence degree coefficient is obtained corresponding to the second pressure change amount obtained corresponding to the rotation speed, the rotation speed and the opening degree of the valve body, and the bypass valve to the first pressure change amount. is calculated in advance as a ratio of the amount of change in the pressure when it is moved so that the amount of movement is
The corrected opening degree of the valve body is calculated by the sum of the product of the reference correction amount, the movement amount of the bypass valve, and the effect degree coefficient, and the measured opening degree detected by the opening sensor. A failure detection device characterized by:
前記回転数及び前記弁体の前記開度と、前記回転数及び前記開度に各々対応して、前記吸気管の前記下流側の前記圧力を予め検出して得られた前記値である前記基準推定圧と、は、それらの対応関係に則ったマップデータの形式で用意されることを特徴とする請求項に記載の故障検知装置。 The reference, which is the value obtained by previously detecting the pressure on the downstream side of the intake pipe corresponding to the rotation speed and the opening degree of the valve body, respectively. 2. The failure detection device according to claim 1 , wherein the estimated pressure and are prepared in the form of map data according to their corresponding relationship. 内燃機関が備えるセンサの故障を検知する故障検知部を有する故障検知装置であって、
前記センサは、前記内燃機関の燃焼室に吸入される吸気が流入する吸気管の内部に可動に設けられ前記吸気管を開閉し前記吸気の量を調整する弁体の開度を検出する開度センサと、前記弁体よりも前記吸気管の下流側の圧力を検出する圧力センサと、前記内燃機関の回転数を検出する回転センサと、を含み、
前記吸気管には、前記弁体よりも上流側と、前記弁体よりも下流側と、を連通するバイパス通路が設けられ、
前記バイパス通路には、前記バイパス通路を開閉して前記バイパス通路に流入する前記吸気の量を調整するバイパス弁が設けられ、
前記バイパス弁は、駆動制御されるアクチュエータによって前記バイパス通路を開閉するように移動され、
前記バイパス弁は、前記アクチュエータが駆動制御される制御量に応じて移動され、
前記故障検知部は、前記圧力センサによって検出される前記圧力である測定圧と、前記測定圧が検出される際の前記回転数、前記開度及び前記制御量に対応する値としての推定圧と、を比較して、前記測定圧と前記推定圧との差の絶対値が所定の閾値よりも大きい場合に前記圧力センサに故障が発生したと判断し、
前記推定圧は、前記回転数及び前記開度に対応して、前記吸気管の前記下流側の前記圧力を予め検出して得られた値である基準推定圧から算出され、
前記推定圧を算出する際の前記開度としては、前記制御量に応じて前記開度を補正した補正開度が用いられ、
前記故障検知装置は、前記推定圧を格納した記憶部を更に有し、
前記回転数と前記弁体の前記開度とに対応して、前記弁体よりも下流側の圧力の実測値である基準推定圧が測定されて、前記回転数の値と前記開度の値と前記基準推定圧の値との対応関係を示すデータが予め用意され、前記制御量に応じて前記開度が補正された補正開度の値を前記開度の前記値として用いて前記データの前記基準推定圧の前記値から前記推定圧の値が算出され、算出された前記推定圧の前記値が前記記憶部に記憶され、
前記バイパス弁は、前記制御量に比例した移動量で移動されて前記バイパス通路の流路面積を増減するように開閉し、
前記バイパス弁の前記移動量が前記圧力の変化量の大きさに対して影響する影響度合係数は、前記弁体の前記開度が全閉開度のとき最も大きくなり、
前記補正開度の算出は、基準補正量及び前記影響度合係数を使って予め算出され、
前記基準補正量は、前記弁体の前記開度を前記全閉開度から所定値である基準開度まで第一開度量だけ変化させたときに前記圧力が変化する第一圧力変化量と前記第一開度量との比である第一基準比と、前記全閉開度において前記バイパス弁を第一の移動量となるように移動させたときに前記圧力が変化する第二圧力変化量と前記第一の移動量との比である第二基準比と、の比として予め算出され、
前記影響度合係数は、前記回転数に対応して得られた前記第二圧力変化量と、前記回転数及び前記弁体の前記開度に各々対応して得られると共に前記バイパス弁を前記第一の移動量となるように移動させたときに前記圧力が変化する変化量と、の比として予め算出され、
前記弁体の前記補正開度は、前記基準補正量と前記バイパス弁の前記移動量と前記影響度合係数との積と、前記弁体の前記開度と、の和によって予め算出されることを特徴とする故障検知装置。
A failure detection device having a failure detection unit that detects a failure of a sensor provided in an internal combustion engine,
The sensor is movably provided inside an intake pipe into which intake air is drawn into the combustion chamber of the internal combustion engine, and detects an opening degree of a valve body that opens and closes the intake pipe and adjusts the amount of the intake air. a sensor, a pressure sensor that detects the pressure downstream of the valve body in the intake pipe, and a rotation sensor that detects the rotation speed of the internal combustion engine,
The intake pipe is provided with a bypass passage that communicates between an upstream side of the valve body and a downstream side of the valve body,
The bypass passage is provided with a bypass valve that opens and closes the bypass passage to adjust the amount of the intake air flowing into the bypass passage,
the bypass valve is moved to open and close the bypass passage by an actuator that is driven and controlled;
The bypass valve is moved according to a control amount by which the actuator is driven and controlled,
The failure detection unit includes a measured pressure, which is the pressure detected by the pressure sensor, and an estimated pressure as a value corresponding to the rotational speed, the opening, and the control amount when the measured pressure is detected. , and determining that the pressure sensor has failed if the absolute value of the difference between the measured pressure and the estimated pressure is greater than a predetermined threshold;
The estimated pressure is calculated from a reference estimated pressure, which is a value obtained by previously detecting the pressure on the downstream side of the intake pipe, corresponding to the rotational speed and the opening,
A corrected opening obtained by correcting the opening according to the control amount is used as the opening when calculating the estimated pressure,
The failure detection device further has a storage unit that stores the estimated pressure,
A reference estimated pressure, which is a measured value of the pressure on the downstream side of the valve body, is measured corresponding to the rotational speed and the opening degree of the valve body, and the rotational speed value and the opening degree value are measured. and the value of the reference estimated pressure is prepared in advance, and the value of the corrected opening degree in which the opening degree is corrected in accordance with the control amount is used as the value of the opening degree. calculating the value of the estimated pressure from the value of the reference estimated pressure, storing the calculated value of the estimated pressure in the storage unit;
the bypass valve is moved by a movement amount proportional to the control amount to open and close so as to increase or decrease the flow area of the bypass passage;
The degree of influence coefficient by which the amount of movement of the bypass valve affects the magnitude of the amount of change in pressure is greatest when the degree of opening of the valve body is the degree of fully closed,
The correction opening degree is calculated in advance using the reference correction amount and the influence degree coefficient,
The reference correction amount includes a first pressure change amount by which the pressure changes when the opening of the valve body is changed from the fully closed opening to a reference opening, which is a predetermined value, by a first opening amount. A first reference ratio that is a ratio to the first opening amount, and a second pressure change amount that changes the pressure when the bypass valve is moved to the first movement amount at the fully closed opening amount. Calculated in advance as a ratio of the second reference ratio, which is the ratio to the first movement amount,
The influence degree coefficient is obtained corresponding to the second pressure change amount obtained corresponding to the rotation speed, the rotation speed and the opening degree of the valve body, and the bypass valve to the first pressure change amount. is calculated in advance as a ratio of the amount of change in the pressure when it is moved so that the amount of movement is
The corrected opening degree of the valve body is calculated in advance by the sum of the product of the reference correction amount, the movement amount of the bypass valve, and the effect degree coefficient, and the opening degree of the valve body. A failure detection device characterized by :
JP2020010884A 2020-01-27 2020-01-27 Failure detection device Active JP7239505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020010884A JP7239505B2 (en) 2020-01-27 2020-01-27 Failure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020010884A JP7239505B2 (en) 2020-01-27 2020-01-27 Failure detection device

Publications (2)

Publication Number Publication Date
JP2021116748A JP2021116748A (en) 2021-08-10
JP7239505B2 true JP7239505B2 (en) 2023-03-14

Family

ID=77174374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020010884A Active JP7239505B2 (en) 2020-01-27 2020-01-27 Failure detection device

Country Status (1)

Country Link
JP (1) JP7239505B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307152A (en) 2002-04-12 2003-10-31 Hyundai Motor Co Ltd Method and device for failure diagnosis for map sensor of vehicle
JP2015045284A (en) 2013-08-28 2015-03-12 ヤマハ発動機株式会社 Motorcycle and control device of vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208545A (en) * 1988-02-16 1989-08-22 Fuji Heavy Ind Ltd Device for detecting failure of intake system of engine
JP2518398B2 (en) * 1989-04-21 1996-07-24 日本電装株式会社 Fail-safe device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307152A (en) 2002-04-12 2003-10-31 Hyundai Motor Co Ltd Method and device for failure diagnosis for map sensor of vehicle
JP2015045284A (en) 2013-08-28 2015-03-12 ヤマハ発動機株式会社 Motorcycle and control device of vehicle

Also Published As

Publication number Publication date
JP2021116748A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
US7677091B2 (en) Air-fuel ratio controller for an internal combustion engine and diagnosis apparatus for intake sensors
EP1439300B1 (en) Engine control device
JP3269751B2 (en) Internal combustion engine control device
JP3449170B2 (en) Misfire detection device for internal combustion engine
US20100023243A1 (en) Method for operating an internal combustion engine
EP1933019A2 (en) Throttle valve controller for internal combustion engine
JP4306123B2 (en) Abnormality detection device for fuel supply system of internal combustion engine
JP3463463B2 (en) Sensor abnormality diagnosis device
CN110872998B (en) Method for verifying CVVD position learning result and CVVD system for verifying CVVD position learning result
WO2007023890A1 (en) Controller for diesel internal combustion engine
JP7239505B2 (en) Failure detection device
US6840236B2 (en) Engine control device
JP5702993B2 (en) Throttle valve fully closed reference value setting device and engine control device
JP3859856B2 (en) Engine fuel injection control device
JP2008267239A (en) Engine speed control device
JP5798796B2 (en) Engine control device
JP6553496B2 (en) Electronically controlled throttle device and throttle control method
JP2018145817A (en) Abnormality diagnostic device for internal combustion engine
JP3772921B2 (en) Idle speed control device for internal combustion engine
JP3871979B2 (en) Control device for internal combustion engine
JP3892188B2 (en) Method for prohibiting determination of fuel control abnormality in internal combustion engine
JP7183143B2 (en) engine controller
JP2009097395A (en) Control unit of internal combustion engine and control system of internal combustion engine
JPH06264812A (en) Throttle control device for internal combustion engine
JP6482904B2 (en) Throttle valve control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7239505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150