JP7238999B2 - 位置検出装置及び移動体制御システム - Google Patents

位置検出装置及び移動体制御システム Download PDF

Info

Publication number
JP7238999B2
JP7238999B2 JP2021541362A JP2021541362A JP7238999B2 JP 7238999 B2 JP7238999 B2 JP 7238999B2 JP 2021541362 A JP2021541362 A JP 2021541362A JP 2021541362 A JP2021541362 A JP 2021541362A JP 7238999 B2 JP7238999 B2 JP 7238999B2
Authority
JP
Japan
Prior art keywords
search range
noise
detection device
unit
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021541362A
Other languages
English (en)
Other versions
JPWO2021033240A1 (ja
Inventor
真行 菅野
武 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Publication of JPWO2021033240A1 publication Critical patent/JPWO2021033240A1/ja
Application granted granted Critical
Publication of JP7238999B2 publication Critical patent/JP7238999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本開示は、位置検出装置及び移動体制御システムに関する。
近年、工場等の製造現場において、無人搬送車(Automated guided vehicle、AGV)及び荷物運搬ロボット等の自律移動型の移動体が利用されている。自律移動型の移動体には、壁、人、及び他の移動体等の障害物と衝突することを回避するため、カメラ又はLIDAR(Light Detection and Ranging)等のセンサが搭載され、これを用いて周囲の環境を監視することが行われている。一方で、工場等の製造現場では、光、粉塵、汚れがある環境においても高精度に機能するセンサとして、ロバスト性の高いレーダを利用する取組みも始まってきている。しかしながら、センサによる測定結果に含まれるノイズが原因で、障害物の位置を精度良く測定できない問題があった。そこで、センサによる測定結果からノイズを除去する必要がある。
例えば、特許文献1は、対象測距点から予め設定された基準距離内に、過去において取得された測距点が存在するか否かを判定し、基準距離内に過去において取得された対象測距点が存在しない場合に、該対象測距点がノイズ点の可能性が高いと判定することを特徴とするノイズ除去方法を開示している。
特開2016-161340号公報
しかしながら、従来技術においては、AGV及び荷物運搬ロボット等の自律移動型の移動体が移動しながら測距を行った場合、移動体に対して壁等の障害物が相対的に移動するため、壁等の障害物がノイズ点の可能性が高いと判定される問題があった。そのため、壁等の障害物の検出結果がノイズとして除去され、精度良く周囲の物体の位置を測定できないという課題があった。
本発明の目的は、以上の課題を解決し、精度良く移動体の周囲の物体の位置を測定できる位置検出装置及び移動体制御システムを提供することにある。
本開示の一態様に係る位置検出装置は、
移動体に搭載されて物体の位置を検出する位置検出装置であって、
電磁波を送信し、前記移動体の周囲の物体からの反射波を受信し、受信した反射波に基づいて、前記電磁波を反射した反射点の位置を所定の周期ごとに測定するセンサ部と、
前記センサ部によって測定された前記周期ごとの前記反射点の位置を示す位置データを、前記周期の間隔のフレームとして記憶する記憶部と、
前記位置検出装置の動きを示す移動情報に基づいて探索範囲を決定する探索範囲決定部と、
前記決定された探索範囲に基づいて前記位置データに含まれるノイズを識別し、識別されたノイズを前記位置データから除去し、ノイズが除去された位置データを前記物体の位置を示す位置データとするノイズ識別除去部とを備える。
本開示の一態様に係る移動体制御システムは、
上記の態様の位置検出装置を備える移動体制御システムであって、
前記物体の位置を示す位置データを受信し、受信された位置データに基づいて前記移動体の動作を制御する制御部を備える。
本開示に係る位置検出装置及び移動体制御システムによれば、精度良く移動体の周囲の物体の位置を測定することができる。
実施形態に係る移動体制御システムの全体構成例を示すブロック図である。 従来のノイズ識別除去処理を説明するための模式図である。 図1の移動体制御システムの構成例を示すブロック図である。 図3のレーダ装置の構成例を示すブロック図である。 図4の送信アンテナの構成例を示す模式図である。 図3の位置検出装置によって実行される反射位置測定及び探索範囲決定処理を示すフローチャートである。 図3の位置検出装置によって実行されるノイズ識別除去処理を示すフローチャートである。 図7のサブルーチンであって、ノイズ識別処理を示すフローチャートである。 変形例1に係る移動体制御システムの構成例を示すブロック図である。 変形例2に係る移動体制御システムの構成例を示すブロック図である。
以下、添付の図面を参照して本開示に係る移動体制御システムの実施形態を説明する。なお、以下の実施形態において、同一又は同様の構成要素については同一の符号を付している。
(適用例)
図1は、本開示に係る移動体制御システム100の適用例を説明するための模式図である。移動体制御システム100は、移動体140と、位置検出装置120とを備える。移動体140は、例えば、AGV及び荷物運搬ロボット等の自律移動型の移動体である。位置検出装置120は、移動体140に取り付けられている。位置検出装置120は、例えば、レーダ装置150を用いて、移動体140の周囲の障害物110の位置を検出する。レーダ装置150は、本開示の「センサ部」の一例である。障害物110は、例えば壁、棚、床、人、及び他の移動体等の物体である。
レーダ装置150は、例えば3次元電磁波レーダであり、電磁波ビームを周囲の3次元空間内で走査させて位置検出を行う。例えば、電磁波ビームは、周囲の3次元空間内を一定の周期Tで繰り返し走査する。したがって、レーダ装置150は、図2に示すように、周期Tごとに、電磁波ビームの走査範囲における位置検出の結果を示すデータ(以下、「フレーム」という。)を得ることができる。
レーダ装置150による位置測定の結果を示す位置信号にはノイズが含まれるため、位置検出装置120のノイズ識別除去部125は、ノイズ除去処理を行う。ノイズ除去後の位置信号は移動体140の制御部142に入力される。これにより、移動体140の制御部142は、ノイズ除去後の位置信号に基づいて、例えば移動体140が壁等の障害物110に衝突しないように、車輪及びステアリング等の駆動部を制御することができる。
図2は、従来のノイズ識別除去処理を説明するための模式図である。図2において、フレーム1aは、時刻tにおける位置検出の結果を示している。フレーム1bは、時刻t-Tにおける位置検出の結果を示し、フレーム1cは、時刻t-2Tにおける位置検出の結果を示している。フレーム1a~1cにおける丸印で示した検出点は、レーダ装置によって検出された反射点の座標データを示している。以下で説明するノイズ識別除去処理には、フレーム1a~1c以外にも多数のフレームを用いるが、図2においては図示していない。
図2において、従来のノイズ識別処理技術は、フレーム1a~1c等の複数のフレームを比較し、複数のフレームのうちの所定数以上のフレームで同一の反射点の位置をノイズでないと判断する一方、所定数未満のフレームで同一の反射点の位置をノイズと判断する。これにより、図2のフレーム2で示したようなノイズ除去後の位置データが得られる。
しかしながら、従来技術では、移動体が移動している場合、移動体に搭載された位置検出装置も移動するため、位置検出装置に対して壁等の障害物が相対的に移動する。これにより、壁等の障害物がノイズと判断されて除去され、精度良く周囲の物体の位置を測定できないという課題があった。
そこで、本開示に係る図1の位置検出装置120は、移動体140又は位置検出装置120の速度及び移動距離等の移動情報を取得し、移動情報に応じてフレーム間における同一の反射点の探索範囲を変更する。例えば、移動体140が+x方向に移動している場合、位置検出装置120は、フレーム間における同一の反射点の探索範囲を-x方向に広げる。これにより、壁等の障害物がノイズと判断されて除去されることを防止することができ、精度良く移動体の周囲の物体の位置を測定することができる。
(構成例)
図3は、本開示の実施形態に係る移動体制御システム100の構成例を示すブロック図である。移動体制御システム100は、移動体140と、位置検出装置120とを備える。
[位置検出装置]
図3において、位置検出装置120は、レーダ装置150と、移動体140の移動距離を算出する移動情報解析部122と、探索範囲決定部123と、メモリ124と、ノイズ識別除去部125と、通信インタフェース(以下、「通信I/F」という。)127とを備える。
レーダ装置150は、移動体140の周囲の障害物110の位置を測定し、測定結果を示す位置信号を出力する。
移動情報解析部122は、移動体140から受信した速度信号に基づいて、所定の期間における移動体140の移動方向及び移動距離を算出する。探索範囲決定部123は、移動情報解析部122によって算出された移動方向及び移動距離に基づいて、同一の反射点を探索する探索範囲を決定する。
メモリ124は、レーダ装置150からの位置信号が示すデータと、探索範囲決定部123によって決定された探索範囲を示すデータとを関連付けて記録する記録媒体である。メモリ124は、例えばRAM(Random Access Memory)で構成される。あるいは、メモリ124は、フラッシュメモリ、SSD(Solid State Drive)などの半導体メモリ装置、ハードディスク等の磁気記憶装置で構成されてもよい。
ノイズ識別除去部125は、メモリ124に格納された複数のフレームの反射位置データと、探索範囲を示すデータとを用いて、探索範囲内で、複数のフレームのうちの所定数以上のフレームで同一の反射点の位置をノイズでないと判断する一方、所定数未満のフレームで同一の反射点の位置をノイズと判断する。次に、ノイズ識別除去部125は、識別されたノイズを反射位置データから除去し、ノイズ除去後の位置信号を出力する。
移動情報解析部122、探索範囲決定部123、及びノイズ識別除去部125は、例えばCPU(Central Processing Unit)、RAM、ROM(Read Only Memory)等を含む情報処理回路により構成される。移動情報解析部122、探索範囲決定部123、及びノイズ識別除去部125は、例えば、RAMに展開されたプログラムをCPUにより解釈及び実行することにより、前述の処理を行う。
通信I/F127は、位置検出装置120と移動体140との通信接続を可能とするためのインタフェース回路を含む。通信I/F127は、例えば、IEEE802.3、IEEE802.11又はWi-Fi、LTE、3G、4G、5G等の規格に従って通信を行う。通信I/F127は、USB(Universal Serial Bus)、HDMI(High Definition Multimedia Interface)、IEEE1394、Bluetooth等の規格に従って通信を行うインタフェースであってもよい。
[移動体]
図3において、移動体140は、通信I/F141と、制御部142と、車輪駆動部143と、速度検出部144とを備える。
移動体140の通信I/F141は、移動体140と位置検出装置120との通信接続を可能とするためのインタフェース回路を含むものであり、位置検出装置120の通信I/F127と同様の構成を有する。
移動体140の制御部142は、例えばCPU、RAM、ROM等を含む情報処理回路により構成され、移動体140全体の制御を行う。例えば、制御部142は、RAMに展開されたプログラムをCPUにより解釈及び実行することにより、車輪駆動部143を制御する。制御部142は、位置検出装置120から受信したノイズ除去後の位置信号に基づいて、例えば移動体140が障害物110に衝突しないように、車輪駆動部143を制御する。
移動体140の車輪駆動部143は、制御部142による制御に従って車輪を駆動する。例えば、車輪駆動部143は、移動体140が障害物110に衝突しないように、車輪を制御して移動体140の速度及び移動方向等を制御する。
移動体140の速度検出部144は、移動体140の速度を検出する。速度検出部144は、例えば、制御部142による車輪駆動部143の制御情報に基づいて、移動体140の速度を検出する。あるいは、速度検出部144は、移動体140の速度を検出する速度センサであってもよい。速度検出部144は、本開示の「移動情報検出部」の一例である。
[レーダ]
図4は、図3のレーダ装置150の構成例を示すブロック図である。図4において、レーダ装置150は、識別情報(以下、「ID情報」という。)を含む信号(以下、「ID信号」という。)を生成するID信号発生器152と、ID信号に従って無線搬送波を周波数変調(Frequency Modulation、FM)することにより無線信号を出力する変調送信回路153と、無線信号を送信する送信アンテナ151と、送信アンテナ151の指向性を制御する指向性制御部154とを備える。
図5は、図4の送信アンテナ151の構成例を示す模式図である。送信アンテナ151は、例えば、複数のアンテナ151aを所定の間隔で2次元に配列した2次元アレイアンテナである。指向性制御部154は、各アンテナ151aから送信される各無線信号の位相をそれぞれ制御して、送信アンテナ151から送信される送信ビームの指向性を制御する。指向性制御部154は、無線信号の位相だけでなく、振幅を制御してもよい。例えば、指向性制御部154は、送信ビームが所定の3次元空間内を一定の周期Tで走査するように、送信ビームの指向性を制御する。言い換えれば、指向性制御部154は、1/T[fps]のフレームレートで送信ビームを走査する。
図4において、レーダ装置150は、受信アンテナ155をさらに備える。レーダ装置150の送信アンテナ151から送信された無線信号は、障害物110によって反射され、受信アンテナ155によって受信される。
レーダ装置150は、受信信号を低雑音増幅する低雑音増幅器156と、ミキサ157とをさらに備える。ミキサ157は、増幅された受信信号と、変調送信回路153からの無線搬送波とを混合し、混合後の信号を出力する。ミキサ157から出力された混合後の信号は、ローパスフィルタ(以下、「LPF」という。)158に入力され、不要な高周波成分が取り除かれる。このようにして、ID情報を含むベースバンド信号が得られる。
LPF158から出力されたベースバンド信号は、AD変換器159に入力され、デジタル信号に変換される。AD変換器159から出力されたデジタル信号は、反射位置測定部160に入力される。
反射位置測定部160は、レーダ装置150の指向性制御部154からの指向性を示す信号に基づいて、送信アンテナ151から送信された電磁波の反射位置、すなわち障害物110の位置を測定する。測定方法の詳細については後述する。以上のようにして、レーダ装置150は、測定結果を示す位置信号を出力する。
指向性制御部154及び反射位置測定部160は、例えばCPU、RAM、ROM等を含む情報処理回路により構成される。指向性制御部154及び反射位置測定部160は、例えば、RAMに展開されたプログラムをCPUにより解釈及び実行することにより、前述の指向性制御及び位置測定を行う。
(動作例)
図6は、図3の位置検出装置120によって実行される反射位置測定及び探索範囲決定処理を示すフローチャートである。図6は、位置検出装置120のレーダ装置150、移動情報解析部122、及び探索範囲決定部123によって行われる前段処理を例示する。位置検出装置120は、図6のフローを所定の周期Tで繰り返し行う。すなわち、位置検出装置120は、まずiを初期化し(S11)、周期Tごとにiをインクリメントさせて(S18)、以下のステップS12~S17の動作を行う。
(ステップS12)
図6において、レーダ装置150は、電磁波を送受信することによって、電磁波を反射した反射点の位置を測定する(S12)。ステップS12は、例えば以下の手順で行われる。
(1)受信したデジタル信号に含まれるID情報を取得する。
(2)受信したデジタル信号に基づいて、受信アンテナ155が当該ID情報を含む反射波を受信した時刻t1を検出する。
(3)指向性制御部154から、当該ID情報を含む送信ビームが送信された方向についての情報を取得する。
(4)指向性制御部154から、当該ID情報を含む送信ビームが送信された時刻t2についての情報を取得する。
(5)送信アンテナ151から、(3)で取得された方向に、距離(t1-t2)×c/2だけ離れた点を、反射点の位置として測定する。ここで、cは、光速である。
ステップS12において反射点の位置を測定する際には、ノイズを反射点と誤認して検出することを防止するため、例えばCFAR(Constant False Alarm Rate)処理等の閾値処理が行われてもよい。また、反射点は、1つの物標に対して複数検出されるため、検出点間の距離に基づいて、検出点群を物標ごとの塊としてまとめるクラスタリング処理が実施されてもよい。
ステップS12において、レーダ装置150の指向性制御部154は、ビームが所定の3次元空間内を走査するように送信アンテナ151の指向性を制御する。
(ステップS13)
次に、位置検出装置120は、レーダ装置150から、ステップS12において測定された反射点の位置を示す位置信号を受信し、位置信号が示す位置データをメモリ124に格納する(S13)。
ステップS13において、位置検出装置120は、レーダ装置150の反射位置測定部160によってi番目の周期において検出された全ての反射点の位置を、iフレーム目の反射点の位置としてメモリ124に格納する。例えば、kフレーム目(i=k)においてレーダ装置150の反射位置測定部160がα個の反射点の位置を測定した場合、反射位置測定部160は、フレーム番号kと関連付けて、α個の反射点の位置の相対座標をメモリ124に格納する。
ここで、「相対座標」とは、レーダ装置150に対する反射点の相対的な位置である。相対座標は、例えばレーダ装置150の送信アンテナ151の位置を原点とする3次元極座標(r,θ,φ)で表される。相対座標は、3次元直交座標(x,y,z)、及び円筒座標(r,θ,z)等で表されてもよい。上記のようにkフレーム目(i=k)においてレーダ装置150の反射位置測定部160がα個の反射点の位置Pk1~Pkαを測定した場合、α個の反射点の位置の相対座標[Pk1(rk1,θk1,φk1)、Pk2(rk2,θk2,φk2)、…、Pkα(rkα,θkα,φkα)]が、フレーム番号kと関連付けられてメモリ124に記憶される。
(ステップS14)
位置検出装置120の移動情報解析部122は、移動体140の速度検出部144から、通信I/F141,127を介して、検出された移動体140の速度を示す速度信号を受信する(S14)。
(ステップS15)
位置検出装置120の移動情報解析部122は、受信した速度信号に基づいて、移動体140が前フレームから現フレームまでに移動した移動距離及び移動方向を算出する(S15)。
(ステップS16)
位置検出装置120の探索範囲決定部123は、ステップS15で得られた移動距離及び移動方向に基づいて、同一の反射点を探索する探索範囲を決定する(S16)。ここで、位置検出装置120は、異なるフレーム間における電磁波の反射点が同一の反射物上の同一の点によるものと識別した場合、両反射点が同一の反射点であると判断する。
例えば、移動体140が前フレーム(k-1番目のフレーム)から現フレーム(k番目のフレーム)までの間に移動しておらず、ステップS15で得られた移動距離が0である場合、探索範囲決定部123は、探索範囲を微小な半径ΔRの球の内部とする。すなわち、この場合、後述のノイズ識別除去部125は、前フレームの反射点の位置P(k-1)αと同一の反射点Pkαを現フレームにおいて探索する際に、探索範囲をP(k-1)αを中心とする半径ΔRの球の内部とする。この球の外部にある点は、前フレームの反射点の位置P(k-1)αと同一の反射点の候補とはならず、ノイズとして除去される。
これに対して、移動体140が前フレーム(k-1番目のフレーム)から現フレーム(k番目のフレーム)までの間に移動した場合、探索範囲決定部123は、探索範囲を半径ΔRの球から変更する。例えば、移動体140が前フレームから現フレームまでの間に+x方向に移動した場合、移動体140から見ると、同一の物体は-x方向に相対的に移動する。したがって、この場合、例えば、探索範囲決定部123は、探索範囲を当該球から-x方向に広げた範囲とし、又は当該球を-x方向に引き伸ばした範囲とする。
(ステップS17)
次に、探索範囲決定部123は、ステップS16において決定された探索範囲を、iフレーム目の探索範囲として、メモリ124に格納する(S17)。
図7は、図3の位置検出装置120によって実行されるノイズ識別除去処理を示すフローチャートである。
(ステップS21)
図7において、まず、図3のノイズ識別除去部125には、判断に用いる比較フレーム数Nと、判断閾値Mとが入力される(S21)。ここで、Nは2以上の整数であり、MはN以下の自然数である。比較フレーム数N及び判断閾値Mは、予め定められてもよい。
(ステップS22)
次に、ノイズ識別除去部125は、直近N個のフレームの反射位置データをメモリ124から読み込む。例えば、比較フレーム数Nが5に設定されている場合、ノイズ識別除去部125は、直近5フレームの反射位置データ、例えばk-4,k-3,k-2,k-1,及びk番目のフレームの各反射位置データをメモリ124から読み込む。
(ステップS23)
ノイズ識別除去部125は、ステップS22においてメモリ124から読み込まれたN個のフレームの反射位置データを比較し、探索範囲内において、同一の反射点を検出する(S23)。
例えば、k-4番目のフレームにαk-4個の反射位置データが記録されている場合、ノイズ識別除去部125は、k-3,k-2,k-1,及びk番目の各フレームの反射位置データのうち、k-4番目のフレームのαk-4個の反射位置データと同一の反射点によるものを検出する。このとき、k-4番目のフレームの反射位置データとk-3番目のフレームの反射位置データとを比較する際には、ステップS17においてk-3番目のフレームの探索範囲としてメモリ124に格納された探索範囲データを用いる。また、k-4番目のフレームの反射位置データとk-2番目のフレームの反射位置データとを比較する際には、k-3番目のフレームに対応する探索範囲データとk-2番目のフレームに対応する探索範囲データとを用いる。例えば、両者を足し合わせた範囲を探索範囲とする。
続いて、ノイズ識別除去部125は、k-3番目のフレームのαk-3個の反射位置データを基準として、k-4,k-2,k-1,及びk番目の各フレームに同一の反射点があるかを探索して検出する。すなわち、ノイズ識別除去部125は、k-4,k-2,k-1,及びk番目の各フレームの反射位置データのうち、k-3番目のフレームのαk-3個の反射位置データと同一の反射物によるものを検出する。その後も同様にして、ノイズ識別除去部125は、k-2,k-1,及びk番目の各フレームの反射位置データを基準として、他のフレームにおける同一の反射点を検出する。
ノイズ識別除去部125が、異なるフレーム間における電磁波の反射点データが同一の反射点によるものと識別するには、例えば以下の(1)~(3)の方法が用いられる。これらの方法は単独で用いられてもよいし、組み合わせて用いられてもよい。
(1)反射点データに含まれる反射波強度情報が近い反射点同士を同一の反射点によるものと識別する。
(2)反射点データに含まれる速度情報が近い反射点同士を同一の反射点によるものと識別する。
(3)反射点データに含まれる距離、方位等の位置情報が近い反射点同士を同一の反射点によるものと識別する。
(ステップS24)
次に、ノイズ識別除去部125は、ステップS123で検出されたN個のフレーム間における同一の反射点を示すデータがノイズであるか否かを識別する(S24)。
図8は、図7のサブルーチンであって、ステップS24のノイズ識別処理を示すフローチャートである。図8において、ステップS22においてメモリ124から読み込まれたN個のフレーム内の全ての反射点Pjについてノイズ識別を行うため、ノイズ識別除去部125は、jを初期化し(S241)、全ての反射点Pjについてのノイズ識別を完了するまで後続のステップS242~S246を繰り返す(S247,S248)。
図8において、まず、ノイズ識別除去部125は、ステップS22においてメモリ124から読み込まれたN個のフレーム内の反射点から、反射点Pjを選択する(S242)。
次に、ノイズ識別除去部125は、ステップS22でメモリ124から読み込まれたN個のフレーム内の反射点のうち、ステップS242で選択された反射点Pjと同一の反射点を示す位置データの検出数Cjを計数する(S243)。検出数Cjの計数には、図7のステップS23の検出結果を利用する。
次に、ノイズ識別除去部125は、検出数Cjが判断閾値M以上であるか否かを判断する(S244)。比較フレーム数Nが5である前述の例の場合、例えばMは4に設定され、ノイズ識別除去部125は、検出数Cjが4以上であるか否かを判断する。検出数Cjが判断閾値M以上である場合(S244でYes)、ノイズ識別除去部125は、当該Cj個の反射点がノイズでないと識別する(S245)。ステップS244において検出数Cjが判断閾値M未満である場合(S244でNo)、ノイズ識別除去部125は、当該Cj個の反射点がノイズであると識別する(S246)。ステップS245及びステップS246の次は、S247に進む。
次に、ノイズ識別除去部125は、N個のフレームに含まれる全ての反射点についてステップS245又はステップS246の識別処理を行ったか否かを判断し(S247)、識別処理を行っていない場合は他の反射点を選択する(S248及びS242)。このようにして、全ての反射点についてステップS245又はステップS246の識別処理を行うまでステップS242~S246を繰り返す。なお、重複する識別処理は省略されてもよい。
(ステップS25)
図8のステップS24を終えた後、ノイズ識別除去部125は、図7のステップS22においてメモリ124から読み込まれたN個のフレームの反射位置データから、ステップS24においてノイズと識別された反射点を除去する(S25)。
(作用・効果)
以上のようにして、移動体140に搭載された位置検出装置120は、移動体140が移動中であっても、ノイズ除去を行うことができる。この際、壁等の障害物をノイズと判断して除去することはない。したがって、精度良く周囲の物体の位置を測定することができる。
図3の位置検出装置120のノイズ識別除去部125から、ノイズ除去後の位置信号が出力される。ノイズ除去後の位置信号は、通信I/F127,141を介して移動体140の制御部142に入力される。これにより、移動体140の制御部142は、ノイズ除去後の位置信号に基づいて、例えば移動体140が障害物110に衝突しないように、車輪駆動部143を制御することができ、移動体140とその周囲の安全を確保することができる。
(変形例)
以上、本開示の実施形態を詳細に説明したが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができる。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略する。以下の変形例は適宜組み合わせることができる。
<変形例1>
図9Aは、変形例1に係る移動体制御システム200Aの構成例を示すブロック図である。図9Aの移動体制御システム200Aにおいては、図3の移動体制御システム100の移動体140が速度検出部144を備えることに代えて、位置検出装置220Aが速度検出部221Aを備える。
すなわち、図3の移動体制御システム100においては移動体140の速度検出部144が移動体140の速度を検出するのに対して、図9Aの移動体制御システム200Aにおいては位置検出装置220Aの速度検出部221Aが位置検出装置220Aの速度を検出する。
図9Aにおいて、速度検出部221Aは、レーダ装置150から受信した位置信号に基づいて、移動体240の速度を検出する。速度検出部221Aは、レーダ装置150のAD変換器159(図4参照)から出力されたデジタル信号に基づいて移動体240の速度を検出してもよい。
速度検出部221Aは、例えば、移動体240の周囲にある静止物体の移動体240に対する相対位置を検出し、相対位置の時間的変化から位置検出装置220Aの速度を検出する。移動体240が工場等の特定の敷地内で用いられる場合、電磁波を反射する金属膜等の反射材料を、随所に配置された所定の静止物体に取り付けてもよい。速度検出部221Aは、このような反射材料の相対位置の時間的変化から位置検出装置220Aの速度を検出することができる。あるいは、速度検出部221Aは、レーダ装置150の受信アンテナ155(図4参照)が受信した受信信号の周波数の、送信信号の周波数に対するドップラーシフトを測定することにより、移動体240及び位置検出装置220Aの周囲にある静止物体の相対速度を検出してもよい。静止物体の位置検出装置220Aに対する相対速度がわかれば、位置検出装置220Aの速度がわかる。
<変形例2>
図9Bは、変形例2に係る移動体制御システム200Bの構成例を示すブロック図である。図9Bの移動体制御システム200Bは、図9Aの移動体制御システム200Aに比較して以下の点が異なる。すなわち、位置検出装置220Bは、速度検出部221Aに代えて、速度検出部221Bを備える。
図9Aの移動体制御システム200Aにおいては、速度検出部221Aは、レーダ装置150から受信した位置信号等に基づいて位置検出装置220Aの速度を検出するものである一方、図9Bの移動体制御システム200Bにおいては、速度検出部221Bは、レーダ装置150からの信号に基づかずに位置検出装置220Bの速度を検出する。速度検出部221Bは、例えば汎用的な速度センサである。
<変形例3>
上記の実施形態においては、移動情報検出部の一例として、移動体140の速度検出部144について説明したが、本開示はこれに限定されない。例えば、移動情報検出部は、移動体140の角速度を検出するジャイロセンサ等の角速度検出部であってもよい。また、例えば、移動情報検出部は、移動体140の加速度を検出する加速度センサ等の加速度検出部であってもよい。また、例えば、移動情報検出部は、移動体140の移動距離を検出する距離センサ等の距離検出部であってもよい。
<変形例4>
上記の実施形態においては、AGV及び荷物運搬ロボット等の自律移動型の移動体140に適用される移動体制御システム100について説明したが、本開示はこれに限定されない。例えば、移動体140は、有人の自動車等の車両であってもよい。例えば、位置検出装置120によって検出された自動車と壁、人、及び他の移動体等の障害物等との距離が小さく、自動車が障害物に衝突するおそれがある場合、自動車の制御部がブレーキやステアリングを制御して衝突を回避することができる。
<変形例5>
上記の実施形態においては、位置検出装置120の探索範囲決定部123は、ステップS16で、時間的に隣接する2つのフレームを比較して、全フレームに対して探索範囲を決定するものであったが、本開示はこれに限定されない。例えば、探索範囲決定部123は、時間的に隣接する複数フレーム、例えば10フレームに対して同一の探索範囲を適用してもよい。これにより、探索範囲を決定するための処理負荷を低減することができる。
<変形例6>
上記の実施形態においては、図4に示したように、送信アンテナ151と受信アンテナ155とを別個に備えたレーダ装置150について説明した。しかしながら、本開示はこれに限定されず、レーダ装置150は、無線信号の送信及び受信の両方を行う1つのアンテナを備えるものであってもよい。この場合、例えば、送受信を切り替える切替スイッチや、サーキュレータ等が利用される。
<変形例7>
上記の実施形態においては、送信ビームを走査する送信アンテナ151と、無線信号を受信する受信アンテナ155とを備えるレーダ装置150について説明した。しかしながら、本開示はこれに限定されない。例えば、受信アンテナ155は、図5に示した送信アンテナ151と同様に、複数のアンテナを所定の間隔で2次元に配列した2次元アレイアンテナであってもよい。受信アンテナ155は、複数のアンテナを一直線に配列した1次元アレイアンテナで構成されてもよい。
本変形例においては、図4の反射位置測定部160は、受信アンテナ155を構成する各アンテナの受信信号の振幅及び位相を独立に制御してビームフォーミングを行うことにより、無線信号の到来方向を測定する。これにより、レーダ装置150は、電磁波の反射位置、すなわち障害物110の位置を測定することができる。
<変形例8>
上記の実施形態においては、図5に示したように、送信アンテナ151が複数のアンテナ151aを2次元に配列した2次元アレイアンテナで構成されることを説明した。しかしながら、本開示はこれに限定されない。例えば、送信アンテナ151は、複数のアンテナを一直線に配列した1次元アレイアンテナで構成されてもよい。また、送信アンテナ151は、1つのアンテナ素子で構成されてもよい。
<変形例9>
上記の実施形態においては、図5の送信アンテナ151の各アンテナ151aから送信される無線信号の位相又は振幅を制御して送信ビームの指向性を制御する指向性制御部154について説明した。しかしながら、本開示はこれに限定されない。例えば、指向性制御部154は、送信アンテナ151を物理的に動かして送信ビームの走査を行うものであってもよい。
<変形例10>
上記の実施形態においては、図4に示したように、ID信号に従って無線搬送波を周波数変調して送信するレーダ装置150について説明した。しかしながら、本開示はこれに限定されず、レーダ装置150に用いられる変調方式は、他の連続波方式及びパルス方式であってもよい。例えば、電磁波レーダは、パルス変調方式を用いたパルスレーダであってもよい。
<変形例11>
上記の実施形態においては、図4に示したように、レーダ装置150を用いた位置検出装置120について説明した。レーダ装置150は、電波レーダを含む。しかしながら、本開示はこれに限定されず、例えば、位置検出装置120は、レーダ装置150に代えて、レーザ光を用いたLIDARをセンサ装置として備えてもよい。もっとも、電波レーダは、LIDARに比べて安価であるため、上記の作用効果を比較的安価に実現することができ、移動体制御システム100を導入するために必要なコストを低減できる利点を有する。
また、近年、工場等の製造現場では、光、粉塵、汚れがある環境においても高精度に機能するセンサとして、ロバスト性の高い電波レーダを利用する取組みも始まってきている。電波レーダは、このような製造現場環境においても、精度良く位置検出をすることができる利点を有する。
(付記)
以下、本開示に係る各種態様を付記する。
本開示の一態様は、
移動体(140)に搭載されて物体の位置を検出する位置検出装置(120,220A,220B)であって、
電磁波を送信し、前記移動体(140)の周囲の物体からの反射波を受信し、受信した反射波に基づいて、前記電磁波を反射した反射点の位置を前記周期ごとに測定するセンサ部(150)と、
前記センサ部(150)によって測定された前記周期ごとの前記反射点の位置を示す位置データを、前記周期の間隔のフレームとして記憶する記憶部(124)と、
前記位置検出装置(120,220A,220B)の動きを示す移動情報に基づいて探索範囲を決定する探索範囲決定部(123)と、
前記決定された探索範囲に基づいて前記位置データに含まれるノイズを識別し、識別されたノイズを前記位置データから除去し、ノイズが除去された位置データを前記物体の位置を示す位置データとするノイズ識別除去部(125)と
を備える位置検出装置(120,220A,220B)である。
位置検出装置(120,220A,220B)において、
前記ノイズ識別除去部(125)は、前記記憶部(124)に格納された複数のフレームに係る位置データを用いて、前記決定された探索範囲内で、同一の反射点の位置を含むフレームの数に基づいて、同一の反射点の位置がノイズであるか否かを判断するものであってもよい。
位置検出装置(120,220A,220B)において、
前記ノイズ識別除去部(125)は、前記決定された探索範囲内で、前記複数のフレームのうちの所定数以上のフレームで同一の反射点の位置をノイズでないと判断する一方、前記所定数未満のフレームで同一の反射点の位置をノイズと判断するものであってもよい。
位置検出装置(220A)は、前記反射波に基づいて前記移動情報を検出する移動情報検出部(221A)をさらに備えるものであってもよい。
位置検出装置(220B)は、前記位置検出装置(220B)の動きに基づいて前記移動情報を検出する移動情報検出部(221B)をさらに備えるものであってもよい。
位置検出装置(120)は、前記移動体(140)の移動情報検出部(144)から前記移動体(140)の動きを示す移動体移動情報を受信し、受信された移動体移動情報を前記移動情報として用いるものであってもよい。
位置検出装置(120,220A,220B)において、
前記移動情報は、速度であり、
前記探索範囲決定部(123)は、前記速度が0である場合に前記探索範囲を最小とし、前記速度が高いほど前記探索範囲を大きくするものであってもよい。
本開示の一態様は、
位置検出装置(120,220A,220B)を備える移動体制御システム(100,200A,200B)であって、
前記物体の位置を示す位置データを受信し、受信された位置データに基づいて前記移動体(140)の動作を制御する制御部を備える移動体制御システム(100,200A,200B)である。
100 移動体制御システム
120 位置検出装置
122 移動情報解析部
123 探索範囲決定部
124 メモリ
125 ノイズ識別除去部
127 通信I/F
140 移動体
142 制御部
143 車輪駆動部
144 速度検出部
150 レーダ装置

Claims (8)

  1. 移動体に搭載されて物体の位置を検出する位置検出装置であって、
    電磁波を送信し、前記移動体の周囲の物体からの反射波を受信し、受信した反射波に基づいて、前記電磁波を反射した反射点の位置を所定の周期ごとに測定するセンサ部と、
    前記センサ部によって測定された前記周期ごとの前記反射点の位置を示す位置データを、前記周期の間隔の複数のフレームとして記憶する記憶部と、
    前記位置検出装置の動きを示す移動情報に基づいて探索範囲を決定する探索範囲決定部と、
    前記決定された探索範囲内の前記位置データを前記複数のフレーム間で比較することで、前記位置データに含まれるノイズを識別し、識別されたノイズを前記位置データから除去し、ノイズが除去された位置データを前記物体の位置を示す位置データとするノイズ識別除去部と
    を備え
    前記探索範囲決定部は、前記探索範囲を決定する処理において、
    前記動きがない場合に前記探索範囲を最小とし、
    前記動きがある場合、前記動きの大きさが大きいほど、前記動きの向きと反対の方向に前記探索範囲を大きくする、
    位置検出装置。
  2. 前記ノイズ識別除去部は、前記記憶部に格納された複数のフレームに係る位置データを用いて、前記決定された探索範囲内で、同一の反射点の位置を含むフレームの数に基づいて、同一の反射点の位置がノイズであるか否かを判断する請求項1に記載の位置検出装置。
  3. 前記ノイズ識別除去部は、前記決定された探索範囲内で、前記複数のフレームのうちの所定数以上のフレームで同一の反射点の位置をノイズでないと判断する一方、前記所定数未満のフレームで同一の反射点の位置をノイズと判断する請求項2に記載の位置検出装置。
  4. 前記反射波に基づいて前記移動情報を検出する移動情報検出部をさらに備える請求項1~3のいずれかに記載の位置検出装置。
  5. 前記移動体の動きに基づいて前記移動情報を検出する移動情報検出部をさらに備える請求項1~3のいずれかに記載の位置検出装置。
  6. 前記移動体の移動情報検出部から前記移動体の動きを示す移動体移動情報を受信し、受信された移動体移動情報を前記移動情報として用いる請求項1~3のいずれかに記載の位置検出装置。
  7. 前記移動情報は、速度であり、
    前記探索範囲決定部は、前記速度が0である場合に前記探索範囲を最小とし、前記速度が高いほど前記探索範囲を大きくする請求項1~6のいずれかに記載の位置検出装置。
  8. 請求項1~7のいずれかに記載の位置検出装置を備える移動体制御システムであって、
    前記物体の位置を示す位置データを受信し、受信された位置データに基づいて前記移動体の動作を制御する制御部を備える移動体制御システム。
JP2021541362A 2019-08-19 2019-08-19 位置検出装置及び移動体制御システム Active JP7238999B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032304 WO2021033240A1 (ja) 2019-08-19 2019-08-19 位置検出装置及び移動体制御システム

Publications (2)

Publication Number Publication Date
JPWO2021033240A1 JPWO2021033240A1 (ja) 2021-02-25
JP7238999B2 true JP7238999B2 (ja) 2023-03-14

Family

ID=74659887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021541362A Active JP7238999B2 (ja) 2019-08-19 2019-08-19 位置検出装置及び移動体制御システム

Country Status (2)

Country Link
JP (1) JP7238999B2 (ja)
WO (1) WO2021033240A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156449A (ja) 2000-11-20 2002-05-31 Mitsubishi Electric Corp レーダ装置
US20050216172A1 (en) 2002-11-21 2005-09-29 Marko Schroder System for influencing the speed of a motor vehicle
JP2018124209A (ja) 2017-02-02 2018-08-09 株式会社デンソーテン レーダ装置および物標検知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065821B2 (ja) * 1992-11-02 2000-07-17 株式会社豊田中央研究所 物体検出装置
JP3385304B2 (ja) * 1997-08-29 2003-03-10 三菱電機株式会社 車載用レーダ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156449A (ja) 2000-11-20 2002-05-31 Mitsubishi Electric Corp レーダ装置
US20050216172A1 (en) 2002-11-21 2005-09-29 Marko Schroder System for influencing the speed of a motor vehicle
JP2018124209A (ja) 2017-02-02 2018-08-09 株式会社デンソーテン レーダ装置および物標検知方法

Also Published As

Publication number Publication date
WO2021033240A1 (ja) 2021-02-25
JPWO2021033240A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
US10884417B2 (en) Navigation of mobile robots based on passenger following
EP1610151B1 (en) Method, apparatus , and computer progam product for radar detection of moving target
KR101513878B1 (ko) 레이더 장치 및 그의 충돌 경고 및 사고 기록방법
US20070118248A1 (en) Method and apparatus for reckoning position of moving robot
US20130268185A1 (en) Automated multi-vehicle position, orientation and identification system and method
CN107272001B (zh) 视线外障碍物检测和定位
US20210116531A1 (en) Radar apparatus, system, and method of generating angle of arrival (aoa) information
CN108536139B (zh) 驾驶车辆的系统和方法
US20210341573A1 (en) Apparatus, system, and method of generating radar target information
CN102576495A (zh) 针对汽车的碰撞监控
US20200256974A1 (en) Apparatus and method for tracking object based on radar image reconstruction
JP2006236132A (ja) 自律移動ロボット
CN113196362B (zh) 检测装置、移动体系统以及检测方法
US10386839B2 (en) Mobile robot that emulates pedestrian walking behavior
US20220146667A1 (en) Apparatus, system and method of radar tracking
JP7238999B2 (ja) 位置検出装置及び移動体制御システム
Fusic et al. A review of perception-based navigation system for autonomous mobile robots
US11733371B2 (en) Radar apparatus, method for controlling radar apparatus and detection system using radar apparatus
Yozevitch et al. Advanced particle filter methods
US20200278444A1 (en) Determining relevant signals using multi-dimensional radar signals
CN112313538A (zh) 目标检测方法、雷达、设备及存储介质
JP2006317161A (ja) 追尾システム
US20220113402A1 (en) Apparatus, system, and method of processing point cloud radar information
US20210263531A1 (en) Mapping and simultaneous localisation of an object in an interior environment
US20210190943A1 (en) Method for operating a sensor of a motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150