JP7238654B2 - Longitudinal structure of steel sheet piles - Google Patents

Longitudinal structure of steel sheet piles Download PDF

Info

Publication number
JP7238654B2
JP7238654B2 JP2019129035A JP2019129035A JP7238654B2 JP 7238654 B2 JP7238654 B2 JP 7238654B2 JP 2019129035 A JP2019129035 A JP 2019129035A JP 2019129035 A JP2019129035 A JP 2019129035A JP 7238654 B2 JP7238654 B2 JP 7238654B2
Authority
JP
Japan
Prior art keywords
steel sheet
reinforcing plate
sheet pile
cross
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019129035A
Other languages
Japanese (ja)
Other versions
JP2021014703A (en
Inventor
裕章 中山
典佳 原田
正和 武野
嵩 籾山
俊介 森安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019129035A priority Critical patent/JP7238654B2/en
Publication of JP2021014703A publication Critical patent/JP2021014703A/en
Application granted granted Critical
Publication of JP7238654B2 publication Critical patent/JP7238654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、鋼矢板の縦継構造に関する。 The present invention relates to a tandem structure for steel sheet piles.

土木建築分野における土留め壁や地下構造、基礎構造として、鋼矢板を打設するとともに左右に連結して構築される鋼製壁が利用されている。鋼矢板による鋼製壁の現場の施工条件により、圧延工場から出荷できる長さを超える長尺の鋼矢板が必要な場合、山間部などで道路空間が限られ長尺の鋼矢板を運搬できない場合、鋼矢板設置箇所上空に構造物等があり打設空間を確保できない場合などにおいては、加工工場や現場で鋼矢板を長さ方向に連結する、つまり鋼矢板を縦継ぎすることが必要になる。 BACKGROUND ART Steel walls constructed by driving steel sheet piles and connecting them to the left and right are used as earth retaining walls, underground structures, and foundation structures in the field of civil engineering and construction. Depending on the construction conditions of the steel wall using steel sheet piles, long steel sheet piles exceeding the length that can be shipped from the rolling mill are required, or when road space is limited in mountainous areas and long steel sheet piles cannot be transported. In cases where it is not possible to secure the installation space due to structures, etc., above the steel sheet pile installation location, it is necessary to connect the steel sheet piles in the longitudinal direction at the processing plant or site, that is, to splice the steel sheet piles. .

2本の鋼矢板を長手方向(材軸方向)に縦継する一般的な手法としては、鋼管杭・鋼矢板技術協会から提示されている、補強板を使用した溶接工法がある。この工法では、継手部を除く鋼矢板端面を開先加工して全断面溶接を行い、補強板を縦継箇所を跨ぐかたちで溶接にて取り付けている。
施工現場での打設中に鋼矢板を長さ方向に連結(縦継ぎ)する場合、一方の鋼矢板縁端部(長手方向(材軸方向)の端部)を工場で予め開先加工しておき、上下の鋼矢板の端面を突合せた状態で、開先部分を全断面溶接し連結する。但し継手部においては、複雑な形状となるため開先加工や溶接が困難であること、継手部内に溶着金属が溶け出し残置すると、隣接する鋼矢板の継手部どうしを嵌合して打設する際に打設抵抗となり支障となることから開先加工や溶接をせず、突合せたままの状態で面接触させている。
As a general technique for longitudinally splicing two steel sheet piles in the longitudinal direction (material axial direction), there is a welding method using a reinforcing plate proposed by the Steel Pipe Pile/Steel Sheet Pile Technical Association. In this construction method, the steel sheet pile end surfaces, excluding joints, are beveled and full-section welding is performed, and reinforcing plates are attached by welding across the longitudinal joints.
When joining steel sheet piles in the longitudinal direction (longitudinal splicing) during construction at a construction site, one side of the steel sheet pile edge (the end in the longitudinal direction (material axial direction)) is beveled in advance at the factory. Then, with the end faces of the upper and lower steel sheet piles facing each other, the groove part is welded and connected. However, since the joint has a complicated shape, it is difficult to perform grooving and welding, and if the weld metal melts out and remains in the joint, the joints of adjacent steel sheet piles must be fitted together and driven. Since it becomes a resistance to placing and becomes a hindrance, it is not grooved or welded, and is made to be in surface contact in a butted state.

鋼矢板の打設時においては、地盤条件によっては、過大な圧縮力や引き抜き力が鋼矢板に作用することがあるため、縦継箇所においては、鋼矢板本体と同等の軸方向圧縮・引張抵抗力を確保する必要がある。そのため、溶接を施さない継手部分相当の断面積欠損を補うために、上下鋼矢板の縦継ラインを跨ぐ形で補強板を溶接にて取り付け、断面欠損分の断面積を確保している。 When driving steel sheet piles, depending on the ground conditions, excessive compressive force and pull-out force may act on the steel sheet piles. power must be ensured. Therefore, in order to compensate for the cross-sectional area loss equivalent to the joint portion where welding is not performed, a reinforcing plate is attached by welding in a form straddling the longitudinal joining line of the upper and lower steel sheet piles to secure the cross-sectional area for the cross-sectional loss.

補強板としては、打設時の軸方向抵抗力を確保することの他に、使用時の壁体(鋼製壁)としての曲げ耐力を確保するための性能も考慮してスペックを決定している。壁体に曲げモーメントが作用した際、局所的な応力集中を避けるべく、隣接する鋼矢板間で縦継箇所が同一深度とならないように、縦継箇所は隣接する鋼矢板間で1m以上の上下間距離を確保して千鳥配置する(例えば特許文献1および特許文献2参照)。縦継がない標準断面の鋼矢板と、縦継がある鋼矢板とを2枚一組の単位として、壁体としての曲げ耐力を確保する。鋼製壁に曲げモーメントが作用した際の補強板に生じる応力負担に相当する荷重を伝達できるよう、補強板の溶接長さや脚長を取り決める。 As a reinforcing plate, in addition to securing the axial resistance during placement, the specifications are determined in consideration of the performance to secure the bending strength as a wall body (steel wall) during use. there is When a bending moment acts on the wall, in order to avoid local stress concentration, the vertical joints should be at least 1m between adjacent steel sheet piles so that the vertical joints are not at the same depth between adjacent steel sheet piles. They are arranged in a zigzag arrangement while securing a distance between them (see Patent Documents 1 and 2, for example). A steel sheet pile having a standard cross section without vertical joints and a steel sheet pile with vertical joints are used as a set of two units to ensure bending strength as a wall body. Determine the weld length and leg length of the reinforcing plate so that the load corresponding to the stress load generated in the reinforcing plate when the bending moment acts on the steel wall can be transmitted.

また、ボルトにより補強板を鋼矢板本体に接合する構造仕様も提案されている(例えば特許文献3および特許文献4参照)。しかしながら、鋼矢板本体にボルト穴を開ける必要があり断面欠損が生じること、ボルト穴のために止水性が低下すること、鋼矢板打設時の振動によりボルトに応力緩和が発生しボルト締め付け強度が低下することがあること、等の理由から、現場で溶接ができない場合など、特殊な施工現場条件下のみで使用されている。 Structural specifications have also been proposed in which a reinforcing plate is joined to a steel sheet pile body with bolts (see Patent Documents 3 and 4, for example). However, it is necessary to drill bolt holes in the steel sheet pile body, which causes cross-sectional defects, the bolt holes reduce the water stoppage, and stress relaxation occurs in the bolts due to vibration when driving the steel sheet piles, reducing the tightening strength of the bolts. It is used only under special construction site conditions, such as when welding cannot be performed on site.

特許第4419198号公報Japanese Patent No. 4419198 特開2016-156247号公報JP 2016-156247 A 特許第5182251号公報Japanese Patent No. 5182251 特開2017-66702号公報Japanese Patent Application Laid-Open No. 2017-66702

ところで、鋼矢板が大型化すると、継手部が大きくなって当該縦継部で欠損する断面積が大きくなり、また鋼矢板の剛性が大きくなることから曲げ耐力も大きくなり、従来技術による縦継構造の仕様によると、補強板に必要な厚みや幅も大きくなる。そのため、特に鋼矢板のウェブに取り付ける補強板が大型化し重量が重くなることで、運搬や溶接作業性が低下する。さらに、補強板を固定するための溶接量も嵩み、溶接時間の長期化やコストアップをもたらす。溶接量が多くなることによって、特に1日当たりに打設できる鋼矢板の枚数が減り、全体の鋼矢板の施工コストが増加してしまう。 By the way, when the steel sheet pile becomes large, the joint part becomes large, and the cross-sectional area that is lost at the longitudinal joint part becomes large. According to the specifications of , the thickness and width required for the reinforcing plate also increase. As a result, the reinforcement plate attached to the web of the steel sheet pile is particularly large and heavy, which reduces the efficiency of transportation and welding work. Furthermore, the amount of welding for fixing the reinforcing plate is also increased, resulting in a longer welding time and an increase in cost. As the amount of welding increases, the number of steel sheet piles that can be driven per day decreases, and the construction cost of the entire steel sheet pile increases.

従来においては、現場溶接は工場溶接の80%程度、もしくは90%程度の耐力しか確保できないものとしていた。
しかしながら、溶接技術が向上し、現場における施工管理および品質管理が充実してきたことから、適切な技能を有する溶接工が適切な溶接環境のもとで施工するとともに、非破壊検査や施工工程の記録化などにより品質管理を行うことで、工場溶接と同等の管理を行った場合、工場溶接と同レベルの耐力を確保できるようになってきた(例えば、港湾の施設の技術上の基準・同解説,平成30年5月,公益社団法人日本港湾協会,国土交通省港湾局監修,p.472参照。)。
In the past, it was assumed that on-site welding could secure only about 80% or about 90% of the yield strength of factory welding.
However, as welding technology has improved and on-site construction management and quality control have improved, welders with appropriate skills are required to perform welding under an appropriate welding environment, and non-destructive inspections and records of the construction process are required. It has become possible to secure the same level of yield strength as factory welding if the same level of control as factory welding is performed by conducting quality control through standardization, etc. (For example, technical standards and explanations for port facilities , May 2018, Japan Port and Harbor Association, supervised by the Port and Harbor Bureau of the Ministry of Land, Infrastructure, Transport and Tourism, p.472).

そこで、上述したように工場溶接と同等の管理を行ったうえで、上下の鋼矢板端面どうしを突合せ、この突合せ箇所の開先部分を確実に全断面溶接した縦継構造を有する鋼矢板に曲げ試験を実施したところ、ウェブに取り付けた補強板がなくても、縦継ラインの耐力を確保できることが分かってきた。 Therefore, as described above, after performing the same management as factory welding, the upper and lower steel sheet pile end faces are butted together, and the groove part of this butt part is securely welded on the whole cross section to bend it into a steel sheet pile with a longitudinal joint structure. As a result of testing, it has been found that the yield strength of the tandem line can be secured even without the reinforcing plate attached to the web.

本発明は、前記事情に鑑みてなされたもので、継手部の断面積欠損を有する縦継構造において必要耐力を確保しつつ、コスト低減および作業性向上が可能な鋼矢板の縦継構造を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a tandem structure for steel sheet piles that is capable of reducing costs and improving workability while ensuring the necessary proof strength in a tandem structure having a cross-sectional area defect in a joint. intended to

前記目的を達成するために、本発明の鋼矢板の縦継構造は、鋼矢板本体および継手部を有する鋼矢板どうしを材軸方向に連結する鋼矢板の縦継構造であって、
前記鋼矢板本体どうしの少なくとも一部が全断面溶接によって接合され、前記継手部どうしは溶接されておらず、
前記鋼矢板どうしに、それらの縦継ラインを跨ぐようにして補強板が溶接され、
前記補強板は、以下の(1)~(3)の条件を全て満たすことを特徴とする。
(1)前記補強板は、前記鋼矢板本体の幅方向中央部のウェブ以外の鋼矢板部位に取り付けられていること。
(2)前記縦継ラインにおける断面の前記補強板の合計断面積が、前記鋼矢板どうしが全断面溶接されていない、前記鋼矢板の断面欠損部の合計断面積以上であること。
(3)前記鋼矢板の鋼矢板断面の中立軸に対して、前記縦継ラインにおける断面の前記補強板の合計断面2次モーメントが、前記断面欠損部の合計断面2次モーメント以上であること。
In order to achieve the above object, the tandem structure of steel sheet piles of the present invention is a tandem structure of steel sheet piles for connecting steel sheet piles having a steel sheet pile main body and a joint portion in the material axial direction,
At least part of the steel sheet pile bodies are joined by full-section welding, and the joint portions are not welded together,
A reinforcing plate is welded between the steel sheet piles so as to straddle the longitudinal connection line,
The reinforcing plate is characterized by satisfying all of the following conditions (1) to (3).
(1) The reinforcing plate is attached to a steel sheet pile portion other than the web at the center portion in the width direction of the steel sheet pile body.
(2) The total cross-sectional area of the reinforcing plate in the cross section of the longitudinal connection line is equal to or greater than the total cross-sectional area of the cross-sectional missing portions of the steel sheet piles where the steel sheet piles are not fully cross-sectionally welded to each other.
(3) The total geometrical moment of inertia of the reinforcing plate in the cross section of the longitudinal connection line with respect to the neutral axis of the steel sheet pile cross section of the steel sheet pile is equal to or greater than the total geometrical moment of inertia of the missing section portion.

ここで、前記鋼矢板としては、例えばハット形鋼矢板、U形鋼矢板、Z形鋼矢板等が挙げられる。
ハット形鋼矢板は、鋼矢板本体とその幅方向の両側端部に形成された継手部とを備えたものであり、鋼矢板本体は、ウェブとその両側端部に形成されたフランジ部と、このフランジ部の外側の側端部に形成されたアーム部とを有している。したがって、「ウェブ以外の鋼矢板部位」とは、フランジ部、アーム部、または継手部のことを意味するが、補強板はアーム部に取り付けるのが好ましい。
Here, examples of the steel sheet piles include hat-shaped steel sheet piles, U-shaped steel sheet piles, and Z-shaped steel sheet piles.
The hat-shaped steel sheet pile includes a steel sheet pile body and joint portions formed at both widthwise end portions of the sheet pile body. The steel sheet pile body includes a web, flange portions formed at both side end portions thereof, and arm portions formed at the outer side ends of the flange portion. Therefore, the "steel sheet pile portion other than the web" means the flange portion, the arm portion, or the joint portion, and the reinforcing plate is preferably attached to the arm portion.

また、U形鋼矢板は、鋼矢板本体とその幅方向の両側端部に形成された継手部とを備えたものであり、鋼矢板本体は、ウェブとその両側端部に形成されたフランジ部とを有している。したがって、「ウェブ以外の鋼矢板部位」とは、フランジ部または継手部のことを意味するが、補強板はフランジ部において、継手部の近傍に取り付けるのが好ましい。また、補強板はフランジ部の外側を向く外側面、内側を向く内側面または外側面と内側面の双方に取り付ければよい。 In addition, the U-shaped steel sheet pile includes a steel sheet pile main body and joint portions formed at both widthwise end portions thereof, and the steel sheet pile main body includes a web and flange portions formed at both side end portions thereof. and Therefore, the "steel sheet pile portion other than the web" means the flange portion or the joint portion, and the reinforcing plate is preferably attached to the flange portion near the joint portion. Further, the reinforcing plate may be attached to the outer surface facing the outside of the flange portion, the inner surface facing the inside, or both the outer surface and the inner surface.

また、Z形鋼矢板は、鋼矢板本体とその幅方向の両側端部に形成された継手部とを備えたものであり、鋼矢板本体は、斜めに配置されたウェブと、その両側端部に形成されたフランジ部とを有している。したがって、「ウェブ以外の鋼矢板部位」とは、フランジ部または継手部のことを意味するが、補強板はフランジ部において、継手部の近傍に取り付けるのが好ましい。また、補強板はフランジ部の両面、または片面のみに取り付ければよい。 In addition, the Z-shaped steel sheet pile is provided with a steel sheet pile main body and joint portions formed at both ends in the width direction thereof, and the steel sheet pile main body is composed of diagonally arranged webs and both side ends thereof. and a flange portion formed on the . Therefore, the "steel sheet pile portion other than the web" means the flange portion or the joint portion, and the reinforcing plate is preferably attached to the flange portion near the joint portion. Also, the reinforcing plate may be attached to both sides of the flange portion, or only to one side.

本発明においては、縦継ラインにおける断面の補強板の合計断面積が、鋼矢板の断面欠損部の合計断面積以上であるので、鋼矢板の地盤中への打設時や引き抜き時に、鋼矢板に作用する引張荷重に対して、縦継箇所の耐力が鋼矢板母材(縦継箇所がない鋼矢板)と同等以上となる。
また、鋼矢板の鋼矢板断面の中立軸に対して、縦継ラインにおける断面の補強板の合計断面2次モーメントが、鋼矢板の断面欠損部の合計断面2次モーメント以上であるので、鋼矢板の断面欠損を補い、鋼矢板としての曲げ剛性を確保できる。
さらに、補強板は、鋼矢板本体の幅方向中央部のウェブ以外の鋼矢板部位に取り付けられている。
したがって、継手部の断面積欠損を有する縦継構造において必要耐力を確保しつつ、コスト低減および作業性向上が可能な鋼矢板の縦継構造を提供できる。
In the present invention, since the total cross-sectional area of the reinforcing plate in the cross section of the longitudinal connection line is equal to or greater than the total cross-sectional area of the cross-sectional defect of the steel sheet pile, when the steel sheet pile is driven into the ground or pulled out, the steel sheet pile With respect to the tensile load acting on the vertical joint, the yield strength of the longitudinal joint is equal to or greater than that of the steel sheet pile base material (steel sheet pile without longitudinal joint).
In addition, with respect to the neutral axis of the steel sheet pile cross section of the steel sheet pile, since the total geometrical moment of inertia of the reinforcing plates in the cross section of the steel sheet pile is greater than or equal to the total geometrical moment of inertia of the cross-sectional defect part of the steel sheet pile, the steel sheet pile It compensates for the cross-sectional loss of the steel sheet pile and secures the bending rigidity of the steel sheet pile.
Further, the reinforcing plate is attached to the steel sheet pile portion other than the web in the width direction central portion of the steel sheet pile body.
Therefore, it is possible to provide a tandem structure of steel sheet piles capable of reducing costs and improving workability while ensuring the required yield strength in the tandem structure having a cross-sectional area defect in the joint portion.

また、本発明の前記構成において、前記鋼矢板が、ウェブ、当該ウェブの両側端部に形成された一対のフランジ部、および当該一対のフランジ部のそれぞれの外側の側端部に形成された一対のアーム部を有する前記鋼矢板本体と、前記一対のアーム部のそれぞれの外側の側端部に形成された一対の前記継手部とを備えたハット形鋼矢板であり、
前記補強板は前記アーム部のみに取り付けられていてもよい。
Further, in the above configuration of the present invention, the steel sheet pile includes a web, a pair of flange portions formed on both side ends of the web, and a pair of flange portions formed on the outer side ends of the pair of flange portions. A hat-shaped steel sheet pile comprising the steel sheet pile body having arm portions of and a pair of the joint portions formed at the outer side ends of the pair of arm portions,
The reinforcing plate may be attached only to the arm portion.

このような構成によれば、鋼矢板に曲げモーメントが作用して、鋼矢板の縦継箇所において、溶接されていない継手部どうしに、これらが開くような力が作用した場合に、継手部が形成されているアーム部に補強板が取り付けられているので、このような力に効率的に抗することができ、継手部どうしの開きを抑制できる。 According to such a configuration, when a bending moment acts on the steel sheet piles and a force acts on the unwelded joints at the longitudinal joints of the steel sheet piles to open them, the joints will be broken. Since the reinforcing plate is attached to the formed arm portion, such force can be efficiently resisted, and the opening of the joint portions can be suppressed.

また、本発明の前記構成において、前記補強板は、前記アーム部の両面、または片面のみに取り付けられていてもよく、さらに、片面に取り付ける場合、鋼矢板断面の中立軸から遠い側の片面に取り付けるのが好ましい。 Further, in the above configuration of the present invention, the reinforcing plate may be attached to both sides of the arm portion, or only one side. preferably installed.

ここで、アーム部の両面とは、鋼矢板の高さ方向(鋼矢板の幅方向及び長手方向に直交する方向)に垂直な2面を言う。また、アーム部の片面とは、当該両面のいずれか一方の面であり、中立軸から遠い側の面と、近い側の面とのいずれかである。 Here, the two sides of the arm part refer to two sides perpendicular to the height direction of the steel sheet pile (the direction perpendicular to the width direction and the longitudinal direction of the steel sheet pile). Further, the one side of the arm portion is either one of the two sides, and is either the side farther from the neutral axis or the side closer to the neutral axis.

このような構成によれば、補強板をアーム部の両面に取り付けることによって、補強板が負担すべき荷重が分散されるため、個々の補強板の板厚や、補強板幅、補強板長さを低減でき、また、補強板が1枚のときよりも効率的に溶接長を増やすことができるため、補強板全体の鋼重も縮小することが可能となる。
また、アーム部の片面のみに補強板を取り付けることで、溶接機の設置位置をアーム部の片側のみに設置しておけばよく、溶接の段取り作業を軽減できる。
さらに、中立軸から遠い側のアーム部の片面に補強板を取り付けることにより、補強箇所に必要な断面2次モーメントを効率的に確保しつつ、補強板の板厚低減により、曲げモーメントに対する補強板の縁端応力を低減できるため、補強板とアーム部との溶接個所のトータル溶接体積を縮小でき、溶接材料のコスト削減に繋がる。
According to such a configuration, by attaching the reinforcing plates to both sides of the arm portion, the load to be borne by the reinforcing plates is dispersed. can be reduced, and the welding length can be increased more efficiently than when there is only one reinforcing plate, so the steel weight of the entire reinforcing plate can be reduced.
In addition, by attaching the reinforcing plate to only one side of the arm portion, the installation position of the welding machine can be set only on one side of the arm portion, thereby reducing the setup work for welding.
Furthermore, by attaching a reinforcing plate to one side of the arm on the far side from the neutral axis, it is possible to efficiently secure the geometrical moment of inertia necessary for the reinforced part, and reduce the thickness of the reinforcing plate to reduce the bending moment. Since the edge stress can be reduced, the total welding volume of the welding point between the reinforcing plate and the arm can be reduced, leading to a reduction in the cost of welding materials.

また、本発明の前記構成において、前記補強板の、前記継手部側の板厚が、前記継手部と反対側の板厚より厚くてもよく、この場合、補強板の板厚は、継手部に近づくに従って厚くなっていてもよい。 Further, in the above configuration of the present invention, the thickness of the reinforcing plate on the side of the joint portion may be thicker than the thickness of the side opposite to the joint portion. It may be thicker as it approaches .

鋼矢板の縦継箇所に曲げモーメントが作用し、鋼矢板断面のアーム側、つまり継手欠損部に引張荷重が作用した場合、曲げモーメントが大きくなると、鋼矢板幅方向で、縦継突合せ部の溶接両端部となるアーム部の溶接止端部から亀裂が発生する虞がある。更に曲げモーメントが増大すると、亀裂が補強板に進展する虞があり、一旦亀裂が補強板を貫通すると、耐力低下が顕著になる。
このため、上述した構成とすることによって、つまり、補強板の、継手部側の板厚を、継手部と反対側の板厚より厚くすることによって、補強板への亀裂進展を抑制できる。
When a bending moment acts on the longitudinal joint of the steel sheet pile and a tensile load acts on the arm side of the steel sheet pile cross section, that is, on the missing joint, when the bending moment increases, the welding of the longitudinal joint butt part in the width direction of the steel sheet pile will occur. There is a risk that cracks may occur from the weld toes of the arm portions, which are both ends. If the bending moment further increases, there is a risk that the crack will progress to the reinforcing plate, and once the crack penetrates the reinforcing plate, the yield strength will decrease significantly.
Therefore, by adopting the above-described configuration, that is, by making the plate thickness of the reinforcing plate on the joint portion side thicker than the plate thickness on the side opposite to the joint portion, crack propagation to the reinforcing plate can be suppressed.

また、本発明の前記構成において、前記継手部どうしに、それらの縦継ラインを跨ぐようにして補助部材が固定されていてもよい。 Further, in the configuration of the present invention, an auxiliary member may be fixed between the joint portions so as to straddle the longitudinal connection line.

このような構成によれば、継手部どうしに、それらの縦継ラインを跨ぐようにして補助部材が固定されているので、上述したような補強板へ亀裂が進展する前に、縦継突合せ部の溶接両端部となるアーム部の溶接止端部での亀裂発生を抑制できる。 According to such a configuration, since the auxiliary member is fixed to the joint parts so as to straddle the longitudinal joint line, the longitudinal joint butt part can be prevented before the crack propagates to the reinforcing plate as described above. It is possible to suppress the occurrence of cracks at the weld toes of the arms, which are the weld ends of the arm.

本発明によれば、継手部の断面積欠損を有する縦継構造において必要耐力を確保しつつ、コスト低減および作業性向上が可能な鋼矢板の縦継構造を提供できる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a tandem structure of steel sheet piles that is capable of reducing costs and improving workability while ensuring the required yield strength in a tandem structure having a cross-sectional area defect in a joint portion.

本発明の実施形態を示すもので、鋼矢板の縦継構造を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows embodiment of this invention and which shows the longitudinal connection structure of a steel sheet pile. 同、補強板の斜視図である。It is a perspective view of a reinforcing plate equally. 同、(a)はアーム部の一方の片面に補強板を取り付けた状態を示す鋼矢板の平断面図、(b)は継手部の拡大平断面図である。Similarly, (a) is a cross-sectional plan view of a steel sheet pile showing a state in which a reinforcing plate is attached to one side of an arm portion, and (b) is an enlarged cross-sectional plan view of a joint portion. 同、アーム部の他方の片面に補強板を取り付けた状態を示す鋼矢板の平断面図である。Fig. 3 is a plan cross-sectional view of the steel sheet pile showing a state in which a reinforcing plate is attached to the other side of the arm portion of the same; 同、アーム部の両面に補強板を取り付けた状態を示す鋼矢板の平断面図である。Fig. 3 is a cross-sectional plan view of the steel sheet pile showing a state in which reinforcing plates are attached to both surfaces of the arm portion of the same; 同、継手部に補強板をずらして取り付けた状態を示す鋼矢板の要部の平断面図である。Fig. 3 is a plan cross-sectional view of the main part of the steel sheet pile showing a state in which the reinforcing plate is attached to the joint portion while being shifted. 同、継手部に補強板を二分割して取り付けた状態を示す鋼矢板の要部の平断面図である。Fig. 3 is a plan cross-sectional view of the main part of the steel sheet pile showing a state in which the reinforcing plate is divided into two and attached to the joint portion. 同、(a)はアーム部に取り付けた補強板に板材を追加固定した状態を示す鋼矢板の要部の平断面図、(b)はアーム部にテーパ鋼板からなる補強板を取り付けた状態を示す鋼矢板の要部の平断面図である。In the same figure, (a) is a plan cross-sectional view of the main part of the steel sheet pile showing the state in which the plate material is additionally fixed to the reinforcing plate attached to the arm, and (b) is the state in which the reinforcing plate made of tapered steel plate is attached to the arm. It is a plane cross-sectional view of the main part of the steel sheet pile shown. 同、継手部に補助部材を取り付けた状態を示す鋼矢板の要部の平断面図である。Fig. 3 is a cross-sectional plan view of a main part of the steel sheet pile showing a state in which an auxiliary member is attached to a joint portion of the same; 同、(a)は第1変形例の補強板を取り付けた場合の鋼矢板の縦継構造の要部を示す斜視図、(b)は同要部の断面図である。Similarly, (a) is a perspective view showing a main part of a longitudinal joint structure of steel sheet piles when the reinforcing plate of the first modified example is attached, and (b) is a cross-sectional view of the main part. 同、(a)は第2変形例の補強板を取り付けた場合の鋼矢板の縦継構造の要部を示す斜視図、(b)は同要部の断面図である。Similarly, (a) is a perspective view showing a main part of a longitudinal joint structure of steel sheet piles when the reinforcing plate of the second modification is attached, and (b) is a cross-sectional view of the main part. 同、第3変形例の補強板を取り付けた場合の鋼矢板の縦継構造を示す斜視図である。It is a perspective view which shows the longitudinal joint structure of a steel sheet pile when the reinforcing plate of a 3rd modification is attached. 同、第4変形例の補強板を示す正面図である。It is a front view which shows the reinforcing plate of a 4th modification equally. 同、第5変形例の補強板を示す正面図である。It is a front view which shows the reinforcing plate of a 5th modification equally. 同、第6変形例の補強板を示す正面図である。It is a front view which shows the reinforcing plate of a 6th modification equally. 同、溶接部位の設定位置(荷重作用方向に対する溶接ラインの角度)によっては、トータル抵抗力を同等以上にすることができることを説明するための図である。Similarly, it is a diagram for explaining that depending on the set position of the welded portion (the angle of the weld line with respect to the direction in which the load acts), the total resistance can be made equal or greater. 同、隅肉溶接部に対して任意の方向のPに対する分力およびのど厚をa、溶接長をeとしたとき、のど断面に働く応力を説明するための図である。FIG. 4 is a diagram for explaining the stress acting on the throat section when a is the component force and the throat thickness with respect to P in an arbitrary direction with respect to the fillet weld, and e is the weld length. 同、菱形外周ライン傾き角度とせん断強度比との関係を示すグラフである。It is a graph which shows the relationship between a rhombus peripheral line inclination angle and a shear strength ratio equally. 同、第7変形例の補強板を示す正面図である。It is a front view which shows the reinforcing plate of a 7th modification equally. 同、第8~第12変形例を示すもので、(a)は第8変形例の補強板の正面図、(b)は第9変形例の補強板の正面図、(c)は第10変形例の補強板の正面図、(d)は第11変形例の補強板の正面図、(e)は第12変形例の補強板の正面図である。Similarly, eighth to twelfth modifications are shown, (a) is a front view of the reinforcing plate of the eighth modification, (b) is a front view of the reinforcing plate of the ninth modification, and (c) is the tenth modification. FIG. 11D is a front view of a reinforcing plate of a modified example, (d) is a front view of a reinforcing plate of an eleventh modified example, and (e) is a front view of a reinforcing plate of a twelfth modified example. 本発明の他の実施形態を示すもので、フランジ部に補強板を取り付けた状態を示す鋼矢板の平断面図である。Fig. 10, which shows another embodiment of the present invention, is a plan cross-sectional view of a steel sheet pile showing a state in which a reinforcing plate is attached to a flange portion. 本発明の他の実施形態を示すもので、フランジ部に補強板を取り付けた状態を示す鋼矢板の平断面図である。Fig. 10, which shows another embodiment of the present invention, is a plan cross-sectional view of a steel sheet pile showing a state in which a reinforcing plate is attached to a flange portion.

以下、図面を参照しながら本発明の実施形態について説明する。
図1は実施形態に係る鋼矢板の縦継構造を示す斜視図である。
本実施形態では、上側の鋼矢板10と下側の鋼矢板10とが上下に接合されている。
鋼矢板10は、ハット形鋼矢板であり、鋼矢板本体11と、当該鋼矢板本体11の両側端縁に設けられた継手部12,12とを備えている。
なお、鋼矢板10はハット形鋼矢板に限ることはなく、例えばU形鋼矢板、Z形鋼矢板等であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a longitudinal joint structure of steel sheet piles according to the embodiment.
In this embodiment, the upper steel sheet pile 10 and the lower steel sheet pile 10 are vertically joined.
The steel sheet pile 10 is a hat-shaped steel sheet pile, and includes a steel sheet pile body 11 and joint portions 12 , 12 provided on both side edges of the steel sheet pile body 11 .
The steel sheet pile 10 is not limited to the hat-shaped steel sheet pile, and may be, for example, a U-shaped steel sheet pile, a Z-shaped steel sheet pile, or the like.

鋼矢板本体11は、幅方向中央に位置するウェブ13と、このウェブ13の両側端縁に形成された左右一対のフランジ14,14と、当該フランジ14,14の外側の側端部に形成された左右一対のアーム部15,15とを有する。そして、当該一対のアーム部15,15の外側の側端部に前記継手部12,12が形成されている。
このような鋼矢板10は、図示は省略するが、左右に隣り合う鋼矢板10,10の継手部12,12どうしを嵌合させることによって、横方向に連結され、これによって、鋼製壁が左右(鋼矢板10の幅方向)に連続して形成されるようになっている。
The steel sheet pile body 11 includes a web 13 positioned in the center in the width direction, a pair of left and right flanges 14, 14 formed on both side edges of the web 13, and outer side ends of the flanges 14, 14. A pair of left and right arm portions 15, 15 are provided. The joint portions 12 , 12 are formed at the outer side end portions of the pair of arm portions 15 , 15 .
Although illustration is omitted, such steel sheet piles 10 are connected in the lateral direction by fitting the joint portions 12, 12 of the steel sheet piles 10, 10 adjacent to each other on the left and right, thereby forming a steel wall. It is formed continuously from side to side (in the width direction of the steel sheet pile 10).

また、上下の鋼矢板10,10は接合されている。すなわち、鋼矢板10,10の鋼矢板本体11,11どうしは板厚方向に亘って全断面溶接によって接合されている(全断面溶接部が鋼矢板本体11の幅方向に沿って連続して存在する)のが好ましいが、鋼矢板本体11の端部となる継手部12,12との接続部付近の一部に、全断面溶接されていない部分を含んでいてもよい。鋼矢板本体11において、突合せ溶接部端部での急激な応力変化を避けるために、継手部12,12との接続部付近における開先加工を、アーム部15,15の片面からもう一方の面に向かって幅方向にテーパ状とし、溶接量を徐々に変化させてもいい。この場合、テーパ状に開先加工し溶接した部分は、継手部12,12で溶接されていない断面欠損部として取り扱う。すなわち、本明細書における「鋼矢板10の断面欠損部」とは、継手部12,12の断面欠損のほか、上記の場合(継手部12,12との接続部付近における開先加工を、アーム部15,15の片面からもう一方の面に向かって幅方向にテーパ状とし、溶接量を徐々に変化させる場合)にはテーパ状に開先加工し溶接した部分も含む。
本実施形態では、上下の鋼矢板本体11,11を板厚方向に亘って全断面溶接する。具体的には、図示は省略するが、打設中に鋼矢板10,10を長さ方向に連結(縦継ぎ)する際は、上下の鋼矢板本体11,11の上下に対向する端部のうち何れか一方、または打設前に鋼矢板10,10を横置きして長さ方向に連結(縦継ぎ)する際は、両方に開先部分を形成し、当該開先部分に溶接金属を流し込んで、当該開先部分を全断面溶接することによって、上下の鋼矢板本体11,11どうしを板厚方向に亘って溶接接合する。また、上下の鋼矢板10,10の上下に対向する継手部12,12どうしは溶接されておらず、単に突き合わされている。
Also, the upper and lower steel sheet piles 10, 10 are joined. That is, the steel sheet pile bodies 11, 11 of the steel sheet piles 10, 10 are joined together in the plate thickness direction by full-section welding (the full-section welded portion exists continuously along the width direction of the steel sheet pile body 11). ), but a portion near the connection with the joint portions 12, 12, which is the end portion of the steel sheet pile body 11, may include a portion where the full cross-section is not welded. In the steel sheet pile body 11, in order to avoid a sudden change in stress at the end of the butt weld, groove processing is performed near the connection with the joints 12, 12 from one side of the arm portions 15, 15 to the other side. It may be tapered in the width direction to gradually change the amount of welding. In this case, the tapered grooved and welded portion is treated as a cross-sectional defect portion that is not welded at the joint portions 12 , 12 . That is, the "cross-sectional loss of the steel sheet pile 10" in this specification includes, in addition to the cross-sectional loss of the joints 12, 12, in the above case (beveling near the connection part with the joints 12, 12, the arm In the case where the portions 15, 15 are tapered in the width direction from one surface to the other surface, and the amount of welding is gradually changed), the tapered grooving and welded portions are also included.
In this embodiment, the upper and lower steel sheet pile main bodies 11, 11 are welded over the entire cross section in the plate thickness direction. Specifically, although illustration is omitted, when the steel sheet piles 10, 10 are connected (vertical spliced) in the longitudinal direction during placing, the ends of the upper and lower steel sheet pile bodies 11, 11 facing vertically Either one of them, or when the steel sheet piles 10, 10 are placed horizontally and connected (longitudinal joint) in the longitudinal direction before placing, a groove is formed in both, and the weld metal is applied to the groove. The upper and lower steel sheet pile main bodies 11, 11 are welded and joined together in the plate thickness direction by pouring and welding the groove portion over the entire cross section. Moreover, the joint portions 12, 12 of the upper and lower steel sheet piles 10, 10, which are vertically opposed to each other, are not welded to each other, but simply abutted.

このように、上下の継手部12,12どうしは溶接されていないので、上下に溶接される鋼矢板10,10は、溶接されていない継手部12,12に相当する断面欠損部を有している。なお、本実施形態では、上述のように鋼矢板本体11,11が板厚方向に亘って全断面溶接されているので、上記の「鋼矢板10の断面欠損部」は継手部12,12に相当する断面欠損部に相当することとなる。
このため、本実施形態では、前記断面欠損部を補うべく、補強板20,20が上下の鋼矢板本体11,11にその縦継ライン16を跨ぐようにして外周を隅肉溶接によって接合され、これによっても鋼矢板本体11,11が溶接によって接合されている。ここで、縦継ライン16とは、上下の鋼矢板10,10を互いに突き合わせた際に生じる接合線のことであり、上下の鋼矢板10の一方の面と他方の面とにそれぞれ生じる。
補強板20,20は、上下の鋼矢板本体11,11のアーム部15,15の一方の面に生じる縦継ライン16を跨ぐようにして配置してもよいし、他方の面に生じる縦継ライン16を跨ぐようにして配置してもよいし、さらに、両方の面に生じる縦継ライン16を跨ぐようにして配置してもよい。
In this way, since the upper and lower joint portions 12, 12 are not welded together, the steel sheet piles 10, 10 welded to the upper and lower sides have cross-sectional defects corresponding to the joint portions 12, 12 that are not welded. there is In this embodiment, as described above, the steel sheet pile bodies 11, 11 are fully cross-sectionally welded in the plate thickness direction, so that the above-mentioned "cross-sectional defect of the steel sheet pile 10" is formed in the joints 12, 12. It corresponds to the corresponding cross-sectional defect.
For this reason, in this embodiment, in order to compensate for the cross-sectional defect, the reinforcing plates 20 and 20 are joined to the upper and lower steel sheet pile bodies 11 and 11 by fillet welding on the outer periphery so as to straddle the longitudinal connection line 16. The steel sheet pile main bodies 11 and 11 are also joined by welding by this. Here, the tandem line 16 is a joint line generated when the upper and lower steel sheet piles 10, 10 are butted against each other, and is generated on one side and the other side of the upper and lower steel sheet piles 10, respectively.
The reinforcing plates 20, 20 may be arranged so as to straddle the longitudinal joint line 16 generated on one side of the arm portions 15, 15 of the upper and lower steel sheet pile bodies 11, 11, or may be arranged so as to straddle the longitudinal joint line 16 generated on the other side. It may be arranged so as to straddle the line 16, and furthermore, it may be arranged so as to straddle the tandem lines 16 generated on both sides.

前記補強板20は矩形の平板であり、以下の(1)~(3)の条件を全て満している。
(1)補強板20は、鋼矢板10の両側のアーム部15,15のみに取り付けられていること。
(2)縦継ライン16における断面の補強板20,20の合計断面積が、溶接されていない継手部12,12に相当する断面欠損部(鋼矢板10の断面欠損部)の合計断面積以上であること。
(3)鋼矢板10の鋼矢板断面の中立軸naに対する、縦継ライン16における断面の補強板20,20の合計断面2次モーメントが、溶接されていない継手部12,12に相当する断面欠損部(鋼矢板10の断面欠損部)の合計断面2次モーメント以上であること。
さらに、本実施形態では次の(4)の条件も満たしている。
(4)補強板20は、アーム部15,15の両面、または片面のみに取り付けられていること。
The reinforcing plate 20 is a rectangular flat plate and satisfies all of the following conditions (1) to (3).
(1) The reinforcing plate 20 is attached only to the arm portions 15, 15 on both sides of the steel sheet pile 10;
(2) The total cross-sectional area of the reinforcing plates 20, 20 in the cross section of the longitudinal connection line 16 is equal to or greater than the total cross-sectional area of the cross-sectional missing portions (cross-sectional missing portions of the steel sheet pile 10) corresponding to the joint portions 12, 12 that are not welded. be.
(3) The cross-sectional loss corresponding to the total cross-sectional moment of inertia of the reinforcing plates 20, 20 in the cross section of the longitudinal connection line 16 with respect to the neutral axis na of the steel sheet pile cross section of the steel sheet pile 10 corresponds to the joint portions 12, 12 that are not welded. be equal to or greater than the total geometrical moment of inertia of the part (the cross-sectional loss part of the steel sheet pile 10).
Furthermore, this embodiment also satisfies the following condition (4).
(4) The reinforcing plate 20 is attached to both sides of the arm portions 15, 15, or to only one side.

図2に示すように、アーム部15に溶接によって取り付けられる補強板20は矩形の平板であり、当該補強板20の板幅をbp、同補強板20の長さをlp、同補強板20の板厚をt、同補強板20をアーム部15に隅肉溶接によって取り付けた場合の溶接部分の脚長をsとする。
このような補強板20は、図1に示すように、長手方向を上下方向に向け、かつ補強板20の長手方向の中央部が縦継ライン16と一致するようにして、当該補強板20をアーム部15に配置したうえで、補強板20をアーム部15に隅肉溶接によって取り付ける。
As shown in FIG. 2, the reinforcing plate 20 attached to the arm portion 15 by welding is a rectangular flat plate, the width of the reinforcing plate 20 is bp, the length of the reinforcing plate 20 is lp, Let t be the plate thickness, and s be the leg length of the welded portion when the reinforcing plate 20 is attached to the arm portion 15 by fillet welding.
As shown in FIG. 1, the reinforcing plate 20 is arranged such that the longitudinal direction of the reinforcing plate 20 is oriented vertically and the central portion of the reinforcing plate 20 in the longitudinal direction is aligned with the longitudinal joint line 16. After being placed on the arm portion 15, the reinforcing plate 20 is attached to the arm portion 15 by fillet welding.

前記(1)の条件のように、補強板20は鋼矢板10の両側のアーム部15,15のみに取り付けられている(図3~図5参照)。
前記(4)の条件のように、補強板20は、アーム部15,15の両面(図5参照)、または片面のみ(図3および図4参照)に取り付けられている。
ここでアーム部15の片面とは、鋼矢板断面の中立軸naから遠い側の面15aと近い側の面15bとのうちのいずれか一方の面のことをいい、両面とは面15aと面15bの双方の面のことをいう。
中立軸naは、鋼矢板10のウェブ13とアーム部15との間を通る、ウェブ13と平行な軸であって、鋼矢板10の断面1次モーメントが0となるような軸である。
As in condition (1) above, the reinforcing plate 20 is attached only to the arm portions 15, 15 on both sides of the steel sheet pile 10 (see FIGS. 3 to 5).
As in condition (4) above, the reinforcing plate 20 is attached to both sides of the arms 15 (see FIG. 5) or only one side (see FIGS. 3 and 4).
Here, the one side of the arm portion 15 refers to either one of the side 15a on the far side and the side 15b on the side closer to the neutral axis na of the steel sheet pile cross section, and both sides refer to the side 15a and the side 15b. Refers to both sides of 15b.
The neutral axis na is an axis that passes between the web 13 and the arm portion 15 of the steel sheet pile 10 and is parallel to the web 13, and is such that the cross-sectional primary moment of the steel sheet pile 10 is zero.

前記(2)の条件について説明すると、鋼矢板10の地盤中への打設時や引き抜き時に、鋼矢板10に作用する引張荷重に対して、縦継箇所の耐力が鋼矢板母材(縦継箇所がない鋼矢板)と同等以上となるように、縦継ライン16における断面の補強板20,20の合計断面積を、溶接されていない継手部12,12の合計断面積以上とする。
ここで、継手部12の断面とは、図3(b)に示すように、継手部12の突起12aからアーム部15側に向けて断面曲線状または直線状に延びる線分12bと断面におけるアーム部15の縁線15cとの境界において中立軸naと直交する線Lより外側(図3(b)において左側)の領域における継手部12の断面のことを言う。
したがって、図3~図5に示す、左右の継手部12,12の形状が同じ場合の鋼矢板の縦継構造では、それぞれ継手部12が2つあるので、継手部12,12の合計断面積は、1つの継手部12の断面2つ分の面積となる。
Explaining the condition (2) above, when the steel sheet pile 10 is driven into the ground or pulled out, the yield strength of the longitudinally jointed portion against the tensile load acting on the steel sheet pile 10 is the steel sheet pile base material (longitudinal joint The total cross-sectional area of the reinforcing plates 20, 20 in the cross section of the longitudinal joint line 16 is set to be equal to or greater than the total cross-sectional area of the joint portions 12, 12 that are not welded so as to be equal to or greater than the steel sheet piles with no points.
Here, as shown in FIG. 3B, the cross section of the joint portion 12 means a line segment 12b extending in a curved or straight line from the protrusion 12a of the joint portion 12 toward the arm portion 15 side and an arm in the cross section. It refers to the cross section of the joint portion 12 in the area outside (left side in FIG. 3(b)) of the line L perpendicular to the neutral axis na at the boundary with the edge line 15c of the portion 15. As shown in FIG.
Therefore, in the longitudinal joint structure of steel sheet piles in which the left and right joint portions 12, 12 have the same shape as shown in FIGS. is the area of two cross sections of one joint portion 12 .

前記(3)の条件について説明すると、補強板20をアーム部15に取り付けることによって、継手部12の断面欠損を補い、鋼製壁としての曲げ剛性を確保できるよう、鋼矢板断面の中立軸naに対する、縦継ライン16における断面の補強板20,20の合計断面2次モーメントを、溶接されていない継手部12,12に相当する断面欠損部の合計断面2次モーメント以上とする。 Regarding the condition (3), by attaching the reinforcing plate 20 to the arm portion 15, the neutral axis na , the total geometrical moment of inertia of the cross-sectional reinforcing plates 20, 20 in the longitudinal connection line 16 is set to be equal to or greater than the total geometrical moment of inertia of the cross-sectional loss portions corresponding to the joint portions 12, 12 that are not welded.

補強板20のスペックは、継手部12の溶接欠損部分(断面欠損部)から定まる、上述した(2)の条件中の補強板20,20の合計断面積と、(3)の条件中の補強板20,20の合計断面2次モーメントとのうち、補強板20の必要寸法(補強板20の幅bp、補強板20の長さlp、補強板の板厚t)が大きくなる方の条件から設定する。 The specifications of the reinforcing plate 20 are the total cross-sectional area of the reinforcing plates 20, 20 under the condition (2) described above, which is determined from the weld defect portion (cross-sectional defect portion) of the joint portion 12, and the reinforcement under the condition (3). From the condition that the necessary dimensions of the reinforcing plate 20 (width bp of the reinforcing plate 20, length lp of the reinforcing plate 20, thickness t of the reinforcing plate) of the total geometrical moment of inertia of the plates 20, 20 are larger set.

鋼矢板10によって鋼製壁を形成する際は、同一深度で縦継箇所がない鋼矢板10と縦継箇所がある鋼矢板10とを交互に配置する。補強板20の幅・長さ・板厚・材質を設定する際は、上述した補強板20,20の合計断面積と補強板20,20の合計断面2次モーメントに加え、鋼矢板10,10の縦継箇所に発生する応力として、補強板20,20を取り付けた縦継箇所と、縦継箇所を含まない鋼矢板本体11との組み合わせからなる全体の断面2次モーメントを対象に、外力の曲げモーメントに対して、中立軸naから補強板20,20の各部までの距離に応じて発生する応力が、補強板20,20の材質に応じた所定の許容応力を下回るようにする。 When forming a steel wall with the steel sheet piles 10, the steel sheet piles 10 without longitudinal joints and the steel sheet piles 10 with longitudinal joints are alternately arranged at the same depth. When setting the width, length, thickness, and material of the reinforcing plate 20, in addition to the total cross-sectional area of the reinforcing plates 20, 20 and the total cross-sectional secondary moment of the reinforcing plates 20, 20, the steel sheet piles 10, 10 As the stress generated at the longitudinal joints, the secondary moment of the cross section of the entire combination of the longitudinal joints where the reinforcing plates 20 and 20 are attached and the steel sheet pile body 11 that does not include the longitudinal joints is subjected to the external force. The stress generated according to the distance from the neutral axis na to each part of the reinforcing plates 20, 20 with respect to the bending moment is set to be less than a predetermined allowable stress according to the material of the reinforcing plates 20, 20.

補強板20,20と鋼矢板10のアーム部15との溶接部分において、曲げにより補強板20,20に生じる引張応力の合計値以上となる、溶接部耐力となる溶接体積(=溶接長(L)×脚長(s))を確保する。2つの鋼矢板10,10のうち片側の鋼矢板10への定着長さが溶接長となるため、矩形の補強板20を用いる場合は、「溶接長=補強板幅+補強板長さ」となる。 In the welded portion between the reinforcing plates 20, 20 and the arm portion 15 of the steel sheet pile 10, the weld volume (=weld length (L ) x leg length (s)). Since the length of fixing to the steel sheet pile 10 on one side of the two steel sheet piles 10, 10 is the welding length, when using the rectangular reinforcing plate 20, "welding length = reinforcing plate width + reinforcing plate length". Become.

アーム部15において補強板20を取り付ける位置としては、足場条件や周辺構造物との干渉の兼ね合いで、片側からのみしか溶接作業ができない場合、図3および図4に示すように、アーム部15の片面15aまたは片面15bのみに補強板20を取り付ける。このようにすることで、溶接機の設置位置をアーム部15の片側のみに設置しておけばよく、溶接の段取り作業を軽減できる。 As for the position where the reinforcing plate 20 is attached to the arm portion 15, if the welding work can be performed only from one side due to the scaffolding conditions and interference with surrounding structures, as shown in FIGS. A reinforcing plate 20 is attached only to one side 15a or one side 15b. By doing so, the installation position of the welding machine need only be installed on one side of the arm portion 15, and the setup work for welding can be reduced.

また、補強板20をアーム部15の片面15aまたは片面15bのみに溶接する場合、どちらの片面でも溶接作業が可能な場合は、中立軸na周りの補強板20の断面2次モーメントを大きくできることから、図3に示すように、中立軸naから遠い側のアーム部15の片面15aに補強板20を取り付けることが好ましい。この場合、中立軸naから近い側のアーム部15の片面15bに補強板20を取り付設置する場合に比べて、中立軸naから遠い側のアーム部15の片面15aに取り付ける補強板20は、補強箇所に必要な同じ断面2次モーメントを確保するために、補強板20の板厚を低減することができ補強板20の鋼材重量を低減できる。 In addition, when the reinforcing plate 20 is welded only to one side 15a or one side 15b of the arm portion 15, if welding can be performed on either side, the geometrical moment of inertia of the reinforcing plate 20 around the neutral axis na can be increased. 3, it is preferable to attach a reinforcing plate 20 to one side 15a of the arm portion 15 farther from the neutral axis na. In this case, compared to the case where the reinforcing plate 20 is attached to the one side 15b of the arm portion 15 closer to the neutral axis na, the reinforcing plate 20 attached to the one side 15a of the arm portion 15 farther from the neutral axis na is In order to secure the same geometrical moment of inertia necessary for the reinforced portion, the plate thickness of the reinforcing plate 20 can be reduced, and the steel material weight of the reinforcing plate 20 can be reduced.

また、図5に示すように、補強板20をアーム部15の両面15a,15bに取り付けてもよい。このように、アーム部15の両面15a,15bにそれぞれ補強板20を取り付けることによって、補強板20が負担すべき荷重が分散され、補強箇所に必要な断面諸元を効率的に確保できる。中立軸naから遠い側のアーム部15の片面15aのみに補強板20を取り付ける場合に比べて、中立軸naから近い側のアーム部15の片面15bにも補強板20を取り付けることによって、中立軸naから遠い側のアーム部15の片面15aに取り付ける補強板20の板厚が低減され、曲げモーメントに対する補強板20の縁端応力を低減できる。そのため、補強板20とアーム部15との溶接個所のトータル溶接体積を縮小でき、溶接材料のコスト削減に繋がる。また補強板20をアーム部15の両面15a,15bに取り付けていることで、補強板20が1枚のときよりも効率的に溶接長を増やすことができるため、個々の補強板20の板厚(t)や、補強板幅(bp)、補強板長さ(lp)を低減でき、補強板全体の鋼重を低減することが可能となる(表1参照)。 Further, as shown in FIG. 5, the reinforcing plate 20 may be attached to both surfaces 15a and 15b of the arm portion 15. FIG. By attaching the reinforcing plates 20 to both surfaces 15a and 15b of the arm portion 15 in this manner, the load to be borne by the reinforcing plates 20 is dispersed, and the required cross-sectional dimensions can be efficiently secured at the reinforced portions. By attaching the reinforcing plate 20 also to the one surface 15b of the arm portion 15 closer to the neutral axis na than the case where the reinforcing plate 20 is attached only to the one surface 15a of the arm portion 15 farther from the neutral axis na, the neutral axis The plate thickness of the reinforcing plate 20 attached to the one surface 15a of the arm portion 15 on the far side from na is reduced, and the edge stress of the reinforcing plate 20 against the bending moment can be reduced. Therefore, the total welding volume of the welding points between the reinforcing plate 20 and the arm portion 15 can be reduced, leading to a reduction in the cost of welding materials. In addition, by attaching the reinforcing plate 20 to both surfaces 15a and 15b of the arm portion 15, the welding length can be increased more efficiently than when only one reinforcing plate 20 is used. (t), reinforcing plate width (bp), and reinforcing plate length (lp) can be reduced, and the steel weight of the entire reinforcing plate can be reduced (see Table 1).

補強板20を取り付ける継手部12の溶接欠損(断面欠損)部からの距離として、溶接熱影響により継手部12が変形してしまわない距離を確保する。継手形状や、溶接入熱量にも依存するが、補強板20は継手部12の継手嵌合中心から継手部12の大きさに応じて、40~60mm程度離すことが好ましい。また、補強板20をアーム部15に溶接する際は、隅肉溶接の脚長や溶接スピードを踏まえ、入熱量を調整する。 As the distance from the weld defect (cross-sectional defect) portion of the joint portion 12 to which the reinforcing plate 20 is attached, a distance is secured so that the joint portion 12 is not deformed due to the welding heat. Depending on the shape of the joint and the amount of welding heat input, it is preferable that the reinforcing plate 20 is separated from the joint fitting center of the joint 12 by about 40 to 60 mm depending on the size of the joint 12 . When welding the reinforcing plate 20 to the arm portion 15, the amount of heat input is adjusted based on the leg length and welding speed of fillet welding.

アーム部15の両面15a,15bに補強板20を取り付ける場合は、図6に示すように、アーム部15の局所的な位置へ集中的に入熱が大きくなり、アーム部15の材質劣化による耐力減少を招いてしまわないように、アーム部15の両面15a,15bでの補強板20,20の取付け位置を鋼矢板幅方向にずらしても構わない。
また、図7に示すように、補強板20を補強板幅方向に複数枚(例えば2枚)に分割して分割片20a,20aとするとともに、分割片20aの幅を補強板20の幅の半分に短くすることにより、分割箇所で補強板20の溶接長をより長く確保できるため、補強板20の長さを短くすることが可能となり、補強板全体の重量を縮小することも可能である。
When the reinforcing plate 20 is attached to both surfaces 15a and 15b of the arm portion 15, as shown in FIG. The mounting positions of the reinforcing plates 20, 20 on both surfaces 15a, 15b of the arm portion 15 may be shifted in the width direction of the steel sheet pile so as not to cause a decrease.
Further, as shown in FIG. 7, the reinforcing plate 20 is divided into a plurality of pieces (for example, two pieces) in the width direction of the reinforcing plate to form divided pieces 20a, 20a. By shortening by half, a longer welding length of the reinforcing plate 20 can be ensured at the split point, so the length of the reinforcing plate 20 can be shortened, and the weight of the entire reinforcing plate can be reduced. .

次に、ハット形鋼矢板50H(材質SYW295)について、縦継ぎを行うとともに補強板をアーム部に溶接した場合の、補強板仕様を表1に示す。
なお、ハット形鋼矢板50Hは、有効幅900mm、有効高さ370mm、厚さ17mm、断面積212.7cm、断面2次モーメント46.000cmの鋼矢板である。
また、本発明に係る補強板のスペックを規定する際は、継手部で溶接しない断面欠損部の大きさや、鋼矢板・補強板・隅肉溶接の許容応力度は、従来仕様と同様の条件とする。表1に示す補強板の幅と長さの寸法は、製作容易性を考慮して、10mm単位で切り上げている。
Next, Table 1 shows the specifications of the reinforcing plate of the hat-shaped steel sheet pile 50H (material SYW295) when longitudinal jointing is performed and the reinforcing plate is welded to the arm portion.
The hat-shaped steel sheet pile 50H has an effective width of 900 mm, an effective height of 370 mm, a thickness of 17 mm, a cross-sectional area of 212.7 cm 2 and a moment of inertia of 46.000 cm 4 .
In addition, when specifying the specifications of the reinforcing plate according to the present invention, the size of the cross-sectional defect that is not welded at the joint, and the allowable stress of steel sheet piles, reinforcing plates, and fillet welding are the same as the conventional specifications. do. The width and length dimensions of the reinforcing plate shown in Table 1 are rounded up to the nearest 10 mm in consideration of ease of manufacture.

Figure 0007238654000001
Figure 0007238654000001

補強材の材質であるSM490およびSM570は、溶接構造用圧延鋼板(JISG 3106)に規定されている。
表1から明らかなように、ハット形鋼矢板のアーム部に補強板を溶接によって取り付ける場合、中立軸から遠いアーム部の片面に補強板を取り付けた方が、中立軸から近いアーム部の片面に補強板を取り付けた場合より、補強板全体の重量、溶接長さ、溶接体積が小さいこと分かる。また、アーム部の両面に補強を取り付けた方が、アーム部の片面に補強板を取り付けた場合より、補強板全体の重量、溶接長さ、溶接体積が小さいこと分かる。
SM490 and SM570, which are the materials of the reinforcing material, are specified in rolled steel plates for welded structures (JISG 3106).
As is clear from Table 1, when the reinforcing plate is attached to the arm of the hat-shaped steel sheet pile by welding, it is better to attach the reinforcing plate to one side of the arm that is farther from the neutral axis than to attach the reinforcing plate to one side of the arm that is closer to the neutral axis. It can be seen that the weight of the entire reinforcing plate, the welding length, and the welding volume are smaller than when the reinforcing plate is attached. Also, it can be seen that the weight of the entire reinforcing plate, the welding length, and the welding volume are smaller when the reinforcing plate is attached to both sides of the arm portion than when the reinforcing plate is attached to one side of the arm portion.

上述したようにして縦継ぎした鋼矢板の縦継箇所に曲げモーメントが作用し、鋼矢板断面のアーム側、つまり継手部の断面欠損部に引張荷重が作用した場合、曲げモーメントが大きくなると、鋼矢板幅方向で、縦継突合せ部の溶接両端部となるアーム部の溶接止端部から亀裂が発生することがある。更に曲げモーメントが増大すると、亀裂が補強板に進展することがある。一旦亀裂が補強板を貫通すると、耐力低下が顕著になる。 When a bending moment acts on the longitudinal joints of the steel sheet piles spliced as described above, and a tensile load acts on the arm side of the steel sheet pile cross section, that is, on the cross-sectional defect of the joint, when the bending moment increases, the steel In the sheet pile width direction, cracks may occur from the weld toes of the arms, which are the weld ends of the butt joints of the longitudinal joints. A further increase in bending moment may cause cracks to propagate into the reinforcing plate. Once the crack penetrates the reinforcing plate, the reduction in yield strength becomes significant.

そこで、補強板への亀裂進展を抑制するために、補強板全体の板厚を増加させることが効果的である。そのため、図3および図4に示すように、アーム部15の片面15aまたは片面15bのみに補強板20を取り付ける鋼矢板10の縦継構造よりも、図5に示すように、アーム部15の両面15a,15bに補強板20取り付ける鋼矢板10の縦継構造の方が好適である。
例えば、表1に示すように、アーム部の両面に補強板を取り付けた場合の補強板全体の板厚は、16mm+12mm=28mmであるのに対し、アーム部の一方の片面(中立軸から遠い面)に取り付けた補強板の板厚は19mm、アーム部の他方の片面(中立軸から近い面)に取り付けた補強板の板厚は22mmであり、アーム部の両面に補強板を取り付けた場合の方が補強板全体の板厚が厚いので、補強板への亀裂進展をより効果的に抑制することができる。
Therefore, it is effective to increase the plate thickness of the entire reinforcing plate in order to suppress the propagation of cracks to the reinforcing plate. Therefore, as shown in FIGS. A tandem structure of steel sheet piles 10 having reinforcing plates 20 attached to 15a and 15b is preferable.
For example, as shown in Table 1, the total thickness of the reinforcing plate when the reinforcing plate is attached to both sides of the arm is 16 mm + 12 mm = 28 mm, whereas one side of the arm (the side far from the neutral axis) ) has a thickness of 19 mm, and the thickness of the reinforcing plate attached to the other side of the arm (the side closer to the neutral axis) is 22 mm. Since the plate thickness of the entire reinforcing plate is thicker, crack propagation to the reinforcing plate can be more effectively suppressed.

また、図8(a)に示すように、補強板20に板材21を追加したり、図8(b)に示すように、矩形平板状の補強板20に代えて、テーパ鋼板からなる補強板26をアーム部15に溶接により取り付けることで、補強板20への亀裂進展の起点となる箇所において、局所的に補強板の板厚を増すことも効果的である。
図8(a)に示す鋼矢板の縦継構造では、中立軸naから遠い側のアーム部15の片面15aに補強板20が溶接によって取り付けられ、この補強板20の表面に板材21が追加して溶接等によって取り付けられている。板材21の継手部12側を向く面は、補強板20の継手部12側を向く面と面一になっている。また、板材21の板幅は補強板20の板幅(bp)より小さく、板材21の長さは補強板20の長さ(lp)と等しくなっている。補強板20に板材21を加えることによって、補強板20への亀裂進展の起点となる箇所において、局所的に補強板の板厚を増すことができる。なお、補強板20と板材21とを一体的に形成してもよい。
Further, as shown in FIG. 8A, a plate material 21 is added to the reinforcing plate 20, or as shown in FIG. It is also effective to locally increase the plate thickness of the reinforcing plate 20 by attaching the reinforcing plate 26 to the arm portion 15 by welding at the location where the crack progresses to the reinforcing plate 20 .
In the longitudinal joint structure of steel sheet piles shown in FIG. are attached by welding or the like. The surface of the plate member 21 facing the joint portion 12 side is flush with the surface of the reinforcing plate 20 facing the joint portion 12 side. Further, the plate width of the plate member 21 is smaller than the plate width (bp) of the reinforcing plate 20, and the length of the plate member 21 is equal to the length of the reinforcing plate 20 (lp). By adding the plate member 21 to the reinforcing plate 20, the plate thickness of the reinforcing plate can be locally increased at the location where crack propagation to the reinforcing plate 20 starts. Note that the reinforcing plate 20 and the plate material 21 may be integrally formed.

また、図8(b)に示す鋼矢板の縦継構造では、中立軸naから遠い側のアーム部15の片面15aにテーパ鋼板からなる補強板26が溶接によって取り付けられている。この補強板26は継手部12側に向かうほど板厚が厚くとなるようなテーパ面を有しており、補強板26の継手部12側の一端部の厚さは、前記補強板20の厚さより厚く、補強板26の他端部の厚さは、一端部の厚さより小さく、かつ補強板20の厚さとほぼ等しくなっているか、または補強板20の厚さより小さくなっている。
また、補強板26の板幅および長さは、補強板20の板幅および長さと等しくなっている。
このようにして、補強板への亀裂進展の起点となる箇所において、局所的に補強板20,26の板厚を増加させることによって、補強板20,26への亀裂進展を抑制できる。
In the steel sheet pile tandem structure shown in FIG. 8B, a reinforcing plate 26 made of a tapered steel plate is attached by welding to one side 15a of the arm portion 15 on the far side from the neutral axis na. The reinforcing plate 26 has a tapered surface such that the plate thickness increases toward the joint portion 12 side, and the thickness of one end portion of the reinforcing plate 26 on the joint portion 12 side is equal to the thickness of the reinforcing plate 20. The thickness of the other end of the reinforcing plate 26 is smaller than the thickness of the one end and is substantially equal to or smaller than the thickness of the reinforcing plate 20 .
Further, the width and length of the reinforcing plate 26 are equal to the width and length of the reinforcing plate 20 .
In this manner, by locally increasing the plate thickness of the reinforcing plates 20 and 26 at locations that are starting points for crack propagation to the reinforcing plates, crack propagation to the reinforcing plates 20 and 26 can be suppressed.

また、図9に示すように、補強板20へ亀裂が進展する前に、縦継突合せ溶接の両端部となるアーム部15の溶接止端部での亀裂発生を抑制するために、継手部12に補助部材25が溶接によって取り付けられていてもよい。
継手部12の嵌合性を確保し、かつ継手部12の溶接欠損部(断面欠損部)での上下の鋼矢板10,10間の開き発生を防止するために、鋼矢板10の幅方向の端部付近となる継手部12の底面に補助部材25取り付けることが効果的である。補助部材25としては、板材や棒状部材を用いる。補助部材25を継手部12に溶接する際に、過分な入熱を与えてしまうと継手部12が変形してしまうため、入熱量を制御して溶接を行うことが好ましい。
In addition, as shown in FIG. 9, before the crack propagates to the reinforcing plate 20, in order to suppress the occurrence of cracks at the weld toe portions of the arm portions 15, which are both ends of the longitudinal butt welding, the joint portion 12 The auxiliary member 25 may be attached to the by welding.
In order to ensure the fitability of the joint portion 12 and prevent the occurrence of a gap between the upper and lower steel sheet piles 10 at the weld defect (section defect) of the joint portion 12, the width direction of the steel sheet pile 10 It is effective to attach the auxiliary member 25 to the bottom surface of the joint portion 12 near the end. As the auxiliary member 25, a plate material or a rod-shaped member is used. When the auxiliary member 25 is welded to the joint portion 12, if excessive heat input is applied, the joint portion 12 is deformed. Therefore, it is preferable to perform welding while controlling the amount of heat input.

以上説明したように、本実施形態によれば、鋼矢板10,10の縦継ライン16における断面の補強板20,20の合計断面積が、溶接されていない継手部12,12に相当する断面欠損部の合計断面積以上であるので、鋼矢板10の地盤中への打設時や引き抜き時に、鋼矢板10に作用する引張荷重に対して、縦継箇所の耐力が鋼矢板母材(縦継箇所がない鋼矢板)と同等以上となる。
また、鋼矢板10の鋼矢板断面の中立軸naに対して、縦継ライン16における断面の補強板20,20の合計断面2次モーメントが、溶接されていない継手部12,12に相当する断面欠損部の合計断面2次モーメント以上であるので、継手部12,12の断面欠損を補い、鋼矢板10,10としての曲げ剛性を確保できる。
さらに、鋼矢板本体11の中立軸naに対する継手部12,12の溶接欠損部(断面欠損部)に相当する断面2次モーメントを有する補強板20,20を用いるため、縦継箇所の中立軸は鋼矢板本体11の中立軸naとほぼ同じ位置になり、鋼矢板10,10の縁端応力が圧縮または引張となる鋼矢板10,10に作用する両方向の曲げモーメントに対して、所定の耐力や剛性を確保する上で、鋼矢板全断面を効率的に活用できる。
さらに、補強板20は、鋼矢板10の両側のアーム部15のみに取り付けられている。
したがって、継手部12,12の断面積欠損を有する縦継箇所において必要耐力を確保しつつ、重量が大きく、コスト・作業性に悪影響を与え、縦継突合せ部の溶接管理の障害となる、ウェブ13の補強板20を不要とし、必要最低限の補強板20を有する鋼矢板の縦継構造を提供できる。
As described above, according to the present embodiment, the total cross-sectional area of the reinforcing plates 20, 20 in the cross section of the longitudinal connection line 16 of the steel sheet piles 10, 10 corresponds to the joint portions 12, 12 that are not welded. Since the total cross-sectional area of the missing portion is greater than or equal to the total cross-sectional area of the missing portion, the yield strength of the longitudinal joint portion is greater than the steel sheet pile base material (longitudinal equivalent to or better than steel sheet piles without joints).
In addition, with respect to the neutral axis na of the steel sheet pile cross section of the steel sheet pile 10, the total cross-sectional secondary moment of the reinforcing plates 20, 20 in the cross section at the longitudinal connection line 16 is the cross section corresponding to the joint portions 12, 12 that are not welded. Since it is equal to or greater than the total geometrical moment of inertia of the missing portion, the cross-sectional loss of the joint portions 12, 12 can be compensated for, and the bending rigidity of the steel sheet piles 10, 10 can be ensured.
Furthermore, since the reinforcing plates 20 and 20 having a geometrical moment of inertia corresponding to the weld loss (cross-sectional loss) of the joints 12 and 12 with respect to the neutral axis na of the steel sheet pile body 11 are used, the neutral axis of the longitudinal joint is A predetermined proof stress or The entire cross-section of steel sheet piles can be efficiently utilized to ensure rigidity.
Furthermore, the reinforcing plate 20 is attached only to the arm portions 15 on both sides of the steel sheet pile 10 .
Therefore, while ensuring the necessary yield strength at the tandem joints 12, 12 having a cross-sectional area defect, the weight is large, the cost and workability are adversely affected, and the welding management of the tandem butt portions is hindered. It is possible to eliminate the need for 13 reinforcing plates 20 and provide a tandem structure of steel sheet piles having the minimum number of reinforcing plates 20 required.

また、ウェブ13に取り付ける大形の補強板を不要とすることで、補強板・溶接材料の材料費を低減し、溶接時間の短縮により、鋼矢板施工全体の材工費を削減できる。特に、橋梁の桁下施工時など施工空間が狭い場合は、短尺の鋼矢板を多数使用する必要があり縦継箇所が多くなるが、施工速度アップ、施工コスト削減効果が大きくなり、材工費削減効果がより顕著になる。
また、補強板20,26はアーム部15に取り付ける小型の板材のみとなるので、溶接作業が省力化される。さらに、現場での溶接個所や溶接量が減ることで、現場管理が容易となり、溶接品質を確保しやすくなる。
Also, by eliminating the need for a large reinforcing plate to be attached to the web 13, the material cost of the reinforcing plate and welding material can be reduced, and the shortened welding time can reduce the material and construction cost of the entire steel sheet pile construction. In particular, when the construction space is narrow, such as when constructing under the girder of a bridge, it is necessary to use many short steel sheet piles and the number of longitudinal joints increases. the effect becomes more pronounced.
In addition, since the reinforcing plates 20 and 26 are only small plate members to be attached to the arm portion 15, the welding work is labor-saving. Furthermore, by reducing the number of welding points and the amount of welding on-site, on-site management becomes easier and welding quality can be easily secured.

また、上下の鋼矢板10,10の突合せ部を溶接する際、確実に全断面溶接を行うために、片面から溶接した後に溶け込み不良部を除去するために反対側の溶接表面をガウジングで斫った上で溶接したり、確実に溶着金属が反対側へも充填されるよう裏波溶接を行ったりする必要があり、手間もかかる。しかしながら実際の現場においては、下側の鋼矢板10への上側の鋼矢板10の設置・位置合わせ作業を容易にするために、下側の鋼矢板頭部のウェブに補強板を先に取り付けてから、上側の鋼矢板10の建て込みが行われることがあり、縦継突合せ部の溶接個所が補強板にて覆い隠されてしまい、ガウジングで斫ったり、裏波溶接の確認ができなくなったりすることがある。特に縦継部での幅が大きいウェブ13に取り付ける補強板は、突合せ部を覆い隠す領域が大きく、万が一確実に全断面溶接がなされていない場合は、縦継部全体に与える耐力低下の影響が大きくなってしまうが、ウェブ13に取り付ける大型の補強板がなくなることで、ウェブラインに全長に亘って全断面溶接がなされていることを確実に確認でき、突合せ部の溶接管理をしやすくすることができる。
また、ウェブ13に補強板を取り付ける必要がないため、鋼矢板10に重防食塗布する必要がある場合に、重防食の塗布範囲との干渉を避けて、ウェブ13に容易に重防食塗布できる。
Further, when welding the butt portions of the upper and lower steel sheet piles 10, 10, in order to ensure full cross-section welding, after welding from one side, the weld surface on the opposite side is scraped by gouging in order to remove the poor penetration portion. It is necessary to perform welding after welding, or perform Uranami welding to ensure that the deposited metal is also filled on the other side, which is time-consuming. However, in an actual site, in order to facilitate the work of installing and aligning the upper steel sheet pile 10 on the lower steel sheet pile 10, a reinforcing plate is first attached to the web of the lower steel sheet pile head. Therefore, the upper steel sheet pile 10 may be erected, and the welded part of the butt part of the longitudinal joint is covered with the reinforcing plate, and it may be scraped by gouging or it may not be possible to confirm the Uranami weld. I have something to do. In particular, the reinforcement plate attached to the web 13, which has a large width at the longitudinal joint, has a large area that covers the butt part, and if by any chance the full cross-section welding is not performed reliably, the influence of the yield strength reduction on the entire longitudinal joint will occur. To make it possible to surely confirm that full cross-section welding is performed on the web line over the entire length by eliminating a large reinforcing plate attached to the web 13, although it becomes large, and to facilitate welding management of the butt part. can be done.
Further, since it is not necessary to attach a reinforcing plate to the web 13, when the steel sheet pile 10 needs to be coated with a heavy anti-corrosion coating, the web 13 can be easily coated with a heavy anti-corrosion coating while avoiding interference with the coating range of the heavy anti-corrosion coating.

また、板材21を追加した補強板20および補強板26の、継手部12側の板厚が、継手部12と反対側の板厚より厚いので、補強板20,26への亀裂進展を抑制できる。
さらに、継手部12,12どうしに、それらの縦継ライン16を跨ぐようにして補助部材25が固定されているので、上述したような補強板20へ亀裂が進展する前に、縦継突合せ部の溶接両端部となるアーム部15の溶接止端部での亀裂発生を抑制できる。
In addition, since the plate thickness of the reinforcing plate 20 and the reinforcing plate 26 to which the plate material 21 is added on the side of the joint portion 12 is thicker than the plate thickness on the side opposite to the joint portion 12, crack propagation to the reinforcing plates 20 and 26 can be suppressed. .
Furthermore, since the auxiliary member 25 is fixed between the joints 12, 12 so as to straddle the longitudinal joint line 16, the longitudinal joint butt portion can be removed before the crack develops to the reinforcing plate 20 as described above. It is possible to suppress the occurrence of cracks at the weld toe portions of the arm portion 15, which are the welded end portions of the arm portion 15.

図10は補強板の第1変形例を説明するためのもので、(a)は第1変形例の補強板27を取り付けた場合の鋼矢板の縦継構造の要部を示す斜視図、(b)同要部の断面図である。
また、図11は補強板の第2変形例を説明するためのもので、(a)は第2変形例の補強板28を取り付けた場合の鋼矢板の縦継構造の要部を示す斜視図、(b)同要部の断面図である。
FIG. 10 is for explaining the first modification of the reinforcing plate, (a) is a perspective view showing the main part of the longitudinal joint structure of the steel sheet pile when the reinforcing plate 27 of the first modification is attached, ( b) It is a cross-sectional view of the main part.
FIG. 11 is for explaining a second modification of the reinforcing plate, and FIG. 11(a) is a perspective view showing a main part of a longitudinal joint structure of steel sheet piles when the reinforcing plate 28 of the second modification is attached. , (b) is a cross-sectional view of the main part thereof.

上述した補強板20は矩形の平板であり、補強板26はテーパ鋼板からなっていたが、図10に示す補強板27は、断面略半ダイヤ形状に形成され、図11に示す補強板28は、断面略半円形状に形成されている。
また、補強板27および補強板28の双方とも、上述した(1)~(4)の条件を全て満たすとともに、上下の鋼矢板本体11,11のアーム部15,15にその縦継ライン16を跨ぐようにして外周を隅肉溶接によって接合されている。
Although the reinforcing plate 20 described above is a rectangular flat plate and the reinforcing plate 26 is made of a tapered steel plate, the reinforcing plate 27 shown in FIG. , is formed to have a substantially semicircular cross section.
In addition, both the reinforcing plate 27 and the reinforcing plate 28 satisfy all the conditions (1) to (4) described above, and the longitudinal connection line 16 is connected to the arm portions 15, 15 of the upper and lower steel sheet pile bodies 11, 11. The outer periphery is joined by fillet welding so as to straddle.

図10に示す補強板27は、縦継ライン16から鋼矢板10,10の長手方向に離れるに従い当該長手方向に沿ってテーパ状に板厚を漸減しており、最も板厚が厚い長手方向中央部が縦継ライン16上に位置している。
このように補強板27はその長手方向中央部つまり縦継ライン16上から鋼矢板10の長手方向に先細りするように板厚が漸減しているので、鋼矢板10を地盤に打設する際に補強板27が受ける地盤からの抵抗を上述した補強板20,26に比して低減できる。
The reinforcing plate 27 shown in FIG. 10 gradually decreases in plate thickness in a tapered manner along the longitudinal direction as it separates from the longitudinal joint line 16 in the longitudinal direction of the steel sheet piles 10, 10, and has the thickest plate thickness at the longitudinal center. is located on the splicing line 16 .
In this way, the thickness of the reinforcing plate 27 gradually decreases so as to taper in the longitudinal direction of the steel sheet pile 10 from the longitudinal center portion, that is, on the longitudinal joint line 16, so that when the steel sheet pile 10 is driven into the ground, The resistance from the ground received by the reinforcing plate 27 can be reduced as compared with the reinforcing plates 20 and 26 described above.

図11に示す補強板28は、縦継ライン16から鋼矢板10,10の長手方向に離れるに従い当該長手方向に沿って円弧状に板厚を漸減しており、最も板厚が厚い長手方向中央部が縦継ライン16上に位置している。
このように補強板28はその長手方向中央部つまり縦継ライン16上から鋼矢板10の長手方向に先細りするように板厚が漸減しているので、鋼矢板10を地盤に打設する際に補強板28が受ける地盤からの抵抗を上述した補強板20,26に比して低減できる。
The reinforcing plate 28 shown in FIG. 11 has a plate thickness that gradually decreases in an arc shape along the longitudinal direction as it separates from the longitudinal joining line 16 of the steel sheet piles 10, 10. is located on the splicing line 16 .
In this way, the thickness of the reinforcing plate 28 gradually decreases so as to taper in the longitudinal direction of the steel sheet pile 10 from the longitudinal center portion, that is, on the longitudinal joint line 16, so that when the steel sheet pile 10 is driven into the ground, The ground resistance received by the reinforcing plate 28 can be reduced as compared with the reinforcing plates 20 and 26 described above.

図12は補強板の第3変形例を説明するためのもので、当該第3変形例の補強板30を取り付けた場合の鋼矢板の縦継構造を示す斜視図である。また、図13は第4変形例の補強板31を示す正面図である。
第3変形例の補強板30および第4変形例の補強板31は、菱形に形成された菱形補強板である。同じ脚長である一定量の溶接長を確保するためには、矩形とするより菱形とした方が補強板の鋼材重量を小さくすることができる。この第3変形例の補強板30および第4変形例の補強板31は上述した(1)~(4)の条件を全て満たすとともに、上下の鋼矢板本体11,11のアーム部15,15にその縦継ライン16を跨ぐようにして外周を隅肉溶接によって接合されている。
FIG. 12 is for explaining a third modified example of the reinforcing plate, and is a perspective view showing a longitudinal joint structure of steel sheet piles when the reinforcing plate 30 of the third modified example is attached. Also, FIG. 13 is a front view showing a reinforcing plate 31 of a fourth modified example.
The reinforcing plate 30 of the third modified example and the reinforcing plate 31 of the fourth modified example are rhombic reinforcing plates formed in a rhombic shape. In order to secure a certain amount of weld length with the same leg length, the steel material weight of the reinforcing plate can be reduced by using a diamond shape rather than a rectangular shape. The reinforcing plate 30 of the third modified example and the reinforcing plate 31 of the fourth modified example satisfy all the conditions (1) to (4) described above, and the arm portions 15, 15 of the upper and lower steel sheet pile bodies 11, 11 The outer periphery is joined by fillet welding so as to straddle the longitudinal joint line 16 .

すなわち、第3変形例の補強板30は、図12に示すように、その板面の対向する鈍角どうしを結ぶ直線30aが前記縦継ライン16に一致するように配置されている。このような補強板30は上下に隣接するアーム部15,15に縦継ライン16を跨ぐようにして左右にそれぞれ1枚ずつ合計2枚取り付けられている。
また、補強板30の4周に沿う溶接長さをLとすると、この溶接長さLは、前記矩形の補強板20の4周に沿う溶接長さと同等かまたはそれ以上の長さ有しているが、補強板30の正面視における面積は、補強板20より小さくなっている。また、補強板30の板厚は補強板20の板厚とほぼ等しくなっている。
That is, as shown in FIG. 12, the reinforcing plate 30 of the third modified example is arranged so that a straight line 30a connecting obtuse angles of the plate surfaces facing each other coincides with the longitudinal connecting line 16. As shown in FIG. A total of two reinforcing plates 30 are attached to the arm portions 15, 15 which are vertically adjacent to each other so as to straddle the longitudinal joint line 16, one each on the left and right sides.
Also, if the welding length along the four circumferences of the reinforcing plate 30 is L, the welding length L is equal to or longer than the welding length along the four circumferences of the rectangular reinforcing plate 20. However, the area of the reinforcing plate 30 when viewed from the front is smaller than that of the reinforcing plate 20 . Further, the thickness of the reinforcing plate 30 is approximately equal to the thickness of the reinforcing plate 20 .

また、第4変形例では、図13に示すように、1枚の補強板30の代わりに2枚の補強板31,31を有し、当該2枚の補強板31,31はその板面の対向する鈍角どうしを結ぶ直線31a,31aが前記縦継ライン16に一致するように配置されている。このような2枚の補強板31,31は、それらの鈍角部を突き合わせるようにして隣接配置したうえで、アーム部に隅肉溶接によって接合されている。
1枚の補強板31は、正面視において1枚の補強板30の1/4の面積を有し、かつ補強板30と相似形のものであり、さらに、補強板30と板厚がほぼ等しくなっている。
また、2枚の補強板31,31の縦継ライン16に沿う幅寸法の合計は、1枚の補強板30の縦継ライン16に沿う幅寸法と等しくなっている。
なお、2枚の補強板31,31は、それらの鈍角部を突き合わせるようにして隣接配置されているが、縦継ライン16の長手方向(鋼矢板10の幅方向)に所定間隔を隔てて配置されていてもよい。
In addition, in the fourth modification, as shown in FIG. 13, two reinforcing plates 31, 31 are provided instead of one reinforcing plate 30, and the two reinforcing plates 31, 31 are provided on the plate surfaces thereof. The straight lines 31 a , 31 a connecting obtuse angles facing each other are arranged so as to coincide with the longitudinal connecting line 16 . The two reinforcing plates 31, 31 are joined to the arm portion by fillet welding after being placed adjacent to each other with their obtuse-angled portions facing each other.
One reinforcing plate 31 has an area of 1/4 of one reinforcing plate 30 in a front view, has a shape similar to that of the reinforcing plate 30, and has substantially the same plate thickness as that of the reinforcing plate 30. It's becoming
The total width dimension of the two reinforcing plates 31 , 31 along the longitudinal joint line 16 is equal to the width dimension of one reinforcing plate 30 along the longitudinal joint line 16 .
The two reinforcing plates 31, 31 are arranged adjacent to each other with their obtuse angle portions facing each other, but are spaced apart by a predetermined distance in the longitudinal direction of the longitudinal joint line 16 (the width direction of the steel sheet pile 10). may be placed.

第3変形例の補強板30は、上述した矩形の補強板20と板厚がほぼ等しく、かつ補強板20より正面視における面積が小さくなっているが、補強板20と同長さまたはそれ以上の溶接長を確保している。このため、補強板20によって縦継ぎされた鋼矢板10,10と同等の軸方向抵抗力および曲げ耐力を有するとともに、補強板30の重量を補強板20より小さくできるので、縦継ぎされた鋼矢板10,10の全体重量を軽減できるという利点がある。
また、第4変形例の2枚の補強板31,31は、1枚の補強板30と同じ長さの溶接長を確保できるとともに、正面視における面積を1枚の補強板30の1/2にすることができる。このため、補強板30によって縦継ぎされた鋼矢板10,10と同等の軸方向抵抗力および曲げ耐力を有するとともに、2枚の補強板31,31の重量を1枚の補強板30より小さくできるので、縦継ぎされた鋼矢板10,10の全体重量をさらに軽減できるという利点がある。
The reinforcing plate 30 of the third modification has substantially the same plate thickness as the rectangular reinforcing plate 20 described above, and has a smaller area in front view than the reinforcing plate 20, but has the same length as the reinforcing plate 20 or more. of welding length is secured. Therefore, the steel sheet piles 10, 10 spliced by the reinforcing plate 20 have the same axial resistance and bending resistance, and the weight of the reinforcing plate 30 can be made smaller than that of the reinforcing plate 20. It has the advantage of reducing the overall weight of 10,10.
Further, the two reinforcing plates 31, 31 of the fourth modified example can ensure the same welding length as that of the single reinforcing plate 30, and the area in front view is half that of the single reinforcing plate 30. can be Therefore, the steel sheet piles 10, 10 longitudinally spliced by the reinforcing plate 30 have the same axial resistance and bending resistance, and the weight of the two reinforcing plates 31, 31 can be made smaller than that of the single reinforcing plate 30. Therefore, there is an advantage that the overall weight of the spliced steel sheet piles 10, 10 can be further reduced.

図14は第5変形例の補強板を示す正面図である。
この第5変形例の補強板32は、菱形に形成された菱形補強板であり、上述した(1)~(4)の条件を全て満たすとともに、上下の鋼矢板本体11,11のアーム部15,15にその縦継ライン16を跨ぐようにして外周を隅肉溶接によって接合されている。
また、3枚の補強板32,32,32はその板面の対向する鈍角どうしを結ぶ直線32a,32a,32aが前記縦継ライン16に一致するように配置されている。このような3枚の補強板32,32,32は、それらの鈍角部を突き合わせるようにして隣接配置したうえで、アーム部に隅肉溶接によって接合されている。なお、3枚の補強板32,32,32は、縦継ライン16の長手方向(鋼矢板10の幅方向)に所定間隔を隔てて配置されていてもよい。
また、1枚の補強板32は、1枚の補強板30の1/9の大きさを有し、かつ補強板30と相似形のものである。
さらに、3枚の補強板32,32,32の縦継ライン16に沿う幅寸法の合計は、補強板30の縦継ライン16に沿う幅寸法と等しくなっている。
第5変形例の3枚の補強板32,32,32は、1枚の補強板30と同じ長さの溶接長を確保できるとともに、正面視における面積を1枚の補強板30の1/3にすることができる。このため、補強板30または補強板31によって縦継ぎされた鋼矢板10,10と同等の軸方向抵抗力および曲げ耐力を有するとともに、3枚の補強板32,32,32の重量を1枚の補強板30より小さくできるので、縦継ぎされた鋼矢板10,10の全体重量をさらに軽減できるという利点がある。
FIG. 14 is a front view showing a reinforcing plate of the fifth modified example.
The reinforcing plate 32 of this fifth modification is a rhombic reinforcing plate formed in a rhombic shape, and satisfies all the conditions (1) to (4) described above, and the arm portions 15 of the upper and lower steel sheet pile bodies 11, 11 , 15 by fillet welding so as to straddle the tandem line 16 thereof.
The three reinforcing plates 32 , 32 , 32 are arranged so that the straight lines 32 a , 32 a , 32 a connecting obtuse angles of the plate surfaces facing each other are aligned with the longitudinal connecting line 16 . The three reinforcing plates 32, 32, 32 are joined to the arm portion by fillet welding after being adjacently arranged with their obtuse-angled portions facing each other. The three reinforcing plates 32, 32, 32 may be arranged at predetermined intervals in the longitudinal direction of the longitudinal joint line 16 (the width direction of the steel sheet pile 10).
One reinforcing plate 32 is 1/9 the size of one reinforcing plate 30 and has a shape similar to that of the reinforcing plate 30 .
Furthermore, the total width dimension of the three reinforcing plates 32 , 32 , 32 along the longitudinal joining line 16 is equal to the width dimension of the reinforcing plate 30 along the longitudinal joining line 16 .
The three reinforcing plates 32 , 32 , 32 of the fifth modification can ensure the same welding length as that of one reinforcing plate 30 , and the area in front view is ⅓ that of one reinforcing plate 30 . can be For this reason, the steel sheet piles 10, 10 longitudinally spliced by the reinforcing plate 30 or the reinforcing plate 31 have the same axial resistance and bending resistance, and the weight of the three reinforcing plates 32, 32, 32 is reduced to one sheet. Since it can be made smaller than the reinforcing plate 30, there is an advantage that the overall weight of the spliced steel sheet piles 10, 10 can be further reduced.

補強板として、第3~第5の変形例のような菱形補強板30,31,32をそのまま用いると、角部における鋭角点が増え、溶接端部での応力集中により、疲労亀裂の危険箇所が増えてしまうことが懸念される。そのため、図15に示す第6変形例の補強板33ように、鋭角部をなだらかな曲線状にして応力集中を避けることも可能である。
第6変形例における補強板33、すなわち菱形補強板の鋭角部が滑らかな曲面によって形成されている補強板において、菱形形状の鋼矢板材軸方向両端部の鋭角部をなだらかな曲線状にした場合、縦継ラインに対する菱形外周傾き角度(θ)として下記式(1)を満足するようにすると、隅肉溶接部のせん断強度を確保しつつ、補強板の外周長を短くでき鋼重を削減できる。
If the rhombic reinforcing plates 30, 31, and 32 of the third to fifth modifications are used as they are as reinforcing plates, the number of sharp points at the corners increases, and stress concentration at the weld ends increases the risk of fatigue cracks. It is feared that there will be an increase in Therefore, it is possible to avoid stress concentration by making the acute-angled portion into a gentle curve, as in the reinforcing plate 33 of the sixth modified example shown in FIG.
In the case of the reinforcing plate 33 in the sixth modification, that is, the reinforcing plate in which the acute-angled portions of the rhombus-shaped reinforcing plate are formed by smooth curved surfaces, the acute-angled portions at both ends of the rhomboidal steel sheet pile material in the axial direction are gently curved. If the following formula (1) is satisfied for the rhombic outer peripheral inclination angle (θ) with respect to the tangential line, the shear strength of the fillet weld can be secured, and the outer peripheral length of the reinforcing plate can be shortened and the steel weight can be reduced. .

図16に示すように、補強板33の菱形の鋭角点において、鋭角ライン(長さcの部分)を曲線部(幅dの部分)に置換したとき、トータル溶接長は短くなる。但し、引張荷重(P)に対して、各溶接部に働く分力が異なり、溶接部に発生する応力が部位毎に異なってくるため、溶接部位の設定位置(荷重作用方向に対する溶接ラインの角度)によっては、トータル抵抗力を同等以上にすることができる。
図17に示すように、隅肉溶接部に対して任意の方向の引張荷重Pに対する分力は以下のようになる。
x方向分力:T=Psinθ
y方向分力:Ncosα=Pcosθ・cosα
z方向分力:Nsinα=Pcosθ・sinα
As shown in FIG. 16, the total weld length is shortened when the acute-angled line (portion of length c) is replaced with the curved portion (portion of width d) at the acute-angled point of the rhombus of reinforcing plate 33 . However, with respect to the tensile load (P), the component force acting on each weld is different, and the stress generated in the weld is different for each part. ), the total resistance can be made equal or greater.
As shown in FIG. 17, the force component for a tensile load P in an arbitrary direction with respect to the fillet weld is as follows.
X-direction force component: T = Psin θ
Y-direction force component: Ncosα=Pcosθ・cosα
Z direction force component: Nsinα=P cos θ・sinα

隅肉溶接ののど厚をa、溶接長をeとしたとき、のど断面に働く応力は以下のようになる。
x方向応力:τ=(P/ae)sinθ
y方向応力:τ=(P/ae)cosθ・cosα
z方向応力:σ=(P/ae)cosθ・sinα
When the throat thickness of the fillet weld is a and the weld length is e, the stress acting on the throat section is as follows.
X-direction stress: τ T = (P/ae) sin θ
Y-direction stress: τ N = (P / ae) cos θ · cos α
z-direction stress: σ N = (P/ae) cos θ · sin α

せん断ひずみエネルギー説をベースに、単純せん断の破壊応力が単純引張の破壊応力の0.75倍となる実験結果から、隅肉溶接部で破壊が起こるときの条件として、各方向の応力の成分和の関係式として一般的に以下の式が示されている。 Based on the theory of shear strain energy, from the experimental result that the fracture stress of simple shear is 0.75 times the fracture stress of simple tension, the sum of the stress components in each direction is determined as the condition for fracture at the fillet weld. The following equation is generally shown as the relational expression of .

Figure 0007238654000002
よって、荷重Pに対して、ある方向の溶接断面に発生する応力pは以下のようになる。
Figure 0007238654000003
Figure 0007238654000002
Therefore, the stress p0 generated in the weld cross section in a certain direction with respect to the load P is as follows.
Figure 0007238654000003

菱形の鋭角ラインの抵抗力Rは、鋭角ラインにおけるのど厚をaとし、α=45°を上式に代入すると以下のように求められる。

Figure 0007238654000004
曲線部における抵抗力Rは、曲線部におけるのど厚をaとし、引張荷重に対して直交する縦継ラインと平行な部分へ投影して近似すると、以下のように求められる。
=0.85σ・a×d
ここで、R≧Rであれば、鋭角ラインを曲線部に置換しても、隅肉溶接部における引張荷重Pに対する抵抗力が縮小することなく、合計の溶接長を削減できる。鋭角ラインと曲線部の関係として、
2C・cosθ=dが成り立つことから、以下の式を満足させることが条件となる。
Figure 0007238654000005
The resistance R C of the acute-angled line of the rhombus is obtained as follows by setting the throat thickness of the acute-angled line to a C and substituting α=45° into the above equation.
Figure 0007238654000004
The resistance Rd at the curved portion can be obtained as follows by approximating the throat thickness at the curved portion as ad and projecting it onto a portion parallel to the longitudinal connection line perpendicular to the tensile load.
R d =0.85σ P ·a d ×d
Here, if R d ≧R C , the total weld length can be reduced without reducing the resistance to the tensile load P at the fillet weld even if the sharp-angled line is replaced with the curved portion. As the relationship between the acute angle line and the curved part,
Since 2C·cos θ=d is established, it is a condition that the following expression is satisfied.
Figure 0007238654000005

曲線ラインの曲率としては、菱形の直線と曲線が交わる接点において、菱形の直線が曲線の接線となる曲率より緩やかにすることで応力の流れを円滑にすることができる。
例えば、曲線部におけるのど厚を10mm、鋭角ラインにおけるのど厚を6mmとした場合、図18に示すように、菱形外周傾き角度として57°以下に抑えると、鋭角ラインから曲線部にしても全体引張力に対する抵抗力を確保できる。
As for the curvature of the curved line, it is possible to smooth the flow of stress by making the curvature gentler than the curvature at which the rhombic straight line is tangent to the curved line at the intersection of the rhomboidal straight line and the curved line.
For example, if the throat thickness at the curved portion is 10 mm and the throat thickness at the acute-angled line is 6 mm, as shown in FIG. It is possible to ensure resistance to force.

第6変形例の補強板33のように、鋭角部をなだらかな曲線状にして応力集中を避けることも可能であるが、図19に示すように、第7変形例の補強板34の全体を楕円形にして鋭角点をなくしてもいい。曲線状にして溶接長が短くなってしまう一方で溶接脚長を増やさない場合は、溶接量が不足するため、図15および図19に示すように、補強板33または補強板34にそれぞれ厚さ方向に貫通する円形状の穴33a,34aを設けることで、溶接個所を増やしてもよい。
この場合、穴33a,34aの縁に沿った溶接長に補強板33または補強板34の外周溶接長を加えた全体溶接長が、前記補強板30の外周溶接長以上とする。
As in the reinforcing plate 33 of the sixth modification, it is possible to avoid stress concentration by making the acute-angled portion a gentle curve, but as shown in FIG. You can make it elliptical and eliminate sharp points. If the welding leg length is not increased while the welding length is shortened by the curved shape, the amount of welding will be insufficient. Therefore, as shown in FIGS. The number of welding points may be increased by providing circular holes 33a and 34a penetrating through.
In this case, the total welding length obtained by adding the welding length along the edges of the holes 33a and 34a to the welding length of the outer circumference of the reinforcing plate 33 or 34 is set to be equal to or greater than the welding length of the outer circumference of the reinforcing plate 30.

第6変形例の補強板33では、その鋭角部が滑らかな曲面によって形成されているため、その分だけ鋭角部を有する菱形補強板に比して外周溶接長が短くなる場合に、補強板33に設けられた穴33aの縁に沿って溶接することによって、穴33aの縁に沿った溶接長に補強板33の外周溶接長を加えた全体溶接長が、補強板30の外周溶接長以上となるように補強板33を鋼矢板本体11のアーム部15に溶接することによって、溶接量を確保し必要耐力を確保できる。 In the reinforcing plate 33 of the sixth modification, since the acute-angled portion is formed by a smooth curved surface, the reinforcing plate 33 can By welding along the edge of the hole 33a provided in the hole 33a, the total weld length, which is the weld length along the edge of the hole 33a plus the outer circumference weld length of the reinforcing plate 33, is greater than or equal to the outer circumference weld length of the reinforcing plate 30. By welding the reinforcing plate 33 to the arm portion 15 of the steel sheet pile main body 11 so as to have a sufficient welding amount, the necessary yield strength can be ensured.

また、菱形の補強板の鋭角部が滑らかな曲面によって形成されている補強板において、菱形形状の鋼矢板材軸方向両端部の鋭角部をなだらかな曲線状にした場合、縦継ラインに対する菱形外周傾き角度(θ)として上述した式(1)を満足するようにすると、隅肉溶接部のせん断強度を確保しつつ、補強板の外周長を短くでき鋼重を削減できる。 In addition, in the reinforcing plate in which the acute-angled portion of the rhombus-shaped reinforcing plate is formed by a smooth curved surface, when the acute-angled portions at both ends of the rhombic-shaped steel sheet pile material in the axial direction are gently curved, the outer circumference of the rhombus with respect to the longitudinal connection line If the inclination angle (θ) satisfies the above formula (1), the shear strength of the fillet weld can be secured, and the outer circumference of the reinforcing plate can be shortened, thereby reducing the steel weight.

図20(a)~(e)は、第8~第12変形例の補強板をそれぞれ示す正面図である。
このような第8~第12変形例における補強板35~39でも上述した(1)~(4)の条件を全て満たすとともに、補強板35~39がそれぞれ上下の鋼矢板本体11,11のアーム部15,15にその縦継ライン16を跨ぐようにして外周を隅肉溶接によって接合されている。
FIGS. 20A to 20E are front views showing reinforcing plates of eighth to twelfth modifications, respectively.
The reinforcing plates 35 to 39 in such eighth to twelfth modifications also satisfy all the conditions (1) to (4) described above, and the reinforcing plates 35 to 39 are the arms of the upper and lower steel sheet pile bodies 11 and 11, respectively. The outer circumferences of the portions 15, 15 are joined by fillet welding so as to straddle the longitudinal joint line 16. - 特許庁

また、第8~第12変形例における補強板35~39では、補強板30の外周ラインから内側への切欠き部を設けることで、補強板35~39のそれぞれの全体の外周長の合計として、補強板30、1枚の外周長以上の長さを確保しつつ、菱形よりも断面積を縮小させ鋼材重量を削減することが可能となり、材料費の削減、作業効率の向上、施工速度の向上をもたらすことができる。 In addition, in the reinforcing plates 35 to 39 in the eighth to twelfth modifications, by providing a notch portion inward from the outer peripheral line of the reinforcing plate 30, the total outer peripheral length of each of the reinforcing plates 35 to 39 is , It is possible to reduce the weight of the steel material by reducing the cross-sectional area compared to the rhombus while securing the length of the reinforcing plate 30 and the outer circumference of one sheet, thereby reducing the material cost, improving the work efficiency, and increasing the construction speed. can bring about improvement.

また、第11変形例の補強板38では、補強板38に厚さ方向に貫通する円形状の穴38a,38aが設けられ、当該穴38a,38aの縁に沿った溶接長に外周溶接長を加えた全体溶接長が、補強板30の外周溶接長以上となっている。
このように補強板38の内部に穴38a,38aを設けることで、補強板38の重量を削減している。この穴38a,38aは運搬時の把持部として利用できるほか、外周溶接だけでは溶接量が不足する場合に、穴38a,38aに沿って溶接を施すことで溶接量を確保し必要耐力を確保できる。
Further, in the reinforcing plate 38 of the eleventh modified example, circular holes 38a, 38a are provided through the reinforcing plate 38 in the thickness direction. The added total weld length is greater than or equal to the outer circumference weld length of the reinforcing plate 30 .
By thus providing the holes 38a, 38a inside the reinforcing plate 38, the weight of the reinforcing plate 38 is reduced. These holes 38a, 38a can be used as a gripping portion during transportation, and when the amount of welding is insufficient only by welding on the outer periphery, the amount of welding can be secured by welding along the holes 38a, 38a, and the necessary strength can be secured. .

また、第12変形例の補強板39では、補強板39の軽量化を図るために、三角形状の2つの穴39a,39aを設けている。この2つの穴39a,39aは2等辺三角形状に形成され、その頂角に対向する辺どうしを合致させることで、外形の菱形と相似形の菱形形状を形成するようになっている。
第11および第12変形例の補強板38,39、穴38a,38aや穴39a,39aを設ける位置としては、補強板38,39の縦継ライン16での引張強度を確保するために、縦継ライン16を挟んで両側に位置する穴38a,38a間や穴39a,39a間のせん断強度を確保すべく、縦継ライン16から穴,38a,39aの縁までの距離fを、補強板38,39の幅の0.87倍以上確保する。補強板38,39において、縦継ライン16を挟んで両側の穴38a,38a間や穴39a,39a間でせん断破壊面が2面形成されることを想定すると、当該せん断強度が、縦継ライン16の引張強度以上となるためには、以下の式を満足することが必要となる。
Further, in the reinforcing plate 39 of the twelfth modified example, two triangular holes 39a, 39a are provided in order to reduce the weight of the reinforcing plate 39. As shown in FIG. The two holes 39a, 39a are formed in the shape of an isosceles triangle, and by aligning the sides opposite to the apex angles of the holes 39a and 39a, a rhombic shape similar to the outer shape of the rhombus is formed.
The positions of the reinforcing plates 38 and 39, the holes 38a and 38a, and the holes 39a and 39a in the eleventh and twelfth modifications are the vertical positions in order to ensure the tensile strength of the reinforcing plates 38 and 39 at the longitudinal joint line 16. In order to secure the shear strength between the holes 38a, 38a and between the holes 39a, 39a located on both sides of the joint line 16, the distance f from the longitudinal joint line 16 to the edges of the holes 38a, 39a is set by the reinforcing plate 38. , 39 is secured. Assuming that two shear failure surfaces are formed between the holes 38a and 38a and between the holes 39a and 39a on both sides of the tether line 16 in the reinforcing plates 38 and 39, the shear strength is In order to achieve a tensile strength of 16 or more, it is necessary to satisfy the following equation.

Figure 0007238654000006
これを式変形すると以下のようになる。
Figure 0007238654000007
Figure 0007238654000006
If this formula is transformed, it becomes as follows.
Figure 0007238654000007

また、第8~第10変形例において、菱形外周ラインから内側への切欠き部を設ける場合も、縦継ライン16から切欠き部の最近傍点までの距離として、上式による距離を確保することが好ましい。 In addition, in the eighth to tenth modifications, even when a notch portion is provided inward from the rhombic outer peripheral line, the distance from the above formula should be secured as the distance from the longitudinal connecting line 16 to the nearest point of the notch portion. is preferred.

なお、本実施形態は、本発明をハット形鋼矢板10,10を縦継ぎする縦継構造に適用した場合を例にとって説明したが、本発明はハット形鋼矢板10,10の他に、他の実施形態として、図21に示すようなU形鋼矢板40および図22に示すようなZ形鋼矢板50を縦継ぎする縦継構造にも適用できる。 In the present embodiment, the case where the present invention is applied to a spliced structure in which the hat-shaped steel sheet piles 10, 10 are longitudinally spliced has been described as an example. As an embodiment of , it can also be applied to a tandem structure in which a U-shaped steel sheet pile 40 as shown in FIG. 21 and a Z-shaped steel sheet pile 50 as shown in FIG. 22 are spliced.

U形鋼矢板40は、図21に示すように、鋼矢板本体41とその幅方向の両側端部に形成された継手部42,42とを備え、鋼矢板本体41は、ウェブ43とその両側端部に形成されたフランジ部44とを有している。
このようなU形鋼矢板40を縦継ぎする場合、鋼矢板本体41のフランジ部44に補強板20を取り付ける。補強板20はフランジ部44の先端部、つまり継手部42の近傍に取り付けるのが好ましい。また、補強板20はフランジ部44の外側を向く外側面、内側を向く内側面または外側面と内側面の双方に取り付ければよい。
また、このような補強板20に代えて、上述したような補強板26~28,30~39や、これらの補強板に板材21や補助部材25を付加して取り付けてもよい。
The U-shaped steel sheet pile 40, as shown in FIG. and a flange portion 44 formed at the end.
When longitudinally joining such a U-shaped steel sheet pile 40 , the reinforcing plate 20 is attached to the flange portion 44 of the steel sheet pile body 41 . The reinforcing plate 20 is preferably attached to the tip of the flange portion 44 , that is, in the vicinity of the joint portion 42 . Further, the reinforcing plate 20 may be attached to the outer surface facing the outside of the flange portion 44, the inner surface facing the inside, or both the outer surface and the inner surface.
Further, instead of the reinforcing plate 20, the reinforcing plates 26 to 28 and 30 to 39 described above, or the plate member 21 and the auxiliary member 25 may be attached to these reinforcing plates.

Z形鋼矢板50は、図22に示すように、鋼矢板本体51とその幅方向の両側端部に形成された継手部52,52とを備えたものであり、鋼矢板本体51は、斜めに配置されたウェブ53と、その両側端部に形成されたフランジ部54,54とを有している。
このようなZ形鋼矢板50を縦継ぎする場合、鋼矢板本体51のフランジ部54に補強板20を取り付ける。補強板20はフランジ部54の先端部、つまり継手部52の近傍に取り付けるのが好ましい。また、補強板20はフランジ部54のウェブ側を向く面、ウェブ側と逆側を向く面または双方の面に取り付ければよい。
また、このような補強板20に代えて、上述したような補強板26~28,30~39や、これらの補強板に板材21や補助部材25を付加して取り付けてもよい。
The Z-shaped steel sheet pile 50, as shown in FIG. It has a web 53 arranged on the rim and flanges 54, 54 formed on both side ends thereof.
When longitudinally joining such a Z-shaped steel sheet pile 50 , the reinforcing plate 20 is attached to the flange portion 54 of the steel sheet pile body 51 . The reinforcing plate 20 is preferably attached to the tip of the flange portion 54 , that is, in the vicinity of the joint portion 52 . Further, the reinforcing plate 20 may be attached to the surface of the flange portion 54 facing the web, the surface facing away from the web, or both surfaces.
Further, instead of the reinforcing plate 20, the reinforcing plates 26 to 28 and 30 to 39 described above, or the plate member 21 and the auxiliary member 25 may be attached to these reinforcing plates.

10,40,50 鋼矢板
11,41,51 鋼矢板本体
12,42,52 継手部
13,43,53 ウェブ
14,44,54 フランジ
15 アーム部
16 縦継ライン
20,26,27,28,30~39 補強板
21 板材
25 補助部材
na 中立軸
Reference Signs List 10, 40, 50 Steel sheet pile 11, 41, 51 Steel sheet pile body 12, 42, 52 Joint portion 13, 43, 53 Web 14, 44, 54 Flange 15 Arm portion 16 Longitudinal connection line 20, 26, 27, 28, 30 ~39 Reinforcing plate 21 Plate material 25 Auxiliary member na Neutral shaft

Claims (7)

鋼矢板本体および継手部を有する鋼矢板どうしを材軸方向に連結する鋼矢板の縦継構造であって、
前記鋼矢板本体どうしの少なくとも一部が全断面溶接によって接合され、前記継手部どうしは溶接されておらず、
前記鋼矢板どうしに、それらの縦継ラインを跨ぐようにして補強板が溶接され、
前記補強板は、以下の(1)~(3)の条件を全て満たすことを特徴とする鋼矢板の縦継構造。
(1)前記補強板は、前記鋼矢板本体の幅方向中央部のウェブ以外の鋼矢板部位のみに取り付けられていること。
(2)前記縦継ラインにおける断面の前記補強板の合計断面積が、前記鋼矢板どうしが全断面溶接されていない、前記鋼矢板の断面欠損部の合計断面積以上であること。
(3)前記鋼矢板の鋼矢板断面の中立軸に対して、前記縦継ラインにおける断面の前記補強板の合計断面2次モーメントが、前記断面欠損部の合計断面2次モーメント以上であること。
A longitudinal joint structure of steel sheet piles for connecting steel sheet piles having a steel sheet pile main body and a joint part in the material axial direction,
At least part of the steel sheet pile bodies are joined by full-section welding, and the joint portions are not welded together,
A reinforcing plate is welded between the steel sheet piles so as to straddle the longitudinal connection line,
The steel sheet pile tandem structure characterized in that the reinforcing plate satisfies all of the following conditions (1) to (3).
(1) The reinforcing plate is attached only to the steel sheet pile portion other than the web at the center portion in the width direction of the steel sheet pile body.
(2) The total cross-sectional area of the reinforcing plate in the cross section of the longitudinal connection line is equal to or greater than the total cross-sectional area of the cross-sectional missing portions of the steel sheet piles where the steel sheet piles are not fully cross-sectionally welded to each other.
(3) The total geometrical moment of inertia of the reinforcing plate in the cross section of the longitudinal connection line with respect to the neutral axis of the steel sheet pile cross section of the steel sheet pile is equal to or greater than the total geometrical moment of inertia of the missing section portion.
前記鋼矢板が、ウェブ、当該ウェブの両側端部に形成された一対のフランジ部、および当該一対のフランジ部のそれぞれの外側の側端部に形成された一対のアーム部を有する前記鋼矢板本体と、前記一対のアーム部のそれぞれの外側の側端部に形成された一対の前記継手部とを備えたハット形鋼矢板であり、
前記補強板は前記アーム部のみに取り付けられていることを特徴とする請求項1に記載の鋼矢板の縦継構造。
The steel sheet pile body has a web, a pair of flanges formed on both side ends of the web, and a pair of arms formed on the outer side ends of the pair of flanges. and a pair of joint portions formed at the outer side ends of the pair of arm portions, respectively.
The tandem structure of steel sheet piles according to claim 1, wherein the reinforcing plate is attached only to the arm portion.
前記補強板は、前記アーム部の両面のうち、少なくとも、前記中立軸から遠い側の面に取り付けられていることを特徴とする請求項2に記載の鋼矢板の縦継構造。 3. The tandem structure of steel sheet piles according to claim 2, wherein the reinforcing plate is attached to at least one of the two surfaces of the arm portion that is farther from the neutral axis. 前記補強板は、前記アーム部の両面に取り付けられていることを特徴とする請求項3に記載の鋼矢板の縦継構造。 The tandem structure of steel sheet piles according to claim 3, wherein the reinforcing plates are attached to both surfaces of the arm portion. 前記補強板の、前記継手部側の板厚が、前記継手部と反対側の板厚より厚いことを特徴とする請求項1~4のいずれか1項に記載の鋼矢板の縦継構造。 The tandem structure of steel sheet piles according to any one of claims 1 to 4, wherein the thickness of the reinforcing plate on the side of the joint portion is thicker than the thickness of the side opposite to the joint portion. 前記補強板の板厚は、前記継手部に近づくに従って厚くなることを特徴とする請求項5に記載の鋼矢板の縦継構造。 6. The tandem structure of steel sheet piles according to claim 5, wherein the plate thickness of the reinforcing plate increases toward the joint portion. 前記継手部どうしに、それらの縦継ラインを跨ぐようにして補助部材が固定されていることを特徴とする請求項1~6のいずれか1項に記載の鋼矢板の縦継構造。 The tandem structure of steel sheet piles according to any one of claims 1 to 6, wherein an auxiliary member is fixed between the joint portions so as to straddle the tandem line.
JP2019129035A 2019-07-11 2019-07-11 Longitudinal structure of steel sheet piles Active JP7238654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019129035A JP7238654B2 (en) 2019-07-11 2019-07-11 Longitudinal structure of steel sheet piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019129035A JP7238654B2 (en) 2019-07-11 2019-07-11 Longitudinal structure of steel sheet piles

Publications (2)

Publication Number Publication Date
JP2021014703A JP2021014703A (en) 2021-02-12
JP7238654B2 true JP7238654B2 (en) 2023-03-14

Family

ID=74530394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019129035A Active JP7238654B2 (en) 2019-07-11 2019-07-11 Longitudinal structure of steel sheet piles

Country Status (1)

Country Link
JP (1) JP7238654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425301B2 (en) * 2020-03-24 2024-01-31 日本製鉄株式会社 Vertical joint structure of steel sheet piles and construction method of vertical joint structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419198B2 (en) 2006-06-14 2010-02-24 住友金属工業株式会社 Steel connection wall member manufacturing jig, steel connection wall member manufacturing method, steel connection wall member, and steel connection wall member longitudinal connection method
JP5182251B2 (en) 2009-08-10 2013-04-17 新日鐵住金株式会社 Steel sheet pile joint structure and steel sheet pile wall structure
JP2016156247A (en) 2015-02-26 2016-09-01 新日鐵住金株式会社 Vertical joint structure of steel sheet pile and steel wall structure
JP2017066702A (en) 2015-09-30 2017-04-06 新日鐵住金株式会社 Vertical connection structure of steel sheet pipe and steel sheet pile wall
JP2017101394A (en) 2015-11-30 2017-06-08 ジェコス株式会社 Joint part fixture of steel sheet pile
JP2017155425A (en) 2016-02-29 2017-09-07 新日鐵住金株式会社 Steel sheet pile wall
JP2018138719A (en) 2017-02-24 2018-09-06 新日鐵住金株式会社 Steel member longitudinal joint structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117320A (en) * 1984-11-10 1986-06-04 Marufuji Shiitopairu Kk Joining method for sheet pile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419198B2 (en) 2006-06-14 2010-02-24 住友金属工業株式会社 Steel connection wall member manufacturing jig, steel connection wall member manufacturing method, steel connection wall member, and steel connection wall member longitudinal connection method
JP5182251B2 (en) 2009-08-10 2013-04-17 新日鐵住金株式会社 Steel sheet pile joint structure and steel sheet pile wall structure
JP2016156247A (en) 2015-02-26 2016-09-01 新日鐵住金株式会社 Vertical joint structure of steel sheet pile and steel wall structure
JP2017066702A (en) 2015-09-30 2017-04-06 新日鐵住金株式会社 Vertical connection structure of steel sheet pipe and steel sheet pile wall
JP2017101394A (en) 2015-11-30 2017-06-08 ジェコス株式会社 Joint part fixture of steel sheet pile
JP2017155425A (en) 2016-02-29 2017-09-07 新日鐵住金株式会社 Steel sheet pile wall
JP2018138719A (en) 2017-02-24 2018-09-06 新日鐵住金株式会社 Steel member longitudinal joint structure

Also Published As

Publication number Publication date
JP2021014703A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
US9512590B2 (en) Combined steel sheet pile, diaphragm wall, and method of disassembling combined steel sheet pile
JP5754238B2 (en) Beam-column joint structure
JP6304074B2 (en) Method and structure for welding and joining steel members
JP6375195B2 (en) Widened PC slab structure and widening method of existing PC slab
JP5182251B2 (en) Steel sheet pile joint structure and steel sheet pile wall structure
JP7238654B2 (en) Longitudinal structure of steel sheet piles
CA3017564C (en) Support structure for a wind turbine
JP7407504B2 (en) Vertical joint structure of steel sheet piles
JP5754262B2 (en) Beam-column joint structure
JP2007291682A (en) Structure and method for jointing wide flange shapes together
JP6818510B2 (en) Column-beam joint structure
JP5577676B2 (en) Column and beam welded joint structure
JP5682960B2 (en) Steel structure reinforcement structure and reinforcement method
WO2016001997A1 (en) Bridge construction method and bridge structure
JP6893799B2 (en) Beam flint connection structure and beam flint connection piece
JP4823865B2 (en) Combination steel sheet pile and method for producing steel sheet pile
JP2009030357A (en) Structure of welding and joining column and beam
JP6996544B2 (en) Seismic retrofitting method for existing structures
JP4350121B2 (en) Reinforced welded column beam joint fixing structure
JP7143781B2 (en) Beam end joint
JP6500823B2 (en) Column-beam connection structure
JP5115012B2 (en) Column and beam welded joint structure
JP5178450B2 (en) Method and apparatus for reinforcing steel pier corners
JP7360039B2 (en) Steel sheet pile wall and steel sheet pile wall manufacturing method
JPS6033962A (en) Pillar and beam connecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R151 Written notification of patent or utility model registration

Ref document number: 7238654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151