JP7238511B2 - Ni-based ferrite and coil parts using the same - Google Patents

Ni-based ferrite and coil parts using the same Download PDF

Info

Publication number
JP7238511B2
JP7238511B2 JP2019051780A JP2019051780A JP7238511B2 JP 7238511 B2 JP7238511 B2 JP 7238511B2 JP 2019051780 A JP2019051780 A JP 2019051780A JP 2019051780 A JP2019051780 A JP 2019051780A JP 7238511 B2 JP7238511 B2 JP 7238511B2
Authority
JP
Japan
Prior art keywords
mol
based ferrite
less
magnetic
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019051780A
Other languages
Japanese (ja)
Other versions
JP2020152603A (en
Inventor
智 田中
徳和 小湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROTERIAL, LTD.
Original Assignee
PROTERIAL, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROTERIAL, LTD. filed Critical PROTERIAL, LTD.
Priority to JP2019051780A priority Critical patent/JP7238511B2/en
Publication of JP2020152603A publication Critical patent/JP2020152603A/en
Application granted granted Critical
Publication of JP7238511B2 publication Critical patent/JP7238511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コイル部品等に使用されるNi系フェライトとそれを用いたコイル部品に関するものである。 TECHNICAL FIELD The present invention relates to a Ni-based ferrite used for coil components and the like, and coil components using the same.

磁性フェライトはスピネル型結晶構造を有し、その化学量論組成は3価化合物と2価化合物が等モルに配合されることが知られている。例えばNi系フェライトのスピネル型結晶(一般式Fe・MeO)は、FeとMeO(Me:Ni,Zn)が50:50の比率で化学量論組成となる。 Magnetic ferrite has a spinel-type crystal structure, and its stoichiometric composition is known to contain equimolar amounts of a trivalent compound and a divalent compound. For example, spinel-type crystals of Ni-based ferrite (general formula: Fe 2 O 3 ·MeO) have a stoichiometric composition of Fe 2 O 3 and MeO (Me:Ni, Zn) at a ratio of 50:50.

このような磁性フェライトの一般的な製造方法では、磁性フェライトを構成する元素の酸化物等を素原料として準備し、それを所定の組成となるように配合し焼成してスピネル化する。均一なスピネル化反応を得る観点から、素原料を本焼成よりも低温度で焼成してスピネル化する仮焼成を経て得られた仮焼粉を所定の形状に固めて成形して成形体とし、それを焼結して磁心とする製法を採用する場合が多い。 In a general manufacturing method of such a magnetic ferrite, oxides of elements constituting the magnetic ferrite are prepared as raw materials, blended so as to have a predetermined composition, and fired to form a spinel. From the viewpoint of obtaining a uniform spinelization reaction, the raw material is fired at a temperature lower than that of the main firing to form a spinel. In many cases, a method of sintering it to make a magnetic core is adopted.

磁性フェライトの磁気特性は組成に強く依存することが知られている。コイル部品等に用いられる磁性フェライトとして要求される特性としては、例えば小型化のためには、使用される周波数、温度領域において初透磁率μiが高くて、所定の印加磁界での磁束密度が大きく、保磁力が小さいことが挙げられる。 It is known that the magnetic properties of magnetic ferrite strongly depend on the composition. The characteristics required for magnetic ferrite used in coil parts and the like include, for example, a high initial magnetic permeability μi in the frequency and temperature range used and a large magnetic flux density in a predetermined applied magnetic field for miniaturization. , and low coercive force.

特許文献1には、Feを40~50mol%、ZnOを20~33mol%、CuOを2~10mol%、MnOを0.1~1mol%含有し、残部がNiOの、磁気損失が低減されたNi系フェライト材料が記載されている。 Patent Document 1 describes a magnetic loss sensor containing 40 to 50 mol% of Fe 2 O 3 , 20 to 33 mol% of ZnO, 2 to 10 mol% of CuO, 0.1 to 1 mol% of MnO 2 , and the balance being NiO. A reduced Ni-based ferrite material is described.

特開2002-198212号公報Japanese Patent Application Laid-Open No. 2002-198212

特許文献1ではMnOを使用し、Mn4+のイオンをスピネル結晶のイオン結晶間へ侵入させ、各イオン間の距離を大きくすることで、結晶の歪や結晶中の応力を減少させて保磁力を小さくしてNi系フェライト材料のヒステリシス損失を低減する。しかし、所定の印加磁界での磁束密度が大きく、初透磁率μiが高いとの記載は見られない。 In Patent Document 1, MnO 2 is used, Mn 4+ ions are allowed to penetrate between the ion crystals of the spinel crystal, and the distance between each ion is increased to reduce the strain of the crystal and the stress in the crystal, thereby reducing the coercive force. is reduced to reduce the hysteresis loss of the Ni-based ferrite material. However, there is no description that the magnetic flux density in a predetermined applied magnetic field is large and the initial magnetic permeability μi is high.

そこで本発明は、保磁力が小さく、初透磁率μiが大きく、かつ所定の印加磁界での磁束密度が大きいNi系フェライトと、それを用いたコイル部品を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a Ni-based ferrite having a small coercive force, a large initial permeability μi, and a large magnetic flux density in a predetermined applied magnetic field, and a coil component using the same.

第1の発明は、20℃での初透磁率μi が600以上で、保磁力Hcが50A/m未満で、印加磁界4kA/m における磁束密度B4kが360mT以上のNi系フェライトであって、前記Ni系フェライトの成分組成が、45.5mol%以上47.0mol%以下のFe、28.0mol%以上30.0mol%以下のZnO、7.5mol%以上9.0mol%以下のCuO、1.2mol%超4.2mol%以下のMnO、及び残部NiOとして表され、FeとMnOとの合計量が、48.2mol%超49.8mol%以下のNi系フェライトである。 A first invention is a Ni-based ferrite having an initial magnetic permeability μi of 600 or more at 20° C., a coercive force Hc of less than 50 A/m, and a magnetic flux density B4k of 360 mT or more in an applied magnetic field of 4 kA/m , The component composition of the Ni-based ferrite is 45.5 mol% or more and 47.0 mol% or less of Fe 2 O 3 , 28.0 mol% or more and 30.0 mol% or less of ZnO, 7.5 mol% or more and 9.0 mol% or less of CuO, It is a Ni-based ferrite in which the total amount of Fe 2 O 3 and MnO is expressed as more than 1.2 mol % and 4.2 mol % or less of MnO and the balance is NiO, and the total amount of Fe 2 O 3 and MnO is more than 48.2 mol % and 49.8 mol % or less.

本発明のNi系フェライトは、FeとMnOとの合計量が48.5mol%以上で、20℃での初透磁率μiが650以上であり、密度が5.20×10kg/m超であるのが好ましい。 The Ni-based ferrite of the present invention has a total amount of Fe 2 O 3 and MnO of 48.5 mol % or more, an initial magnetic permeability μi at 20° C. of 650 or more, and a density of 5.20×10 3 kg/ m 3 is preferred.

第2の発明は、第1の発明のNi系フェライトを用いたコイル部品であって、前記コイル部品は、コイルと、前記コイルの磁路に配置される第1の発明のNi系フェライトで構成された磁心とを含むコイル部品である。 A second invention is a coil component using the Ni-based ferrite of the first invention, wherein the coil component comprises a coil and the Ni-based ferrite of the first invention arranged in the magnetic path of the coil. and a coil component including a magnetic core.

本発明によれば、保磁力が小さく、初透磁率μiが大きく、かつ所定の印加磁界での磁束密度が大きいNi系フェライトと、それを用いたコイル部品を提供することができる。 According to the present invention, it is possible to provide a Ni-based ferrite having a small coercive force, a large initial permeability μi, and a large magnetic flux density in a predetermined applied magnetic field, and a coil component using the same.

本発明の一実施形態に係るNi系フェライトのFeのモル量とMnOのモル量との合計量と20℃及び100℃での保磁力Hcとの関係を示すグラフである。4 is a graph showing the relationship between the total molar amount of Fe 2 O 3 and MnO and the coercive force Hc at 20° C. and 100° C. of the Ni-based ferrite according to one embodiment of the present invention. 本発明の一実施形態に係るNi系フェライトのFeのモル量とMnOのモル量との合計量と印加磁界4kA/mで20℃における磁束密度B4kとの関係を示すグラフである。4 is a graph showing the relationship between the total amount of Fe 2 O 3 molar amount and MnO molar amount in the Ni-based ferrite according to one embodiment of the present invention and the magnetic flux density B4k at 20° C. with an applied magnetic field of 4 kA/m. 本発明の一実施形態に係るNi系フェライトのFeのモル量とMnOのモル量との合計量と印加磁界4kA/mで100℃における磁束密度B4kとの関係を示すグラフである。4 is a graph showing the relationship between the total amount of Fe 2 O 3 and MnO in the Ni-based ferrite according to the embodiment of the present invention and the magnetic flux density B4k at 100° C. with an applied magnetic field of 4 kA/m. 本発明の一実施形態に係るNi系フェライトのFeのモル量とMnOのモル量との合計量と20℃での初透磁率μiとの関係を示すグラフである。4 is a graph showing the relationship between the total amount of Fe 2 O 3 molar amount and MnO molar amount and the initial magnetic permeability μi at 20° C. of the Ni-based ferrite according to one embodiment of the present invention.

以下、本発明の実施形態に係るNi系フェライトとそれを用いたコイル部品について具体的に説明する。ただし、本発明はこれに限定されるものではなく、技術的思想の範囲内で適宜変更可能である。 Hereinafter, a Ni-based ferrite and a coil component using the same according to embodiments of the present invention will be specifically described. However, the present invention is not limited to this, and can be modified as appropriate within the scope of the technical idea.

(A)組成
本実施形態のNi系フェライトは、Fe、ZnO、CuO、MnO、NiOの総量を100mol%とし、45.5mol%以上47.0mol%以下のFe、28.0mol%以上30.0mol%以下のZnO、7.5mol%以上9.0mol%以下のCuO、1.2mol%超4.2mol%以下のMnO、及び残部NiOとし、FeとMnOとの合計量が、48.2mol%超49.8mol%以下で表される組成で構成される。各素原料中には数ppm~数百ppm程度の不可避的不純物元素が含まれ得る。具体的な不可避的不純物元素としては、Si、Ca、B、C、S、Cl、Se、Br、Te、I、Li、Na、Mg、Al、K、Ga、Ge、Sr、In、Sn、Sb、Ba、Bi、Sc、Ti、V、Cr、Y、Nb、Mo、Pd、Ag、Hf、Ta等が挙げられるが、Ni系フェライト中の不可避的不純物はFe、ZnO、CuO、NiOの総量100質量部に対して総量で1質量部以下とし、極力少なく抑えるのが好ましい。不可避的不純物の中でもNa、S、Cl、P、Cr、Bはできるだけ少ない方が好ましく、工業的な許容範囲は合計で0.1質量部以下が好ましく、更に0.05質量部以下であることが好ましい。
(A) Composition In the Ni-based ferrite of the present embodiment, the total amount of Fe 2 O 3 , ZnO, CuO, MnO, and NiO is 100 mol %, and Fe 2 O 3 is 45.5 mol % or more and 47.0 mol % or less. 0 mol% or more and 30.0 mol% or less of ZnO, 7.5 mol% or more and 9.0 mol% or less of CuO, 1.2 mol% or more and 4.2 mol% or less of MnO, and the balance of NiO, and Fe 2 O 3 and MnO The total amount is composed of a composition represented by more than 48.2 mol % and 49.8 mol % or less. Each raw material may contain unavoidable impurity elements of several ppm to several hundred ppm. Specific unavoidable impurity elements include Si, Ca, B, C, S, Cl, Se, Br, Te, I, Li, Na, Mg, Al, K, Ga, Ge, Sr, In, Sn, Sb, Ba, Bi, Sc, Ti, V, Cr, Y, Nb, Mo, Pd, Ag, Hf, Ta, etc., but unavoidable impurities in Ni-based ferrite are Fe 2 O 3 , ZnO, CuO , the total amount is 1 part by mass or less with respect to 100 parts by mass of the total amount of NiO. Among the unavoidable impurities, Na, S, Cl, P, Cr, and B are preferably as small as possible, and the industrial acceptable range is preferably 0.1 parts by mass or less in total, and further 0.05 parts by mass or less. is preferred.

本実施形態の組成について、以下説明する。
Feが45.5mol%未満、あるいは47.0mol%超では所望の初透磁率μiや保磁力Hcが得られない場合がある。また高い飽和磁束密度B4kを得る為、好ましくは、Feは45.7mol%以上が好ましく、より好ましくは46.0mol%以上である。
The composition of this embodiment will be described below.
If Fe 2 O 3 is less than 45.5 mol % or more than 47.0 mol %, the desired initial permeability μi and coercive force Hc may not be obtained. In order to obtain a high saturation magnetic flux density B4k, Fe 2 O 3 is preferably 45.7 mol % or more, more preferably 46.0 mol % or more.

ZnOが28.0mol%未満、あるいは30.0mol%超では、所望の初透磁率μiや保磁力が得られない場合がある。ZnOの好ましい含有量は28.5mol%以上である。また29.5mol%以下が好ましい。 If the ZnO content is less than 28.0 mol % or more than 30.0 mol %, the desired initial permeability μi and coercive force may not be obtained. A preferable content of ZnO is 28.5 mol % or more. Moreover, 29.5 mol% or less is preferable.

CuOが7.5mol%未満、あるいは9.0 mol%超であると、所望の初透磁率μiが得られない場合がある。CuOの好ましい含有量は7.8mol%以上である。また8.5mol%以下が好ましい。 If CuO is less than 7.5 mol % or more than 9.0 mol %, the desired initial magnetic permeability μi may not be obtained. A preferable content of CuO is 7.8 mol % or more. Moreover, 8.5 mol% or less is preferable.

MnOが1.20mol%以下、あるいは4.20mol%超であると、所望の初透磁率μiが得られない場合がある。MnはMnフェライト[Fe・(Mn,Zn)O]を構成し、それを含むNi系フェライトの保磁力Hcの低減、飽和磁束密度B4kの増加、初透磁率μiの増加に寄与するが、MnOとFeとの合計量48.20mol%未満あるいは49.80mol%超であると、所望の初透磁率μi、磁束密度B4k、保磁力Hcが得られない場合がある。 If the MnO content is 1.20 mol % or less, or more than 4.20 mol %, the desired initial magnetic permeability μi may not be obtained. Mn constitutes Mn ferrite [Fe 2 O 3 (Mn, Zn) O], and contributes to reducing the coercive force Hc, increasing the saturation magnetic flux density B4k, and increasing the initial permeability μi of the Ni-based ferrite containing it. However, if the total amount of MnO and Fe 2 O 3 is less than 48.20 mol % or more than 49.80 mol %, desired initial permeability μi, magnetic flux density B4k and coercive force Hc may not be obtained.

またNiOは残部であって、好ましくは11.0mol%以上17.8mol%以下である。さらに好ましくは、NiOは12.0mol%以上であり、13.0mol%以上であるのがいっそう好ましい。また16.0mol%以下が好ましく、さらに好ましくは15.0mol%以下である。 NiO is the balance, and is preferably 11.0 mol % or more and 17.8 mol % or less. More preferably, NiO is 12.0 mol % or more, and more preferably 13.0 mol % or more. Also, it is preferably 16.0 mol % or less, more preferably 15.0 mol % or less.

各成分の定量は、蛍光X線分析及びICP発光分光分析により行うことができる。予め蛍光X線分析により含有元素の定性分析を行い、次に含有元素を標準サンプルと比較する検量線法により定量する。 Quantification of each component can be performed by fluorescent X-ray analysis and ICP emission spectroscopic analysis. A qualitative analysis of contained elements is performed in advance by fluorescent X-ray analysis, and then the contained elements are quantified by a calibration curve method in which the contained elements are compared with a standard sample.

(B)Ni系フェライトの製造方法
Fe、ZnO、CuO、MnO及びNiOを所定割合で湿式混合した後、乾燥し、800~1000℃で仮焼成してスピネル化した仮焼粉とするのが好ましい。得られた仮焼粉をイオン交換水とともにボールミルに投入し、平均粉砕粒径(空気透過法)が1.7~2.1μmとなるまで粉砕してスラリーとすれば良い。得られたスラリーにバインダとしてポリビニルアルコールを加え、スプレードライヤーにて顆粒化した後、加圧成形して所定形状の成形体を得ることが出来る。
(B) Method for producing Ni-based ferrite Fe 2 O 3 , ZnO, CuO, MnO and NiO are wet-mixed at a predetermined ratio, dried, and calcined at 800 to 1000° C. to obtain a spinelized calcined powder. is preferred. The calcined powder thus obtained is put into a ball mill together with ion-exchanged water, and pulverized to an average pulverized particle size (by air permeation method) of 1.7 to 2.1 μm to form a slurry. Polyvinyl alcohol is added as a binder to the obtained slurry, granulated with a spray dryer, and then pressure-molded to obtain a molded body having a predetermined shape.

得られた成形体を焼成炉にて焼結してNi系フェライト(磁心)を得る。焼成工程は昇温工程と、高温保持工程と、降温工程とを有する。焼成工程における雰囲気は、不活性ガス雰囲気でも良いし大気雰囲気でも構わない。ここで、成形体は昇温工程を経て、高温保持工程の設定された高温温度に到達し、焼結される。この高温保持工程において、焼成炉の設定温度は1050~1200℃とするのが好ましい。温度が1050℃未満であると焼結が不十分で、初透磁率μiが小さく、磁心の強度が得られない場合がある。また温度が1200℃超であると焼結が過剰となり、また焼成炉のエネルギー消費も多くなって製造コストの上昇を招くため好ましくない。 The molded body thus obtained is sintered in a sintering furnace to obtain a Ni-based ferrite (magnetic core). The firing process includes a temperature raising process, a high temperature holding process, and a temperature lowering process. The atmosphere in the firing step may be an inert gas atmosphere or an air atmosphere. Here, the compact is sintered after reaching the high temperature set in the high temperature holding step through the temperature raising step. In this high-temperature holding step, the set temperature of the firing furnace is preferably 1050 to 1200.degree. If the temperature is less than 1050° C., the sintering may be insufficient, the initial magnetic permeability μi may be small, and the strength of the magnetic core may not be obtained. On the other hand, if the temperature exceeds 1200° C., the sintering will be excessive, and the energy consumption of the firing furnace will increase, resulting in an increase in manufacturing cost, which is not preferable.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail by the following examples, but the invention is not limited thereto.

本実施形態のNi系フェライトの磁心を製造する場合、Fe、ZnO、CuO、MnOびNiOの各成分が表1に示す割合となるように、素原料を湿式混合した後、乾燥し900℃で1時間仮焼成した。得られた仮焼粉をイオン交換水とともにボールミルに投入し、平均粉砕粒径が1.9μmとなるまで粉砕してスラリーとした。得られたスラリーにバインダとしてポリビニルアルコールを加え、スプレードライヤーにて顆粒化した後、加圧成形してリング状の成形体を得た。 When manufacturing the Ni-based ferrite magnetic core of the present embodiment, the raw materials are wet-mixed so that the respective components of Fe 2 O 3 , ZnO, CuO, MnO, and NiO have the proportions shown in Table 1, and then dried. Temporarily calcined at 900° C. for 1 hour. The obtained calcined powder was put into a ball mill together with ion-exchanged water, and pulverized to an average pulverized particle diameter of 1.9 μm to obtain a slurry. Polyvinyl alcohol was added as a binder to the resulting slurry, which was then granulated with a spray dryer and pressure-molded to obtain a ring-shaped compact.

得られた成形体を焼成炉にて大気中、1120℃で2時間保持して焼結し、外径30mm×内径20mm×高さ10mmの円環状の磁心を得た。 The compact thus obtained was sintered in a sintering furnace in the air at 1120° C. for 2 hours to obtain an annular magnetic core with an outer diameter of 30 mm×an inner diameter of 20 mm×height of 10 mm.

Figure 0007238511000001
Figure 0007238511000001

各磁心の初透磁率μi、磁束密度B4k、保磁力Hc、焼結体密度dsを、下記の方法により測定した。
(1)初透磁率μi
磁心を被測定物とし、導線を20ターン巻回して測定試料(コイル部品)とし、LCRメータ(アジレント・テクノロジー株式会社製4285A)により、恒温槽内にて温度20℃、周波数100kHz、1mAの電流で測定したインダクタンスから次式により求めた。
初透磁率μi=(le×L)/(μ×Ae×N
(le:磁路長、L:試料のインダクタンス(H)、μ:真空の透磁率=4π×10-7(H/m)、Ae:磁心の断面積、N:導線の巻数)
The initial magnetic permeability μi, magnetic flux density B4k, coercive force Hc, and sintered body density ds of each magnetic core were measured by the following methods.
(1) Initial permeability μi
A magnetic core is used as an object to be measured, and a conducting wire is wound for 20 turns to obtain a measurement sample (coil component). It was obtained from the inductance measured by the following equation.
Initial permeability μi = (le × L) / (μ 0 × Ae × N 2 )
(le: magnetic path length, L: sample inductance (H), μ 0 : magnetic permeability in vacuum = 4π × 10 -7 (H/m), Ae: cross-sectional area of magnetic core, N: number of turns of conducting wire)

(2)磁束密度B4k、保磁力Hc
磁束密度(B4k)および保磁力(Hc)は、一次側巻線と二次側巻線とをそれぞれ40回巻回した磁心に、4kA/mの磁界を印加し、直流磁化測定試験装置(メトロン技研株式会社製SK-110型)を用いて20℃、100℃において測定した。
(2) Magnetic flux density B4k, coercive force Hc
Magnetic flux density (B4k) and coercive force (Hc) were measured by applying a magnetic field of 4 kA/m to a magnetic core with 40 turns of primary winding and secondary winding, and using a DC magnetization measurement tester (Metron It was measured at 20° C. and 100° C. using SK-110 type manufactured by Giken Co., Ltd.).

(3)焼結体密度ds
アルキメデスの原理を利用し、水中置換法により焼結体密度を算出した。
(3) Sintered compact density ds
The density of the sintered body was calculated by the water substitution method using Archimedes' principle.

得られた結果を表2に纏めて示す。また図1にFeのモル量とMnOのモル量との合計量と20℃及び100℃における保磁力Hcとの関係を示し、図2にFeのモル量とMnOのモル量との合計量と印加磁界4kA/mで20℃における磁束密度B4kとの関係を示し、図3にFeのモル量とMnOのモル量との合計量と印加磁界4kA/mで100℃における磁束密度B4kとの関係を示し、図4にFeのモル量とMnOのモル量との合計量と初透磁率μiとの関係を示す。 The obtained results are summarized in Table 2. FIG. 1 shows the relationship between the total amount of Fe 2 O 3 and MnO and the coercive force Hc at 20° C. and 100° C. FIG. and the magnetic flux density B4k at 20° C. with an applied magnetic field of 4 kA/m . FIG. 4 shows the relationship between the total amount of Fe 2 O 3 and MnO and the initial magnetic permeability μi.

Figure 0007238511000002
Figure 0007238511000002

No.1*~7の磁心を使用した試料では、密度dsが何れも5.20×10kg/mを超えていた。実施例のNo.4~7の磁心では、初透磁率μiが600以上で、保磁力Hcが50A/m未満で、印加磁界4kA/m における磁束密度B4kが360mT以上であった。このような本発明のNi系フェライトを使用したコイル部品は、小型を図ることが出来る。

No. All the samples using magnetic cores of 1* to 7 had a density ds exceeding 5.20×10 3 kg/m 3 . Example No. The magnetic cores of No. 4 to No. 7 had an initial permeability μi of 600 or more, a coercive force Hc of less than 50 A/m, and a magnetic flux density B4k of 360 mT or more in an applied magnetic field of 4 kA/m 2 . A coil component using such a Ni-based ferrite of the present invention can be miniaturized.

Claims (3)

20℃での初透磁率μiが600以上で、保磁力Hcが50A/m未満で、印加磁界4kA/mにおける磁束密度B4kが360mT以上のNi系フェライトであって、
前記Ni系フェライトの成分組成が、45.5mol%以上47.0mol%以下のFe、28.0mol%以上30.0mol%以下のZnO、7.5mol%以上9.0mol%以下のCuO、1.2mol%超4.2mol%以下のMnO、及び残部NiOとして表され、FeとMnOとの合計量が、48.2mol%超49.8mol%以下であるNi系フェライト。
A Ni-based ferrite having an initial magnetic permeability μi at 20° C. of 600 or more, a coercive force Hc of less than 50 A/m, and a magnetic flux density B4k of 360 mT or more in an applied magnetic field of 4 kA/m,
The component composition of the Ni-based ferrite is 45.5 mol% or more and 47.0 mol% or less of Fe 2 O 3 , 28.0 mol% or more and 30.0 mol% or less of ZnO, and 7.5 mol% or more and 9.0 mol% or less of CuO. , more than 1.2 mol % and less than or equal to 4.2 mol % MnO, and the balance NiO, wherein the total amount of Fe 2 O 3 and MnO is more than 48.2 mol % and less than or equal to 49.8 mol %.
請求項1に記載のNi系フェライトであって、
FeとMnOとの合計量が48.5mol%以上で、20℃での初透磁率μiが650以上であり、密度が5.20×10kg/m超のNi系フェライト。
The Ni-based ferrite according to claim 1,
Ni-based ferrite having a total content of Fe 2 O 3 and MnO of 48.5 mol % or more, an initial magnetic permeability μi at 20° C. of 650 or more, and a density of more than 5.20×10 3 kg/m 3 .
請求項1又は2に記載のNi系フェライトを用いたコイル部品であって、
前記コイル部品は、コイルと、前記コイルの磁路に配置される前記Ni系フェライトで構成された磁心とを含むコイル部品。

A coil component using the Ni-based ferrite according to claim 1 or 2,
The coil component includes a coil and a magnetic core made of the Ni-based ferrite arranged in the magnetic path of the coil.

JP2019051780A 2019-03-19 2019-03-19 Ni-based ferrite and coil parts using the same Active JP7238511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051780A JP7238511B2 (en) 2019-03-19 2019-03-19 Ni-based ferrite and coil parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051780A JP7238511B2 (en) 2019-03-19 2019-03-19 Ni-based ferrite and coil parts using the same

Publications (2)

Publication Number Publication Date
JP2020152603A JP2020152603A (en) 2020-09-24
JP7238511B2 true JP7238511B2 (en) 2023-03-14

Family

ID=72557692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051780A Active JP7238511B2 (en) 2019-03-19 2019-03-19 Ni-based ferrite and coil parts using the same

Country Status (1)

Country Link
JP (1) JP7238511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259822B2 (en) * 2020-09-29 2023-04-18 株式会社村田製作所 Ferrite sintered body and coil parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587193A (en) 2004-08-19 2005-03-02 浙江大学 Low temperature coefficient, low loss and high saturated flux density ferrite material and preparing method
JP2006151743A (en) 2004-11-29 2006-06-15 Tdk Corp Ferrite material and electronic component using it
JP2006193343A (en) 2005-01-11 2006-07-27 Hitachi Metals Ltd Ferrite sintered body and electronic component using the same
JP2006282437A (en) 2005-03-31 2006-10-19 Tdk Corp Ferrite sintered compact, method for manufacturing the same, and coil component
JP2014169194A (en) 2013-03-01 2014-09-18 Hitachi Metals Ltd Mn-Zn FERRITE AND COIL COMPONENT USING THE SAME
JP2015043459A (en) 2011-06-15 2015-03-05 株式会社村田製作所 Multilayer coil component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550639B2 (en) * 1988-02-17 1996-11-06 三菱電機株式会社 High resistivity low loss oxide magnetic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587193A (en) 2004-08-19 2005-03-02 浙江大学 Low temperature coefficient, low loss and high saturated flux density ferrite material and preparing method
JP2006151743A (en) 2004-11-29 2006-06-15 Tdk Corp Ferrite material and electronic component using it
JP2006193343A (en) 2005-01-11 2006-07-27 Hitachi Metals Ltd Ferrite sintered body and electronic component using the same
JP2006282437A (en) 2005-03-31 2006-10-19 Tdk Corp Ferrite sintered compact, method for manufacturing the same, and coil component
JP2015043459A (en) 2011-06-15 2015-03-05 株式会社村田製作所 Multilayer coil component
JP2014169194A (en) 2013-03-01 2014-09-18 Hitachi Metals Ltd Mn-Zn FERRITE AND COIL COMPONENT USING THE SAME

Also Published As

Publication number Publication date
JP2020152603A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
KR102155356B1 (en) Ferrite composition and electronic device
TW504712B (en) Manganese-zinc (Mn-Zn) based ferrite
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
JP5880517B2 (en) Ferrite composition and electronic component
US11373789B2 (en) Ferrite sintered body and electronic component using thereof
JP3584439B2 (en) Mn-Zn ferrite and method for producing the same
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP7238511B2 (en) Ni-based ferrite and coil parts using the same
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP5871017B2 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JP7219875B2 (en) NiZn ferrite
JP2022145508A (en) NiZn-BASED FERRITE
JP7045636B2 (en) Magnetic core using NiZn-based ferrite
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP7262372B2 (en) Granulated powder for NiCuZn ferrite and NiCuZn ferrite
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
WO2002054419A1 (en) Oxide magnetic material exhibiting low magnetic loss
JP6322987B2 (en) Ferrite composition, ferrite core and electronic component
JP7338183B2 (en) Ni-based ferrite and coil parts using the same
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP7117447B1 (en) Method for producing zirconia setter and MnZn ferrite
JP2002246222A (en) Oxide magnetic material and coil part using the same
WO2023182133A1 (en) MnZn-BASED FERRITE
JP5212305B2 (en) Magnetic material and coil parts using it
JP5580961B2 (en) Oxidized magnetic material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150