JP7237164B2 - 撮像装置、撮像方法、および映像処理プログラム - Google Patents

撮像装置、撮像方法、および映像処理プログラム Download PDF

Info

Publication number
JP7237164B2
JP7237164B2 JP2021541817A JP2021541817A JP7237164B2 JP 7237164 B2 JP7237164 B2 JP 7237164B2 JP 2021541817 A JP2021541817 A JP 2021541817A JP 2021541817 A JP2021541817 A JP 2021541817A JP 7237164 B2 JP7237164 B2 JP 7237164B2
Authority
JP
Japan
Prior art keywords
signal
imaging
flicker
video
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021541817A
Other languages
English (en)
Other versions
JPWO2021038692A5 (ja
JPWO2021038692A1 (ja
Inventor
拓洋 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Publication of JPWO2021038692A1 publication Critical patent/JPWO2021038692A1/ja
Publication of JPWO2021038692A5 publication Critical patent/JPWO2021038692A5/ja
Application granted granted Critical
Publication of JP7237164B2 publication Critical patent/JP7237164B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、撮像装置、撮像方法、および映像処理プログラムに関する。
近年、CMOS(Complementary Metal Oxide Semiconductor)撮像素子の性能向上により、CCD(Charge Coupled Device)撮像素子が主流であった放送カメラなどの業務用撮像装置においても、CMOS撮像素子の採用が増えている。
CMOS撮像素子は、主走査方向の水平ライン(以下「ライン」という)ごとに露光するローリングシャッタ方式のものと、フレーム単位に一括露光するグローバルシャッタ方式のものとがある。
また、CMOS撮像素子は、1フレーム期間の全てを露光できず、1フレーム期間中に「非露光期間」が存在するものが多い。
ところで、映像表示装置であるモニタやプロジェクタは、表示する画像に合わせて表示素子のスイッチマトリクスを組み替えた後にバックライトを発光する動作を繰り返して所定の映像を表示または投影している。
一般に、この種の表示装置は、テレビジョン規格のフレーム周波数またはその逓倍周波数で点滅発光する。
この場合、表示装置の発光期間が、撮像素子の非露光期間とタイミングが一致した瞬間に、表示装置の発光の一部または全部が露光されずに暗くなり、撮像画像に輝度ムラが生じる。
この輝度ムラは、一種のフリッカであり、グローバルシャッタ方式の撮像素子の場合は撮像画像すなわち1フレームを単位に発生する。また、ローリングシャッタ方式の撮像素子の場合は帯状すなわち複数ラインを単位に発生する。
さらに、多くの場合、バックライトの発光周波数と撮像素子のフレーム周波数は完全には一致しない。そのため、バックライトの発光期間と撮像素子の非露光期間は僅かずつずれながら、一定の長周期を経て再びタイミングが重なる。
これにより、グローバルシャッタ方式の撮像素子の場合、一定の長周期ごとに瞬間的に暗転するタイプのフリッカが発生する。
また、ローリングシャッタ方式の撮像素子の場合、一定の長周期をかけて撮像画像内を帯状の輝度ムラが副走査方向に移動するタイプのフリッカが発生する。
従来、フリッカを検出して補正する方法として、特許文献1には『映像信号の前後フレームのフレーム間差に基づいてフリッカを検出し補正する』旨の技術が開示されている。
特表2009-522948号公報
前述したフリッカを発生させないためには、撮像素子の非露光期間を無くすことが考えられる。すなわち1フレーム期間のほぼ全てを露光するということであり、CCD撮像素子であれば可能である。しかしながら、CMOS撮像素子は、その構造原理上から非露光期間を無くすことができない場合が多い。
また、特許文献1のように、前後フレームのフレーム間差に基づいてフリッカを検出する手段では、前後フレームの間に1フレーム期間に相当する時間間隔が存在する。そのため、1フレーム期間相当の時間間隔の間に被写体それ自体が明暗変化したり、被写体の帯状の模様が移動したりした場合、被写体それ自体の変化を誤ってフリッカとして検出してしまうという問題があった。
さらに、バックライトの発光周波数と撮像素子のフレーム周波数が一致すると、バックライトの発光期間と撮像素子の非露光期間(または露光期間)が常に一致する。この場合、グローバルシャッタ方式の撮像素子では、被写体の実際の見た目とは異なり、撮像画像内の被写体が暗くなったまま(または明るくなったまま)になる。この状態でフレーム間差は検出されないため、特許文献1の技術ではフリッカを検出できない。また、ローリングシャッタ方式の撮像素子では、帯状のフリッカが撮像画像の一定位置に停止する。この場合も、フレーム間差は検出されないため、特許文献1の技術ではフリッカを検出できない。
なお、発光周波数とフレーム周波数が一致することを避ける方策として、特許文献1には、撮像装置のフレーム周波数(フレームレート)を変化させる方法が開示されている。
しかしながら、フレーム周波数が外部機器と同期する場合や、放送カメラのように規格上においてフレーム周波数(フレームレート)が固定されている場合は、フレームレートを変化させる方策は採用できない。
そこで、本発明は、フレーム周波数に拘わらず、フリッカの発生を検出する技術を提供することを目的とする。
上記課題を解決するために、代表的な本発明の撮像装置の一つは、光学系、複数の撮像素子、駆動部、信号比較部、および信号補正部を備える。前記光学系は、被写体の光束を複数に分けて複数の被写体像を得る。複数の前記撮像素子は、複数の前記被写体像をそれぞれ受光する。前記駆動部は、少なくとも2つの前記撮像素子の間で露光開始タイミングを所定の遅延時間ずらして撮像を行う。前記信号比較部は、露光開始タイミングのずれた前記撮像素子の間において、略同一の像位置で生成される映像信号のレベル相違を画素単位または画素ブロック単位に検出し、前記レベル相違に基づいて撮像画像内に発生したフリッカエリアを領域検出する。前記信号補正部は、領域検出されたフリッカエリアを補正する。
本発明によれば、フレーム周波数に拘わらず、フリッカの発生を検出することが可能になる。
上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
図1は、グローバルシャッタ方式の撮像素子に生じるフリッカエリアを説明する図である。 図2は、ローリングシャッタ方式の撮像素子に生じるフリッカエリアを説明する図である。 図3は、撮像装置100の構成例を示すブロック図である。 図4は、グローバルシャッタ方式の撮像素子a,bにそれぞれ生じるフリッカエリアを示す図である。 図5は、グローバルシャッタ方式の撮像素子a,bにおけるフリッカエリアの検出および補正を説明する図である。 図6は、ローリングシャッタ方式の撮像素子a,bにそれぞれ生じるフリッカエリアを示す図である。 図7は、ローリングシャッタ方式の撮像素子a,bにおけるフリッカエリアの検出および補正を説明する図である。 図8は、撮像装置200の構成例を示すブロック図である。 図9は、ディアルグリーン4板式の撮像装置200の動作を示す流れ図(1/2)である。 図10は、ディアルグリーン4板式の撮像装置200の動作を示す流れ図(2/2)である。
<フリッカエリアの発生原因について>
実施形態の説明に先立って、フリッカエリアの発生プロセスについて説明する。
(1) グローバルシャッタ方式の撮像素子の例
図1は、グローバルシャッタ方式の撮像素子に生じるフリッカエリアを説明する図である。
図1[A]には、フリッカエリアが発生しないケースが示される。
同図の露光チャートに示すように、撮像素子は、1フレーム期間おきに、グローバルシャッタ方式による露光期間および非露光期間を繰り返す。
一方、撮像画像には、点滅光源として、プロジェクタ40のプロジェクタ映像41と、モニタ50のモニタ映像51とが写っている。図1[A]のケースでは、プロジェクタ40は、撮像素子の露光期間中に発光する。また、モニタ50も、撮像素子の露光期間中に発光する。そのため、撮像素子の撮像画像には、プロジェクタ映像41およびモニタ映像51が明るく写り、フリッカエリアは発生しない。
図1[B]には、プロジェクタ映像41にフリッカエリアが発生するケースが示される。
同図のケースでは、プロジェクタ40は、撮像素子の非露光期間中に発光する。一方、モニタ50は、撮像素子の露光期間中に発光する。そのため、撮像素子の撮像画像では、プロジェクタ40の発光を十分に露光できず、プロジェクタ映像41の領域が暗くなってフリッカエリア42が発生する。
図1[C]には、モニタ映像51にフリッカエリアが発生するケースが示される。
同図のケースでは、プロジェクタ40は、撮像素子の露光期間中に発光する。一方、モニタ50は、撮像素子の非露光期間中に発光する。そのため、撮像素子の撮像画像では、モニタ50の発光を十分に露光できず、モニタ映像51の領域が暗くなってフリッカエリア52が発生する。
前述のような発生プロセスにより、グローバルシャッタ方式の撮像素子には、フリッカエリア42,52が発生する。
(2)ローリングシャッタ方式の撮像素子の例
図2は、ローリングシャッタ方式の撮像素子に生じるフリッカエリアを説明する図である。
同図の露光チャートに示すように、ローリングシャッタ方式の撮像素子は、ライン間において、露光期間および非露光期間のタイミングが徐々にずれる。
プロジェクタ映像41が位置する複数ラインの内、非露光期間がプロジェクタ40の発光期間とタイミングが重なるラインについては、帯状のフリッカエリア43が発生する。
また、モニタ映像51が位置する複数ラインの内、非露光期間がモニタ50の発光期間とタイミングが重なるラインについては、帯状のフリッカエリア53が発生する。
前述のような発生プロセスにより、ローリングシャッタ方式の撮像素子には、フリッカエリア43,53が発生する。
続いて、本発明の個々の実施例について具体的に説明する。
<実施例1の構成>
実施例1として、グローバルシャッタ方式の撮像装置の実施形態について説明する。
図3は、撮像装置100の構成例を示すブロック図である。
同図において、撮像装置100は、レンズ110、光学系120、撮像素子a、撮像素子b、駆動部130、映像信号処理部140、映像信号出力部150、およびCPU(Central Processing Unit)部160を備える。
レンズ110は、被写体からの入射光を結像する。
光学系120は、プリズムから構成され、レンズ110により結像される光束を分けて2つの被写体像を得る。
実施例1では、撮像素子a,bは、グローバルシャッタ方式で駆動可能な撮像素子である。
また、撮像素子a,bは、モノクロの撮像素子、またはカラーモザイクフィルタの撮像素子である。撮像素子a,bの撮像面は、光学系120により得られる各被写体像の略同一の像位置を受光するように位置決めして配置される。
なお、撮像素子a,bは、超解像のために、撮像面の画素配列の位相を(例えば縦横方向に半位相ずつ)ずらして配置してもよい。
また、撮像素子a,bは、広ダイナミックレンジ合成のために、受光する光量を互いに異ならせたり、露光時間を互いに異ならせてもよい。
駆動部130は、撮像素子の駆動信号(例えば、水平同期信号や垂直同期信号など)を生成する駆動信号生成部131と、駆動信号を任意の遅延時間だけ遅延させる駆動遅延部132とを備える。
この駆動遅延部132により、撮像素子bの露光開始タイミングは、撮像素子aの露光開始タイミングに対して、所定の遅延時間だけ遅れる。
映像信号処理部140は、信号遅延部141、信号比較部142、信号補正部143、映像合成部144、およびガンマ補正部145を備える。
この信号遅延部141は、撮像素子aから出力される映像信号Vaを遅延させて、映像信号Va′として出力する。この遅延処理により、映像信号Va′,Vbの間のフレーム期間のズレは低減する。
次に、信号比較部142は、フレーム期間のズレを低減した映像信号Va′,Vbについて、画素単位または画素ブロック単位に信号レベルを比較してレベル相違を求める。
信号比較部142は、求めたレベル相違に基づいて、撮像画像内に生じたフリッカエリアを領域検出する。
信号補正部143は、領域検出されたフリッカエリアの影響を低減する補正を行う。補正後の映像信号Ea,Ebは、映像合成部144に入力される。
映像合成部144は、フリッカエリアの影響を低減した映像信号Ea,Ebを所定の映像信号(輝度色差信号など)に合成する。
ここで、撮像素子a,bが画素ずらし配列されている場合、映像合成部144は、映像信号の間で超解像成分を求めて、合成画像の解像度を高める処理を行う。
また、撮像素子a,bの受光量(または露光時間)が互いに異なる場合、映像合成部144は、映像信号Va′,Vbの白飛び成分や黒潰れ成分を互いに補完することにより、広ダイナミックレンジ合成の処理を行う。
ガンマ補正部145は、合成された映像信号に対して利得補正、ガンマ補正、ニー補正、輪郭補正、デモザイク処理、および色補正などの映像信号処理を施す。
映像信号出力部150は、映像信号処理部140から出力される映像信号を、HD-SDI(High Definition Serial Digital Interface)などの所定の映像信号形式に変換し、外部に出力する。
CPU部160は、駆動部130の制御や、映像信号処理部140の制御などを実行する。
<実施例1の動作>
次に、実施例1におけるフリッカエリアの検出および補正について具体的に説明する。
図4は、グローバルシャッタ方式の撮像素子a,bにそれぞれ生じるフリッカエリア42,52を示す図である。
図4には、特許文献1においてフリッカ検出が困難となるケースとして、撮像装置100のフレーム周波数(フレームレート)が点滅光源(プロジェクタ40、モニタ50)の発光周波数と略一致するケースをあえて示している。
同図の露光チャートに示すように、駆動部130は、撮像素子bの露光開始タイミングを、撮像素子aの露光開始タイミングに対して、例えばnライン分の遅延時間だけ遅らせる。
厳密にいえば、撮像素子aの撮像画像と、撮像素子bの撮像画像は、露光開始タイミングに遅延時間分の時間差があるため、同一時刻の撮像画像ではない。しかし、例えば、フルHD(フレーム周波数60Hzで総ライン数1125本のプログレッシブスキャン)の撮像素子の場合、nライン分の時間は(約15マイクロ秒×nライン)という一瞬である。そのため、被写体が高速に動かない限り、撮像素子aと撮像素子bには同一時刻の被写体が写るとみなせる。
図4では、撮像装置100は、被写体としてプロジェクタ40とモニタ50を撮影する。
図4に示すフレーム期間のタイミングにおいて、プロジェクタ40は、撮像素子aの露光期間に発光し、撮像素子bの非露光期間に発光する。モニタ50は、撮像素子aの非露光期間に発光し、撮像素子bの露光期間に発光する。
その結果、撮像素子aの撮像画像では、モニタ50の発光は露光されず、モニタ映像51の領域が暗くなってフリッカエリア52が発生する。撮像素子bの撮像画像では、プロジェクタ40の発光は露光されず、プロジェクタ映像41の領域が暗くなってフリッカエリア42が発生する。
このように、遅延時間をコントロールすることにより、撮像素子a,bの非露光期間のタイミングがずれて、撮像素子a,bの撮像画像に発生するフリッカエリアが同一エリアに発生しなくなる。
図5は、グローバルシャッタ方式の撮像素子a,bにおけるフリッカエリアの検出および補正を説明する図である。
同図において、信号遅延部141は、撮像素子aから出力される映像信号Vaを駆動遅延部132の遅延時間と同一時間だけ遅延させて、映像信号Va′として出力する。この信号処理により、映像信号Va′は、撮像素子bの映像信号Vbとフレーム期間の位相が一致する。
次に、信号比較部142は、映像信号Va′,Vbを画素単位または画素ブロック単位に取り込み、両者の信号レベルを比較して局所的なレベル相違を求める。
このような比較は、輝度成分について行ってもよいし、またカラーモザイクの色成分(例えばベイヤー配列の赤緑青の各色成分)別に行ってもよい。
なお、撮像素子a,bの受光量(または露光時間)が予め異なる場合は、レベル相違を求める前に、映像信号Va′,Vbの平均的な信号レベルを合わせておく。
映像信号Va′,Vbの画素位相が一致している場合は、単純に画素単位のレベル相違を求めることができる。また、レンズ110や光学系120や光学的ローパスフィルタなどの解像力の理由などから画素位相のズレが無視できる場合も、単純に画素単位のレベル相違を求めることができる。
一方、画素位相のズレが無視できない場合は、映像信号Va′,Vbの一方または両方について画素補間を行い、映像信号Va′,Vbの画素位相を揃えてからレベル相違を求めてもよい。また、映像信号Va′,VbにLPF(Low Pass Filter)を掛けて、映像信号波形を鈍らせてからレベル相違を求めてもよい。
さらに、複数の画素(m×m画素など)からなる画素ブロック単位に信号レベルを比較してもよい。画素ブロックのサイズに対して画素位相のズレが小さい分だけ、前述した画素位相のズレの影響は軽減する。また、画素ブロック単位で信号レベルを求めることにより低照度ノイズなども抑えることができる。
また、撮像装置100内においてスルー画表示用などに映像信号Va′,Vbをそれぞれ低解像度化している場合は、低解像度映像信号の間で信号レベルを比較することによって画素ブロック単位のレベル相違を得てもよい。
一般に、フリッカエリア42,52は、点滅光源(プロジェクタ40やモニタ50)の発光期間と撮像素子a,bの非露光期間のタイミングが重なって生じる。そのため、フリッカエリア42,52は、フリッカの生じていない撮像画像に比べて信号レベルが低くなる。
そこで、信号比較部142は、映像信号Va′において信号レベルが有意に低くなるフリッカエリア52を、映像信号Va′のフリッカエリア52と判定する。また、信号比較部142は、映像信号Vbにおいて信号レベルが有意に低くなるフリッカエリア42を、映像信号Vbのフリッカエリア42と判定する。
信号比較部142は、フリッカエリア52のレベル相違に基づく補正ゲインを縦横配列して、映像信号Va′に対するゲインマップMaを生成する。また、信号比較部142は、フリッカエリア42のレベル相違に基づく補正ゲインを縦横配列して、映像信号Vbに対するゲインマップMbを生成する。
信号補正部143は、映像信号Va′の各画素に対してゲインマップMaの補正ゲイン分の補正を施すことにより、フリッカエリア52を補正した映像信号Eaを生成する。また、信号補正部143は、映像信号Vbの各画素に対してゲインマップMbの補正ゲイン分の補正を施すことにより、フリッカエリア42を補正した映像信号Ebを生成する。なお、映像信号Va′のフリッカエリア52を、映像信号Vbの対応エリアに置き換えて、フリッカエリア52を補正した映像信号Eaを生成してもよい。また、映像信号Vbのフリッカエリア42を、映像信号Va′の対応エリアに置き換えて、フリッカエリア42を補正した映像信号Ebを生成してもよい。
<実施例1の効果など>
(1)実施例1では、撮像素子a,bの露光開始タイミングを所定の遅延時間ずらす。その結果、撮像素子a,bの非露光期間のタイミングがずれる。そのため、フリッカの発生原因となる点滅光源が撮影画角内に存在する場合、撮像素子a,bそれぞれにおいて、フリッカの発生するフレーム(点滅光源の発光期間と非露光期間のタイミングが重なるフレーム)がずれる。そのため、撮像素子a,bの間において、略同一の像位置で生成される映像信号のどちらが暗いかを検出することにより、撮像素子a,bのどちらにフリッカが生じたかを判定することが可能になる。
(2)また、実施例1では、撮像素子a,bの間において、略同一の像位置で生成される映像信号に生じたレベル相違の領域を画素単位または画素ブロック単位に検出するため、撮像画像内に発生したフリッカエリアを領域検出することが可能になる。
(3)前述の特許文献1のように、前後フレームのフレーム間差に基づいてフリッカを検出し補正する技術では、撮像装置のフレーム周波数(フレームレート)が点滅光源の発光周波数と略一致した場合にフリッカを検出できないという問題があった。
しかしながら、実施例1では、露光開始タイミングのずれた撮像素子a,bのレベル相違を検出する方式であるため、図4に示したように、撮像装置のフレーム周波数(フレームレート)が点滅光源の発光周波数と略一致してもフリッカを検出し補正することが可能になる。したがって、フレーム周波数に拘わらずに、フリッカを検出して補正することが可能になる。
(4)このようにフレーム周波数に拘わらずにフリッカを検出して補正できるため、フレーム周波数が外部機器との同期信号により固定されている装置や、テレビジョン放送規格のようにフレーム周波数(フレームレート)が厳密に規定される撮像仕様であっても、確実にフリッカを検出して補正することが可能になる。
(5)また、実施例1では、露光開始タイミングのずれた複数の撮像素子a,bからそれぞれ出力される映像信号Va,Vbの少なくとも一方を遅延させて複数の映像信号の間のフレーム期間のズレを低減する信号遅延部141を備える。そのため、信号比較部142は、フレーム期間のズレを低減した映像信号についてレベル相違を容易に検出することが可能になる。
(6)さらに、実施例1では、撮像素子a,bの撮像画像間で、フリッカエリアが同一エリアに発生しないように、駆動部130の遅延時間がコントロールされる。このような状態は、例えば、撮像素子a,bの非露光期間の時間間隔(つまり遅延時間)を点滅光源の発光期間よりも長く設定することにより実現できる。その結果、撮像素子a,bにおいてフリッカが同一エリアに発生しないため、レベル相違が相殺されることがなく、フリッカエリアを検出し損なうことがない。
(7)前述の特許文献1のように、前後フレームのフレーム間差に基づいてフリッカを検出する手段では、前後フレームの間に1フレーム期間に相当する時間間隔が存在する。そのため、1フレーム期間の時間間隔における被写体それ自体の明暗変化や帯模様の変化をフリッカと誤って検出してしまうという問題があった。しかしながら、実施例1の遅延時間は、1フレーム期間よりも十分に短くすることができる。そのため、映像信号Va′,Vbの間において、(点滅光源ほど高速変化しない)被写体それ自体の明暗変化や帯模様の変化は僅かになる。そのため、実施例1では、被写体それ自体の明暗変化や帯模様の変化をフリッカとして誤検出する虞が少なくなる。
続いて、実施例2として、ローリングシャッタ方式の撮像装置の実施形態について説明する。
<実施例2の構成>
実施例2の特徴は、撮像素子a,bにローリングシャッタ方式の撮像素子を採用する点と、駆動信号生成部131がローリングシャッタ方式の駆動信号を生成する点である。
実施例2のその他の構成は、実施例1の構成(図3)と同じため、ここでの重複説明を省略する。
<実施例2の動作>
以下、実施例2におけるフリッカエリアの検出および補正について説明する。
図6は、ローリングシャッタ方式の撮像素子a,bにそれぞれ生じるフリッカエリアを示す図である。
図6には、特許文献1においてフリッカ検出が困難となるケースとして、撮像装置100のフレーム周波数(フレームレート)が点滅光源(プロジェクタ40、モニタ50)の発光周波数と略一致するケースをあえて示している。
まず、撮像素子aの撮像画像において、プロジェクタ映像41が位置する複数ラインの内、非露光期間がプロジェクタ40の発光期間とタイミングが重なるラインについては、帯状に暗くなったフリッカエリア43aが発生する。また、撮像素子aの撮像画像において、モニタ映像51が位置する複数ラインの内、非露光期間がモニタ50の発光期間とタイミングが重なるラインについては、帯状に暗くなったフリッカエリア53aが発生する。
一方、撮像素子bの撮像画像において、プロジェクタ映像41が位置する複数ラインの内、非露光期間がプロジェクタ40の発光期間とタイミングが重なるラインについては、帯状に暗くなったフリッカエリア43bが発生する。また、撮像素子bの撮像画像において、モニタ映像51が位置する複数ラインの内、非露光期間がモニタ50の発光期間とタイミングが重なるラインについては、帯状に暗くなったフリッカエリア53bが発生する。
ここで、図6の露光チャートに示すように、駆動部130は、撮像素子bの露光開始タイミングを、撮像素子aの露光開始タイミングに対して、例えばnライン分の遅延時間だけ遅らせる。この遅延時間は、撮像素子aに発生する帯状のフリッカエリア43a,53aと、撮像素子bに発生する帯状のフリッカエリア43b,53bとがそれぞれ同一ラインに発生しないように、コントロールされる。
図7は、ローリングシャッタ方式の撮像素子a,bにおけるフリッカエリアの検出および補正を説明する図である。
実施例2の動作上の特徴は、撮像素子aの映像信号Va′について帯状のフリッカエリア43a,53aが検出される点と、撮像素子bの映像信号Vbについて帯状のフリッカエリア43b,53bが検出される点である。
なお、その他の動作については、実施例1の動作(図5参照)と同じため、ここでの重複説明を省略する。
<実施例2の効果など>
実施例2においても、実施例1と同様の効果を奏する。
さらに、実施例2では、撮像素子a,bの撮像画像間で、帯状のフリッカエリアが同一ラインに発生しないように、駆動部130の遅延時間がコントロールされる。このような状態は、例えば、帯状のフリッカエリアの最大ライン数よりも、遅延時間を長く設定することにより実現できる。その結果、撮像素子a,bにおいてフリッカが同一ラインに発生しないため、レベル相違が相殺されることがなく、フリッカエリアを検出し損なうことがない。
実施例3は、デュアルグリーン方式の4板式撮像装置の実施形態である。
図8は、撮像装置200の構成例を示すブロック図である。
同図において、撮像装置200は、レンズ210、光学系220、4つの撮像素子R,B,Ga,Gb、駆動部230、映像信号処理部240、映像信号出力部250、およびCPU部260を備える。
レンズ210は、被写体からの入射光を結像する。
光学系220は、ダイクロイックプリズムから構成され、レンズ210により結像される光束を赤成分、青成分、および2つの緑成分を含む各色成分に分けて4つの被写体像を得る。
実施例3では、4つの撮像素子R,B,Ga,Gbは、グローバルシャッタ方式またはローリングシャッタ方式で駆動可能な撮像素子である。
4つの撮像素子R,B,Ga,Gbの撮像面は、赤成分、青成分、および2つの緑成分の被写体像の略同一の像位置を受光するようにそれぞれ位置決めして配置される。
なお、2つの撮像素子Ga,Gbは、図8に示すように、撮像面の画素配列の位相を例えば縦横方向に半位相ずつずらして配置される(空間画素ずらし)。
また、撮像素子Ga,Gbは、広ダイナミックレンジ合成のために、受光する光量を互いに異ならせたり、露光時間を互いに異ならせてもよい。
駆動部230は、撮像素子を駆動する信号(例えば、水平同期信号や垂直同期信号など)を生成する駆動信号生成部231と、駆動信号を任意の遅延時間だけ遅延させる駆動遅延部232とを備える。
この駆動遅延部232により、撮像素子Gbの露光開始タイミングは、その他の撮像素子Ga,R,Bの露光開始タイミングに対して、所定の遅延時間だけ遅れる。
映像信号処理部240は、信号遅延部241、信号比較部242、信号補正部243、映像合成部244、およびガンマ補正部245を備える。
この信号遅延部241は、撮像素子Ga,R,Bから映像信号として読み出されるGa信号,R信号,B信号をそれぞれ遅延させる。この遅延処理により、Gb信号、Ga信号,R信号,およびB信号の間のフレーム期間のズレは低減する。
次に、信号比較部242は、フレーム期間のズレを低減したGa信号およびGb信号について、画素単位または画素ブロック単位に信号レベルを比較してレベル相違を求める。
信号比較部242は、以上のように求めたレベル相違の正負と、各色成分の撮像素子R,B,Ga,Gbにおける露光開始タイミングの関係とに基づいて、映像信号の内からフリッカエリアが発生している映像信号を選定し、選定された映像信号に生じるフリッカエリアを領域検出する。
信号補正部243は、求めたレベル相違に応じて、領域検出されたフリッカエリアの影響を低減する補正を行う。補正後の映像信号は、映像合成部244に入力される。
映像合成部244は、フリッカエリアを補正した映像信号に基づいて、所定の映像信号(輝度色差信号など)を合成する。このとき、映像合成部244は、撮像素子Ga,Gbの空間画素ずらしに基づいて超解像成分を求め、映像信号の解像度を高める処理を行う。
また、撮像素子Ga,Gbの受光量(または露光時間)が互いに異なる場合、映像合成部244は、Ga信号、Gb信号の白飛び成分や黒潰れ成分を互いに補完することにより、広ダイナミックレンジ合成の処理を行う。
ガンマ補正部245は、合成された映像信号に対して利得補正、ガンマ補正、ニー補正、輪郭補正、および色補正などの映像信号処理を施す。
映像信号出力部250は、映像信号処理部140から出力される映像信号を、HD-SDIなどの所定の映像信号形式に変換し、外部に出力する。
CPU部260は、駆動部230の制御や、映像信号処理部240の制御などを実行する。
<実施例3の動作>
続いて、実施例3の動作について具体的に説明する。
図9および図10は、ディアルグリーン4板式の撮像装置200の動作を示す流れ図である。
これらの図に示すステップ番号に沿って、フリッカの検出および補正の手順を説明する。
ステップS11: CPU部260は、駆動遅延部232に対して、例えばnライン分の遅延時間を設定する。
グローバルシャッタ方式の撮像素子R,B,Ga,Gbの場合、CPU部260は、この遅延時間をフリッカの発生元である点滅光源の発光期間よりも長く設定する。この設定により、撮像素子Ga,Gbの撮像画像間で、フリッカエリアが同一エリアに発生しないようになる。
ローリングシャッタ方式の撮像素子R,B,Ga,Gbの場合、CPU部260は、この遅延時間を帯状のフリッカエリアの最大ライン分の走査時間よりも長く設定する。この設定により、撮像素子Ga,Gbの撮像画像間で、帯状のフリッカエリアが同一ラインに発生しないようになる。
ステップS12: CPU部260は、駆動遅延部232に設定した遅延時間を、信号遅延部241に対しても設定する。
ステップS13: CPU部260は、撮像装置200の撮影操作部(不図示)を介して、操作者による撮像/一時停止/停止の指示を受け付ける。撮像の指示に対して、CPU部260はステップS14に動作を移行する。一時停止の指示に対して、CPU部260はステップS13において動作を待機する。停止の指示に対して、CPU部260は撮像装置200の動作を停止する。
ステップS14: CPU部260は、駆動部230に対して撮像動作を指示する。駆動部230内では、駆動信号生成部231により、撮像素子の駆動信号(例えば、水平同期信号や垂直同期信号など)が生成される。撮像素子R,B,Gaには、この駆動信号が供給される。一方、撮像素子Gbには、駆動遅延部232を介してnライン分の遅延時間だけ遅れた駆動信号が供給される。このように駆動信号を供給することにより、撮像素子R,B,Gaの露光開始タイミングに対して、撮像素子Gbの露光開始タイミングはnライン分の遅延時間だけ遅れる。
ステップS15: 信号遅延部241は、撮像素子R,B,Gaの映像信号をnライン分の遅延時間だけ遅延させることにより、撮像素子Gbの映像信号とのフレーム期間のズレを低減する。
ステップS16: 信号比較部242は、Ga信号とGb信号とを局所的(画素単位または画素ブロック単位)に比較して、レベル相違を求める。比較処理の詳細については実施例1,2と同様である。
ステップS17: 信号比較部242は、Gb信号が、Ga信号よりもノイズレベルを有意に超えて暗くなるエリアを、Gb信号のフリッカエリアとして検出する。信号比較部242は、Gb信号のフリッカエリアに対して、(Ga信号/Gb信号)の局所的なゲイン差(補正ゲイン)を配列し、Gb信号補正用のゲインマップMbを作成する。なお、ゲインマップMbの補正ゲインに対して局所平滑化の処理を施すことにより、ゲインマップMbに含まれるノイズを抑制してもよい。
ステップS18: 信号比較部242は、Ga信号が、Gb信号よりもノイズレベルを有意に超えて暗くなるエリアを、Ga信号のフリッカエリアとして検出する。信号比較部242は、Ga信号のフリッカエリアに対して、(Gb信号/Ga信号)の局所的なゲイン差(補正ゲイン)を配列し、Ga信号補正用のゲインマップMaを作成する。なお、ゲインマップMaの補正ゲインに対して局所平滑化の処理を施すことにより、ゲインマップMaに含まれるノイズを抑制してもよい。
ステップS19: ステップS17においてGb信号にフリッカエリアを検出すると、信号補正部243はステップS20に動作を移行する。一方、Gb信号にフリッカエリアを検出しなかった場合、信号補正部243はステップS23に動作を移行する。
ステップS20: 信号補正部243は、ゲインマップMbの代表値(例えば中間値や最大値や平均値など)が、撮像装置200の撮像感度の限界を超えているか否かを判定する。ここでの撮像感度の限界は、映像信号のS/N比に基づいて、映像信号を増幅した場合にノイズ感が許容できなくなる増幅ゲインの上限値である。
撮像感度の限界を超えない場合、信号補正部243はステップS21に動作を移行する。
逆に、撮像感度の限界を超えた場合、信号補正部243はステップS22に動作を移行する。
ステップS21: 信号補正部243は、Gb信号のフリッカエリアをゲインマップMbの補正ゲインに従って増幅することにより、Gb信号の信号レベルをGa信号と同等レベルまで持ちあげてフリッカエリアを補正する。補正が完了すると、信号補正部243は、ステップS23に動作を移行する。
ステップS22: 信号補正部243は、Gb信号のフリッカエリアをGa信号の対応エリアの補間画素値に置き換える。ここで、補間画素値を用いるのは、Ga信号とGb信号は、超解像のために空間画素ずらしが行われているため、画素位置の位相を揃える必要があるためである。
ステップS23: ステップS18においてGa信号にフリッカエリアを検出すると、Ga信号と同じフレーム期間に撮影されたR信号,B信号にも、同様のフリッカエリアが発生したと判定される。これは点滅光源の殆どが白色光であって、緑色以外の波長域についてもフリッカが生じるためである。この場合、信号補正部243はR,B,Ga信号についてフリッカエリアの補正を行うため、ステップS24に動作を移行する。
一方、Ga信号にフリッカエリアを検出しない場合、Ga信号と同じフレーム期間に撮影されたR信号,B信号にもフリッカエリアは発生しない。この場合、信号補正部243はR,B,Ga信号についてフリッカエリアの補正を省いて、ステップS13に動作を戻す。
ステップS24: 信号補正部243は、ゲインマップMaの代表値(例えば中間値や最大値や平均値など)が、撮像装置200の撮像感度の限界を超えているか否かを判定する。
撮像感度の限界を超えない場合、信号補正部243はステップS25に動作を移行する。
逆に、撮像感度の限界を超えた場合、信号補正部243はステップS26に動作を移行する。
ステップS25: 信号補正部243は、Ga信号のフリッカエリアをゲインマップMaの補正ゲインに従って増幅することにより、Ga信号の信号レベルをGb信号と同等レベルまで持ちあげてフリッカエリアを補正する。補正が完了すると、信号補正部243は、ステップS27に動作を移行する。
ステップS26: 信号補正部243は、Ga信号のフリッカエリアをGb信号の対応エリアの補間画素値に置き換える。
ステップS27: 信号補正部243は、ゲインマップMaに基づいて、R信号のフリッカエリアにゲイン補正を施す。例えば、R信号をゲインマップMaの補正ゲインに従って増幅してもよい。また例えば、「ゲインマップMaの緑成分の補正倍数」と「点滅光源の赤色光/緑色光の発光比率」との乗算値に基づいて、R信号のフリッカエリアをゲイン補正してもよい。
ステップS28: 信号補正部243は、ゲインマップMaに基づいて、B信号のフリッカエリアにゲイン補正を施す。例えば、B信号をゲインマップMaの補正ゲインに従って増幅してもよい。また例えば、「ゲインマップMaの緑成分の補正倍数」と「点滅光源の青色光/緑色光の発光比率」との乗算値に基づいて、B信号のフリッカエリアをゲイン補正してもよい。
前述した一連の動作を、フレーム期間ごとに繰り返すため、CPU部260は動作をステップS13に戻す。
<実施例3の効果など>
実施例3は、実施例1,2と同様の効果に加えて、次の効果を奏する。
(1)実施例3では、デュアルグリーン用の撮像素子Ga,Gbの露光開始タイミングを所定の遅延時間ずらす。その結果、撮像素子Ga,Gbの非露光期間のタイミングが重ならない。そのため、フリッカの発生原因となる点滅光源が撮影画角内に存在した場合、撮像素子Ga,Gbにおいて、点滅光源の発光期間と非露光期間のタイミングが重なるフレームやラインをずらすことが可能になる。したがって、撮像素子Ga,Gbの間において、略同一の像位置で生成されるG信号のどちらが暗いかを検出することにより、撮像素子Ga,Gbのどちらにフリッカが生じたかを判定することが可能になる。
(2)また、実施例3では、デュアルグリーン方式の撮像素子Ga,Gbの間において、略同一の像位置で生成されるGa信号およびGb信号のレベル相違の領域を画素単位または画素ブロック単位に検出することにより、撮像画像内に発生したフリッカエリアを領域検出することが可能になる。さらに、残りの撮像素子R,Bについては、撮像素子Gaと露光開始タイミング(すなわちフレーム期間)が一致するため、撮像素子R,Bには、撮像素子Gaと同様のフリッカエリアが発生していると判定することが可能になる。
(3)さらに、実施例3では、実施例1,2(図4,図6参照)で説明したと同様に、撮像装置のフレーム周波数(フレームレート)が点滅光源の発光周波数と略一致してもフリッカを検出し補正することが可能になる。したがって、フレーム周波数に拘わらずに、フリッカの発生を検出して補正することが可能になる。
(4)このようにフレーム周波数に拘わらずにフリッカを検出して補正できるため、フレーム周波数が外部機器との同期信号により固定されている装置や、テレビジョン放送規格のようにフレーム周波数(フレームレート)が厳密に規定される撮像仕様であっても、確実にフリッカを検出して補正することが可能になる。
(5)また、実施例3では、露光開始タイミングの先行するGa信号,R信号,およびB信号を遅延させることにより、Gb信号とのフレーム期間のズレを低減する。そのため、従来のディアルグリーン方式の4板式撮像装置と同様の映像信号(フレーム期間の略一致した映像信号と互換性のある映像信号)を得ることができる。また、信号比較部242は、Ga信号とGb信号との間でフレーム期間が略一致した状態でレベル相違を容易に検出することが可能になる。なお、実施例3の別バリエーションとして、駆動遅延部232を介して遅延時間だけ遅れた駆動信号を撮像素子R,B,Gaに供給してもよい。この場合、信号遅延部241が撮像素子Gbの映像信号を遅延時間だけ遅延させることにより、撮像素子R,B,Ga,Gbの映像信号のフレーム期間を揃えることが可能になる。
(6)さらに、実施例3では、撮像素子Ga,Gbの撮像画像間で、フリッカエリアが同一エリアまたは同一ラインに発生しないように、駆動部230の遅延時間がコントロールされる。したがって、撮像素子Ga,Gbの略同一の像位置で生成される映像信号間においてフリッカが一緒に発生しないため、レベル相違が相殺されることがなく、フリッカエリアを検出し損なうことがない。
(7)また、実施例3の遅延時間は、1フレーム期間よりも十分に短くすることができる。そのため、Ga信号,Gb信号の間において、(点滅光源ほど高速変化しない)被写体それ自体の明暗変化や帯模様の変化は僅かになる。そのため、実施例3では、被写体それ自体の明暗変化や帯模様の変化をフリッカとして誤検出する虞が少なくなる。
<実施形態の補足事項>
前述した実施例では、プリズムを用いて複数の被写体像を得るケースについて説明した。しかしながら、本発明はこれに限定されない。
例えば、ハーフミラー光学系や、瞳分割光学系や、複眼光学系などの複数の被写体像を得る光学系を採用してもよい。
また、複数の被写体像を得る瞳分割光学系と、複数の被写体像をそれぞれ受光する複数の撮像素子(撮像画素群)とを一体に備えるものとして、瞳分割式の撮像素子を採用してもよい。なお、この瞳分割式の撮像素子に対して、信号遅延部、信号比較部、信号補正部を含む映像処理回路をさらに積層構造にすることにより、本発明の撮像装置を1チップの撮像素子により実現してもよい。さらに、1チップの撮像素子に対して、複数の撮像画素群を露光開始タイミングをずらして駆動する駆動部をさらに付加してもよい。
さらに、前述した実施例では、撮像装置に信号比較部および信号補正部を内蔵するケースについて説明した。しかしながら、本発明はこれに限定されない。撮像装置を、カメラと映像処理装置との組み合わせにより構成し、映像処理装置の側に信号比較部および信号補正部の機能を設けてもよい。
このような映像処理装置を、ハードウェアとしてCPU(Central Processing Unit)やメモリなどを備えたコンピュータシステムとして構成してもよい。このハードウェアが映像処理プログラム(図9,図10のステップS16~S28と同様のプログラム)を実行することにより、コンピュータシステムを信号比較部および信号補正部として機能させてもよい。
さらに、このハードウェアの一部または全部については、専用の装置、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)、PLD(programmable logic device)などで代替してもよい。
また、ハードウェアの一部または全部をネットワーク上のサーバに集中または分散してクラウド配置することにより、複数ユーザがネットワークを介してフリッカエリアの検出および補正に係る映像処理サービスの提供を受けるようにしてもよい。
なお、前述した実施形態では、「撮像処理」と「フリッカエリアの検出および補正」とを同時並行して実施するケースについて説明した。しかしながら、本発明はこれに限定されない。例えば、カメラ側において露光開始をずらして撮影された映像信号を最小限の映像処理を施してRAWデータとして記録する。この記録済みのRAWデータを後から信号比較部および信号補正部の機能を有する映像処理装置(RAW現像処理装置や映像処理プログラム)で処理して「フリッカエリアの検出および補正」を実施してもよい。
なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成や処理を備えるものに限定されるものではない。
また、ある実施例の構成や処理の一部を他の実施例の構成や処理に置き換えることが可能であり、また、ある実施例の構成や処理に他の実施例の構成や処理を加えることも可能である。
さらに、各実施例の構成や処理の一部について、他の構成や処理の追加・削除・置換をすることが可能である。
a…撮像素子、b…撮像素子、B…撮像素子、R…撮像素子、Ga…撮像素子、Gb…撮像素子、40…プロジェクタ、41…プロジェクタ映像、42…フリッカエリア、43…フリッカエリア、43a…フリッカエリア、43b…フリッカエリア、50…モニタ、51…モニタ映像、52…フリッカエリア、53…フリッカエリア、53a…フリッカエリア、53b…フリッカエリア、100…撮像装置、110…レンズ、120…光学系、130…駆動部、131…駆動信号生成部、132…駆動遅延部、140…映像信号処理部、141…信号遅延部、142…信号比較部、143…信号補正部、144…映像合成部、145…ガンマ補正部、150…映像信号出力部、160…CPU部、200…撮像装置、210…レンズ、220…光学系、230…駆動部、231…駆動信号生成部、232…駆動遅延部、240…映像信号処理部、241…信号遅延部、242…信号比較部、243…信号補正部、244…映像合成部、245…ガンマ補正部、250…映像信号出力部、260…CPU部

Claims (7)

  1. 被写体の光束を、赤成分、青成分、および2つの緑成分を含む各色成分に分けて複数の被写体像を得る光学系と、
    複数の前記被写体像をそれぞれ受光して各色成分の映像信号を生成する複数の撮像素子と、
    少なくとも2つの前記撮像素子の間で露光開始タイミングを所定の遅延時間ずらして撮像を行うことが可能な駆動部と、
    前記露光開始タイミングのずれた前記撮像素子の間、略同一の像位置で生成される映像信号のレベル相違を画素単位または画素ブロック単位に検出し、前記レベル相違に基づいて、撮像画像内に発生したフリッカエリアを領域検出する信号比較部と、
    前記領域検出されたフリッカエリアを補正する信号補正部と
    を備え
    前記駆動部は、緑成分を受光する前記少なくとも2つの前記撮像素子の一つとそれ以外の前記撮像素子との間で前記露光開始タイミングを前記所定の遅延時間ずらし、
    前記信号比較部は、緑成分の2つの前記映像信号の間で前記レベル相違を検出し、緑成分の前記レベル相違の正負と、各色成分の前記撮像素子における露光開始タイミングの関係とに基づいて、各色成分の映像信号の内から前記フリッカエリアが発生している映像信号を選定し、
    前記信号補正部は、前記選定された映像信号の前記フリッカエリアを補正す
    ことを特徴とする撮像装置。
  2. 請求項1に記載の撮像装置であって、
    前記露光開始タイミングのずれた複数の前記撮像素子からそれぞれ出力される映像信号の少なくとも一方を遅延させて、複数の映像信号の間のフレーム期間のズレを低減する信号遅延部を備え、
    前記信号比較部は、前記フレーム期間のズレを低減した複数の映像信号について前記レベル相違を検出する
    ことを特徴とする撮像装置。
  3. 請求項1または2に記載の撮像装置であって、
    複数の前記撮像素子は、フレーム期間に非露光期間が生じるグローバルシャッタ方式で撮像する素子であり、
    前記駆動部は、複数の前記撮像素子の撮像画像間で、フリッカエリアが同一エリアに発生しないように、前記遅延時間コントロール
    ことを特徴とする撮像装置。
  4. 請求項1または2に記載の撮像装置であって、
    複数の前記撮像素子は、ローリングシャッタ方式で撮像する素子であり、
    前記駆動部は、複数の前記撮像素子の撮像画像間で、帯状のフリッカエリアが同一ラインに発生しないように、前記遅延時間コントロール
    ことを特徴とする撮像装置。
  5. 請求項1~4のいずれか一項に記載の撮像装置であって、
    緑成分をそれぞれ受光する前記少なくとも2つの前記撮像素子は、撮像位置に画素配列の位相をずらして配置され、
    緑成分の2つの映像信号に基づいて超解像成分を演算し、映像信号の解像度を向上させる映像合成部を備えた
    ことを特徴とする撮像装置。
  6. 被写体の光束を複数に分けて複数の被写体像を得る光学系と、
    複数の前記被写体像をそれぞれ受光する複数の撮像素子と、
    を備えた撮像装置の撮像方法であって、
    少なくとも2つの前記撮像素子の間で露光開始タイミングを所定の遅延時間ずらして撮像を行う駆動ステップと、
    前記露光開始タイミングのずれた前記撮像素子の間で、略同一の像位置で生成される映像信号のレベル相違を画素単位または画素ブロック単位に検出し、前記レベル相違に基づいて、撮像画像内に発生したフリッカエリアを領域検出する信号比較ステップと、
    前記領域検出されたフリッカエリアを補正する信号補正ステップと
    を有し、
    前記駆動ステップは、緑成分を受光する前記少なくとも2つの前記撮像素子の一つとそれ以外の前記撮像素子との間で露光開始タイミングを前記所定の遅延時間ずらして撮像を行い、
    前記信号比較ステップは、緑成分の2つの前記映像信号の間で前記レベル相違を検出し、緑成分の前記レベル相違の正負と、各色成分の前記撮像素子における露光開始タイミングの関係とに基づいて、各色成分の映像信号の内から前記フリッカエリアが発生している映像信号を選定し、
    前記信号補正ステップは、前記選定された映像信号の前記フリッカエリアを補正する
    ことを特徴とする撮像方法。
  7. 露光開始タイミングのずれた複数の映像信号を映像処理するコンピュータシステムを、請求項1~5のいずれか一項に記載の前記信号比較部、および前記信号補正部として機能させる
    ことを特徴とする映像処理プログラム。
JP2021541817A 2019-08-26 2019-08-26 撮像装置、撮像方法、および映像処理プログラム Active JP7237164B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033349 WO2021038692A1 (ja) 2019-08-26 2019-08-26 撮像装置、撮像方法、および映像処理プログラム

Publications (3)

Publication Number Publication Date
JPWO2021038692A1 JPWO2021038692A1 (ja) 2021-03-04
JPWO2021038692A5 JPWO2021038692A5 (ja) 2022-04-05
JP7237164B2 true JP7237164B2 (ja) 2023-03-10

Family

ID=74683923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021541817A Active JP7237164B2 (ja) 2019-08-26 2019-08-26 撮像装置、撮像方法、および映像処理プログラム

Country Status (2)

Country Link
JP (1) JP7237164B2 (ja)
WO (1) WO2021038692A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228775A (ja) 1999-02-05 2000-08-15 Nippon Hoso Kyokai <Nhk> Ccd型4板式高速撮像装置
JP2007067736A (ja) 2005-08-30 2007-03-15 Sony Corp フリッカ検出装置とフリッカ除去装置と撮像装置およびフリッカ検出方法
JP2013051523A (ja) 2011-08-30 2013-03-14 Sharp Corp フリッカ検出装置、フリッカ検出方法、制御プログラム、可読記録媒体、固体撮像装置、多眼撮像装置および電子情報機器
JP2015092660A (ja) 2013-10-01 2015-05-14 株式会社ニコン 撮像装置、撮像装置の制御方法、電子機器、電子機器の制御方法、及び制御プログラム
JP2015207943A (ja) 2014-04-22 2015-11-19 日本放送協会 ビデオカメラ装置、映像信号の処理方法および映像信号処理装置
JP2018064257A (ja) 2016-10-15 2018-04-19 キヤノン株式会社 撮像システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093866A (ja) * 1996-09-12 1998-04-10 Toshiba Corp 撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228775A (ja) 1999-02-05 2000-08-15 Nippon Hoso Kyokai <Nhk> Ccd型4板式高速撮像装置
JP2007067736A (ja) 2005-08-30 2007-03-15 Sony Corp フリッカ検出装置とフリッカ除去装置と撮像装置およびフリッカ検出方法
JP2013051523A (ja) 2011-08-30 2013-03-14 Sharp Corp フリッカ検出装置、フリッカ検出方法、制御プログラム、可読記録媒体、固体撮像装置、多眼撮像装置および電子情報機器
JP2015092660A (ja) 2013-10-01 2015-05-14 株式会社ニコン 撮像装置、撮像装置の制御方法、電子機器、電子機器の制御方法、及び制御プログラム
JP2015207943A (ja) 2014-04-22 2015-11-19 日本放送協会 ビデオカメラ装置、映像信号の処理方法および映像信号処理装置
JP2018064257A (ja) 2016-10-15 2018-04-19 キヤノン株式会社 撮像システム

Also Published As

Publication number Publication date
WO2021038692A1 (ja) 2021-03-04
JPWO2021038692A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
US9712757B2 (en) Image capturing apparatus capable of compositing images generated using the same development parameter and control method therefor
JP5035025B2 (ja) 画像処理装置、フリッカ低減方法、撮像装置及びフリッカ低減プログラム
US9843735B2 (en) Image processing apparatus, imaging apparatus comprising the same, and image processing method
JP4806476B2 (ja) 画像処理装置、画像生成システム、方法、およびプログラム
JP2007336561A (ja) 映像生成装置及び方法
WO2017159027A1 (ja) 撮像制御装置、および撮像制御方法、ならびに撮像装置
US8502893B2 (en) Imaging apparatus, flash determination method, and recording medium
JP2020053771A (ja) 画像処理装置、撮像装置
JP2018207413A (ja) 撮像装置
KR20070068262A (ko) 신호 처리 장치
JP2013029995A (ja) 撮像システム
KR20120024448A (ko) 촬상 장치, 신호 처리 방법 및 프로그램
JP4616794B2 (ja) 画像データのノイズ低減装置およびその制御方法
JP5440245B2 (ja) 撮像装置
JP7237164B2 (ja) 撮像装置、撮像方法、および映像処理プログラム
JP2006135381A (ja) キャリブレーション方法およびキャリブレーション装置
JP2011114473A (ja) 画素欠陥補正装置
JP2000092377A (ja) 固体撮像装置
JP6886026B2 (ja) 撮像装置
JP7379217B2 (ja) 撮像システム
JP2008283477A (ja) 画像処理装置及び画像処理方法
JP7039720B2 (ja) 撮像装置、映像処理方法、およびプログラム
JP2007228152A (ja) 固体撮像装置および撮像方法
WO2021059991A1 (ja) 撮像装置
US12058439B2 (en) Electronic device and control method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230228

R150 Certificate of patent or registration of utility model

Ref document number: 7237164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150