JP7231689B2 - 腕時計ケースの内部の相対湿度レベルを測定するためのアセンブリ - Google Patents

腕時計ケースの内部の相対湿度レベルを測定するためのアセンブリ Download PDF

Info

Publication number
JP7231689B2
JP7231689B2 JP2021167158A JP2021167158A JP7231689B2 JP 7231689 B2 JP7231689 B2 JP 7231689B2 JP 2021167158 A JP2021167158 A JP 2021167158A JP 2021167158 A JP2021167158 A JP 2021167158A JP 7231689 B2 JP7231689 B2 JP 7231689B2
Authority
JP
Japan
Prior art keywords
case
light beam
module
assembly
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021167158A
Other languages
English (en)
Other versions
JP2022066167A (ja
Inventor
ドミニク・デュビュニョン
セドリック・ブラッテル
ミシェル・ウィルマン
Original Assignee
ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド filed Critical ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド
Publication of JP2022066167A publication Critical patent/JP2022066167A/ja
Application granted granted Critical
Publication of JP7231689B2 publication Critical patent/JP7231689B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/004Optical measuring and testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B47/00Time-pieces combined with other articles which do not interfere with the running or the time-keeping of the time-piece
    • G04B47/06Time-pieces combined with other articles which do not interfere with the running or the time-keeping of the time-piece with attached measuring instruments, e.g. pedometer, barometer, thermometer or compass
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/002Electrical measuring and testing apparatus
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/006Testing apparatus for complete clockworks with regard to external influences or general good working
    • G04D7/007Testing apparatus for complete clockworks with regard to external influences or general good working with regard to the sealing of the case
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Electric Clocks (AREA)

Description

本発明は、腕時計ケースの内部の相対湿度レベルを測定のためのアセンブリに関する。
腕時計の耐水性はバールで測定される(バールは圧力の単位で、1バールは1気圧(atm)に相当する)。腕時計の耐水性はメートル(m)で表されることがよくある。耐水仕様として説明される腕時計は、水泳等の活動中、または単にシャワーにおいて、水に対する抵抗を保証する必要のある通常の日常使用を目的とする。いわゆるダイバーズウォッチは、より厳しい基準に準拠する必要があり、現在の基準によれば、最小深度100mまでの耐水性を保証する必要がある。
耐水性を保証するために、腕時計には通常、腕時計のクリスタル、ベゼル、裏蓋などの腕時計の特定の部品、およびリューズおよびプッシュボタンのような可動部品の組み立てポイントに配置された防水シールのセットが提供される。時間の経過や使用に伴い、シールの機械的特性が変化し、腕時計の耐水性が低下する場合がある。これにより、腕時計は、水や水蒸気に対する浸透性が高まる。これにより、腕時計クリスタルの内面に結露現象が発生したり、さらに悪いことに、特定の金属成分の酸化や特定のポリマ成分の劣化が発生したりする可能性がある。したがって、必ずしも腕時計を開ける必要がなくても、腕時計の内部の相対湿度レベルを時々監視できる必要があり、腕時計ケースを開けるには、体系的にシールを交換し、腕時計製造者の介入が必要になるため、費用がかかる。腕時計の内部の過剰な水蒸気は、1つまたは複数のシールを短中期的に交換する必要があることを示すことができる。
このニーズを満たすために、一部の腕時計は、腕時計の内部の相対湿度レベルを測定するためのデバイスを含んでいることが知られている。そのような測定デバイスは、相対湿度を含む様々な環境パラメータの値を測定および記録することができる電子モジュールの形態をとる。そのような電子モジュールはサイズが小さいため、腕時計ケースの内部に配置でき、専用センサを介して腕時計ケースの内部の相対湿度レベルを測定できる。次に、測定された相対湿度値を、通常は赤外線または無線周波数手段によって、ワイヤレスで、腕時計ドッキングステーションに送信することができる。したがって、電子モジュールによって放射される信号、たとえば赤外線信号は、腕時計ケースの透明部分、通常はクリスタルを通過し、ドッキングステーションの赤外線センサによって受信される。時計のユーザは、ドッキングステーションに接続され、専用ソフトウェアがインストールされているコンピュータを使用するか、またはスマートフォンを使用して、測定された相対湿度値を表示できる。
しかしながら、そのような電子測定デバイスの1つの欠点は、様々な電子構成要素に電力を供給するためにバッテリまたは電池を必要とすることである。したがって、そのようなデバイスは、特に機械式腕時計には比較的不適切である。さらに、電子腕時計の場合、製品の自律性が低下し、大容量のバッテリを使用する必要が生じ、腕時計の体積が大きくなる可能性がある。
別の欠点は、そのようなデバイスは、比較的かさばり、腕時計の内部において、あまり目立たない訳ではないことである。さらに、そのような電子測定デバイスは比較的高価であり、したがって腕時計の製造コストに影響を与える。
したがって、本発明の目的は、腕時計ケースを開ける必要なしに、このケースの内部の相対湿度レベルを監視することにより、腕時計ケースの内部に存在する相対湿度レベルを測定し、したがって、そのようなケースの耐水性における欠陥の検出を可能にするアセンブリを提供することである。そのような測定アセンブリは、費用効果が高く、使いやすく、腕時計ケースの内部の相対湿度レベルの信頼性の高い高速な測定をもたらす。
この目的のために、本発明は、腕時計の内部の相対湿度レベルを測定するためのアセンブリに関し、前記腕時計と、この腕時計のケースの筐体内に存在する湿度レベルを判定するためのデバイスとを備え、判定デバイスは、自由空間光学システムおよび制御ユニットを備え、自由空間光学システムは、
- 少なくとも1つの光ビームを放射するための放射モジュールと、
- 前記少なくとも1つの光ビームを受信するための受信機モジュールとを含み、
前記制御ユニットは、前記モジュールに接続され、前記放射モジュールによって放射された前記少なくとも1つの光ビームは、前記ケースに部分的に含まれる光路を画定し、前記受信機モジュールまで延び、前記制御ユニットは、ケースの前記筐体の内部に存在することができる水蒸気によって、前記光ビームの吸収を評価するように構成される。
他の実施形態によれば、
- 測定アセンブリは、ケースの前記筐体の内部および/またはこの筐体の外部に配置された前記少なくとも1つの光ビームを反射する少なくとも1つの反射要素を備え、
- 前記少なくとも1つの反射要素、特に、ケースの文字盤は、光ビームを受信機モジュールに向けて反射することができ、
- 測定アセンブリは、ケースの筐体の内部で互いに向かい合って配置された2つの反射要素によって形成された光学キャビティを備え、
- 前記反射要素は、前記少なくとも1つの光ビームの波長において反射性を有し、
- 第1の反射要素は、ケースのクリスタルの内面の一部に画定され、文字盤の一部に配置された第2の反射要素に面して配置され、
- 放射モジュールは、水蒸気において異なる吸収係数を有する波長において複数の光ビームを同時にまたは連続して放射することができ、
- 放射モジュールおよび受信機モジュールは、前記ケースのクリスタルに面して配置され、
- 受信機モジュールがこのケースの裏蓋に面して配置されている場合、放射モジュールは、前記ケースのクリスタルに面して配置され、
- 受信機モジュールがこのケースのクリスタルに面して配置されている場合、放射モジュールは、前記ケースの裏蓋に面して配置され、
- ケースは、クリスタル、文字盤、ムーブメント、および/または、前記少なくとも1つの光ビームが通過する少なくとも1つの通路を備える裏蓋を備え、
- 前記判定デバイスは、ケースが配置されている第1の空間とは異なる、および/または、前記ケースの筐体の内部に画定される第2の空間とは異なる空間に閉じ込められるように誘導されることなく、放射モジュールと受信機モジュールとの間を前記少なくとも1つの光ビームが移動するように構成される。
腕時計の内部の相対湿度レベルを測定するためのこのアセンブリの目的、利点、および特徴は、図面によって示される少なくとも1つの非限定的な実施形態に基づいて与えられる以下の説明においてより明確に示されるであろう。
図1は、本発明の1つの実施形態による、相対湿度レベルを測定するためのアセンブリの概略図である。 図2は、本発明の実施形態によって、反射によって測定を実行するように構成された相対湿度レベルを測定するためのアセンブリの第1の代替案の概略図である。 図3は、本発明の実施形態によって、透過によって測定を実行するように構成された湿度レベルを判定するためのデバイスを備えるこの測定アセンブリの第2の代替案の概略図である。 図4は、本発明の実施形態によって、透過および反射による測定を実行するように構成されたこの測定アセンブリの第3の代替案の概略図である。 図5は、本発明の実施形態によって、キャビティリングダウン分光法による測定を実行するように構成されたこの測定アセンブリの第4の代替案の概略図である。
図1から図5は、腕時計2の内部の相対湿度レベルを測定するためのアセンブリ1のいくつかの代替案を示す。本明細書では、「相対湿度レベル」は、空気中に含まれる水蒸気の分圧と、同じ温度での飽和蒸気圧との比を意味すると理解される。言い換えれば、相対湿度レベルの測定は、同じ温度条件下での空気の最大水蒸気容量に対する空気の水蒸気含有量の比の測定に対応する。
この測定アセンブリ1は、腕時計2、特に腕時計2のケース3、ならびに湿度レベルを判定し、ケース3に光信号を放射することができるデバイス4を備える。腕時計2は、たとえば、機械式腕時計2または電子腕時計2など、任意のタイプの腕時計2であり得ることに留意されたい。
この構成では、判定デバイス4は、光学システムおよび制御ユニット7を備える。「自由空間光学システム」または「自由空間において光ビームを伝搬するための光学システム」または「無導波路光学システム」とも呼ばれるこの光学システムは、光ビームの軌跡またはこれらビームの特性を変えることができる光学要素のセットを備える。「自由空間」という表現は、たとえば、空気、宇宙空間、真空、または同様のものなどのような光信号をルーティングするための任意の空間媒体を指す。これは、導波管(たとえば、光ファイバ)などの物質的な伝送媒体とは異なる。そのようなシステムは、連続的な結合によって起こる導波路のアレイにおける光ビームの伝播を提供しない。このシステムでは、これらのビームは、導波路を使用せずに、反射、屈折、散乱、回折、またはフィルタリングなどを受けやすい。
このシステムは、少なくとも1つの光ビーム8を放射するための放射モジュール5と、前記少なくとも1つの光ビーム8を受信するための受信機モジュール6とを備える。以下に説明するいくつかの代替案では、この光学システムは、「反射光学要素」または「反射器」とも呼ばれる、少なくとも1つの反射要素10、11、12a、12bを備えることもできる。そのような要素10~12bは、特に、前記少なくとも1つのビーム8を偏向させることができる。さらに、そのような光学システムは、明らかに、光ファイバなどの導波路がないことに留意されたい。
このデバイス4では、制御ユニット7が、前記モジュール5、6に接続されていることに留意されたい。
さらに、そのような判定デバイス4は、特に、前記ケースが配置されている第1の空間とは異なる、および/または、前記ケースの筐体の内部に画定される第2の空間とは異なる空間(または媒体)に閉じ込められるように誘導されることなく、放射モジュール5と受信機モジュール6との間を前記少なくとも1つの光ビーム8が移動するように構成されることに留意されたい。言い換えれば、そのような判定デバイス4は、特に、前記少なくとも1つの光ビーム8が、ケースが配置される第1の空間、および/または、前記ケースの筐体内に画定される第2の空間において(またはそれを通って)放射モジュール5と受信機モジュール6との間を移動するように構成され、前記少なくとも1つの光ビームは、この第1の空間および/またはこの第2の空間とは異なる空間(または媒体)に閉じ込められるように誘導されない。
したがって、そのような判定デバイス4は、特に、前記少なくとも1つの光ビーム8が、前記ケースが配置される第1の空間、および/または、前記ケースの筐体内に画定される第2の空間とは異なる空間(または媒体)に閉じ込められることなく、放射モジュール5と受信機モジュール6との間を移動するように構成される。有利には、そのような判定デバイス4は、特に、前記少なくとも1つの光ビーム8が、ケースが配置される第1の空間、および/または、前記ケースの筐体内に画定される第2の空間において(またはそれを通って)放射モジュール5と受信機モジュール6との間を移動するように構成され、前記少なくとも1つの光ビームは、この第1の空間および/またはこの第2の空間とは異なる空間(または媒体)に閉じ込められない。
空間(または媒体)は、前記少なくとも1つの光ビームが伝播し、前記少なくとも1つのビームが相互作用する物理的な要素であることを思い出すべきである。そのような相互作用は、前記ビームの特性の変化をもたらす。そのような空間(または媒体)は、非限定的かつ非網羅的な方式で、空気、水、またはガラスなどであり得る。
これらの条件下で、前記少なくとも1つの光ビーム8は、第1の空間および/または第2の空間を移動し、たとえば、たとえば光ファイバのような導波路に画定/生成されるもののように、特定の具体的に画定/生成された空間(または媒体)を移動しない。光ビーム、および、より一般的には光の閉じ込めの原理は、より低い屈折率を有する第2の空間に埋め込まれた誘電体空間(または媒体)が、内部全反射によって境界で反射される光のためのトラップを形成するようであることを思い出すべきである。円筒形の光ガイドである光ファイバは、この原理に基づいて動作する。
第2の空間は、ケースの筐体の内部に画定され、この第2の空間の境界は、クリスタル15および/または文字盤17、裏蓋16、および中央部14などのこのケースの構成要素によって形成されることに留意されたい。ムーブメント18も、この第2の空間に配置される。この第2の空間の特性、特に光学特性は、第1の空間の特性と実質的に類似しているか、または厳密に類似している可能性があることにも留意されたい。これらの特性は、非限定的かつ非制限的な方式で、この空間(または媒体)の屈折率、その透明性(この場合、透明性という用語は、非吸収空間(または媒体)を指す)、その均一性(すなわち、空間(または媒体)の特性が、それを構成するすべてのポイントで同じであるか否か)、およびその等方性(すなわち、空間(または媒体)の特性が、すべての方向で同じであるか否か)などであり得る。
さらに、光学システムは、第1の空間および第2の空間に配置されていることに留意されたい。
本発明の原理によれば、そのようなアセンブリ1は、光ビーム8の少なくとも1つの特性の少なくとも1つの変化の評価から、腕時計2のケース3の筐体9の内部に存在する相対湿度レベルを測定することを目的とし、その光路は、この筐体9に部分的に含まれる。この場合、これは、少なくとも1つの変化が、ケース3のこの筐体9に含まれる水蒸気含有量の関数であると述べた。言い換えれば、湿度レベルは、ケース3の筐体9に含まれる空気中に存在し得る水蒸気による前記光ビーム8の吸収の評価から判定される。この場合、吸収が測定されることに留意されたい。なぜなら、以下に見られるように、光ビーム8の吸収係数が既知であるため、この筐体の内部の空気中に存在する分子数、したがってこの空気の密度を推定できるからである。
そのようなケース3は、たとえば、形状が環状であり、このケース3のクリスタル15が載る上部環状エッジを備えた中央部14を含む。図1から図4の例に示す腕時計2のケース3の場合、その構成は実質的に円形である。しかしながら、本発明は、腕時計2のこのケース3のそのような構成に決して限定されない。ケース3は、時間表示手段を備えた文字盤17をさらに含む。
さらに、測定アセンブリ1の代替案によれば、腕時計2、特にケース3は、クリスタル15、裏蓋16、文字盤17、およびムーブメント18などの構成要素を備えることができ、おのおのが、前記少なくとも1つの光ビーム8が通過する少なくとも1つの通路を備える。これらの構成要素のおのおのは、好ましくは、第1および第2の通路を備え、第1の通路は、前記少なくとも1つの光ビーム8によって第1の方向に、第2の通路は、同じ反射光ビーム8によってであるが、第1の方向の逆であり得る第2の方向に通過することができる。このケース3では、第1の通路または第2の通路は、好ましくは同軸に整列されている。文字盤17およびムーブメント18を通過するこれらの通路はおのおの、開口部/凹部であり得る。文字盤17を通る通路はまた、ガラス、たとえば鉱物ガラスまたはサファイアガラスでできている文字盤の透明部分であり得る。文字盤17を通る通路は、この文字盤の全部または一部にわたって画定することができる。裏蓋16の場合、この通路は、好ましくは、この裏蓋の透明部分であり、これは、ガラスで作ることができ、この裏蓋16の全部または一部にわたって画定され得る。裏蓋16を通るこの通路はまた、鉱物ガラスまたはサファイアガラスで作ることができる。そのような構成は、ケース3の内部およびその可動部品が、クリスタル15の前面またはそのような裏蓋16を通して背面に見えるスケルトン腕時計2の構成であり得る。そのような腕時計2において、判定デバイス4によって放射された前記少なくとも1つの光ビーム8は、クリスタル15を通ってケース3の筐体9を透過し、裏蓋16を通って出ることができる。
測定アセンブリ1の別の代替案によれば、腕時計2、特にケース3は、少なくとも1つの反射要素10、11、および/または少なくとも2つの反射要素12a、12bによって形成される光学キャビティ13を備えることができる。これらの反射要素12a、12bは、可視スペクトルに含まれる波長では非反射性であるが、光ビームの波長では反射性であるコーティングを備えることができる。このコーティングは、酸化アルミニウムまたは二酸化チタンで作ることができる。
さらに、このケース3のクリスタル15は、このクリスタル15の全部または一部にわたって画定される前記少なくとも1つの光ビーム8のための通路を備えることに留意されたい。そのような通路は、好ましくは、水蒸気の影響下で変化しやすいこのビーム8の特性を変化させることなく、前記少なくとも1つの光ビーム8が筐体9内を通過することを可能にする。このクリスタル15は、約5mmの厚さを有する鉱物ガラスまたはサファイアガラスであり得、これにより、少なくとも、0.2から4.5μmの間に含まれる波長を有する前記少なくとも1つの光ビーム8が透過できるようになる。
判定デバイス4において、少なくとも1つの光ビーム8を放射する放射モジュール5は、クリスタル15を介して腕時計2に向けて光ビームを放射することができる集束光源を備え、このビーム8がケース3の筐体9内を通過することを可能にする。このモジュールは、好ましくは、少なくとも1つのレーザビームを放射するための放射モジュール5である。このレーザビームの波長は、2.4から3μmの間で構成され、好ましくは2.6μmである。そのようなモジュール5は、たとえば、連続波(CW)レーザを備えることにより、パルスフリー動作が可能である。そのようなレーザは、パルス光を生成するQスイッチまたはフェムト秒レーザとは対照的に、連続出力ビームを生成することができる。この放射モジュール5は、変調周波数の外部のノイズを排除することによって、信号対ノイズ比を改善するために、変調、特に重ね合わせを伴うより遅い変調を実施するように構成することができる。遅い周波数オフセットも提供できる。
受信機モジュール6は、少なくとも1つの光学光センサ、特に、前記少なくとも1つの光ビーム、本実施形態では、放射モジュール5によって放射されるレーザビームを感知するための少なくとも1つの光学センサを備える。この光学センサは、少なくとも1つのフォトダイオードを含む。この受信機モジュール6はまた、前記少なくとも1つのビーム8の強度に関するアナログ変数を、デジタル値に変換するためのアナログ-デジタル変換器を備えている。少なくとも2つの光学センサを備える場合、受信機モジュール6は、前記少なくとも1つのレーザビームの相対強度ノイズの影響を低減するために、または、アナログ-デジタル変換器のダイナミックレンジを最適化するために、これらの光学センサから発信される信号間の差を増幅できることに留意されたい。そのような受信機モジュール6は、ケース3の筐体9の内部を移動した前記光ビーム8を受信することができる。
上記のように、判定デバイス4は、制御ユニット7をさらに備える。この制御ユニット7は、ハードウェアリソースおよびソフトウェアリソース、特にメモリ素子と協働する少なくとも1つのプロセッサを備えるコンピュータであり得る。この制御ユニット7は、腕時計2のケース3の筐体9の内部の相対湿度レベルの測定値の判定に寄与するために、コンピュータプログラムを実施するためのコマンドを実行することができる。
この制御ユニット7は、放射モジュール5および受信機モジュール6に接続される。そのような制御ユニット7は、ケース3の筐体9の内部の相対湿度レベルの測定値の判定に関与するために、これらのモジュール5、6を制御することができる。特に、この制御ユニット7は、信号変調および同期検出動作によって、信号処理動作を実行することができる。この制御ユニット7は、ケース3の前記筐体9の内部に存在し得る水蒸気による前記光ビーム8の吸収を評価するように構成される。そのような制御ユニット7は、たとえば、そのメモリ素子において、ケース3の内部の湿度レベルの評価に関与するために、光ビーム8の強度の値、および/または、水蒸気による前記光ビーム8の吸収係数を、ビームの強度の値に関連付けられた相対湿度レベルの値、および/または、吸収係数にマッチさせるための1つまたは複数のルックアップテーブルを備える。
図2に示される測定アセンブリ1の第1の代替案では、このアセンブリは、ケース3の筐体9の内部の前記少なくとも1つの光ビーム8の反射の原理にしたがって、湿度レベルの測定を実行するように構成される。この代替案では、放射モジュール5および反射モジュール6は、クリスタル15に面して配置される。したがって、この文脈において、このケース3は、前記少なくとも1つの光ビーム8が、ケース3の筐体9のみならず、反射要素10に向かって通過するための通路がその中に設けられたクリスタル15を備える。そのような反射要素10は、腕時計2の文字盤17の全部または一部に含まれ得る。したがって、前記少なくとも1つの光ビーム8は、放射モジュール5から始まり、次に、クリスタル15内の通路を通って筐体9を貫通し、最終的に、文字盤17によって受信機モジュール6に向けて反射される光路をたどる。
図3に示される測定アセンブリ1の第2の代替案では、このアセンブリ1は、ケース3の筐体9を通る前記少なくとも1つの光ビーム8の透過の原理にしたがって、湿度レベルの測定を実行するように構成される。この代替案では、放射モジュール5は、クリスタル15に面して配置され、受信機モジュール6は、裏蓋16に面して配置されるか、または放射モジュール5は、裏蓋16に面して配置され、受信機モジュール6は、クリスタル15に面して配置される。したがって、この文脈において、このケース3は、クリスタル15、ムーブメント18、文字盤17、および裏蓋16を備え、これらはおのおの、前記少なくとも1つの光ビーム8のためのそれぞれの通路を備えており、したがって、前記少なくとも1つの光ビーム8は、ケース3のこの筐体9を通過する。そのような構成では、腕時計2はスケルトン腕時計2であり得ることに留意されたい。したがって、前記少なくとも1つの光ビーム8は、放射モジュール5から始まり、次に、クリスタル15内の通路を通って筐体9を貫通し、最終的に、通路を介して裏蓋16を通過して、受信機モジュール6に向かってこの筐体9を出る光路をたどる。
図4に示される測定アセンブリ1の第3の代替案では、このアセンブリ1は、ケース3の筐体9を通る前記少なくとも1つの光ビーム8の透過および反射の原理にしたがって、湿度レベルの測定を実行するように構成される。この代替案では、放射モジュールおよび反射モジュールは、クリスタル15または裏蓋16に面して配置される。この文脈において、このケース3は、ケース3の外側に配置され、裏蓋16に面する反射要素11を備え、さらに、クリスタル15、ムーブメント18、文字盤17、および裏蓋16を備え、おのおのに、2つの通路、すなわち、
- ケース3を通過する前記少なくとも1つの光ビーム8の透過のために提供されるそれらおのおのの第1の通路と、
- ケース3を再び通過する前記少なくとも1つの透過光ビーム8の反射のために提供されるそれらおのおのの第2の通路とが設けられる。
この第3の代替案では、前記少なくとも1つの光ビーム8は、放射モジュール5から始まり、第1の通路を、クリスタル15、文字盤17、およびムーブメント18の順に通過することによって筐体9を出て、最終的に裏蓋16内の第1の通路を通ってこの筐体9を出て、次に、反射要素11において反射され、裏蓋16、ムーブメント18、文字盤17、およびクリスタル15内を第2の通路を通って筐体9を通過することで再び受信機モジュール6へ向かう光路をたどる。この文脈では、腕時計2は、スケルトン腕時計2であり得ることに留意されたい。
図4に示される測定アセンブリ1の第4の代替案では、このアセンブリ1は、ケース3の筐体9の内部の前記少なくとも1つの光ビーム8のキャビティリングダウン分光法13による測定を実行するように構成される。この第4の代替案は、腕時計2の筐体9内の光路を増加させることを可能にする分光技術を実施し、その結果、水蒸気による前記光ビーム8の吸収が増加し、したがって、測定の感度が向上する。この代替案では、放射モジュール5および反射モジュール6は、クリスタル15に面して配置される。したがって、この文脈において、このケース3は、前記少なくとも1つの光ビームの波長における反射率を有する少なくとも2つの反射要素12a、12bを備える光学キャビティ13を備える。第1の要素は、クリスタル15の内面の一部に画定され、文字盤17の一部に配置された第2の反射要素、12bに面して配置される。この構成では、この光学キャビティ13の光学特性は、ケース3の筐体9の内部に存在する湿度レベルの関数として変化する。より具体的には、放射モジュール5によるその放射が停止した後のキャビティ13内の前記少なくとも1つの光ビーム8のこの反射率の減衰時間は、相対湿度レベルの測定を確立する範囲内でこの代替案において考慮される。この代替案では、このケース3は、2つの通路、すなわち、
- ケース3の筐体9に含まれる光学キャビティ13に向けて前記少なくとも1つの光ビーム8の透過のために提供される第1の通路と、
- この光学キャビティ13から到来する前記少なくとも1つの光ビーム8の反射のために提供される第2の通路とを備えたクリスタル15をさらに備える。
そのような第1および第2の通路は、可視スペクトルに対して半透明であり、および/または、赤外線に対して半反射性であり、および/または1未満の反射率を有し得る。
したがって、この第4の代替案では、前記少なくとも1つの光ビーム8は、放射モジュール5から始まり、クリスタル15内の第1の通路を通過することによって光学キャビティ13を貫通し、最終的に、第2の通路を介して、このクリスタル15を通過して、受信機モジュール6に向かってこの光学キャビティ13を出る光路をたどる。
なお、ケース3の筐体9に含まれる光路の部分の長さが長くなると、測定アセンブリ1によって実行される湿度レベルの測定の精度が高くなることに留意されたい。
判定デバイス4において、放射モジュール5は、水蒸気において異なる吸収係数を有する波長で複数の光ビームを同時にまたは連続して放射することができる。たとえば、これらのビームの波長は、約2.3および2.6μmであり得る。
さらに、判定デバイス4は、携帯型またはモバイルデバイス、すなわち、その電源のための有線接続を必要とせずにユーザによって携帯され得るデバイス4であり得る。
他方、判定デバイス4は、制御ユニット7によって判定された相対湿度レベルの値に応じて、複数の異なる視覚信号を表示することができる表示素子を備えることができる。したがって、場合によっては、表示素子によって表示される各視覚信号は、所定の相対湿度レベル値または所定の相対湿度差値に対応する。この表示素子は、発光ダイオードを備えるスクリーンであり得るか、またはより単純に、発光ダイオードを備える光インジケータに対応することができ、所与のダイオードの照明は、所定の相対湿度しきい値に対応する。
1 測定アセンブリ
2 腕時計
3 ケース
4 判定デバイス
5 放射モジュール
6 受信機モジュール
7 制御ユニット
8 光ビーム
9 筐体
10 反射要素
11 反射要素
12a 第1の反射要素
12b 第2の反射要素
13 光学キャビティ
14 中央部
15 クリスタル
16 裏蓋
17 文字盤
18 ムーブメント

Claims (11)

  1. 腕時計(2)の内部の相対湿度レベルを測定するためのアセンブリ(1)であって、前記腕時計(2)と、この腕時計(2)のケース(3)の筐体(9)内に存在する湿度レベルを判定するためのデバイス(4)とを備え、前記判定デバイス(4)は、自由空間光学システムおよび制御ユニット(7)を備え、前記システムは、
    - 少なくとも1つの光ビーム(8)を放射するための放射モジュールと、
    - 前記少なくとも1つの光ビーム(8)を受信するための受信機モジュール(6)とを含み、
    前記制御ユニット(7)は、前記放射モジュール(5)および前記受信機モジュール(6)に接続され、前記放射モジュール(5)によって放射された前記少なくとも1つの光ビーム(8)は、前記ケース(3)に部分的に含まれる光路を画定し、前記受信機モジュール(6)まで延び、前記制御ユニット(7)は、前記ケース(3)の前記筐体(9)の内部に存在することができる水蒸気によって、前記光ビーム(8)の吸収を評価するように構成される、アセンブリ(1)。
  2. 前記ケース(3)の前記筐体(9)の内部および/またはこの筐体(9)の外部に配置された前記少なくとも1つの光ビーム(8)を反射する少なくとも1つの反射要素(10、11)を備えることを特徴とする、請求項1に記載の測定アセンブリ(1)。
  3. 前記少なくとも1つの反射要素(10、11)、又は、前記ケース(3)の文字盤(17)は、前記光ビーム(8)を前記受信機モジュール(6)に向けて反射することができることを特徴とする、請求項2に記載の測定アセンブリ(1)。
  4. 前記ケース(3)の前記筐体(9)の内部で互いに向かい合って配置された2つの反射要素(12a、12b)によって形成された光学キャビティ(13)を備えることを特徴とする、請求項1または請求項2に記載の測定アセンブリ(1)。
  5. 前記反射要素(12a、12b)は、前記少なくとも1つの光ビーム(8)の波長において反射性を有することを特徴とする、請求項4に記載の測定アセンブリ(1)。
  6. 第1の反射要素(12a)は、前記ケース(3)のクリスタル(15)の内面の一部に画定され、文字盤(17)の一部に配置された第2の反射要素(12b)に面して配置されることを特徴とする、請求項5に記載の測定アセンブリ(1)。
  7. 前記放射モジュール(5)は、水蒸気において異なる吸収係数を有する波長において複数の光ビームを同時にまたは連続して放射することができることを特徴とする、請求項1から請求項6のいずれか一項に記載の測定アセンブリ(1)。
  8. 前記放射モジュール(5)および受信機モジュール(6)は、前記ケース(3)のクリスタル(15)に面して配置されることを特徴とする、請求項1から請求項7のいずれか一項に記載の測定アセンブリ(1)。
  9. - 前記受信機モジュール(6)がこのケース(3)の裏蓋(16)に面して配置されている場合、前記放射モジュール(5)は、前記ケース(3)のクリスタル(15)に面して配置され、
    - 前記受信機モジュール(6)がこのケース(3)のクリスタル(15)に面して配置されている場合、前記放射モジュール(5)は、前記ケース(3)の裏蓋(16)に面して配置されることを特徴とする、請求項1から請求項8のいずれか一項に記載の測定アセンブリ(1)。
  10. 前記ケース(3)は、クリスタル(15)、文字盤(17)、ムーブメント(18)、および/または、前記少なくとも1つの光ビーム(8)が通過する少なくとも1つの通路を備える裏蓋(16)を備えることを特徴とする、請求項1から請求項9のいずれか一項に記載の測定アセンブリ(1)。
  11. 前記判定デバイス(4)は、前記ケースが配置されている第1の空間とは異なる、および/または、前記ケースの前記筐体の内部に画定される第2の空間とは異なる空間に閉じ込められるように誘導されることなく、前記放射モジュール(5)と前記受信機モジュール(6)との間を前記少なくとも1つの光ビーム(8)が移動するように構成されることを特徴とする、請求項1から請求項10のいずれか一項に記載の測定アセンブリ(1)。
JP2021167158A 2020-10-16 2021-10-12 腕時計ケースの内部の相対湿度レベルを測定するためのアセンブリ Active JP7231689B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20202331.3 2020-10-16
EP20202331 2020-10-16

Publications (2)

Publication Number Publication Date
JP2022066167A JP2022066167A (ja) 2022-04-28
JP7231689B2 true JP7231689B2 (ja) 2023-03-01

Family

ID=73005313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021167158A Active JP7231689B2 (ja) 2020-10-16 2021-10-12 腕時計ケースの内部の相対湿度レベルを測定するためのアセンブリ

Country Status (4)

Country Link
US (1) US20220121157A1 (ja)
EP (1) EP3985455A1 (ja)
JP (1) JP7231689B2 (ja)
CN (1) CN114384027A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215340A (ja) 2014-04-14 2015-12-03 フォンダレックス エスアーFondarex S.A. ダイカスト金型内の湿度を測定するための装置及び方法
JP2016219712A (ja) 2015-05-25 2016-12-22 株式会社メガオプト 多波長レーザー発振装置および多波長レーザー発振方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774782B2 (ja) * 1990-07-13 1995-08-09 株式会社テイエルブイ 近赤外線湿度計測装置
CN1155655A (zh) * 1995-10-10 1997-07-30 液体空气乔治洛德方法利用和研究有限公司 腔废气监测系统、半导体加工系统,以及使用方法
DE19717488C2 (de) * 1997-04-25 2003-05-15 Baumer Optronic Gmbh Vorrichtung zur Inspektion der Oberfläche von Objekten
US7291856B2 (en) * 2005-04-28 2007-11-06 Honeywell International Inc. Sensor and methods for measuring select components in moving sheet products
US8437000B2 (en) * 2010-06-29 2013-05-07 Honeywell International Inc. Multiple wavelength cavity ring down gas sensor
DE102014108424B3 (de) * 2014-06-16 2015-06-11 Johann Wolfgang Goethe-Universität Nicht-invasive Stoffanalyse
EP3598246B1 (fr) * 2018-07-20 2021-04-21 The Swatch Group Research and Development Ltd Montre comprenant un dispositif de mesure du degre d'humidite relative a l'interieur de sa boite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215340A (ja) 2014-04-14 2015-12-03 フォンダレックス エスアーFondarex S.A. ダイカスト金型内の湿度を測定するための装置及び方法
JP2016219712A (ja) 2015-05-25 2016-12-22 株式会社メガオプト 多波長レーザー発振装置および多波長レーザー発振方法

Also Published As

Publication number Publication date
US20220121157A1 (en) 2022-04-21
JP2022066167A (ja) 2022-04-28
CN114384027A (zh) 2022-04-22
EP3985455A1 (fr) 2022-04-20

Similar Documents

Publication Publication Date Title
JPH10123048A (ja) 集積化されたセンサおよび生化学的サンプルを検出する方法
CN110632008B (zh) 一种多点反射式光电气体传感器探头及光电气体检测装置
US7453572B1 (en) Method and apparatus for continuous measurement of the refractive index of fluid
CN110737187A (zh) 包括用于测量表壳内部的相对湿度的设备的手表
JP7231689B2 (ja) 腕時計ケースの内部の相対湿度レベルを測定するためのアセンブリ
KR100781968B1 (ko) 광경로 길이를 변경할 수 있는 비분산 적외선 가스 농도측정장치
US9188528B2 (en) Sensor for monitoring a medium
US9726541B2 (en) Electromagnetic radiation sensor for monitoring a medium
JP7212121B2 (ja) 腕時計ケースの内部の相対湿度レベルを測定するためのアセンブリ
US10114154B2 (en) Optical head for receiving light and optical system using the same
JP2013088138A (ja) 屈折率測定装置および濃度測定装置並びにその方法
CN214622312U (zh) 一种火灾早期多组分气体激光遥测装置
EP3201605B1 (en) Laser beam stop elements and spectroscopy systems including the same
CN103697920A (zh) 一种光纤传感头和基于该传感头的测量液体折射率的光纤传感系统及方法
US11940379B2 (en) Device for measuring a relative humidity level inside the enclosure of a watch case
JPH0335145A (ja) 分光分析の透過測定装置
US20240019368A1 (en) An optical measurement device
RU207294U1 (ru) Волоконно-оптический измеритель кислотности
JP4528522B2 (ja) 光学分析用センサ装置
KR20190017605A (ko) 분광 센서 및 이를 포함하는 휴대용 전자기기
RU2743339C1 (ru) Способ контроля уровня и вида жидкости и волоконно-оптический сигнализатор уровня и вида жидкости для реализации этого способа
US11879888B2 (en) Glycosuria measurement device
JP7244900B2 (ja) 反射部材の表裏識別方法
KR100877491B1 (ko) 항온항습 기능을 구비하는 적외선 가스 감지기
JPH0772080A (ja) ガス検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7231689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150