JP7231537B2 - conductive composition - Google Patents

conductive composition Download PDF

Info

Publication number
JP7231537B2
JP7231537B2 JP2019520291A JP2019520291A JP7231537B2 JP 7231537 B2 JP7231537 B2 JP 7231537B2 JP 2019520291 A JP2019520291 A JP 2019520291A JP 2019520291 A JP2019520291 A JP 2019520291A JP 7231537 B2 JP7231537 B2 JP 7231537B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
present
epoxy
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019520291A
Other languages
Japanese (ja)
Other versions
JPWO2018216739A1 (en
Inventor
一雄 荒川
丈章 齋木
和憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Publication of JPWO2018216739A1 publication Critical patent/JPWO2018216739A1/en
Application granted granted Critical
Publication of JP7231537B2 publication Critical patent/JP7231537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Description

本発明は導電性組成物に関する。 The present invention relates to conductive compositions.

従来、太陽電池などにおける電極を形成する材料として、導電粒子及びエポキシ樹脂を含有する導電性組成物が提案されている(例えば、特許文献1)。 BACKGROUND ART Conventionally, a conductive composition containing conductive particles and an epoxy resin has been proposed as a material for forming electrodes in solar cells and the like (for example, Patent Document 1).

国際公開第2016/017618号WO2016/017618

上記導電性組成物には、スクリーン印刷性、得られる硬化物が低抵抗であり、基材との接着性、貯蔵安定性に優れること等が要求される。特に太陽電池のフィンガー電極用途では、発電効率向上のため受光面積を広げるために、スクリーン印刷においてフィンガーの細線化が求められている。
また、上記導電性組成物が例えば太陽電池のバスバー電極に使用される場合、上記バスバー電極は半田を表面にコートした銅リボン(インターコネクタ)等で接続されるため、上記導電性組成物で形成されるバスバー電極は半田付け性(導電性組成物と半田との接合性及び/又は接合強度)に優れることが求められる。
このようななか、本発明者らは特許文献1を参考にして組成物を調製しこれを評価したところ、このような組成物は、半田付け性、スクリーン印刷性、低抵抗性、基材との接着性、又は、貯蔵安定性について昨今要求されているレベルを満たさない場合があることが明らかとなった。
そこで、本発明は、半田付け性、スクリーン印刷性、低抵抗性、基材との接着性、及び、貯蔵安定性に優れる導電性組成物を提供することを目的とする。
The conductive composition is required to have good screen-printability, low resistance in the resulting cured product, excellent adhesiveness to substrates, excellent storage stability, and the like. In particular, for finger electrode applications in solar cells, there is a demand for finer finger lines in screen printing in order to increase the light-receiving area in order to improve power generation efficiency.
Further, when the conductive composition is used, for example, as a busbar electrode of a solar cell, the busbar electrode is connected by a copper ribbon (interconnector) or the like coated with solder on the surface. The busbar electrode used is required to be excellent in solderability (bondability and/or bond strength between the conductive composition and solder).
Under such circumstances, the present inventors prepared a composition with reference to Patent Document 1 and evaluated it. It has become clear that there are cases where the level of adhesiveness or storage stability that is required these days is not met.
Accordingly, an object of the present invention is to provide a conductive composition that is excellent in solderability, screen printability, low resistance, adhesion to substrates, and storage stability.

本発明者らは、上記課題を解決すべく鋭意研究した結果、
導電粒子と、
エポキシ当量が500g/eq未満であり、かつ、25℃で液状のエポキシ樹脂Aと、
エポキシ当量が400g/eq以上5000g/eq以下であり、かつ、25℃で固体のエポキシ樹脂Bと、
重量平均分子量が25,000~65,000である熱可塑性樹脂Cと、
硬化剤Dと、
溶剤と、を含有し、
上記エポキシ樹脂A、上記エポキシ樹脂B、上記熱可塑性樹脂C及び上記硬化剤Dの総量が、上記導電粒子100質量部に対して3質量部以上10質量部以下であり、
上記熱可塑性樹脂Cの含有量に対する、上記エポキシ樹脂A及び上記エポキシ樹脂Bの総量の質量比[(A+B)/C]が、50/50~95/5であり、
上記エポキシ樹脂B及び上記熱可塑性樹脂Cの総量に対する、上記エポキシ樹脂Aの含有量の質量比[A/(B+C)]が、15/85~85/15であり、
上記エポキシ樹脂Aと上記エポキシ樹脂Bとの総量に対する、上記硬化剤Dの含有量の質量比[D/(A+B)]が、2/98~10/90であり、
カルボン酸金属塩を実質的に含有しないことによって、所望の効果が得られることを見出し、本発明に至った。
本発明は上記知見等に基づくものであり、具体的には以下の構成により上記課題を解決するものである。
As a result of intensive research by the present inventors to solve the above problems,
conductive particles;
an epoxy resin A that has an epoxy equivalent of less than 500 g/eq and is liquid at 25°C;
an epoxy resin B that has an epoxy equivalent of 400 g/eq to 5000 g/eq and is solid at 25°C;
a thermoplastic resin C having a weight average molecular weight of 25,000 to 65,000;
a curing agent D;
containing a solvent and
The total amount of the epoxy resin A, the epoxy resin B, the thermoplastic resin C, and the curing agent D is 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the conductive particles,
The mass ratio [(A+B)/C] of the total amount of the epoxy resin A and the epoxy resin B to the content of the thermoplastic resin C is 50/50 to 95/5,
The mass ratio [A/(B+C)] of the content of the epoxy resin A to the total amount of the epoxy resin B and the thermoplastic resin C is 15/85 to 85/15,
The mass ratio [D/(A+B)] of the content of the curing agent D to the total amount of the epoxy resin A and the epoxy resin B is 2/98 to 10/90,
The inventors have found that the desired effect can be obtained by substantially not containing a carboxylic acid metal salt, and have arrived at the present invention.
The present invention is based on the above knowledge and the like, and specifically solves the above problems with the following configuration.

1. 導電粒子と、
エポキシ当量が500g/eq未満であり、かつ、25℃で液状のエポキシ樹脂Aと、
エポキシ当量が400g/eq以上5000g/eq以下であり、かつ、25℃で固体のエポキシ樹脂Bと、
重量平均分子量が25,000~65,000である熱可塑性樹脂Cと、
硬化剤Dと、
溶剤と、を含有し、
上記エポキシ樹脂A、上記エポキシ樹脂B、上記熱可塑性樹脂C及び上記硬化剤Dの総量が、上記導電粒子100質量部に対して3質量部以上10質量部以下であり、
上記熱可塑性樹脂Cの含有量に対する、上記エポキシ樹脂A及び上記エポキシ樹脂Bの総量の質量比[(A+B)/C]が、50/50~95/5であり、
上記エポキシ樹脂B及び上記熱可塑性樹脂Cの総量に対する、上記エポキシ樹脂Aの含有量の質量比[A/(B+C)]が、15/85~85/15であり、
上記エポキシ樹脂Aと上記エポキシ樹脂Bとの総量に対する、上記硬化剤Dの含有量の質量比[D/(A+B)]が、2/98~10/90であり、
カルボン酸金属塩を実質的に含有しない、導電性組成物。
2. 上記エポキシ樹脂Aの25℃での粘度が、15~60,000mPa・sである、上記1に記載の導電性組成物。
3. 上記熱可塑性樹脂Cのガラス転移点が、80~100℃である、上記1又は2に記載の導電性組成物。
4. 上記導電粒子が、銀粉、銅粉、及び、表面の少なくとも一部が銀でコートされた銀コート導電粉からなる群から選ばれる少なくとも1種である、上記1~3のいずれかに記載の導電性組成物。
5. 上記エポキシ樹脂Aが、環状構造を有するエポキシ樹脂A1及び鎖状構造を有するエポキシ樹脂A2を含有する、上記1~4のいずれか1項に記載の導電性組成物。
6.上記エポキシ樹脂A2の含有量に対する、上記エポキシ樹脂A1の含有量の質量比[エポキシ樹脂A1/エポキシ樹脂A2]が、15/85~85/15である、上記5に記載の導電性組成物。
7. 上記エポキシ樹脂A1が、1分子中に1つの環状構造を有するエポキシ樹脂を少なくとも含む、上記5又は6に記載の導電性組成物。
1. conductive particles;
an epoxy resin A that has an epoxy equivalent of less than 500 g/eq and is liquid at 25°C;
an epoxy resin B that has an epoxy equivalent of 400 g/eq to 5000 g/eq and is solid at 25°C;
a thermoplastic resin C having a weight average molecular weight of 25,000 to 65,000;
a curing agent D;
containing a solvent and
The total amount of the epoxy resin A, the epoxy resin B, the thermoplastic resin C, and the curing agent D is 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the conductive particles,
The mass ratio [(A+B)/C] of the total amount of the epoxy resin A and the epoxy resin B to the content of the thermoplastic resin C is 50/50 to 95/5,
The mass ratio [A/(B+C)] of the content of the epoxy resin A to the total amount of the epoxy resin B and the thermoplastic resin C is 15/85 to 85/15,
The mass ratio [D/(A+B)] of the content of the curing agent D to the total amount of the epoxy resin A and the epoxy resin B is 2/98 to 10/90,
A conductive composition substantially free of metal carboxylate.
2. 2. The conductive composition as described in 1 above, wherein the epoxy resin A has a viscosity at 25° C. of 15 to 60,000 mPa·s.
3. 3. The conductive composition according to 1 or 2 above, wherein the thermoplastic resin C has a glass transition point of 80 to 100°C.
4. 4. The conductive material according to any one of 1 to 3 above, wherein the conductive particles are at least one selected from the group consisting of silver powder, copper powder, and silver-coated conductive powder having a surface at least partially coated with silver. sex composition.
5. 5. The conductive composition according to any one of 1 to 4 above, wherein the epoxy resin A contains an epoxy resin A1 having a cyclic structure and an epoxy resin A2 having a chain structure.
6. 6. The conductive composition according to 5 above, wherein the mass ratio of the content of the epoxy resin A1 to the content of the epoxy resin A2 [epoxy resin A1/epoxy resin A2] is 15/85 to 85/15.
7. 7. The conductive composition according to 5 or 6 above, wherein the epoxy resin A1 contains at least an epoxy resin having one cyclic structure in one molecule.

本発明の導電性組成物は、半田付け性、スクリーン印刷性、低抵抗性、基材との接着性、及び、貯蔵安定性に優れる。 The conductive composition of the present invention is excellent in solderability, screen printability, low resistance, adhesion to substrates, and storage stability.

本発明について以下詳細に説明する。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本明細書において、特に断りのない限り、各成分はその成分に該当する物質をそれぞれ単独でまたは2種以上を組み合わせて使用することができる。成分が2種以上の物質を含む場合、成分の含有量は、2種以上の物質の合計の含有量を意味する。
本発明において、各成分はその製造方法について特に制限されない。例えば、従来公知のものが挙げられる。
本明細書において、半田付け性、スクリーン印刷性、低抵抗性、基材との接着性、及び、貯蔵安定性のうちの少なくとも1つがより優れることを、本発明の効果がより優れるということがある。
The present invention will be described in detail below.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
In this specification, unless otherwise specified, each component can be used singly or in combination of two or more substances corresponding to the component. When the component contains two or more substances, the content of the component means the total content of the two or more substances.
In the present invention, each component is not particularly limited in its manufacturing method. For example, a conventionally well-known thing is mentioned.
In the present specification, it means that at least one of solderability, screen printability, low resistance, adhesion to a substrate, and storage stability is superior, and that the effect of the present invention is superior. be.

[導電性組成物]
本発明の導電性組成物(本発明の組成物)は、
導電粒子と、
エポキシ当量が500g/eq未満であり、かつ、25℃で液状のエポキシ樹脂Aと、
エポキシ当量が400g/eq以上5000g/eq以下であり、かつ、25℃で固体のエポキシ樹脂Bと、
重量平均分子量が25,000~65,000である熱可塑性樹脂Cと、
硬化剤Dと、
溶剤と、を含有し、
上記エポキシ樹脂A、上記エポキシ樹脂B、上記熱可塑性樹脂C及び上記硬化剤Dの総量が、上記導電粒子100質量部に対して3質量部以上10質量部以下であり、
上記熱可塑性樹脂Cの含有量に対する、上記エポキシ樹脂A及び上記エポキシ樹脂Bの総量の質量比[(A+B)/C]が、50/50~95/5であり、
上記エポキシ樹脂B及び上記熱可塑性樹脂Cの総量に対する、上記エポキシ樹脂Aの含有量の質量比[A/(B+C)]が、15/85~85/15であり、
上記エポキシ樹脂Aと上記エポキシ樹脂Bとの総量に対する、上記硬化剤Dの含有量の質量比[D/(A+B)]が、2/98~10/90であり、
カルボン酸金属塩を実質的に含有しない、導電性組成物である。
[Conductive composition]
The conductive composition of the present invention (composition of the present invention) is
conductive particles;
an epoxy resin A that has an epoxy equivalent of less than 500 g/eq and is liquid at 25°C;
an epoxy resin B that has an epoxy equivalent of 400 g/eq to 5000 g/eq and is solid at 25°C;
a thermoplastic resin C having a weight average molecular weight of 25,000 to 65,000;
a curing agent D;
containing a solvent and
The total amount of the epoxy resin A, the epoxy resin B, the thermoplastic resin C, and the curing agent D is 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the conductive particles,
The mass ratio [(A+B)/C] of the total amount of the epoxy resin A and the epoxy resin B to the content of the thermoplastic resin C is 50/50 to 95/5,
The mass ratio [A/(B+C)] of the content of the epoxy resin A to the total amount of the epoxy resin B and the thermoplastic resin C is 15/85 to 85/15,
The mass ratio [D/(A+B)] of the content of the curing agent D to the total amount of the epoxy resin A and the epoxy resin B is 2/98 to 10/90,
It is a conductive composition that does not substantially contain a metal carboxylate.

本発明の組成物はこのような構成をとるため、所望の効果が得られるものと考えられる。その理由は明らかではないが、およそ以下のとおりと推測される。
すなわち、本発明において、エポキシ当量が所定の範囲の液状のエポキシ樹脂Aとエポキシ当量が所定の範囲の固体のエポキシ樹脂Bとを併用し、各成分の含有量等を所定の範囲にすることによって、スクリーン印刷で断線等が起こりにくく、導電粒子の高密度化が可能となり、得られる硬化物が強靭となるため、スクリーン印刷性、低抵抗性、及び、基材との接着性に優れると考えられる。
また、本発明の組成物は、導電粒子並びにエポキシ樹脂A及びエポキシ樹脂Bに対して、重量平均分子量が所定の範囲の熱可塑性樹脂を含有することによって、本発明の組成物は半田との接合でき、組成物に靭性を付与できる。上記靭性によって、本発明の組成物は、半田付け性(特に導電性組成物と半田との接合強度)に優れると考えられる。
そして、本発明の組成物は、各成分を所定の含有量で含有することによって、半田付け性、スクリーン印刷性、低抵抗性、及び、基材との接着性を高いレベルでバランスさせることができると推測する。
また、本発明の組成物はカルボン酸金属塩を実質的に含有しないことによって、貯蔵安定性に優れる。
以下、本発明の組成物に含有される各成分について詳述する。
Since the composition of the present invention has such a constitution, it is believed that the desired effect can be obtained. Although the reason is not clear, it is presumed to be approximately as follows.
That is, in the present invention, a liquid epoxy resin A having a predetermined range of epoxy equivalents and a solid epoxy resin B having a predetermined range of epoxy equivalents are used in combination, and the content of each component, etc. is set within a predetermined range. , It is thought that disconnection etc. do not occur easily in screen printing, it is possible to increase the density of conductive particles, and the cured product obtained is tough, so it is considered to be excellent in screen printability, low resistance, and adhesion to substrates. be done.
Further, the composition of the present invention contains a thermoplastic resin having a weight-average molecular weight in a predetermined range with respect to the conductive particles and epoxy resin A and epoxy resin B. and can impart toughness to the composition. Due to the above toughness, the composition of the present invention is considered to be excellent in solderability (in particular, bonding strength between the conductive composition and solder).
The composition of the present invention can balance solderability, screen printability, low resistance, and adhesion to a substrate at a high level by containing each component in a predetermined content. Guess you can.
Moreover, the composition of the present invention is excellent in storage stability because it does not substantially contain a metal carboxylate.
Each component contained in the composition of the present invention will be described in detail below.

<<導電粒子>>
本発明の組成物に含有される導電粒子は、導電性を有する粒状の物質であれば特に限定されない。
導電粒子としては、例えば、電気抵抗率が20×10-6Ω・cm以下の金属材料が挙げられる。
上記金属材料としては、具体的には、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、及び、ニッケル(Ni)等が挙げられる。
<<Conductive particles>>
The conductive particles contained in the composition of the present invention are not particularly limited as long as they are particulate substances having conductivity.
Examples of conductive particles include metal materials having an electrical resistivity of 20×10 −6 Ω·cm or less.
Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), and nickel (Ni).

上記導電粒子としては、例えば、銀粉;銅粉;表面の少なくとも一部を銀でコートされた銀コート導電粉が挙げられる。
上記導電粒子は、本発明の効果により優れるという観点から、銀粉、銅粉、及び、表面の少なくとも一部を銀でコートされた銀コート導電粉からなる群から選ばれる少なくとも1種であることが好ましい。
上記銀コート導電粉を構成するコアとしては、例えば、上記金属材料の粒子が挙げられる。
Examples of the conductive particles include silver powder, copper powder, and silver-coated conductive powder whose surface is at least partly coated with silver.
From the viewpoint that the effect of the present invention is superior, the conductive particles are at least one selected from the group consisting of silver powder, copper powder, and silver-coated conductive powder having at least part of the surface coated with silver. preferable.
Examples of the core constituting the silver-coated conductive powder include particles of the metal material.

導電粒子の平均粒子径は、本発明の効果により優れるという観点から、0.5~10μmが好ましく、1~5μmがより好ましい。
ここで、本発明において、導電粒子の平均粒子径は、レーザー回折式粒度分布測定装置を用いて体積基準の粒度分布を測定して求められる、累積50%における粒子径(50%体積累積径。「平均粒子径(D50)」ともいう。)のことをいう。このようなレーザー回折式粒度分布測定装置としては、例えば、堀場製作所製のLA-500(商品名)に準ずる装置が挙げられる。
The average particle size of the conductive particles is preferably from 0.5 to 10 μm, more preferably from 1 to 5 μm, from the viewpoint of superior effects of the present invention.
Here, in the present invention, the average particle diameter of the conductive particles is the particle diameter at 50% cumulative (50% volume cumulative diameter) obtained by measuring the volume-based particle size distribution using a laser diffraction particle size distribution analyzer. Also referred to as "average particle size (D50)"). As such a laser diffraction particle size distribution analyzer, for example, an apparatus conforming to LA-500 (trade name) manufactured by Horiba, Ltd. can be mentioned.

導電粒子は、本発明の効果により優れるという観点から、フレーク状粒子E及び球状粒子Fからなる群から選ばれる少なくとも1種を含むことが好ましい。
本発明において、球状とは、長径/短径の比率が2以下の粒子の形状をいい、また、フレーク状とは、長径/短径の比率が2超の形状をいう。ここで、導電粒子を構成する粒子の長径および短径は、走査型電子顕微鏡(SEM)から得られる画像に基づいて求めることができる。また、「長径」とは、SEMにより得られた粒子画像内において、粒子の略重心を通過する線分のうち最も距離の長いものを指す。「短径」とは、SEMにより得られた粒子画像において、粒子の略重心を通過する線分のうち最も距離の短いものを指す。
The conductive particles preferably contain at least one selected from the group consisting of flaky particles E and spherical particles F from the viewpoint of achieving superior effects of the present invention.
In the present invention, the term "spherical" refers to a shape of particles having a major axis/minor axis ratio of 2 or less, and the term "flaky" refers to a shape having a major axis/minor axis ratio of more than 2. Here, the long diameter and short diameter of particles constituting the conductive particles can be obtained based on an image obtained from a scanning electron microscope (SEM). In addition, the “major axis” refers to the longest line segment passing through the approximate center of gravity of the particle in the particle image obtained by SEM. The “minor diameter” refers to the shortest line segment passing through the approximate center of gravity of the particle in the particle image obtained by SEM.

フレーク状粒子Eは単結晶及び多結晶の何れであってもよい。
フレーク状粒子Eの比表面積は、発明の効果により優れるという観点から、0.2~1.0m2/gが好ましく、0.2~0.8m2/gがより好ましい。1.0m2/gより多い場合、高粘度化しやすい。適正印刷が可能な粘度域の組成物を得るには溶剤をより多く配合する必要があり、固形分が低下することから印刷又は硬化後の配線のアスペクト比が小さくなる問題が発生する場合がある。0.2m2/gより少ない場合、低粘度化しやすい。適正印刷が可能な粘度域の組成物を得るには溶剤をより少なく配合する必要があり、製造時の粘度コントロールが困難となる問題が発生する場合がある。
本発明において、導電粒子の比表面積は、-196℃における窒素の吸着等温線からBET式に基づいて求めた値をいう。
フレーク状粒子Eの平均粒子径は、発明の効果により優れるという観点から、1~15μmが好ましく、3~10μmがより好ましい。10μmより大きい場合、スクリーン印刷等の配線工程でメッシュ詰まりを起こしやすく、特に細線パターニング時に断線を起こしやすいという問題が発生する場合がある。1μmより小さい場合、導電粒子同士の接点が増え、接触抵抗が大きくなり得られた配線の抵抗が大きくなる場合がある。さらに、得られた組成物のチクソ性が低くなることに起因し、スクリーン印刷等の配線工程で高アスペクト比の配線化が困難となる問題が発生する場合がある。
The flake-like particles E may be either single crystals or polycrystals.
The specific surface area of the flake-shaped particles E is preferably 0.2 to 1.0 m 2 /g, more preferably 0.2 to 0.8 m 2 /g, from the viewpoint of superior effects of the invention. If it is more than 1.0 m 2 /g, the viscosity tends to be increased. In order to obtain a composition with a viscosity range that allows proper printing, it is necessary to add a larger amount of solvent, and because the solid content decreases, there may be a problem that the aspect ratio of the wiring after printing or curing becomes small. . If it is less than 0.2 m 2 /g, the viscosity tends to be low. In order to obtain a composition with a viscosity range that allows proper printing, it is necessary to add a smaller amount of solvent, which may cause a problem of difficulty in controlling the viscosity during production.
In the present invention, the specific surface area of the conductive particles refers to a value obtained based on the BET formula from the nitrogen adsorption isotherm at -196°C.
The average particle diameter of the flake-shaped particles E is preferably 1 to 15 μm, more preferably 3 to 10 μm, from the viewpoint of superior effects of the invention. If the thickness is larger than 10 μm, mesh clogging is likely to occur in a wiring process such as screen printing, and in particular, wire breakage is likely to occur during fine line patterning. If it is less than 1 μm, the number of contacts between the conductive particles increases, the contact resistance increases, and the resistance of the obtained wiring may increase. Furthermore, due to the low thixotropy of the resulting composition, there may occur a problem that it is difficult to form wiring having a high aspect ratio in a wiring process such as screen printing.

球状粒子Fの比表面積は、発明の効果により優れるという観点から、0.5~1.6m2/gが好ましく、0.5~1.2m2/gがより好ましい。1.6m2/gより多い場合、高粘度化しやすい。適正印刷が可能な粘度域の組成物を得るには溶剤をより多く配合する必要があり、固形分が低下することから印刷又は硬化後の配線のアスペクト比が小さくなる問題が発生する場合がある。0.5m2/gより少ない場合、低粘度化しやすい。適正印刷が可能な粘度域の組成物を得るには溶剤をより少なく配合する必要があり、製造時の粘度コントロールが困難となる問題が発生する場合がある。
球状粒子Fの平均粒子径は、発明の効果により優れ、印刷性及び導電性に優れるという観点から、0.5~3μmが好ましく、0.8~2μmがより好ましい。3μmより大きい場合、粒子間の隙間が多くなり、組成物内の導電粒子密度が低下することで、得られた配線の抵抗が大きくなる場合がある。0.5μmより小さい場合、導電粒子同士の接点が増え、接触抵抗が大きくなり得られた配線の抵抗が大きくなる場合がある。
The specific surface area of the spherical particles F is preferably 0.5 to 1.6 m 2 /g, more preferably 0.5 to 1.2 m 2 /g, from the viewpoint of superior effects of the invention. If it is more than 1.6 m 2 /g, the viscosity tends to be high. In order to obtain a composition with a viscosity range that allows proper printing, it is necessary to add a larger amount of solvent, and because the solid content decreases, there may be a problem that the aspect ratio of the wiring after printing or curing becomes small. . If it is less than 0.5 m 2 /g, the viscosity tends to be low. In order to obtain a composition with a viscosity range that allows proper printing, it is necessary to add a smaller amount of solvent, which may cause a problem of difficulty in controlling the viscosity during production.
The average particle size of the spherical particles F is preferably 0.5 to 3 μm, more preferably 0.8 to 2 μm, from the viewpoints of superior effects of the invention and superior printability and conductivity. If it is larger than 3 μm, the gaps between the particles increase and the density of the conductive particles in the composition decreases, which may increase the resistance of the obtained wiring. If it is smaller than 0.5 μm, the number of contacts between the conductive particles increases, the contact resistance increases, and the resistance of the obtained wiring may increase.

本発明において、導電粒子として複数の種類の導電粒子を使用する場合、導電粒子の平均比表面積は、発明の効果により優れるという観点から、0.5~0.8m2/gが好ましく、0.5~0.7m2/gがより好ましい。
本発明において、導電粒子の平均比表面積は、各導電粒子の比表面積とその含有量との積の総和を、各導電粒子の含有量の総和で除することによって得ることができる。
In the present invention, when a plurality of types of conductive particles are used as the conductive particles, the average specific surface area of the conductive particles is preferably 0.5 to 0.8 m 2 /g, and 0.5 to 0.8 m 2 /g, from the viewpoint of superior effects of the invention. 5 to 0.7 m 2 /g is more preferable.
In the present invention, the average specific surface area of the conductive particles can be obtained by dividing the sum of the products of the specific surface area of each conductive particle and its content by the sum of the content of each conductive particle.

導電粒子として上記フレーク状粒子E及び上記球状粒子Fを含有する場合、上記フレーク状粒子Eに対する上記球状粒子Fの質量比(球状粒子F/フレーク状粒子E)は、発明の効果により優れるという観点から、75/25~25/75が好ましく、70/30~30/70がより好ましい。 When the flaky particles E and the spherical particles F are contained as the conductive particles, the mass ratio of the spherical particles F to the flaky particles E (spherical particles F/flaky particles E) is from the viewpoint that the effect of the invention is superior. Therefore, 75/25 to 25/75 is preferable, and 70/30 to 30/70 is more preferable.

導電粒子の製造方法は特に制限されない。例えば、従来公知のものが挙げられる。
球状の導電粒子(例えば上記球状粒子F)の製造方法は特に限定されるものではなく、例えば、湿式還元法、電解法やアトマイズ法等により製造したものを好適に用いることができる。
フレーク状の導電粒子(例えば上記フレーク状粒子E)製造方法は特に限定されるものではなく、従来公知の方法を用いることができる。例えば、上述した方法で製造された球状の導電粒子を元粉として、当該元粉にボールミル、ビーズミル、振動ミル、攪拌式粉砕機などにより機械的処理を施し、元粉を物理的な力でフレーク化する方法により製造したものを好適に用いることができる。
A method for producing the conductive particles is not particularly limited. For example, a conventionally well-known thing is mentioned.
The method for producing spherical conductive particles (for example, spherical particles F) is not particularly limited, and for example, those produced by a wet reduction method, an electrolytic method, an atomizing method, or the like can be preferably used.
The method for producing flake-shaped conductive particles (for example, flake-shaped particles E) is not particularly limited, and conventionally known methods can be used. For example, the spherical conductive particles produced by the above-described method are used as a base powder, and the base powder is mechanically processed by a ball mill, a bead mill, a vibration mill, an agitating pulverizer, etc., and the base powder is flakes by physical force. It is possible to preferably use those produced by the method of converting.

<<エポキシ樹脂A、エポキシ樹脂B>>
本発明の組成物は、エポキシ樹脂A及びエポキシ樹脂Bを含有する。
本発明において、エポキシ樹脂は、1分子中に2個以上のオキシラン環(エポキシ基)を有する化合物である。オキシラン環は有機基に結合することができる。上記有機基は特に制限されない。例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有してもよい炭化水素基が挙げられる。炭化水素基は特に制限されない。例えば、脂肪族炭化水素基(直鎖状、分岐状、環状、及び、これらの組合せ)、芳香族炭化水素基、並びに、これらに組合せが挙げられる。上記ヘテロ原子は、例えば、エーテル結合、ヒドロキシ基、ウレタン結合を形成してもよい。
また、本発明において、エポキシ樹脂の水素添加物は、部分水添及び全部水添のいずれであってもよい。
<<epoxy resin A, epoxy resin B>>
The composition of the present invention contains epoxy resin A and epoxy resin B.
In the present invention, an epoxy resin is a compound having two or more oxirane rings (epoxy groups) in one molecule. The oxirane ring can be attached to an organic group. The organic group is not particularly limited. Examples thereof include hydrocarbon groups which may have a heteroatom such as an oxygen atom, a nitrogen atom and a sulfur atom. Hydrocarbon groups are not particularly limited. Examples include aliphatic hydrocarbon groups (linear, branched, cyclic, and combinations thereof), aromatic hydrocarbon groups, and combinations thereof. The heteroatom may form, for example, an ether bond, a hydroxy group, or a urethane bond.
In the present invention, the hydrogenated epoxy resin may be either partially hydrogenated or fully hydrogenated.

<<エポキシ樹脂A>>
本発明の組成物に含有されるエポキシ樹脂Aは、エポキシ当量が500g/eq未満であり、かつ、25℃で液状のエポキシ樹脂である。
エポキシ樹脂Aは、1分子中に2個又は3個のオキシラン環を有することが好ましい。
<<epoxy resin A>>
Epoxy resin A contained in the composition of the present invention has an epoxy equivalent of less than 500 g/eq and is liquid at 25°C.
Epoxy resin A preferably has two or three oxirane rings in one molecule.

<エポキシ樹脂Aのエポキシ当量>
本発明において、エポキシ樹脂Aのエポキシ当量は、500g/eq未満である。
エポキシ樹脂Aのエポキシ当量は、本発明の効果により優れるという観点から、100~300g/eqが好ましい。
<Epoxy equivalent of epoxy resin A>
In the present invention, the epoxy equivalent of epoxy resin A is less than 500 g/eq.
The epoxy equivalent of the epoxy resin A is preferably 100 to 300 g/eq from the viewpoint that the effect of the present invention is superior.

<液状>
本発明において、エポキシ樹脂Aは25℃で液状である。
<Liquid>
In the present invention, epoxy resin A is liquid at 25°C.

(エポキシ樹脂Aの粘度)
エポキシ樹脂Aの25℃での粘度は、本発明の効果により優れるという観点から、15~60,000mPa・sが好ましく、50~15,000mPa・sがより好ましい。
本発明において、エポキシ樹脂の粘度は、25℃の条件下において、JIS Z 8803に準じて測定された。
(Viscosity of epoxy resin A)
The viscosity of the epoxy resin A at 25° C. is preferably 15 to 60,000 mPa·s, more preferably 50 to 15,000 mPa·s, from the viewpoint of superior effects of the present invention.
In the present invention, the viscosity of the epoxy resin was measured according to JIS Z 8803 under the condition of 25°C.

(エポキシ樹脂Aの構造)
エポキシ樹脂Aとしては、例えば、環状構造を有するエポキシ樹脂A1、及び、鎖状構造を有するエポキシ樹脂A2が挙げられる。なお、エポキシ樹脂A2は環状構造を有さない。
エポキシ樹脂Aは、本発明の効果により優れるという観点から、環状構造を有するエポキシ樹脂A1、及び、鎖状構造を有するエポキシ樹脂A2を含有することが好ましい。
(Structure of epoxy resin A)
Examples of the epoxy resin A include an epoxy resin A1 having a cyclic structure and an epoxy resin A2 having a chain structure. Epoxy resin A2 does not have a cyclic structure.
Epoxy resin A preferably contains epoxy resin A1 having a cyclic structure and epoxy resin A2 having a chain structure, from the viewpoint that the effect of the present invention is superior.

上記環状構造としては、例えば、シクロヘキサン骨格のような環状の脂肪族炭化水素基;ベンゼン環のような芳香族炭化水素基及びその水素添加物が挙げられる。
上記鎖状構造としては、例えば、ポリ(オキシアルキレン)基、オキシアルキレン基が挙げられる。
Examples of the cyclic structure include a cyclic aliphatic hydrocarbon group such as a cyclohexane skeleton; an aromatic hydrocarbon group such as a benzene ring and hydrogenated products thereof.
Examples of the chain structure include a poly(oxyalkylene) group and an oxyalkylene group.

・エポキシ樹脂A1
環状構造を有するエポキシ樹脂A1は、オキシラン環の他に更にウレタン結合を有してもよい。また、エポキシ樹脂A1はウレタン結合を有さなくてもよい。
・Epoxy resin A1
The epoxy resin A1 having a cyclic structure may further have a urethane bond in addition to the oxirane ring. Also, the epoxy resin A1 does not have to have a urethane bond.

エポキシ樹脂A1が更にウレタン結合を有する場合、組成物に靭性(柔軟性)を付与することができるので、半田付き性により優れる。上記ウレタン結合は、オキシラン環が結合できる上記有機基に導入されていればよい。 When the epoxy resin A1 further has a urethane bond, toughness (flexibility) can be imparted to the composition, resulting in better solderability. The urethane bond may be introduced into the organic group to which an oxirane ring can be bonded.

環状構造を有するエポキシ樹脂A1としては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールE型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールS型、及び、ビスフェノールAF型のようなビスフェノール骨格を有するエポキシ樹脂及びその水素添加物;上記エポキシ樹脂によるウレタン変性物(ウレタン変性エポキシ樹脂)及びその水素添加物;1分子中に1つの環状構造を有するエポキシ樹脂及びその水素添加物が挙げられる。
なお、上記ウレタン変性エポキシ樹脂は、1分子中に複数の環状構造を有する。
Examples of the epoxy resin A1 having a cyclic structure include bisphenol skeletons such as bisphenol A type, bisphenol F type, bisphenol E type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, and bisphenol AF type. and hydrogenated products thereof; urethane-modified products (urethane-modified epoxy resins) and hydrogenated products thereof; epoxy resins having one cyclic structure in one molecule and hydrogenated products thereof.
The urethane-modified epoxy resin has a plurality of cyclic structures in one molecule.

上記の1分子中に1つの環状構造を有するエポキシ樹脂及びその水素添加物としては、例えば、ベンゼンジオール骨格を有するエポキシ樹脂及びその水素添加物;フタル酸骨格を有するエポキシ樹脂及びその水素添加物;ベンゼンジメタノール骨格を有するエポキシ樹脂;シクロヘキサンジメタノール骨格を有するエポキシ樹脂;アニリン骨格を有するエポキシ樹脂;トルイジン骨格を有するエポキシ樹脂等が挙げられる。 Examples of the epoxy resin having one cyclic structure in one molecule and hydrogenated products thereof include, for example, epoxy resins having a benzenediol skeleton and hydrogenated products thereof; epoxy resins having a phthalic acid skeleton and hydrogenated products thereof; epoxy resins having a benzenedimethanol skeleton; epoxy resins having a cyclohexanedimethanol skeleton; epoxy resins having an aniline skeleton; epoxy resins having a toluidine skeleton;

なかでも、エポキシ樹脂A1は、本発明の効果(特に半田付け性)により優れるという観点から、ウレタン変性エポキシ樹脂、1分子中に1つの環状構造を有するエポキシ樹脂が好ましく、ウレタン変性エポキシ樹脂、ベンゼンジオール骨格を有するエポキシ樹脂、フタル酸骨格を有するエポキシ樹脂、シクロヘキサンジメタノール骨格を有するエポキシ樹脂がより好ましく、ウレタン変性エポキシ樹脂、レゾルシン骨格を有するレゾルシノールジグリシジルエーテルがさらに好ましい。 Among them, the epoxy resin A1 is preferably a urethane-modified epoxy resin, an epoxy resin having one cyclic structure in one molecule, and a urethane-modified epoxy resin, benzene Epoxy resins having a diol skeleton, epoxy resins having a phthalic acid skeleton, and epoxy resins having a cyclohexanedimethanol skeleton are more preferred, and urethane-modified epoxy resins and resorcinol diglycidyl ether having a resorcin skeleton are more preferred.

エポキシ樹脂A1が1分子中に1つの環状構造を有するエポキシ樹脂を含有する場合、上記1分子中に1つの環状構造を有するエポキシ樹脂の含有量は、エポキシ樹脂A1に対して、50~100質量%が好ましい。 When the epoxy resin A1 contains an epoxy resin having one cyclic structure in one molecule, the content of the epoxy resin having one cyclic structure in one molecule is 50 to 100 mass with respect to the epoxy resin A1. % is preferred.

・エポキシ樹脂A2
鎖状構造を有するエポキシ樹脂A2としては、例えば、ポリ(オキシアルキレン)ポリオールのポリグリシジルエーテル、及び、アルキレンポリオールのポリグリシジルエーテルのような多価アルコール系グリシジル型エポキシ樹脂が挙げられる。
・Epoxy resin A2
Examples of the epoxy resin A2 having a chain structure include polyglycidyl ethers of poly(oxyalkylene) polyols and polyglycidyl-type epoxy resins such as polyglycidyl ethers of alkylene polyols.

上記多価アルコール系グリシジル型エポキシ樹脂を構成し得る、ポリ(オキシアルキレン)ポリオール、又は、アルキレンポリオールは特に制限されない。
上記ポリ(オキシアルキレン)ポリオール、又は、アルキレンポリオールが有するアルキレン基は直鎖状、及び、分岐状の何れであってもよい。上記アルキレン基の炭素数は例えば、2~15個とすることができる。
上記アルキレン基としては、例えば、エチレン基、プロピレン基、トリメチレン基が挙げられる。
The poly(oxyalkylene) polyol or alkylene polyol that can constitute the polyhydric alcohol-based glycidyl-type epoxy resin is not particularly limited.
The alkylene group of the poly(oxyalkylene) polyol or alkylene polyol may be linear or branched. The number of carbon atoms in the alkylene group can be, for example, 2 to 15.
Examples of the alkylene group include an ethylene group, a propylene group, and a trimethylene group.

上記ポリ(オキシアルキレン)ポリオールが有する繰り返し単位(オキシアルキレン基)の繰り返し単位数は、本発明の効果により優れるという観点から、2~15が好ましく、3~10がより好ましい。 The number of repeating units (oxyalkylene group) of the repeating unit (oxyalkylene group) contained in the poly(oxyalkylene) polyol is preferably 2 to 15, more preferably 3 to 10, from the viewpoint of superior effects of the present invention.

上記アルキレンポリオールのポリグリシジルエーテルとしては、例えば、エチレングリコールジグルシジルエーテル、及び、プロピレングリコールジグルシジルエーテルが挙げられる。
上記アルキレンポリオールのポリグリシジルエーテルの市販品としては、例えば、商品名EX-810(ナガセケムテック社製)が挙げられる。
上記ポリ(オキシアルキレン)ポリオールのポリグリシジルエーテルとしては、例えば、ポリエチレングリコールジグルシジルエーテル、及び、ポリプロピレングリコールジグルシジルエーテルが挙げられる。
上記ポリ(オキシアルキレン)ポリオールのポリグリシジルエーテルの市販品としては、例えば、商品名EX-830、EX-841、EX-920、EX-931(ナガセケムテック社製)等が挙げられる。
Examples of polyglycidyl ethers of alkylene polyols include ethylene glycol diglycidyl ether and propylene glycol diglycidyl ether.
Examples of commercially available polyglycidyl ethers of alkylene polyols include trade name EX-810 (manufactured by Nagase Chemtech Co., Ltd.).
Polyglycidyl ethers of poly(oxyalkylene) polyols include, for example, polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether.
Examples of commercially available polyglycidyl ethers of poly(oxyalkylene) polyols include trade names EX-830, EX-841, EX-920 and EX-931 (manufactured by Nagase Chemtech).

・エポキシ樹脂A1とエポキシ樹脂A2との組合せ
エポキシ樹脂A1とエポキシ樹脂A2との組合せとしては、例えば、
上記ビスフェノール骨格を有するエポキシ樹脂又はその水素添加物と、上記多価アルコール系グリシジル型エポキシ樹脂との組合せ、
ウレタン変性エポキシ樹脂と、上記多価アルコール系グリシジル型エポキシ樹脂との組合せ、
1分子中に1つの環状構造を有するエポキシ樹脂(例えばベンゼンジオール骨格を有するエポキシ樹脂)と、上記多価アルコール系グリシジル型エポキシ樹脂(例えば、オキシアルキレン基の繰り返し単位が10より大きく15以下の、ポリ(オキシアルキレン)ジグリシジルエーテル)との組合せ等が挙げられる。
- Combination of epoxy resin A1 and epoxy resin A2 As a combination of epoxy resin A1 and epoxy resin A2, for example,
a combination of the epoxy resin having a bisphenol skeleton or a hydrogenated product thereof and the polyhydric alcohol-based glycidyl-type epoxy resin;
a combination of a urethane-modified epoxy resin and the polyhydric alcohol-based glycidyl-type epoxy resin;
An epoxy resin having one cyclic structure in one molecule (e.g., an epoxy resin having a benzenediol skeleton) and the polyhydric alcohol-based glycidyl-type epoxy resin (e.g., an oxyalkylene group having repeating units of greater than 10 and 15 or less, and poly(oxyalkylene) diglycidyl ether).

(エポキシ樹脂A1/エポキシ樹脂A2)
エポキシ樹脂Aが、上記エポキシ樹脂A1及び上記エポキシ樹脂A2を含有する場合、エポキシ樹脂A2の含有量に対する、エポキシ樹脂A1の含有量の質量比[エポキシ樹脂A1/エポキシ樹脂A2]は、本発明の効果により優れるという観点から、15/85~85/15が好ましく、30/70~70/30がより好ましい。
(Epoxy resin A1/epoxy resin A2)
When the epoxy resin A contains the epoxy resin A1 and the epoxy resin A2, the mass ratio of the content of the epoxy resin A1 to the content of the epoxy resin A2 [epoxy resin A1/epoxy resin A2] is the From the viewpoint of superior effects, it is preferably 15/85 to 85/15, more preferably 30/70 to 70/30.

<<エポキシ樹脂B>>
本発明の組成物に含有されるエポキシ樹脂Bは、エポキシ当量が400g/eq以上5000g/eq以下であり、かつ、25℃で固体のエポキシ樹脂である。
エポキシ樹脂Bは、1分子中に2個又は3個のオキシラン環を有することが好ましい。
<<epoxy resin B>>
The epoxy resin B contained in the composition of the present invention has an epoxy equivalent of 400 g/eq or more and 5000 g/eq or less and is a solid epoxy resin at 25°C.
Epoxy resin B preferably has two or three oxirane rings in one molecule.

<エポキシ樹脂Bのエポキシ当量>
本発明において、エポキシ樹脂Bのエポキシ当量は400g/eq以上5000g/eq以下である。
エポキシ樹脂Bのエポキシ当量は、本発明の効果により優れるという観点から、1500~3500g/eqが好ましい。
<Epoxy equivalent of epoxy resin B>
In the present invention, the epoxy equivalent of epoxy resin B is 400 g/eq or more and 5000 g/eq or less.
The epoxy equivalent of the epoxy resin B is preferably 1500 to 3500 g/eq from the viewpoint that the effect of the present invention is superior.

<固体>
本発明において、エポキシ樹脂Bは25℃の条件下で固体である。
<Solid>
In the present invention, epoxy resin B is solid under conditions of 25°C.

(エポキシ樹脂Bの軟化点)
エポキシ樹脂Bの軟化点は、本発明の効果により優れるという観点から、50~150℃が好ましく、100~150℃がより好ましい。
本発明において、エポキシ樹脂の軟化点は、JIS K-7234に準じて測定された。
(Softening point of epoxy resin B)
The softening point of the epoxy resin B is preferably 50 to 150°C, more preferably 100 to 150°C, from the viewpoint that the effect of the present invention is superior.
In the present invention, the softening point of the epoxy resin was measured according to JIS K-7234.

(エポキシ樹脂Bの構造)
エポキシ樹脂Bとしては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールE型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールS型、及び、ビスフェノールAF型のようなビスフェノール骨格のエポキシ樹脂が挙げられる。
なかでも、エポキシ樹脂Bは、本発明の効果により優れるという観点から、例えば、ビスフェノールA型及びビスフェノールF型からなる群から選ばれる少なくとも1種が好ましい。
(Structure of epoxy resin B)
Examples of the epoxy resin B include epoxy resins having a bisphenol skeleton such as bisphenol A type, bisphenol F type, bisphenol E type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, and bisphenol AF type. mentioned.
Among them, the epoxy resin B is preferably at least one selected from the group consisting of bisphenol A type and bisphenol F type, for example, from the viewpoint that the effect of the present invention is superior.

<<熱可塑性樹脂C>>
本発明の組成物に含有される熱可塑性樹脂Cは、重量平均分子量が25,000~65,000である熱可塑性樹脂である。
<<Thermoplastic resin C>>
Thermoplastic resin C contained in the composition of the present invention is a thermoplastic resin having a weight average molecular weight of 25,000 to 65,000.

<熱可塑性樹脂Cの重量平均分子量>
本発明において、熱可塑性樹脂Cの重量平均分子量は、25,000~65,000である。
上記重量平均分子量は、本発明の効果により優れるという観点から、30,000~55,000が好ましく、30,000~45,000がより好ましい。
本発明において、熱可塑性樹脂Cの重量平均分子量は、テトラヒドロフラン(THF)を溶媒とするゲルパーミエーションクロマトグラフィー(GPC)による測定値をもとにした標準ポリスチレン換算値である。
<Weight Average Molecular Weight of Thermoplastic Resin C>
In the present invention, the thermoplastic resin C has a weight average molecular weight of 25,000 to 65,000.
The weight-average molecular weight is preferably from 30,000 to 55,000, more preferably from 30,000 to 45,000, from the standpoint of superior effects of the present invention.
In the present invention, the weight-average molecular weight of thermoplastic resin C is a standard polystyrene conversion value based on a measurement by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.

(熱可塑性樹脂Cの種類)
熱可塑性樹脂Cとしては、例えば、フェノキシ樹脂、ポリアミド、ポリエステル、ポリカーボネート等が挙げられる。
熱可塑性樹脂Cは、なかでも、本発明の効果により優れるという観点から、フェノキシ樹脂が好ましい。
(Type of thermoplastic resin C)
Examples of the thermoplastic resin C include phenoxy resin, polyamide, polyester, polycarbonate and the like.
Among them, the thermoplastic resin C is preferably a phenoxy resin from the viewpoint of being superior in the effects of the present invention.

・フェノキシ樹脂
フェノキシ樹脂は、ビスフェノール(1つの炭素原子に少なくとも2つのヒドロキシフェニル基が結合する基本骨格を有する化合物)とエピクロロヒドリンとから形成される化合物が好ましい態様の1つとして挙げられる。フェノキシ樹脂はビスフェノールとエピクロロヒドリンとの反応によって生成する水酸基を有する。
フェノキシ樹脂の好ましい態様としては、例えば、上記反応による水酸基を複数有するフェノキシ樹脂、鎖状のフェノキシ樹脂、上記反応による水酸基を複数有する鎖状のフェノキシ樹脂が挙げられる。
本発明において、フェノキシ樹脂はエポキシ基を有さないものとすることができる。フェノキシ樹脂の末端は、半田付け性により優れるという観点から、例えば、モノカルボン酸等によって封鎖することができる。
Phenoxy resin One preferred embodiment of the phenoxy resin is a compound formed from bisphenol (a compound having a basic skeleton in which at least two hydroxyphenyl groups are bonded to one carbon atom) and epichlorohydrin. Phenoxy resins have hydroxyl groups produced by the reaction of bisphenol and epichlorohydrin.
Preferred embodiments of the phenoxy resin include, for example, a phenoxy resin having a plurality of hydroxyl groups obtained by the above reaction, a chain phenoxy resin, and a chain phenoxy resin having a plurality of hydroxyl groups obtained by the above reaction.
In the present invention, the phenoxy resin may have no epoxy groups. The ends of the phenoxy resin can be blocked with, for example, monocarboxylic acid from the viewpoint of better solderability.

フェノキシ樹脂を形成するビスフェノールは特に制限されない。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAF、ビスフェノールAD、ビスフェノールS、テ卜ラメチルビスフェノールA、テ卜ラメチルビスフェノールF、テ卜ラメチルビスフェノールAD、テ卜ラメチルビスフェノールS、テ卜ラブ口モビスフェノールA、テ卜ラク口口ビスフェノールA、テトラフルオ口ビスフェノールAが挙げられる。
なかでも、ビスフェノールA及びビスフェノールFからなる群から選ばれる少なくとも1種が好ましい。
The bisphenol forming the phenoxy resin is not particularly limited. For example, bisphenol A, bisphenol F, bisphenol AF, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetramethylbisphenol S, tetramethylbisphenol S, Bisphenol A, tetrafluorobisphenol A and tetrafluorobisphenol A can be mentioned.
Among them, at least one selected from the group consisting of bisphenol A and bisphenol F is preferable.

(熱可塑性樹脂Cのガラス転移点)
熱可塑性樹脂Cのガラス転移点(ガラス転移温度)は、本発明の効果により優れるという観点から、80~100℃が好ましく、80~90℃がより好ましい。
本発明において、熱可塑性樹脂Cのガラス転移点は、JIS K7121:2012(プラスチックの転移温度測定方法)に準拠し、示差熱分析機器を用いて5℃/分の昇温温度で熱流速の変化を測定した時に得られる曲線において、変曲点を読み取った値である。
(Glass transition point of thermoplastic resin C)
The glass transition point (glass transition temperature) of the thermoplastic resin C is preferably 80 to 100° C., more preferably 80 to 90° C., from the viewpoint of superior effects of the present invention.
In the present invention, the glass transition point of the thermoplastic resin C conforms to JIS K7121:2012 (method for measuring the transition temperature of plastics) and is measured using a differential thermal analysis instrument at a temperature elevation of 5°C/min. It is the value obtained by reading the inflection point in the curve obtained when measuring .

<<硬化剤D>>
本発明の組成物に含有される硬化剤Dは、エポキシ樹脂の硬化剤として使用できるものであれば特に制限されない。なかでも、カチオン系硬化剤が好ましい。カチオン系硬化剤としては、例えば、アミン系、スルホニウム系、アンモニウム系、及び、ホスホニウム系の硬化剤が挙げられる。
<<Curing Agent D>>
The curing agent D contained in the composition of the present invention is not particularly limited as long as it can be used as a curing agent for epoxy resins. Among them, cationic curing agents are preferred. Cationic curing agents include, for example, amine, sulfonium, ammonium, and phosphonium curing agents.

硬化剤Dとしては、例えば、三フッ化ホウ素エチルアミン、三フッ化ホウ素ピペリジン、三フッ化ホウ素トリエタノールアミン、三フッ化ホウ素フェノール、p-メトキシベンゼンジアゾニウムヘキサフルオロホスフェート、ジフェニルイオドニウムヘキサフルオロホスフェート、テトラフェニルスルホニウム、テトラ-n-ブチルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等が挙げられる。
これらの中でも、体積抵抗率をより低減できるという点から、三フッ化ホウ素とアミン化合物との錯体である、三フッ化ホウ素エチルアミン、三フッ化ホウ素ピペリジン、および、三フッ化ホウ素トリエタノールアミンからなる群より選択される少なくとも1種の錯体を用いることが好ましい。
Examples of the curing agent D include boron trifluoride ethylamine, boron trifluoride piperidine, boron trifluoride triethanolamine, boron trifluoride phenol, p-methoxybenzenediazonium hexafluorophosphate, and diphenyliodonium hexafluorophosphate. , tetraphenylsulfonium, tetra-n-butylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o,o-diethylphosphorodithioate and the like.
Among these, boron trifluoride ethylamine, boron trifluoride piperidine, and boron trifluoride triethanolamine, which are complexes of boron trifluoride and an amine compound, can be further reduced in volume resistivity. It is preferred to use at least one complex selected from the group consisting of:

<<溶剤>>
本発明の組成物は溶剤を含有する。
上記溶剤は、特に限定されない。例えば、ブチルカルビトール、ブチルカルビトールアセテート、シクロヘキサノン、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられる。
溶剤として市販品を使用することができる。
<<Solvent>>
The composition of the invention contains a solvent.
The solvent is not particularly limited. Examples include butyl carbitol, butyl carbitol acetate, cyclohexanone, methyl ethyl ketone, isophorone, α-terpineol and the like.
A commercial product can be used as a solvent.

溶剤の含有量は、本発明の効果により優れるという観点から、エポキシ樹脂A、エポキシ樹脂B、熱可塑性樹脂C、及び、硬化剤Dの総量100質量部に対して、20~200質量部が好ましく、40~100質量部がより好ましい。 The content of the solvent is preferably 20 to 200 parts by mass with respect to 100 parts by mass of the total amount of the epoxy resin A, the epoxy resin B, the thermoplastic resin C, and the curing agent D, from the viewpoint that the effect of the present invention is superior. , more preferably 40 to 100 parts by mass.

<エポキシ樹脂A、エポキシ樹脂B、熱可塑性樹脂C及び硬化剤Dの総量>
本発明において、エポキシ樹脂A、エポキシ樹脂B、熱可塑性樹脂C及び硬化剤Dの総量は、上記導電粒子100質量部に対して3質量部以上10質量部以下である。
エポキシ樹脂A、エポキシ樹脂B、熱可塑性樹脂C及び硬化剤Dの総量は、本発明の効果により優れるという観点から、上記導電粒子100質量部に対して、5~8質量部がより好ましい。
<Total amount of epoxy resin A, epoxy resin B, thermoplastic resin C and curing agent D>
In the present invention, the total amount of epoxy resin A, epoxy resin B, thermoplastic resin C and curing agent D is 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the conductive particles.
The total amount of epoxy resin A, epoxy resin B, thermoplastic resin C, and curing agent D is more preferably 5 to 8 parts by mass with respect to 100 parts by mass of the conductive particles, from the viewpoint of achieving superior effects of the present invention.

<[(A+B)/C]>
本発明において、熱可塑性樹脂Cの含有量に対する、エポキシ樹脂A及びエポキシ樹脂Bの総量の質量比[(A+B)/C]は、50/50~95/5である。
[(A+B)/C]は、本発明の効果により優れ、ペースト(本発明の組成物)の低粘度化が可能という観点から、60/40~90/10が好ましく、70/30~90/10がより好ましい。
<[(A+B)/C]>
In the present invention, the mass ratio [(A+B)/C] of the total amount of epoxy resin A and epoxy resin B to the content of thermoplastic resin C is 50/50 to 95/5.
[(A + B) / C] is preferably 60/40 to 90/10, and 70/30 to 90/ 10 is more preferred.

<[A/(B+C)]>
本発明において、エポキシ樹脂B及び熱可塑性樹脂Cの総量に対する、エポキシ樹脂Aの含有量の質量比[A/(B+C)]は、15/85~85/15である。
[A/(B+C)]は、本発明の効果により優れ、ペースト(本発明の組成物)の低粘度化が可能という観点から、30/70~70/30が好ましく、50/50~70/30がより好ましい。
<[A/(B+C)]>
In the present invention, the mass ratio of the content of epoxy resin A to the total amount of epoxy resin B and thermoplastic resin C [A/(B+C)] is 15/85 to 85/15.
[A/(B+C)] is preferably 30/70 to 70/30, and 50/50 to 70/ 30 is more preferred.

<[D/(A+B)]>
本発明において、エポキシ樹脂Aとエポキシ樹脂Bとの総量に対する、硬化剤Dの含有量の質量比[D/(A+B)]は、2/98~10/90である。
[D/(A+B)]は、本発明の効果により優れ、硬化性に優れるという観点から、5/95~8/92が好ましい。
<[D/(A+B)]>
In the present invention, the mass ratio of the content of curing agent D to the total amount of epoxy resin A and epoxy resin B [D/(A+B)] is 2/98 to 10/90.
[D/(A+B)] is preferably 5/95 to 8/92 from the viewpoint of excellent curability due to the effects of the present invention.

<カルボン酸金属塩を実質的に含有しない>
本発明の組成物は、カルボン酸金属塩を実質的に含有しない。
本発明において、カルボン酸金属塩を実質的に含有しないとは、カルボン酸金属塩の含有量が、本発明の組成物全量に対して、0~0.5質量%であることを意味する。
<Contains substantially no carboxylic acid metal salt>
The compositions of the present invention are substantially free of metal carboxylates.
In the present invention, "substantially free of carboxylic acid metal salt" means that the content of carboxylic acid metal salt is 0 to 0.5% by mass relative to the total amount of the composition of the present invention.

カルボン酸金属塩は、有機カルボン酸の金属塩である。上記カルボン酸金属塩としては、例えば、脂肪酸金属塩が挙げられる。
カルボン酸金属塩を構成する金属は特に制限されない。上記金属としては、例えば、銀、マグネシウム、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、スズおよび鉛からなる群から選択される少なくとも1種以上の金属が挙げられる。
カルボン酸金属塩を構成する有機カルボン酸は、-COOHを有する炭化水素化合物であれば特に制限されない。上記有機カルボン酸は、更に水酸基を有してもよい。上記有機カルボン酸としては、例えば、脂肪酸が挙げられる。上記脂肪酸は更に水酸基を有してもよい。
カルボン酸金属塩としては、例えば、2-ヒドロキシイソ酪酸銀塩のような脂肪酸金属塩(上記脂肪酸金属塩を構成する脂肪酸は更にヒドロキシ基を有してもよい)が挙げられる。
A carboxylic acid metal salt is a metal salt of an organic carboxylic acid. Examples of the carboxylic acid metal salt include fatty acid metal salts.
The metal that constitutes the carboxylic acid metal salt is not particularly limited. Examples of the metal include at least one metal selected from the group consisting of silver, magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead.
The organic carboxylic acid constituting the carboxylic acid metal salt is not particularly limited as long as it is a hydrocarbon compound having --COOH. The organic carboxylic acid may further have a hydroxyl group. Examples of the organic carboxylic acid include fatty acids. The fatty acid may further have a hydroxyl group.
Carboxylic acid metal salts include, for example, fatty acid metal salts such as 2-hydroxyisobutyric acid silver salt (the fatty acid constituting the fatty acid metal salt may further have a hydroxy group).

(添加剤)
本発明の組成物は、必要に応じて、上記エポキシ樹脂A及びB以外のエポキシ樹脂、熱可塑性樹脂C以外の熱可塑性樹脂、還元剤等の添加剤をさらに含有していてもよい。
上記還元剤としては、具体的には、例えば、エチレングリコール類等が挙げられる。
(Additive)
If necessary, the composition of the present invention may further contain additives such as epoxy resins other than the epoxy resins A and B, thermoplastic resins other than the thermoplastic resin C, and reducing agents.
Specific examples of the reducing agent include ethylene glycols and the like.

本発明の組成物は、高温(700~800℃)焼成タイプの導電性ペーストとして一般的に用いられるガラスフリットについては特に必要がない。本発明の組成物は、ガラスフリットを実質的に含有しない(ガラスフリットの含有量が上記導電粒子100質量部に対して0~0.1質量部である)ことが好ましい態様の1つとして挙げられる。 The composition of the present invention does not particularly require a glass frit that is generally used as a high-temperature (700-800° C.) firing type conductive paste. The composition of the present invention contains substantially no glass frit (the content of the glass frit is 0 to 0.1 parts by mass with respect to 100 parts by mass of the conductive particles). be done.

(導電性組成物の製造方法)
本発明の組成物の製造方法は特に限定されず、上述した各成分を、例えば、ロール、ニーダー、押出し機、万能かくはん機等により混合する方法が挙げられる。
(Method for producing conductive composition)
The method for producing the composition of the present invention is not particularly limited, and examples thereof include a method of mixing each of the above components using a roll, kneader, extruder, universal stirrer, or the like.

本発明の組成物を例えば、基材に付与し、180~230℃の条件下で加熱して、上記組成物を硬化させることができる。
基材は特に制限されない。例えば、シリコン基板、ガラス、金属、樹脂基板、フィルム等が挙げられる。上記基材に例えばITO(インジウムスズ酸化物)等のTCO(透明酸化物導電膜)処理がなされていてもよい。
本発明の組成物を用いて形成される硬化物は、例えば、太陽電池セルの電極(例えば、フィンガー電極、バスバー電極)、タッチパネルの電極、LEDのダイボンドとして使用することができる。
For example, the composition of the present invention can be applied to a substrate and heated under conditions of 180 to 230° C. to cure the composition.
The substrate is not particularly limited. Examples include silicon substrates, glass, metals, resin substrates, and films. The substrate may be subjected to a TCO (transparent oxide conductive film) treatment such as ITO (indium tin oxide).
A cured product formed using the composition of the present invention can be used, for example, as electrodes of solar cells (eg, finger electrodes, busbar electrodes), electrodes of touch panels, and die bonds of LEDs.

太陽電池セルが本発明の組成物を用いて形成されるバスバー電極を有する場合、複数の太陽電池セルの間をインターコネクタで接続することによって、複数の太陽電池セルを連続させて太陽電池モジュールを製造することができる。この場合、1つの太陽電池セルが有するバスバー電極をインターコネクタの端部と半田で融着して接合させ、別の太陽電池セルのバスバー電極と上記インターコネクタの他端とを半田で融着して接合させればよい。
上記接合に使用される半田は特に制限されない。例えば、従来公知のものが挙げられる。具体的には例えば、例えば、錫-鉛、錫-銀-銅、錫-ビスマスなどの合金が挙げられる。
また、上記インターコネクタは特に制限されない。例えば、従来公知のものが挙げられる。具体的には例えば、インターコネクタとしては例えば銅の心材に半田がコートされたものが挙げられる。
上記バスバー電極と半田との接合は、例えば、200~300℃の条件下で加熱して行うことができる。
When a solar cell has a busbar electrode formed using the composition of the present invention, a plurality of solar cells are connected by an interconnector to connect the plurality of solar cells to form a solar cell module. can be manufactured. In this case, the busbar electrode of one solar cell is fused to the end of the interconnector by soldering, and the busbar electrode of another solar cell is fused to the other end of the interconnector by soldering. be joined together.
Solder used for the above bonding is not particularly limited. For example, a conventionally well-known thing is mentioned. Specific examples include alloys such as tin-lead, tin-silver-copper, and tin-bismuth.
Moreover, the interconnector is not particularly limited. For example, a conventionally well-known thing is mentioned. Specifically, for example, the interconnector includes a core material of copper coated with solder.
The bus bar electrode and the solder can be joined by heating at 200 to 300° C., for example.

(本発明の組成物と基材との接着)
本発明の組成物は、上記エポキシ樹脂A及びエポキシ樹脂Bを含有することによって、基材と接着することができる。
また、本発明の組成物が熱可塑性樹脂Cとしてヒドロキシ基を有する熱可塑性樹脂(例えばフェノキシ樹脂)を含有する場合、上記ヒドロキシ基は基材と相互作用することができ、基材との接着性に寄与できる。
(Adhesion between the composition of the present invention and a substrate)
By containing the epoxy resin A and the epoxy resin B, the composition of the present invention can adhere to a substrate.
In addition, when the composition of the present invention contains a thermoplastic resin having a hydroxy group as the thermoplastic resin C (for example, a phenoxy resin), the hydroxy group can interact with the substrate, and adhesion with the substrate can contribute to

(本発明の組成物と半田との融着)
本発明の組成物は、金属からなる導電粒子を含有するので、加熱により、半田と、融着し接合することができる。
本発明の組成物は熱可塑性樹脂Cを含有するので、本発明の組成物は熱可塑性樹脂Cによって靭性が付与され、本発明の組成物が半田と接合した後の本発明の組成物と半田との接着強度(接合強度)が高くなる。また、半田付けする際に、本発明の組成物において加熱による可塑化が起こることに起因し、熱可塑性樹脂Cは半田と導電粒子の接触を阻害せず、本発明の組成物は半田と効果的に融着することが可能となる。
(Fusing of the composition of the present invention and solder)
Since the composition of the present invention contains conductive particles made of metal, it can be fused and joined to solder by heating.
Since the composition of the present invention contains the thermoplastic resin C, the composition of the present invention is toughened by the thermoplastic resin C, and the composition of the present invention and the solder after the composition of the present invention is joined with the solder. The adhesive strength (bonding strength) with In addition, due to the fact that the composition of the present invention is plasticized by heating during soldering, the thermoplastic resin C does not inhibit the contact between the solder and the conductive particles, and the composition of the present invention is effective with the solder. can be effectively fused.

以下に実施例を示して本発明を具体的に説明する。ただし本発明はこれらに限定されない。
<<組成物の製造>>
下記第1表の各成分を同表に示す組成(質量部)で用いて、これらを撹拌機で混合し、組成物を製造した。
EXAMPLES The present invention will be specifically described below with reference to Examples. However, the present invention is not limited to these.
<<Production of composition>>
Each component shown in Table 1 below was used in the composition (parts by mass) shown in the same table, and these were mixed with a stirrer to produce a composition.

<評価>
上記のとおり製造された組成物を用いて以下の評価を行った。結果を第1表に示す。
<Evaluation>
The following evaluations were performed using the compositions produced as described above. The results are shown in Table 1.

<体積抵抗率(比抵抗)>
上記のとおり製造した各組成物を、ガラス基板上に、スクリーン印刷で塗布して、2cm×2cmのベタ塗りであるテストパターンを形成した。その後、オーブンにて200℃で30分間乾燥及び硬化し、導電性被膜を作製した。
作製した各導電性被膜について、抵抗率計(ロレスターGP、三菱化学社製)を用いた4端子4探針法により体積抵抗率を評価した。
体積抵抗率が8.0μΩ・cm未満の場合を体積抵抗率が良好であると判断した。
<Volume resistivity (specific resistance)>
Each composition produced as described above was applied to a glass substrate by screen printing to form a solid test pattern of 2 cm×2 cm. After that, it was dried and cured in an oven at 200° C. for 30 minutes to prepare a conductive film.
The volume resistivity of each of the produced conductive films was evaluated by a 4-terminal 4-probe method using a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Corporation).
A sample having a volume resistivity of less than 8.0 μΩ·cm was judged to have a good volume resistivity.

<スクリーン印刷性>
スクリーン印刷性について60μm印刷性を評価した。
本発明において、以下の評価によって、60μm印刷性が〇である場合、スクリーン印刷性に優れるものとする。
・60μm印刷性
シリコン基板の表面に、透明導電層としてITO(Snをドープした酸化インジウム)を製膜した。
メッシュカウント360メッシュ、乳剤厚15μm、配線開口幅60μm、線径16μm、オープニング55μmのステンレス製スクリーンマスクを用いて、ライン開口幅60μmのスクリーン製版Aを作製した。
次いで、上記のとおり製造した各組成物を、スクリーン製版Aを用いて、印刷速度200mm/秒で上記ITOの上にスクリーン印刷し、ライン幅が60~80μmの配線を得た。
上記のとおり、スクリーン印刷で得られた配線を、レーザー顕微鏡(倍率300倍)で観察し、以下の基準によりライン開口幅60μmでの印刷性(60μm印刷性)の良否を判定した。
(評価基準)
断線、蛇行、ニジミおよびメッシュ跡のいずれも確認されない場合を60μm印刷性が極めて良好なものとして「〇」と評価した。
断線は確認されないが、蛇行、ニジミおよびメッシュ跡のいずれか1つが確認された場合を60μm印刷性がやや劣るものとして「△」と評価した。
断線が確認された場合を60μm印刷性が極めて劣るものとして「×」と評価した。
<Screen printability>
60 μm printability was evaluated for screen printability.
In the present invention, when the 60 μm printability is ◯ in the following evaluation, the screen printability is considered to be excellent.
· 60 μm printability A film of ITO (indium oxide doped with Sn) was formed as a transparent conductive layer on the surface of a silicon substrate.
Using a stainless steel screen mask with a mesh count of 360 mesh, an emulsion thickness of 15 μm, a wiring opening width of 60 μm, a wire diameter of 16 μm, and an opening of 55 μm, a screen plate A with a line opening width of 60 μm was produced.
Next, each composition prepared as described above was screen-printed on the ITO at a printing speed of 200 mm/sec using screen plate making A to obtain wiring with a line width of 60 to 80 μm.
As described above, the wiring obtained by screen printing was observed with a laser microscope (magnification of 300 times), and the quality of printability at a line opening width of 60 μm (60 μm printability) was determined according to the following criteria.
(Evaluation criteria)
A case in which neither disconnection, meandering, blurring nor mesh mark was observed was evaluated as "Good" as being extremely good in 60 μm printability.
When any one of meandering, blurring, and mesh traces was observed, although no disconnection was observed, the 60 μm printability was evaluated as “Δ” as being slightly inferior.
When disconnection was confirmed, the 60 μm printability was evaluated as “x” as being extremely poor.

<接着性>
シリコン基板の表面に、透明導電層としてITO(Snをドープした酸化インジウム)を製膜した。
次いで、上記のとおり製造した各組成物を、透明導電層上に印刷速度200mm/秒でスクリーン印刷で塗布して、幅60~80μm、長さ25mmの細線形状のテストパターンを形成した。このとき使用したスクリーン印刷マスクは、360メッシュ、乳剤厚15μm、配線開口幅60μm、線径16μm、オープニング55μmである。
その後、上記テストパターンを200℃の条件下に30分間おいて乾燥及び硬化させ、透明導電層上に配線を20本有する試験サンプルを作製した。
次に、上記配線のすべてに対して直角方向に、1本のテープを貼り、直ちに上記テープを試験サンプルから剥離する剥離試験を実施した。
(評価基準)
剥離試験の結果、配線が透明導電層から全く剥離しなかった場合、これを接着性に優れると評価し、「〇」と表示した。
配線が20本中1本又は2本剥離した場合、これを接着性が劣ると評価し、「×」と表示した。
<Adhesion>
A film of ITO (Sn-doped indium oxide) was formed as a transparent conductive layer on the surface of the silicon substrate.
Next, each composition produced as described above was applied onto the transparent conductive layer by screen printing at a printing speed of 200 mm/sec to form a fine line test pattern with a width of 60 to 80 μm and a length of 25 mm. The screen printing mask used at this time had a size of 360 mesh, an emulsion thickness of 15 μm, a wiring opening width of 60 μm, a wire diameter of 16 μm, and an opening of 55 μm.
Thereafter, the test pattern was dried and cured at 200° C. for 30 minutes to prepare a test sample having 20 wirings on the transparent conductive layer.
Next, a strip of tape was applied in a direction perpendicular to all of the wirings, and a peeling test was performed by immediately peeling the tape from the test sample.
(Evaluation criteria)
As a result of the peeling test, when the wiring was not peeled from the transparent conductive layer at all, it was evaluated as having excellent adhesiveness and was indicated with "◯".
When 1 or 2 out of 20 wires were peeled off, this was evaluated as poor adhesion and indicated as "x".

<半田付け性>
シリコン基板の表面に、透明導電層としてITO(Snをドープした酸化インジウム)を製膜した。
次いで、上記のとおり製造した各組成物を、透明導電層上に印刷速度200mm/秒でスクリーン印刷で塗布して、幅1.5mm、長さ50mmの線形状のテストパターン(バスバー電極)を形成した。このとき使用したスクリーン印刷マスクは、250メッシュ、乳剤厚10μm、配線開口幅1.5mmのラインパターンであった。
次に、銅芯にSn/Pb共晶半田をディップした1.5mm幅の半田リボン(Ulbrich社製)を、上記テストパターンと上記半田リボンとの幅を合わせて、上記テストパターンと長さ50mmで重なるように上記テストパターンの配線上に設置し、上記テストパターンと上記半田リボンとが重なった部分を250℃で加熱し、圧着させることで、上記配線と半田リボンとの半田付けを行った。
(引張試験)
半田付けした試験片を室温まで冷まし、上記半田付けした試験片を用いて、室温条件下において、180°引張試験を行い、半田接着強度を測定した。
(評価基準)
半田接着強度が1.0N/mm以上の場合、半田付け性に優れると評価し、これを「〇」と表示した。
半田接着強度が1.0N/mm未満の場合、半田付け性が悪いと評価し、これを「×」と表示した。
なお、剥離様式(上記引張試験後の試験片における破壊モードを目視で確認した。)について「CF」は凝集破壊を意味し、「AF」は界面剥離を意味する。「CF」が好ましい。
<Solderability>
A film of ITO (Sn-doped indium oxide) was formed as a transparent conductive layer on the surface of the silicon substrate.
Next, each composition produced as described above was applied onto the transparent conductive layer by screen printing at a printing speed of 200 mm/sec to form a linear test pattern (busbar electrode) having a width of 1.5 mm and a length of 50 mm. bottom. The screen printing mask used at this time had a line pattern of 250 meshes, an emulsion thickness of 10 μm, and a wiring opening width of 1.5 mm.
Next, a solder ribbon (manufactured by Ulbrich) having a width of 1.5 mm in which Sn/Pb eutectic solder is dipped in a copper core is applied to match the width of the test pattern and the solder ribbon, and the width of the test pattern and the length of 50 mm. was placed on the wiring of the test pattern so as to overlap with the above, and the overlapping portion of the test pattern and the solder ribbon was heated at 250 ° C. and crimped, thereby soldering the wiring and the solder ribbon. .
(Tensile test)
The soldered test piece was cooled to room temperature, and the soldered test piece was subjected to a 180° tensile test under room temperature conditions to measure the solder bond strength.
(Evaluation criteria)
When the solder adhesive strength was 1.0 N/mm or more, the solderability was evaluated as being excellent, and this was indicated by "◯".
When the solder adhesive strength was less than 1.0 N/mm, the solderability was evaluated as poor and indicated as "x".
As for the peel mode (the failure mode of the test piece after the tensile test was visually confirmed), "CF" means cohesive failure, and "AF" means interfacial peel. "CF" is preferred.

<貯蔵安定性>
(粘度の測定)
上記のとおり製造された組成物の粘度(初期粘度)、及び、上記のとおり製造された組成物を5℃冷蔵環境下で30日間置いた後の組成物の粘度(貯蔵後の粘度)を、JIS K 7117-1:1999に準じて、それぞれ測定した。上記測定は、コーンプレート型粘度計(ブルックフィールド社製)を用い、CP52スピンドルを用いて回転させ、1rpm、室温の条件下において行われた。
(粘度上昇率)
上記のとおり測定された、各組成物の初期粘度及び貯蔵後の粘度から、粘度上昇率(%)=(貯蔵後の粘度/初期粘度)×100を算出した。
(評価基準)
粘度上昇率が150%未満であった場合、貯蔵安定性に優れると評価して、これを「〇」と表示した。
粘度上昇率が150%以上であった場合、貯蔵安定性が悪いと評価して、これを「×」として表示した。
<Storage stability>
(Measurement of viscosity)
The viscosity of the composition produced as described above (initial viscosity), and the viscosity of the composition produced as described above after being placed in a refrigerated environment at 5°C for 30 days (viscosity after storage), Each was measured according to JIS K 7117-1:1999. The above measurements were carried out using a cone-plate viscometer (manufactured by Brookfield Co.), rotating a CP52 spindle at 1 rpm, and room temperature.
(Viscosity increase rate)
From the initial viscosity and the viscosity after storage of each composition measured as described above, the viscosity increase rate (%)=(viscosity after storage/initial viscosity)×100 was calculated.
(Evaluation criteria)
When the viscosity increase rate was less than 150%, the storage stability was evaluated as being excellent, and this was indicated as "◯".
When the rate of increase in viscosity was 150% or more, the storage stability was evaluated as poor and indicated as "x".

Figure 0007231537000001
Figure 0007231537000001

Figure 0007231537000002
Figure 0007231537000002

第1表に示した各成分の詳細は以下のとおりである。

Figure 0007231537000003
Details of each component shown in Table 1 are as follows.
Figure 0007231537000003

なお、第1表及び第2表におけるフレーク銀は、本発明における導電粒子のフレーク状粒子Eに該当する。
また、球状銀は、本発明における導電粒子の球状粒子Fに該当する。
第2表において、「ビスF」はビスフェノールF型エポキシ樹脂を意味する。「ビスA」はビスフェノールA型エポキシ樹脂を意味する。「ビフェニル型」はビフェニル型エポキシ樹脂を意味する。
The silver flakes in Tables 1 and 2 correspond to the flake-like particles E of the conductive particles in the present invention.
Moreover, spherical silver corresponds to the spherical particles F of the conductive particles in the present invention.
In Table 2, "bis F" means bisphenol F type epoxy resin. "Bis A" means a bisphenol A type epoxy resin. "Biphenyl-type" means a biphenyl-type epoxy resin.

(2-ヒドロキシイソ酪酸銀塩の調製)
酸化銀(東洋化学工業社製)50g、2-ヒドロキシイソ酪酸(東京化成工業社製)45g、および、メチルエチルケトン(MEK)300gを、ボールミルに投入し、室温で24時間撹拌させることにより反応させた。
次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、2-ヒドロキシイソ酪酸銀塩を調製した。
(Preparation of silver 2-hydroxyisobutyrate)
50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 45 g of 2-hydroxyisobutyric acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and 300 g of methyl ethyl ketone (MEK) were put into a ball mill and reacted by stirring at room temperature for 24 hours. .
Silver 2-hydroxyisobutyrate was then prepared by removing MEK by suction filtration and drying the resulting powder.

第1表に示す結果から明らかなように、所定のエポキシ樹脂Bの代わりにエポキシ樹脂B-1又はB-7(25℃で固体であるがエポキシ当量が400g/eq未満)を含有する比較例1、3は、半田付け性が悪かった。
所定のエポキシ樹脂Bの代わりにエポキシ樹脂B-6(エポキシ当量が5,000g/eqを超える)を含有する比較例2は、スクリーン印刷性及び半田付け性が悪かった。
[(A+B)/C]が所定の範囲を外れる比較例4[(A+B)が少なく、Cが多い]は、スクリーン印刷性が悪かった。
[(A+B)/C]が所定の範囲を外れる比較例5[(A+B)が多く、Cが少ない]は、半田付け性が悪かった。
[A/(B+C)]が所定の範囲を外れる比較例6[Aが少なく、(B+C)が多い]は、スクリーン印刷性が悪かった。
[A/(B+C)]が所定の範囲を外れる比較例7[Aが多く、(B+C)が少ない]は、半田付け性が悪かった。
[D/(A+B)]が所定の範囲を外れる比較例8[Dが少なく、(A+B)が多い]は、接着性及び半田付け性が悪かった。
[D/(A+B)]が所定の範囲を外れる比較例9[Dが多く、(A+B)が少ない]は、半田付け性が悪かった。
エポキシ樹脂A、エポキシ樹脂B、熱可塑性樹脂C及び硬化剤Dの総量が、所定の範囲より少ない比較例10は、接着性及び半田付け性が悪かった。
エポキシ樹脂A、エポキシ樹脂B、熱可塑性樹脂C及び硬化剤Dの総量が、所定の範囲より多い比較例11は、低抵抗性、スクリーン印刷性及び半田付け性が悪かった。
カルボン酸金属塩を含有する比較例12は、貯蔵安定性が悪かった。
所定の熱可塑性樹脂Cを含有しない比較例13は、半田付け性が悪かった。
As is clear from the results shown in Table 1, a comparative example containing epoxy resin B-1 or B-7 (solid at 25° C. but epoxy equivalent less than 400 g/eq) instead of predetermined epoxy resin B 1 and 3 had poor solderability.
Comparative Example 2 containing epoxy resin B-6 (epoxy equivalent exceeding 5,000 g/eq) instead of the predetermined epoxy resin B had poor screen printability and solderability.
Comparative Example 4 [(A+B)/C] outside the predetermined range [(A+B) is small and C is large] had poor screen printability.
Comparative Example 5 [(A+B)/C] outside the predetermined range [(A+B) is large and C is small] had poor solderability.
Comparative Example 6 [A is small and (B+C) is large], in which [A/(B+C)] is outside the predetermined range, had poor screen printability.
Comparative Example 7, in which [A/(B+C)] was out of the predetermined range [more A and less (B+C)] had poor solderability.
Comparative Example 8, in which [D/(A+B)] is out of the predetermined range [D is small and (A+B) is large], had poor adhesiveness and solderability.
Comparative Example 9, in which [D/(A+B)] is out of the predetermined range [D is large and (A+B) is small], had poor solderability.
Comparative Example 10, in which the total amount of epoxy resin A, epoxy resin B, thermoplastic resin C and curing agent D was less than the predetermined range, had poor adhesion and solderability.
Comparative Example 11, in which the total amount of epoxy resin A, epoxy resin B, thermoplastic resin C, and curing agent D was more than the predetermined range, exhibited low resistance, poor screen printability, and poor solderability.
Comparative Example 12 containing a metal carboxylate had poor storage stability.
Comparative Example 13, which did not contain the predetermined thermoplastic resin C, had poor solderability.

これに対して、本発明の組成物は、半田付け性、スクリーン印刷性、低抵抗性、基材との接着性、及び、貯蔵安定性に優れた。 In contrast, the composition of the present invention was excellent in solderability, screen printability, low resistance, adhesion to substrates, and storage stability.

Claims (4)

導電粒子と、
エポキシ当量が500g/eq未満であり、かつ、25℃で液状のエポキシ樹脂Aと、
エポキシ当量が400g/eq以上5000g/eq以下であり、かつ、25℃で固体の、ビスフェノール骨格のエポキシ樹脂Bと、
重量平均分子量が25,000~65,000である熱可塑性樹脂Cと、
硬化剤Dと、
溶剤と、を含有し、
前記導電粒子が、比表面積が0.2~1.0m/gのフレーク状銀粒子Eと比表面積が0.5~1.6m/gの球状銀粒子Fを含み、前記フレーク状銀粒子Eに対する前記球状銀粒子Fの質量比(球状銀粒子F/フレーク状銀粒子E)が、75/25~25/75であり、
前記エポキシ樹脂Aが、環状構造を有するエポキシ樹脂A1及び鎖状構造を有するエポキシ樹脂A2を含有し、
前記エポキシ樹脂A1は、1分子中に1つのレゾルシン骨格を有するレゾルシノールジグリシジルエーテルを少なくとも含み
前記エポキシ樹脂A2は、多価アルコール系グリシジル型エポキシ樹脂であり、
前記熱可塑性樹脂Cは、フェノキシ樹脂であり、
前記エポキシ樹脂A、前記エポキシ樹脂B、前記熱可塑性樹脂C及び前記硬化剤Dの総量が、前記導電粒子100質量部に対して3質量部以上10質量部以下であり、
前記熱可塑性樹脂Cの含有量に対する、前記エポキシ樹脂A及び前記エポキシ樹脂Bの総量の質量比[(A+B)/C]が、50/50~95/5であり、
前記エポキシ樹脂B及び前記熱可塑性樹脂Cの総量に対する、前記エポキシ樹脂Aの含有量の質量比[A/(B+C)]が、15/85~85/15であり、
前記エポキシ樹脂Aと前記エポキシ樹脂Bとの総量に対する、前記硬化剤Dの含有量の質量比[D/(A+B)]が、2/98~10/90であり、
カルボン酸金属塩を含有しない、導電性組成物。
conductive particles;
an epoxy resin A that has an epoxy equivalent of less than 500 g/eq and is liquid at 25°C;
an epoxy resin B having a bisphenol skeleton, which has an epoxy equivalent of 400 g/eq or more and 5000 g/eq or less and is solid at 25°C;
a thermoplastic resin C having a weight average molecular weight of 25,000 to 65,000;
a curing agent D;
containing a solvent and
The conductive particles include flaky silver particles E having a specific surface area of 0.2 to 1.0 m 2 /g and spherical silver particles F having a specific surface area of 0.5 to 1.6 m 2 /g. the mass ratio of the spherical silver particles F to the particles E (spherical silver particles F/flaky silver particles E) is 75/25 to 25/75;
The epoxy resin A contains an epoxy resin A1 having a cyclic structure and an epoxy resin A2 having a chain structure,
The epoxy resin A1 contains at least resorcinol diglycidyl ether having one resorcinol skeleton in one molecule ,
The epoxy resin A2 is a polyhydric alcohol-based glycidyl-type epoxy resin,
The thermoplastic resin C is a phenoxy resin,
The total amount of the epoxy resin A, the epoxy resin B, the thermoplastic resin C, and the curing agent D is 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the conductive particles,
The mass ratio [(A+B)/C] of the total amount of the epoxy resin A and the epoxy resin B to the content of the thermoplastic resin C is 50/50 to 95/5,
The mass ratio [A/(B+C)] of the content of the epoxy resin A to the total amount of the epoxy resin B and the thermoplastic resin C is 15/85 to 85/15,
The mass ratio [D/(A+B)] of the content of the curing agent D to the total amount of the epoxy resin A and the epoxy resin B is 2/98 to 10/90,
A conductive composition containing no metal carboxylate.
前記エポキシ樹脂Aの25℃での粘度が、15~60,000mPa・sである、請求項1に記載の導電性組成物。 The conductive composition according to claim 1, wherein the epoxy resin A has a viscosity of 15 to 60,000 mPa·s at 25°C. 前記熱可塑性樹脂Cのガラス転移点が、80~100℃である、請求項1又は2に記載の導電性組成物。 3. The conductive composition according to claim 1, wherein the thermoplastic resin C has a glass transition point of 80 to 100.degree. 前記エポキシ樹脂A2の含有量に対する、前記エポキシ樹脂A1の含有量の質量比[エポキシ樹脂A1/エポキシ樹脂A2]が、15/85~85/15である、請求項1~3のいずれか1項に記載の導電性組成物。 4. Any one of claims 1 to 3, wherein the mass ratio of the content of the epoxy resin A1 to the content of the epoxy resin A2 [epoxy resin A1/epoxy resin A2] is 15/85 to 85/15. The conductive composition according to .
JP2019520291A 2017-05-25 2018-05-23 conductive composition Active JP7231537B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017103781 2017-05-25
JP2017103781 2017-05-25
PCT/JP2018/019876 WO2018216739A1 (en) 2017-05-25 2018-05-23 Electroconductive composition

Publications (2)

Publication Number Publication Date
JPWO2018216739A1 JPWO2018216739A1 (en) 2020-04-02
JP7231537B2 true JP7231537B2 (en) 2023-03-01

Family

ID=64396083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019520291A Active JP7231537B2 (en) 2017-05-25 2018-05-23 conductive composition

Country Status (4)

Country Link
JP (1) JP7231537B2 (en)
CN (1) CN110603293A (en)
TW (1) TW201901699A (en)
WO (1) WO2018216739A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903885B (en) * 2018-12-29 2020-10-02 无锡帝科电子材料股份有限公司 Conductive paste, application thereof, solar cell electrode and solar cell
TWI743683B (en) * 2020-02-14 2021-10-21 碩禾電子材料股份有限公司 Conductive paste for hjt solar cell, hjt solar cell, and electrode structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239356A (en) 1999-02-17 2000-09-05 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same
WO2015019667A1 (en) 2013-08-06 2015-02-12 千住金属工業株式会社 Conductive bonding agent and soldered joint
WO2016006467A1 (en) 2014-07-11 2016-01-14 横浜ゴム株式会社 Conductive composition for forming solar battery collecting electrode, solar battery cell, and solar battery module
WO2016017618A1 (en) 2014-07-29 2016-02-04 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module
WO2016021535A1 (en) 2014-08-08 2016-02-11 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module
JP2016160415A (en) 2015-03-05 2016-09-05 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module
JP2016160413A (en) 2015-03-05 2016-09-05 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239356A (en) 1999-02-17 2000-09-05 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same
WO2015019667A1 (en) 2013-08-06 2015-02-12 千住金属工業株式会社 Conductive bonding agent and soldered joint
WO2016006467A1 (en) 2014-07-11 2016-01-14 横浜ゴム株式会社 Conductive composition for forming solar battery collecting electrode, solar battery cell, and solar battery module
WO2016017618A1 (en) 2014-07-29 2016-02-04 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module
WO2016021535A1 (en) 2014-08-08 2016-02-11 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module
JP2016160415A (en) 2015-03-05 2016-09-05 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module
JP2016160413A (en) 2015-03-05 2016-09-05 横浜ゴム株式会社 Conductive composition, solar cell, and solar cell module

Also Published As

Publication number Publication date
CN110603293A (en) 2019-12-20
TW201901699A (en) 2019-01-01
JPWO2018216739A1 (en) 2020-04-02
WO2018216739A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6447504B2 (en) Conductive paste
JP5839573B2 (en) Heat curable conductive paste composition
JP5045803B2 (en) Conductive composition and solar battery cell
CN104822789A (en) Conductive adhesive composition and electronic element using same
JP5979237B2 (en) Conductive adhesive
WO2018139463A1 (en) Electrically conductive composition
JP7231537B2 (en) conductive composition
TWI783078B (en) Conductive paste
JP5976382B2 (en) Die attach paste, manufacturing method thereof, and semiconductor device
JP2019056104A (en) Conductive composition and wiring board using the same
EP2986682B1 (en) Electrically conductive inks
JP6132400B2 (en) Conductive material
JPH10279902A (en) Electroconductive adhesive
JP6620744B2 (en) Conductive composition for forming solar battery collecting electrode, solar battery cell and solar battery module
JP6361843B1 (en) Conductive composition
JP2016160415A (en) Conductive composition, solar cell, and solar cell module
US11270810B2 (en) Electrically conductive paste
JP6092754B2 (en) Conductive epoxy resin composition, solar cell using the composition, and method for producing the solar cell
JP7264662B2 (en) conductive composition
JP6705568B1 (en) Conductive composition
JP2016186842A (en) Coated conductor, solar cell and solar cell module
WO2020166137A1 (en) Electroconductive composition
JP5692295B2 (en) Method for forming solar cell collector electrode and solar cell module provided with the solar cell
JP2006140206A (en) Conductive resin paste composite comprising silver and carbon nanotube and semiconductor device using the same
KR20230058317A (en) Conductive adhesive, electronic circuit using the same and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7231537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150