JP7229669B2 - SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Google Patents

SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE Download PDF

Info

Publication number
JP7229669B2
JP7229669B2 JP2018032997A JP2018032997A JP7229669B2 JP 7229669 B2 JP7229669 B2 JP 7229669B2 JP 2018032997 A JP2018032997 A JP 2018032997A JP 2018032997 A JP2018032997 A JP 2018032997A JP 7229669 B2 JP7229669 B2 JP 7229669B2
Authority
JP
Japan
Prior art keywords
insulator
conductor
oxide
transistor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018032997A
Other languages
Japanese (ja)
Other versions
JP2019096856A (en
Inventor
舜平 山崎
清文 荻野
照幸 藤井
太一 遠藤
謙景 北嶋
正太 三本菅
智記 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2019096856A publication Critical patent/JP2019096856A/en
Application granted granted Critical
Publication of JP7229669B2 publication Critical patent/JP7229669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)

Description

本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュール、および電子機器に関する。 One embodiment of the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device. Alternatively, one aspect of the present invention relates to semiconductor wafers, modules, and electronic devices.

なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、および電子機器などは、半導体装置を有すると言える場合がある。 Note that a semiconductor device in this specification and the like refers to all devices that can function by utilizing semiconductor characteristics. A semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are examples of semiconductor devices. Display devices (liquid crystal display devices, light-emitting display devices, etc.), projection devices, lighting devices, electro-optic devices, power storage devices, storage devices, semiconductor circuits, imaging devices, electronic devices, and the like can be said to have semiconductor devices in some cases. .

なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。 Note that one embodiment of the present invention is not limited to the above technical field. One embodiment of the invention disclosed in this specification and the like relates to a product, a method, or a manufacturing method. Alternatively, one aspect of the invention relates to a process, machine, manufacture, or composition of matter.

トランジスタに適用可能な半導体薄膜として、シリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。酸化物半導体としては、例えば、酸化インジウム、酸化亜鉛などの一元系金属の酸化物のみでなく、多元系金属の酸化物も知られている。多元系金属の酸化物の中でも、特に、In-Ga-Zn酸化物(以下、IGZOとも呼ぶ。)に関する研究が盛んに行われている。 Silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, but oxide semiconductors are attracting attention as other materials. As oxide semiconductors, for example, not only single-component metal oxides such as indium oxide and zinc oxide, but also multi-component metal oxides are known. In--Ga--Zn oxides (hereinafter also referred to as IGZO) have been extensively studied among multicomponent metal oxides.

IGZOに関する研究により、酸化物半導体において、単結晶でも非晶質でもない、CAAC(c-axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出された(非特許文献1乃至非特許文献3参照。)。非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術も開示されている。さらに、CAAC構造およびnc構造よりも結晶性の低い酸化物半導体でさえも、微小な結晶を有することが、非特許文献4および非特許文献5に示されている。 Research on IGZO has found a CAAC (c-axis aligned crystalline) structure and an nc (nanocrystalline) structure, which are neither single crystal nor amorphous, in oxide semiconductors (see Non-Patent Documents 1 to 3). .). Non-Patent Document 1 and Non-Patent Document 2 also disclose a technique for manufacturing a transistor using an oxide semiconductor having a CAAC structure. Furthermore, Non-Patent Document 4 and Non-Patent Document 5 show that even an oxide semiconductor having a crystallinity lower than that of the CAAC structure and the nc structure has minute crystals.

さらに、IGZOを活性層として用いたトランジスタは極めて低いオフ電流を持ち(非特許文献6参照。)、その特性を利用したLSIおよびディスプレイが報告されている(非特許文献7および非特許文献8参照。)。 Furthermore, a transistor using IGZO as an active layer has an extremely low off-state current (see Non-Patent Document 6), and LSIs and displays utilizing this characteristic have been reported (see Non-Patent Document 7 and Non-Patent Document 8). .).

S. Yamazaki et al., “SID Symposium Digest of Technical Papers”, 2012, volume 43, issue 1, p.183-186S. Yamazaki et al. , "SID Symposium Digest of Technical Papers", 2012, volume 43, issue 1, p. 183-186 S. Yamazaki et al., “Japanese Journal of Applied Physics”, 2014, volume 53, Number 4S, p.04ED18-1-04ED18-10S. Yamazaki et al. , "Japanese Journal of Applied Physics", 2014, volume 53, Number 4S, p. 04ED18-1-04ED18-10 S. Ito et al., “The Proceedings of AM-FPD’13 Digest of Technical Papers”, 2013, p.151-154S. Ito et al. , "The Proceedings of AM-FPD'13 Digest of Technical Papers", 2013, p. 151-154 S. Yamazaki et al., “ECS Journal of Solid State Science and Technology”, 2014, volume 3, issue 9, p.Q3012-Q3022S. Yamazaki et al. , "ECS Journal of Solid State Science and Technology", 2014, volume 3, issue 9, p. Q3012-Q3022 S. Yamazaki, “ECS Transactions”,2014, volume 64, issue 10, p.155-164S. Yamazaki, "ECS Transactions", 2014, volume 64, issue 10, p. 155-164 K. Kato et al., “Japanese Journal of Applied Physics”, 2012, volume 51, p.021201-1-021201-7K. Kato et al. , "Japanese Journal of Applied Physics", 2012, volume 51, p. 021201-1-021201-7 S. Matsuda et al., “2015 Symposium on VLSI Technology Digest of Technical Papers”, 2015, p.T216-T217S. Matsuda et al. , "2015 Symposium on VLSI Technology Digest of Technical Papers", 2015, p. T216-T217 S. Amano et al., “SID Symposium Digest of Technical Papers”, 2010, volume 41, issue 1, p.626-629S. Amano et al. , "SID Symposium Digest of Technical Papers", 2010, volume 41, issue 1, p. 626-629

本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、高い周波数特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。 An object of one embodiment of the present invention is to provide a semiconductor device with high on-state current. Another object of one embodiment of the present invention is to provide a semiconductor device with high frequency characteristics. Another object of one embodiment of the present invention is to provide a highly reliable semiconductor device. Another object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated. Another object of one embodiment of the present invention is to provide a semiconductor device with favorable electrical characteristics. Another object of one embodiment of the present invention is to provide a highly productive semiconductor device.

本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。 An object of one embodiment of the present invention is to provide a semiconductor device capable of holding data for a long time. An object of one embodiment of the present invention is to provide a semiconductor device in which data can be written at high speed. An object of one embodiment of the present invention is to provide a semiconductor device with a high degree of freedom in design. An object of one embodiment of the present invention is to provide a semiconductor device that can consume less power. An object of one embodiment of the present invention is to provide a novel semiconductor device.

なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 The description of these problems does not preclude the existence of other problems. Note that one embodiment of the present invention does not necessarily solve all of these problems. Problems other than these are self-evident from the descriptions of the specification, drawings, claims, etc., and it is possible to extract problems other than these from the descriptions of the specification, drawings, claims, etc. is.

本発明の一態様は、第1の絶縁体と、第1の絶縁体上の酸化物と、酸化物上の第1の導電体および第2の導電体と、酸化物上の第2の絶縁体と、第2の絶縁体上に位置し、酸化物と重なる第3の導電体と、第1の絶縁体、酸化物の側面、第1の導電体の側面、第1の導電体の上面、第2の導電体の側面、第2の導電体の上面、および第2の絶縁体の側面と接する、第3の絶縁体と、第3の導電体、第2の絶縁体、および第3の絶縁体上の第4の絶縁体と、を有し、第4の絶縁体は、第3の導電体、第2の絶縁体、および第3の絶縁体のそれぞれの上面と接している、半導体装置である。 One aspect of the invention includes a first insulator, an oxide over the first insulator, a first conductor and a second conductor over the oxide, and a second insulator over the oxide. a body, a third conductor overlying the second insulator and overlapping the oxide, the first insulator, side surfaces of the oxide, side surfaces of the first conductor, and top surface of the first conductor. , a third insulator in contact with the side surface of the second conductor, the top surface of the second conductor, and the side surface of the second insulator, and the third conductor, the second insulator, and the third insulator. a fourth insulator on the insulator of, the fourth insulator in contact with the top surface of each of the third conductor, the second insulator, and the third insulator; It is a semiconductor device.

また、本発明の一態様は、第1の絶縁体と、第1の絶縁体上の酸化物と、酸化物上の第1の導電体および第2の導電体と、酸化物上の第2の絶縁体と、第2の絶縁体上に位置し、酸化物と重なる第3の導電体と、を有し、酸化物は、第1の酸化物と、第1の酸化物上第2の酸化物と、第2の酸化物上の第3の酸化物と、を有し、第1の絶縁体、第1酸化物の側面、第2の酸化物の側面、第1の導電体の側面、第1の導電体の上面、第2の導電体の側面、第2の導電体の上面、および第3の酸化物の側面と接する、第3の絶縁体と、第3の導電体、第2の絶縁体、第3の酸化物、および第3の絶縁体上の第4の絶縁体と、を有し、第4の絶縁体は、第3の導電体、第2の絶縁体、第3の酸化物および第3の絶縁体のそれぞれの上面と接している、半導体装置である。 One embodiment of the present invention includes a first insulator, an oxide over the first insulator, a first conductor and a second conductor over the oxide, and a second conductor over the oxide. and a third conductor overlying the second insulator and overlapping the oxide, the oxide being the first oxide and the second conductor over the first oxide. a first insulator, a side of the first oxide, a side of the second oxide, and a side of the first conductor, comprising an oxide and a third oxide on the second oxide; , a top surface of the first conductor, a side surface of the second conductor, a top surface of the second conductor, and a side surface of the third oxide; a second insulator, a third oxide, and a fourth insulator over the third insulator, the fourth insulator comprising the third conductor, the second insulator, and the fourth insulator; 3 oxide and a third insulator.

また、第3の絶縁体および第4の絶縁体は、それぞれ、第1の絶縁体よりも酸素および水素の一方または双方を透過し難いことが好ましい。 Further, it is preferable that the third insulator and the fourth insulator each have a lower permeability to one or both of oxygen and hydrogen than the first insulator.

また、第3の絶縁体および第4の絶縁体は、それぞれ、第2の絶縁体よりも酸素および水素の一方または双方を透過し難いことが好ましい。 Further, it is preferable that the third insulator and the fourth insulator each have a lower permeability to one or both of oxygen and hydrogen than the second insulator.

また、第3の絶縁体および第4の絶縁体は、それぞれ、アルミニウム、およびハフニウムの一方または両方を含む酸化物であってもよい。 Also, the third insulator and the fourth insulator may each be an oxide containing one or both of aluminum and hafnium.

また、第3の絶縁体および第4の絶縁体は、それぞれ、酸化アルミニウムであってもよい。 Also, the third insulator and the fourth insulator may each be aluminum oxide.

また、酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有することが好ましい。 Also, the oxide preferably contains In, an element M (M is Al, Ga, Y, or Sn), and Zn.

また、酸化物は、第1の導電体および第2の導電体と重ならない第1の領域と、第1の導電体および第2の導電体と重なる第2の領域と、を有し、第1の領域は、第2の領域よりも薄い部分を有していてもよい。 In addition, the oxide has a first region that does not overlap with the first conductor and the second conductor and a second region that overlaps with the first conductor and the second conductor; One region may have a thinner portion than the second region.

また、第1の導電体および第2の導電体は、それぞれ、第1の元素および第2の元素を含み、第1の元素は、第2の元素より耐酸化性が高く、第2の元素は、第1の元素より仕事関数が小さくてもよい。 Further, the first conductor and the second conductor respectively contain a first element and a second element, the first element having higher oxidation resistance than the second element, and the second element may have a smaller work function than the first element.

また、第1の元素は、Ru、Rh、Pd、Os、Ir、およびPtのいずれか一つまたは複数であり、第2の元素は、Al、Si、Ti、Hf、Zr、Mn、In、Ga、Bi、Ta、Nb、Zn、Sn、Cu、Cr、W、Mo、Ge、Ni、Sc、Y、およびCeのいずれか一つまたは複数であってもよい。 The first element is one or more of Ru, Rh, Pd, Os, Ir, and Pt, and the second element is Al, Si, Ti, Hf, Zr, Mn, In, Any one or more of Ga, Bi, Ta, Nb, Zn, Sn, Cu, Cr, W, Mo, Ge, Ni, Sc, Y, and Ce may be used.

また、本発明の一態様は、基板上に第1の絶縁体を形成し、第1の絶縁体の上に、酸化膜および第1の導電膜を順に成膜し、酸化膜および第1の導電膜を加工して、酸化物および導電体層を形成し、酸化物および導電体層を覆ってダミーゲート膜を成膜し、ダミーゲート膜を加工して、ダミーゲート層を形成し、第1の絶縁体、酸化物、導電体層、およびダミーゲート層を覆って、第1の絶縁膜を成膜し、第1の絶縁膜の上に第2の絶縁膜を成膜し、第1のCMP処理を行うことによって、第1の絶縁膜および第2の絶縁膜の一部を、ダミーゲート層の一部が露出するまで除去し、導電体層の一部およびダミーゲート層をエッチングすることによって、第1の導電体と第2の導電体を形成し、酸化物を露出させ、熱処理を行い、第3の絶縁膜を成膜し、第2の導電膜を成膜し、第2のCMP処理を行うことによって、の第3の絶縁膜および第2の導電膜を第2の絶縁膜の一部が露出するまで除去し、第3絶縁体および第3の導電体を形成し、第2の絶縁膜、第3の絶縁体および第3の導電体を覆って、第4の絶縁膜を成膜する半導体装置の作製方法である。 In one embodiment of the present invention, a first insulator is formed over a substrate, an oxide film and a first conductive film are sequentially formed over the first insulator, and the oxide film and the first conductive film are formed. processing the conductive film to form an oxide and a conductive layer; forming a dummy gate film covering the oxide and the conductive layer; processing the dummy gate film to form a dummy gate layer; forming a first insulating film covering the insulator, oxide, conductor layer and dummy gate layer; forming a second insulating film on the first insulating film; forming a first insulating film; by performing CMP treatment, removing part of the first insulating film and the second insulating film until part of the dummy gate layer is exposed, and etching part of the conductor layer and the dummy gate layer. Thus, a first conductor and a second conductor are formed, an oxide is exposed, heat treatment is performed, a third insulating film is formed, a second conductive film is formed, and a second conductive film is formed. removing the third insulating film and the second conductive film until a part of the second insulating film is exposed by performing a CMP treatment to form a third insulator and a third conductor; In the method for manufacturing a semiconductor device, a fourth insulating film is formed to cover the second insulating film, the third insulator, and the third conductor.

本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。 According to one embodiment of the present invention, a semiconductor device with high on-state current can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with high frequency characteristics can be provided. Alternatively, according to one embodiment of the present invention, a highly reliable semiconductor device can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device that can be miniaturized or highly integrated can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with favorable electrical characteristics can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with high productivity can be provided.

または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。または、新規な半導体装置を提供することができる。 Alternatively, a semiconductor device capable of holding data for a long time can be provided. Alternatively, a semiconductor device with high data writing speed can be provided. Alternatively, a semiconductor device with a high degree of freedom in design can be provided. Alternatively, a semiconductor device with low power consumption can be provided. Alternatively, a novel semiconductor device can be provided.

なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not preclude the existence of other effects. Note that one embodiment of the present invention does not need to have all of these effects. Effects other than these are self-evident from the descriptions of the specification, drawings, claims, etc., and it is possible to extract effects other than these from the descriptions of the specification, drawings, claims, etc. is.

本発明の一態様に係る半導体装置の上面図および断面図。1A and 1B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の断面図。1A and 1B are cross-sectional views of a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の上面図および断面図。1A and 1B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。1A and 1B are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る記憶装置の構成を示す断面図。1A and 1B are cross-sectional views each illustrating a structure of a memory device according to one embodiment of the present invention; 本発明の一態様に係る記憶装置の構成を示す断面図。1A and 1B are cross-sectional views each illustrating a structure of a memory device according to one embodiment of the present invention; 本発明の一態様に係る記憶装置の構成例を示すブロック図。1 is a block diagram illustrating a configuration example of a storage device according to one embodiment of the present invention; FIG. 本発明の一態様に係る記憶装置の構成例を示す回路図。1 is a circuit diagram illustrating a configuration example of a memory device according to one embodiment of the present invention; FIG. 本発明の一態様に係る半導体装置の模式図。1A and 1B are schematic diagrams of a semiconductor device according to one embodiment of the present invention; 本発明の一態様に係る記憶装置の模式図。1A and 1B are schematic diagrams of a memory device according to one embodiment of the present invention; 本発明の一態様に係る電子機器を示す図。1A and 1B illustrate electronic devices according to one embodiment of the present invention;

以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments will be described with reference to the drawings. However, those skilled in the art will readily appreciate that the embodiments can be embodied in many different forms and that various changes in form and detail can be made without departing from the spirit and scope thereof. be. Therefore, the present invention should not be construed as being limited to the description of the following embodiments.

また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 Also, in the drawings, sizes, layer thicknesses, or regions may be exaggerated for clarity. Therefore, it is not necessarily limited to that scale. The drawings schematically show ideal examples, and are not limited to the shapes or values shown in the drawings. For example, in an actual manufacturing process, layers, resist masks, and the like may be unintentionally reduced due to processing such as etching, but are sometimes omitted for ease of understanding. In addition, in the drawings, the same reference numerals may be used in common for the same parts or parts having similar functions, and repeated description thereof may be omitted. Moreover, when referring to similar functions, the hatch patterns may be the same and no particular reference numerals may be attached.

また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。 In particular, in top views (also referred to as “plan views”) and perspective views, description of some components may be omitted in order to facilitate understanding of the invention. Also, description of some hidden lines may be omitted.

また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。 In this specification and the like, the ordinal numbers such as first and second are used for convenience and do not indicate the order of steps or the order of stacking. Therefore, for example, "first" can be appropriately replaced with "second" or "third". Also, the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one aspect of the present invention.

また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。 In this specification and the like, terms such as “above” and “below” are used for convenience in order to describe the positional relationship between configurations with reference to the drawings. In addition, the positional relationship between the configurations changes appropriately according to the direction in which each configuration is drawn. Therefore, it is not limited to the words and phrases described in the specification, and can be appropriately rephrased according to the situation.

例えば、本明細書等において、XとYとが直接的に接続されている場合と、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。 For example, in this specification and the like, when X and Y are directly connected and when it is explicitly stated that X and Y are connected, X and Y are electrically The present specification and the like disclose the case where X and Y are functionally connected and the case where X and Y are functionally connected. Therefore, it is assumed that the connection relationships other than the connection relationships shown in the drawings or the text are not limited to the predetermined connection relationships, for example, the connection relationships shown in the drawings or the text.

ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。 Here, X and Y are objects (for example, devices, elements, circuits, wiring, electrodes, terminals, conductive films, layers, etc.).

また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。 Also, the functions of the source and the drain may be interchanged when using transistors of different polarities or when the direction of current changes in circuit operation. Therefore, in this specification and the like, the terms "source" and "drain" can be used interchangeably in some cases.

なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。 Note that in this specification and the like, depending on the structure of a transistor, the channel width in a region where a channel is actually formed (hereinafter also referred to as an "effective channel width") and the channel width shown in a top view of the transistor. (hereinafter also referred to as “apparent channel width”). For example, when the gate electrode covers the side surface of the semiconductor, the effective channel width becomes larger than the apparent channel width, and its influence cannot be ignored. For example, in a fine transistor in which a gate electrode covers the side surface of a semiconductor, the proportion of the channel formation region formed on the side surface of the semiconductor may be large. In that case, the effective channel width is larger than the apparent channel width.

このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。 In such a case, it may be difficult to estimate the effective channel width by actual measurement. For example, in order to estimate the effective channel width from design values, it is necessary to assume that the shape of the semiconductor is known. Therefore, it is difficult to accurately measure the effective channel width if the shape of the semiconductor is not accurately known.

本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。 In this specification, simply describing the channel width may refer to the apparent channel width. Alternatively, in this specification, simply referring to the channel width may refer to the effective channel width. The values of the channel length, channel width, effective channel width, apparent channel width, etc. can be determined by analyzing a cross-sectional TEM image or the like.

なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。 Note that impurities in a semiconductor refer to, for example, substances other than the main components that constitute the semiconductor. For example, an element whose concentration is less than 0.1 atomic percent can be said to be an impurity. When impurities are contained, for example, the DOS (Density of States) of the semiconductor may increase, the crystallinity may decrease, and the like. When the semiconductor is an oxide semiconductor, impurities that change the characteristics of the semiconductor include, for example, group 1 elements, group 2 elements, group 13 elements, group 14 elements, group 15 elements, and oxide semiconductors. There are transition metals other than the main component of , such as hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, and nitrogen. In the case of an oxide semiconductor, water may also function as an impurity. In the case of an oxide semiconductor, for example, oxygen vacancies may be formed due to contamination by impurities. When the semiconductor is silicon, impurities that change the characteristics of the semiconductor include, for example, group 1 elements, group 2 elements, group 13 elements, and group 15 elements excluding oxygen and hydrogen.

なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。 Note that in this specification and the like, silicon oxynitride contains more oxygen than nitrogen as its composition. Silicon nitride oxide contains more nitrogen than oxygen in its composition.

また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。 In this specification and the like, the term “insulator” can be replaced with an insulating film or an insulating layer. Also, the term “conductor” can be replaced with a conductive film or a conductive layer. Also, the term "semiconductor" can be interchanged with a semiconductor film or a semiconductor layer.

また、本明細書等において、「平行」とは、二つの直線が-10度以上10度以下の角度で配置されている状態をいう。したがって、-5度以上5度以下の場合も含まれる。また、「略平行」とは、二つの直線が-30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。 In this specification and the like, "parallel" means a state in which two straight lines are arranged at an angle of -10 degrees or more and 10 degrees or less. Therefore, the case of -5 degrees or more and 5 degrees or less is also included. Also, "substantially parallel" means a state in which two straight lines are arranged at an angle of -30 degrees or more and 30 degrees or less. "Perpendicular" means that two straight lines are arranged at an angle of 80 degrees or more and 100 degrees or less. Therefore, the case of 85 degrees or more and 95 degrees or less is also included. In addition, "substantially perpendicular" means a state in which two straight lines are arranged at an angle of 60 degrees or more and 120 degrees or less.

なお、本明細書において、バリア膜とは、水、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、当該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。 Note that in this specification, a barrier film is a film that has a function of suppressing permeation of impurities such as water and hydrogen, and oxygen. I may call

本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETあるいはOSトランジスタと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。 In this specification and the like, a metal oxide is a metal oxide in broad terms. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OSs), and the like. For example, when a metal oxide is used for a semiconductor layer of a transistor, the metal oxide is sometimes called an oxide semiconductor. In other words, an OS FET or an OS transistor can also be referred to as a transistor including an oxide or an oxide semiconductor.

また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりの電流が、室温において1×10-20A以下、85℃において1×10-18A以下、または125℃において1×10-16A以下であることをいう。 In this specification and the like, the term “normally off” means that a current per 1 μm of channel width flowing through a transistor when no potential is applied to the gate or when a ground potential is applied to the gate is 1×10 −20 at room temperature. A or less, 1×10 −18 A or less at 85° C., or 1×10 −16 A or less at 125° C.

(実施の形態1)
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
(Embodiment 1)
An example of a semiconductor device including the transistor 200 according to one embodiment of the present invention is described below.

<半導体装置の構成例>
図1(A)、図1(B)、および図1(C)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。
<Structure example of semiconductor device>
1A, 1B, and 1C are a top view and a cross-sectional view of a transistor 200 and its periphery according to one embodiment of the present invention.

図1(A)は、トランジスタ200を有する半導体装置の上面図である。また、図1(B)、および図1(C)は、当該半導体装置の断面図である。ここで、図1(B)は、図1(A)にA1-A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1(C)は、図1(A)にA3-A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。 FIG. 1A is a top view of a semiconductor device including a transistor 200. FIG. 1B and 1C are cross-sectional views of the semiconductor device. Here, FIG. 1B is a cross-sectional view of the portion indicated by the dashed-dotted line A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel length direction. FIG. 1C is a cross-sectional view of the portion indicated by the dashed-dotted line A3-A4 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel width direction. Note that in the top view of FIG. 1A, some elements are omitted for clarity.

本発明の一態様の半導体装置は、トランジスタ200と、層間膜として機能する絶縁体210、絶縁体212、絶縁体274、絶縁体280、および絶縁体281を有する。また、トランジスタ200と電気的に接続し、配線として機能する導電体203、およびプラグとして機能する導電体240(導電体240a、および導電体240b)とを有する。なお、プラグとして機能する導電体240の側面に接して絶縁体241(絶縁体241a、および絶縁体241b)が設けられる。 A semiconductor device of one embodiment of the present invention includes a transistor 200 and insulators 210, 212, 274, 280, and 281 functioning as interlayer films. It also includes a conductor 203 that is electrically connected to the transistor 200 and functions as a wiring, and a conductor 240 (a conductor 240a and a conductor 240b) that functions as a plug. Note that insulators 241 (insulators 241a and 241b) are provided in contact with side surfaces of conductors 240 functioning as plugs.

なお、導電体203は、絶縁体212に埋め込まれるように形成される。ここで、導電体203の上面の高さと、絶縁体212の上面の高さは同程度にできる。なお導電体203は、単層とする構成について示しているが、本発明はこれに限られるものではない。例えば、導電体203を第1の導電体および第2の導電体の2層としても良いし、2層以上の多層膜構造としてもよい。また、構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。 Note that the conductor 203 is formed so as to be embedded in the insulator 212 . Here, the height of the upper surface of the conductor 203 and the height of the upper surface of the insulator 212 can be made approximately the same. Note that the conductor 203 has a single layer structure, but the present invention is not limited to this. For example, the conductor 203 may have two layers of a first conductor and a second conductor, or may have a multilayer structure of two or more layers. In addition, when the structure has a laminated structure, an ordinal number may be given in order of formation for distinction.

また、絶縁体254、絶縁体244、絶縁体274、および絶縁体281の開口の内壁に接して絶縁体241が設けられ、その側面に接して導電体240の第1の導電体が設けられ、さらに内側に導電体240の第2の導電体が設けられている。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。 In addition, the insulator 241 is provided in contact with the inner wall of the opening of the insulator 254, the insulator 244, the insulator 274, and the insulator 281, and the first conductor of the conductor 240 is provided in contact with the side surface thereof, Further inside, a second conductor of the conductor 240 is provided. Here, the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 281 can be made approximately the same. Note that although the transistor 200 shows the structure in which the first conductor of the conductor 240 and the second conductor of the conductor 240 are stacked, the present invention is not limited to this. For example, the conductor 240 may be provided as a single layer or a laminated structure of three or more layers. When the structure has a laminated structure, an ordinal number may be assigned in order of formation for distinction.

[トランジスタ200]
図1に示すように、トランジスタ200は、基板(図示せず。)の上に配置された絶縁体214および絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体205(導電体205aおよび導電体205b)と、絶縁体216の上および導電体205の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230(酸化物230a、酸化物230b、および酸化物230c)と、酸化物230の上に配置された絶縁体250と、絶縁体250上に配置された導電体260(導電体260a、および導電体260b)と、酸化物230の上面の一部と接する導電体242aおよび導電体242bと、絶縁体224の上面の一部、酸化物230aの側面、酸化物230bの側面、導電体242aの側面、導電体242aの上面、導電体242bの側面、導電体242bの上面、酸化物230cの側面に接して配置された絶縁体254と、絶縁体254に接して配置された絶縁体244と、絶縁体244の上に配置された絶縁体280と、絶縁体280の上の配置された絶縁体274と、を有する。導電体260は、導電体260aおよび導電体260bを有し、導電体260bの底面および側面を包むように導電体260aが配置される。ここで、図1(B)に示すように、導電体260の上面は、絶縁体254の上面、絶縁体244の上面および酸化物230cの上面と略一致して配置される。また、絶縁体274は、導電体260の上面、絶縁体254の上面、絶縁体244の上面および酸化物230cの上面と、接する。
[Transistor 200]
As shown in FIG. 1, transistor 200 includes insulators 214 and 216 overlying a substrate (not shown) and conductors buried in insulators 214 and 216 . 205 (conductor 205a and conductor 205b), insulator 220 over insulator 216 and over conductor 205, insulator 222 over insulator 220, and insulator 222 Insulator 224 overlying oxide 230 (oxide 230a, oxide 230b, and oxide 230c) overlying insulator 224, and insulator 250 overlying oxide 230 , a conductor 260 (a conductor 260 a and a conductor 260 b ) provided over the insulator 250 , a conductor 242 a and a conductor 242 b in contact with part of the top surface of the oxide 230 , and a top surface of the insulator 224 . Part of it is in contact with the side surface of the oxide 230a, the side surface of the oxide 230b, the side surface of the conductor 242a, the top surface of the conductor 242a, the side surface of the conductor 242b, the top surface of the conductor 242b, and the side surface of the oxide 230c. It has an insulator 254 , an insulator 244 placed in contact with the insulator 254 , an insulator 280 placed over the insulator 244 , and an insulator 274 placed over the insulator 280 . Conductor 260 has conductor 260a and conductor 260b, and conductor 260a is arranged so as to wrap the bottom and side surfaces of conductor 260b. Here, as shown in FIG. 1B, the top surface of the conductor 260 is substantially aligned with the top surface of the insulator 254, the top surface of the insulator 244, and the top surface of the oxide 230c. Further, the insulator 274 is in contact with the top surface of the conductor 260, the top surface of the insulator 254, the top surface of the insulator 244, and the top surface of the oxide 230c.

ここで、導電体242aおよび導電体242bをまとめて導電体242という場合がある。導電体242は、第1の元素および第2の元素を含む。第1の元素は、第2の元素より耐酸化性が高く、例えば、Ru、Rh、Pd、Os、Ir、およびPtのいずれか一つまたは複数である。また、第2の元素は、第1の元素より仕事関数が小さく、例えば、Al、Si、Ti、Hf、Zr、Mn、In、Ga、Bi、Ta、Nb、Zn、Sn、Cu、Cr、W、Mo、Ge、Ni、Sc、Y、およびCeのいずれか一つまたは複数である。このように、導電体242が、耐酸化性が高い第1の元素と、仕事関数が小さい第2の元素を含むことにより、導電体242が絶縁体250などから拡散する酸素によって酸化されることを抑制し、且つ導電体242と酸化物230の間でオーミック接合を取ることができる。 Here, the conductor 242 a and the conductor 242 b may be collectively referred to as the conductor 242 . Conductor 242 includes a first element and a second element. The first element has higher oxidation resistance than the second element, and is, for example, one or more of Ru, Rh, Pd, Os, Ir, and Pt. Also, the second element has a work function smaller than that of the first element, such as Al, Si, Ti, Hf, Zr, Mn, In, Ga, Bi, Ta, Nb, Zn, Sn, Cu, Cr, Any one or more of W, Mo, Ge, Ni, Sc, Y, and Ce. Since the conductor 242 contains the first element with high oxidation resistance and the second element with a low work function, the conductor 242 is not oxidized by oxygen diffused from the insulator 250 or the like. can be suppressed and an ohmic contact can be made between the conductor 242 and the oxide 230 .

また、絶縁体222、絶縁体254、絶縁体244、および絶縁体274は、水素(例えば、水素原子、水素分子など)の少なくとも一の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、絶縁体254、絶縁体244、および絶縁体274は、絶縁体224、絶縁体250、および絶縁体280より水素透過性が低いことが好ましい。また、絶縁体222、絶縁体254、および絶縁体244は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、絶縁体254、および絶縁体244は、絶縁体224、絶縁体250、および絶縁体280より酸素透過性が低いことが好ましい。 Further, the insulator 222, the insulator 254, the insulator 244, and the insulator 274 preferably have at least one function of suppressing diffusion of hydrogen (eg, hydrogen atoms, hydrogen molecules, or the like). For example, insulators 222 , 254 , 244 , and 274 preferably have lower hydrogen permeability than insulators 224 , 250 , and 280 . Further, the insulator 222, the insulator 254, and the insulator 244 preferably have at least one function of suppressing diffusion of oxygen (eg, oxygen atoms, oxygen molecules, or the like). For example, insulators 222 , 254 , and 244 preferably have lower oxygen permeability than insulators 224 , 250 , and 280 .

絶縁体254は、図1(B)(C)に示すように、導電体242aの上面と側面、導電体242bの上面と側面、酸化物230aおよび酸化物230bの側面、ならびに絶縁体224の上面に接することが好ましい。また、図1(B)(C)に示すように、絶縁体244は、導電体260の上面と側面、絶縁体250の側面、および絶縁体254の上面に接することが好ましい。これにより、絶縁体280は、絶縁体254または絶縁体244によって、絶縁体224、酸化物230、および絶縁体250と離隔される。 The insulator 254 includes the top and side surfaces of the conductor 242a, the top and side surfaces of the conductor 242b, the side surfaces of the oxides 230a and 230b, and the top surface of the insulator 224, as illustrated in FIGS. contact is preferred. In addition, as shown in FIGS. 1B and 1C, the insulator 244 preferably contacts top and side surfaces of the conductor 260, side surfaces of the insulator 250, and top surface of the insulator 254. FIG. Insulator 280 is thereby separated from insulator 224 , oxide 230 , and insulator 250 by insulator 254 or insulator 244 .

また、酸化物230は、絶縁体224の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230bの上に配置され、少なくとも一部が酸化物230bの上面に接する酸化物230cと、を有することが好ましい。 In addition, oxide 230 includes oxide 230a over insulator 224, oxide 230b over oxide 230a, and oxide 230b overlying oxide 230b, and at least a portion of oxide 230b is overlying oxide 230b. and oxide 230c contacting the top surface of 230b.

なお、トランジスタ200では、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層、酸化物230bと酸化物230aの2層構造、酸化物230bと酸化物230cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ200では、導電体260を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造であってもよいし、3層以上の積層構造であってもよい。 Note that in the transistor 200, a region where a channel is formed (hereinafter also referred to as a channel formation region) and a structure in which three layers of an oxide 230a, an oxide 230b, and an oxide 230c are stacked in the vicinity thereof are shown. However, the present invention is not limited to this. For example, a single layer of the oxide 230b, a two-layer structure of the oxides 230b and 230a, a two-layer structure of the oxides 230b and 230c, or a stacked structure of four or more layers may be employed. In addition, although the conductor 260 has a two-layer structure in the transistor 200, the present invention is not limited to this. For example, the conductor 260 may have a single-layer structure or a laminated structure of three or more layers.

ここで、導電体260は、トランジスタのゲート電極として機能し、導電体242aおよび導電体242bは、それぞれソース電極またはドレイン電極として機能する。導電体260は、絶縁体250を介して導電体242aと重なる領域と、絶縁体250を介して導電体242bと重なる領域を有することが好ましい。導電体260をこのような形状にすることにより、導電体260に位置合わせのマージンを持たせることができるので、酸化物230の導電体242aと導電体242bの間の領域に、導電体260を確実に重畳させることができる。 Here, the conductor 260 functions as a gate electrode of the transistor, and the conductors 242a and 242b function as source and drain electrodes, respectively. The conductor 260 preferably has a region overlapping with the conductor 242a with the insulator 250 interposed therebetween and a region overlapping with the conductor 242b with the insulator 250 interposed therebetween. By forming the conductor 260 in such a shape, the conductor 260 can have an alignment margin, so that the conductor 260 is formed in the region between the conductor 242a and the conductor 242b of the oxide 230. can be reliably superimposed.

なお、図1に示すように、導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、を有することが好ましい。 Note that, as shown in FIG. 1, the conductor 260 preferably has a conductor 260a and a conductor 260b arranged over the conductor 260a.

また、トランジスタ200は、基板(図示しない。)の上に配置された絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体220と、を有することが好ましい。さらに、絶縁体220の上に絶縁体222が配置されることが好ましい。 In addition, the transistor 200 includes an insulator 214 provided over a substrate (not shown), an insulator 216 provided over the insulator 214, and the insulator 214 and the insulator 216. and an insulator 216 and an insulator 220 disposed over the conductor 205 . Furthermore, insulator 222 is preferably disposed over insulator 220 .

また、トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、酸化物230b、および酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。 In the transistor 200, a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is added to the oxide 230 (the oxide 230a, the oxide 230b, and the oxide 230c) including the channel formation region. It is preferable to use

チャネル形成領域に酸化物半導体を用いたトランジスタ200は、非導通状態において極めてリーク電流(オフ電流)が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタ200に用いることができる。 Since the transistor 200 including an oxide semiconductor for a channel formation region has extremely low leakage current (off-state current) in a non-conducting state, a semiconductor device with low power consumption can be provided. Further, since an oxide semiconductor can be deposited by a sputtering method or the like, it can be used for the transistor 200 included in a highly integrated semiconductor device.

例えば、酸化物230として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物230として、In-Ga酸化物、In-Zn酸化物を用いてもよい。 For example, as the oxide 230, an In-M-Zn oxide (element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium , neodymium, hafnium, tantalum, tungsten, or magnesium) or the like) may be used. In particular, the element M is preferably aluminum, gallium, yttrium, or tin. Alternatively, as the oxide 230, an In--Ga oxide or an In--Zn oxide may be used.

また、酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。したがって、チャネルが形成される領域中の酸素欠損はできる限り低減されていることが好ましい。例えば、絶縁体250などを介して酸化物230に酸素を供給し、酸素欠損を補填すればよい。これにより、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させたトランジスタを提供することができる。 In addition, when impurities and oxygen vacancies are present in a region where a channel is formed in the oxide semiconductor, electrical characteristics of a transistor using an oxide semiconductor are likely to fluctuate, and reliability may be degraded. In addition, when oxygen vacancies are included in a region where a channel is formed in the oxide semiconductor, the transistor tends to have normally-on characteristics. Therefore, oxygen vacancies in the region where the channel is formed are preferably reduced as much as possible. For example, oxygen may be supplied to the oxide 230 through the insulator 250 or the like to fill oxygen vacancies. Accordingly, it is possible to provide a transistor having stable electrical characteristics and improved reliability by suppressing variation in electrical characteristics.

また、酸化物230上に接するように設けられ、ソース電極やドレイン電極として機能する導電体242(導電体242a、および導電体242b)に含まれる元素(例えば、第2の元素)が、酸化物230の酸素を吸収する機能を有する場合、酸化物230と導電体242の間、または酸化物230の表面近傍に、部分的に低抵抗領域が形成される場合がある。この場合、当該低抵抗領域には、酸素欠損に入り込んだ不純物(水素、窒素、または金属元素等)がドナーとして機能し、キャリア密度が増加する場合がある。なお、以下において、酸素欠損に入り込んだ水素のことをVHと呼ぶ場合がある。 Further, an element (eg, a second element) included in the conductors 242 (the conductors 242a and 242b) that is provided over and in contact with the oxide 230 and functions as a source electrode and a drain electrode is an oxide. If the oxide 230 has a function of absorbing oxygen, a low resistance region may be partially formed between the oxide 230 and the conductor 242 or near the surface of the oxide 230 . In this case, impurities (hydrogen, nitrogen, metal element, or the like) entering the oxygen vacancies may function as donors in the low-resistance region, increasing the carrier density. Note that, hereinafter, the hydrogen that enters the oxygen vacancies may be referred to as VoH .

ここで、図1に示すトランジスタ200の一部の領域の拡大図を図2(A)に、導電体242が第1の元素を含まないトランジスタ200Aの一部の領域の拡大図を図2(B)に示す。図2(A)(B)に示すように、酸化物230上に接するように導電体242が設けられ、酸化物230の、導電体242との界面とその近傍には、低抵抗領域として、領域243(領域243a、および領域243b)が形成される場合がある。酸化物230は、トランジスタ200のチャネル形成領域として機能する領域234と、領域243の一部を含み、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)と、を有する。なお、以降の図面において、拡大図などで領域243を示さない場合でも、同様の領域243が形成されている場合がある。 Here, FIG. 2A is an enlarged view of part of the transistor 200 shown in FIGS. 1A and 2A is an enlarged view of part of the transistor 200A in which the conductor 242 does not contain the first element. B). As shown in FIGS. 2A and 2B, a conductor 242 is provided on and in contact with the oxide 230, and the interface of the oxide 230 with the conductor 242 and its vicinity are provided as low-resistance regions. Regions 243 (regions 243a and 243b) may be formed. Oxide 230 has a region 234 that functions as a channel forming region of transistor 200 and a region 231 (regions 231a and 231b) that includes part of region 243 and functions as a source or drain region. It should be noted that in subsequent drawings, even if the region 243 is not shown in an enlarged view or the like, the same region 243 may be formed.

図2(B)に示すように、トランジスタ200Aにおいて、絶縁体250に含まれる酸素291は、領域234に供給され、領域234の酸素欠損を低減することができる。しかしながら、第1の元素を含まず、耐酸化性が低い、トランジスタ200Aの導電体242では、導電体242aおよび導電体242bの絶縁体250と接する側の側面およびその近傍に酸素291が吸収され、導電体242の側面近傍に酸化された領域293が形成されてしまう。領域293は、図2(B)に示すように、導電体242の側面だけでなく、導電体242の側面近傍の下面において、基板に対して水平方向に拡張するように形成される場合がある。 As shown in FIG. 2B, in the transistor 200A, oxygen 291 contained in the insulator 250 is supplied to the region 234, so that oxygen vacancies in the region 234 can be reduced. However, in the conductor 242 of the transistor 200A, which does not contain the first element and has low oxidation resistance, the oxygen 291 is absorbed in and near the side surfaces of the conductors 242a and 242b which are in contact with the insulator 250. An oxidized region 293 is formed near the side surface of the conductor 242 . As shown in FIG. 2B, the region 293 may be formed not only on the side surface of the conductor 242 but also on the lower surface near the side surface of the conductor 242 so as to extend horizontally with respect to the substrate. .

これにより、トランジスタ200Aでは、チャネル長Lが、導電体242aと導電体242bの設計上の距離ではなく、これに導電体242a側と導電体242b側の領域293のチャネル方向の長さΔLが足しあわされた距離になる恐れがある。つまり、領域293が実質的にLoff領域として機能してしまうため、トランジスタ200Aは、設計値よりオン電流および周波数特性が低減する可能性がある。 Thus, in the transistor 200A, the channel length L is not the designed distance between the conductors 242a and 242b, but the length ΔL in the channel direction of the regions 293 on the sides of the conductors 242a and 242b. There is a risk that it will be a rushed distance. In other words, since the region 293 substantially functions as a Loff region, the on current and frequency characteristics of the transistor 200A may decrease from the design values.

また、トランジスタ200Aの導電体242の耐酸化性がさらに低い場合、導電体242の下面に接する酸化物230bから酸素を過剰に吸収してしまい、領域243aおよび領域243bが基板に水平方向に拡張し、領域243aと領域243bがつながる恐れがある。この場合、拡張された領域243が領域234の上面に形成され、トランジスタ200Aが常に導通状態となる可能性がある。 In addition, when the oxidation resistance of the conductor 242 of the transistor 200A is even lower, oxygen is excessively absorbed from the oxide 230b in contact with the lower surface of the conductor 242, and the regions 243a and 243b extend horizontally in the substrate. , the regions 243a and 243b may be connected. In this case, an extended region 243 may be formed on top of region 234 and transistor 200A may be conductive at all times.

導電体242が酸化されやすいトランジスタ200Aに対して、導電体242に第1の元素が含まれるトランジスタ200では、絶縁体250に含まれる酸素291に対して耐酸化性を有するので、導電体242aおよび導電体242bの絶縁体250と接する側の側面の近傍の酸化を抑制することができる。これにより、チャネル長Lが、導電体242aと導電体242bの設計上の距離となるので、設計値よりオン電流および周波数特性が低減するのを防ぐことができる。 In contrast to the transistor 200A in which the conductor 242 is easily oxidized, the transistor 200 in which the conductor 242 contains the first element has oxidation resistance against oxygen 291 contained in the insulator 250. Oxidation of the vicinity of the side surface of the conductor 242b in contact with the insulator 250 can be suppressed. As a result, the channel length L becomes the designed distance between the conductors 242a and 242b, so that it is possible to prevent the on-current and the frequency characteristics from being reduced from the design values.

また、トランジスタ200においては、導電体242に第2の元素が含まれている。第2の元素は、導電体242の下、つまり領域243に析出し、層を形成する場合がある。導電体242aと酸化物230bの間、および導電体242bと酸化物230bの間に、第2の元素を含む層が形成されている、ということもできる。当該第2の元素を含む層における第2の元素の濃度は、導電体242aおよび導電体242bにおける第2の元素の濃度より大きい場合がある。 In the transistor 200, the conductor 242 contains the second element. A second element may be deposited under the conductor 242, ie in region 243, to form a layer. It can also be said that layers containing the second element are formed between the conductor 242a and the oxide 230b and between the conductor 242b and the oxide 230b. The concentration of the second element in the layer containing the second element may be higher than the concentration of the second element in the conductors 242a and 242b.

このように、導電体242の下に、第2の元素を含む層が形成されることで、仕事関数が小さい第2の元素が酸化物230bから酸素を引き抜き、酸素欠損が形成される。当該酸素欠損に水素などの不純物が捕獲されることで、酸化物230bの第2の元素を含む層の近傍はn型化する。このようにして、導電体242の下にキャリア密度が大きい領域243が形成される。なお、当該第2の元素は、酸化物230bから引き抜いた酸素と結合して、第2の元素の酸化物になる。このため、トランジスタ200では、下から、酸化物230b、VHを含む層、第2の元素の酸化物を含む層、導電体242、という順番で層が形成される場合がある。 When the layer containing the second element is formed under the conductor 242 in this manner, the second element with a low work function extracts oxygen from the oxide 230b to form oxygen vacancies. Impurities such as hydrogen are trapped in the oxygen vacancies, so that the vicinity of the layer containing the second element of the oxide 230b becomes n-type. Thus, a region 243 with high carrier density is formed under the conductor 242 . Note that the second element combines with oxygen extracted from the oxide 230b to form an oxide of the second element. Therefore, in the transistor 200, layers may be formed in this order from the bottom: the oxide 230b, the layer containing V o H, the layer containing the oxide of the second element, and the conductor 242 .

このように、トランジスタ200では、第2の元素によって領域243が形成される。つまり、導電体242を形成するときの第2の元素の量によって、領域243の大きさ、キャリア密度などを制御することができる。よって、トランジスタ200の電気特性の設計に合わせて、成膜時の第2の元素の量を適宜設定することが好ましい。これにより、導電体242の近傍のみに領域243を形成できるので、安定した電気特性を有するトランジスタを提供することができる。 Thus, in the transistor 200, the region 243 is formed with the second element. That is, the size of the region 243, the carrier density, and the like can be controlled by the amount of the second element when the conductor 242 is formed. Therefore, it is preferable to set the amount of the second element at the time of film formation as appropriate in accordance with the design of the electrical characteristics of the transistor 200 . As a result, the region 243 can be formed only in the vicinity of the conductor 242, so that a transistor with stable electrical characteristics can be provided.

なお、領域243a、および領域243bは、酸化物230bの導電体242近傍において、深さ方向に拡散するように設けられる例を示しているが、本発明はこれに限らない。領域243aおよび領域243bは、求められるトランジスタの電気特性に合わせて適宜形成すればよい。また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される元素の濃度(例えば、第2の元素の濃度)は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう。)していてもよい。 Note that although the region 243a and the region 243b are provided so as to diffuse in the depth direction near the conductor 242 of the oxide 230b, the present invention is not limited to this. The regions 243a and 243b may be formed as appropriate in accordance with required electrical characteristics of the transistor. Also, in the oxide 230, it may be difficult to clearly detect boundaries between regions. The concentration of the element detected in each region (for example, the concentration of the second element) is not limited to stepwise changes for each region, but also changes continuously (also referred to as gradation) within each region. good too.

また、図2に示すように、酸化物230bは、導電体242と重ならない領域の膜厚が、導電体242と重なる領域の膜厚より薄くなる場合がある。これは、導電体242aおよび導電体242bを形成する際に、酸化物230bの上面の一部を除去することにより形成される。酸化物230bの上面には、導電体242となる導電膜を成膜した際に、領域234の上面に抵抗の低い領域243が形成される場合がある。このように、酸化物230bの上面の導電体242aと導電体242bの間に位置する領域243を除去することにより、領域234の上面の抵抗が低い領域にチャネルが形成されることを防ぐことができる。また、以降の図面において、拡大図などで膜厚の薄い領域を示さない場合でも、同様の膜厚の薄い領域が形成されている場合がある。 Further, as shown in FIG. 2, the thickness of the oxide 230b in a region that does not overlap with the conductor 242 is thinner than that in a region that overlaps with the conductor 242 in some cases. This is formed by removing a portion of the top surface of oxide 230b when forming conductors 242a and 242b. When a conductive film to be the conductor 242 is formed on the top surface of the oxide 230b, a region 243 with low resistance may be formed over the top surface of the region 234 in some cases. Thus, by removing region 243 located between conductors 242a and 242b on the top surface of oxide 230b, it is possible to prevent the formation of a channel in a region of low resistance on the top surface of region 234. can. In addition, in the following drawings, even if the enlarged view or the like does not show the thin film thickness region, the same thin film thickness region may be formed.

以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、高い周波数特性を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。 As described above, a semiconductor device including a transistor with high on-state current can be provided. Alternatively, a semiconductor device including a transistor with high frequency characteristics can be provided. Alternatively, it is possible to provide a semiconductor device in which variation in electrical characteristics is suppressed, stable electrical characteristics are obtained, and reliability is improved. Alternatively, a semiconductor device including a transistor with low off-state current can be provided.

以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。 A detailed structure of the semiconductor device including the transistor 200 according to one embodiment of the present invention is described below.

導電体203は、図1(A)および図1(C)に示すように、チャネル幅方向に延伸されており、導電体205に電位を印加する配線として機能する。なお、導電体203は、絶縁体212に埋め込まれて設けることが好ましい。 As shown in FIGS. 1A and 1C, the conductor 203 extends in the channel width direction and functions as a wiring that applies a potential to the conductor 205 . Note that the conductor 203 is preferably embedded in the insulator 212 .

導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、導電体203の上に接して設けるとよい。また、導電体205は、絶縁体214および絶縁体216に埋め込まれて設けることが好ましい。 Conductor 205 is arranged to overlap with oxide 230 and conductor 260 . Further, the conductor 205 is preferably provided on and in contact with the conductor 203 . Further, the conductor 205 is preferably embedded in the insulators 214 and 216 .

ここで、導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。 Here, the conductor 260 may function as a first gate (also referred to as a top gate) electrode. In some cases, the conductor 205 functions as a second gate (also referred to as a bottom gate) electrode. In that case, Vth of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 . In particular, by applying a negative potential to the conductor 205, Vth of the transistor 200 can be made higher than 0 V and off-state current can be reduced. Therefore, applying a negative potential to the conductor 205 can make the drain current smaller when the potential applied to the conductor 260 is 0 V than when no potential is applied.

また、導電体203上に導電体205を設けることで、第1のゲート電極、および配線としての機能を有する導電体260と、導電体203との距離を適宜設計することが可能となる。つまり、導電体203と導電体260の間に絶縁体214および絶縁体216などが設けられることで、導電体203と導電体260の間の寄生容量を低減し、導電体203と導電体260の間の絶縁耐圧を高めることができる。導電体203と導電体260の間の寄生容量を低減することで、トランジスタ200のスイッチング速度を向上させ、高い周波数特性を有するトランジスタにすることができる。 By providing the conductor 205 over the conductor 203, the distance between the conductor 203 and the conductor 260 functioning as the first gate electrode and the wiring can be designed as appropriate. In other words, by providing the insulator 214 and the insulator 216 between the conductor 203 and the conductor 260, the parasitic capacitance between the conductor 203 and the conductor 260 is reduced, can increase the dielectric strength between By reducing the parasitic capacitance between the conductor 203 and the conductor 260, the switching speed of the transistor 200 can be improved and the transistor can have high frequency characteristics.

なお、導電体205は、図1(A)に示すように、酸化物230、および導電体260と重なるように配置する。また、導電体205は、酸化物230における領域234よりも、大きく設けるとよい。特に、図1(C)に示すように、導電体205は、酸化物230の領域234のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。 Note that the conductor 205 is arranged so as to overlap with the oxide 230 and the conductor 260 as shown in FIG. Also, the conductor 205 is preferably provided larger than the region 234 in the oxide 230 . In particular, as shown in FIG. 1C, it is preferable that the conductor 205 extends also in a region outside the edge of the region 234 of the oxide 230 crossing the channel width direction. In other words, the conductor 205 and the conductor 260 preferably overlap with each other with an insulator interposed therebetween on side surfaces of the oxide 230 in the channel width direction.

上記構成を有することで、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S-channel)構造とよぶ。 With the above structure, the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode electrically energize the channel formation region of the region 234 . can be surrounded by In this specification, a transistor structure in which a channel formation region is electrically surrounded by electric fields of a first gate electrode and a second gate electrode is referred to as a surrounded channel (S-channel) structure.

導電体205aまたは導電体203の第1の導電体は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一またはすべての拡散を抑制する機能とする。 The conductor 205a or the first conductor of the conductor 203 contains impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, NO 2 ), and copper atoms. It is preferable to use a conductive material that has a function of suppressing the diffusion of ions (that is, it is difficult for the above impurities to permeate). Alternatively, it is preferable to use a conductive material that has a function of suppressing at least one diffusion of oxygen (eg, oxygen atoms, oxygen molecules, etc.) (the above-mentioned oxygen is difficult to permeate). In this specification, the function of suppressing the diffusion of impurities or oxygen means the function of suppressing the diffusion of either one or all of the impurities or oxygen.

導電体205aまたは導電体203の第1の導電体が酸素の拡散を抑制する機能を持つことにより、導電体205bまたは導電体203bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aまたは導電体203の第1の導電体としては、上記導電性材料を単層または積層とすればよい。これにより、水または水素などの不純物が、導電体203、および導電体205を通じて、トランジスタ200側に拡散するのを抑制することができる。 Since the conductor 205a or the first conductor of the conductor 203 has a function of suppressing diffusion of oxygen, it is possible to suppress oxidation of the conductor 205b or the conductor 203b and a decrease in conductivity. As the conductive material having a function of suppressing diffusion of oxygen, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example. Therefore, as the conductor 205a or the first conductor of the conductor 203, a single layer or a laminate of the above conductive materials may be used. Accordingly, diffusion of impurities such as water or hydrogen to the transistor 200 side through the conductors 203 and 205 can be suppressed.

また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205bを単層で図示したが、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 A conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductor 205b. Although the conductor 205b is illustrated as a single layer, it may have a laminated structure, for example, a laminated structure of titanium, titanium nitride, and the above conductive material.

また、導電体203の第2の導電体は、配線として機能するため、導電体205bより導電性が高い導電体を用いることが好ましい。例えば、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体203の第2の導電体は積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 In addition, since the second conductor of the conductor 203 functions as a wiring, a conductor having higher conductivity than the conductor 205b is preferably used. For example, a conductive material containing copper or aluminum as a main component can be used. Further, the second conductor of the conductor 203 may have a layered structure, for example, a layered structure of titanium or titanium nitride and any of the above conductive materials.

特に、導電体203の第2の導電体に、銅を用いることが好ましい。銅は抵抗が小さいため、配線等に用いることが好ましい。一方、銅は拡散しやすいため、酸化物230に拡散することで、トランジスタ200の電気特性を低下させる場合がある。そこで、例えば、絶縁体214には、銅の透過性が低い酸化アルミニウム、または酸化ハフニウムなどの材料を用いることで、銅の拡散を抑えることができる。 In particular, it is preferable to use copper for the second conductor of the conductor 203 . Since copper has a low resistance, it is preferably used for wiring and the like. On the other hand, since copper easily diffuses, diffusion into the oxide 230 may degrade the electrical characteristics of the transistor 200 . Therefore, by using a material such as aluminum oxide or hafnium oxide, which has low copper permeability, for the insulator 214, the diffusion of copper can be suppressed.

なお、導電体205、絶縁体214、および絶縁体216は必ずしも設けなくともよい。その場合、導電体203の一部が第2のゲート電極として機能することができる。 Note that the conductor 205, the insulator 214, and the insulator 216 are not necessarily provided. In that case, part of the conductor 203 can function as the second gate electrode.

絶縁体210、および絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体210、および絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。 The insulator 210 and the insulator 214 preferably function as barrier insulating films that prevent impurities such as water and hydrogen from entering the transistor 200 from the substrate side. Therefore, the insulator 210 and the insulator 214 do not allow diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, NO 2 ), and copper atoms. It is preferable to use an insulating material that has a function of suppressing (it is difficult for the above impurities to permeate). Alternatively, it is preferable to use an insulating material that has a function of suppressing at least one diffusion of oxygen (for example, oxygen atoms, oxygen molecules, etc.) (the above-mentioned oxygen is difficult to permeate).

例えば、絶縁体210として酸化アルミニウムなどを用い、絶縁体214として窒化シリコンなどを用いることが好ましい。これにより、水または水素などの不純物が絶縁体210および絶縁体214よりも基板側からトランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体210および絶縁体214よりも基板側に、拡散するのを抑制することができる。また、導電体203の第2の導電体に銅など拡散しやすい金属を用いても、絶縁体214として窒化シリコンなどを設けることにより、当該金属が絶縁体214より上の層に拡散するのを抑制することができる。 For example, it is preferable to use aluminum oxide or the like as the insulator 210 and use silicon nitride or the like as the insulator 214 . Accordingly, impurities such as water or hydrogen can be prevented from diffusing from the substrate side to the transistor 200 side with respect to the insulators 210 and 214 . Alternatively, oxygen contained in the insulator 224 or the like can be prevented from diffusing toward the substrate side of the insulators 210 and 214 . In addition, even if a metal such as copper that is easily diffused is used for the second conductor of the conductor 203 , the metal is prevented from diffusing into a layer above the insulator 214 by providing silicon nitride or the like as the insulator 214 . can be suppressed.

また、層間膜として機能する絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、絶縁体210、または絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体212、絶縁体216、絶縁体280、および絶縁体281として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを適宜用いればよい。 The insulators 212 , 216 , 280 , and 281 that function as interlayer films preferably have a lower dielectric constant than the insulator 210 or the insulator 214 . By using a material with a low dielectric constant as the interlayer film, the parasitic capacitance generated between wirings can be reduced. For example, the insulator 212, the insulator 216, the insulator 280, and the insulator 281 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, carbon and Nitrogen-added silicon oxide, vacant silicon oxide, or the like may be used as appropriate.

絶縁体220、絶縁体222、および絶縁体224は、ゲート絶縁体としての機能を有する。 Insulator 220, insulator 222, and insulator 224 function as gate insulators.

ここで、酸化物230と接する絶縁体224は、加熱により酸素を脱離することが好ましい。本明細書では、加熱により離脱する酸素を過剰酸素と呼ぶことがある。例えば、絶縁体224は、酸化シリコンまたは酸化窒化シリコンなどを適宜用いればよい。酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。 Here, the insulator 224 in contact with the oxide 230 preferably releases oxygen by heating. In this specification, the oxygen released by heating is sometimes referred to as excess oxygen. For example, silicon oxide, silicon oxynitride, or the like may be used as appropriate for the insulator 224 . By providing an insulator containing oxygen in contact with the oxide 230, oxygen vacancies in the oxide 230 can be reduced and the reliability of the transistor 200 can be improved.

絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素分子に換算しての酸素の脱離量が1.0×1018molecules/cm以上、好ましくは1.0×1019molecules/cm以上、さらに好ましくは2.0×1019molecules/cm、または3.0×1020molecules/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。 Specifically, an oxide material from which part of oxygen is released by heating is preferably used as the insulator 224 . The oxide that desorbs oxygen by heating means that the desorption amount of oxygen in terms of oxygen molecules is 1.0×10 18 molecules/cm 3 or more, preferably 1, in TDS (Thermal Desorption Spectroscopy) analysis. 0×10 19 molecules/cm 3 or more, more preferably 2.0×10 19 molecules/cm 3 or 3.0×10 20 molecules/cm 3 or more. The surface temperature of the film during the TDS analysis is preferably in the range of 100° C. or higher and 700° C. or lower, or 100° C. or higher and 400° C. or lower.

また、図1(C)に示すように、絶縁体224は、絶縁体254重ならず、且つ酸化物230bと重ならない領域の膜厚が、それ以外の領域の膜厚より薄くなる場合がある。絶縁体224において、絶縁体254と重ならず、且つ酸化物230bと重ならない領域の膜厚は、上記酸素を十分に拡散できる膜厚であることが好ましい。 Further, as shown in FIG. 1C, the thickness of the insulator 224 in a region which does not overlap with the insulator 254 and does not overlap with the oxide 230b may be thinner than the thickness of the other regions. . A region of the insulator 224 which does not overlap with the insulator 254 and does not overlap with the oxide 230b preferably has a thickness with which oxygen can be diffused sufficiently.

絶縁体222は、絶縁体210などと同様に、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体222は、絶縁体224より水素透過性が低いことが好ましい。絶縁体222、絶縁体254、および絶縁体244によって、絶縁体224、酸化物230、および絶縁体250などを囲むことにより、外方から水または水素などの不純物がトランジスタ200に侵入することを抑制することができる。 Like the insulator 210 and the like, the insulator 222 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from entering the transistor 200 from the substrate side. For example, insulator 222 preferably has a lower hydrogen permeability than insulator 224 . By surrounding the insulator 224, the oxide 230, the insulator 250, and the like with the insulator 222, the insulator 254, and the insulator 244, impurities such as water and hydrogen are prevented from entering the transistor 200 from the outside. can do.

さらに、絶縁体222は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体222は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素は、絶縁体220側へ拡散することを低減できるので、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。 Further, the insulator 222 preferably has a function of suppressing diffusion of at least one of oxygen (eg, oxygen atoms, oxygen molecules, etc.) (the above oxygen is difficult to permeate). For example, insulator 222 preferably has a lower oxygen permeability than insulator 224 . The insulator 222 preferably has a function of suppressing diffusion of oxygen and impurities, so that diffusion of oxygen in the oxide 230 to the insulator 220 side can be reduced. In addition, the conductor 205 can be prevented from reacting with oxygen contained in the insulator 224 or the oxide 230 .

絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。 The insulator 222 preferably contains an oxide of one or both of aluminum and hafnium, which are insulating materials. As the insulator containing oxide of one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. When the insulator 222 is formed using such a material, the insulator 222 suppresses release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the periphery of the transistor 200 into the oxide 230. act as a layer.

または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。 Alternatively, aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators. Alternatively, these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.

また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh-k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。 The insulator 222 is made of, for example, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba,Sr)TiO 3 (BST). Insulators containing so-called high-k materials may be used in single layers or stacks. As transistors are miniaturized and highly integrated, thinning of gate insulators may cause problems such as leakage current. By using a high-k material for the insulator that functions as a gate insulator, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.

また、絶縁体220は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、high-k材料の絶縁体と絶縁体220とを組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。 Insulator 220 is also preferably thermally stable. For example, silicon oxide and silicon oxynitride are thermally stable. Therefore, by combining an insulator made of a high-k material and the insulator 220, a thermally stable laminated structure with a high relative dielectric constant can be obtained. can be done.

なお、絶縁体220、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。また、絶縁体220を設けず、絶縁体222と絶縁体224だけを設ける構成にしてもよい。 Note that the insulator 220, the insulator 222, and the insulator 224 may have a stacked structure of two or more layers. In that case, it is not limited to a laminated structure made of the same material, and a laminated structure made of different materials may be used. Alternatively, the insulator 220 may not be provided, and only the insulators 222 and 224 may be provided.

酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。 Oxide 230 has oxide 230a, oxide 230b over oxide 230a, and oxide 230c over oxide 230b. By providing the oxide 230a under the oxide 230b, diffusion of impurities from a structure formed below the oxide 230a to the oxide 230b can be suppressed. In addition, by having the oxide 230c over the oxide 230b, diffusion of impurities from a structure formed above the oxide 230c to the oxide 230b can be suppressed.

なお、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。 Note that the oxide 230 preferably has a layered structure with oxides having different atomic ratios of metal atoms. Specifically, in the metal oxide used for the oxide 230a, the atomic number ratio of the element M among the constituent elements is greater than the atomic number ratio of the element M among the constituent elements in the metal oxide used for the oxide 230b. is preferred. Moreover, in the metal oxide used for the oxide 230a, the atomic ratio of the element M to In is preferably higher than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b. In addition, the atomic ratio of In to the element M in the metal oxide used for the oxide 230b is preferably higher than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a. In addition, the oxide 230c can be a metal oxide that can be used for the oxide 230a or the oxide 230b.

また、酸化物230bは、結晶性を有することが好ましい。例えば、後述するCAAC-OS(c-axis aligned crystalline oxide semiconductor)を用いることが好ましい。CAAC-OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。よって、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるので、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。 Further, the oxide 230b preferably has crystallinity. For example, CAAC-OS (c-axis aligned crystal oxide semiconductor), which will be described later, is preferably used. A crystalline oxide such as CAAC-OS has few impurities and defects (such as oxygen vacancies) and has a dense structure with high crystallinity. Therefore, extraction of oxygen from the oxide 230b by the source electrode or the drain electrode can be suppressed. Accordingly, extraction of oxygen from the oxide 230b can be reduced even if heat treatment is performed, so that the transistor 200 is stable against high temperatures (so-called thermal budget) in the manufacturing process.

また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。 In addition, it is preferable that the energies of the conduction band bottoms of the oxides 230a and 230c be higher than the energies of the conduction band bottoms of the oxide 230b. Also, in other words, the electron affinities of the oxides 230a and 230c are preferably smaller than the electron affinities of the oxide 230b.

ここで、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。 Here, the energy level at the bottom of the conduction band changes smoothly at the junction of the oxide 230a, the oxide 230b, and the oxide 230c. In other words, it can be said that the energy level of the bottom of the conduction band at the junction of the oxide 230a, the oxide 230b, and the oxide 230c continuously changes or continuously joins. In order to achieve this, the defect level density of the mixed layers formed at the interface between the oxides 230a and 230b and at the interface between the oxides 230b and 230c should be reduced.

具体的には、酸化物230aと酸化物230b、酸化物230bと酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn-Ga-Zn酸化物の場合、酸化物230aおよび酸化物230cとして、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。 Specifically, the oxide 230a and the oxide 230b, and the oxide 230b and the oxide 230c have a common element (main component) other than oxygen, thereby forming a mixed layer with a low defect level density. can do. For example, when the oxide 230b is an In--Ga--Zn oxide, the oxides 230a and 230c may be In--Ga--Zn oxide, Ga--Zn oxide, gallium oxide, or the like.

具体的には、酸化物230aとして、In:Ga:Zn=1:3:4[原子数比]、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、酸化物230bとして、In:Ga:Zn=4:2:3[原子数比]、または3:1:2[原子数比]の金属酸化物を用いればよい。また、酸化物230cとして、In:Ga:Zn=4:2:3[原子数比]、または3:1:2[原子数比]の金属酸化物を用いればよい。また、酸化物230cとして、シリコンを含むインジウムスズ酸化物を用いてもよい。 Specifically, a metal oxide of In:Ga:Zn=1:3:4 [atomic ratio] or 1:1:0.5 [atomic ratio] may be used as the oxide 230a. As the oxide 230b, a metal oxide of In:Ga:Zn=4:2:3 [atomic ratio] or 3:1:2 [atomic ratio] may be used. As the oxide 230c, a metal oxide of In:Ga:Zn=4:2:3 [atomic ratio] or 3:1:2 [atomic ratio] may be used. Alternatively, indium tin oxide containing silicon may be used as the oxide 230c.

このとき、キャリアの主たる経路は酸化物230bとなる。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流、および高い周波数特性を得ることができる。 At this time, the main path of carriers is the oxide 230b. When the oxides 230a and 230c have the above structures, defect level densities at the interfaces between the oxides 230a and 230b and between the oxides 230b and 230c can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 200 can obtain high on-current and high frequency characteristics.

酸化物230は、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、領域234となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。このようなトランジスタを用いることで、低消費電力の半導体装置を提供できる。 A metal oxide that functions as an oxide semiconductor is preferably used for the oxide 230 . For example, it is preferable to use a metal oxide having a bandgap of 2 eV or more, preferably 2.5 eV or more, as the metal oxide that becomes the region 234 . By using a metal oxide with a large bandgap in this manner, off-state current of a transistor can be reduced. By using such a transistor, a semiconductor device with low power consumption can be provided.

酸化物230b上には、ソース電極、およびドレイン電極として機能する導電体242(導電体242a、および導電体242b)が設けられる。導電体242の膜厚は、例えば、1nm以上50nm以下、好ましくは2nm以上25nm以下、とすればよい。導電体242は、第2の元素より耐酸化性が高い第1の元素と、第1の元素より仕事関数が小さい第2の元素を含む。導電体242は、第1の元素または第2の元素を主成分とする化合物としてもよいし、第1の元素と第2の元素の合金としてもよいし、第1の元素および第2の元素を含む導電性の酸化物としてもよいし、第1の元素および第2の元素を含む導電性の窒化物としてもよい。 A conductor 242 (a conductor 242a and a conductor 242b) functioning as a source electrode and a drain electrode is provided over the oxide 230b. The thickness of the conductor 242 may be, for example, 1 nm or more and 50 nm or less, preferably 2 nm or more and 25 nm or less. The conductor 242 includes a first element having higher oxidation resistance than the second element and a second element having a lower work function than the first element. The conductor 242 may be a compound containing the first element or the second element as a main component, may be an alloy of the first element and the second element, or may be an alloy of the first element and the second element. It may be a conductive oxide containing or a conductive nitride containing the first element and the second element.

第1の元素は、耐酸化性が高いので、導電体242の酸化、絶縁体250の還元、酸化物230の還元を抑制することができる。このような第1の元素としては、酸に対して反応性が低い白金族元素を用いることが好ましく、例えば、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、および白金のいずれか一つまたは複数を用いればよい。特に、ルテニウムは白金族元素の中でも仕事関数が比較的小さいため、導電体242の仕事関数を低減しやすく、好適である。 Since the first element has high oxidation resistance, oxidation of the conductor 242, reduction of the insulator 250, and reduction of the oxide 230 can be suppressed. As such a first element, it is preferable to use a platinum group element with low reactivity to acid. Just do it. In particular, ruthenium has a relatively small work function among the platinum group elements, so it is easy to reduce the work function of the conductor 242 and is suitable.

第2の元素は、仕事関数が小さいので、導電体242と酸化物230の仕事関数差を低減し、酸化物230とオーミック接合を形成させることができる。例えば、トランジスタ200をLSI向けに微細化する場合、導電体242をルテニウムだけで形成すると仕事関数が5.2eV程度になる場合がある。よって、例えば、第2の元素は、仕事関数が5.2eV以下であることが好ましい。このような第2の元素としては、例えば、アルミニウム、シリコン、チタン、ハフニウム、ジルコニウム、マンガン、インジウム、ガリウム、ビスマス、タンタル、ニオブ、亜鉛、錫、銅、クロム、タングステン、モリブデン、ゲルマニウム、ニッケル、スカンジウム、イットリウム、およびセリウムのいずれか一つまたは複数を用いればよい。上述の通り、図2に示す領域243において、第2の元素の酸化物が形成される場合がある。このため、第2の元素として、チタンなどの、酸化物が導電性を有する元素を用いることで、導電体242と酸化物230の接触抵抗をより低減することができる。 Since the second element has a small work function, it can reduce the work function difference between the conductor 242 and the oxide 230 and form an ohmic contact with the oxide 230 . For example, when miniaturizing the transistor 200 for LSI, the work function may be about 5.2 eV if the conductor 242 is made of only ruthenium. Therefore, for example, the second element preferably has a work function of 5.2 eV or less. Examples of such second elements include aluminum, silicon, titanium, hafnium, zirconium, manganese, indium, gallium, bismuth, tantalum, niobium, zinc, tin, copper, chromium, tungsten, molybdenum, germanium, nickel, Any one or more of scandium, yttrium, and cerium may be used. As noted above, oxides of the second element may form in regions 243 shown in FIG. Therefore, by using an element whose oxide has conductivity, such as titanium, as the second element, the contact resistance between the conductor 242 and the oxide 230 can be further reduced.

第1の元素および第2の元素の耐酸化性は、例えば、第1の元素または第2の元素の薄膜を、酸素を含む雰囲気で熱処理し、シート抵抗測定器などで当該薄膜の酸化物を測定することで、評価することができる。この場合、第1の元素の薄膜のシート抵抗値が、第2の元素の薄膜のシート抵抗値より低いなら、第1の元素の耐酸化性が第2の元素の耐酸化性より高いということができる。または、例えば、第1の元素または第2の元素の金属電極の酸化還元電位を測定することで、第1の元素および第2の元素の耐酸化性を評価することができる。この場合、第1の元素の酸化還元電位が、第2の元素の酸化還元電位より大きいなら、第1の元素の耐酸化性が第2の元素の耐酸化性より高いということができる。言いかえると、第1の元素のイオン化傾向は、第2の元素のイオン化傾向よりも低いと言うことができる。 The oxidation resistance of the first element and the second element is evaluated, for example, by heat-treating a thin film of the first element or the second element in an oxygen-containing atmosphere and measuring the oxide of the thin film with a sheet resistance measuring instrument or the like. It can be evaluated by measuring. In this case, if the sheet resistance value of the thin film of the first element is lower than the sheet resistance value of the thin film of the second element, the oxidation resistance of the first element is higher than that of the second element. can be done. Alternatively, for example, the oxidation resistance of the first element and the second element can be evaluated by measuring the oxidation-reduction potential of the metal electrode of the first element or the second element. In this case, if the oxidation-reduction potential of the first element is higher than the oxidation-reduction potential of the second element, it can be said that the oxidation resistance of the first element is higher than that of the second element. In other words, it can be said that the ionization tendency of the first element is lower than that of the second element.

第1の元素および第2の元素の仕事関数は、例えば、第1の元素または第2の元素の薄膜を光電子分光法により測定することができる。例えば、理研計器社製AC-3を用いて測定すればよい。 The work functions of the first element and the second element can be measured, for example, by photoelectron spectroscopy of a thin film of the first element or the second element. For example, AC-3 manufactured by Riken Keiki Co., Ltd. may be used for measurement.

絶縁体254は、絶縁体210などと同様に、水または水素などの不純物が、絶縁体280側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体254は、絶縁体224より水素透過性が低いことが好ましい。さらに、図1(B)(C)に示すように、絶縁体254は、導電体242aの上面と側面、導電体242bの上面と側面、酸化物230aおよび酸化物230bの側面、ならびに絶縁体224の上面に接することが好ましい。このような構成にすることで、絶縁体280に含まれる水素が、導電体242a、導電体242b、酸化物230a、酸化物230bおよび絶縁体224の上面または側面から酸化物230に侵入するのを抑制することができる。 Like the insulator 210 and the like, the insulator 254 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from entering the transistor 200 from the insulator 280 side. For example, insulator 254 preferably has a lower hydrogen permeability than insulator 224 . 1B and 1C, the insulator 254 includes the top and side surfaces of the conductor 242a, the top and side surfaces of the conductor 242b, the side surfaces of the oxides 230a and 230b, and the insulator 224. is preferably in contact with the upper surface of the Such a structure prevents hydrogen contained in the insulator 280 from entering the oxide 230 from the top surface or the side surface of the conductor 242a, the conductor 242b, the oxide 230a, the oxide 230b, and the insulator 224. can be suppressed.

さらに、絶縁体254は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体254は、絶縁体224より酸素透過性が低いことが好ましい。 Further, the insulator 254 preferably has a function of suppressing at least one diffusion of oxygen (eg, oxygen atoms, oxygen molecules, etc.) (the above-mentioned oxygen is difficult to permeate). For example, insulator 254 preferably has a lower oxygen permeability than insulator 224 .

絶縁体254は、スパッタリング法を用いて成膜されることが好ましい。絶縁体254を、酸素を含む雰囲気でスパッタリング法を用いて成膜することで、絶縁体224の絶縁体254と接する領域近傍に酸素を添加することができる。これにより、当該領域から、絶縁体224を介して酸化物230中に酸素を供給することができる。ここで、絶縁体254が、上方への酸素の拡散を抑制する機能を有することで、酸素が酸化物230から絶縁体280へ拡散することを防ぐことができる。また、絶縁体222が、下方への酸素の拡散を抑制する機能を有することで、酸素が酸化物230から絶縁体220へ拡散することを防ぐことができる。このようにして、酸化物230のチャネル形成領域として機能する領域234に酸素が供給される。これにより、酸化物230の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。 The insulator 254 is preferably deposited using a sputtering method. By forming the insulator 254 by a sputtering method in an atmosphere containing oxygen, oxygen can be added to the vicinity of a region of the insulator 224 which is in contact with the insulator 254 . Accordingly, oxygen can be supplied from the region to the oxide 230 through the insulator 224 . Here, the insulator 254 has a function of suppressing upward diffusion of oxygen, so that diffusion of oxygen from the oxide 230 to the insulator 280 can be prevented. In addition, since the insulator 222 has a function of suppressing diffusion of oxygen downward, diffusion of oxygen from the oxide 230 to the insulator 220 can be prevented. Oxygen is thus supplied to region 234 , which functions as a channel-forming region of oxide 230 . Accordingly, oxygen vacancies in the oxide 230 can be reduced, and the normally-on state of the transistor can be suppressed.

絶縁体254としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。 As the insulator 254, for example, an insulator containing an oxide of one or both of aluminum and hafnium is preferably deposited. Note that as the insulator containing oxides of one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.

また、図1(A)(C)に示すように、酸化物230bの導電体242と重ならない領域、言い換えると、酸化物230のチャネル形成領域において、酸化物230の側面が導電体260で覆うように配置されている。これにより、第1のゲート電極としての機能する導電体260の電界を、酸化物230の側面に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。 In addition, as shown in FIGS. 1A and 1C, the side surface of the oxide 230 is covered with the conductor 260 in the region of the oxide 230b which does not overlap with the conductor 242, in other words, the channel formation region of the oxide 230. are arranged as This makes it easier for the electric field of the conductor 260 functioning as the first gate electrode to act on the side surfaces of the oxide 230 . Therefore, the on current of the transistor 200 can be increased and the frequency characteristics can be improved.

絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230cの上面に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。 Insulator 250 functions as a gate insulator. Insulator 250 is preferably placed in contact with the top surface of oxide 230c. For the insulator 250, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having vacancies is used. be able to. In particular, silicon oxide and silicon oxynitride are preferable because they are stable against heat.

絶縁体224と同様に、絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230cの上面に接して設けることにより、酸化物230bの領域234に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。 As with the insulator 224, the insulator 250 is preferably formed using an insulator from which oxygen is released by heating. By providing an insulator from which oxygen is released by heating as the insulator 250 in contact with the top surface of the oxide 230c, oxygen can be effectively supplied to the region 234 of the oxide 230b. Further, similarly to the insulator 224, the concentration of impurities such as water or hydrogen in the insulator 250 is preferably reduced. The thickness of the insulator 250 is preferably 1 nm or more and 20 nm or less.

また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体250から導電体260への酸素の拡散が抑制される。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の酸素による導電体260の酸化を抑制することができる。 Alternatively, a metal oxide may be provided between the insulator 250 and the conductor 260 . The metal oxide preferably suppresses oxygen diffusion from the insulator 250 to the conductor 260 . By providing the metal oxide that suppresses diffusion of oxygen, diffusion of oxygen from the insulator 250 to the conductor 260 is suppressed. That is, reduction in the amount of oxygen supplied to the oxide 230 can be suppressed. In addition, oxidation of the conductor 260 by oxygen in the insulator 250 can be suppressed.

また、当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、当該金属酸化物は、比誘電率が高いhigh-k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。 The metal oxide may also function as part of the gate insulator. Therefore, when silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the metal oxide is preferably a high-k material with a high dielectric constant. When the gate insulator has a stacked-layer structure of the insulator 250 and the metal oxide, the stacked-layer structure can be stable against heat and have a high relative dielectric constant. Therefore, the gate potential applied during transistor operation can be reduced while maintaining the physical film thickness of the gate insulator. Also, the equivalent oxide thickness (EOT) of the insulator that functions as the gate insulator can be reduced.

具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。 Specifically, a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like can be used. can. In particular, it is preferable to use aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate), which is an insulator containing oxides of one or both of aluminum and hafnium.

導電体260は、図1では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。 Although the conductor 260 is shown as having a two-layer structure in FIG. 1, it may have a single-layer structure or a laminated structure of three or more layers.

導電体260aは、導電体205aと同様に、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する導電性材料を用いることが好ましい。 Like the conductor 205a, the conductor 260a prevents diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, and NO 2 ), and copper atoms. It is preferable to use a conductive material having a suppressing function. Alternatively, it is preferable to use a conductive material that has a function of suppressing at least one diffusion of oxygen (eg, oxygen atoms, oxygen molecules, etc.).

また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。 In addition, since the conductor 260a has a function of suppressing the diffusion of oxygen, it is possible to suppress oxidation of the conductor 260b due to oxygen contained in the insulator 250 and a decrease in conductivity. As the conductive material having a function of suppressing diffusion of oxygen, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example.

また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。 Conductor 260b is preferably made of a conductive material containing tungsten, copper, or aluminum as its main component. In addition, since the conductor 260 also functions as a wiring, a conductor with high conductivity is preferably used. For example, a conductive material whose main component is tungsten, copper, or aluminum can be used. Further, the conductor 260b may have a layered structure, for example, a layered structure of titanium, titanium nitride, and any of the above conductive materials.

絶縁体244は、絶縁体210などと同様に、水または水素などの不純物が、絶縁体280側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体244は、絶縁体224より水素透過性が低いことが好ましい。さらに、図1(B)(C)に示すように、絶縁体244は、絶縁体254に接するように配置されることが好ましい。この様な構成とすることで、絶縁体280に含まれる水素が、導電体260、酸化物230cおよび絶縁体250の側面から酸化物230に侵入するのを抑制することができる。 Like the insulator 210 and the like, the insulator 244 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from entering the transistor 200 from the insulator 280 side. For example, insulator 244 preferably has a lower hydrogen permeability than insulator 224 . Further, the insulator 244 is preferably placed in contact with the insulator 254 as shown in FIGS. With such a structure, hydrogen contained in the insulator 280 can be prevented from entering the oxide 230 from the side surfaces of the conductor 260, the oxide 230c, and the insulator 250. FIG.

このように、水素に対してバリア性を有する絶縁体254および絶縁体244によって、絶縁体224、絶縁体250、および酸化物230が覆うことで、絶縁体280は、絶縁体254または絶縁体244によって、絶縁体224、酸化物230、および絶縁体250と離隔されている。これにより、トランジスタ200の外方から水素などの不純物が浸入することを抑制できるので、トランジスタ200に良好な電気特性および信頼性を与えることができる。 In this manner, the insulator 224, the insulator 250, and the oxide 230 are covered with the insulator 254 and the insulator 244 having a barrier property against hydrogen, so that the insulator 280 can be the insulator 254 or the insulator 244. are separated from the insulator 224, the oxide 230, and the insulator 250 by As a result, entry of impurities such as hydrogen from the outside of the transistor 200 can be suppressed, so that the transistor 200 can have good electrical characteristics and reliability.

さらに、絶縁体244は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体244は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体244が、酸素の拡散を抑制する機能を有することで、導電体260が、絶縁体280が有する酸素と反応することを抑制することができる。 Further, the insulator 244 preferably has a function of suppressing diffusion of at least one of oxygen (eg, oxygen atoms, oxygen molecules, etc.) (the above oxygen is difficult to permeate). For example, insulator 244 preferably has a lower oxygen permeability than insulator 224 . Since the insulator 244 has a function of suppressing diffusion of oxygen, reaction of the conductor 260 with oxygen contained in the insulator 280 can be suppressed.

絶縁体244としては、例えば、窒化アルミニウムを含む絶縁体を用いればよい。絶縁体244として、組成式がAlNx(xは0より大きく2以下の実数、好ましくは、xは0.5より大きく1.5以下の実数)を満たす窒化物絶縁体を用いることが好ましい。これにより、絶縁性に優れ、且つ熱伝導性に優れた膜とすることができるため、トランジスタ200を駆動したときに生じる熱の放熱性を高めることができる。また、絶縁体244として、窒化アルミニウムチタン、窒化チタンなどを用いることもできる。この場合、スパッタリング法を用いて成膜することで、成膜ガスに酸素またはオゾンなどの酸化性の強いガスを用いずに成膜することができるので、好ましい。 As the insulator 244, an insulator containing aluminum nitride may be used, for example. As the insulator 244, it is preferable to use a nitride insulator satisfying a composition formula AlNx (x is a real number greater than 0 and less than or equal to 2, preferably x is a real number greater than 0.5 and less than or equal to 1.5). Accordingly, a film having excellent insulating properties and excellent thermal conductivity can be formed, so that the heat dissipation property of the transistor 200 when it is driven can be improved. Alternatively, as the insulator 244, aluminum titanium nitride, titanium nitride, or the like can be used. In this case, a film can be formed by sputtering without using a highly oxidizing gas such as oxygen or ozone as a film forming gas, which is preferable.

また、絶縁体244としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。この場合、絶縁体244は、ALD法を用いて成膜されることが好ましい。ALD法は、被覆性の良好な成膜法なので、絶縁体244の凹凸によって、段切れなどが形成されるのを防ぐことができる。 As the insulator 244, for example, an insulator containing an oxide of one or both of aluminum and hafnium is preferably deposited. Note that as the insulator containing oxides of one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. In this case, insulator 244 is preferably deposited using ALD. Since the ALD method is a film formation method with good coverage, it is possible to prevent the formation of discontinuities due to unevenness of the insulator 244 .

絶縁体280は、絶縁体244を介して、絶縁体224、酸化物230、導電体242、絶縁体250、および導電体260上に設けられる。例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。 The insulator 280 is provided over the insulator 224 , the oxide 230 , the conductor 242 , the insulator 250 , and the conductor 260 with the insulator 244 interposed therebetween. For example, the insulator 280 is formed using silicon oxide, silicon oxynitride, silicon nitride oxide, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide having vacancies, or the like. It is preferable to have In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable. In particular, a material such as silicon oxide, silicon oxynitride, or silicon oxide having vacancies is preferable because a region containing oxygen that is released by heating can be easily formed.

絶縁体280中の水または水素などの不純物濃度が低減されていることが好ましい。また、絶縁体280の上面は、平坦化されていてもよい。 It is preferable that the concentration of impurities such as water or hydrogen in the insulator 280 is reduced. Also, the upper surface of the insulator 280 may be flattened.

絶縁体274は、絶縁体210などと同様に、水または水素などの不純物が、上方から絶縁体280に混入するのを抑制するバリア絶縁膜として機能することが好ましい。絶縁体274としては、例えば、絶縁体210、絶縁体254等に用いることができる絶縁体を用いればよい。 Like the insulator 210 and the like, the insulator 274 preferably functions as a barrier insulating film that prevents impurities such as water or hydrogen from entering the insulator 280 from above. As the insulator 274, an insulator that can be used for the insulator 210, the insulator 254, or the like may be used, for example.

また、絶縁体274の上に、層間膜として機能する絶縁体281を設けることが好ましい。絶縁体281は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。 An insulator 281 functioning as an interlayer film is preferably provided over the insulator 274 . As with the insulator 224 and the like, the insulator 281 preferably has a reduced concentration of impurities such as water or hydrogen in the film.

また、絶縁体281、絶縁体274、絶縁体280、および絶縁体244に形成された開口に、導電体240aおよび導電体240bを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240aおよび導電体240bの上面の高さは、絶縁体281の上面と、同一平面上としてもよい。 In addition, the conductors 240 a and 240 b are arranged in openings formed in the insulators 281 , 274 , 280 , and 244 . The conductor 240a and the conductor 240b are provided to face each other with the conductor 260 interposed therebetween. Note that the top surfaces of the conductors 240 a and 240 b may be flush with the top surface of the insulator 281 .

なお、絶縁体281、絶縁体274、絶縁体280、および絶縁体244の開口の内壁に接して、絶縁体241aが設けられ、その側面に接して導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242aが位置しており、導電体240aが導電体242aと接する。同様に、絶縁体281、絶縁体274、絶縁体280、および絶縁体244の開口の内壁に接して、絶縁体241bが設けられ、その側面に接して導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242bが位置しており、導電体240bが導電体242bと接する。 Note that the insulator 241a is provided in contact with the inner walls of the openings of the insulators 281, 274, 280, and 244, and the first conductor of the conductor 240a is formed in contact with the side surface thereof. ing. A conductor 242a is positioned at least part of the bottom of the opening, and the conductor 240a is in contact with the conductor 242a. Similarly, the insulator 241b is provided in contact with the inner walls of the openings of the insulator 281, the insulator 274, the insulator 280, and the insulator 244, and the first conductor of the conductor 240b is formed in contact with the side surface thereof. It is A conductor 242b is positioned at least part of the bottom of the opening, and the conductor 240b is in contact with the conductor 242b.

導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240aおよび導電体240bは積層構造としてもよい。 A conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductors 240a and 240b. Further, the conductor 240a and the conductor 240b may have a laminated structure.

また、導電体240を積層構造とする場合、酸化物230a、酸化物230b、導電体242、絶縁体244、絶縁体280、絶縁体274、絶縁体281と接する導電体には、導電体205aなどと同様に、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体280に添加された酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。また、絶縁体281より上層から水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。 In the case where the conductor 240 has a layered structure, the conductors in contact with the oxide 230a, the oxide 230b, the conductor 242, the insulator 244, the insulator 280, the insulator 274, and the insulator 281 include the conductor 205a and the like. Similarly to , it is preferable to use a conductive material having a function of suppressing permeation of impurities such as water or hydrogen. For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide, or the like is preferably used. In addition, the conductive material having a function of suppressing permeation of impurities such as water or hydrogen may be used in a single layer or a stacked layer. By using the conductive material, oxygen added to the insulator 280 can be prevented from being absorbed by the conductors 240a and 240b. In addition, impurities such as water or hydrogen from a layer above the insulator 281 can be prevented from entering the oxide 230 through the conductors 240a and 240b.

絶縁体241aおよび絶縁体241bとしては、例えば、絶縁体244等に用いることができる絶縁体を用いればよい。絶縁体241aおよび絶縁体241bは、絶縁体254および絶縁体244に接して設けられるので、絶縁体280などから水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。また、絶縁体280に含まれる酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。 As the insulator 241a and the insulator 241b, an insulator that can be used for the insulator 244 or the like may be used, for example. Since the insulators 241a and 241b are provided in contact with the insulators 254 and 244, impurities such as water or hydrogen from the insulator 280 or the like enter the oxide 230 through the conductors 240a and 240b. can be suppressed. In addition, oxygen contained in the insulator 280 can be prevented from being absorbed by the conductors 240a and 240b.

また、図示しないが、導電体240aの上面、および導電体240bの上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、導電体203などと同様に、絶縁体に設けられた開口に埋め込むように形成してもよい。 Further, although not illustrated, a conductor functioning as a wiring may be arranged in contact with the upper surface of the conductor 240a and the upper surface of the conductor 240b. A conductive material containing tungsten, copper, or aluminum as a main component is preferably used for the conductor functioning as the wiring. Further, the conductor may have a layered structure, for example, a layered structure of titanium, titanium nitride, and the above conductive material. Note that the conductor may be formed so as to be embedded in an opening provided in the insulator, similarly to the conductor 203 and the like.

<半導体装置の構成材料>
以下では、半導体装置に用いることができる構成材料について説明する。
<Semiconductor Device Constituent Material>
Constituent materials that can be used for the semiconductor device are described below.

<<基板>>
トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<<Substrate>>
As a substrate for forming the transistor 200, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used, for example. Examples of insulator substrates include glass substrates, quartz substrates, sapphire substrates, stabilized zirconia substrates (yttria stabilized zirconia substrates, etc.), and resin substrates. Examples of semiconductor substrates include semiconductor substrates such as silicon and germanium, and compound semiconductor substrates made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, and gallium oxide. Further, there is a semiconductor substrate having an insulator region inside the semiconductor substrate, such as an SOI (Silicon On Insulator) substrate. Examples of conductive substrates include graphite substrates, metal substrates, alloy substrates, and conductive resin substrates. Alternatively, there are a substrate having a metal nitride, a substrate having a metal oxide, and the like. Furthermore, there are substrates in which an insulator substrate is provided with a conductor or a semiconductor, a substrate in which a semiconductor substrate is provided with a conductor or an insulator, a substrate in which a conductor substrate is provided with a semiconductor or an insulator, and the like. Alternatively, these substrates provided with elements may be used. Elements provided on the substrate include a capacitor element, a resistance element, a switch element, a light emitting element, a memory element, and the like.

<<絶縁体>>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
<<insulator>>
As insulators, there are insulating oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, metal nitride oxides, and the like.

例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high-k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。 For example, as transistors are miniaturized and highly integrated, thinning of gate insulators may cause problems such as leakage current. By using a high-k material for the insulator that functions as the gate insulator, it is possible to reduce the voltage during transistor operation while maintaining the physical film thickness. On the other hand, by using a material having a low dielectric constant as an insulator functioning as an interlayer film, the parasitic capacitance generated between wirings can be reduced. Therefore, the material should be selected according to the function of the insulator.

また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。 Insulators with a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, and silicon and hafnium. oxynitrides with silicon, or nitrides with silicon and hafnium.

また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。 Insulators with a low relative dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and an empty silicon oxide. There are silicon oxide with pores, resin, and the like.

また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体(絶縁体210、絶縁体214、絶縁体222、絶縁体254、絶縁体244、および絶縁体274など)で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化酸化シリコンまたは窒化シリコンなどの金属窒化物を用いることができる。 In addition, a transistor including an oxide semiconductor includes insulators (the insulator 210, the insulator 214, the insulator 222, the insulator 254, the insulator 244, and the insulator 210, the insulator 214, the insulator 222, the insulator 254, and the insulator 244) that have a function of suppressing permeation of impurities such as hydrogen and oxygen. The electrical characteristics of the transistor can be stabilized by surrounding it with a body 274 or the like. Examples of insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. Insulators including lanthanum, neodymium, hafnium, or tantalum may be used in single layers or in stacks. Specifically, as insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen, aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, Alternatively, a metal oxide such as tantalum oxide, or a metal nitride such as aluminum nitride, aluminum titanium nitride, titanium nitride, silicon nitride oxide, or silicon nitride can be used.

また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。 An insulator that functions as a gate insulator preferably has a region containing oxygen that is released by heating. For example, by forming a structure in which silicon oxide or silicon oxynitride having a region containing oxygen released by heating is in contact with the oxide 230, oxygen vacancies in the oxide 230 can be compensated.

<<導電体>>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
<<Conductor>>
Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from among the above, an alloy containing the above-described metal elements as a component, or an alloy or the like in which the above-described metal elements are combined. For example, tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, and the like are used. is preferred. Also, tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even after absorbing oxygen. Alternatively, a semiconductor with high electrical conductivity, typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.

また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。 Alternatively, a plurality of conductive layers formed using any of the above materials may be stacked and used. For example, a laminated structure in which the material containing the metal element described above and the conductive material containing oxygen are combined may be used. Alternatively, a laminated structure may be employed in which the material containing the metal element described above and the conductive material containing nitrogen are combined. Alternatively, a laminated structure may be employed in which the material containing the metal element described above, the conductive material containing oxygen, and the conductive material containing nitrogen are combined.

なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。 Note that in the case where an oxide is used for a channel formation region of a transistor, a stacked-layer structure in which the above-described material containing the metal element and a conductive material containing oxygen are combined is used for a conductor functioning as a gate electrode. is preferred. In this case, a conductive material containing oxygen is preferably provided on the channel formation region side. By providing the conductive material containing oxygen on the channel formation region side, oxygen released from the conductive material is easily supplied to the channel formation region.

特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。 In particular, a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used as a conductor functioning as a gate electrode. Alternatively, a conductive material containing the metal element and nitrogen described above may be used. For example, a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used. Further, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added. Indium tin oxide may also be used. Alternatively, indium gallium zinc oxide containing nitrogen may be used. By using such a material, hydrogen contained in the metal oxide in which the channel is formed can be captured in some cases. Alternatively, it may be possible to capture hydrogen mixed from an outer insulator or the like.

<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
<<metal oxide>>
A metal oxide that functions as an oxide semiconductor is preferably used as the oxide 230 . Metal oxides applicable to the oxide 230 according to the present invention are described below.

金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたは錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。 The metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition, aluminum, gallium, yttrium, tin, or the like is preferably contained. Further, one or more selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. may be contained.

ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn-M-Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、または錫などとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。 Consider here the case where the metal oxide is an In--M--Zn oxide with indium, the element M and zinc. Note that the element M is aluminum, gallium, yttrium, tin, or the like. Other elements applicable to element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium. However, as the element M, there are cases where a plurality of the above elements may be combined.

なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。 In this specification and the like, metal oxides containing nitrogen may also be collectively referred to as metal oxides. Metal oxides containing nitrogen may also be referred to as metal oxynitrides.

[金属酸化物の構造]
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc-OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)、および非晶質酸化物半導体などがある。
[Structure of Metal Oxide]
Oxide semiconductors (metal oxides) are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Non-single-crystal oxide semiconductors include, for example, CAAC-OS (c-axis aligned crystalline oxide semiconductor), polycrystalline oxide semiconductors, nc-OS (nanocrystalline oxide semiconductors), pseudo-amorphous oxide semiconductors (a-like (OS: amorphous-like oxide semiconductor), amorphous oxide semiconductor, and the like.

CAAC-OSは、c軸配向性を有し、かつa-b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。 CAAC-OS has a c-axis orientation and a distorted crystal structure in which a plurality of nanocrystals are connected in the ab plane direction. The strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of nanocrystals are connected.

ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。 Although nanocrystals are basically hexagonal, they are not limited to regular hexagons and may have non-regular hexagons. Also, the distortion may have a lattice arrangement of pentagons, heptagons, and the like. In CAAC-OS, it is difficult to confirm clear crystal grain boundaries (also called grain boundaries) even in the vicinity of strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal elements. It's for.

また、CAAC-OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。 CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as an In layer) and a layer containing the element M, zinc, and oxygen (hereinafter referred to as a (M, Zn) layer) are stacked. It tends to have a structure (also called a layered structure). Note that indium and the element M can be substituted with each other, and when the element M in the (M, Zn) layer is substituted with indium, the layer can also be expressed as an (In, M, Zn) layer. In addition, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.

CAAC-OSは結晶性の高い金属酸化物である。一方、CAAC-OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC-OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC-OSを有する金属酸化物は熱に強く、信頼性が高い。 CAAC-OS is a highly crystalline metal oxide. On the other hand, in CAAC-OS, since it is difficult to confirm a clear crystal grain boundary, it can be said that the decrease in electron mobility due to the crystal grain boundary is unlikely to occur. In addition, since the crystallinity of metal oxides may be degraded by the contamination of impurities and the generation of defects, CAAC-OS is made of a metal with few impurities and defects (such as oxygen vacancy (V O )). It can also be called an oxide. Therefore, metal oxides with CAAC-OS have stable physical properties. Therefore, a metal oxide containing CAAC-OS is heat resistant and highly reliable.

nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。 The nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm). Also, nc-OS shows no regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film. Therefore, an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.

なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム-ガリウム-亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。 Note that indium-gallium-zinc oxide (hereinafter referred to as IGZO), which is a type of metal oxide containing indium, gallium, and zinc, may have a stable structure when formed into the above-described nanocrystals. be. In particular, since IGZO tends to be difficult to crystallize in the atmosphere, it is better to use smaller crystals (for example, the above-mentioned nanocrystals) than large crystals (here, crystals of several mm or crystals of several cm). can be structurally stable.

a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a-like OSは、鬆または低密度領域を有する。すなわち、a-like OSは、nc-OSおよびCAAC-OSと比べて、結晶性が低い。 An a-like OS is a metal oxide having a structure between an nc-OS and an amorphous oxide semiconductor. An a-like OS has void or low density regions. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS.

酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。 Oxide semiconductors (metal oxides) have various structures, each of which has different characteristics. An oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.

[不純物]
ここで、金属酸化物中における各不純物の影響について説明する。
[impurities]
Here, the effect of each impurity in the metal oxide will be described.

また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。 Further, if the metal oxide contains an alkali metal or an alkaline earth metal, it may form a defect level and generate carriers. Therefore, a transistor in which a metal oxide containing an alkali metal or an alkaline earth metal is used for a channel formation region tends to have normally-on characteristics. Therefore, it is preferable to reduce the concentration of alkali metals or alkaline earth metals in the metal oxide. Specifically, the concentration of the alkali metal or alkaline earth metal in the metal oxide obtained by SIMS (concentration obtained by secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry)) is 1×10 18 atoms. /cm 3 or less, preferably 2×10 16 atoms/cm 3 or less.

また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。 In addition, since hydrogen contained in the metal oxide reacts with oxygen bonded to the metal atom to become water, oxygen vacancies may be formed. When hydrogen enters the oxygen vacancies, electrons, which are carriers, are generated in some cases. In addition, part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor using a metal oxide containing hydrogen tends to have normally-on characteristics.

このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。 Therefore, it is preferable that hydrogen in the metal oxide is reduced as much as possible. Specifically, in the metal oxide, the hydrogen concentration obtained by SIMS is less than 1×10 20 atoms/cm 3 , preferably less than 1×10 19 atoms/cm 3 , more preferably less than 5×10 18 atoms/cm Less than 3 , more preferably less than 1×10 18 atoms/cm 3 . By using a metal oxide in which impurities are sufficiently reduced for a channel formation region of a transistor, stable electrical characteristics can be imparted.

トランジスタの半導体に用いる金属酸化物として、結晶性の高い薄膜を用いることが好ましい。該薄膜を用いることで、トランジスタの安定性または信頼性を向上させることができる。該薄膜として、例えば、単結晶金属酸化物の薄膜または多結晶金属酸化物の薄膜が挙げられる。しかしながら、単結晶金属酸化物の薄膜または多結晶金属酸化物の薄膜を基板上に形成するには、高温またはレーザー加熱の工程が必要とされる。よって、製造工程のコストが増加し、さらに、スループットも低下してしまう。 A highly crystalline thin film is preferably used as a metal oxide used for a semiconductor of a transistor. By using the thin film, the stability or reliability of the transistor can be improved. The thin film includes, for example, a single-crystal metal oxide thin film or a polycrystalline metal oxide thin film. However, forming a single crystal metal oxide thin film or a polycrystalline metal oxide thin film on a substrate requires a high temperature or laser heating process. Therefore, the cost of the manufacturing process increases, and the throughput also decreases.

2009年に、CAAC構造を有するIn-Ga-Zn酸化物(CAAC-IGZOと呼ぶ。)が発見されたことが、非特許文献1および非特許文献2で報告されている。ここでは、CAAC-IGZOは、c軸配向性を有する、結晶粒界が明確に確認されない、低温で基板上に形成可能である、ことが報告されている。さらに、CAAC-IGZOを用いたトランジスタは、優れた電気特性および信頼性を有することが報告されている。 Non-Patent Document 1 and Non-Patent Document 2 report that an In--Ga--Zn oxide having a CAAC structure (referred to as CAAC-IGZO) was discovered in 2009. Here, it is reported that CAAC-IGZO has c-axis orientation, does not clearly identify grain boundaries, and can be formed on a substrate at low temperatures. Furthermore, it has been reported that transistors using CAAC-IGZO have excellent electrical characteristics and reliability.

また、2013年には、nc構造を有するIn-Ga-Zn酸化物(nc-IGZOと呼ぶ。)が発見された(非特許文献3参照。)。ここでは、nc-IGZOは、微小な領域(例えば、1nm以上3nm以下の領域)において原子配列に周期性を有し、異なる該領域間で結晶方位に規則性が見られないことが報告されている。 In 2013, an In--Ga--Zn oxide having an nc structure (referred to as nc-IGZO) was discovered (see Non-Patent Document 3). Here, it is reported that nc-IGZO has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm or more and 3 nm or less), and no regularity in crystal orientation is observed between different regions. there is

非特許文献4および非特許文献5では、上記のCAAC-IGZO、nc-IGZO、および結晶性の低いIGZOのそれぞれの薄膜に対する電子線の照射による平均結晶サイズの推移が示されている。結晶性の低いIGZOの薄膜において、電子線が照射される前でさえ、1nm程度の結晶性IGZOが観察されている。よって、ここでは、IGZOにおいて、完全な非晶質構造(completely amorphous structure)の存在を確認できなかった、と報告されている。さらに、結晶性の低いIGZOの薄膜と比べて、CAAC-IGZOの薄膜およびnc-IGZOの薄膜は電子線照射に対する安定性が高いことが示されている。よって、トランジスタの半導体として、CAAC-IGZOの薄膜またはnc-IGZOの薄膜を用いることが好ましい。 Non-Patent Document 4 and Non-Patent Document 5 show changes in the average crystal size due to electron beam irradiation of each of the thin films of CAAC-IGZO, nc-IGZO, and IGZO with low crystallinity. In thin films of IGZO with low crystallinity, crystalline IGZO of about 1 nm has been observed even before electron beam irradiation. Therefore, it is reported here that the presence of a completely amorphous structure could not be confirmed in IGZO. Furthermore, it has been shown that CAAC-IGZO thin films and nc-IGZO thin films have higher stability against electron beam irradiation than IGZO thin films with low crystallinity. Therefore, a thin film of CAAC-IGZO or a thin film of nc-IGZO is preferably used as a semiconductor of a transistor.

金属酸化物を用いたトランジスタは、非導通状態において極めてリーク電流が小さい、具体的には、トランジスタのチャネル幅1μmあたりのオフ電流がyA/μm(10-24A/μm)オーダである、ことが非特許文献6に示されている。例えば、金属酸化物を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(非特許文献7参照。)。 A transistor using a metal oxide has an extremely small leakage current in a non-conducting state. Specifically, an off current per 1 μm channel width of the transistor is on the order of yA/μm (10 −24 A/μm). is shown in Non-Patent Document 6. For example, a low-power-consumption CPU that utilizes the low leakage current characteristic of a transistor using a metal oxide has been disclosed (see Non-Patent Document 7).

また、金属酸化物を用いたトランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置への応用が報告されている(非特許文献8参照。)。表示装置では、表示される画像が1秒間に数十回切り換っている。1秒間あたりの画像の切り換え回数はリフレッシュレートと呼ばれている。また、リフレッシュレートを駆動周波数と呼ぶこともある。このような人の目で知覚が困難である高速の画面の切り換えが、目の疲労の原因として考えられている。そこで、表示装置のリフレッシュレートを低下させて、画像の書き換え回数を減らすことが提案されている。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減することが可能である。このような駆動方法を、アイドリング・ストップ(IDS)駆動と呼ぶ。 In addition, application of a transistor using a metal oxide to a display device has been reported, taking advantage of the low leakage current characteristic of the transistor (see Non-Patent Document 8). In a display device, displayed images are switched several tens of times per second. The number of image switching times per second is called a refresh rate. Also, the refresh rate is sometimes called a drive frequency. Such high-speed screen switching, which is difficult for the human eye to perceive, is considered to be the cause of eye fatigue. Therefore, it has been proposed to reduce the number of times the image is rewritten by lowering the refresh rate of the display device. In addition, power consumption of the display device can be reduced by driving with a reduced refresh rate. Such a driving method is called idling stop (IDS) driving.

CAAC構造およびnc構造の発見は、CAAC構造またはnc構造を有する金属酸化物を用いたトランジスタの電気特性および信頼性の向上、ならびに、製造工程のコスト低下およびスループットの向上に貢献している。また、該トランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置およびLSIへの応用研究が進められている。 The discovery of CAAC and nc structures has contributed to improved electrical properties and reliability of transistors using metal oxides with CAAC or nc structures, as well as reduced cost and increased throughput of the manufacturing process. In addition, application research of the transistor to display devices and LSIs is underway, taking advantage of the characteristic of the transistor having a low leakage current.

<半導体装置の作製方法>
次に、図1に示す、本発明に係るトランジスタ200を有する半導体装置について、作製方法を図3乃至図9を用いて説明する。また、図3乃至図9において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1-A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3-A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
<Method for manufacturing a semiconductor device>
Next, a method for manufacturing a semiconductor device having the transistor 200 according to the present invention, which is illustrated in FIG. 1, will be described with reference to FIGS. 3 to 9, (A) in each figure shows a top view. (B) of each figure is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A1-A2 shown in (A), and is also a cross-sectional view of the transistor 200 in the channel length direction. (C) of each figure is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A3-A4 in (A), and is also a cross-sectional view of the transistor 200 in the channel width direction. In addition, in the top view of (A) of each figure, some elements are omitted for clarity of illustration.

まず、基板(図示しない。)を準備し、当該基板上に絶縁体210を成膜する。絶縁体210の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。 First, a substrate (not shown) is prepared, and an insulator 210 is formed on the substrate. The insulator 210 is formed by sputtering, chemical vapor deposition (CVD), molecular beam epitaxy (MBE), pulsed laser deposition (PLD), or ALD. (Atomic Layer Deposition) method or the like can be used.

なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。 The CVD method can be classified into a plasma enhanced CVD (PECVD) method using plasma, a thermal CVD (TCVD) method using heat, a photo CVD (Photo CVD) method using light, and the like. . Further, the method can be classified into a metal CVD (MCVD: Metal CVD) method and an organic metal CVD (MOCVD: Metal Organic CVD) method depending on the raw material gas used.

プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。 The plasma CVD method can obtain high quality films at relatively low temperatures. Moreover, since the thermal CVD method does not use plasma, it is a film formation method capable of reducing plasma damage to the object to be processed. For example, wiring, electrodes, elements (transistors, capacitive elements, etc.) included in a semiconductor device may be charged up by receiving charges from plasma. At this time, the accumulated charges may destroy wiring, electrodes, elements, and the like included in the semiconductor device. On the other hand, a thermal CVD method that does not use plasma does not cause such plasma damage, so that the yield of semiconductor devices can be increased. Moreover, since the thermal CVD method does not cause plasma damage during film formation, a film with few defects can be obtained.

また、ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、および低温での成膜が可能、などの効果がある。また、ALD法には、プラズマを利用した成膜方法PEALD(Plasma Enhanced ALD)法も含まれる。プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)を用いて行うことができる。 In addition, the ALD method makes use of the self-limiting properties of atoms, allowing atoms to be deposited layer by layer. There are effects such as the ability to form a film with few defects such as holes, the ability to form a film with excellent coverage, and the ability to form a film at a low temperature. The ALD method also includes a PEALD (Plasma Enhanced ALD) method, which is a film forming method using plasma. By using plasma, film formation can be performed at a lower temperature, which is preferable in some cases. Some precursors used in the ALD method contain impurities such as carbon. Therefore, a film formed by the ALD method may contain more impurities such as carbon than films formed by other film formation methods. Note that quantification of impurities can be performed using X-ray photoelectron spectroscopy (XPS).

CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。 The CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of the object to be processed, unlike film forming methods in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method which is not easily affected by the shape of the object to be processed and which has good step coverage. In particular, the ALD method has excellent step coverage and excellent thickness uniformity, and is therefore suitable for coating the surface of an opening with a high aspect ratio. However, since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with another film formation method, such as the CVD method, which has a high film formation rate.

CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。 In the CVD method and the ALD method, the composition of the film obtained can be controlled by the flow rate ratio of the raw material gases. For example, in the CVD method and the ALD method, it is possible to form a film of any composition depending on the flow rate ratio of source gases. Further, for example, in the CVD method and the ALD method, it is possible to form a film whose composition is continuously changed by changing the flow rate ratio of the source gases while forming the film. When forming a film while changing the flow rate ratio of the raw material gases, the time required for film formation is reduced compared to film formation using multiple film formation chambers, as the time required for transportation and pressure adjustment is not required. can do. Therefore, productivity of semiconductor devices can be improved in some cases.

本実施の形態では、絶縁体210として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体210は、多層構造としてもよい。例えば、スパッタリング法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、ALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。 In this embodiment, the insulator 210 is formed using aluminum oxide by a sputtering method. Moreover, the insulator 210 may have a multilayer structure. For example, a structure in which an aluminum oxide film is formed by a sputtering method and an aluminum oxide film is formed on the aluminum oxide film by an ALD method may be employed. Alternatively, a structure may be employed in which aluminum oxide is deposited by an ALD method and aluminum oxide is deposited over the aluminum oxide by a sputtering method.

次に絶縁体210上に、導電体203となる導電膜を成膜する。導電体203となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。また、導電体203となる導電膜は、多層膜とすることができる。本実施の形態では、導電体203となる導電膜としてタングステンを成膜する。 Next, a conductive film to be the conductor 203 is formed over the insulator 210 . A conductive film to be the conductor 203 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Further, the conductive film to be the conductor 203 can be a multilayer film. In this embodiment mode, a tungsten film is formed as the conductive film to be the conductor 203 .

次に、リソグラフィー法を用いて、導電体203となる導電膜を加工し、導電体203を形成する。 Next, the conductive film to be the conductor 203 is processed by lithography to form the conductor 203 .

なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。 In the lithography method, first, the resist is exposed through a mask. The exposed regions are then removed or left behind using a developer to form a resist mask. Next, a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching treatment through the resist mask. For example, a resist mask may be formed by exposing a resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like. Alternatively, a liquid immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure. Also, an electron beam or an ion beam may be used instead of the light described above. A mask is not necessary when using an electron beam or an ion beam. Note that the resist mask can be removed by dry etching treatment such as ashing, wet etching treatment, dry etching treatment followed by wet etching treatment, or wet etching treatment followed by dry etching treatment.

また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、導電体203となる導電膜上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。導電体203となる導電膜のエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。導電体203となる導電膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。 A hard mask made of an insulator or a conductor may be used instead of the resist mask. In the case of using a hard mask, an insulating film or a conductive film serving as a hard mask material is formed over the conductive film serving as the conductor 203, a resist mask is formed thereover, and the hard mask material is etched to obtain a desired shape. A hard mask can be formed. The etching of the conductive film to be the conductor 203 may be performed after removing the resist mask or may be performed with the resist mask left. In the latter case, the resist mask may disappear during etching. The hard mask may be removed by etching after the conductive film to be the conductor 203 is etched. On the other hand, if the hard mask material does not affect the post-process, or if it can be used in the post-process, it is not always necessary to remove the hard mask.

ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。 As a dry etching device, a capacitively coupled plasma (CCP) etching device having parallel plate electrodes can be used. A capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency power supply to one of the parallel plate electrodes. Alternatively, a plurality of different high-frequency power sources may be applied to one of the parallel plate electrodes. Alternatively, a high-frequency power source of the same frequency may be applied to each parallel plate type electrode. Alternatively, a configuration in which high-frequency power sources with different frequencies are applied to the parallel plate electrodes may be used. Alternatively, a dry etching apparatus having a high density plasma source can be used. For example, an inductively coupled plasma (ICP) etching apparatus can be used as a dry etching apparatus having a high-density plasma source.

次に、絶縁体210上、導電体203上に絶縁体212となる絶縁膜を成膜する。絶縁体212となる絶縁体の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体212となる絶縁膜として、CVD法によって酸化シリコンを成膜する。 Next, an insulating film to be the insulator 212 is formed over the insulator 210 and the conductor 203 . The insulator to be the insulator 212 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment mode, the insulating film to be the insulator 212 is formed using silicon oxide by a CVD method.

ここで、絶縁体212となる絶縁膜の膜厚は、導電体203の膜厚以上とすることが好ましい。例えば、導電体203の膜厚を1とすると、絶縁体212となる絶縁膜の膜厚は、1以上3以下とする。本実施の形態では、導電体203の膜厚の膜厚を150nmとし、絶縁体212となる絶縁膜の膜厚を350nmとする。 Here, the thickness of the insulating film to be the insulator 212 is preferably greater than or equal to the thickness of the conductor 203 . For example, if the thickness of the conductor 203 is 1, the thickness of the insulating film to be the insulator 212 is 1 or more and 3 or less. In this embodiment mode, the thickness of the conductor 203 is set to 150 nm, and the thickness of the insulating film to be the insulator 212 is set to 350 nm.

次に、絶縁体212となる絶縁膜にCMP(chemical Mechanical Polishing)処理を行うことで、絶縁体212となる絶縁膜の一部を除去し、導電体203の表面を露出させる。これにより、上面が平坦な、導電体203と、絶縁体212を形成することができる(図3参照。)。 Next, the insulating film to be the insulator 212 is subjected to CMP (chemical mechanical polishing) treatment to remove part of the insulating film to be the insulator 212 and expose the surface of the conductor 203 . Thus, the conductor 203 and the insulator 212 with flat top surfaces can be formed (see FIG. 3).

ここからは、上記と異なる導電体203の形成方法について以下に説明する。 From here, a method of forming the conductor 203 different from the above will be described below.

絶縁体210上に絶縁体212を成膜する。絶縁体212の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 An insulator 212 is deposited over the insulator 210 . The insulator 212 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

次に、絶縁体212に絶縁体210に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体210は、絶縁体212をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体212に酸化シリコン膜を用いた場合は、絶縁体210は窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜を用いるとよい。 Next, an opening is formed in the insulator 212 to reach the insulator 210 . The opening includes, for example, grooves and slits. Also, an area in which an opening is formed may be referred to as an opening. Wet etching may be used to form the openings, but dry etching is preferable for fine processing. For the insulator 210, it is preferable to select an insulator that functions as an etching stopper film when the insulator 212 is etched to form a groove. For example, when a silicon oxide film is used for the insulator 212 forming the trench, a silicon nitride film, an aluminum oxide film, or a hafnium oxide film is preferably used for the insulator 210 .

開口の形成後に、導電体203となる導電膜を成膜する。該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。たとえば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体203となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 After forming the opening, a conductive film to be the conductor 203 is formed. The conductive film preferably contains a conductor having a function of suppressing permeation of oxygen. For example, tantalum nitride, tungsten nitride, titanium nitride, etc. can be used. Alternatively, a laminated film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, and a molybdenum-tungsten alloy can be used. A conductive film to be the conductor 203 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

本実施の形態では、導電体203となる導電膜として、多層構造とする。まず、スパッタリング法によって窒化タンタルを成膜し、当該窒化タンタルの上に窒化チタンを積層する。このような金属窒化物を導電体203となる導電膜の下層に用いることにより、後述する導電体203となる導電膜の上層の導電膜として銅などの拡散しやすい金属を用いても、当該金属が導電体203から外に拡散するのを防ぐことができる。 In this embodiment mode, the conductive film to be the conductor 203 has a multilayer structure. First, a tantalum nitride film is formed by a sputtering method, and titanium nitride is laminated on the tantalum nitride. By using such a metal nitride in the lower layer of the conductive film that serves as the conductor 203, even if a metal that is easily diffused, such as copper, is used as the upper layer of the conductive film that serves as the conductor 203, which will be described later, the metal can be used. can be prevented from diffusing out of the conductor 203 .

次に、導電体203となる導電膜の上層の導電膜を成膜する。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電体203となる導電膜の上層の導電膜として、銅などの低抵抗導電性材料を成膜する。 Next, a conductive film is formed as an upper layer of the conductive film to be the conductor 203 . The conductive film can be formed by a plating method, a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment mode, a low-resistance conductive material such as copper is deposited as a conductive film over the conductive film to be the conductor 203 .

次に、CMP処理を行うことで、導電体203となる導電膜の上層、ならびに導電体203となる導電膜の下層の一部を除去し、絶縁体212を露出する。その結果、開口部のみに、導電体203となる導電膜が残存する。これにより、上面が平坦な、導電体203を形成することができる。なお、当該CMP処理により、絶縁体212の一部が除去される場合がある。以上が、導電体203の異なる形成方法である。 Next, by performing CMP treatment, the upper layer of the conductive film to be the conductor 203 and part of the lower layer of the conductive film to be the conductor 203 are removed, and the insulator 212 is exposed. As a result, the conductive film that becomes the conductor 203 remains only in the opening. Thus, the conductor 203 with a flat upper surface can be formed. Note that part of the insulator 212 may be removed by the CMP treatment. The above is a different formation method of the conductor 203 .

次に、絶縁体212、および導電体203上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体214として、CVD法によって窒化シリコンを成膜する。このように、絶縁体214として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、導電体203の第2の導電体に銅など拡散しやすい金属を用いても、当該金属が絶縁体214より上の層に拡散するのを抑制することができる。 Next, an insulator 214 is formed over the insulator 212 and the conductor 203 . The insulator 214 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment mode, a silicon nitride film is formed as the insulator 214 by a CVD method. In this way, by using an insulator such as silicon nitride through which copper is difficult to permeate as the insulator 214 , even if a metal such as copper which is easily diffused is used as the second conductor of the conductor 203 , the metal is insulated. Diffusion into layers above body 214 can be suppressed.

次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。 Next, an insulator 216 is formed over the insulator 214 . The insulator 216 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, the insulator 216 is formed using silicon oxide by a CVD method.

次に、絶縁体214および絶縁体216に、導電体203に達する開口を形成する。開口の形成にはウェットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。 Next, an opening reaching the conductor 203 is formed in the insulator 214 and the insulator 216 . A wet etching method may be used to form the opening, but it is preferable to use a dry etching method for fine processing.

開口の形成後に、導電体205aとなる導電膜を成膜する。導電体205aとなる導電膜は、酸素の透過を抑制する機能を有する導電性材料を含むことが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。 After forming the opening, a conductive film to be the conductor 205a is formed. The conductive film to be the conductor 205a preferably contains a conductive material that has a function of suppressing permeation of oxygen. For example, tantalum nitride, tungsten nitride, titanium nitride, or the like can be used. Alternatively, a laminated film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, and a molybdenum-tungsten alloy can be used. A conductive film to be the conductor 205a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

本実施の形態では、導電体205aとなる導電膜として、スパッタリング法によって窒化タンタルを成膜する。 In this embodiment mode, a tantalum nitride film is formed by a sputtering method as the conductive film to be the conductor 205a.

次に、導電体205aとなる導電膜上に、導電体205bとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。 Next, a conductive film to be the conductor 205b is formed over the conductive film to be the conductor 205a. The conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

本実施の形態では、導電体205bとなる導電膜として、CVD法によって窒化チタンを成膜し、当該窒化チタン上にCVD法によってタングステンを成膜する。 In this embodiment mode, as the conductive film to be the conductor 205b, a titanium nitride film is formed by a CVD method, and tungsten is formed over the titanium nitride film by a CVD method.

次に、CMP処理を行うことで、導電体205aとなる導電膜、ならびに導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205aとなる導電膜および導電体205bとなる導電膜が残存する。これにより、上面が平坦な、導電体205aおよび導電体205bを含む導電体205を形成することができる(図3参照。)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。 Next, by performing CMP treatment, the conductive film to be the conductor 205a and part of the conductive film to be the conductor 205b are removed, and the insulator 216 is exposed. As a result, the conductive film to be the conductor 205a and the conductive film to be the conductor 205b remain only in the opening. Thus, the conductor 205 including the conductor 205a and the conductor 205b with a flat top surface can be formed (see FIG. 3). Note that part of the insulator 216 is removed by the CMP treatment in some cases.

次に、絶縁体216、および導電体205上に絶縁体220を成膜する。絶縁体220の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体212として、CVD法によって酸化シリコンを成膜する。 Next, an insulator 220 is formed over the insulator 216 and the conductor 205 . The insulator 220 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, silicon oxide is deposited as the insulator 212 by a CVD method.

次に、絶縁体220上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。 Next, an insulator 222 is formed over the insulator 220 . As the insulator 222, an insulator containing an oxide of one or both of aluminum and hafnium is preferably deposited. Note that as the insulator containing oxides of one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. Insulators containing oxides of one or both of aluminum and hafnium have barrier properties against oxygen, hydrogen, and water. Since the insulator 222 has barrier properties against hydrogen and water, diffusion of hydrogen and water contained in structures provided around the transistor 200 into the transistor 200 through the insulator 222 is suppressed. , the generation of oxygen vacancies in the oxide 230 can be suppressed.

絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。 The insulator 222 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

次に、絶縁体222上に絶縁体224となる絶縁膜を成膜する。絶縁体224となる絶縁膜成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。 Next, an insulating film to be the insulator 224 is formed over the insulator 222 . An insulating film to be the insulator 224 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。 Subsequently, heat treatment is preferably performed. The heat treatment may be performed at 250° C. or higher and 650° C. or lower, preferably 300° C. or higher and 500° C. or lower, more preferably 320° C. or higher and 450° C. or lower. Note that the heat treatment is performed in a nitrogen or inert gas atmosphere, or an atmosphere containing an oxidizing gas of 10 ppm or more, 1% or more, or 10% or more. Moreover, you may perform heat processing in a pressure-reduced state. Alternatively, the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to compensate for desorbed oxygen after heat treatment in a nitrogen or inert gas atmosphere. good.

本実施の形態では、加熱処理として、絶縁体224の成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水、水素などの不純物を除去することなどができる。 In this embodiment mode, heat treatment is performed at a temperature of 400° C. for 1 hour in a nitrogen atmosphere after the insulator 224 is formed. Impurities such as water and hydrogen contained in the insulator 224 can be removed by the heat treatment.

また、加熱処理は、絶縁体220成膜後、および絶縁体222の成膜後のそれぞれのタイミングで行うこともできる。当該加熱処理は、上述した加熱処理条件を用いることができるが、絶縁体220成膜後の加熱処理は、窒素を含む雰囲気中で行うことが好ましい。 Alternatively, the heat treatment can be performed after the insulator 220 is deposited and after the insulator 222 is deposited. Although the above heat treatment conditions can be used for the heat treatment, the heat treatment after the insulator 220 is formed is preferably performed in an atmosphere containing nitrogen.

ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水、水素などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。 Here, in order to form an excess oxygen region in the insulator 224, plasma treatment containing oxygen may be performed under reduced pressure. For plasma treatment containing oxygen, it is preferable to use an apparatus having a power supply that generates high-density plasma using microwaves, for example. Alternatively, the board may have a power supply for applying RF (Radio Frequency). By using high-density plasma, high-density oxygen radicals can be generated, and by applying RF to the substrate side, the oxygen radicals generated by the high-density plasma can be efficiently guided into the insulator 224. can. Alternatively, plasma treatment containing an inert gas may be performed using this apparatus, and then plasma treatment containing oxygen may be performed to compensate for desorbed oxygen. Note that impurities such as water and hydrogen contained in the insulator 224 can be removed by appropriately selecting conditions for the plasma treatment. In that case, heat treatment may not be performed.

次に、絶縁体224上に、酸化物230aとなる酸化膜230A、酸化物230bとなる酸化膜230B、および導電体242となる導電膜242Aを順に成膜する(図3参照。)。なお、上記酸化膜は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。 Next, an oxide film 230A to be the oxide 230a, an oxide film 230B to be the oxide 230b, and a conductive film 242A to be the conductor 242 are sequentially formed over the insulator 224 (see FIG. 3). Note that the oxide film is preferably formed continuously without being exposed to the atmospheric environment. By forming the films without exposure to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the oxide films 230A and 230B. can be kept clean.

酸化膜230A、酸化膜230Bおよび導電膜242Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。 The oxide film 230A, the oxide film 230B, and the conductive film 242A can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn-M-Zn酸化物ターゲットを用いることができる。 For example, when the oxide films 230A and 230B are formed by a sputtering method, oxygen or a mixed gas of oxygen and rare gas is used as the sputtering gas. By increasing the proportion of oxygen contained in the sputtering gas, excess oxygen in the formed oxide film can be increased. Further, when the above oxide film is formed by a sputtering method, the above In--M--Zn oxide target can be used.

特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。 In particular, part of oxygen contained in the sputtering gas may be supplied to the insulator 224 when forming the oxide film 230A. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230A should be 70% or more, preferably 80% or more, more preferably 100%.

また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。 In the case of forming the oxide film 230B by a sputtering method, if the oxygen content in the sputtering gas is 1% to 30%, preferably 5% to 20%, an oxygen-deficient oxide semiconductor is formed. It is formed. A transistor in which an oxygen-deficient oxide semiconductor is used for a channel formation region has relatively high field-effect mobility.

本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:1:0.5[原子数比](2:2:1[原子数比])、あるいは1:3:4[原子数比]のターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。 In this embodiment, the oxide film 230A is formed of In:Ga:Zn=1:1:0.5 [atomic ratio] (2:2:1 [atomic ratio]) or 1:3 by a sputtering method. : A film is formed using a target of 4 [atomic number ratio]. Also, the oxide film 230B is formed by a sputtering method using a target of In:Ga:Zn=4:2:4.1 [atomic ratio]. It should be noted that each oxide film may be formed in accordance with the characteristics required for the oxide 230 by appropriately selecting the film formation conditions and the atomic ratio.

次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水、水素などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。 Next, heat treatment may be performed. The heat treatment conditions described above can be used for the heat treatment. Impurities such as water and hydrogen in the oxide films 230A and 230B can be removed by heat treatment. In this embodiment mode, treatment is performed at a temperature of 400° C. for 1 hour in a nitrogen atmosphere, and then treatment is continuously performed at a temperature of 400° C. in an oxygen atmosphere for 1 hour.

次に、酸化膜230A、酸化膜230Bおよび導電膜242Aを島状に加工して、酸化物230a、酸化物230bおよび導電体層242Bを形成する。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある(図4参照。)。 Next, the oxide film 230A, the oxide film 230B and the conductive film 242A are processed into an island shape to form the oxide 230a, the oxide 230b and the conductive layer 242B. Note that in this step, the thickness of the region of the insulator 224 which does not overlap with the oxide 230a may be thin (see FIG. 4).

ここで、酸化物230a、酸化物230bおよび導電体層242Bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、酸化物230bおよび導電体層242Bの側面は、絶縁体222の上面に対し、概略垂直であることが好ましい。酸化物230a、酸化物230bおよび導電体層242Bの側面が、絶縁体222の上面に対し、概略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。または、酸化物230a、酸化物230bおよび導電体層242Bと絶縁体222の上面のなす角が低い角度になる構成にしてもよい。その場合、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角は60°以上70°未満が好ましい。この様な形状とすることで、これより後の工程において、絶縁体273などの被覆性が向上し、鬆などの欠陥を低減することができる。 Here, the oxides 230 a and 230 b and the conductor layer 242 B are formed so that at least part of them overlaps with the conductor 205 . Moreover, the side surfaces of the oxides 230a, 230b, and the conductor layer 242B are preferably substantially perpendicular to the top surface of the insulator 222. FIG. The side surfaces of the oxides 230a and 230b, and the conductor layer 242B are substantially perpendicular to the top surface of the insulator 222, so that when a plurality of transistors 200 are provided, the area can be reduced and the density can be increased. Become. Alternatively, the oxide 230a, the oxide 230b, the conductor layer 242B, and the top surface of the insulator 222 may form a small angle. In that case, the angle between the side surfaces of the oxides 230a and 230b and the top surface of the insulator 222 is preferably 60° or more and less than 70°. With such a shape, the coverage with the insulator 273 or the like is improved in subsequent steps, and defects such as voids can be reduced.

また、導電体層242Bの側面と導電体層242Bの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、導電体層242B層の端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とする。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。 Moreover, a curved surface is provided between the side surface of the conductor layer 242B and the upper surface of the conductor layer 242B. That is, it is preferable that the edge of the side surface and the edge of the upper surface are curved (hereinafter also referred to as a round shape). For example, the curved surface has a radius of curvature of 3 nm or more and 10 nm or less, preferably 5 nm or more and 6 nm or less, at the end of the conductor layer 242B. Since the edges do not have corners, the coverage of the film in the subsequent film forming process is improved.

なお、当該酸化膜の加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。 Note that processing of the oxide film may be performed using a lithography method. A dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for fine processing.

また、ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が酸化物230a、および酸化物230bなどの表面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。 Further, when dry etching or the like is performed, impurities caused by an etching gas or the like may adhere to or diffuse onto or inside the oxides 230a and 230b. Impurities include, for example, fluorine or chlorine.

上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液など用いたウェット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。 Cleaning is performed to remove the above impurities. As a cleaning method, wet cleaning using a cleaning solution or the like, plasma treatment using plasma, cleaning by heat treatment, or the like may be used, and the above cleaning may be performed in combination as appropriate.

ウェット洗浄としては、シュウ酸、リン酸、またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。 As wet cleaning, cleaning treatment may be performed using an aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water. Alternatively, ultrasonic cleaning using pure water or carbonated water may be performed. In this embodiment, ultrasonic cleaning is performed using pure water or carbonated water.

続いて、加熱処理を行ってもよい。加熱処理の条件は、前述の加熱処理の条件を用いることができる。 Subsequently, heat treatment may be performed. As the conditions for the heat treatment, the conditions for the heat treatment described above can be used.

次に、絶縁体224、酸化物230a、酸化物230bおよび導電体層242Bの上に、ダミーゲート層262Aとなるダミーゲート膜を成膜する。 Next, a dummy gate film to be dummy gate layer 262A is formed on insulator 224, oxide 230a, oxide 230b and conductor layer 242B.

ダミーゲート層262Aとなるダミーゲート膜は、加工してダミーゲートとして使用する。ダミーゲートとは、仮のゲート電極のことである。つまり、ダミーゲート層262Aとなるダミーゲート膜を加工することで、仮のゲート電極を形成し、後の工程において該ダミーゲートを除去し、代わりに導電膜等によるゲート電極を形成する。従って、ダミーゲート層262Aとなるダミーゲート膜は微細加工が容易であり、かつ、除去も容易な膜を用いることが好ましい。 A dummy gate film that becomes the dummy gate layer 262A is processed and used as a dummy gate. A dummy gate is a temporary gate electrode. That is, a temporary gate electrode is formed by processing a dummy gate film that will become the dummy gate layer 262A, the dummy gate is removed in a later step, and a gate electrode made of a conductive film or the like is formed instead. Therefore, it is preferable to use a film that can be easily microfabricated and easily removed as the dummy gate film that becomes the dummy gate layer 262A.

ダミーゲート層262Aとなるダミーゲート膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、絶縁体、半導体、または導電体を用いることができる。具体的には、ポリシリコン、微結晶シリコン、アモルファスシリコンなどのシリコン、アルミニウム、チタン、タングステンなどの金属膜などを用いればよい。または、塗布法を用いて、SOG(Spin On Glass)、樹脂膜などを形成しても良い。例えば、フォトレジスト、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。SOG、樹脂膜を塗布法によって形成することで、ダミーゲート膜の表面を平坦にすることができる。このように、ダミーゲート膜の表面を平坦にすることで、微細加工が容易となり、さらに、除去も容易である。 The formation of the dummy gate film to be the dummy gate layer 262A can be performed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. For example, insulators, semiconductors, or conductors can be used. Specifically, silicon such as polysilicon, microcrystalline silicon, and amorphous silicon, and metal films such as aluminum, titanium, and tungsten may be used. Alternatively, a coating method may be used to form SOG (Spin On Glass), a resin film, or the like. Examples include photoresists, polyesters, polyolefins, polyamides (nylons, aramids, etc.), polyimides, polycarbonates or acrylics. The surface of the dummy gate film can be flattened by forming the SOG and resin film by a coating method. By flattening the surface of the dummy gate film in this manner, microfabrication is facilitated, and removal is also facilitated.

また、ダミーゲート層262Aとなるダミーゲート膜は、異なる膜種を用いて多層膜とすることもできる。例えば、ダミーゲート層262Aとなるダミーゲート膜を導電膜と該導電膜上に樹脂膜を形成する2層構造の膜とすることができる。ダミーゲート膜をこのような構造とすることで、例えば、後のCMP工程において、該導電膜がCMP処理のストッパ膜として機能する場合がある。または、CMP処理の終点検出が可能となる場合があり、加工ばらつきの低減が可能となる場合がある。 Also, the dummy gate film to be the dummy gate layer 262A can be a multi-layered film using different film types. For example, a dummy gate film to be the dummy gate layer 262A can be a two-layer film in which a conductive film and a resin film are formed over the conductive film. By making the dummy gate film have such a structure, the conductive film may function as a stopper film for the CMP process in a later CMP process, for example. Alternatively, it may be possible to detect the end point of the CMP processing, and it may be possible to reduce processing variations.

次に、リソグラフィー法によって、ダミーゲート層262Aとなるダミーゲート膜をエッチングし、ダミーゲート層262Aを形成する(図5参照。)。ダミーゲート層262Aは、少なくとも一部が、導電体205および酸化物230と重なるように形成する。 Next, the dummy gate film to be the dummy gate layer 262A is etched by lithography to form the dummy gate layer 262A (see FIG. 5). Dummy gate layer 262 A is formed to at least partially overlap conductor 205 and oxide 230 .

次に、酸化物230a、酸化物230b、導電体層242Bおよびダミーゲート層262Aを覆うように、絶縁膜254Aを成膜する。続いて、絶縁膜254Aの上に絶縁膜255Aを成膜してもよい(図5参照。)。絶縁膜254Aおよび絶縁膜255Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。 Next, an insulating film 254A is formed to cover the oxide 230a, the oxide 230b, the conductor layer 242B and the dummy gate layer 262A. Subsequently, an insulating film 255A may be formed over the insulating film 254A (see FIG. 5). The insulating film 254A and the insulating film 255A can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

絶縁膜254Aは、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸素を含むガスを用いて酸化アルミニウム膜を成膜することによって、絶縁体224中へ酸素を注入することができる。つまり、絶縁体224は過剰酸素を有することができる。 An insulating film having a function of suppressing permeation of oxygen is preferably used for the insulating film 254A. For example, it is preferable to form an aluminum oxide film by a sputtering method. By forming an aluminum oxide film using a gas containing oxygen by a sputtering method, oxygen can be injected into the insulator 224 . That is, the insulator 224 can have excess oxygen.

絶縁膜255Aは、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。被覆性に優れたALD法を用いることで、ダミーゲート層262Aなどにより形成された段差部においても、均一な厚さを有する絶縁膜255Aを形成することができる。また、ALD法を用いることで、緻密な薄膜を成膜することができる。このように被覆性に優れ、緻密な薄膜を成膜することが出来るので、例えば、絶縁膜254Aにボイドやピンホールなどの欠陥が生じても、絶縁膜255Aによって覆うことができる。 An insulating film having a function of suppressing permeation of oxygen is preferably used for the insulating film 255A. For example, it is preferable to form an aluminum oxide film by ALD. By using the ALD method with excellent coverage, it is possible to form the insulating film 255A having a uniform thickness even in the stepped portion formed by the dummy gate layer 262A or the like. Also, by using the ALD method, a dense thin film can be formed. Since a dense thin film with excellent coverage can be formed, even if defects such as voids or pinholes occur in the insulating film 254A, they can be covered with the insulating film 255A.

以上により、絶縁体224に含まれる過剰酸素が外方へ拡散することを防止し、また外方から水や水素のような不純物の絶縁体224への侵入を防止することができる。尚、絶縁膜255Aの成膜は省略することができる。 As described above, excess oxygen contained in the insulator 224 can be prevented from diffusing outward, and impurities such as water and hydrogen can be prevented from entering the insulator 224 from the outside. Note that the formation of the insulating film 255A can be omitted.

次に、絶縁膜255A上に、絶縁体280となる絶縁膜を成膜する。絶縁体280となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 Next, an insulating film to be the insulator 280 is formed over the insulating film 255A. An insulating film to be the insulator 280 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

次に、絶縁体280となる絶縁膜、ダミーゲート層262A、絶縁膜254A、および絶縁膜255Aの一部をダミーゲート層262Aの一部が露出するまで除去し、絶縁体280、ダミーゲート262、絶縁体254および絶縁体255を形成する(図6参照。)。絶縁体280、ダミーゲート262、絶縁体254および絶縁体255の形成にはCMP処理を用いることが好ましい。 Next, the insulator 280, the dummy gate layer 262A, the insulator 254A, and the insulator 255A are partly removed until part of the dummy gate layer 262A is exposed. An insulator 254 and an insulator 255 are formed (see FIG. 6). A CMP process is preferably used to form insulator 280 , dummy gate 262 , insulator 254 and insulator 255 .

また、上述のようにダミーゲート層262Aを、例えば、導電膜と該導電膜上に樹脂膜を形成する2層構造の膜とすることで、CMP工程において、該導電膜がCMP処理のストッパ膜として機能する場合がある。または、該導電膜がCMP処理の終点検出が可能となる場合があり、ダミーゲート262の高さのばらつきの低減が可能となる場合がある。図6(A)に示すように、ダミーゲート262の上面と、絶縁体254、絶縁体255および絶縁体280の上面が略一致する。 Further, as described above, by forming the dummy gate layer 262A as a film having a two-layer structure in which, for example, a conductive film and a resin film are formed on the conductive film, the conductive film serves as a stopper film for the CMP process in the CMP process. may function as Alternatively, the conductive film may be able to detect the end point of the CMP process, and it may be possible to reduce variations in the height of the dummy gate 262 . As shown in FIG. 6A, the top surface of the dummy gate 262 and the top surfaces of the insulators 254, 255, and 280 are substantially aligned.

次に、ダミーゲート262を除去する。ダミーゲート262の除去は、ウェットエッチング、ドライエッチング、またはアッシングなどを用いて行うことができる。または、適宜、上記の処理を複数組み合わせて行ってもよい。例えば、アッシング処理の後に、ウェットエッチング処理を行うなどがある。ダミーゲート262を除去することにより、導電体層242Bの表面の一部が露出する。 Next, dummy gate 262 is removed. Removal of the dummy gate 262 can be performed using wet etching, dry etching, ashing, or the like. Alternatively, a plurality of the above processes may be combined as appropriate. For example, wet etching may be performed after ashing. By removing dummy gate 262, a portion of the surface of conductive layer 242B is exposed.

次に、導電体層242Bの露出している部分を除去することで、酸化物230bの表面の一部が露出し、導電体242aおよび導電体242bを形成することができる。当該除去は、ウェットエッチングまたはドライエッチングを用いて行うことができる。本実施の形態ではドライエッチングを用いる。ドライエッチングを用いることで微細加工ができるので好ましい。 Exposed portions of conductor layer 242B may then be removed to expose portions of the surface of oxide 230b, forming conductors 242a and 242b. The removal can be performed using wet etching or dry etching. Dry etching is used in this embodiment mode. It is preferable to use dry etching because fine processing can be performed.

次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができるが、減圧下で、熱処理を行い、大気に暴露することなく、連続して酸化膜230Cを成膜してもよい。このような処理を行うことによって、酸化物230bの表面などに表面に吸着している水分および水素を除去し、さらに酸化物230aおよび酸化物230b中の水分濃度および水素濃度を低減させることができる。 Next, heat treatment may be performed. For the heat treatment, the heat treatment conditions described above can be used, but the heat treatment may be performed under reduced pressure and the oxide film 230C may be continuously formed without exposure to the atmosphere. By such treatment, moisture and hydrogen adsorbed to the surface of the oxide 230b or the like can be removed, and the moisture concentration and hydrogen concentration in the oxide 230a and the oxide 230b can be reduced. .

酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化膜230Cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化膜230Cとなる酸化膜を成膜すればよい。本実施の形態では、酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]、あるいは4:2:4.1[原子数比]のターゲットを用いて成膜する。 The oxide film 230C can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. An oxide film to be the oxide film 230C may be formed using a film formation method similar to that for the oxide film 230A or the oxide film 230B in accordance with the characteristics required for the oxide film 230C. In this embodiment, a target of In:Ga:Zn=1:3:4 [atomic ratio] or 4:2:4.1 [atomic ratio] is used as the oxide film 230C by a sputtering method. form a film.

特に、酸化膜230Cの成膜時に、スパッタリングガスに含まれる酸素の一部が酸化物230aおよび酸化物230bに供給される場合がある。したがって、酸化膜230Cのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。 In particular, part of the oxygen contained in the sputtering gas may be supplied to the oxides 230a and 230b when forming the oxide film 230C. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230C should be 70% or more, preferably 80% or more, and more preferably 100%.

次に、絶縁膜250Aを成膜する。絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁膜250Aとして、CVD法により、酸化窒化シリコンを成膜することが好ましい。なお、絶縁膜250Aを成膜する際の成膜温度は、350℃以上450℃未満、特に400℃前後とすることが好ましい。絶縁膜250Aを、400℃で成膜することで、不純物が少ない絶縁体を成膜することができる。 Next, an insulating film 250A is formed. The insulating film 250A can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. As the insulating film 250A, silicon oxynitride is preferably deposited by a CVD method. The film formation temperature for forming the insulating film 250A is preferably 350.degree. C. or more and less than 450.degree. By forming the insulating film 250A at 400° C., an insulator with few impurities can be formed.

なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、当該酸素プラズマに絶縁膜250Aを曝すことで、絶縁膜250Aへ酸素を導入することができる。 Note that oxygen can be introduced into the insulating film 250A by exciting oxygen with microwaves to generate high-density oxygen plasma and exposing the insulating film 250A to the oxygen plasma.

また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。 Alternatively, heat treatment may be performed. For the heat treatment, the heat treatment conditions described above can be used. By the heat treatment, the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.

次に、導電膜260Aaおよび導電膜260Abを成膜する。導電膜260Aaおよび導電膜260Abの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、CVD法を用いることが好ましい。本実施の形態では、ALD法を用いて、導電膜260Aaを成膜し、CVD法を用いて導電膜260Abを成膜する(図7参照。)。 Next, a conductive film 260Aa and a conductive film 260Ab are formed. The conductive films 260Aa and 260Ab can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. For example, it is preferable to use the CVD method. In this embodiment mode, the conductive film 260Aa is formed using the ALD method, and the conductive film 260Ab is formed using the CVD method (see FIG. 7).

次に、CMP処理によって、酸化膜230C、絶縁膜250A、導電膜260Aaおよび導電膜260Abを絶縁体280が露出するまで研磨することによって、酸化物230c、絶縁体250および導電体260(導電体260aおよび導電体260b)を形成する(図8参照。)。 Next, the oxide film 230C, the insulating film 250A, the conductive film 260Aa, and the conductive film 260Ab are polished by CMP treatment until the insulator 280 is exposed, thereby polishing the oxide film 230c, the insulator 250, and the conductor 260 (the conductor 260a). and conductors 260b) are formed (see FIG. 8).

次に、絶縁体280上に、絶縁体274となる絶縁膜を形成してもよい。絶縁体274となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体274となる絶縁膜としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体280が有する水素を酸化物230へ拡散することを抑制することができる場合がある(図8参照。)。 Next, an insulating film to be the insulator 274 may be formed over the insulator 280 . An insulating film to be the insulator 274 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. As the insulating film to be the insulator 274, for example, an aluminum oxide film is preferably formed by a sputtering method. By forming an aluminum oxide film by a sputtering method, diffusion of hydrogen in the insulator 280 to the oxide 230 can be suppressed in some cases (see FIG. 8).

次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。 Next, heat treatment may be performed. For the heat treatment, the heat treatment conditions described above can be used. By the heat treatment, the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.

次に絶縁体274上に、絶縁体281となる絶縁体を成膜してもよい。絶縁体281となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる(図8参照。)。 Next, an insulator to be the insulator 281 may be formed over the insulator 274 . An insulating film to be the insulator 281 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like (see FIG. 8).

次に、絶縁体254、絶縁体255、絶縁体280、絶縁体274および絶縁体281に、導電体242aおよび導電体242bに達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。 Next, openings are formed in the insulators 254, 255, 280, 274, and 281 to reach the conductors 242a and 242b. The formation of the opening may be performed using a lithography method.

次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。また、異方性エッチングは、例えばドライエッチング法などを行えばよい。開口の側壁部をこのような構成とすることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。 Next, an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241 . The conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. As an insulating film to be the insulator 241, an insulating film having a function of suppressing permeation of oxygen is preferably used. For example, it is preferable to form an aluminum oxide film by ALD. Moreover, the anisotropic etching may be performed by, for example, a dry etching method. By configuring the side walls of the opening in such a manner, permeation of oxygen from the outside can be suppressed, and oxidation of the conductors 240a and 240b to be formed next can be prevented. Further, impurities such as water and hydrogen can be prevented from diffusing to the outside from the conductors 240a and 240b.

次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の透過を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 Next, a conductive film to be the conductor 240a and the conductor 240b is formed. The conductive films to be the conductors 240a and 240b preferably have a stacked-layer structure including a conductor that has a function of suppressing permeation of impurities such as water and hydrogen. For example, a laminate of tantalum nitride, titanium nitride, etc., and tungsten, molybdenum, copper, etc., can be used. A conductive film to be the conductor 240 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図1参照。)。なお、当該CMP処理により、絶縁体281の一部が除去する場合がある。 Next, CMP treatment is performed to remove part of the conductive film to be the conductors 240 a and 240 b to expose the insulator 281 . As a result, the conductor 240a and the conductor 240b with flat top surfaces can be formed by leaving the conductive film only in the openings (see FIG. 1). Note that part of the insulator 281 is removed by the CMP treatment in some cases.

以上により、図1に示すトランジスタ200を有する半導体装置を作製することができる。図3乃至図9に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200を作製することができる。 Through the above steps, a semiconductor device including the transistor 200 illustrated in FIG. 1 can be manufactured. As illustrated in FIGS. 3A to 9B, the transistor 200 can be manufactured by using the method for manufacturing the semiconductor device described in this embodiment.

本発明の一態様により、オン電流の大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。 According to one embodiment of the present invention, a semiconductor device with high on-state current can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with high frequency characteristics can be provided. Alternatively, according to one embodiment of the present invention, a highly reliable semiconductor device can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device that can be miniaturized or highly integrated can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with favorable electrical characteristics can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with low off-state current can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with low power consumption can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with high productivity can be provided.

以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with the structures, methods, and the like described in other embodiments.

<半導体装置の変形例>
以下では、図9、および図15を用いて、先の<半導体装置の構成例>で示したものとは異なる、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
<Modified Example of Semiconductor Device>
An example of a semiconductor device including the transistor 200 according to one embodiment of the present invention, which is different from the semiconductor device described in <Structure Example of Semiconductor Device>, will be described below with reference to FIGS.

また、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1-A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3-A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。 Moreover, (A) of each figure shows a top view. (B) of each figure is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A1-A2 shown in (A), and is also a cross-sectional view of the transistor 200 in the channel length direction. (C) of each figure is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A3-A4 in (A), and is also a cross-sectional view of the transistor 200 in the channel width direction. In the top view of (A) of each figure, some elements are omitted for clarity of illustration.

なお、図9、および図15に示す半導体装置において、<半導体装置の構成例>に示した半導体装置(図1参照。)を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目において、トランジスタ200の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。 In the semiconductor devices shown in FIGS. 9 and 15, structures having the same functions as structures constituting the semiconductor device (see FIG. 1) shown in <Structure Example of Semiconductor Device> are denoted by the same reference numerals. . Note that in this item, the material described in detail in <Structure Example of Semiconductor Device> can be used as the material for forming the transistor 200 .

図9に示す半導体装置は、図1に示す半導体装置が有する絶縁体244を有しないところが異なる。さらに、図1に示す半導体装置は、酸化物230cと、絶縁体280と、の間に絶縁体254および絶縁体255が配置されており、酸化物230cと、絶縁体280と、は接しない構成となっているが、図9に示す半導体装置は、酸化物230cと、絶縁体280と、が接する構成となっているところが図1に示す半導体装置と異なる。 The semiconductor device shown in FIG. 9 differs from the semiconductor device shown in FIG. 1 in that it does not have the insulator 244 . Further, in the semiconductor device illustrated in FIG. 1, the insulator 254 and the insulator 255 are arranged between the oxide 230c and the insulator 280, and the oxide 230c and the insulator 280 are not in contact with each other. However, the semiconductor device shown in FIG. 9 differs from the semiconductor device shown in FIG. 1 in that the oxide 230c and the insulator 280 are in contact with each other.

図9に示す半導体装置は、ダミーゲート262を形成せずに作製することができるので半導体装置の作製工程を簡略化することができて好ましい。その他の構成および効果については、図1に示す半導体装置の説明を参酌することができる。 The semiconductor device shown in FIG. 9 can be manufactured without forming the dummy gate 262, which is preferable because the manufacturing process of the semiconductor device can be simplified. For other structures and effects, the description of the semiconductor device illustrated in FIG. 1 can be referred to.

以下では、図9に示す半導体装置の作製方法について、図10乃至図13を用いて説明する。各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1-A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、図(A)にA3-A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。 A method for manufacturing the semiconductor device illustrated in FIG. 9 is described below with reference to FIGS. (A) of each figure shows a top view. (B) of each figure is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A1-A2 shown in (A), and is also a cross-sectional view of the transistor 200 in the channel length direction. (C) of each figure is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A3-A4 in FIG. In the top view of (A) of each figure, some elements are omitted for clarity of illustration.

酸化物230a、酸化物230bおよび導電体層242Bを形成するところまでは、図1に示す半導体装置の作製方法と同様である(図4参照。)。 The method for manufacturing the semiconductor device shown in FIG. 1 is the same as the method for manufacturing the semiconductor device shown in FIG. 1 up to the formation of the oxide 230a, the oxide 230b, and the conductor layer 242B (see FIG. 4).

次に絶縁体224、酸化物230a、酸化物230bおよび導電体層242Bの上に、絶縁膜254Aを成膜する(図10参照)。 Next, an insulating film 254A is formed over the insulator 224, the oxides 230a and 230b, and the conductor layer 242B (see FIG. 10).

絶縁膜254Aは、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸素を含むガスを用いて酸化アルミニウム膜を成膜することによって、絶縁体224中へ酸素を注入することができる。つまり、絶縁体224は過剰酸素を有することができる。 An insulating film having a function of suppressing permeation of oxygen is preferably used for the insulating film 254A. For example, it is preferable to form an aluminum oxide film by a sputtering method. By forming an aluminum oxide film using a gas containing oxygen by a sputtering method, oxygen can be injected into the insulator 224 . That is, the insulator 224 can have excess oxygen.

次に、絶縁膜254A上に、絶縁体280となる絶縁膜を成膜する。絶縁体280となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。次に、絶縁体280となる絶縁膜にCMP処理を行い、上面が平坦な絶縁体280を形成する(図10参照。)。 Next, an insulating film to be the insulator 280 is formed over the insulating film 254A. An insulating film to be the insulator 280 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Next, the insulating film to be the insulator 280 is subjected to CMP treatment to form the insulator 280 with a flat upper surface (see FIG. 10).

次に、絶縁体280の一部、絶縁膜254Aの一部、および導電体層242Bの一部を加工して、酸化物230bに達する開口を形成する。該開口は、導電体203および導電体205と重なるように形成することが好ましい。該開口によって、導電体242a、導電体242b、および絶縁体254を形成する(図11参照。)。 A portion of insulator 280, a portion of insulating film 254A, and a portion of conductive layer 242B are then processed to form an opening that reaches oxide 230b. The opening is preferably formed so as to overlap the conductors 203 and 205 . The openings form a conductor 242a, a conductor 242b, and an insulator 254 (see FIG. 11).

また、絶縁体280の一部、絶縁膜254Aの一部、および導電体の一部の加工は、それぞれ異なる条件で加工してもよい。例えば、絶縁体280の一部をドライエッチング法で加工し、絶縁膜254Aの一部をウエットエッチング法で加工し、導電体層242Bの一部をドライエッチング法で加工してもよい。 In addition, part of the insulator 280, part of the insulating film 254A, and part of the conductor may be processed under different conditions. For example, part of the insulator 280 may be processed by a dry etching method, part of the insulating film 254A may be processed by a wet etching method, and part of the conductor layer 242B may be processed by a dry etching method.

次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができるが、減圧下で、熱処理を行い、大気に暴露することなく、連続して酸化膜230Cを成膜してもよい。このような処理を行うことによって、酸化物230bの表面などに表面に吸着している水分および水素を除去し、さらに酸化物230aおよび酸化物230b中の水分濃度および水素濃度を低減させることができる。 Next, heat treatment may be performed. For the heat treatment, the heat treatment conditions described above can be used, but the heat treatment may be performed under reduced pressure and the oxide film 230C may be continuously formed without exposure to the atmosphere. By such treatment, moisture and hydrogen adsorbed to the surface of the oxide 230b or the like can be removed, and the moisture concentration and hydrogen concentration in the oxide 230a and the oxide 230b can be reduced. .

酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化膜230Cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化膜230Cとなる酸化膜を成膜すればよい。本実施の形態では、酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]、あるいは4:2:4.1[原子数比]のターゲットを用いて成膜する。 The oxide film 230C can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. An oxide film to be the oxide film 230C may be formed using a film formation method similar to that for the oxide film 230A or the oxide film 230B in accordance with the characteristics required for the oxide film 230C. In this embodiment, a target of In:Ga:Zn=1:3:4 [atomic ratio] or 4:2:4.1 [atomic ratio] is used as the oxide film 230C by a sputtering method. form a film.

特に、酸化膜230Cの成膜時に、スパッタリングガスに含まれる酸素の一部が酸化物230aおよび酸化物230bに供給される場合がある。したがって、酸化膜230Cのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。 In particular, part of the oxygen contained in the sputtering gas may be supplied to the oxides 230a and 230b when forming the oxide film 230C. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230C should be 70% or more, preferably 80% or more, and more preferably 100%.

次に、絶縁膜250Aを成膜する。絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁膜250Aとして、CVD法により、酸化窒化シリコンを成膜することが好ましい。なお、絶縁膜250Aを成膜する際の成膜温度は、350℃以上450℃未満、特に400℃前後とすることが好ましい。絶縁膜250Aを、400℃で成膜することで、不純物が少ない絶縁体を成膜することができる。 Next, an insulating film 250A is formed. The insulating film 250A can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. As the insulating film 250A, silicon oxynitride is preferably deposited by a CVD method. The film formation temperature for forming the insulating film 250A is preferably 350.degree. C. or more and less than 450.degree. By forming the insulating film 250A at 400° C., an insulator with few impurities can be formed.

なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、当該酸素プラズマに絶縁膜250Aを曝すことで、絶縁膜250Aへ酸素を導入することができる。 Note that oxygen can be introduced into the insulating film 250A by exciting oxygen with microwaves to generate high-density oxygen plasma and exposing the insulating film 250A to the oxygen plasma.

また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。 Alternatively, heat treatment may be performed. For the heat treatment, the heat treatment conditions described above can be used. By the heat treatment, the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.

次に、導電膜260Aaおよび導電膜260Abを成膜する。導電膜260Aaおよび導電膜260Abの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、CVD法を用いることが好ましい。本実施の形態では、ALD法を用いて、導電膜260Aaを成膜し、CVD法を用いて導電膜260Abを成膜する(図12参照。)。 Next, a conductive film 260Aa and a conductive film 260Ab are formed. The conductive films 260Aa and 260Ab can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. For example, it is preferable to use the CVD method. In this embodiment mode, the conductive film 260Aa is formed using the ALD method, and the conductive film 260Ab is formed using the CVD method (see FIG. 12).

次に、CMP処理によって、酸化膜230C、絶縁膜250A、導電膜260Aaおよび導電膜260Abを絶縁体280が露出するまで研磨することによって、酸化物230c、絶縁体250および導電体260(導電体260aおよび導電体260b)を形成する(図13参照。)。 Next, the oxide film 230C, the insulating film 250A, the conductive film 260Aa, and the conductive film 260Ab are polished by CMP treatment until the insulator 280 is exposed, thereby polishing the oxide film 230c, the insulator 250, and the conductor 260 (the conductor 260a). and conductors 260b) are formed (see FIG. 13).

次に、絶縁体280上に、絶縁体274となる絶縁膜を形成してもよい。絶縁体274となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体274となる絶縁膜としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体280が有する水素を酸化物230へ拡散することを抑制することができる場合がある(図13参照。)。 Next, an insulating film to be the insulator 274 may be formed over the insulator 280 . An insulating film to be the insulator 274 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. As the insulating film to be the insulator 274, for example, an aluminum oxide film is preferably formed by a sputtering method. By forming an aluminum oxide film by a sputtering method, diffusion of hydrogen in the insulator 280 to the oxide 230 can be suppressed in some cases (see FIG. 13).

次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。 Next, heat treatment may be performed. For the heat treatment, the heat treatment conditions described above can be used. By the heat treatment, the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.

次に絶縁体274上に、絶縁体281となる絶縁体を成膜してもよい。絶縁体281となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる(図13参照。)。 Next, an insulator to be the insulator 281 may be formed over the insulator 274 . The insulating film to be the insulator 281 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like (see FIG. 13).

次に、絶縁体254、絶縁体255、絶縁体280、絶縁体274および絶縁体281に、導電体242aおよび導電体242bに達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。 Next, openings are formed in the insulators 254, 255, 280, 274, and 281 to reach the conductors 242a and 242b. The formation of the opening may be performed using a lithography method.

次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。また、異方性エッチングは、例えばドライエッチング法などを行えばよい。開口の側壁部をこのような構成とすることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。 Next, an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241 . The conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. As an insulating film to be the insulator 241, an insulating film having a function of suppressing permeation of oxygen is preferably used. For example, it is preferable to form an aluminum oxide film by ALD. Moreover, the anisotropic etching may be performed by, for example, a dry etching method. By configuring the side walls of the opening in such a manner, permeation of oxygen from the outside can be suppressed, and oxidation of the conductors 240a and 240b to be formed next can be prevented. Further, impurities such as water and hydrogen can be prevented from diffusing to the outside from the conductors 240a and 240b.

次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の透過を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 Next, a conductive film to be the conductor 240a and the conductor 240b is formed. The conductive films to be the conductors 240a and 240b preferably have a stacked-layer structure including a conductor that has a function of suppressing permeation of impurities such as water and hydrogen. For example, a laminate of tantalum nitride, titanium nitride, etc., and tungsten, molybdenum, copper, etc., can be used. A conductive film to be the conductor 240 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図9参照。)。なお、当該CMP処理により、絶縁体281の一部が除去する場合がある。 Next, CMP treatment is performed to remove part of the conductive film to be the conductors 240 a and 240 b to expose the insulator 281 . As a result, the conductor 240a and the conductor 240b with flat top surfaces can be formed by leaving the conductive film only in the openings (see FIG. 9). Note that part of the insulator 281 is removed by the CMP treatment in some cases.

以上により、図9に示すトランジスタ200を有する半導体装置を作製することができる。 Through the above steps, a semiconductor device including the transistor 200 illustrated in FIG. 9 can be manufactured.

図14に示すトランジスタ200は、導電体242が設けられていない点において、図1に示すトランジスタ200と異なる。図14に示すトランジスタ200においては、例えば、酸化物230のキャリア密度を増大させ、低抵抗化させることができる元素をドーパントとして添加することによって、領域243(領域243a、および領域243b)を形成すればよい。 The transistor 200 shown in FIG. 14 is different from the transistor 200 shown in FIG. 1 in that the conductor 242 is not provided. In the transistor 200 illustrated in FIG. 14, for example, the regions 243 (the regions 243a and 243b) are formed by adding an element as a dopant that can increase the carrier density of the oxide 230 and reduce the resistance. Just do it.

ドーパントとしては、酸素欠損を形成する元素、または酸素欠損と結合する元素などを用いればよい。このような元素としては、代表的には、ホウ素、またはリンが挙げられる。また、水素、炭素、窒素、フッ素、硫黄、塩素、チタン、希ガス等を用いてもよい。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。また、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を添加してもよい。上述した中でもドーパントとしては、ホウ素、及びリンが好ましい。ホウ素、リンをドーパントとして用いる場合、アモルファスシリコン、または低温ポリシリコンの製造ラインの装置を使用することができるため、設備投資を抑制することができる。上記元素の濃度は、SIMSなどを用いて測定すればよい。 As the dopant, an element that forms oxygen vacancies, an element that bonds with oxygen vacancies, or the like may be used. Such elements typically include boron or phosphorus. Alternatively, hydrogen, carbon, nitrogen, fluorine, sulfur, chlorine, titanium, rare gas, or the like may be used. Representative examples of rare gas elements include helium, neon, argon, krypton, and xenon. Metals such as aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. Any one or more metal elements selected from the elements may be added. Among the above-mentioned dopants, boron and phosphorus are preferred. When boron or phosphorus is used as a dopant, it is possible to use equipment on a manufacturing line for amorphous silicon or low-temperature polysilicon, so equipment investment can be suppressed. The concentrations of the above elements may be measured using SIMS or the like.

特に、領域243に添加する元素として、酸化物を形成しやすい元素を用いることが好ましい。このような元素としては、代表的にはホウ素、リン、アルミニウム、マグネシウム等がある。領域243に添加された当該元素は、酸化物230中の酸素を奪って酸化物を形成しうる。その結果、領域243には多くの酸素欠損が生じる。当該酸素欠損と、酸化物230中の水素とが結合することでキャリアが生じ、極めて低抵抗な領域となる。さらに、領域243に添加された元素は安定な酸化物の状態で領域243に存在するため、その後の工程で高い温度を要する処理が行われたとしても、領域243から脱離しにくい。すなわち、領域243に添加する元素として、酸化物を形成しやすい元素を用いることで、酸化物230中に高温のプロセスを経ても高抵抗化しにくい領域を形成できる。 In particular, it is preferable to use an element that easily forms an oxide as the element added to the region 243 . Such elements typically include boron, phosphorus, aluminum, magnesium, and the like. The element added to the region 243 can remove oxygen from the oxide 230 to form an oxide. As a result, many oxygen vacancies occur in the region 243 . The oxygen vacancies are combined with hydrogen in the oxide 230 to generate carriers and form a region with extremely low resistance. Furthermore, since the element added to the region 243 exists in the region 243 in the state of a stable oxide, it is difficult to desorb from the region 243 even if a treatment requiring a high temperature is performed in a subsequent step. That is, by using an element that easily forms an oxide as an element to be added to the region 243, a region that is unlikely to have a high resistance can be formed in the oxide 230 even through a high-temperature process.

酸化物230にソース領域またはドレイン領域として機能する領域243を形成することで、金属で形成されたソース電極およびドレイン電極を設けることなく、領域243にプラグとして機能する導電体240を接続することができる。 By forming the region 243 functioning as a source region or a drain region in the oxide 230, the conductor 240 functioning as a plug can be connected to the region 243 without providing a source electrode and a drain electrode formed of metal. can.

ドーパントの添加によって領域243を形成する場合、例えば、トランジスタ200のチャネル形成領域となる位置にレジストマスクまたはハードマスクなどのマスクを設けて、ドーパントの添加を行えばよい。これにより、酸化物230において、当該マスクが重畳していない領域に、上記の元素を含む領域243を形成することができる。 In the case of forming the region 243 by adding a dopant, for example, a mask such as a resist mask or a hard mask may be provided at a position where the channel formation region of the transistor 200 is to be added, and the dopant is added. Thus, a region 243 containing the above element can be formed in a region of the oxide 230 which is not overlapped with the mask.

ドーパントの添加方法としては、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。質量分離を行う場合、添加するイオン種およびその濃度を厳密に制御することができる。一方、質量分離を行わない場合、短時間で高濃度のイオンを添加することができる。また、原子または分子のクラスターを生成してイオン化するイオンドーピング法を用いてもよい。なお、ドーパントを、イオン、ドナー、アクセプター、不純物または元素などと言い換えてもよい。 As a dopant addition method, an ion implantation method in which an ionized raw material gas is added after mass separation, an ion doping method in which an ionized raw material gas is added without mass separation, a plasma immersion ion implantation method, or the like can be used. can be done. When performing mass separation, the ion species to be added and their concentration can be strictly controlled. On the other hand, when mass separation is not performed, high-concentration ions can be added in a short time. Also, an ion doping method may be used in which clusters of atoms or molecules are generated and ionized. Note that the dopant may be replaced with an ion, a donor, an acceptor, an impurity, an element, or the like.

また、領域243に酸素欠損を形成する元素を添加して、熱処理を行うことで、チャネル形成領域として機能する領域234に含まれる水素を、領域243に含まれる酸素欠損で捕獲できる場合がある。これにより、トランジスタ200に安定な電気特性を与え、信頼性の向上を図ることができる。 Further, by adding an element that forms oxygen vacancies to the region 243 and performing heat treatment, hydrogen contained in the region 234 functioning as a channel formation region can be captured by the oxygen vacancies contained in the region 243 in some cases. Accordingly, the transistor 200 can have stable electrical characteristics and can be improved in reliability.

以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態など示す構成、構造、方法などと適宜組み合わせて用いることができる。 The structures, structures, methods, and the like described in this embodiment can be used in appropriate combination with the structures, structures, methods, and the like described in other embodiments.

(実施の形態2)
本実施の形態では、半導体装置の一形態を、図15および図16を用いて説明する。
(Embodiment 2)
In this embodiment, one mode of a semiconductor device will be described with reference to FIGS.

[記憶装置1]
本発明の一態様である容量素子を使用した、半導体装置(記憶装置)の一例を図15に示す。本発明の一態様の半導体装置は、トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。なお、トランジスタ200として、先の実施の形態で説明したトランジスタ200を用いることができる。
[Storage device 1]
FIG. 15 illustrates an example of a semiconductor device (memory device) using a capacitor that is one embodiment of the present invention. In the semiconductor device of one embodiment of the present invention, the transistor 200 is provided above the transistor 300 and the capacitor 100 is provided above the transistors 300 and 200 . Note that the transistor 200 described in the above embodiment can be used as the transistor 200 .

トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。 The transistor 200 is a transistor whose channel is formed in a semiconductor layer including an oxide semiconductor. Since the transistor 200 has a low off-state current, when it is used for a memory device, stored data can be retained for a long time. That is, since the refresh operation is not required or the frequency of the refresh operation is extremely low, the power consumption of the memory device can be sufficiently reduced.

図15に示す半導体装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。 In the semiconductor device shown in FIG. 15 , a wiring 1001 is electrically connected to the source of the transistor 300 and a wiring 1002 is electrically connected to the drain of the transistor 300 . A wiring 1003 is electrically connected to one of the source and the drain of the transistor 200, a wiring 1004 is electrically connected to the first gate of the transistor 200, and a wiring 1006 is electrically connected to the second gate of the transistor 200. It is connected to the. The gate of the transistor 300 and the other of the source and drain of the transistor 200 are electrically connected to one electrode of the capacitor 100, and the wiring 1005 is electrically connected to the other electrode of the capacitor 100. .

また、図15に示す記憶装置は、マトリクス状に配置することで、メモリセルアレイを構成することができる。 Further, the memory device illustrated in FIG. 15 can form a memory cell array by being arranged in a matrix.

<トランジスタ300>
トランジスタ300は、基板311上に設けられ、ゲート電極として機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
<Transistor 300>
The transistor 300 is provided on a substrate 311 and includes a conductor 316 functioning as a gate electrode, an insulator 315 functioning as a gate insulator, a semiconductor region 313 consisting of part of the substrate 311, and functioning as a source or drain region. It has a low resistance region 314a and a low resistance region 314b. Transistor 300 can be either p-channel or n-channel.

ここで、図15に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。 Here, in the transistor 300 shown in FIG. 15, the semiconductor region 313 (part of the substrate 311) in which the channel is formed has a convex shape. A conductor 316 is provided to cover the side and top surfaces of the semiconductor region 313 with an insulator 315 interposed therebetween. Note that the conductor 316 may be made of a material that adjusts the work function. Such a transistor 300 is also called a FIN transistor because it utilizes the projections of the semiconductor substrate. Note that an insulator that functions as a mask for forming the protrusion may be provided in contact with the upper portion of the protrusion. Further, here, the case where a part of the semiconductor substrate is processed to form a convex portion is shown, but a semiconductor film having a convex shape may be formed by processing an SOI substrate.

なお、図15に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。 Note that the transistor 300 illustrated in FIG. 15 is only an example, and the structure thereof is not limited, and an appropriate transistor may be used depending on the circuit configuration and the driving method.

<容量素子100>
容量素子100は、トランジスタ200の上方に設けられる。容量素子100は、第1の電極として機能する導電体110と、第2の電極として機能する導電体120、および誘電体として機能する絶縁体130とを有する。
<Capacitor 100>
The capacitor 100 is provided above the transistor 200 . The capacitor 100 has a conductor 110 functioning as a first electrode, a conductor 120 functioning as a second electrode, and an insulator 130 functioning as a dielectric.

また、例えば、導電体246上に設けた導電体112と、導電体110は、同時に形成することができる。なお、導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。 Further, for example, the conductor 112 provided over the conductor 246 and the conductor 110 can be formed at the same time. Note that the conductor 112 functions as a plug or a wiring electrically connected to the capacitor 100 , the transistor 200 , or the transistor 300 .

図15では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。 Although the conductors 112 and 110 have a single-layer structure in FIGS. 15A and 15B, they are not limited to this structure and may have a stacked structure of two or more layers. For example, between a conductor with a barrier property and a conductor with high conductivity, a conductor with a barrier property and a conductor with high adhesion to the conductor with high conductivity may be formed.

また、絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。 The insulator 130 is, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, hafnium oxide, hafnium oxynitride, hafnium nitride oxide, or hafnium nitride. etc., and can be provided as a laminate or a single layer.

例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high-k)材料との積層構造を用いることが好ましい。当該構成により、容量素子100は、高誘電率(high-k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。 For example, the insulator 130 preferably has a layered structure of a material with high dielectric strength such as silicon oxynitride and a high dielectric constant (high-k) material. With this configuration, the capacitive element 100 includes an insulator with a high dielectric constant (high-k), so that a sufficient capacitance can be secured, and an insulator with a high dielectric strength improves the dielectric strength and increases the capacitance. Electrostatic breakdown of the element 100 can be suppressed.

なお、高誘電率(high-k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。 Note that insulators of high dielectric constant (high-k) materials (high dielectric constant materials) include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, and oxynitrides containing aluminum and hafnium. , oxides with silicon and hafnium, oxynitrides with silicon and hafnium, or nitrides with silicon and hafnium.

一方、絶縁耐力が大きい材料(低い比誘電率の材料)としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。 On the other hand, materials with high dielectric strength (materials with low dielectric constant) include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon, and nitrogen. There are doped silicon oxide, silicon oxide with vacancies, resin, and the like.

<配線層>
各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
<Wiring layer>
A wiring layer provided with an interlayer film, a wiring, a plug, and the like may be provided between the structures. Also, the wiring layer can be provided in a plurality of layers depending on the design. Here, for conductors that function as plugs or wiring, a plurality of structures may be grouped together and given the same reference numerals. Further, in this specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, there are cases where a part of the conductor functions as a wiring and a part of the conductor functions as a plug.

例えば、トランジスタ300上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。 For example, an insulator 320 , an insulator 322 , an insulator 324 , and an insulator 326 are stacked in this order over the transistor 300 as interlayer films. In addition, conductors 328, 330, and the like electrically connected to the capacitor 100 or the transistor 200 are embedded in the insulators 320, 322, 324, and 326, respectively. Note that the conductors 328 and 330 function as plugs or wirings.

また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。 Moreover, the insulator functioning as an interlayer film may function as a planarization film covering the uneven shape thereunder. For example, the top surface of the insulator 322 may be planarized by a chemical mechanical polishing (CMP) method or the like to improve planarity.

絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図15において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。 A wiring layer may be provided over the insulator 326 and the conductor 330 . For example, in FIG. 15, an insulator 350, an insulator 352, and an insulator 354 are stacked in this order. A conductor 356 is formed over the insulators 350 , 352 , and 354 . Conductor 356 functions as a plug or wiring.

同様に、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、及びトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。さらに、導電体120、および絶縁体130上には、絶縁体150が設けられている。 Similarly, the insulator 210 , the insulator 212 , the insulator 214 , and the insulator 216 are embedded with a conductor 218 , a conductor forming the transistor 200 (the conductor 205 ), and the like. Note that the conductor 218 functions as a plug or wiring that is electrically connected to the capacitor 100 or the transistor 300 . Further, an insulator 150 is provided over the conductor 120 and the insulator 130 .

層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。 Insulators that can be used as the interlayer film include insulating oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, metal nitride oxides, and the like.

例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。 For example, by using a material with a low dielectric constant as an insulator functioning as an interlayer film, the parasitic capacitance generated between wirings can be reduced. Therefore, the material should be selected according to the function of the insulator.

例えば、絶縁体150、絶縁体212、絶縁体352、および絶縁体354等には、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。 For example, the insulator 150, the insulator 212, the insulator 352, the insulator 354, and the like preferably have an insulator with a low dielectric constant. For example, the insulator includes silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide doped with fluorine, silicon oxide doped with carbon, silicon oxide doped with carbon and nitrogen, and silicon oxide with vacancies. Alternatively, it is preferable to have a resin or the like. Alternatively, the insulator is silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having vacancies. and resin. Since silicon oxide and silicon oxynitride are thermally stable, by combining them with a resin, a laminated structure that is thermally stable and has a low dielectric constant can be obtained. Examples of resin include polyester, polyolefin, polyamide (nylon, aramid, etc.), polyimide, polycarbonate, acrylic, and the like.

また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体210、および絶縁体350等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。 In addition, when a transistor including an oxide semiconductor is surrounded by an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen, electrical characteristics of the transistor can be stabilized. Therefore, an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen may be used for the insulator 210, the insulator 350, and the like.

水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。 Examples of insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. Insulators including lanthanum, neodymium, hafnium, or tantalum may be used in single layers or stacks. Specifically, as an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen, aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or A metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.

配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。 Conductors that can be used for wiring and plugs include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, and indium. , ruthenium and the like can be used. Alternatively, a semiconductor with high electrical conductivity, typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.

例えば、導電体328、導電体330、導電体356、導電体218、および導電体112等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。 For example, the conductor 328, the conductor 330, the conductor 356, the conductor 218, the conductor 112, and the like are metal materials, alloy materials, metal nitride materials, metal oxide materials, or the like formed of any of the above materials. of conductive materials can be used in a single layer or in lamination. It is preferable to use a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably made of a low-resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low-resistance conductive material.

<<酸化物半導体が設けられた層の配線、またはプラグ>>
なお、トランジスタ200に、酸化物半導体を用いる場合、酸化物半導体の近傍に過剰酸素領域を有する絶縁体が設けることがある。その場合、該過剰酸素領域を有する絶縁体と、該過剰酸素領域を有する絶縁体に設ける導電体との間に、バリア性を有する絶縁体を設けることが好ましい。
<<Wiring or Plug in Layer Provided with Oxide Semiconductor>>
Note that when an oxide semiconductor is used for the transistor 200, an insulator having an excess oxygen region is provided near the oxide semiconductor in some cases. In that case, an insulator having a barrier property is preferably provided between the insulator having the excess oxygen region and the conductor provided in the insulator having the excess oxygen region.

例えば、図15では、絶縁体224と、導電体246との間に、絶縁体276を設けるとよい。特に、導電体246は、過剰酸素領域を有する絶縁体224を挟む絶縁体222と、絶縁体254および絶縁体244と、接して設けられることが好ましい。絶縁体276と、絶縁体222、および絶縁体281とが接して設けられることで、絶縁体224、およびトランジスタ200は、バリア性を有する絶縁体により、封止する構造とすることができる。さらに、絶縁体276は、絶縁体280の一部とも接することが好ましい。絶縁体276が、絶縁体280まで延在していることで、酸素や不純物の拡散を、より抑制することができる。 For example, in FIG. 15, insulator 276 may be provided between insulator 224 and conductor 246 . In particular, the conductor 246 is preferably provided in contact with the insulator 222 sandwiching the insulator 224 having the excess oxygen region, the insulator 254 and the insulator 244 . By providing the insulator 276, the insulator 222, and the insulator 281 in contact with each other, the insulator 224 and the transistor 200 can be sealed with an insulator having a barrier property. Further, insulator 276 preferably contacts a portion of insulator 280 as well. By extending the insulator 276 to the insulator 280, diffusion of oxygen and impurities can be further suppressed.

つまり、絶縁体276を設けることで、絶縁体224が有する過剰酸素が、導電体246に吸収されることを抑制することができる。また、絶縁体276を有することで、不純物である水素が、導電体246を介して、トランジスタ200へ拡散することを抑制することができる。 In other words, the provision of the insulator 276 can prevent excess oxygen in the insulator 224 from being absorbed by the conductor 246 . In addition, with the insulator 276 , hydrogen, which is an impurity, can be prevented from diffusing into the transistor 200 through the conductor 246 .

なお、絶縁体276としては、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。 Note that an insulating material having a function of suppressing diffusion of impurities such as water or hydrogen and oxygen is preferably used as the insulator 276 . For example, it is preferable to use aluminum oxide or hafnium oxide. In addition, metal oxides such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, or tantalum oxide, silicon nitride oxide, or silicon nitride can also be used.

以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。 The above is the description of the configuration example. With this structure, variation in electrical characteristics can be suppressed and reliability can be improved in a semiconductor device including a transistor including an oxide semiconductor. Alternatively, a transistor including an oxide semiconductor with high on-state current can be provided. Alternatively, a transistor including an oxide semiconductor with low off-state current can be provided. Alternatively, a semiconductor device with reduced power consumption can be provided.

[記憶装置2]
本発明の一態様である半導体装置を使用した、記憶装置の一例を図16に示す。図16に示す記憶装置は、図15で示したトランジスタ200、トランジスタ300、および容量素子100を有する半導体装置に加え、トランジスタ400を有している。
[Storage device 2]
An example of a memory device using a semiconductor device of one embodiment of the present invention is shown in FIG. The memory device illustrated in FIG. 16 includes a transistor 400 in addition to the semiconductor device including the transistor 200, the transistor 300, and the capacitor 100 illustrated in FIG.

トランジスタ400は、トランジスタ200の第2のゲート電圧を制御することができる。例えば、トランジスタ400の第1のゲート及び第2のゲートをソースとダイオード接続し、トランジスタ400のソースと、トランジスタ200の第2のゲートを接続する構成とする。当該構成でトランジスタ200の第2のゲートの負電位を保持するとき、トランジスタ400の第1のゲートーソース間の電圧および、第2のゲートーソース間の電圧は、0Vになる。トランジスタ400において、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流が非常に小さいため、トランジスタ200およびトランジスタ400に電源供給をしなくても、トランジスタ200の第2のゲートの負電位を長時間維持することができる。これにより、トランジスタ200、およびトランジスタ400を有する記憶装置は、長期にわたり記憶内容を保持することが可能である。 Transistor 400 can control the second gate voltage of transistor 200 . For example, the first gate and the second gate of the transistor 400 are diode-connected to the source, and the source of the transistor 400 and the second gate of the transistor 200 are connected. When the second gate of transistor 200 is held at a negative potential in this configuration, the first gate-source voltage and the second gate-source voltage of transistor 400 are 0V. Since the drain current of the transistor 400 is very small when the second gate voltage and the first gate voltage are 0 V, the second gate of the transistor 200 can be operated without supplying power to the transistors 200 and 400 . A negative potential can be maintained for a long time. Accordingly, the memory device including the transistors 200 and 400 can retain memory contents for a long period of time.

従って、図16において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200のゲートと電気的に接続され、配線1006はトランジスタ200のバックゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。配線1007はトランジスタ400のソースと電気的に接続され、配線1008はトランジスタ400のゲートと電気的に接続され、配線1009はトランジスタ400のバックゲートと電気的に接続され、配線1010はトランジスタ400のドレインと電気的に接続されている。ここで、配線1006、配線1007、配線1008、及び配線1009が電気的に接続されている。 Therefore, the wiring 1001 is electrically connected to the source of the transistor 300 and the wiring 1002 is electrically connected to the drain of the transistor 300 in FIG. A wiring 1003 is electrically connected to one of the source and the drain of the transistor 200, a wiring 1004 is electrically connected to the gate of the transistor 200, and a wiring 1006 is electrically connected to the back gate of the transistor 200. . The gate of the transistor 300 and the other of the source and drain of the transistor 200 are electrically connected to one electrode of the capacitor 100, and the wiring 1005 is electrically connected to the other electrode of the capacitor 100. . A wiring 1007 is electrically connected to the source of the transistor 400, a wiring 1008 is electrically connected to the gate of the transistor 400, a wiring 1009 is electrically connected to the back gate of the transistor 400, and a wiring 1010 is the drain of the transistor 400. is electrically connected to Here, the wiring 1006, the wiring 1007, the wiring 1008, and the wiring 1009 are electrically connected.

また、図16に示す記憶装置は、図15に示す記憶装置と同様に、マトリクス状に配置することで、メモリセルアレイを構成することができる。なお、1個のトランジスタ400は、複数のトランジスタ200の第2のゲート電圧を制御することができる。そのため、トランジスタ400は、トランジスタ200よりも、少ない個数を設けるとよい。 Further, the memory device shown in FIG. 16 can form a memory cell array by arranging the memory devices in a matrix like the memory device shown in FIG. Note that one transistor 400 can control the second gate voltages of a plurality of transistors 200 . Therefore, the number of transistors 400 is preferably less than that of the transistors 200 .

<トランジスタ400>
トランジスタ400は、トランジスタ200と、同じ層に形成されており、並行して作製することができるトランジスタである。トランジスタ400は、第1のゲート電極として機能する導電体460(導電体460a、および導電体460b)と、第2のゲート電極として機能する導電体405(導電体405a、および導電体405b)と、ゲート絶縁層として機能する絶縁体220、絶縁体222、絶縁体224、および絶縁体450と、チャネルが形成される領域を有する酸化物430cと、ソースまたはドレインの一方として機能する導電体442a、酸化物431a、および酸化物431bと、ソースまたはドレインの他方として機能する導電体442b、酸化物432a、および酸化物432bと、導電体440(導電体440a、および導電体440b)と、を有する。
<Transistor 400>
The transistor 400 is formed in the same layer as the transistor 200 and can be manufactured in parallel. The transistor 400 includes a conductor 460 (a conductor 460a and a conductor 460b) functioning as a first gate electrode, a conductor 405 (a conductor 405a and a conductor 405b) functioning as a second gate electrode, The insulator 220, the insulator 222, the insulator 224, and the insulator 450 functioning as gate insulating layers, an oxide 430c having a region where a channel is formed, a conductor 442a functioning as one of a source or a drain, and an oxide and an oxide 431b, a conductor 442b functioning as the other of the source and the drain, the oxide 432a and the oxide 432b, and the conductor 440 (the conductor 440a and the conductor 440b).

トランジスタ400において、導電体405は、導電体205と、同じ層である。酸化物431a、および酸化物432aと、酸化物230aと、同じ層であり、酸化物431b、および酸化物432bと、酸化物230bと、同じ層である。導電体442は、導電体242と、同じ層である。酸化物430cは、酸化物230cは同じ層である。絶縁体450は、絶縁体250と、同じ層である。導電体460は、導電体260と、同じ層である。 In transistor 400 , conductor 405 is in the same layer as conductor 205 . The oxides 431a and 432a and the oxide 230a are in the same layer, and the oxides 431b and 432b and the oxide 230b are in the same layer. Conductor 442 is the same layer as conductor 242 . Oxide 430c and oxide 230c are the same layer. Insulator 450 is the same layer as insulator 250 . Conductor 460 is the same layer as conductor 260 .

なお、同じ層に形成された構造体は、同時に形成することができる。例えば、酸化物430cは、酸化物230cとなる酸化膜を加工することで、形成することができる。 Note that structures formed in the same layer can be formed at the same time. For example, the oxide 430c can be formed by processing an oxide film that becomes the oxide 230c.

トランジスタ400の活性層として機能する酸化物430cは、酸化物230などと同様に、酸素欠損が低減され、水素または水などの不純物が低減されている。これにより、トランジスタ400のしきい値電圧を0Vより大きくし、オフ電流を低減し、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流を非常に小さくすることができる。 The oxide 430c functioning as an active layer of the transistor 400 has reduced oxygen vacancies and reduced impurities such as hydrogen and water, similar to the oxide 230 and the like. Accordingly, the threshold voltage of the transistor 400 can be made higher than 0 V, the off-state current can be reduced, and the drain current when the second gate voltage and the first gate voltage are 0 V can be significantly reduced.

<<ダイシングライン>>
以下では、大面積基板を半導体素子ごとに分断することによって、複数の半導体装置をチップ状で取り出す場合に設けられるダイシングライン(スクライブライン、分断ライン、又は切断ラインと呼ぶ場合がある)について説明する。分断方法としては、例えば、まず、基板に半導体素子を分断するための溝(ダイシングライン)を形成した後、ダイシングラインにおいて切断し、複数の半導体装置に分断(分割)する場合がある。
<<Dicing line>>
In the following, dicing lines (sometimes called scribe lines, dividing lines, or cutting lines) provided when taking out a plurality of semiconductor devices in the form of chips by dividing a large-area substrate into individual semiconductor elements will be described. . As a dividing method, for example, grooves (dicing lines) for dividing the semiconductor elements are first formed in the substrate, and then cut along the dicing lines to divide (divide) into a plurality of semiconductor devices.

ここで、例えば、図16に示すように、絶縁体254と、絶縁体222とが接する領域をダイシングラインとなるように設計することが好ましい。つまり、複数のトランジスタ200を有するメモリセル、およびトランジスタ400の外縁に設けられるダイシングラインとなる領域近傍において、絶縁体224に開口を設ける。また、絶縁体224の側面を覆うように、絶縁体254、および絶縁体244を設ける。 Here, for example, as shown in FIG. 16, it is preferable to design a region where the insulator 254 and the insulator 222 are in contact with each other to form a dicing line. That is, openings are provided in the insulator 224 in the vicinity of a memory cell having a plurality of transistors 200 and a region serving as a dicing line provided on the outer edge of the transistor 400 . Further, an insulator 254 and an insulator 244 are provided so as to cover side surfaces of the insulator 224 .

つまり、上記絶縁体224に設けた開口において、絶縁体222と、絶縁体254とが接する。例えば、このとき、絶縁体222と、絶縁体254とを同材料及び同方法を用いて形成してもよい。絶縁体222、および絶縁体254を、同材料、および同方法で設けることで、密着性を高めることができる。例えば、酸化アルミニウムを用いることが好ましい。 That is, the insulator 222 and the insulator 254 are in contact with each other at the opening provided in the insulator 224 . For example, at this time, the insulator 222 and the insulator 254 may be formed using the same material and the same method. By providing the insulator 222 and the insulator 254 using the same material and the same method, adhesion can be improved. For example, it is preferable to use aluminum oxide.

当該構造により、絶縁体222、および絶縁体254で、絶縁体224、トランジスタ200、およびトランジスタ400を包み込むことができる。絶縁体222、および絶縁体254は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体素子が形成された回路領域ごとに、基板を分断することにより、複数のチップに加工しても、分断した基板の側面方向から、水素又は水などの不純物が混入し、トランジスタ200、およびトランジスタ400に拡散することを防ぐことができる。 With this structure, insulator 222 and insulator 254 can wrap insulator 224 , transistor 200 , and transistor 400 . Since the insulators 222 and 254 have a function of suppressing diffusion of oxygen, hydrogen, and water, the substrate is divided into circuit regions in which the semiconductor elements described in this embodiment are formed. Thus, even if a plurality of chips are processed, impurities such as hydrogen or water can be prevented from entering from the side surfaces of the divided substrates and diffusing into the transistors 200 and 400 .

また、当該構造により、絶縁体224の過剰酸素が絶縁体254、および絶縁体222の外部に拡散することを防ぐことができる。従って、絶縁体224の過剰酸素は、効率的にトランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物に供給される。当該酸素により、トランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200、またはトランジスタ400の電気特性の変動を抑制すると共に、信頼性を向上させることができる。 In addition, this structure can prevent excess oxygen in the insulator 224 from diffusing to the outside of the insulators 254 and 222 . Thus, excess oxygen in insulator 224 is efficiently supplied to the oxide in which the channel in transistor 200 or transistor 400 is formed. The oxygen can reduce oxygen vacancies in the oxide in which a channel is formed in the transistor 200 or the transistor 400 . Accordingly, the oxide semiconductor in which the channel of the transistor 200 or the transistor 400 is formed can have low defect state density and stable characteristics. In other words, variation in electrical characteristics of the transistor 200 or the transistor 400 can be suppressed and reliability can be improved.

本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in other embodiments and the like.

(実施の形態3)
本実施の形態では、図17および図18を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある。)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある。)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
(Embodiment 3)
In this embodiment, a transistor using an oxide as a semiconductor (hereinafter also referred to as an OS transistor) and a capacitor according to one embodiment of the present invention are applied with reference to FIGS. A storage device (hereinafter sometimes referred to as an OS memory device) will be described. An OS memory device is a memory device that includes at least a capacitor and an OS transistor that controls charging and discharging of the capacitor. Since the off current of the OS transistor is extremely small, the OS memory device has excellent retention characteristics and can function as a nonvolatile memory.

<記憶装置の構成例>
図17(A)にOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、コントロールロジック回路1460を有する。
<Configuration example of storage device>
FIG. 17A shows an example of the configuration of the OS memory device. A memory device 1400 has a peripheral circuit 1411 and a memory cell array 1470 . Peripheral circuitry 1411 includes row circuitry 1420 , column circuitry 1430 , output circuitry 1440 and control logic circuitry 1460 .

列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、および書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。 Column circuit 1430 has, for example, a column decoder, a precharge circuit, a sense amplifier, a write circuit, and the like. The precharge circuit has a function of precharging the wiring. A sense amplifier has a function of amplifying a data signal read from a memory cell. Note that the above wirings are wirings connected to memory cells included in the memory cell array 1470, and will be described later in detail. The amplified data signal is output to the outside of memory device 1400 via output circuit 1440 as data signal RDATA. Also, the row circuit 1420 has, for example, a row decoder, a word line driver circuit, etc., and can select a row to be accessed.

記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、WDATAは書き込み回路に入力される。 The storage device 1400 is externally supplied with a low power supply voltage (VSS), a high power supply voltage (VDD) for the peripheral circuit 1411, and a high power supply voltage (VIL) for the memory cell array 1470 as power supply voltages. Control signals (CE, WE, RE), an address signal ADDR, and a data signal WDATA are input to the storage device 1400 from the outside. Address signal ADDR is input to the row and column decoders, and WDATA is input to the write circuit.

コントロールロジック回路1460は、外部からの入力信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。 The control logic circuit 1460 processes external input signals (CE, WE, RE) to generate control signals for the row decoder and column decoder. CE is a chip enable signal, WE is a write enable signal, and RE is a read enable signal. The signal processed by the control logic circuit 1460 is not limited to this, and other control signals may be input as needed.

メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。 Memory cell array 1470 has a plurality of memory cells MC and a plurality of wirings arranged in rows and columns. The number of wirings connecting the memory cell array 1470 and the row circuit 1420 is determined by the configuration of the memory cells MC, the number of memory cells MC in one column, and the like. The number of wires connecting the memory cell array 1470 and the column circuit 1430 is determined by the configuration of the memory cells MC, the number of memory cells MC in one row, and the like.

なお、図17(A)において、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図17(B)に示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。 Note that although FIG. 17A shows an example in which the peripheral circuit 1411 and the memory cell array 1470 are formed on the same plane, this embodiment is not limited to this. For example, as shown in FIG. 17B, a memory cell array 1470 may be provided over part of the peripheral circuit 1411 . For example, a structure in which a sense amplifier is provided under the memory cell array 1470 may be employed.

図18に上述のメモリセルMCに適用できるメモリセルの構成例について説明する。 A configuration example of a memory cell that can be applied to the memory cell MC described above will be described with reference to FIG.

[DOSRAM]
図18(A)乃至(C)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図18(A)に示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(フロントゲートと呼ぶ場合がある。)、及びバックゲートを有する。
[DOSRAM]
18A to 18C show circuit configuration examples of memory cells of a DRAM. In this specification and the like, a DRAM using a 1-OS-transistor-1-capacitor-type memory cell is sometimes referred to as a DOSRAM (Dynamic Oxide Semiconductor Random Access Memory). A memory cell 1471 illustrated in FIG. 18A includes a transistor M1 and a capacitor CA. Note that the transistor M1 has a gate (sometimes referred to as a front gate) and a back gate.

トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。 The transistor M1 has a first terminal connected to the first terminal of the capacitor CA, a second terminal connected to the wiring BIL, a gate connected to the wiring WOL, and a back gate of the transistor M1. are connected to the wiring BGL. A second terminal of the capacitive element CA is connected to the wiring CAL.

配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。 The wiring BIL functions as a bit line, and the wiring WOL functions as a word line. The wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CA. A low-level potential is preferably applied to the wiring CAL when data is written and read. The wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M1. By applying an arbitrary potential to the wiring BGL, the threshold voltage of the transistor M1 can be increased or decreased.

また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、図18(B)に示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図18(C)に示すメモリセル1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。 Further, the memory cell MC is not limited to the memory cell 1471, and the circuit configuration can be changed. For example, the memory cell MC may have a structure in which the back gate of the transistor M1 is connected to the wiring WOL instead of the wiring BGL, like the memory cell 1472 illustrated in FIG. 18B. Further, for example, the memory cell MC may be a memory cell including a single-gate transistor, that is, a transistor M1 having no back gate, like a memory cell 1473 shown in FIG. 18C.

上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。 When the semiconductor device described in any of the above embodiments is used for the memory cell 1471 or the like, the transistor 200 can be used as the transistor M1, and the capacitor 100 can be used as the capacitor CA. By using an OS transistor as the transistor M1, leakage current of the transistor M1 can be significantly reduced. In other words, since written data can be held for a long time by the transistor M1, the frequency of refreshing the memory cell can be reduced. Also, the refresh operation of the memory cells can be made unnecessary. In addition, since leakage current is very low, multilevel data or analog data can be held in the memory cells 1471, 1472, and 1473. FIG.

また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。 Further, in the DOSRAM, if the sense amplifier is provided under the memory cell array 1470 as described above, the bit line can be shortened. As a result, the bit line capacity is reduced, and the storage capacity of the memory cell can be reduced.

[NOSRAM]
図18(D)乃至(H)に、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。図18(D)に示す、メモリセル1474は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、及びバックゲートを有する。本明細書等において、トランジスタM2にOSトランジスタを用いたゲインセル型のメモリセルを有する記憶装置を、NOSRAM(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
[NOSRAM]
18D to 18H show a circuit configuration example of a gain cell type memory cell with two transistors and one capacitor. A memory cell 1474 illustrated in FIG. 18D includes a transistor M2, a transistor M3, and a capacitor CB. Note that the transistor M2 has a front gate (sometimes simply referred to as a gate) and a back gate. In this specification and the like, a memory device including a gain cell memory cell using an OS transistor as the transistor M2 is sometimes called a NOSRAM (Nonvolatile Oxide Semiconductor RAM).

トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。 The transistor M2 has a first terminal connected to the first terminal of the capacitor CB, a second terminal connected to the wiring WBL, a gate connected to the wiring WOL, and a back gate of the transistor M2. are connected to the wiring BGL. A second terminal of the capacitive element CB is connected to the wiring CAL. A first terminal of the transistor M3 is connected to the wiring RBL, a second terminal of the transistor M3 is connected to the wiring SL, and a gate of the transistor M3 is connected to the first terminal of the capacitor CB.

配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。 The wiring WBL functions as a write bit line, the wiring RBL functions as a read bit line, and the wiring WOL functions as a word line. The wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CB. A low-level potential is preferably applied to the wiring CAL when data is written, during data retention, and when data is read. The wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M2. By applying an arbitrary potential to the wiring BGL, the threshold voltage of the transistor M2 can be increased or decreased.

また、メモリセルMCは、メモリセル1474に限定されず、回路の構成を適宜変更することができる。例えば、メモリセルMCは、図18(E)に示すメモリセル1475のように、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図18(F)に示すメモリセル1476のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM2で構成されたメモリセルとしてもよい。また、例えば、メモリセルMCは、図18(G)に示すメモリセル1477のように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。 Further, the memory cell MC is not limited to the memory cell 1474, and the circuit configuration can be changed as appropriate. For example, the memory cell MC may have a structure in which the back gate of the transistor M2 is connected to the wiring WOL instead of the wiring BGL, like the memory cell 1475 illustrated in FIG. Further, for example, the memory cell MC may be a memory cell including a single-gate transistor, that is, a transistor M2 having no back gate, like the memory cell 1476 shown in FIG. 18F. Further, for example, the memory cell MC may have a structure in which the wiring WBL and the wiring RBL are combined into one wiring BIL, like the memory cell 1477 illustrated in FIG.

上記実施の形態に示す半導体装置をメモリセル1474等に用いる場合、トランジスタM2としてトランジスタ200を用い、トランジスタM3としてトランジスタ300を用い、容量素子CBとして容量素子100を用いることができる。トランジスタM2としてOSトランジスタを用いることによって、トランジスタM2のリーク電流を非常に低くすることができる。これにより、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1474に多値データ、又はアナログデータを保持することができる。メモリセル1475乃至1477も同様である。 When the semiconductor device described in any of the above embodiments is used for the memory cell 1474 or the like, the transistor 200 can be used as the transistor M2, the transistor 300 can be used as the transistor M3, and the capacitor 100 can be used as the capacitor CB. By using an OS transistor as the transistor M2, the leakage current of the transistor M2 can be very low. Accordingly, written data can be held for a long time by the transistor M2, so that the frequency of refreshing the memory cell can be reduced. Also, the refresh operation of the memory cells can be made unnecessary. In addition, since the leakage current is very low, the memory cell 1474 can hold multilevel data or analog data. Memory cells 1475 to 1477 are similar.

なお、トランジスタM3は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタと呼ぶ場合がある)であってもよい。Siトランジスタの導電型は、nチャネル型としてもよいし、pチャネル型としてもよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合がある。よって、読み出しトランジスタとして機能するトランジスタM3として、Siトランジスタを用いてもよい。また、トランジスタM3にSiトランジスタを用いることで、トランジスタM3の上に積層してトランジスタM2を設けることができるので、メモリセルの占有面積を低減し、記憶装置の高集積化を図ることができる。 Note that the transistor M3 may be a transistor including silicon in a channel formation region (hereinafter also referred to as a Si transistor). The conductivity type of the Si transistor may be n-channel type or p-channel type. A Si transistor may have higher field effect mobility than an OS transistor. Therefore, a Si transistor may be used as the transistor M3 that functions as a read transistor. Further, by using a Si transistor for the transistor M3, the transistor M2 can be stacked on the transistor M3, so that the area occupied by the memory cell can be reduced and the integration of the memory device can be increased.

また、トランジスタM3はOSトランジスタであってもよい。トランジスタM2、M3にOSトランジスタを用いた場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。 Alternatively, the transistor M3 may be an OS transistor. When OS transistors are used for the transistors M2 and M3, the memory cell array 1470 can be configured using only n-channel transistors.

また、図18(H)に3トランジスタ1容量素子のゲインセル型のメモリセルの一例を示す。図18(H)に示すメモリセル1478は、トランジスタM4乃至M6、および容量素子CCを有する。容量素子CCは適宜設けられる。メモリセル1478は、配線BIL、RWL、WWL、BGL、およびGNDLに電気的に接続されている。配線GNDLは低レベル電位を与える配線である。なお、メモリセル1478を、配線BILに代えて、配線RBL、WBLに電気的に接続してもよい。 Further, FIG. 18H shows an example of a gain cell type memory cell with three transistors and one capacitor. A memory cell 1478 illustrated in FIG. 18H includes transistors M4 to M6 and a capacitor CC. Capacitive element CC is provided as appropriate. The memory cell 1478 is electrically connected to wirings BIL, RWL, WWL, BGL, and GNDL. A wiring GNDL is a wiring for applying a low-level potential. Note that the memory cell 1478 may be electrically connected to the wirings RBL and WBL instead of the wiring BIL.

トランジスタM4は、バックゲートを有するOSトランジスタであり、バックゲートは配線BGLに電気的に接続されている。なお、トランジスタM4のバックゲートとゲートとを互いに電気的に接続してもよい。あるいは、トランジスタM4はバックゲートを有さなくてもよい。 The transistor M4 is an OS transistor having a backgate, and the backgate is electrically connected to the wiring BGL. Note that the back gate and gate of the transistor M4 may be electrically connected to each other. Alternatively, transistor M4 may not have a backgate.

なお、トランジスタM5、M6はそれぞれ、nチャネル型Siトランジスタまたはpチャネル型Siトランジスタでもよい。或いは、トランジスタM4乃至M6がOSトランジスタでもよい、この場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。 Note that the transistors M5 and M6 may each be an n-channel Si transistor or a p-channel Si transistor. Alternatively, the transistors M4 to M6 may be OS transistors. In this case, the memory cell array 1470 can be configured using only n-channel transistors.

上記実施の形態に示す半導体装置をメモリセル1478に用いる場合、トランジスタM4としてトランジスタ200を用い、トランジスタM5、M6としてトランジスタ300を用い、容量素子CCとして容量素子100を用いることができる。トランジスタM4としてOSトランジスタを用いることによって、トランジスタM4のリーク電流を非常に低くすることができる。 When the semiconductor device described in any of the above embodiments is used for the memory cell 1478, the transistor 200 can be used as the transistor M4, the transistor 300 can be used as the transistors M5 and M6, and the capacitor 100 can be used as the capacitor CC. By using an OS transistor as the transistor M4, the leakage current of the transistor M4 can be made very low.

なお、本実施の形態に示す、周辺回路1411、およびメモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。 Note that the structures of the peripheral circuit 1411, the memory cell array 1470, and the like described in this embodiment are not limited to those described above. Arrangements or functions of these circuits and wiring, circuit elements, etc. connected to the circuits may be changed, deleted, or added as necessary.

本実施の形態に示す構成は、他の実施の形態などに示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be used in combination with any of the structures described in other embodiments or the like as appropriate.

(実施の形態4)
本実施の形態では、図19を用いて、本発明の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
(Embodiment 4)
In this embodiment mode, an example of a chip 1200 on which the semiconductor device of the present invention is mounted is shown with reference to FIG. A plurality of circuits (systems) are mounted on the chip 1200 . Such a technique of integrating a plurality of circuits (systems) on one chip is sometimes called System on Chip (SoC).

図19(A)に示すように、チップ1200は、CPU(Central Processing Unit)1211、GPU(Graphics Processing Unit)1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。 As shown in FIG. 19A, a chip 1200 includes a CPU (Central Processing Unit) 1211, a GPU (Graphics Processing Unit) 1212, one or more analog calculation units 1213, one or more memory controllers 1214, one or more interface 1215, one or more network circuits 1216, and the like.

チップ1200には、バンプ(図示しない)が設けられ、図19(B)に示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。 The chip 1200 is provided with bumps (not shown) and is connected to a first surface of a printed circuit board (PCB) 1201 as shown in FIG. 19B. A plurality of bumps 1202 are provided on the back side of the first surface of the PCB 1201 and connected to the motherboard 1203 .

マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。また、例えば、フラッシュメモリ1222に先の実施の形態に示すNOSRAMを用いることができる。 The mother board 1203 may be provided with storage devices such as a DRAM 1221 and a flash memory 1222 . For example, the DOSRAM shown in the previous embodiment can be used for the DRAM 1221 . Further, for example, the NOSRAM described in the above embodiment can be used for the flash memory 1222 .

CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したNOSRAMや、DOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、本発明の酸化物半導体を用いた画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。 The CPU 1211 preferably has multiple CPU cores. Also, the GPU 1212 preferably has multiple GPU cores. Also, the CPU 1211 and GPU 1212 may each have a memory for temporarily storing data. Alternatively, a memory common to the CPU 1211 and the GPU 1212 may be provided in the chip 1200 . The above-mentioned NOSRAM or DOSRAM can be used for the memory. Also, the GPU 1212 is suitable for parallel calculation of a large amount of data, and can be used for image processing and sum-of-products operations. By providing the image processing circuit using the oxide semiconductor of the present invention and the product-sum operation circuit in the GPU 1212, image processing and product-sum operation can be performed with low power consumption.

また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。 In addition, since the CPU 1211 and the GPU 1212 are provided on the same chip, the wiring between the CPU 1211 and the GPU 1212 can be shortened. And, after the calculation by the GPU 1212, transfer of the calculation result from the GPU 1212 to the CPU 1211 can be performed at high speed.

アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。 The analog computation unit 1213 has one or both of an A/D (analog/digital) conversion circuit and a D/A (digital/analog) conversion circuit. Further, the analog calculation unit 1213 may be provided with the sum-of-products calculation circuit.

メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。 Memory controller 1214 has a circuit that functions as a controller for DRAM 1221 and a circuit that functions as an interface for flash memory 1222 .

インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)などを用いることができる。 The interface 1215 has an interface circuit with externally connected devices such as a display device, speaker, microphone, camera, and controller. Controllers include mice, keyboards, game controllers, and the like. USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), etc. can be used as such an interface.

ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。 The network circuit 1216 has a network circuit such as a LAN (Local Area Network). It may also have circuitry for network security.

チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。 The circuit (system) can be formed in the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, there is no need to increase the number of manufacturing processes, and the chip 1200 can be manufactured at low cost.

GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。 A PCB 1201 provided with a chip 1200 having a GPU 1212 , a motherboard 1203 provided with a DRAM 1221 and a flash memory 1222 can be referred to as a GPU module 1204 .

GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの演算を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。 Since the GPU module 1204 has the chip 1200 using SoC technology, its size can be reduced. In addition, since it excels in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (portable) game machines. In addition, a product-sum operation circuit using the GPU 1212 enables a deep neural network (DNN), a convolutional neural network (CNN), a recurrent neural network (RNN), an autoencoder, a deep Boltzmann machine (DBM), a deep belief network ( DBN), the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be used in appropriate combination with any of the structures described in other embodiments.

(実施の形態5)
本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータや、ノート型のコンピュータや、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図20にリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
(Embodiment 5)
In this embodiment, an application example of a memory device using the semiconductor device described in any of the above embodiments will be described. The semiconductor devices described in the above embodiments are, for example, storage devices of various electronic devices (for example, information terminals, computers, smartphones, electronic book terminals, digital cameras (including video cameras), recording/reproducing devices, navigation systems, etc.). can be applied to Here, the computer includes a tablet computer, a notebook computer, a desktop computer, and a large computer such as a server system. Alternatively, the semiconductor devices described in the above embodiments are applied to various removable storage devices such as memory cards (for example, SD cards), USB memories, and SSDs (solid state drives). FIG. 20 schematically shows some configuration examples of the removable storage device. For example, the semiconductor devices described in the previous embodiments are processed into packaged memory chips and used for various storage devices and removable memories.

図20(A)はUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。基板1104のメモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。 FIG. 20A is a schematic diagram of a USB memory. USB memory 1100 has housing 1101 , cap 1102 , USB connector 1103 and substrate 1104 . A substrate 1104 is housed in a housing 1101 . For example, a memory chip 1105 and a controller chip 1106 are attached to the substrate 1104 . The semiconductor device described in any of the above embodiments can be incorporated in the memory chip 1105 of the substrate 1104 or the like.

図20(B)はSDカードの外観の模式図であり、図20(C)は、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。基板1113のメモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。 FIG. 20B is a schematic diagram of the appearance of the SD card, and FIG. 20C is a schematic diagram of the internal structure of the SD card. SD card 1110 has housing 1111 , connector 1112 and substrate 1113 . A substrate 1113 is housed in a housing 1111 . For example, a memory chip 1114 and a controller chip 1115 are attached to the substrate 1113 . By providing a memory chip 1114 also on the back side of the substrate 1113, the capacity of the SD card 1110 can be increased. Alternatively, a wireless chip having a wireless communication function may be provided on the substrate 1113 . As a result, data can be read from and written to the memory chip 1114 by wireless communication between the host device and the SD card 1110 . The semiconductor device described in any of the above embodiments can be incorporated in the memory chip 1114 of the substrate 1113 or the like.

図20(D)はSSDの外観の模式図であり、図20(E)は、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。基板1153のメモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。 FIG. 20D is a schematic diagram of the appearance of the SSD, and FIG. 20E is a schematic diagram of the internal structure of the SSD. SSD 1150 has housing 1151 , connector 1152 and substrate 1153 . A substrate 1153 is housed in a housing 1151 . For example, substrate 1153 has memory chip 1154 , memory chip 1155 and controller chip 1156 attached thereto. A memory chip 1155 is a work memory for the controller chip 1156, and may be a DOSRAM chip, for example. By providing a memory chip 1154 also on the back side of the substrate 1153, the capacity of the SSD 1150 can be increased. The semiconductor device described in any of the above embodiments can be incorporated in the memory chip 1154 of the substrate 1153 or the like.

本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in other embodiments and the like.

(実施の形態6)
本発明の一態様に係る半導体装置は、CPUやGPUなどのプロセッサ、またはチップに用いることができる。図21に、本発明の一態様に係るCPUやGPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
(Embodiment 6)
A semiconductor device according to one embodiment of the present invention can be used for a processor such as a CPU or a GPU, or a chip. FIG. 21 illustrates a specific example of an electronic device including a processor such as a CPU or GPU or a chip according to one embodiment of the present invention.

<電子機器・システム>
本発明の一態様に係るGPU又はチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルチップ、チップ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様に係る集積回路又はチップを電子機器に設けることにより、電子機器に人工知能を搭載することができる。
<Electronic Devices/Systems>
A GPU or chip according to one aspect of the present invention can be mounted on various electronic devices. Examples of electronic devices include, for example, televisions, desktop or notebook personal chips, monitors for chips, digital signage (digital signage), and relatively large game machines such as pachinko machines. In addition to electronic devices having a screen, there are digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, sound reproducing devices, and the like. Further, by providing an electronic device with the integrated circuit or chip according to one embodiment of the present invention, the electronic device can be equipped with artificial intelligence.

本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。 An electronic device of one embodiment of the present invention may have an antenna. An image, information, or the like can be displayed on the display portion by receiving a signal with the antenna. Moreover, when an electronic device has an antenna and a secondary battery, the antenna may be used for contactless power transmission.

本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。 The electronic device of one embodiment of the present invention includes sensors (force, displacement, position, speed, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared).

本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図21に、電子機器の例を示す。 An electronic device of one embodiment of the present invention can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like. FIG. 21 shows an example of an electronic device.

[携帯電話] [mobile phone]

図21(A)には、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。 FIG. 21A illustrates a mobile phone (smartphone), which is a type of information terminal. The information terminal 5500 includes a housing 5510 and a display portion 5511. As an input interface, the display portion 5511 is provided with a touch panel, and the housing 5510 is provided with buttons.

情報端末5500は、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5511に表示するアプリケーション、表示部5511に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5511に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。 By applying the chip of one embodiment of the present invention, the information terminal 5500 can execute an application using artificial intelligence. Examples of applications using artificial intelligence include an application that recognizes a conversation and displays the content of the conversation on the display unit 5511, an application that recognizes characters, graphics, etc. input by the user to the touch panel provided in the display unit 5511, An application displayed on the display portion 5511, an application for performing biometric authentication such as a fingerprint or a voiceprint, and the like are given.

[情報端末1]
図21(B)には、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
[Information terminal 1]
FIG. 21B illustrates a desktop information terminal 5300 . The desktop information terminal 5300 has an information terminal main body 5301 , a display 5302 and a keyboard 5303 .

デスクトップ型情報端末5300は、先述した情報端末5500と同様に、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、デスクトップ型情報端末5300を用いることで、新規の人工知能の開発を行うことができる。 As with the information terminal 5500 described above, the desktop information terminal 5300 can execute an application using artificial intelligence by applying the chip of one embodiment of the present invention. Examples of applications using artificial intelligence include design support software, text correction software, and automatic menu generation software. Further, by using the desktop information terminal 5300, it is possible to develop new artificial intelligence.

なお、上述では、電子機器としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図21(A)、(B)に図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。 In the above description, a smartphone and a desktop information terminal are shown as examples of electronic devices in FIGS. 21A and 21B, respectively. can. Examples of information terminals other than smart phones and desktop information terminals include PDAs (Personal Digital Assistants), laptop information terminals, and workstations.

[電化製品]
図21(C)は、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
[electric appliances]
FIG. 21C shows an electric refrigerator-freezer 5800, which is an example of an electrical appliance. The electric freezer-refrigerator 5800 has a housing 5801, a refrigerator compartment door 5802, a freezer compartment door 5803, and the like.

電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。 By applying the chip of one embodiment of the present invention to the electric refrigerator-freezer 5800, the electric refrigerator-freezer 5800 having artificial intelligence can be realized. By using artificial intelligence, the electric freezer-refrigerator 5800 has a function of automatically generating a menu based on the ingredients stored in the electric freezer-refrigerator 5800 and the expiration date of the ingredients, etc. It can have a function of automatically adjusting the temperature according to the ingredients.

本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。 In this example, an electric refrigerator/freezer was explained as an electric appliance, but other electric appliances include, for example, a vacuum cleaner, a microwave oven, a microwave oven, a rice cooker, a water heater, an IH cooker, a water server, and an air conditioner. Appliances, washing machines, dryers, audiovisual equipment, etc.

[ゲーム機] [game machine]

図21(D)は、ゲーム機の一例である携帯ゲーム機5200を示している。携帯ゲーム機は、筐体5201、表示部5202、ボタン5203等を有する。 FIG. 21D shows a portable game machine 5200, which is an example of a game machine. The portable game machine includes a housing 5201, a display portion 5202, buttons 5203, and the like.

携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。 By applying the GPU or chip of one embodiment of the present invention to the portable game machine 5200, the portable game machine 5200 with low power consumption can be realized. In addition, the low power consumption can reduce the heat generated from the circuit, so that the influence of the heat on the circuit itself, the peripheral circuits, and the module can be reduced.

更に、携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、人工知能を有する携帯ゲーム機5200を実現することができる。 Furthermore, by applying the GPU or chip of one embodiment of the present invention to the portable game machine 5200, the portable game machine 5200 having artificial intelligence can be realized.

本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5200に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。 Originally, the progress of the game, the speech and behavior of creatures appearing in the game, and the expressions that occur in the game are determined by the program of the game. , which enables expressions not limited to game programs. For example, it is possible to express changes in the content of questions asked by the player, the progress of the game, the time, and the speech and behavior of characters appearing in the game.

また、携帯ゲーム機5200で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。 In addition, when a game requiring a plurality of players is played on the portable game machine 5200, since the game players can be configured in an anthropomorphic manner using artificial intelligence, even one person can can play games.

図21(D)では、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様のGPU又はチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPU又はチップを適用するゲーム機としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。 Although FIG. 21D illustrates a portable game machine as an example of a game machine, the game machine to which the GPU or chip of one embodiment of the present invention is applied is not limited to this. Game machines to which the GPU or chip of one aspect of the present invention is applied include, for example, stationary game machines for home use, arcade game machines installed in entertainment facilities (game centers, amusement parks, etc.), and game machines installed in sports facilities. and a pitching machine for batting practice.

[移動体]
本発明の一態様のGPU又はチップは、移動体である自動車、及び自動車の運転席周辺に適用することができる。
[Moving body]
A GPU or chip of one embodiment of the present invention can be applied to automobiles, which are mobile objects, and to the vicinity of the driver's seat of automobiles.

図21(E1)は移動体の一例である自動車5700を示し、図21(E2)は、自動車の室内におけるフロントガラス周辺を示す図である。図21(E1)では、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。 FIG. 21(E1) shows an automobile 5700 which is an example of a moving object, and FIG. 21(E2) is a diagram showing the vicinity of the windshield in the interior of the automobile. FIG. 21E1 illustrates a display panel 5701, a display panel 5702, and a display panel 5703 attached to a dashboard, and a display panel 5704 attached to a pillar.

表示パネル5701乃至表示パネル5703は、スピードメーターやタコメーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。 Display panels 5701 through 5703 can provide a variety of other information such as speedometer, tachometer, mileage, fuel level, gear status, air conditioner settings, and the like. In addition, the display items and layout displayed on the display panel can be appropriately changed according to the user's preference, and the design can be improved. The display panels 5701 to 5703 can also be used as lighting devices.

表示パネル5704には、自動車5700に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車5700の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。 By displaying an image from an imaging device (not shown) provided in the automobile 5700 on the display panel 5704, the field of view (blind spot) blocked by the pillars can be compensated. That is, by displaying an image from an imaging device provided outside the automobile 5700, blind spots can be compensated for and safety can be enhanced. In addition, by projecting an image that supplements the invisible part, safety confirmation can be performed more naturally and without discomfort. The display panel 5704 can also be used as a lighting device.

本発明の一態様のGPU又はチップは人工知能の構成要素として適用できるため、例えば、当該チップを自動車5700の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。 Since the GPU or chip of one embodiment of the present invention can be applied as a component of artificial intelligence, the chip can be used in the automatic driving system of the automobile 5700, for example. In addition, the chip can be used in a system for road guidance, danger prediction, and the like. The display panels 5701 to 5704 may be configured to display information such as road guidance and danger prediction.

なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、人工知能を利用したシステムを付与することができる。 In addition, in the above description, an automobile is described as an example of a mobile object, but the mobile object is not limited to an automobile. For example, moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), and the like, and the chip of one embodiment of the present invention can be applied to these moving objects. It is possible to give a system using artificial intelligence.

[放送システム]
本発明の一態様のGPU又はチップは、放送システムに適用することができる。
[Broadcast system]
A GPU or chip of one aspect of the present invention can be applied to a broadcasting system.

図21(F)は、放送システムにおけるデータ伝送を模式的に示している。具体的には、図21(F)は、放送局5680から送信された電波(放送信号)が、各家庭のテレビジョン受信装置(TV)5600に届くまでの経路を示している。TV5600は、受信装置を備え(図示しない。)、アンテナ5650で受信された放送信号は、当該受信装置を介して、TV5600に送信される。 FIG. 21(F) schematically shows data transmission in the broadcasting system. Specifically, FIG. 21(F) shows the route of a radio wave (broadcast signal) transmitted from a broadcasting station 5680 reaching a television receiver (TV) 5600 in each home. The TV 5600 includes a receiving device (not shown), and broadcast signals received by the antenna 5650 are transmitted to the TV 5600 via the receiving device.

図21(F)では、アンテナ5650は、UHF(Ultra High Frequency)アンテナを図示しているが、アンテナ5650としては、BS・110°CSアンテナ、CSアンテナなども適用できる。 Although FIG. 21F illustrates a UHF (Ultra High Frequency) antenna as the antenna 5650, a BS/110° CS antenna, a CS antenna, or the like can also be applied as the antenna 5650. FIG.

電波5675A、電波5675Bは地上波放送用の放送信号であり、電波塔5670は受信した電波5675Aを増幅して、電波5675Bの送信を行う。各家庭では、アンテナ5650で電波5675Bを受信することで、TV5600で地上波TV放送を視聴することができる。なお、放送システムは、図21(F)に示す地上波放送に限定せず、人工衛星を用いた衛星放送、光回線によるデータ放送などとしてもよい。 Radio waves 5675A and 5675B are broadcast signals for terrestrial broadcasting, and radio tower 5670 amplifies received radio waves 5675A and transmits radio waves 5675B. At each home, the antenna 5650 receives the radio wave 5675B, so that the TV 5600 can watch the terrestrial TV broadcast. The broadcasting system is not limited to the terrestrial broadcasting shown in FIG. 21(F), but may be satellite broadcasting using an artificial satellite, data broadcasting using an optical line, or the like.

上述した放送システムは、本発明の一態様のチップを適用して、人工知能を利用した放送システムとしてもよい。放送局5680から各家庭のTV5600に放送データを送信するとき、エンコーダによって放送データの圧縮が行われ、アンテナ5650が当該放送データを受信したとき、TV5600に含まれる受信装置のデコーダによって当該放送データの復元が行われる。人工知能を利用することによって、例えば、エンコーダの圧縮方法の一である動き補償予測において、表示画像に含まれる表示パターンの認識を行うことができる。また、人工知能を利用したフレーム内予測などを行うこともできる。また、例えば、解像度の低い放送データを受信して、解像度の高いTV5600で当該放送データの表示を行うとき、デコーダによる放送データの復元において、アップコンバートなどの画像の補間処理を行うことができる。 The above-described broadcasting system may be a broadcasting system using artificial intelligence by applying the chip of one embodiment of the present invention. When broadcast data is transmitted from the broadcasting station 5680 to the TV 5600 in each home, the encoder compresses the broadcast data, and when the antenna 5650 receives the broadcast data, the decoder of the receiving device included in the TV 5600 converts the broadcast data. Restore is done. By using artificial intelligence, for example, it is possible to recognize a display pattern included in a display image in motion compensation prediction, which is one of compression methods of an encoder. Intra-frame prediction using artificial intelligence can also be performed. Further, for example, when receiving low-resolution broadcast data and displaying the broadcast data on a high-resolution TV 5600, image interpolation processing such as up-conversion can be performed in restoring the broadcast data by the decoder.

上述した人工知能を利用した放送システムは、放送データの量が増大する超高精細度テレビジョン(UHDTV:4K、8K)放送に対して好適である。 The above-described broadcasting system using artificial intelligence is suitable for ultra-high definition television (UHDTV: 4K, 8K) broadcasting where the amount of broadcasting data increases.

また、TV5600側における人工知能の応用として、例えば、TV5600に人工知能を有する録画装置を設けてもよい。このような構成にすることによって、当該録画装置にユーザの好みを人工知能に学習させることで、ユーザの好みにあった番組を自動的に録画することができる。 Also, as an application of artificial intelligence on the TV 5600 side, for example, the TV 5600 may be provided with a recording device having artificial intelligence. With such a configuration, it is possible to automatically record a program that suits the user's taste by having the recording device learn the user's taste using artificial intelligence.

本実施の形態で説明した電子機器、その電子機器の機能、人工知能の応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。 The electronic devices, the functions of the electronic devices, the application examples of artificial intelligence, the effects thereof, and the like described in this embodiment can be appropriately combined with the description of other electronic devices.

本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in other embodiments and the like.

100 容量素子
110 導電体
112 導電体
120 導電体
130 絶縁体
150 絶縁体
200 トランジスタ
200A トランジスタ
203 導電体
203b 導電体
205 導電体
205a 導電体
205b 導電体
210 絶縁体
212 絶縁体
214 絶縁体
216 絶縁体
218 導電体
220 絶縁体
222 絶縁体
224 絶縁体
230 酸化物
230a 酸化物
230A 酸化膜
230b 酸化物
230B 酸化膜
230c 酸化物
230C 酸化膜
231 領域
231a 領域
231b 領域
234 領域
240 導電体
240a 導電体
240b 導電体
241 絶縁体
241a 絶縁体
241b 絶縁体
242 導電体
242a 導電体
242A 導電膜
242B 導電体層
242b 導電体
243 領域
243a 領域
243b 領域
244 絶縁体
246 導電体
250 絶縁体
250A 絶縁膜
254 絶縁体
254A 絶縁膜
255 絶縁体
255A 絶縁膜
260 導電体
260a 導電体
260Aa 導電膜
260Ab 導電膜
260b 導電体
262 ダミーゲート
262A ダミーゲート層
273 絶縁体
274 絶縁体
276 絶縁体
280 絶縁体
281 絶縁体
291 酸素
293 領域
300 トランジスタ
311 基板
313 半導体領域
314a 低抵抗領域
314b 低抵抗領域
315 絶縁体
316 導電体
320 絶縁体
322 絶縁体
324 絶縁体
326 絶縁体
328 導電体
330 導電体
350 絶縁体
352 絶縁体
354 絶縁体
356 導電体
400 トランジスタ
405 導電体
405a 導電体
405b 導電体
430c 酸化物
431a 酸化物
431b 酸化物
432a 酸化物
432b 酸化物
440 導電体
440a 導電体
440b 導電体
442 導電体
442a 導電体
442b 導電体
450 絶縁体
460 導電体
460a 導電体
460b 導電体
1001 配線
1002 配線
1003 配線
1004 配線
1005 配線
1006 配線
1007 配線
1008 配線
1009 配線
1010 配線
1100 USBメモリ
1101 筐体
1102 キャップ
1103 USBコネクタ
1104 基板
1105 メモリチップ
1106 コントローラチップ
1110 SDカード
1111 筐体
1112 コネクタ
1113 基板
1114 メモリチップ
1115 コントローラチップ
1150 SSD
1151 筐体
1152 コネクタ
1153 基板
1154 メモリチップ
1155 メモリチップ
1156 コントローラチップ
1200 チップ
1201 PCB
1202 バンプ
1203 マザーボード
1204 GPUモジュール
1211 CPU
1212 GPU
1213 アナログ演算部
1214 メモリコントローラ
1215 インターフェース
1216 ネットワーク回路
1221 DRAM
1222 フラッシュメモリ
1400 記憶装置
1411 周辺回路
1420 行回路
1430 列回路
1440 出力回路
1460 コントロールロジック回路
1470 メモリセルアレイ
1471 メモリセル
1472 メモリセル
1473 メモリセル
1474 メモリセル
1475 メモリセル
1476 メモリセル
1477 メモリセル
1478 メモリセル
5200 携帯ゲーム機
5201 筐体
5202 表示部
5203 ボタン
5300 デスクトップ型情報端末
5301 本体
5302 ディスプレイ
5303 キーボード
5500 情報端末
5510 筐体
5511 表示部
5600 TV
5650 アンテナ
5670 電波塔
5675A 電波
5675B 電波
5680 放送局
5700 自動車
5701 表示パネル
5702 表示パネル
5703 表示パネル
5704 表示パネル
5800 電気冷凍冷蔵庫
5801 筐体
5802 冷蔵室用扉
5803 冷凍室用扉
100 Capacitor 110 Conductor 112 Conductor 120 Conductor 130 Insulator 150 Insulator 200 Transistor 200A Transistor 203 Conductor 203b Conductor 205 Conductor 205a Conductor 205b Conductor 210 Insulator 212 Insulator 214 Insulator 216 Insulator 218 Conductor 220 Insulator 222 Insulator 224 Insulator 230 Oxide 230a Oxide 230A Oxide film 230b Oxide 230B Oxide film 230c Oxide 230C Oxide film 231 Region 231a Region 231b Region 234 Region 240 Conductor 240a Conductor 240b Conductor 241 Insulator 241a Insulator 241b Insulator 242 Conductor 242a Conductor 242A Conductive film 242B Conductor layer 242b Conductor 243 Region 243a Region 243b Region 244 Insulator 246 Conductor 250 Insulator 250A Insulator 254 Insulator 254A Insulator 255 Insulation Body 255A Insulating film 260 Conductor 260a Conductor 260Aa Conductive film 260Ab Conductive film 260b Conductor 262 Dummy gate 262A Dummy gate layer 273 Insulator 274 Insulator 276 Insulator 280 Insulator 281 Insulator 291 Oxygen 293 Region 300 Transistor 311 Substrate 313 Semiconductor region 314a Low resistance region 314b Low resistance region 315 Insulator 316 Conductor 320 Insulator 322 Insulator 324 Insulator 326 Insulator 328 Conductor 330 Conductor 350 Insulator 352 Insulator 354 Insulator 356 Conductor 400 Transistor 405 Conductive Body 405a Conductor 405b Conductor 430c Oxide 431a Oxide 431b Oxide 432a Oxide 432b Oxide 440 Conductor 440a Conductor 440b Conductor 442 Conductor 442a Conductor 442b Conductor 450 Insulator 460 Conductor 460a Conductor 460b Conductor 1001 Wiring 1002 Wiring 1003 Wiring 1004 Wiring 1005 Wiring 1006 Wiring 1007 Wiring 1008 Wiring 1009 Wiring 1010 Wiring 1100 USB memory 1101 Case 1102 Cap 1103 USB connector 1104 Substrate 1105 Memory chip 1106 Controller chip 1110 SD card 1111 Connector 11132 Case 1111 Substrate 1114 Memory chip 1115 Controller chip 1150 SSD
1151 housing 1152 connector 1153 substrate 1154 memory chip 1155 memory chip 1156 controller chip 1200 chip 1201 PCB
1202 Bump 1203 Motherboard 1204 GPU module 1211 CPU
1212 GPUs
1213 analog operation unit 1214 memory controller 1215 interface 1216 network circuit 1221 DRAM
1222 flash memory 1400 memory device 1411 peripheral circuit 1420 row circuit 1430 column circuit 1440 output circuit 1460 control logic circuit 1470 memory cell array 1471 memory cell 1472 memory cell 1473 memory cell 1474 memory cell 1475 memory cell 1476 memory cell 1477 memory cell 1478 memory cell 5200 Portable game machine 5201 housing 5202 display unit 5203 button 5300 desktop information terminal 5301 main body 5302 display 5303 keyboard 5500 information terminal 5510 housing 5511 display unit 5600 TV
5650 antenna 5670 radio tower 5675A radio wave 5675B radio wave 5680 broadcasting station 5700 automobile 5701 display panel 5702 display panel 5703 display panel 5704 display panel 5800 electric freezer-refrigerator 5801 housing 5802 refrigerator door 5803 freezer door

Claims (10)

第1の絶縁体と、
前記第1の絶縁体上の酸化物半導体と、
前記酸化物半導体上の第1の導電体および第2の導電体と、
前記酸化物半導体上の第2の絶縁体と、
前記第2の絶縁体上に位置し、前記酸化物半導体と重なる第3の導電体と、
前記第1の絶縁体、前記酸化物半導体の側面、前記第1の導電体の側面、前記第1の導電体の上面、前記第2の導電体の側面、前記第2の導電体の上面、および前記第2の絶縁体の側面と接する、第3の絶縁体と、
前記第3の導電体、前記第2の絶縁体、および前記第3の絶縁体上の第4の絶縁体と、を有し、
前記第4の絶縁体は、前記第3の導電体、前記第2の絶縁体、および前記第3の絶縁体のそれぞれの上面と接し、
前記第1の導電体および前記第2の導電体は、それぞれ、第1の元素および第2の元素を含み、
前記第1の元素は、前記第2の元素より耐酸化性が高く、
前記第2の元素は、前記第1の元素より仕事関数が小さい、半導体装置。
a first insulator;
an oxide semiconductor on the first insulator;
a first conductor and a second conductor on the oxide semiconductor;
a second insulator on the oxide semiconductor;
a third conductor located on the second insulator and overlapping with the oxide semiconductor;
the first insulator, the side surface of the oxide semiconductor, the side surface of the first conductor, the top surface of the first conductor, the side surface of the second conductor, the top surface of the second conductor, and a third insulator in contact with a side surface of the second insulator;
the third conductor, the second insulator, and a fourth insulator on the third insulator;
the fourth insulator is in contact with the upper surface of each of the third conductor, the second insulator, and the third insulator;
the first conductor and the second conductor respectively comprise a first element and a second element;
The first element has higher oxidation resistance than the second element,
The semiconductor device, wherein the second element has a smaller work function than the first element.
第1の絶縁体と、
前記第1の絶縁体上の酸化物半導体と、
前記酸化物半導体上の第1の導電体および第2の導電体と、
前記酸化物半導体上の第2の絶縁体と、
前記第2の絶縁体上に位置し、前記酸化物半導体と重なる第3の導電体と、を有し、
前記酸化物半導体は、
第1の酸化物半導体と、
前記第1の酸化物半導体上第2の酸化物半導体と、
前記第2の酸化物半導体上の第3の酸化物半導体と、を有し、
前記第1の絶縁体、前記第1の酸化物半導体の側面、前記第2の酸化物半導体の側面、前記第1の導電体の側面、前記第1の導電体の上面、前記第2の導電体の側面、前記第2の導電体の上面、および前記第3の酸化物半導体の側面と接する、第3の絶縁体と、
前記第3の導電体、前記第2の絶縁体、前記第3の酸化物半導体、および前記第3の絶縁体上の第4の絶縁体と、を有し、
前記第4の絶縁体は、前記第3の導電体、前記第2の絶縁体、前記第3の酸化物半導体および前記第3の絶縁体のそれぞれの上面と接し、
前記第1の導電体および前記第2の導電体は、それぞれ、第1の元素および第2の元素を含み、
前記第1の元素は、前記第2の元素より耐酸化性が高く、
前記第2の元素は、前記第1の元素より仕事関数が小さい、半導体装置。
a first insulator;
an oxide semiconductor on the first insulator;
a first conductor and a second conductor on the oxide semiconductor;
a second insulator on the oxide semiconductor;
a third conductor located on the second insulator and overlapping with the oxide semiconductor;
The oxide semiconductor is
a first oxide semiconductor;
a second oxide semiconductor on the first oxide semiconductor;
a third oxide semiconductor on the second oxide semiconductor;
The first insulator, the side surface of the first oxide semiconductor, the side surface of the second oxide semiconductor, the side surface of the first conductor, the top surface of the first conductor, and the second conductor a third insulator in contact with the side surface of the body, the top surface of the second conductor, and the side surface of the third oxide semiconductor;
the third conductor, the second insulator, the third oxide semiconductor, and a fourth insulator on the third insulator;
the fourth insulator is in contact with the top surface of each of the third conductor, the second insulator, the third oxide semiconductor, and the third insulator;
the first conductor and the second conductor respectively comprise a first element and a second element;
The first element has higher oxidation resistance than the second element,
The semiconductor device, wherein the second element has a smaller work function than the first element.
請求項1または請求項2において、
前記第3の絶縁体および前記第4の絶縁体は、それぞれ、
前記第1の絶縁体よりも酸素および水素の一方または双方を透過し難い、半導体装置。
In claim 1 or claim 2,
The third insulator and the fourth insulator, respectively,
A semiconductor device that is less permeable to one or both of oxygen and hydrogen than the first insulator.
請求項1乃至請求項3のいずれか一項において、
前記第3の絶縁体および前記第4の絶縁体は、それぞれ、
前記第2の絶縁体よりも酸素および水素の一方または双方を透過し難い、半導体装置。
In any one of claims 1 to 3,
The third insulator and the fourth insulator, respectively,
A semiconductor device that is less permeable to one or both of oxygen and hydrogen than the second insulator.
請求項1乃至請求項4のいずれか一項において、
前記第3の絶縁体および前記第4の絶縁体は、それぞれ、
アルミニウム、およびハフニウムの一方または両方を含む酸化物を含む、半導体装置。
In any one of claims 1 to 4,
The third insulator and the fourth insulator, respectively,
A semiconductor device comprising an oxide containing one or both of aluminum and hafnium.
請求項1乃至請求項5のいずれか一項において、
前記第3の絶縁体および前記第4の絶縁体は、それぞれ、酸化アルミニウムを含む、半導体装置。
In any one of claims 1 to 5,
The semiconductor device, wherein the third insulator and the fourth insulator each contain aluminum oxide.
請求項1乃至請求項6のいずれか一項において、
前記酸化物半導体は、
Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、をする、半導体装置。
In any one of claims 1 to 6,
The oxide semiconductor is
A semiconductor device containing In, an element M (M is Al, Ga, Y, or Sn), and Zn.
請求項1乃至請求項7のいずれか一項において、
前記酸化物半導体は、
前記第1の導電体および前記第2の導電体と重ならない第1の領域と、
前記第1の導電体および前記第2の導電体と重なる第2の領域と、を有し、
前記第1の領域は、前記第2の領域よりも薄い部分を有する、半導体装置。
In any one of claims 1 to 7,
The oxide semiconductor is
a first region that does not overlap the first conductor and the second conductor;
a second region overlapping the first conductor and the second conductor;
The semiconductor device, wherein the first region has a portion thinner than the second region.
請求項1乃至請求項8のいずれか一項において、
前記第1の元素は、Ru、Rh、Pd、Os、Ir、およびPtのいずれか一つまたは複数であり、
前記第2の元素は、Al、Si、Ti、Hf、Zr、Mn、In、Ga、Bi、Ta、Nb、Zn、Sn、Cu、Cr、W、Mo、Ge、Ni、Sc、Y、およびCeのいずれか一つまたは複数である、半導体装置。
In any one of claims 1 to 8,
the first element is one or more of Ru, Rh, Pd, Os, Ir, and Pt;
The second element is Al, Si, Ti, Hf, Zr, Mn, In, Ga, Bi, Ta, Nb, Zn, Sn, Cu, Cr, W, Mo, Ge, Ni, Sc, Y, and A semiconductor device comprising any one or more of Ce.
基板上に第1の絶縁体を形成し、
前記第1の絶縁体の上に、酸化膜および第1の導電膜を順に成膜し、
前記酸化膜および前記第1の導電膜を加工して、酸化物半導体および導電体層を形成し、
前記酸化物半導体および前記導電体層を覆ってダミーゲート膜を成膜し、
前記ダミーゲート膜を加工して、ダミーゲート層を形成し、
前記第1の絶縁体、前記酸化物半導体、前記導電体層、および前記ダミーゲート層を覆って、第1の絶縁膜を成膜し、
前記第1の絶縁膜の上に第2の絶縁膜を成膜し、
第1のCMP処理を行うことによって、前記第1の絶縁膜および前記第2の絶縁膜の一部を、前記ダミーゲート層の一部が露出するまで除去し、
前記導電体層の一部および前記ダミーゲート層をエッチングすることによって、第1の導電体と第2の導電体を形成し、前記酸化物半導体を露出させ、
熱処理を行い、第3の絶縁膜を成膜し、
第2の導電膜を成膜し、
第2のCMP処理を行うことによって、前記の第3の絶縁膜および前記第2の導電膜を前記第2の絶縁膜の一部が露出するまで除去し、第3の絶縁体および第3の導電体を形成し、
前記第2の絶縁膜、前記第3の絶縁体および前記第3の導電体を覆って、第4の絶縁膜を成膜する、半導体装置の作製方法。
forming a first insulator over the substrate;
forming an oxide film and a first conductive film in this order on the first insulator;
processing the oxide film and the first conductive film to form an oxide semiconductor and a conductor layer;
forming a dummy gate film covering the oxide semiconductor and the conductor layer;
processing the dummy gate film to form a dummy gate layer;
forming a first insulating film covering the first insulator, the oxide semiconductor, the conductor layer, and the dummy gate layer;
forming a second insulating film on the first insulating film;
removing a portion of the first insulating film and the second insulating film until a portion of the dummy gate layer is exposed by performing a first CMP process;
forming a first conductor and a second conductor by etching a portion of the conductor layer and the dummy gate layer to expose the oxide semiconductor;
performing heat treatment to form a third insulating film;
depositing a second conductive film;
By performing a second CMP process, the third insulating film and the second conductive film are removed until part of the second insulating film is exposed, and the third insulator and the third conductive film are removed. forming a conductor,
A method of manufacturing a semiconductor device, comprising forming a fourth insulating film covering the second insulating film, the third insulator, and the third conductor.
JP2018032997A 2017-11-17 2018-02-27 SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE Active JP7229669B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221711 2017-11-17
JP2017221711 2017-11-17

Publications (2)

Publication Number Publication Date
JP2019096856A JP2019096856A (en) 2019-06-20
JP7229669B2 true JP7229669B2 (en) 2023-02-28

Family

ID=66972117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018032997A Active JP7229669B2 (en) 2017-11-17 2018-02-27 SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Country Status (1)

Country Link
JP (1) JP7229669B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220039740A (en) * 2019-07-26 2022-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 semiconductor device
TW202129877A (en) * 2019-08-30 2021-08-01 日商半導體能源研究所股份有限公司 Semiconductor device
CN114616681A (en) * 2019-11-01 2022-06-10 株式会社半导体能源研究所 Semiconductor device with a plurality of semiconductor chips
JP2021153082A (en) 2020-03-24 2021-09-30 キオクシア株式会社 Semiconductor device and semiconductor storage device
JP2022143580A (en) 2021-03-17 2022-10-03 キオクシア株式会社 Semiconductor device and semiconductor storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138195A (en) 2011-11-30 2013-07-11 Semiconductor Energy Lab Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2013249381A (en) 2012-05-31 2013-12-12 Idemitsu Kosan Co Ltd Composition for forming insulation material for electron device, and electron device
JP2014160535A (en) 2010-04-07 2014-09-04 Semiconductor Energy Lab Co Ltd Semiconductor device
US20160118425A1 (en) 2014-10-24 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Imaging Device and Electronic Device
US20170207242A1 (en) 2016-01-15 2017-07-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20170222056A1 (en) 2016-01-28 2017-08-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160535A (en) 2010-04-07 2014-09-04 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013138195A (en) 2011-11-30 2013-07-11 Semiconductor Energy Lab Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2013249381A (en) 2012-05-31 2013-12-12 Idemitsu Kosan Co Ltd Composition for forming insulation material for electron device, and electron device
US20160118425A1 (en) 2014-10-24 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Imaging Device and Electronic Device
JP2016086164A (en) 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 Imaging apparatus and electronic apparatus
US20170207242A1 (en) 2016-01-15 2017-07-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2017130654A (en) 2016-01-15 2017-07-27 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of the same
US20170222056A1 (en) 2016-01-28 2017-08-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof
JP2017139459A (en) 2016-01-28 2017-08-10 株式会社半導体エネルギー研究所 Semiconductor device, semiconductor wafer, module and electronic apparatus, and manufacturing methods of the same

Also Published As

Publication number Publication date
JP2019096856A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP7332480B2 (en) Manufacturing method of semiconductor device
JP7163360B2 (en) SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP7229669B2 (en) SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP7317010B2 (en) semiconductor equipment
JP7240383B2 (en) semiconductor equipment
JP7170671B2 (en) semiconductor equipment
JP2024074839A (en) Semiconductor Device
JP7200121B2 (en) semiconductor equipment
JP7142081B2 (en) Laminate and semiconductor device
JP2023040194A (en) Semiconductor device
JP2023083479A (en) Semiconductor device
JP2023086839A (en) Semiconductor device
JP2023101620A (en) Semiconductor device
JP7317802B2 (en) semiconductor equipment
JP7132318B2 (en) semiconductor equipment
JP7254462B2 (en) Manufacturing method of semiconductor device
JP7221216B2 (en) semiconductor equipment
JP2023086851A (en) Semiconductor device
JP2022164743A (en) Semiconductor device
JP7155172B2 (en) Semiconductor device and method for manufacturing semiconductor device
WO2019145807A1 (en) Semiconductor device, and semiconductor device manufacturing method
JP7237944B2 (en) SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2019153613A (en) Semiconductor device, and method for manufacturing the same
JP7046692B2 (en) Semiconductor device
WO2019145813A1 (en) Semiconductor device, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R150 Certificate of patent or registration of utility model

Ref document number: 7229669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150