JP7228360B2 - Membrane elements and membrane separation equipment - Google Patents

Membrane elements and membrane separation equipment Download PDF

Info

Publication number
JP7228360B2
JP7228360B2 JP2018193000A JP2018193000A JP7228360B2 JP 7228360 B2 JP7228360 B2 JP 7228360B2 JP 2018193000 A JP2018193000 A JP 2018193000A JP 2018193000 A JP2018193000 A JP 2018193000A JP 7228360 B2 JP7228360 B2 JP 7228360B2
Authority
JP
Japan
Prior art keywords
membrane
softening point
channel material
filtration membrane
membrane element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193000A
Other languages
Japanese (ja)
Other versions
JP2020058999A (en
Inventor
茂之 森
好男 松崎
潤 前田
泰弘 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018193000A priority Critical patent/JP7228360B2/en
Publication of JP2020058999A publication Critical patent/JP2020058999A/en
Application granted granted Critical
Publication of JP7228360B2 publication Critical patent/JP7228360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、例えば膜分離活性汚泥法(MBR)と称される分野で汚泥と処理水との分離のために用いられる膜エレメントおよび膜エレメントを備えた浸漬型の膜分離機器に関するものである。 TECHNICAL FIELD The present invention relates to a membrane element and submerged membrane separation equipment equipped with the membrane element used for separating sludge and treated water in the field called membrane separation activated sludge process (MBR), for example.

従来、この種の膜エレメントとしては、例えば図14に示すように、樹脂製のろ板101の両面にろ過膜102を接合したものがあり、ろ過膜102の周縁部102aが熱溶着又は超音波溶着によってろ板101に固着されている。ろ板101とろ過膜102との間およびろ板101の内部には透過液流路(図示省略)が形成され、透過液流路に連通する透過液取出口103がろ板101の上端縁に設けられている。 Conventionally, as shown in FIG. 14, for example, as this type of membrane element, there is one in which filtration membranes 102 are joined to both sides of a resin filter plate 101, and the peripheral edge portion 102a of the filtration membrane 102 is thermally welded or ultrasonically welded. It is fixed to the filter plate 101 by welding. A permeate flow path (not shown) is formed between the filter plate 101 and the filtration membrane 102 and inside the filter plate 101 , and a permeate outlet 103 communicating with the permeate flow path is provided at the upper edge of the filter plate 101 . is provided.

図15の実線で示すように、上記のような膜エレメント104は、膜ケース(図示省略)内に、所定間隔おきに複数配列されている。 As indicated by the solid line in FIG. 15, a plurality of membrane elements 104 as described above are arranged at predetermined intervals in a membrane case (not shown).

これによると、ろ過運転を行っている際、被処理液は、ろ過膜102を一次側から二次側へ通過してろ過され、その後、透過液105として透過液流路を流れ、透過液取出口103から外部へ取り出される。また、ろ過運転を停止し、膜エレメント104を逆洗する際、逆洗用水を透過液取出口103から透過液流路に注入する。これにより、逆洗用水がろ過膜102を二次側から一次側へ通過し、ろ過膜102が逆洗される。 According to this, during the filtration operation, the liquid to be treated passes through the filtration membrane 102 from the primary side to the secondary side and is filtered. It is taken out from the exit 103 to the outside. When the filtration operation is stopped and the membrane element 104 is backwashed, backwashing water is injected from the permeate outlet 103 into the permeate flow path. Thereby, backwashing water passes through the filtration membrane 102 from the secondary side to the primary side, and the filtration membrane 102 is backwashed.

このような膜エレメント104では、ろ過膜102の全体がろ板101に固着しているのではなく、ろ過膜102の周縁部102aのみがろ板101に溶着されているため、ろ過膜102を逆洗している際、図15の仮想線で示すように、ろ過膜102が外向き(一次側)に膨出し、隣の膜エレメント104のろ過膜102と接触することがあった。このように、隣り同士の膜エレメント104のろ過膜102が膨出して接触してしまうと、逆洗の効果が低下するといった虞があった。また、長期にわたり二次側へ逆洗用水を導入することで、ろ過膜102が外向きに膨出し、ろ過膜102の周縁部102aの溶着部分が開口する虞があった。 In such a membrane element 104, the entire filtration membrane 102 is not fixed to the filter plate 101, but only the peripheral edge portion 102a of the filtration membrane 102 is welded to the filter plate 101. Therefore, the filtration membrane 102 is reversed. During washing, the filtration membrane 102 sometimes swelled outward (primary side) and came into contact with the filtration membrane 102 of the adjacent membrane element 104, as indicated by the phantom lines in FIG. In this way, if the filtration membranes 102 of the membrane elements 104 adjacent to each other swell and come into contact with each other, there is a fear that the effect of backwashing will be reduced. In addition, by introducing the backwash water to the secondary side for a long period of time, the filtration membrane 102 may swell outward and the welded portion of the peripheral edge portion 102a of the filtration membrane 102 may open.

このような問題を解決するために、図16に示すように、第一ろ過膜111と、第二ろ過膜112と、これら両ろ過膜111,112の間に設けられた排液織布113と、第一ろ過膜111と排液織布113とを接着する接着性ネット114と、第二ろ過膜112と排液織布113とを接着する接着性ネット115とを有する膜エレメント116がある。尚、排液織布113は、ループを形成するように編んだ三次元構造のスペーサ布地(スペーサーファブリック)である。 In order to solve such a problem, as shown in FIG. , a membrane element 116 having an adhesive net 114 for bonding the first filtration membrane 111 and the drainage fabric 113 and an adhesive net 115 for bonding the second filtration membrane 112 and the drainage fabric 113 . The drainage woven fabric 113 is a three-dimensional spacer fabric (spacer fabric) knitted to form loops.

第一ろ過膜111と第二ろ過膜112との間に排液織布113と接着性ネット114,115とを積層して、加熱ロールで圧延することにより、接着性ネット114,115が一時的に融解し、第一接着性ネット114を介して第一ろ過膜111と排液織布113とが接着されるとともに、第二接着性ネット115を介して第二ろ過膜112と排液織布113とが接着され、膜エレメント116が完成する。 By laminating the drainage woven fabric 113 and the adhesive nets 114 and 115 between the first filtration membrane 111 and the second filtration membrane 112 and rolling with heating rolls, the adhesive nets 114 and 115 are temporarily , the first filtration membrane 111 and the drainage fabric 113 are adhered via the first adhesive net 114, and the second filtration membrane 112 and the drainage fabric are bonded via the second adhesive net 115. 113 are adhered to complete the membrane element 116 .

これによると、第一ろ過膜111と排液織布113とは第一接着性ネット114を介して全面的に接着されているため、第一ろ過膜111を逆洗している際、第一ろ過膜111が外向き(一次側)に膨出することはない。同様に、第二ろ過膜112と排液織布113とは第二接着性ネット115を介して全面的に接着されているため、第二ろ過膜112を逆洗している際、第二ろ過膜112が外向き(一次側)に膨出することはない。 According to this, since the first filtration membrane 111 and the drainage fabric 113 are entirely adhered via the first adhesive net 114, when the first filtration membrane 111 is being backwashed, the first The filtration membrane 111 does not bulge outward (primary side). Similarly, since the second filtration membrane 112 and the drainage woven fabric 113 are entirely adhered via the second adhesive net 115, when the second filtration membrane 112 is being backwashed, the second filtration The membrane 112 does not bulge outward (primary side).

尚、上記のような膜エレメント116は例えば下記特許文献1に記載されている。 Incidentally, the membrane element 116 as described above is described, for example, in Patent Document 1 below.

また、下記特許文献2には、溶剤に溶かした液状の膜材料樹脂(以下「ドープ」と言う)を、スペーサーファブリックの片側又は両側の面(フェース)に、直接塗布し、相分離法によってスペーサーファブリックのフェース上にろ過膜層を形成することが記載されている。 Further, in Patent Document 2 below, a liquid film material resin (hereinafter referred to as "dope") dissolved in a solvent is directly applied to one or both sides (faces) of a spacer fabric, and a spacer is formed by a phase separation method. Forming a filtration membrane layer on the face of the fabric is described.

特表2011-519716Special table 2011-519716 WO 2006/015461 A1WO 2006/015461 A1

しかしながら上記特許文献1に挙げた従来形式では、図16に示したように、膜エレメント116を製作するには、排液織布113とろ過膜111,112とは別に、接着性ネット114,115が必要になるため、膜エレメント116を構成する部品の種類が増えるといった問題がある。 However, in the conventional method cited in Patent Document 1, as shown in FIG. is required, there is a problem that the types of parts constituting the membrane element 116 increase.

また、上記特許文献2については、スペーサーファブリックの内部空間はろ過膜層を透過した透過液の通り道となるのであるが、ドープをスペーサーファブリックのフェースに直接塗布した際、ドープの粘性が低いと、ドープがスペーサーファブリックの内部空間に侵入して固化し、スペーサーファブリックの内部における透過液の流れが妨げられる虞がある。 In addition, in Patent Document 2, the internal space of the spacer fabric serves as a path for the permeated liquid that has passed through the filtration membrane layer. The dope may enter the internal space of the spacer fabric and solidify, impeding the permeate flow inside the spacer fabric.

本発明は、構成部品の種類を減らすことが可能な膜エレメントおよび膜分離機器を提供することを目的とする。 An object of the present invention is to provide a membrane element and a membrane separation device capable of reducing the types of component parts.

上記目的を達成するために、本第1発明は、ろ過膜と流路材とが接合された膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
ろ過膜は流路材に接合する接合面を有し、
接合面を形成する糸は、芯材と、芯材を覆う鞘材とで形成され、
鞘材は流路材を構成する糸の軟化点以下の軟化点を有し、
芯材は鞘材の軟化点よりも高い軟化点を有するものである。
In order to achieve the above object, the first invention provides a membrane element in which a filtration membrane and a channel material are joined,
The channel material consists of a knitted fabric in which threads are knitted in a three-dimensional structure, and has voids therein through which the permeated liquid that has passed through the filtration membrane flows,
The filtration membrane has a joint surface that joins the channel material,
The thread that forms the joint surface is formed of a core material and a sheath material that covers the core material,
The sheath material has a softening point equal to or lower than the softening point of the thread forming the channel material,
The core material has a softening point higher than that of the sheath material.

これによると、流路材にろ過膜の接合面を重ねて配置し、流路材とろ過膜を、接合面を形成している糸の鞘材の軟化点の温度以上で且つ流路材を構成する糸の軟化点の温度以下の加熱温度に加熱する。これにより、接合面を形成している糸の鞘材が軟化して、鞘材の樹脂が流路材に絡み付くため、ろ過膜の接合面が流路材に全面的に接合される。このように、流路材とろ過膜とで膜エレメントを製作することができるため、接着性ネット等の接着専用の部材が不要になり、膜エレメントを構成する部品の種類を減らすことができる。 According to this, the joint surface of the filtration membrane is placed on the channel material, and the channel material and the filter membrane are placed at a temperature higher than the softening point of the sheath material of the thread forming the joint surface and the channel material. It is heated to a heating temperature equal to or lower than the softening point of the constituent yarn. As a result, the sheath material of the thread forming the joint surface is softened and the resin of the sheath material is entangled with the channel material, so that the joint surface of the filtration membrane is entirely joined to the channel material. In this way, since the membrane element can be manufactured from the channel material and the filtration membrane, a member dedicated to adhesion such as an adhesive net becomes unnecessary, and the types of parts constituting the membrane element can be reduced.

また、上記のように加熱温度は流路材を構成する糸の軟化点以下であるため、流路材が軟化して流路材の内部の空隙が潰れてしまうのを防止することができる。
さらに、接合面を形成している糸の芯材は鞘材の軟化点よりも高い軟化点を有するため、芯材が軟化するのを防止することができる。これにより、鞘材よりも可撓性が低い(又は反発力が高い或いは弾性が高い)樹脂を用いて芯材を構成することにより、ろ過膜の接合面の強度が向上する。
In addition, since the heating temperature is lower than the softening point of the threads forming the channel material as described above, it is possible to prevent the channel material from softening and crushing the voids inside the channel material.
Furthermore, since the core material of the thread forming the joint surface has a softening point higher than that of the sheath material, softening of the core material can be prevented. As a result, the strength of the joint surface of the filtration membrane is improved by configuring the core material using a resin having lower flexibility (or higher repulsive force or higher elasticity) than the sheath material.

本第2発明における膜エレメントは、ろ過膜と流路材とが接合された膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
ろ過膜は流路材に接合する接合面を有し、
接合面を形成する糸は複数の構成糸を撚ることにより形成され、
構成糸の1本以上が、流路材を構成する糸の軟化点以下の軟化点を有する低融点糸であるものである。
The membrane element in the second invention is a membrane element in which a filtration membrane and a channel material are joined,
The channel material consists of a knitted fabric in which threads are knitted in a three-dimensional structure, and has voids therein through which the permeated liquid that has passed through the filtration membrane flows,
The filtration membrane has a joint surface that joins the channel material,
The yarn forming the joint surface is formed by twisting multiple constituent yarns,
At least one of the constituent yarns is a low-melting-point yarn having a softening point equal to or lower than the softening point of the yarns forming the channel material.

これによると、流路材にろ過膜の接合面を重ねて配置し、流路材とろ過膜を、接合面を形成している低融点糸の軟化点の温度以上で且つ流路材を構成する糸の軟化点の温度以下の加熱温度に加熱する。これにより、接合面の低融点糸が軟化して、低融点糸の樹脂が流路材に絡み付くため、ろ過膜の接合面が流路材に全面的に接合される。このように、流路材とろ過膜とで膜エレメントを製作することができるため、接着性ネット等の接着専用の部材が不要になり、膜エレメントを構成する部品の種類を減らすことができる。 According to this, the joint surface of the filtration membrane is arranged on the channel material, and the channel material and the filtration membrane are formed at a temperature higher than the softening point of the low-melting yarn forming the joint surface and the channel material. Heat to a heating temperature below the softening point of the yarn. As a result, the low-melting-point threads on the joint surface are softened, and the resin of the low-melting-point threads entangles the channel material, so that the joint surface of the filtration membrane is entirely joined to the channel material. In this way, since the membrane element can be manufactured from the channel material and the filtration membrane, a member dedicated to adhesion such as an adhesive net becomes unnecessary, and the types of parts constituting the membrane element can be reduced.

また、上記のように加熱温度は流路材を構成する糸の軟化点以下であるため、流路材が軟化して流路材の内部の空隙が潰れてしまうのを防止することができる。 In addition, since the heating temperature is lower than the softening point of the threads forming the channel material as described above, it is possible to prevent the channel material from softening and crushing the voids inside the channel material.

本第3発明における膜エレメントは、低融点糸は、芯材と、芯材を覆う鞘材とで形成され、
鞘材は流路材を構成する糸の軟化点以下の軟化点を有し、
芯材は鞘材の軟化点よりも高い軟化点を有するものである。
In the membrane element of the third invention, the low melting point yarn is formed of a core material and a sheath material covering the core material,
The sheath material has a softening point equal to or lower than the softening point of the thread forming the channel material,
The core material has a softening point higher than that of the sheath material.

これによると、流路材の接合面にろ過膜を配置し、流路材とろ過膜を、接合面を形成している低融点糸の鞘材の軟化点の温度以上で且つ流路材を構成する糸の軟化点の温度以下の加熱温度に加熱する。これにより、低融点糸の鞘材が軟化して、鞘材の樹脂が流路材に絡み付くため、ろ過膜の接合面が流路材に全面的に接合される。この際、低融点糸の芯材は鞘材の軟化点よりも高い軟化点を有するため、芯材が軟化するのを防止することができる。 According to this, a filtration membrane is placed on the joint surface of the channel material, and the channel material and the filter membrane are placed at a temperature higher than the softening point of the sheath material of the low-melting yarn forming the joint surface and the channel material. It is heated to a heating temperature equal to or lower than the softening point of the constituent yarn. As a result, the sheath material of the low-melting-point yarn is softened and the resin of the sheath material is entangled with the channel material, so that the joint surface of the filtration membrane is entirely joined to the channel material. At this time, since the core material of the low-melting-point yarn has a softening point higher than that of the sheath material, softening of the core material can be prevented.

これにより、鞘材よりも可撓性が低い(又は反発力が高い或いは弾性が高い)樹脂を用いて芯材を構成することにより、ろ過膜の接合面の強度が向上する。 As a result, the strength of the joint surface of the filtration membrane is improved by configuring the core material using a resin having lower flexibility (or higher repulsive force or higher elasticity) than the sheath material.

本第4発明における膜エレメントは、低融点糸の材質がポリオレフィン系樹脂であるものである。 In the membrane element according to the fourth aspect of the present invention, the material of the low-melting yarn is a polyolefin resin.

本第5発明における膜エレメントは、鞘材の材質がポリオレフィン系樹脂であるものである。 In the membrane element according to the fifth aspect of the present invention, the material of the sheath material is a polyolefin resin.

本第6発明における膜エレメントは、流路材を構成する糸の材質の一部がポリエステル系樹脂であるものである。 In the membrane element according to the sixth aspect of the present invention, part of the material of the yarns forming the channel material is a polyester-based resin.

本第7発明は、ろ過膜と流路材とが接合された膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
ろ過膜は、多孔質の膜シートと、膜シートの裏面に設けられた不織布とを積層したものであり、
不織布は流路材に接合する接合面を有し、
接合面を形成する糸の少なくとも一部が、流路材を構成する糸の軟化点以下の軟化点を有する低融点糸であり、
膜シートの軟化点が不織布に含まれる低融点糸の軟化点よりも高いものである。
A seventh aspect of the present invention is a membrane element in which a filtration membrane and a channel material are joined together,
The channel material consists of a knitted fabric in which threads are knitted in a three-dimensional structure, and has voids therein through which the permeated liquid that has passed through the filtration membrane flows,
The filtration membrane is a laminate of a porous membrane sheet and a nonwoven fabric provided on the back surface of the membrane sheet,
The nonwoven fabric has a joint surface that joins the channel material,
At least part of the yarn forming the joint surface is a low-melting yarn having a softening point equal to or lower than the softening point of the yarn forming the channel material,
The softening point of the membrane sheet is higher than the softening point of the low-melting yarn contained in the nonwoven fabric.

これによると、流路材にろ過膜の接合面を重ねて配置し、流路材とろ過膜を、不織布に含まれる低融点糸の軟化点の温度以上で且つ膜シートの軟化点の温度よりも低い加熱温度に加熱する。これにより、不織布に含まれる低融点糸が軟化して、低融点糸の樹脂が流路材に絡み付くため、ろ過膜の接合面が流路材に全面的に接合される。 According to this, the joint surface of the filtration membrane is placed on the channel material, and the channel material and the filtration membrane are placed at a temperature above the softening point of the low-melting yarn contained in the nonwoven fabric and above the softening point of the membrane sheet. Heat to a lower heating temperature. As a result, the low-melting-point threads contained in the non-woven fabric are softened, and the resin of the low-melting-point threads entangles the channel material, so that the joint surface of the filtration membrane is entirely joined to the channel material.

また、上記のように加熱温度は膜シートの軟化点よりも低いため、膜シートが軟化して膜シートの微細孔径が変化するのを防止することができる。 Moreover, since the heating temperature is lower than the softening point of the membrane sheet as described above, it is possible to prevent the membrane sheet from softening and changing the micropore diameter of the membrane sheet.

本第8発明における膜エレメントは、多孔質の膜シートはePTFEを材質とするものである。 In the membrane element of the eighth invention, the porous membrane sheet is made of ePTFE.

本第9発明は、第1発明から第8発明のいずれか1項に記載の膜エレメントを備えた膜分離機器であって、
複数の膜エレメントを支持する支持部材を備え、
支持部材は内部に集水空間を有し、
各膜エレメントの端部が集水空間に挿入され、
ろ過膜を透過した透過液が流路材内の空隙を通って支持部材の集水空間に流れ込むものである。
A ninth invention is a membrane separation device comprising the membrane element according to any one of the first to eighth inventions,
comprising a support member that supports the plurality of membrane elements,
The support member has a water collecting space inside,
The end of each membrane element is inserted into the water collecting space,
The permeated liquid that has passed through the filtration membrane flows into the water collecting space of the support member through the voids in the channel material.

これによると、膜分離機器を被処理液中に浸漬させた状態で、ろ過運転を行うことにより、被処理液は、膜エレメントのろ過膜を一次側から二次側へ通過してろ過され、その後、透過液として、流路材の内部の空隙に流れ込み、流路材内の空隙を通って、支持部材の集水空間に流出する。 According to this, by performing a filtration operation while the membrane separation device is immersed in the liquid to be treated, the liquid to be treated passes through the filtration membrane of the membrane element from the primary side to the secondary side and is filtered. After that, the permeated liquid flows into the voids inside the channel material, passes through the voids in the channel material, and flows out to the water collecting space of the support member.

以上のように本発明によると、流路材とろ過膜とで膜エレメントを製作することができるため、接着性ネット等の接着専用の部材が不要になり、膜エレメントを構成する部品の種類を減らすことができる。 As described above, according to the present invention, a membrane element can be manufactured from a channel material and a filtration membrane. can be reduced.

本発明の第1の実施の形態における複数台の膜分離機器を用いた膜分離装置の正面図である。1 is a front view of a membrane separation apparatus using a plurality of membrane separation devices according to the first embodiment of the present invention; FIG. 同、膜分離機器の斜視図である。It is a perspective view of a membrane separation apparatus equally. 同、膜分離機器の断面図である。It is a cross-sectional view of the same membrane separation equipment. 同、膜分離機器の膜エレメントの構成を示す一部切欠き斜視図である。Fig. 3 is a partially cutaway perspective view showing the configuration of a membrane element of the membrane separation device of the same; 同、膜エレメントの断面を拡大した模式図である。Fig. 3 is an enlarged schematic view of the cross section of the membrane element. 同、膜エレメントの流路材の断面を拡大した模式図である。Fig. 3 is an enlarged schematic view of the cross section of the channel material of the membrane element. 図6におけるX-X矢視図であり、流路材のフェースを拡大した模式図である。FIG. 7 is a view taken along line XX in FIG. 6, and is a schematic diagram showing an enlarged face of the channel material. 同、膜エレメントのろ過膜の断面を拡大した模式図である。Fig. 3 is a schematic diagram showing an enlarged cross section of the filtration membrane of the membrane element. 同、膜エレメントのろ過膜の構成を示す一部切欠き斜視図である。FIG. 3 is a partially cutaway perspective view showing the configuration of the filtration membrane of the membrane element of the same. 本発明の第2の実施の形態における膜エレメントのろ過膜の断面を拡大した模式図である。FIG. 4 is an enlarged schematic diagram of a cross section of a filtration membrane of a membrane element according to a second embodiment of the present invention; 同、膜エレメントのろ過膜の構成を示す一部切欠き斜視図である。FIG. 3 is a partially cutaway perspective view showing the configuration of the filtration membrane of the membrane element of the same. 本発明の第3の実施の形態における膜エレメントのろ過膜の断面を拡大した模式図である。FIG. 6 is an enlarged schematic diagram of a cross section of a filtration membrane of a membrane element according to a third embodiment of the present invention; 同、膜エレメントのろ過膜の不織布の低融点糸の断面を拡大した模式図である。Fig. 3 is an enlarged schematic view of a cross section of low-melting-point threads of the nonwoven fabric of the filtration membrane of the membrane element. 従来の膜エレメントの正面図である。1 is a front view of a conventional membrane element; FIG. 同、膜エレメントの側面図であり、複数の膜エレメントを所定間隔おきに配置した状態を示す。It is a side view of the same membrane element, and shows a state in which a plurality of membrane elements are arranged at predetermined intervals. 別の従来の膜エレメントの構成を示す一部切欠き斜視図である。FIG. 3 is a partially cutaway perspective view showing the configuration of another conventional membrane element.

以下、本発明における実施の形態を、図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
第1の実施の形態では、図1に示すように、1は膜ろ過を行う浸漬型の膜分離装置であり、有機性排水等の被処理液2中に浸漬されて処理槽3内に設置されている。膜分離装置1は、上下方向に積み重ねられた複数台の膜分離機器5(膜ろ過モジュールとも言う)と、最下段に設けられた散気装置6とを有している。
(First embodiment)
In the first embodiment, as shown in FIG. 1, 1 is an immersion-type membrane separation device that performs membrane filtration, and is immersed in a liquid to be treated 2 such as organic wastewater and installed in a treatment tank 3. It is The membrane separation device 1 has a plurality of vertically stacked membrane separation devices 5 (also referred to as membrane filtration modules) and an air diffuser 6 provided at the bottom.

図2,図3に示すように、膜分離機器5は、左右一対の集水ケース11(支持部材の一例)と、これら両集水ケース11間に支持されている複数の膜エレメント12と、前後一対の連結板13とを有している。集水ケース11は内部に集水空間15を有する中空状の部材である。また、連結板13は両集水ケース11の前端部間および後端部間にそれぞれ設けられている。 As shown in FIGS. 2 and 3, the membrane separation device 5 includes a pair of left and right water collection cases 11 (an example of support members), a plurality of membrane elements 12 supported between the water collection cases 11, It has a pair of front and rear connection plates 13 . The water collecting case 11 is a hollow member having a water collecting space 15 inside. Further, the connecting plate 13 is provided between the front end portions and the rear end portions of both water collecting cases 11, respectively.

尚、下位の膜分離機器5の集水ケース11内の集水空間15と上位の膜分離機器5の集水ケース11内の集水空間15とは連通口16によって連通している。 The water collection space 15 in the water collection case 11 of the lower membrane separation device 5 and the water collection space 15 in the water collection case 11 of the upper membrane separation device 5 communicate with each other through a communication port 16 .

集水ケース11の内側壁17には、上下方向に細長い複数の貫通孔が形成され、各膜エレメント12の左右両端部が各貫通孔に挿入されて集水空間15内に突入している。 The inner wall 17 of the water collecting case 11 is formed with a plurality of vertically elongated through holes, and the left and right ends of each membrane element 12 are inserted into the respective through holes to protrude into the water collecting space 15 .

膜エレメント12は、例えば四角形のシート状の部材であり、流路材21と、流路材21の表裏両面に接合されたろ過膜22とを有している。 The membrane element 12 is, for example, a rectangular sheet-like member, and has a channel material 21 and filtration membranes 22 joined to both front and back surfaces of the channel material 21 .

図4~図7に示すように、流路材21は、糸を三次元構造に編んだ編物からなるスペーサーファブリックであり、表裏一対のフェース25と、一対のフェース25をつなぐ多数本のパイル糸27とを有している。尚、フェース25は多数本の互いに縦横に交差するフェース糸29を有する編物である。 As shown in FIGS. 4 to 7, the channel material 21 is a spacer fabric made of a knitted fabric in which yarns are knitted in a three-dimensional structure. 27. The face 25 is a knitted fabric having a large number of face yarns 29 crossing each other vertically and horizontally.

流路材21の内部におけるパイル糸27間には、ろ過膜22を透過した透過液33が流れる微小な空隙32が形成されている。 Between the pile yarns 27 inside the channel material 21, minute gaps 32 are formed through which the permeated liquid 33 that has passed through the filtration membrane 22 flows.

例えば、パイル糸27とフェース糸29には、約240℃~280℃の軟化点T1を有するポリエチレンテレフタラート(PET)製の糸が用いられている。 For example, the pile yarns 27 and the face yarns 29 are polyethylene terephthalate (PET) yarns having a softening point T1 of about 240.degree. C. to 280.degree.

上記のようなスペーサーファブリックからなる流路材21の糸使いは、例えば、フェース糸29が「56T24」、パイル糸27が「56T1」、パイル糸27の密度が379本/cmである。また、膜エレメント12を製作する前の流路材21の単体での厚さAは例えば約2mm~5mmである。尚、上記「56T24」とは、撚り合わせた糸の太さが56dtex、撚り糸数が24本であることを表しており、「56T1」とは、撚り合わせた糸の太さが56dtex、撚り糸数が1本であることを表している。 Threads used in the channel material 21 made of the spacer fabric as described above are, for example, face threads 29 of "56T24", pile threads 27 of "56T1", and pile threads 27 having a density of 379 threads/cm 2 . The thickness A of the channel material 21 alone before manufacturing the membrane element 12 is, for example, about 2 mm to 5 mm. The above “56T24” means that the twisted yarn has a thickness of 56 dtex and the number of twisted yarns is 24, and “56T1” means that the twisted yarn has a thickness of 56 dtex and the number of twisted yarns. is one.

図5,図8,図9に示すように、ろ過膜22は、多数の微細孔を有する多孔質の膜シート34を外面側に有するとともに、この膜シート34を支持する不織布35を内面側に有しており、これら膜シート34と不織布35とを積層したものである。 As shown in FIGS. 5, 8, and 9, the filtration membrane 22 has a porous membrane sheet 34 having a large number of fine pores on the outer surface side, and a nonwoven fabric 35 supporting the membrane sheet 34 on the inner surface side. The membrane sheet 34 and the nonwoven fabric 35 are laminated.

ろ過膜22の不織布35は、坪量が30~300g/mであり、流路材21のフェース25に接合する接合面36を有している。また、不織布35は、流路材21を構成するパイル糸27およびフェース糸29の軟化点T1以下の軟化点T2を有する複数の低融点糸37と、低融点糸37よりも高い軟化点T3を有する複数の高融点糸38とを含んでいる。これにより、ろ過膜22の接合面36を形成する糸の一部が低融点糸37である構成が得られる。 The nonwoven fabric 35 of the filtration membrane 22 has a basis weight of 30 to 300 g/m 2 and has a joint surface 36 that joins the face 25 of the channel member 21 . In addition, the nonwoven fabric 35 includes a plurality of low-melting yarns 37 having a softening point T2 lower than the softening point T1 of the pile yarns 27 and the face yarns 29 constituting the channel material 21, and a softening point T3 higher than the low-melting yarns 37. and a plurality of high melting point yarns 38. Thereby, a configuration is obtained in which a part of the thread forming the joint surface 36 of the filtration membrane 22 is the low-melting-point thread 37 .

低融点糸37としては、約80℃~120℃の軟化点T2を有するポリエチレン(PE)製の糸が用いられている。また、高融点糸38としては、約240℃~280℃の軟化点T3を有するポリエチレンテレフタラート(PET)製の糸が用いられている。尚、不織布35は、ポリエチレンとポリエチレンテレフタラートの2種類の綿を混合した後、分散および熱圧延したサーマルボンド不織布である。 As the low-melting-point thread 37, a polyethylene (PE) thread having a softening point T2 of about 80.degree. C. to 120.degree. As the high-melting-point yarn 38, polyethylene terephthalate (PET) yarn having a softening point T3 of about 240° C. to 280° C. is used. The nonwoven fabric 35 is a thermal bonded nonwoven fabric obtained by mixing two types of cotton, polyethylene and polyethylene terephthalate, and then dispersing and hot-rolling the mixture.

また、膜シート34の材質には、約330℃~350℃の軟化点T4を有するポリテトラフルオロエチレン(ePTFE)が用いられている。膜シート34の軟化点T4は、パイル糸27とフェース糸29の軟化点T1および不織布35に含まれる低融点糸37の軟化点T2ならびに高融点糸38の軟化点T3のいずれの軟化点よりも高い。すなわち、各軟化点は、T2≦T1,T3<T4の関係にある。 Polytetrafluoroethylene (ePTFE) having a softening point T4 of about 330° C. to 350° C. is used as the material of the membrane sheet 34 . The softening point T4 of the membrane sheet 34 is higher than the softening point T1 of the pile yarns 27 and face yarns 29, the softening point T2 of the low-melting yarns 37 contained in the nonwoven fabric 35, and the softening point T3 of the high-melting yarns 38. expensive. That is, each softening point has a relationship of T2≦T1 and T3<T4.

以下、上記構成における作用を説明する。 The operation of the above configuration will be described below.

膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、これら流路材21と両ろ過膜22との3つの部材を、上下一対の加熱ロール間に挿通して、圧縮しながら加熱する。 When manufacturing the membrane element 12, the channel material 21 is placed between a pair of filtration membranes 22, and these three members of the channel material 21 and both filtration membranes 22 are inserted between a pair of upper and lower heating rolls. and heat while compressing.

この際、流路材21とろ過膜22とを、ろ過膜22の不織布35の低融点糸37の軟化点T2の温度以上で且つ流路材21のパイル糸27およびフェース糸29の軟化点T1以下の加熱温度に加熱する。これにより、不織布35の接合面36の低融点糸37が軟化して、低融点糸37の樹脂が流路材21のフェース糸29に絡み付くため、ろ過膜22の接合面36が流路材21に全面的に接合される。尚、このときの加熱温度は例えば120℃~200℃に設定される。 At this time, the channel material 21 and the filtration membrane 22 are heated to a temperature equal to or higher than the softening point T2 of the low-melting-point yarns 37 of the nonwoven fabric 35 of the filtration membrane 22 and the softening point T1 of the pile yarns 27 and the face yarns 29 of the channel material 21 . Heat to the following heating temperature. As a result, the low-melting-point threads 37 on the joint surface 36 of the nonwoven fabric 35 are softened, and the resin of the low-melting-point threads 37 is entangled with the face threads 29 of the channel member 21 . fully joined to the The heating temperature at this time is set to 120° C. to 200° C., for example.

また、上記のように加熱温度は流路材21のパイル糸27およびフェース糸29の軟化点T1の温度以下と低いため、流路材21が軟化して流路材21の内部の空隙32が潰れてしまうのを防止することができる。これにより、流路材21の内部における透過液33の流れが阻害されることはない。 Further, since the heating temperature is as low as the softening point T1 or lower of the pile yarns 27 and the face yarns 29 of the channel material 21 as described above, the channel material 21 is softened and the voids 32 inside the channel material 21 are formed. You can prevent it from collapsing. As a result, the flow of the permeate 33 inside the channel member 21 is not hindered.

また、流路材21とろ過膜22とで膜エレメント12を製作することができるため、接着性ネット等の接着専用の部材が不要になり、膜エレメント12を構成する部品の種類を減らすことができる。このようにして製作された膜エレメント12の厚さは、例えば0.8~3mmである。 In addition, since the membrane element 12 can be manufactured from the channel material 21 and the filtration membrane 22, a member dedicated to adhesion such as an adhesive net is not required, and the types of parts constituting the membrane element 12 can be reduced. can. The thickness of the membrane element 12 manufactured in this way is, for example, 0.8 to 3 mm.

また、本発明の膜エレメント12は加熱することによってろ過膜22を流路材21(スペーサーファブリック)に融着しており、従来のように溶剤に溶かしたドープをスペーサーファブリックのフェースに直接塗布してろ過膜層を形成するものではないため、透過液33の通り道となる流路材21(スペーサーファブリック)内の微小な空隙32(内部空間)に、ドープが侵入して固化することはない。 In the membrane element 12 of the present invention, the filtration membrane 22 is fused to the channel material 21 (spacer fabric) by heating, and dope dissolved in a solvent is directly applied to the face of the spacer fabric as in the conventional method. Since the dope does not form a filtration membrane layer, the dope does not enter the minute voids 32 (internal space) in the channel material 21 (spacer fabric) that serve as a passage for the permeated liquid 33 and solidify.

また、加熱温度は膜シート34の軟化点T4よりも低いため、膜シート34が軟化して膜シート34の微細孔径が変化するのを防止することができる。 Moreover, since the heating temperature is lower than the softening point T4 of the membrane sheet 34, it is possible to prevent the membrane sheet 34 from softening and changing the micropore diameter of the membrane sheet 34. FIG.

このようにして製作された可撓性を有する膜エレメント12が備えられた膜分離機器5を、図1~図3に示すように、被処理液2中に浸漬した状態で、ろ過運転を行う。これにより、被処理液2は、膜エレメント12のろ過膜22を一次側から二次側へ通過してろ過され、その後、透過液33として、流路材21の内部の微小な空隙32に流れ込み、この空隙32を通って流路材21から集水ケース11内の集水空間15に流出し、連通孔16を通って最上位の膜分離機器5の集水ケース11内から処理槽3の外部へ取り出される。
(第2の実施の形態)
以下に、第2の実施の形態を図10,図11に基づいて説明する。尚、先述した第1の実施の形態における部材と同じ部材については、同一の符号を付記して、詳細な説明を省略する。
As shown in FIGS. 1 to 3, the membrane separation device 5 equipped with the flexible membrane element 12 manufactured in this way is immersed in the liquid to be treated 2, and the filtration operation is performed. . As a result, the liquid to be treated 2 passes through the filtration membrane 22 of the membrane element 12 from the primary side to the secondary side and is filtered. , flows out from the channel material 21 to the water collecting space 15 in the water collecting case 11 through the gaps 32, and flows from the water collecting case 11 of the uppermost membrane separation device 5 to the treatment tank 3 through the communication hole 16. taken out to the outside.
(Second embodiment)
A second embodiment will be described below with reference to FIGS. 10 and 11. FIG. The same reference numerals are given to the same members as those in the first embodiment described above, and detailed description thereof will be omitted.

ろ過膜22の不織布35は複数本(多数本)の糸45を有している。これらの糸45のそれぞれは複数本の構成糸を撚ることにより形成されている。これにより、ろ過膜22の接合面36を形成する糸45は複数本の構成糸を撚ることにより形成される。 The nonwoven fabric 35 of the filtration membrane 22 has a plurality of (many) threads 45 . Each of these yarns 45 is formed by twisting a plurality of constituent yarns. Thus, the thread 45 forming the joint surface 36 of the filtration membrane 22 is formed by twisting a plurality of constituent threads.

このような糸45を形成している複数本の構成糸の1本以上が、流路材21を構成するパイル糸27およびフェース糸29の軟化点T1以下の軟化点T2を有する低融点糸である。尚、低融点糸としては、約80℃~120℃の軟化点T2を有するポリエチレン(PE)製の糸が用いられている。 One or more of the plurality of constituent yarns forming the yarn 45 is a low-melting yarn having a softening point T2 that is lower than the softening point T1 of the pile yarns 27 and the face yarns 29 that form the channel material 21. be. As the low-melting yarn, polyethylene (PE) yarn having a softening point T2 of about 80° C. to 120° C. is used.

以下、上記構成における作用を説明する。 The operation of the above configuration will be described below.

膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、これら流路材21と両ろ過膜22との3つの部材を、上下一対の加熱ロール間に挿通して、圧縮しながら加熱する。 When manufacturing the membrane element 12, the channel material 21 is placed between a pair of filtration membranes 22, and these three members of the channel material 21 and both filtration membranes 22 are inserted between a pair of upper and lower heating rolls. and heat while compressing.

この際、流路材21とろ過膜22とを、ろ過膜22の不織布35の低融点糸の軟化点T2の温度以上で且つ流路材21のパイル糸27およびフェース糸29の軟化点T1の温度以下の加熱温度に加熱する。これにより、不織布35の接合面36の低融点糸が軟化して、低融点糸の樹脂が流路材21のフェース糸29に絡み付くため、ろ過膜22の接合面36が流路材21に全面的に接合される。 At this time, the channel material 21 and the filtration membrane 22 are heated to a temperature equal to or higher than the softening point T2 of the low melting point yarn of the nonwoven fabric 35 of the filtration membrane 22 and the softening point T1 of the pile yarns 27 and face yarns 29 of the channel material 21. Heat to a heating temperature below the temperature. As a result, the low-melting-point threads on the joint surface 36 of the nonwoven fabric 35 are softened, and the resin of the low-melting-point threads is entangled with the face threads 29 of the channel member 21 , so that the joint surface 36 of the filtration membrane 22 is fully attached to the channel member 21 . are joined together.

上記第1および第2の実施の形態では、低融点糸37の材質にポリエチレンを用いているが、これに限定されるものではなく、ポリエチレン以外のポリオレフィン系樹脂を用いてもよい。また、流路材21を構成するパイル糸27およびフェース糸29の材質および高融点糸38の材質にそれぞれポリエチレンテレフタラートを用いているが、これに限定されるものではなく、例えばポリエチレンテレフタラート以外のポリエステル系樹脂を用いてもよい。
(第3の実施の形態)
以下に、第3の実施の形態を図12,図13に基づいて説明する。尚、先述した第1の実施の形態における部材と同じ部材については、同一の符号を付記して、詳細な説明を省略する。
In the first and second embodiments, polyethylene is used as the material of the low-melting-point yarn 37, but the material is not limited to this, and polyolefin resins other than polyethylene may be used. In addition, although polyethylene terephthalate is used as the material of the pile yarns 27 and the face yarns 29 and the material of the high-melting-point yarns 38, which constitute the channel material 21, the material is not limited to polyethylene terephthalate. You may use the polyester-type resin of this.
(Third Embodiment)
A third embodiment will be described below with reference to FIGS. 12 and 13. FIG. The same reference numerals are given to the same members as those in the first embodiment described above, and detailed description thereof will be omitted.

不織布35は複数本(多数本)の低融点糸37(ろ過膜の接合面を形成する糸の一例)からなるが、複数本(多数本)の高融点糸38を含んでいてもよい。 The nonwoven fabric 35 is composed of a plurality of (multiple) low-melting threads 37 (an example of threads forming the joint surface of the filtration membrane) , but may contain a plurality (multiple) of high-melting threads 38 .

低融点糸37は、芯材51と、芯材51を覆う鞘材52とで形成されている。鞘材52は流路材21を構成するパイル糸27およびフェース糸29の軟化点T1以下の軟化点T2を有している。尚、鞘材52としては、約80℃~120℃の軟化点T2を有するポリエチレン(PE)製の鞘材が用いられている。 The low-melting-point yarn 37 is formed of a core material 51 and a sheath material 52 covering the core material 51 . The sheath material 52 has a softening point T2 that is lower than the softening point T1 of the pile yarns 27 and the face yarns 29 that form the channel material 21 . As the sheath material 52, a polyethylene (PE) sheath material having a softening point T2 of about 80.degree. C. to 120.degree. C. is used.

また、芯材51は鞘材52の軟化点T2よりも高い軟化点T3を有している。尚、芯材51としては、約240℃~280℃の軟化点T3を有するポリエチレンテレフタラート(PET)製の芯材が用いられている。 Also, the core material 51 has a softening point T3 higher than the softening point T2 of the sheath material 52 . As the core material 51, a core material made of polyethylene terephthalate (PET) having a softening point T3 of about 240.degree. C. to 280.degree. C. is used.

高融点糸38は低融点糸37の鞘材52よりも高い軟化点T3を有している。尚、高融点糸38としては、約240℃~280℃の軟化点T3を有するポリエチレンテレフタラート(PET)製の糸が用いられている。 The high melting point yarn 38 has a softening point T3 higher than that of the sheath material 52 of the low melting point yarn 37 . As the high-melting-point yarn 38, polyethylene terephthalate (PET) yarn having a softening point T3 of about 240° C. to 280° C. is used.

また、不織布35は、上記低融点糸37からなる綿を分散および熱圧延したスパンボンド不織布であってもよいし、上記低融点糸37からなる綿と高融点糸38からなる綿とを分散および熱圧延したサーマルボンド不織布であってもよい。 Further, the nonwoven fabric 35 may be a spunbond nonwoven fabric obtained by dispersing and heat-rolling the cotton made of the low-melting-point yarns 37, or the cotton made of the low-melting-point yarns 37 and the cotton made of the high-melting-point yarns 38 dispersed and hot rolled. It may be a hot rolled thermal bonded nonwoven fabric.

以下、上記構成における作用を説明する。 The operation of the above configuration will be described below.

膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、これら流路材21と両ろ過膜22との3つの部材を、上下一対の加熱ロール間に挿通して、圧縮しながら加熱する。 When manufacturing the membrane element 12, the channel material 21 is placed between a pair of filtration membranes 22, and these three members of the channel material 21 and both filtration membranes 22 are inserted between a pair of upper and lower heating rolls. and heat while compressing.

この際、流路材21とろ過膜22とを、ろ過膜22の不織布35の低融点糸37の鞘材52の軟化点T2の温度以上で且つ流路材21のパイル糸27およびフェース糸29の軟化点T1以下の加熱温度に加熱する。これにより、不織布35の接合面36の低融点糸37の鞘材52が軟化して、鞘材52の樹脂が流路材21のフェース糸29に絡み付くため、ろ過膜22の接合面36が流路材21に全面的に接合される。 At this time, the channel material 21 and the filtration membrane 22 are heated to a temperature equal to or higher than the softening point T2 of the sheath material 52 of the low melting point yarn 37 of the nonwoven fabric 35 of the filtration membrane 22 and the pile yarns 27 and the face yarns 29 of the channel material 21. It is heated to a heating temperature below the softening point T1 of. As a result, the sheath material 52 of the low melting point yarn 37 on the joint surface 36 of the nonwoven fabric 35 is softened, and the resin of the sheath material 52 is entangled with the face yarn 29 of the flow channel material 21, so that the joint surface 36 of the filtration membrane 22 is made to flow. The entire surface is joined to the road material 21 .

この際、芯材51は鞘材52の軟化点T2よりも高い軟化点T3を有するため、加熱温度を芯材51の軟化点T3の温度よりも低くすることにより、芯材51が軟化するのを防止することができる。これにより、鞘材52よりも可撓性が低い(又は反発力が高い或いは弾性が高い)樹脂を用いて芯材51を構成することにより、ろ過膜22の接合面36の強度が向上する。 At this time, since the core material 51 has a softening point T3 higher than the softening point T2 of the sheath material 52, the core material 51 is softened by lowering the heating temperature than the softening point T3 of the core material 51. can be prevented. Accordingly, the strength of the joint surface 36 of the filtration membrane 22 is improved by configuring the core material 51 using a resin having lower flexibility (or higher repulsive force or higher elasticity) than the sheath material 52 .

上記第3の実施の形態では、鞘材52の材質にポリエチレンを用いているが、これに限定されるものではなく、ポリエチレン以外のポリオレフィン系樹脂を用いてもよい。また、芯材51の材質にポリエチレンテレフタラートを用いているが、これに限定されるものではなく、例えばポリエチレンテレフタラート以外のポリエステル系樹脂を用いてもよい。 Although polyethylene is used as the material of the sheath member 52 in the third embodiment, the material is not limited to this, and a polyolefin resin other than polyethylene may be used. Moreover, although polyethylene terephthalate is used as the material of the core material 51, the material is not limited to this, and for example, a polyester-based resin other than polyethylene terephthalate may be used.

上記各実施の形態では、図4に示すように、流路材21の表裏両面にそれぞれろ過膜22を接合しているが、ろ過膜22を流路材21の表裏いずれか一面に接合し、他面側を水密にしてもよい。 In each of the above embodiments, as shown in FIG. 4, the filtration membrane 22 is joined to both the front and back surfaces of the channel material 21, but the filtration membrane 22 is joined to either the front or back surface of the channel material 21, The other side may be watertight.

上記各実施の形態では、各軟化点T1~T4を指標にしているが、軟化点T1~T4の代わりに融点を指標にしてもよい。尚、融点を指標にする場合であっても、軟化点T1~T4と同様の温度の高低関係が成立する。 In each of the above embodiments, the softening points T1 to T4 are used as indicators, but the melting point may be used as an indicator instead of the softening points T1 to T4. Note that even when the melting point is used as an index, the same high-low temperature relationship as the softening points T1 to T4 is established.

上記各実施の形態では、流路材21のパイル糸27とフェース糸29に、ポリエチレンテレフタラート製の糸を用いているが、ポリエチレンテレフタラート製の糸とポリエチレン製の糸とを混在させてもよい。 Although polyethylene terephthalate yarns are used for the pile yarns 27 and the face yarns 29 of the channel material 21 in each of the above-described embodiments, polyethylene terephthalate yarns and polyethylene yarns may be mixed. good.

上記各実施の形態では、パイル糸27の糸使いを「56T1」、パイル糸27の密度を379本/cmにしているが、これらに限定されるものではなく、例えば「33T1」、密度約370~390本/cmであってもよい。 In each of the above-described embodiments, the yarn usage of the pile yarn 27 is set to "56T1" and the density of the pile yarn 27 is set to 379 threads/cm 2 . It may be 370 to 390 lines/cm 2 .

また、上記各実施の形態において示したポリエチレン、ポリエチレンテレフタラート、ポリテトラフルオロエチレン等の材質および数値は、一例であって、これらに限定されるものではない。 In addition, the materials and numerical values such as polyethylene, polyethylene terephthalate, and polytetrafluoroethylene shown in the above embodiments are examples and are not limited to these.

5 膜分離機器
11 集水ケース(支持部材)
12 膜エレメント
15 集水空間
21 流路材
22 ろ過膜
27 パイル糸(流路材を構成する糸)
29 フェース糸(流路材を構成する糸)
32 空隙
33 透過液
34 膜シート
35 不織布
36 接合面
37 低融点糸
45 糸(接合面を形成する糸)
51 芯材
52 鞘材
5 Membrane separation device 11 Water collection case (supporting member)
12 Membrane element 15 Water collecting space 21 Channel material 22 Filtration membrane 27 Pile thread (thread constituting channel material)
29 Face thread (thread constituting channel material)
32 Air gap 33 Permeate liquid 34 Membrane sheet 35 Nonwoven fabric 36 Bonding surface 37 Low melting point thread 45 Thread (thread forming the bonding surface)
51 core material 52 sheath material

Claims (9)

ろ過膜と流路材とが接合された膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
ろ過膜は流路材に接合する接合面を有し、
接合面を形成する糸は、芯材と、芯材を覆う鞘材とで形成され、
鞘材は流路材を構成する糸の軟化点以下の軟化点を有し、
芯材は鞘材の軟化点よりも高い軟化点を有することを特徴とする膜エレメント。
A membrane element in which a filtration membrane and a channel material are joined,
The channel material consists of a knitted fabric in which threads are knitted in a three-dimensional structure, and has voids therein through which the permeated liquid that has passed through the filtration membrane flows,
The filtration membrane has a joint surface that joins the channel material,
The thread that forms the joint surface is formed of a core material and a sheath material that covers the core material,
The sheath material has a softening point equal to or lower than the softening point of the thread forming the channel material,
A membrane element, wherein the core material has a softening point higher than that of the sheath material.
ろ過膜と流路材とが接合された膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
ろ過膜は流路材に接合する接合面を有し、
接合面を形成する糸は複数の構成糸を撚ることにより形成され、
構成糸の1本以上が、流路材を構成する糸の軟化点以下の軟化点を有する低融点糸であることを特徴とする膜エレメント。
A membrane element in which a filtration membrane and a channel material are joined,
The channel material consists of a knitted fabric in which threads are knitted in a three-dimensional structure, and has voids therein through which the permeated liquid that has passed through the filtration membrane flows,
The filtration membrane has a joint surface that joins the channel material,
The yarn forming the joint surface is formed by twisting multiple constituent yarns,
A membrane element, wherein at least one of the constituent yarns is a low-melting-point yarn having a softening point equal to or lower than the softening point of the yarns forming the channel material.
低融点糸は、芯材と、芯材を覆う鞘材とで形成され、
鞘材は流路材を構成する糸の軟化点以下の軟化点を有し、
芯材は鞘材の軟化点よりも高い軟化点を有することを特徴とする請求項2に記載の膜エレメント。
The low-melting-point yarn is formed of a core material and a sheath material covering the core material,
The sheath material has a softening point equal to or lower than the softening point of the thread forming the channel material,
3. The membrane element according to claim 2, wherein the core material has a softening point higher than that of the sheath material.
低融点糸の材質がポリオレフィン系樹脂であることを特徴とする請求項2に記載の膜エレメント。 3. The membrane element according to claim 2, wherein the material of the low melting point thread is a polyolefin resin. 鞘材の材質がポリオレフィン系樹脂であることを特徴とする請求項1又は請求項3に記載の膜エレメント。 4. The membrane element according to claim 1, wherein the material of the sheath material is a polyolefin resin. 流路材を構成する糸の材質がポリエステル系樹脂であることを特徴とする請求項1から請求項5のいずれか1項に記載の膜エレメント。 6. The membrane element according to any one of claims 1 to 5, wherein the material of the threads forming the channel material is a polyester resin. ろ過膜と流路材とが接合された膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
ろ過膜は、多孔質の膜シートと、膜シートの裏面に設けられた不織布とを積層したものであり、
不織布は流路材に接合する接合面を有し、
接合面を形成する糸の少なくとも一部が、流路材を構成する糸の軟化点以下の軟化点を有する低融点糸であり、
膜シートの軟化点が不織布に含まれる低融点糸の軟化点よりも高いことを特徴とする膜エレメント。
A membrane element in which a filtration membrane and a channel material are joined,
The channel material consists of a knitted fabric in which threads are knitted in a three-dimensional structure, and has voids therein through which the permeated liquid that has passed through the filtration membrane flows,
The filtration membrane is a laminate of a porous membrane sheet and a nonwoven fabric provided on the back surface of the membrane sheet,
The nonwoven fabric has a joint surface that joins the channel material,
At least part of the yarn forming the joint surface is a low-melting yarn having a softening point equal to or lower than the softening point of the yarn forming the channel material,
A membrane element, wherein the softening point of the membrane sheet is higher than the softening point of the low-melting yarn contained in the nonwoven fabric.
多孔質の膜シートはePTFEを材質とすることを特徴とする請求項7に記載の膜エレメント。 8. The membrane element according to claim 7, wherein the porous membrane sheet is made of ePTFE. 請求項1から請求項8のいずれか1項に記載の膜エレメントを備えた膜分離機器であって、
複数の膜エレメントを支持する支持部材を備え、
支持部材は内部に集水空間を有し、
各膜エレメントの端部が集水空間に挿入され、
ろ過膜を透過した透過液が流路材内の空隙を通って支持部材の集水空間に流れ込むことを特徴とする膜分離機器。
A membrane separation device comprising the membrane element according to any one of claims 1 to 8,
comprising a support member that supports the plurality of membrane elements,
The support member has a water collecting space inside,
The end of each membrane element is inserted into the water collecting space,
A membrane separation device, wherein a permeated liquid that has passed through a filtration membrane flows into a water collecting space of a support member through voids in a channel material.
JP2018193000A 2018-10-12 2018-10-12 Membrane elements and membrane separation equipment Active JP7228360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018193000A JP7228360B2 (en) 2018-10-12 2018-10-12 Membrane elements and membrane separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193000A JP7228360B2 (en) 2018-10-12 2018-10-12 Membrane elements and membrane separation equipment

Publications (2)

Publication Number Publication Date
JP2020058999A JP2020058999A (en) 2020-04-16
JP7228360B2 true JP7228360B2 (en) 2023-02-24

Family

ID=70219247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193000A Active JP7228360B2 (en) 2018-10-12 2018-10-12 Membrane elements and membrane separation equipment

Country Status (1)

Country Link
JP (1) JP7228360B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158412A1 (en) * 2021-01-21 2022-07-28 三菱製紙株式会社 Substrate for filter, and filtration material for filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312815A (en) 1999-04-30 2000-11-14 Nitto Denko Corp Immersible membrane separation device
JP2009136863A (en) 2007-11-14 2009-06-25 Nitto Denko Corp Filter member, its manufacturing method and filter unit
WO2011004743A1 (en) 2009-07-10 2011-01-13 住友電工ファインポリマー株式会社 Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
JP2011519716A (en) 2008-04-15 2011-07-14 マイクロダイン‐ナディア、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング FILTER COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND FLAT FILTER MEMBER PRODUCED FROM FILTER COMPOSITE MATERIAL
JP2012101213A (en) 2010-10-13 2012-05-31 Mitsubishi Paper Mills Ltd Semi-permeable membrane support
JP2018047455A (en) 2016-09-16 2018-03-29 日東電工株式会社 Spiral type membrane element
WO2018147251A1 (en) 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312815A (en) 1999-04-30 2000-11-14 Nitto Denko Corp Immersible membrane separation device
JP2009136863A (en) 2007-11-14 2009-06-25 Nitto Denko Corp Filter member, its manufacturing method and filter unit
JP2011519716A (en) 2008-04-15 2011-07-14 マイクロダイン‐ナディア、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング FILTER COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND FLAT FILTER MEMBER PRODUCED FROM FILTER COMPOSITE MATERIAL
WO2011004743A1 (en) 2009-07-10 2011-01-13 住友電工ファインポリマー株式会社 Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
JP2012101213A (en) 2010-10-13 2012-05-31 Mitsubishi Paper Mills Ltd Semi-permeable membrane support
JP2018047455A (en) 2016-09-16 2018-03-29 日東電工株式会社 Spiral type membrane element
JP2018047456A (en) 2016-09-16 2018-03-29 日東電工株式会社 Spiral type membrane element
WO2018147251A1 (en) 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric

Also Published As

Publication number Publication date
JP2020058999A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
KR101734120B1 (en) Filter Media and Method for manufacturing thereof, and Filter Apparatus using the Same
RU2610075C2 (en) Filtration element made with possibility of backwashing
US9630148B2 (en) Filter compound material, method for the production thereof and flat filter elements made of the filter compound material
JP2011529779A5 (en)
KR102390788B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR101946852B1 (en) Filter for flat type water treatment
US10589195B2 (en) Flat filter for water treatment, and filter module for water treatment using same
JP7228360B2 (en) Membrane elements and membrane separation equipment
KR102055725B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
US11141686B2 (en) Backwashable depth filter
US9050564B2 (en) Filter module and system having spirally wound membrane filters, and method for the production thereof
US11413585B2 (en) Membrane element and membrane separation device
JP2009112887A (en) Filter medium, its manufacturing method, and cartridge filter
KR20180069724A (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP7228361B2 (en) MEMBRANE ELEMENT MANUFACTURING METHOD
JP6941559B2 (en) Membrane element and membrane separation device
US20190070541A1 (en) Filter material and filtration assembly
JP7158270B2 (en) Membrane separation equipment
KR102591625B1 (en) Filter for flat type water treatment
JP2004270865A (en) Filter material for oil filter for automatic transmission
KR102591620B1 (en) Filter for flat type water treatment
KR102591622B1 (en) Filter for flat type water treatment
JP4064285B2 (en) Filtration media for filtration
KR102603560B1 (en) Filter for flat type water treatment
KR20210081089A (en) Tublar filter for water-treatment and water-treatment filter module comprising thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150