JP7226389B2 - Substrate with film for reflective mask blank and reflective mask blank - Google Patents

Substrate with film for reflective mask blank and reflective mask blank Download PDF

Info

Publication number
JP7226389B2
JP7226389B2 JP2020079089A JP2020079089A JP7226389B2 JP 7226389 B2 JP7226389 B2 JP 7226389B2 JP 2020079089 A JP2020079089 A JP 2020079089A JP 2020079089 A JP2020079089 A JP 2020079089A JP 7226389 B2 JP7226389 B2 JP 7226389B2
Authority
JP
Japan
Prior art keywords
film
layer
thickness
protective film
mask blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020079089A
Other languages
Japanese (ja)
Other versions
JP2021173917A (en
Inventor
恒男 寺澤
英雄 金子
判臣 稲月
卓郎 ▲高▼坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020079089A priority Critical patent/JP7226389B2/en
Priority to US17/224,673 priority patent/US20210333702A1/en
Priority to KR1020210052740A priority patent/KR20210133155A/en
Priority to TW110115107A priority patent/TW202147015A/en
Priority to CN202110458020.3A priority patent/CN113568269A/en
Priority to EP21170665.0A priority patent/EP3907560A1/en
Priority to SG10202104255YA priority patent/SG10202104255YA/en
Publication of JP2021173917A publication Critical patent/JP2021173917A/en
Application granted granted Critical
Publication of JP7226389B2 publication Critical patent/JP7226389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/40Electrostatic discharge [ESD] related features, e.g. antistatic coatings or a conductive metal layer around the periphery of the mask substrate

Description

本発明は、半導体デバイス製造等に使用される反射型マスクを製造するための反射マスクブランク、及び多層反射膜上に保護膜を設けても反射率の低下が抑制されている反射型マスクブランク用膜付き基板に関する。 The present invention provides a reflective mask blank for manufacturing a reflective mask used in the manufacture of semiconductor devices, etc., and a reflective mask blank in which a decrease in reflectance is suppressed even if a protective film is provided on a multilayer reflective film. It relates to a substrate with a film.

半導体デバイス(半導体装置)の製造工程では、転写用マスクに露光光を照射し、マスクに形成されている回路パターンを、縮小投影光学系を介して半導体基板(半導体ウェハ)上に転写するフォトリソグラフィ技術が繰り返し用いられる。従来、露光光の波長は、フッ化アルゴン(ArF)エキシマレーザ光を用いた193nmが主流となっており、露光プロセスや加工プロセスを複数回組み合わせるマルチパターニングというプロセスを採用することにより、最終的には露光波長より小さい寸法のパターンを形成してきた。 In the manufacturing process of semiconductor devices (semiconductor equipment), photolithography involves irradiating a transfer mask with exposure light and transferring the circuit pattern formed on the mask onto a semiconductor substrate (semiconductor wafer) via a reduction projection optical system. Techniques are used repeatedly. Conventionally, the wavelength of exposure light is mainly 193 nm using argon fluoride (ArF) excimer laser light. have formed patterns with dimensions smaller than the exposure wavelength.

しかし、継続的なデバイスパターンの微細化により、更なる微細パターンの形成が必要とされてきていることから、露光光としてArFエキシマレーザ光より更に波長の短い極端紫外(Extreme Ultraviolet:以下「EUV」と称す。)光を用いたEUVリソグラフィ技術が有望視されている。EUV光とは、波長が0.2~100nm程度の光であり、より具体的には、波長が13.5nm付近の光である。このEUV光は物質に対する透過性が極めて低く、従来の透過型の投影光学系やマスクが使えないことから、反射型の光学素子が用いられる。そのため、パターン転写用のマスクも反射型マスクが提案されている。 However, due to the continuous miniaturization of device patterns, the formation of even finer patterns is required, so extreme ultraviolet (hereinafter referred to as "EUV"), which has a shorter wavelength than ArF excimer laser light, is used as exposure light. The EUV lithography technology using light is considered promising. EUV light is light with a wavelength of about 0.2 to 100 nm, more specifically, light with a wavelength of around 13.5 nm. The EUV light has extremely low permeability to substances, and conventional transmissive projection optical systems and masks cannot be used, so reflective optical elements are used. Therefore, a reflective mask has been proposed as a mask for pattern transfer.

反射型マスクは、基板上にEUV光を反射する多層反射膜が形成され、多層反射膜の上にEUV光を吸収する吸収体膜がパターン状に形成されたものである。一方、吸収体膜にパターニングする前の状態(レジスト膜が形成された状態を含む)のものが、反射型マスクブランクと呼ばれ、これが反射型マスクの素材として用いられる。(以下、EUV光を反射させる反射型マスクブランクをEUVマスクブランクとも称す。)EUVマスクブランクは、ガラス製の基板上に形成するEUV光を反射する多層反射膜と、その上に形成されたEUV光を吸収する吸収体膜とを含むことを基本とする構造を有する。多層反射層としては、通常、モリブデン(Mo)層とシリコン(Si)層とを交互に積層することでEUV光の反射率を確保するMo/Si多層反射膜が用いられる。一方、吸収体膜としては、EUV光に対して消衰係数の値が比較的大きいタンタル(Ta)やクロム(Cr)を主成分とする材料が用いられる。 A reflective mask has a multilayer reflective film that reflects EUV light formed on a substrate, and an absorber film that absorbs EUV light is formed in a pattern on the multilayer reflective film. On the other hand, the state before patterning to the absorber film (including the state where the resist film is formed) is called a reflective mask blank, and this is used as the material for the reflective mask. (Hereinafter, a reflective mask blank that reflects EUV light is also referred to as an EUV mask blank.) An EUV mask blank consists of a multilayer reflective film that reflects EUV light formed on a glass substrate, and an EUV light-reflecting film formed thereon. and an absorber film that absorbs light. As the multi-layer reflective layer, a Mo/Si multi-layer reflective film is generally used, in which molybdenum (Mo) layers and silicon (Si) layers are alternately laminated to ensure the reflectance of EUV light. On the other hand, as the absorber film, a material mainly composed of tantalum (Ta) or chromium (Cr), which has a relatively large extinction coefficient with respect to EUV light, is used.

多層反射膜と吸収体膜との間には、多層反射膜を保護するための保護膜が形成される。この保護膜は、吸収体膜にパターンを形成することを目的に実施されるエッチングや、パターン形成後に欠陥が検出された際のパターン修正加工、更には、マスクパターン形成後にマスクの洗浄などによって、多層反射膜がダメージを受けることがないように、多層反射膜を保護することを目的としたものである。この保護膜としては、特開2002-122981号公報(特許文献1)、特開2005-268750号公報(特許文献2)に開示されているように、ルテニウム(Ru)又はRuを主成分とする材料が用いられる。保護膜の厚さは、反射率確保の観点では2.0~2.5nmが望ましいが、多層反射膜の保護の観点からは3nm以上が望ましい。 A protective film for protecting the multilayer reflective film is formed between the multilayer reflective film and the absorber film. This protective film is removed by etching for the purpose of forming a pattern on the absorber film, pattern correction processing when a defect is detected after pattern formation, and cleaning of the mask after mask pattern formation. The object is to protect the multilayer reflective film from being damaged. As the protective film, as disclosed in Japanese Patent Application Laid-Open No. 2002-122981 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2005-268750 (Patent Document 2), ruthenium (Ru) or Ru as a main component material is used. The thickness of the protective film is desirably 2.0 to 2.5 nm from the viewpoint of ensuring the reflectance, but is desirably 3 nm or more from the viewpoint of protecting the multilayer reflective film.

特開2002-122981号公報Japanese Patent Application Laid-Open No. 2002-122981 特開2005-268750号公報JP-A-2005-268750

Mo層とSi層とを交互に積層した多層反射膜では、EUV光に対して約66~68%と比較的高い反射率を得ることができる。しかし、保護膜としてRu膜を多層反射膜の上に形成すると、保護膜の表面に照射されるEUV光の反射率は、保護膜の厚さにもよるが、差分として1.5~3%低下する。この反射率の低下は、反射型マスクを製造する際に実施される工程や、EUV露光工程において、更に進行する傾向にある。このように、保護膜の形成により多層反射膜の反射率が低下するという問題がある。 A multilayer reflective film in which Mo layers and Si layers are alternately laminated can obtain a relatively high reflectance of about 66 to 68% for EUV light. However, when a Ru film is formed as a protective film on the multilayer reflective film, the reflectance of the EUV light irradiated to the surface of the protective film is 1.5 to 3% as a difference, depending on the thickness of the protective film. descend. This decrease in reflectance tends to progress further in the process of manufacturing a reflective mask and the EUV exposure process. Thus, there is a problem that the reflectance of the multilayer reflective film decreases due to the formation of the protective film.

本発明は、前記課題に鑑みてなされたものであり、保護膜を形成することにより生じる多層反射膜の反射率の低下が抑制されており、反射型マスクへ加工しても、また、反射型マスクを用いた露光によっても、長期間に亘って高いEUV光反射率を確保できる多層反射膜を有する、転写性能の良い反射型マスクを実現できる反射型マスクブランク用膜付き基板及び反射型マスクブランクを提供することを目的とする。 The present invention has been made in view of the above problems, and suppresses a decrease in the reflectance of a multilayer reflective film caused by forming a protective film. A film-coated substrate for a reflective mask blank and a reflective mask blank that can realize a reflective mask with good transfer performance, which has a multilayer reflective film that can ensure high EUV light reflectance over a long period of time even by exposure using a mask intended to provide

本発明者らは、前記課題を解決するために、EUV光を反射させる反射型マスクブランク(EUVマスクブランク)における多層反射膜と保護膜に関し、シミュレーションを用いた反射率計算を繰り返し実施して、鋭意検討を重ねた結果、モリブデン(Mo)層とシリコン(Si)層とが交互に積層され、最上層がシリコン(Si)層である多層反射膜の、最上層のシリコン(Si)層に接して、ルテニウム(Ru)を主成分として含有する保護膜を形成した反射型マスクブランク用膜付き基板、更には、これらと共に、吸収体膜と導電膜とを備える反射型マスクブランクにおいて、
モリブデン(Mo)層とシリコン(Si)層との境界部にMoとSiとを含有するミキシング層、また、最上層のシリコン(Si)層と保護膜との境界部にRuとSiとを含有するミキシング層が生成しており、
保護膜の厚さをTRu(nm)、最上層のシリコン(Si)層と保護膜との境界部のミキシング層の厚さをTRuSi(nm)、ミキシング層を含まない最上層のシリコン(Si)層の厚さをTupSi(nm)、それより下方の周期構造における、ミキシング層を含まないシリコン(Si)層の厚さをTSi(nm)としたとき、各層が下記式(1)~(3)
5.3≦TupSi+TRuSi+TRu/2≦5.5 (1)
1.1≦TRu/2-(TSi-TupSi)≦1.3 (2)
3.0≦TRu≦4.0 (3)
の全てを満たすように構成することにより、初期のEUV光反射率を高くすることができ、保護膜による多層反射膜の反射率の低下が抑制され、保護膜が存在していても、保護膜の表面側から照射されたEUV光の反射率として、高い反射率を維持できるものであることを見出した。更に、EUVリソグラフィでは、4倍マスク使用、かつNA=0.33の条件を前提とすると、反射型マスクへのEUV光入射角度として6±4.7°(1.3~10.7°)の範囲を考慮すべきであるが、本発明の多層反射膜及び保護膜により、1.3~10.7°の範囲に亘って、高い反射率が確保できることを見出し、本発明をなすに至った。
In order to solve the above-mentioned problems, the present inventors repeatedly performed reflectance calculations using simulations for multilayer reflective films and protective films in a reflective mask blank that reflects EUV light (EUV mask blank). As a result of intensive studies, it was found that a multilayer reflective film in which molybdenum (Mo) layers and silicon (Si) layers are alternately laminated and the uppermost layer is a silicon (Si) layer is in contact with the uppermost silicon (Si) layer. A film-coated substrate for a reflective mask blank on which a protective film containing ruthenium (Ru) as a main component is formed, and a reflective mask blank comprising an absorber film and a conductive film together with these,
A mixing layer containing Mo and Si at the boundary between the molybdenum (Mo) layer and the silicon (Si) layer, and containing Ru and Si at the boundary between the uppermost silicon (Si) layer and the protective film A mixing layer is generated that
T Ru (nm) is the thickness of the protective film, T RuSi (nm) is the thickness of the mixing layer at the boundary between the uppermost silicon (Si) layer and the protective film, and T RuSi (nm) is the uppermost silicon layer not including the mixing layer ( When the thickness of the Si) layer is T upSi (nm), and the thickness of the silicon (Si) layer that does not include the mixing layer in the periodic structure below it is T Si (nm), each layer is represented by the following formula (1 ) to (3)
5.3≦ TupSi + TRuSi + TRu /2≦5.5 (1)
1.1≦T Ru /2−(T Si −T upSi )≦1.3 (2)
3.0≦T Ru ≦4.0 (3)
By configuring to satisfy all of, the initial EUV light reflectance can be increased, the decrease in reflectance of the multilayer reflective film due to the protective film is suppressed, and even if the protective film is present, the protective film It has been found that a high reflectance can be maintained for the EUV light irradiated from the surface side. Furthermore, in EUV lithography, assuming the use of a 4× mask and NA=0.33, the angle of incidence of EUV light on the reflective mask is 6±4.7° (1.3 to 10.7°). However, it was found that the multilayer reflective film and protective film of the present invention can ensure a high reflectance over the range of 1.3 to 10.7°, and the present invention was made. rice field.

RuとSiとを含有するミキシング層は、Si層の上にRu層を形成すると、両層の境界部にRuとSiとの混合層として生成する層である。ここでは、RuとSiとを含有するミキシング層は、Ru層やSi層と区別される。また、Mo層とSi層との境界部にも同様に、MoとSiとの混合層としてミキシング層が生成する。なお、両ミキシング層は、断面TEMなどで観察され、その厚さも把握できる。 The mixing layer containing Ru and Si is a layer formed as a mixed layer of Ru and Si at the interface between the two layers when the Ru layer is formed on the Si layer. Here, mixing layers containing Ru and Si are distinguished from Ru and Si layers. Similarly, a mixed layer of Mo and Si is formed at the boundary between the Mo layer and the Si layer. Both mixing layers are observed by a cross-sectional TEM or the like, and their thicknesses can also be grasped.

従って、本発明は、以下の反射型マスクブランク用膜付き基板、及び反射型マスクブランクを提供する。
1.基板と、該基板の主表面上に形成され、極端紫外線(EUV)光を反射する多層反射膜と、該多層反射膜上に、該多層反射膜に接して形成された保護膜とを備える反射型マスクブランク用膜付き基板であって、
前記多層反射膜が、モリブデン(Mo)層とシリコン(Si)層とが交互に積層され、更に、最上層がシリコン(Si)層である周期積層構造を有し、前記モリブデン(Mo)層とシリコン(Si)層との境界部に、MoとSiとを含有するミキシング層が存在し、
前記保護膜が、ルテニウム(Ru)を主成分として含有する膜であり、前記多層反射膜の最上層のシリコン(Si)層と前記保護膜との境界部に、RuとSiとを含有するミキシング層が生成しており、
前記保護膜の厚さをTRu(nm)、前記最上層のシリコン(Si)層と前記保護膜との境界部のミキシング層の厚さをTRuSi(nm)、ミキシング層を含まない前記最上層のシリコン(Si)層の厚さをTupSi(nm)、前記最上層のシリコン(Si)層より下方の周期構造における、ミキシング層を含まないシリコン(Si)層の厚さをTSi(nm)としたとき、
各層の厚さが下記式(1)~(3)
5.3≦TupSi+TRuSi+TRu/2≦5.5 (1)
1.1≦TRu/2-(TSi-TupSi)≦1.3 (2)
3.0≦TRu≦4.0 (3)
の全てを満たすことを特徴とする反射型マスクブランク用膜付き基板。
2.前記多層反射膜のEUV光に対する入射角1.3~10.7°の範囲内の最低反射率Rmin(%)が、下記式(4)
min≧72-2×TRu (4)
(式中、TRuは保護膜の厚さ(nm)である。)
を満たすことを特徴とする1に記載の反射型マスクブランク用膜付き基板。
3.1又は2に記載の反射型マスクブランク用膜付き基板と、前記保護膜上に形成された、EUV光を吸収する吸収体膜と、前記基板の反対側の主表面上に形成された導電膜とを備えることを特徴とする反射型マスクブランク。
Accordingly, the present invention provides the following film-coated substrate for reflective mask blank and reflective mask blank.
1. A reflector comprising a substrate, a multilayer reflective film formed on a main surface of the substrate and reflecting extreme ultraviolet (EUV) light, and a protective film formed on the multilayer reflective film and in contact with the multilayer reflective film. A film-coated substrate for a mold mask blank,
The multilayer reflective film has a periodic lamination structure in which molybdenum (Mo) layers and silicon (Si) layers are alternately laminated, and the uppermost layer is a silicon (Si) layer, and the molybdenum (Mo) layer and the A mixing layer containing Mo and Si is present at the boundary with the silicon (Si) layer,
The protective film is a film containing ruthenium (Ru) as a main component, and the mixing containing Ru and Si at the interface between the uppermost silicon (Si) layer of the multilayer reflective film and the protective film. layer is generated,
The thickness of the protective film is T Ru (nm), the thickness of the mixing layer at the boundary between the uppermost silicon (Si) layer and the protective film is T RuSi (nm), and the maximum T upSi (nm) is the thickness of the upper silicon (Si) layer, and T Si (nm) is the thickness of the silicon (Si) layer that does not include the mixing layer in the periodic structure below the uppermost silicon (Si) layer. nm),
The thickness of each layer is the following formula (1) to (3)
5.3≦ TupSi + TRuSi + TRu /2≦5.5 (1)
1.1≦T Ru /2−(T Si −T upSi )≦1.3 (2)
3.0≦T Ru ≦4.0 (3)
A film-coated substrate for a reflective mask blank, which satisfies all of the above.
2. The minimum reflectance R min (%) within the range of the incident angle of 1.3 to 10.7° for EUV light of the multilayer reflective film is expressed by the following formula (4)
R min ≧72−2×T Ru (4)
(In the formula, T Ru is the thickness (nm) of the protective film.)
2. The film-coated substrate for a reflective mask blank according to 1, which satisfies the following:
3. The substrate with a film for a reflective mask blank according to 1 or 2, an absorber film that absorbs EUV light formed on the protective film, and an absorber film that absorbs EUV light and is formed on the opposite main surface of the substrate A reflective mask blank, comprising: a conductive film.

本発明によれば、多層反射膜の上に保護膜を形成することにより生じる反射率の低下が抑制された反射型マスクブランク用膜付き基板を実現できる。更に、保護膜の上に吸収体膜を形成することにより、反射型マスクを形成後も、多層反射膜を保護しつつ、反射率が確保された、信頼性の高い反射型マスクブランクを提供することができる。 According to the present invention, it is possible to realize a film-coated substrate for a reflective mask blank in which a decrease in reflectance caused by forming a protective film on a multilayer reflective film is suppressed. Furthermore, by forming an absorber film on the protective film, the multilayer reflective film is protected even after the reflective mask is formed, and a highly reliable reflective mask blank in which reflectance is ensured is provided. be able to.

(A)は本発明の反射型マスクブランクの要部断面図、(B)は(A)の反射型マスクブランクの表面にレジストを塗布した状態を示す要部断面図、(C)は(B)の状態からレジスト膜を描画した後に、吸収体膜をエッチングして吸収体膜パターンを形成した状態を示す要部断面図である。(A) is a cross-sectional view of the main parts of the reflective mask blank of the present invention, (B) is a cross-sectional view of the main parts showing a state in which a resist is applied to the surface of the reflective mask blank of (A), and (C) is a cross-sectional view of (B). ), and then etching the absorber film to form an absorber film pattern. FIG. 本発明の反射型マスクブランクにおいて、吸収体膜を形成する前の状態の図であり、多層反射膜の上部と、その上の保護膜の断面図である。FIG. 4 is a view of the reflective mask blank of the present invention before forming an absorber film, and is a cross-sectional view of the upper portion of the multilayer reflective film and the protective film thereon. 本発明の多層反射膜のEUV光反射率を、最上層のSi層の厚さと、RuとSiとのミキシング層の厚さとの関数として表したグラフであり、(A)はEUV光の入射角度が6°の場合、(B)はEUV光の入射角度が10°の場合を示すグラフである。2 is a graph showing the EUV light reflectance of the multilayer reflective film of the present invention as a function of the thickness of the uppermost Si layer and the thickness of the mixing layer of Ru and Si, where (A) is the incident angle of EUV light. is 6°, and (B) is a graph showing the case where the incident angle of EUV light is 10°. 多層反射膜の反射率Rを、EUV光の入射角度θの関数として計算で求めた例を示すグラフである。4 is a graph showing an example in which the reflectance R of a multilayer reflective film is calculated as a function of the incident angle θ of EUV light. EUV光の入射角度θに依存する多層反射膜の反射率Rが最上層のSi層の厚さを変えることにより改善されることを示す図であり、(A)は保護膜の厚さを3.0nmとした場合、(B)は保護膜の厚さを3.5nmとした場合、(C)は保護膜の厚さを4.0nmとした場合を想定した計算値を示すグラフである。FIG. 4A is a diagram showing that the reflectance R of the multilayer reflective film, which depends on the incident angle θ of EUV light, is improved by changing the thickness of the uppermost Si layer; 0 nm, (B) is a protective film having a thickness of 3.5 nm, and (C) is a graph showing calculated values assuming a protective film having a thickness of 4.0 nm. 本発明の反射型マスクブランクを製造するためのフローチャートである。1 is a flow chart for manufacturing a reflective mask blank of the present invention;

以下、本発明について更に詳しく説明する。
まず、反射型マスクブランクとEUV露光用の反射型マスクを製造する工程の概要を図1に示す。図1(A)は、反射型マスクブランクRMBの要部を示す断面図である。反射型マスクブランクRMBは、表面が十分に平坦化された低熱膨張材料からなる基板101の主表面にEUV光を反射する多層反射膜102と、多層反射膜102の保護膜103、及びEUV光を吸収する吸収体膜104が、この順に形成されている。一方、前記基板101の多層反射膜102を形成した面とは反対側(裏側)の主表面には、反射型マスクを露光装置のマスクステージに静電的に固定させるための導電膜105が形成されている。
The present invention will be described in more detail below.
First, FIG. 1 shows an outline of a process for manufacturing a reflective mask blank and a reflective mask for EUV exposure. FIG. 1A is a cross-sectional view showing the main part of the reflective mask blank RMB. The reflective mask blank RMB includes a multilayer reflective film 102 that reflects EUV light on the main surface of a substrate 101 made of a low thermal expansion material with a sufficiently flat surface, a protective film 103 for the multilayer reflective film 102, and EUV light. An absorber film 104 for absorption is formed in this order. On the other hand, a conductive film 105 for electrostatically fixing the reflective mask to the mask stage of the exposure apparatus is formed on the main surface of the substrate 101 opposite to the surface on which the multilayer reflective film 102 is formed (back side). It is

基板101は、その熱膨張係数が±1.0×10-8/℃以内、好ましくは±5.0×10-9/℃の範囲内であるものが用いられる。また、基板101の吸収体膜が形成される側の主表面は、吸収体パターンが形成される領域内で高平坦度となるように表面加工されており、その表面粗さは、RMS表示で0.1nm以下、好ましくは0.06nm以下であることが好ましい。 The substrate 101 used has a coefficient of thermal expansion within ±1.0×10 −8 /° C., preferably within ±5.0×10 −9 /° C. Further, the main surface of the substrate 101 on which the absorber film is formed is surface-processed so as to have a high degree of flatness in the region where the absorber pattern is formed, and the surface roughness is expressed in terms of RMS. It is preferably 0.1 nm or less, preferably 0.06 nm or less.

多層反射膜102は、低屈折率材料と高屈折率材料とを交互に積層させた多層膜であり、露光波長が13~14nmのEUV光に対しては、例えば、モリブデン(Mo)層とシリコン(Si)層とを交互に40周期程度積層したMo/Si周期積層膜が用いられる。 The multilayer reflective film 102 is a multilayer film in which a low refractive index material and a high refractive index material are alternately laminated. A Mo/Si periodic lamination film in which (Si) layers are alternately laminated for about 40 periods is used.

保護膜103はキャッピング層とも呼ばれ、その上の吸収体膜104にパターンを形成する際、又はパターン修正の際に、多層反射膜102を保護するために設けられたものである。保護膜103の材料としては、シリコンのほか、ルテニウムや、ルテニウムと、ニオブやジルコニウムとを含有する化合物が用いられ、その厚さは2.5~4nm程度の範囲である。 The protective film 103 is also called a capping layer, and is provided to protect the multilayer reflective film 102 during pattern formation or pattern correction of the absorber film 104 thereon. As a material of the protective film 103, in addition to silicon, ruthenium or a compound containing ruthenium and niobium or zirconium is used, and the thickness thereof is in the range of about 2.5 to 4 nm.

図1(B)は、図1(A)に示される反射型マスクブランクRMBの表面にレジスト膜106を形成した状態を示す図である。このレジスト膜106に、通常の電子線リソグラフィを用いてパターン描画とレジストパターン形成を行ない、レジストパターンをエッチングマスクとして、その下の吸収体膜104をエッチング除去すると、図1(C)に示されるように、エッチング除去部111と、吸収膜パターンとレジストパターンとからなる吸収体パターン部112が形成される。その後、残ったレジスト膜パターンを除去すれば基本構造を有する反射型マスクが得られる。 FIG. 1B shows a state in which a resist film 106 is formed on the surface of the reflective mask blank RMB shown in FIG. 1A. Pattern drawing and resist pattern formation are performed on this resist film 106 using normal electron beam lithography, and the underlying absorber film 104 is removed by etching using the resist pattern as an etching mask, as shown in FIG. 1(C). Thus, an etching-removed portion 111 and an absorber pattern portion 112 composed of an absorbing film pattern and a resist pattern are formed. After that, a reflective mask having a basic structure is obtained by removing the remaining resist film pattern.

次に、本発明のEUV光を反射する多層反射膜を備える反射型マスクブランク用膜付き基板について説明する。基板101の主表面にEUV光を反射する多層反射膜102と、その保護膜103までを形成した時点の反射型マスクブランク用膜付き基板の保護膜103と多層反射膜102との上部の断面を図2に示す。図2において、121は、保護膜103の主成分であるRuと、その直下のSi層122の成分であるSiとのミキシング層、126は、Si層、124、128は、Mo層、123、125、127は、SiとMoとのミキシング層である。 Next, a film-coated substrate for a reflective mask blank having a multilayer reflective film that reflects EUV light according to the present invention will be described. 1 shows a cross section of the upper part of the protective film 103 and the multilayer reflective film 102 of the substrate with the reflective mask blank film at the time when the multilayer reflective film 102 that reflects EUV light and the protective film 103 are formed on the main surface of the substrate 101; Shown in FIG. In FIG. 2, 121 is a mixing layer of Ru which is the main component of the protective film 103 and Si which is a component of the Si layer 122 immediately below it, 126 is a Si layer, 124 and 128 are Mo layers, 123, 125 and 127 are mixing layers of Si and Mo.

また、130はRuとSiとのミキシング層121と、SiとMoとのミキシング層123とを含む、多層反射膜の最上部の一対のMo/Si層の範囲、131はSiとMoとのミキシング層125、127を含む前記最上部の一対のMo/Si層の範囲130の下方の一対のMo/Si層の範囲を表す。図2には示されていないが、Mo/Si層の範囲131の下方には、同様に、一対のMo/Si層の範囲131の構造が繰り返されている。 Also, 130 is a range of a pair of Mo/Si layers on the top of the multilayer reflective film, including a mixing layer 121 of Ru and Si and a mixing layer 123 of Si and Mo, and 131 is a mixing layer of Si and Mo. The Mo/Si layer pair area below the top Mo/Si layer pair area 130 containing layers 125, 127 is represented. Although not shown in FIG. 2, below the Mo/Si layer area 131, the structure of a pair of Mo/Si layer areas 131 is repeated as well.

通常、一対のMo/Si層の範囲の厚さ(周期長)は、7.0~7.05nmが適用される。ここで、シミュレーションにより多層反射膜の反射率を評価するために、断面TEM観察による多くの実測結果を参照して、Si層とその上のMo層との境界面に生じるミキシング層125の厚さを1.2nm、Mo層とその上のSi層との境界面に生じるミキシング層127の厚さを0.4nmと仮定する。多層反射膜に照射するEUV光の多層反射膜の表面の法線に対する入射角度が6°のとき、保護膜103を形成する前と比較して、保護膜を形成した後は、多層反射膜の反射率が差分で約1.5%低下することがわかった。実際、Ruを主成分とする保護膜103を設けると、その直下の最上層のSi層122の上面部に、RuとSiとのミキシング層121が生成する。そこで、RuとSiとのミキシング層121の厚さと、最上層のSi層122の厚さとの関数として、多層反射膜の反射率を計算すると、図3(A)に示される結果が得られた。また、入射角度が10°の時の反射率を計算すると、図3(B)に示される結果が得られた。 Usually, the thickness (periodic length) of the pair of Mo/Si layers is applied in the range of 7.0 to 7.05 nm. Here, in order to evaluate the reflectance of the multilayer reflective film by simulation, the thickness of the mixing layer 125 generated at the boundary surface between the Si layer and the Mo layer thereon is determined by referring to many actual measurement results obtained by cross-sectional TEM observation. is 1.2 nm, and the thickness of the mixing layer 127 produced at the interface between the Mo layer and the Si layer thereon is 0.4 nm. When the incident angle of the EUV light with which the multilayer reflective film is irradiated with respect to the normal to the surface of the multilayer reflective film is 6°, after the protective film 103 is formed, compared with before the protective film 103 is formed, the multilayer reflective film is It was found that the reflectance decreased by about 1.5% in difference. In fact, when the protective film 103 containing Ru as a main component is provided, a mixed layer 121 of Ru and Si is formed on the top surface of the uppermost Si layer 122 immediately below. Therefore, when the reflectance of the multilayer reflective film was calculated as a function of the thickness of the mixing layer 121 of Ru and Si and the thickness of the uppermost Si layer 122, the results shown in FIG. 3(A) were obtained. . Also, when the reflectance was calculated when the incident angle was 10°, the result shown in FIG. 3B was obtained.

図3(A)、(B)は、RuとSiとのミキシング層121の厚さが薄いほど、反射率が高くなる傾向を示すが、このミキシング層121が特定の値を有するとき、反射率を最大にするための、最上層のSi層122の最適な厚さが存在することを示している。図3(A)、(B)において、RuとSiとのミキシング層121の厚さをT2(nm)、最大反射率を与える最上層のSi層の厚さをT1(nm)とすると、T1とT2との間には次の関係式が成立することがわかった。
入射角度が6°のとき、T1×1.3+T2=3.7
入射角度が10°のとき、T1×1.3+T2=4.5
3A and 3B show a tendency that the thinner the mixing layer 121 of Ru and Si, the higher the reflectance. It shows that there is an optimum thickness of the top Si layer 122 to maximize . In FIGS. 3A and 3B, if the thickness of the mixing layer 121 of Ru and Si is T2 (nm), and the thickness of the uppermost Si layer giving the maximum reflectance is T1 (nm), then T1 It was found that the following relational expression holds between and T2.
When the incident angle is 6°, T1×1.3+T2=3.7
When the incident angle is 10°, T1×1.3+T2=4.5

即ち、反射率を最大にするためのT1とT2との値は、入射角度により異なり、例えば、RuとSiとのミキシング層121の厚さT2が1.2nmのときは、入射角度が6°の場合は、最上層のSi層122の厚さT1が1.9nmのときに最大反射率が得られ、入射角度が10°の場合は最上層のSi層122の厚さT1が2.5nmのときに最大反射率が得られる。また、例えば、RuとSiとのミキシング層121の厚さT2が1.4nmのときは、入射角度が6°の場合は、最上層のSi層122の厚さT1が1.8nmのときに最大反射率が得られ、入射角度が10°の場合は最上層のSi層122の厚さT1が2.4nmのときに最大反射率が得られる。 That is, the values of T1 and T2 for maximizing the reflectance differ depending on the incident angle. For example, when the thickness T2 of the mixing layer 121 of Ru and Si is 1.2 nm, the incident angle is 6°. , the maximum reflectance is obtained when the thickness T1 of the top Si layer 122 is 1.9 nm, and when the incident angle is 10°, the thickness T1 of the top Si layer 122 is 2.5 nm. Maximum reflectance is obtained when . Further, for example, when the thickness T2 of the mixing layer 121 of Ru and Si is 1.4 nm, when the incident angle is 6°, when the thickness T1 of the uppermost Si layer 122 is 1.8 nm, The maximum reflectance is obtained, and when the incident angle is 10°, the maximum reflectance is obtained when the thickness T1 of the uppermost Si layer 122 is 2.4 nm.

実際の多層反射膜には、これをEUV露光用反射型マスクで用いると、入射角度の範囲がおおよそ1.3~10.7°に亘ってEUV光が入射する可能性があるので、それらの角度に対して最大反射率を与えるための、RuとSiとのミキシング層の厚さと、最上層のSi層の厚さとの組み合わせを選択する。但し、いずれの入射角度においても反射率が極端に低下することは好ましくないので、1.3~10.7°の入射角度の範囲内において、反射率が大きく変化しない(バランスのよい)厚さの組合せを選択することになる。 In an actual multilayer reflective film, if it is used in a reflective mask for EUV exposure, there is a possibility that EUV light will be incident over an incident angle range of approximately 1.3 to 10.7°. A combination of thicknesses of the Ru and Si mixing layers and the thickness of the top Si layer is chosen to give maximum reflectance over angle. However, since it is not preferable for the reflectance to drop extremely at any incident angle, the thickness should be such that the reflectance does not change significantly (well-balanced) within the range of the incident angle of 1.3 to 10.7°. will select a combination of

図4は、多層反射膜におけるEUV光反射率Rの入射角度θに対する依存性の計算結果を示す図である。入射角度の範囲を0~11°とし、Mo/Si多層反射膜の周期長は7.02nmに設定した。図4において曲線141は、RuとSiとのミキシング層がなく、保護膜としてのRu膜も無いMo/Si多層反射膜(40ペア)の反射率である。この上に厚さ3.5nmのRu膜を形成すると、反射率は曲線142に示されるように低下する。例えば、入射角度が6°のときは、差分で約3%低下する。更に、各種の実験結果に即したミキシング層の厚さとして、Moとその上方の層の成分(Si)とのミキシング層の厚さを0.4nm、Siとその上方の層の成分(Mo)とのミキシング層の厚さを1.2nmと仮定すると、曲線143で示される反射率が求められた。曲線143で示される反射率は、入射角度が6°以上で約65%の反射率を確保できるが、入射角度が1.3°では反射率が63%以下となり、反射率は、更に低下した。そこで、最上層のSi層の厚さを約0.8nm薄くすると、曲線144に示される反射率が得られ、特に、入射角度が7度以下の領域で、低下した反射率は、ほぼ66%まで回復した。従って、最上層のSi層の厚さを調整することにより、バランスのとれた反射率を確保することができる。 FIG. 4 is a diagram showing the calculation result of the dependence of the EUV light reflectance R on the incident angle θ in the multilayer reflective film. The incident angle range was set to 0 to 11°, and the periodic length of the Mo/Si multilayer reflective film was set to 7.02 nm. Curve 141 in FIG. 4 is the reflectance of a Mo/Si multilayer reflective film (40 pairs) without a mixing layer of Ru and Si and without a Ru film as a protective film. When a 3.5 nm thick Ru film is formed thereon, the reflectance decreases as shown by curve 142 . For example, when the incident angle is 6°, the difference is about 3% lower. Furthermore, as the thickness of the mixing layer according to various experimental results, the thickness of the mixing layer of Mo and the component (Si) of the layer above it is 0.4 nm, and the thickness of the layer of Si and the component of the layer above it is Assuming a mixing layer thickness of 1.2 nm with (Mo), the reflectivity shown by curve 143 was obtained. The reflectance shown by the curve 143 can ensure a reflectance of about 65% at an incident angle of 6° or more, but at an incident angle of 1.3°, the reflectance is 63% or less, and the reflectance is further reduced. . Therefore, when the thickness of the top Si layer is reduced by about 0.8 nm, the reflectance shown in curve 144 is obtained, especially in the region where the incident angle is 7 degrees or less, the reduced reflectance is approximately 66%. recovered to Therefore, by adjusting the thickness of the uppermost Si layer, a well-balanced reflectance can be secured.

以上は、Mo/Si多層反射膜の保護膜として作用するRu膜の厚さが3.5nmの場合を想定した計算であるが、それ以外の厚さについても同様の方法で厚さの組合せを選択することができる。具体的には、RuとSiとのミキシング層の厚さを仮定し、最上層のSi層の厚さを変化させながら、図4における曲線144に相当する反射率分布を求め、所定の入射角度の範囲内でバランスのとれた反射率が得られる最上層のSi層の厚さを選択すればよい。また、多層反射膜を形成する際の最上層に形成するSi層の厚さの初期厚さ設計値(最上層のSi層の下方の周期構造におけるSi層の厚さ)は、シミュレーションにおけるRuとSiとのミキシング層の厚さと、最上層のSi層の厚さとの和としてよい。 The above calculations are based on the assumption that the thickness of the Ru film acting as the protective film for the Mo/Si multilayer reflective film is 3.5 nm. can be selected. Specifically, assuming the thickness of the mixing layer of Ru and Si, while changing the thickness of the uppermost Si layer, obtain the reflectance distribution corresponding to the curve 144 in FIG. The thickness of the uppermost Si layer may be selected so that a well-balanced reflectance can be obtained within the range of . In addition, the initial thickness design value of the thickness of the Si layer formed as the top layer when forming the multilayer reflective film (thickness of the Si layer in the periodic structure below the top Si layer) is different from Ru in the simulation. It may be the sum of the thickness of the mixing layer with Si and the thickness of the uppermost Si layer.

以上の条件を満たす多層反射膜と保護膜を用いれば、EUVマスクで使用されるEUV光の入射角度の全体に亘って、初期反射率を高く維持することができる。従って、多層反射膜の上にEUV光を吸収する吸収体膜、例えばタンタル(Ta)又はクロム(Cr)を主成分とする吸収体膜を形成すれば、これをパターニングしたときに、転写性能の高い反射型マスク(EUVマスク)を実現できる反射型マスクブランク(EUVマスクブランク)を提供することができる。 By using a multilayer reflective film and a protective film that satisfy the above conditions, a high initial reflectance can be maintained over the entire incident angle of EUV light used in the EUV mask. Therefore, if an absorber film that absorbs EUV light, for example, an absorber film containing tantalum (Ta) or chromium (Cr) as a main component, is formed on the multilayer reflective film, the transfer performance will be improved when this is patterned. A reflective mask blank (EUV mask blank) capable of realizing a highly reflective mask (EUV mask) can be provided.

(実施の形態1)
本実施の形態では、Mo/Si多層反射膜の上に形成する保護膜としてRu膜を選択した。保護膜の厚さは、反射率確保の観点では2.0~2.5nmが望ましいが、多層反射膜の保護の観点から3.0nm以上とし、反射率の大幅な低下を防止する観点から4nm以下とした。従って、この場合、保護膜の厚さTRu(nm)は、下記式(3)
3.0≦TRu≦4.0 (3)
を満たす範囲である。Ru膜の厚さを3.0nm、3.5nm又は4.0nmとしたときに、EUV光の入射角度が1.3~10.7°に亘って、バランスよく高い反射率が得られる多層反射膜の構造をシミュレーションで定めた。
(Embodiment 1)
In this embodiment, a Ru film is selected as the protective film formed on the Mo/Si multilayer reflective film. The thickness of the protective film is desirably 2.0 to 2.5 nm from the viewpoint of ensuring the reflectance, but it is 3.0 nm or more from the viewpoint of protecting the multilayer reflective film, and 4 nm from the viewpoint of preventing a significant decrease in reflectance. The following was done. Therefore, in this case, the thickness T Ru (nm) of the protective film is given by the following formula (3)
3.0≦T Ru ≦4.0 (3)
is a range that satisfies A multi-layer reflector that provides a well-balanced high reflectance over a range of EUV light incident angles of 1.3 to 10.7° when the thickness of the Ru film is 3.0 nm, 3.5 nm, or 4.0 nm. The structure of the membrane was determined by simulation.

次に、低熱膨張材料からなる基板の主表面にEUV光を反射する多層反射膜と、その保護膜とをこの順に形成して、EUV反射型マスクブランク用膜付き基板を製造した。以下、前記3種類の厚さのRu膜に対して設定した多層反射膜の構造を、図5を用いて説明する。 Next, a multilayer reflective film for reflecting EUV light and its protective film were formed in this order on the main surface of a substrate made of a low thermal expansion material to manufacture a film-coated substrate for an EUV reflective mask blank. The structure of the multilayer reflective film set for the Ru films having the three types of thicknesses will be described below with reference to FIG.

まず、Mo/Si多層反射膜(40ペア)の周期長を7.02nmに設定し、ミキシング層が形成される前のSi層の設定厚さを4.21nm、Mo層の設定厚さを2.81nmとした。ミキシング層が存在しなければEUV光入射角度が9°以上で反射率が最大となり、入射角度が1.3~10.7°の範囲内では、前述の場合と同様、バランスの悪い反射率分布となる。しかし、実際はミキシング層が形成され、入射角度の大きい領域で反射率低下が大きく現れるので、初期の周期長として、前記の数値を選択し、ミキシング層の厚さは、Moとその上方の層の成分(Si)とのミキシング層の厚さは0.4nm、Siとその上方の層の成分(Mo、Ru)のミキシング層の厚さを1.2nmに設定した。従って、Si層及びMo層の、ミキシング層を含まない厚さは、それぞれ3.01nm、2.41nmとなる。 First, the periodic length of the Mo/Si multilayer reflective film (40 pairs) was set to 7.02 nm, the set thickness of the Si layer before forming the mixing layer was set to 4.21 nm, and the set thickness of the Mo layer was set to 2.0 nm. 0.81 nm. If the mixing layer does not exist, the reflectance becomes maximum when the EUV light incident angle is 9° or more, and the reflectance distribution is unbalanced when the incident angle is in the range of 1.3 to 10.7°, as in the case described above. becomes. However, in practice, a mixing layer is formed, and the decrease in reflectance appears significantly in a region where the incident angle is large. The thickness of the mixing layer with the component (Si) was set to 0.4 nm, and the thickness of the mixing layer of Si and the components (Mo, Ru) of the upper layer was set to 1.2 nm. Therefore, the thicknesses of the Si layer and the Mo layer not including the mixing layer are 3.01 nm and 2.41 nm, respectively.

ここで、Ru膜からなる保護膜の厚さを3.0nmとする場合を想定した。このとき、最上層のSi層の上部にもRuとSiとのミキシング層が1.2nmの厚さで形成されたものとする。(即ち、実際の最上層Siの膜厚は、成膜の設定値より1.2nm減少したと仮定する。)入射角度θが1.3~10.7°の範囲内でのEUV光反射率Rを求めると、図5(A)の曲線150に示される結果が得られた。ここで、最上層のSi層を、その下方の周期構造におけるSi層より0.3nm減少させる(成膜時の設定膜厚を0.3nm減少させる)と、図5(A)の曲線151に示される反射率が得られた。入射角度を特定の値(例えば6°)に絞り込むと、最上層のSi層を更に薄くしたほうが反射率は向上する。しかし、入射角度が9°以上の領域では反射率が低下し、バランスの取れた反射率分布が得られなかった。そこで、最上層のSi層の厚さは、その下方の周期構造におけるSi層の厚さより0.3nm薄くするように設計し、66%以上の反射率が実現した。 Here, it is assumed that the thickness of the protective film made of Ru film is 3.0 nm. At this time, it is assumed that a mixing layer of Ru and Si is also formed on the uppermost Si layer with a thickness of 1.2 nm. (That is, it is assumed that the actual film thickness of the uppermost layer Si is 1.2 nm less than the set value for film formation.) EUV light reflectance when the incident angle θ is in the range of 1.3 to 10.7° Solving for R yielded the results shown in curve 150 of FIG. Here, when the uppermost Si layer is reduced by 0.3 nm from the Si layer in the periodic structure below it (the set film thickness at the time of film formation is reduced by 0.3 nm), the curve 151 in FIG. The indicated reflectance was obtained. If the incident angle is narrowed down to a specific value (for example, 6°), the thinner the uppermost Si layer is, the better the reflectivity will be. However, in the region where the incident angle was 9° or more, the reflectance decreased and a well-balanced reflectance distribution could not be obtained. Therefore, the thickness of the uppermost Si layer was designed to be 0.3 nm thinner than the thickness of the Si layer in the underlying periodic structure, and a reflectance of 66% or more was realized.

次に、Ru膜からなる保護膜の厚さを3.5nmとする場合の最上層のSi層の厚さの減少量(RuとSiとのミキシング層の厚さ)を求めた。前記と同様に、RuとSiとのミキシング層の厚さは1.2nmとした。最上層のSi層の厚さをその下方の周期構造におけるSi層の厚さと同一としたときは、図5(B)の曲線152に示される反射率となった。そこで、最上層のSi層の厚さを、その下方の周期構造におけるSi層の厚さより0.55nm薄くすると、図5(B)の曲線153に示される反射率が得られ、入射角度が1.3~10.7°の範囲内で65%以上の反射率が実現した。 Next, the amount of decrease in the thickness of the uppermost Si layer (thickness of the mixed layer of Ru and Si) when the thickness of the Ru protective film is 3.5 nm was determined. Similar to the above, the thickness of the mixing layer of Ru and Si was set to 1.2 nm. When the thickness of the uppermost Si layer was the same as the thickness of the Si layer in the underlying periodic structure, the reflectance was as shown by the curve 152 in FIG. 5(B). Therefore, if the thickness of the uppermost Si layer is made 0.55 nm thinner than the thickness of the Si layer in the underlying periodic structure, the reflectance shown by the curve 153 in FIG. A reflectance of 65% or more was achieved within the range of 0.3° to 10.7°.

更に、Ru膜からなる保護膜の厚さを4.0nmとする場合の最上層のSi層の厚さの減少量を求めた。前記と同様に、RuとSiとのミキシング層の厚さは1.2nmとした。最上層のSi層の厚さをその下方の周期構造におけるSi層の厚さと同一としたときは、図5(C)の曲線154に示される反射率となり、入射角度が8°以下の領域で反射率の低下が著しい。そこで、最上層のSi層の厚さを、その下方の周期構造におけるSi層の厚さより0.8nm薄くすると、図5(C)の曲線155に示される反射率が得られ、入射角度が1.3~10.7°の範囲内で64%以上の反射率が実現した。 Furthermore, the amount of decrease in the thickness of the uppermost Si layer was obtained when the thickness of the protective film made of Ru was set to 4.0 nm. Similar to the above, the thickness of the mixing layer of Ru and Si was set to 1.2 nm. When the thickness of the uppermost Si layer is the same as the thickness of the Si layer in the underlying periodic structure, the reflectance shown by curve 154 in FIG. Remarkable decrease in reflectance. Therefore, if the thickness of the uppermost Si layer is made 0.8 nm thinner than the thickness of the Si layer in the underlying periodic structure, the reflectance shown by curve 155 in FIG. A reflectance of 64% or higher was achieved within the range of 0.3° to 10.7°.

以上から、最上層のSi層の厚さの減少量は、Ru膜からなる保護膜の厚さが3.0nmのときは0.3nm、保護膜103の厚さが3.5nmのときは0.55nm、保護膜103の厚さが4.0nmのときは0.8nmとすると、バランスの取れた反射率が得られた。また、保護膜の厚さTRu(nm)と、入射角度が1.3~10.7°の範囲内で得られる最低反射率Rmin(%)との間に、下記式(4)
min≧72-2×TRu (4)
で表される関係が得られた。
From the above, the amount of decrease in the thickness of the uppermost Si layer is 0.3 nm when the thickness of the protective film made of Ru is 3.0 nm, and 0 when the thickness of the protective film 103 is 3.5 nm. 0.55 nm, and 0.8 nm when the thickness of the protective film 103 is 4.0 nm, a well-balanced reflectance was obtained. Further, the following formula (4) is obtained between the thickness T Ru (nm) of the protective film and the minimum reflectance R min (%) obtained when the incident angle is in the range of 1.3 to 10.7°.
R min ≧72−2×T Ru (4)
A relationship represented by is obtained.

以上の結果から、入射角度が1.3~10.7°の範囲内でバランスの取れた反射率を実現するための関係を表すと、
upSi+TRuSi+TRu/2=5.41
となった。ここで、TupSiは、ミキシング層を含まない最上層のSi層の厚さ、TRuSiは、最上層のSi層と保護膜との境界部のミキシング層の厚さ、TRuは、保護膜の厚さであり、各厚さはnmの単位で表した数値である。
From the above results, the relationship for achieving a well-balanced reflectance within the range of 1.3 to 10.7° incident angle is expressed as follows:
TupSi + TRuSi + TRu /2=5.41
became. Here, T upSi is the thickness of the uppermost Si layer not including the mixing layer, T RuSi is the thickness of the mixing layer at the boundary between the uppermost Si layer and the protective film, and T Ru is the protective film. and each thickness is a numerical value expressed in units of nm.

更に、前記いずれのRu膜の厚さにおいても、最上層のSi層の厚さの減少量が±0.1nmの範囲内で変動すると、低入射角度領域において反射率が変動し、入射角度が1.3°では所定の反射率に対して差分で約0.5%の反射率変動が生じることがわかった。また、最上層のSi層の厚さの減少量が±0.2nmの範囲内で変動すると、入射角度が1.3°では所定の反射率に対する反射率変動が差分で約1%に増大した。以上から、許容される厚さの変動量を±0.1nmとすると、実用的な厚さの範囲は、下記式(1)
5.3≦TupSi+TRuSi+TRu/2≦5.5 (1)
を満たす必要があることがわかった。
Furthermore, in any Ru film thickness, if the amount of reduction in the thickness of the uppermost Si layer fluctuates within the range of ±0.1 nm, the reflectance fluctuates in the low incident angle region, and the incident angle At 1.3°, it was found that a difference of about 0.5% in reflectance variation occurs with respect to the predetermined reflectance. In addition, when the amount of reduction in the thickness of the uppermost Si layer fluctuated within the range of ±0.2 nm, the reflectance fluctuation with respect to the predetermined reflectance increased to a difference of about 1% at an incident angle of 1.3°. . From the above, if the allowable thickness variation amount is ±0.1 nm, the practical thickness range is given by the following formula (1)
5.3≦ TupSi + TRuSi + TRu /2≦5.5 (1)
was found to have to be fulfilled.

また、最上層のSi層の厚さの減少量を(TSi-TupSi)とすると、Ru保護膜の厚さTRuとの間には、
Ru/2-(TSi-TupSi)=1.2
となることがわかった。ここで、TupSiは、ミキシング層を含まない最上層のSi層の厚さ、TSiは、最上層のSi層より下方の周期構造における、ミキシング層を含まないSi層の厚さ、TRuは、保護膜の厚さであり、各厚さはnmの単位で表した数値である。
Also, if the amount of decrease in the thickness of the uppermost Si layer is (T Si −T upSi ), then the thickness T Ru of the Ru protective film is:
T Ru /2−(T Si −T upSi )=1.2
It was found that Here, T upSi is the thickness of the uppermost Si layer not including the mixing layer, T Si is the thickness of the Si layer not including the mixing layer in the periodic structure below the uppermost Si layer, T Ru is the thickness of the protective film, and each thickness is a numerical value expressed in units of nm.

この関係式においても、許容される厚さの変動量である±0.1nmを考慮すると、実用的な厚さの範囲は、下記式(2)
1.1≦TRu/2-(TSi-TupSi)≦1.3 (2)
を満たす必要があることがわかった。
Also in this relational expression, considering the allowable variation in thickness of ±0.1 nm, the practical thickness range is given by the following equation (2)
1.1≦T Ru /2−(T Si −T upSi )≦1.3 (2)
was found to have to be fulfilled.

以上の設計値のもとに、低熱膨張材料からなる基板の上に周期長が7.02nmのMo/Si多層反射膜(40ペア)と、Ru膜からなる保護膜を形成することにより、入射角度が1.3~10.7°の範囲に亘って、最低反射率が、好ましくは64%以上、より好ましくは65%以上、更に好ましくは66%以上の高い反射率を有する反射型マスクブランク用膜付き基板を実現できることがわかった。 Based on the design values described above, the incident A reflective mask blank having a high reflectance with a minimum reflectance of preferably 64% or more, more preferably 65% or more, and even more preferably 66% or more over an angle range of 1.3 to 10.7° It was found that a substrate with a film for use can be realized.

(実施の形態2)
本実施の形態では、反射型マスクブランク用膜付き基板の保護膜の上に、吸収体膜が形成され、吸収体膜を形成した面とは反対側(裏側)の主表面に導電膜が形成された反射型マスクブランクを製造した。製造のフローを、図6に示して説明する。
(Embodiment 2)
In this embodiment, the absorber film is formed on the protective film of the film-coated substrate for a reflective mask blank, and the conductive film is formed on the main surface on the opposite side (back side) of the surface on which the absorber film is formed. A reflective mask blank was fabricated. The manufacturing flow is shown in FIG. 6 and will be described.

まず、保護膜及び多層反射膜の各層における、厚さなどの基本構造の設計情報を指定して読み込む(ステップS201)。次に、低熱膨張材料からなる基板を準備する(ステップS202)。この基板としては、表裏の主表面が所定の表面粗さを有しているものが準備される。次に、一方の主表面に、基本構造の情報に沿って周期長7.02nmのMo/Si(40ペア)多層反射膜を、最上層をSi層として形成する(ステップS203)。但し、最上層のSi層の厚さのみ、その下方の周期構造におけるSi層の厚さより0.6nm薄い厚さとなるように設定する。次に、ステップS204にてRuからなる保護膜を3.5nmの厚さで形成する。多層反射膜及び保護膜の形成は、各々、イオンビームスパッタ法、DCスパッタ法又はRFスパッタ法で実施することができる。 First, the basic structural design information such as the thickness of each layer of the protective film and multilayer reflective film is specified and read (step S201). Next, a substrate made of a low thermal expansion material is prepared (step S202). As this substrate, a substrate having front and back main surfaces with a predetermined surface roughness is prepared. Next, a Mo/Si (40 pairs) multilayer reflective film having a periodic length of 7.02 nm is formed on one of the main surfaces according to the information of the basic structure, with the top layer being the Si layer (step S203). However, only the thickness of the uppermost Si layer is set to be 0.6 nm thinner than the thickness of the Si layer in the underlying periodic structure. Next, in step S204, a protective film made of Ru is formed with a thickness of 3.5 nm. The formation of the multilayer reflective film and protective film can be carried out by ion beam sputtering, DC sputtering, or RF sputtering, respectively.

ステップS205では、多層反射膜と保護膜との積層膜の欠陥を検査し、欠陥位置情報や欠陥検査信号情報を記録媒体に保存する。ここで検査対象とする欠陥とは、主に多層反射膜に内在する位相欠陥と保護膜の表面のパーティクルなどである。 In step S205, the lamination film of the multilayer reflective film and the protective film is inspected for defects, and the defect position information and defect inspection signal information are stored in the recording medium. The defects to be inspected here mainly include phase defects inherent in the multilayer reflective film, particles on the surface of the protective film, and the like.

次に、ステップS206で、低熱膨張材料からなる基板の反対側(裏側)の主表面に、導電膜を形成し、ステップS207で欠陥検査を行う。この欠陥検査は、主に付着パーティクルが検査対象であり、反射型マスクを形成後、これをパターン転写装置のマスクステージに静電チャックしたときに、パターン転写性能を劣化させるパーティクル欠陥(おおよそ1μm以上のサイズ)が存在しないことを確認するための検査である。 Next, in step S206, a conductive film is formed on the main surface of the opposite side (back side) of the substrate made of the low thermal expansion material, and defect inspection is performed in step S207. In this defect inspection, adhered particles are mainly inspected. After forming a reflective mask, when it is electrostatically chucked on the mask stage of a pattern transfer device, particle defects (approximately 1 μm or more) that degrade the pattern transfer performance size) is not present.

欠陥検査のステップS205及びステップS207では、致命的な欠陥が検出された場合は、基板の洗浄や基板の破棄を行なうが、欠陥が許容されるもの又は無欠陥である場合は、それぞれ次のステップに進む。なお、前記の導電膜の形成(ステップS206)とその検査(ステップS207)の工程は、Mo/Si多層反射膜を形成するステップS203の前に実施してもよい。 In the defect inspection steps S205 and S207, if a fatal defect is detected, the substrate is washed or discarded. proceed to The process of forming the conductive film (step S206) and inspecting it (step S207) may be performed before step S203 of forming the Mo/Si multilayer reflective film.

ステップS208では、保護膜の上に、吸収体膜を形成する。吸収体膜の形成も、イオンビームスパッタ法、DCスパッタ法又はRFスパッタ法で実施することができる。その後、吸収体膜の表面の欠陥検査を行う(ステップS209)。 In step S208, an absorber film is formed on the protective film. The absorber film can also be formed by ion beam sputtering, DC sputtering, or RF sputtering. After that, the surface of the absorber film is inspected for defects (step S209).

以上のようにすれば、基本構造を含む反射型マスクブランクが完成するが、必要に応じて、更に他の膜を形成することができる(ステップS210)。ここで、他の膜は、吸収体膜の加工補助層となる薄膜ハードマスクや、レジスト膜を含む。他の膜を形成した場合は、これらの膜の欠陥検査を行って(ステップS211)、最終的に、反射型マスクブランクを完成させる。 As described above, a reflective mask blank including a basic structure is completed, and if necessary, other films can be formed (step S210). Here, the other film includes a thin film hard mask that serves as a processing assistance layer for the absorber film, and a resist film. If other films are formed, these films are inspected for defects (step S211) to finally complete the reflective mask blank.

本実施の形態により、Mo/Si多層反射膜の上に3.0~4.0nmの厚さの保護膜を形成しても反射率低下を抑制できる反射型マスクブランク用膜付き基板の保護膜の上に吸収体膜を形成することにより、反射型マスクを形成した後においても、多層反射膜を保護しつつ、EUV光の所定の入射角度の範囲内(1.3~10.7°)に亘って、高い反射率が確保された、信頼性の高い反射型マスクブランクを提供することができる。 According to the present embodiment, a protective film for a film-coated substrate for a reflective mask blank that can suppress a decrease in reflectance even when a protective film having a thickness of 3.0 to 4.0 nm is formed on the Mo/Si multilayer reflective film. By forming an absorber film on the top of It is possible to provide a highly reliable reflective mask blank in which a high reflectance is ensured over a long period of time.

101 低熱膨張材からなる基板
102 多層反射膜
103 保護膜
104 吸収体膜
105 導電膜
106 レジスト膜
111 吸収体膜の除去部
112 吸収体パターン
121 RuとSiとのミキシング層
122、126 Si層
124、128 Mo層
123、125、127 MoとSiとのミキシング層
130、131 一対のMo/Si層の範囲
150、151、152、153、154、155 反射率曲線
101 Substrate 102 made of low thermal expansion material Multilayer reflective film 103 Protective film 104 Absorber film 105 Conductive film 106 Resist film 111 Absorber film removed portion 112 Absorber pattern 121 Mixing layers 122, 126 of Ru and Si 126 Si layer 124, 128 Mo layers 123, 125, 127 Mo and Si mixing layers 130, 131 Range of paired Mo/Si layers 150, 151, 152, 153, 154, 155 Reflectance curves

Claims (3)

基板と、該基板の主表面上に形成され、極端紫外線(EUV)光を反射する多層反射膜と、該多層反射膜上に、該多層反射膜に接して形成された保護膜とを備える反射型マスクブランク用膜付き基板であって、
前記多層反射膜が、モリブデン(Mo)層とシリコン(Si)層とが交互に積層され、更に、最上層がシリコン(Si)層である周期積層構造を有し、前記モリブデン(Mo)層とシリコン(Si)層との境界部に、MoとSiとを含有するミキシング層が存在し、
前記保護膜が、ルテニウム(Ru)を主成分として含有する膜であり、前記多層反射膜の最上層のシリコン(Si)層と前記保護膜との境界部に、RuとSiとを含有するミキシング層が生成しており、
前記保護膜の厚さをTRu(nm)、前記最上層のシリコン(Si)層と前記保護膜との境界部のミキシング層の厚さをTRuSi(nm)、ミキシング層を含まない前記最上層のシリコン(Si)層の厚さをTupSi(nm)、前記最上層のシリコン(Si)層より下方の周期構造における、ミキシング層を含まないシリコン(Si)層の厚さをTSi(nm)としたとき、
各層の厚さが下記式(1)~(3)
5.3≦TupSi+TRuSi+TRu/2≦5.5 (1)
1.1≦TRu/2-(TSi-TupSi)≦1.3 (2)
3.0≦TRu≦4.0 (3)
の全てを満たすことを特徴とする反射型マスクブランク用膜付き基板。
A reflector comprising a substrate, a multilayer reflective film formed on a main surface of the substrate and reflecting extreme ultraviolet (EUV) light, and a protective film formed on the multilayer reflective film and in contact with the multilayer reflective film. A film-coated substrate for a mold mask blank,
The multilayer reflective film has a periodic lamination structure in which molybdenum (Mo) layers and silicon (Si) layers are alternately laminated, and the uppermost layer is a silicon (Si) layer, and the molybdenum (Mo) layer and the A mixing layer containing Mo and Si is present at the boundary with the silicon (Si) layer,
The protective film is a film containing ruthenium (Ru) as a main component, and the mixing containing Ru and Si at the interface between the uppermost silicon (Si) layer of the multilayer reflective film and the protective film. layer is generated,
The thickness of the protective film is T Ru (nm), the thickness of the mixing layer at the boundary between the uppermost silicon (Si) layer and the protective film is T RuSi (nm), and the maximum The thickness of the upper silicon (Si) layer is T upSi (nm), and the thickness of the silicon (Si) layer not including the mixing layer in the periodic structure below the uppermost silicon (Si) layer is T Si (nm). nm),
The thickness of each layer is the following formula (1) to (3)
5.3≦ TupSi + TRuSi + TRu /2≦5.5 (1)
1.1≦T Ru /2−(T Si −T upSi )≦1.3 (2)
3.0≦T Ru ≦4.0 (3)
A film-coated substrate for a reflective mask blank, which satisfies all of the above.
前記多層反射膜のEUV光に対する入射角1.3~10.7°の範囲内の最低反射率Rmin(%)が、下記式(4)
min≧72-2×TRu (4)
(式中、TRuは保護膜の厚さ(nm)である。)
を満たすことを特徴とする請求項1に記載の反射型マスクブランク用膜付き基板。
The minimum reflectance R min (%) within the range of the incident angle of 1.3 to 10.7° for EUV light of the multilayer reflective film is expressed by the following formula (4)
R min ≧72−2×T Ru (4)
(In the formula, T Ru is the thickness (nm) of the protective film.)
2. The film-coated substrate for a reflective mask blank according to claim 1, wherein:
請求項1又は2に記載の反射型マスクブランク用膜付き基板と、前記保護膜上に形成された、EUV光を吸収する吸収体膜と、前記基板の反対側の主表面上に形成された導電膜とを備えることを特徴とする反射型マスクブランク。 3. The substrate with a film for a reflective mask blank according to claim 1 or 2, an absorber film for absorbing EUV light formed on the protective film, and an absorber film formed on the opposite main surface of the substrate. A reflective mask blank, comprising: a conductive film.
JP2020079089A 2020-04-28 2020-04-28 Substrate with film for reflective mask blank and reflective mask blank Active JP7226389B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020079089A JP7226389B2 (en) 2020-04-28 2020-04-28 Substrate with film for reflective mask blank and reflective mask blank
US17/224,673 US20210333702A1 (en) 2020-04-28 2021-04-07 Substrate with Film for Reflective Mask Blank, and Reflective Mask Blank
KR1020210052740A KR20210133155A (en) 2020-04-28 2021-04-23 Substrate with film for reflective mask blank and reflective mask blank
CN202110458020.3A CN113568269A (en) 2020-04-28 2021-04-27 Substrate with film for reflection type mask blank and reflection type mask blank
TW110115107A TW202147015A (en) 2020-04-28 2021-04-27 Substrate with Film for Reflective Mask Blank, and Reflective Mask Blank
EP21170665.0A EP3907560A1 (en) 2020-04-28 2021-04-27 Substrate with film for reflective mask blank, and reflective mask blank
SG10202104255YA SG10202104255YA (en) 2020-04-28 2021-04-27 Substrate with Film for Reflective Mask Blank, and Reflective Mask Blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020079089A JP7226389B2 (en) 2020-04-28 2020-04-28 Substrate with film for reflective mask blank and reflective mask blank

Publications (2)

Publication Number Publication Date
JP2021173917A JP2021173917A (en) 2021-11-01
JP7226389B2 true JP7226389B2 (en) 2023-02-21

Family

ID=75690198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020079089A Active JP7226389B2 (en) 2020-04-28 2020-04-28 Substrate with film for reflective mask blank and reflective mask blank

Country Status (7)

Country Link
US (1) US20210333702A1 (en)
EP (1) EP3907560A1 (en)
JP (1) JP7226389B2 (en)
KR (1) KR20210133155A (en)
CN (1) CN113568269A (en)
SG (1) SG10202104255YA (en)
TW (1) TW202147015A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023074318A (en) * 2021-11-17 2023-05-29 信越化学工業株式会社 Reflective mask blank and reflective mask

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272317A (en) 2008-04-30 2009-11-19 Hoya Corp Method for manufacturing substrate with multilayer reflection film, method for manufacturing reflection type mask blank and method for manufacturing reflection type mask
JP2011222887A (en) 2010-04-14 2011-11-04 Asahi Glass Co Ltd Reflective mask blank for euv lithography, and substrate with function membrane for mask blank

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371162B2 (en) * 2000-10-13 2013-12-18 三星電子株式会社 Reflective photomask
JP4693395B2 (en) 2004-02-19 2011-06-01 Hoya株式会社 REFLECTIVE MASK BLANK, REFLECTIVE MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP4553239B2 (en) * 2004-06-29 2010-09-29 Hoya株式会社 REFLECTIVE MASK BLANK, REFLECTIVE MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP4926521B2 (en) * 2006-03-30 2012-05-09 Hoya株式会社 REFLECTIVE MASK BLANK, REFLECTIVE MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
US7700245B2 (en) * 2006-05-03 2010-04-20 Hoya Corporation Reflective mask blank, reflective mask, and method of manufacturing semiconductor device
TWI464529B (en) * 2009-12-09 2014-12-11 Asahi Glass Co Ltd EUV microfilm with anti-reflective substrate, EUV microsurgical reflective mask substrate, EUV microsurgical reflective mask and manufacturing method of the reflective substrate
KR102109129B1 (en) * 2013-07-02 2020-05-08 삼성전자주식회사 Reflective photomask blank and reflective photomask
KR102246876B1 (en) * 2014-10-22 2021-04-30 삼성전자 주식회사 reflective mask for Extreme Ultra Violet(EUV) lithography apparatus and method of manufacturing the same
US10538187B2 (en) 2015-07-30 2020-01-21 Ts Tech Co., Ltd. Vehicle seat cushion material and vehicle seat
JP7420027B2 (en) * 2020-09-10 2024-01-23 信越化学工業株式会社 Substrate with multilayer reflective film for EUV mask blank, manufacturing method thereof, and EUV mask blank
JP2022045936A (en) * 2020-09-10 2022-03-23 信越化学工業株式会社 Substrate with multilayer reflection film for euv mask blank, manufacturing method thereof, and euv mask blank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272317A (en) 2008-04-30 2009-11-19 Hoya Corp Method for manufacturing substrate with multilayer reflection film, method for manufacturing reflection type mask blank and method for manufacturing reflection type mask
JP2011222887A (en) 2010-04-14 2011-11-04 Asahi Glass Co Ltd Reflective mask blank for euv lithography, and substrate with function membrane for mask blank

Also Published As

Publication number Publication date
TW202147015A (en) 2021-12-16
EP3907560A1 (en) 2021-11-10
CN113568269A (en) 2021-10-29
JP2021173917A (en) 2021-11-01
SG10202104255YA (en) 2021-11-29
KR20210133155A (en) 2021-11-05
US20210333702A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US10871707B2 (en) Reflective mask blank, reflective mask and method of manufacturing semiconductor device
US8081384B2 (en) Multilayer reflective film coated substrate, manufacturing method thereof, reflective mask blank, and reflective mask
US7804648B2 (en) Multilayer reflective film coated substrate, manufacturing method thereof, reflective mask blank, and reflective mask
KR102048487B1 (en) Method for manufacturing substrate provided with multilayer reflection film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
JP2013120868A (en) Reflective mask blank, reflective mask, and manufacturing method therefor
US7078134B2 (en) Photolithographic mask having a structure region covered by a thin protective coating of only a few atomic layers and methods for the fabrication of the mask including ALCVD to form the thin protective coating
KR102476861B1 (en) Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
JP5292747B2 (en) Reflective photomask for extreme ultraviolet
TWI437360B (en) EUV micro-shadow with a reflective mask base, and EUV micro-shadow with a reflective mask
JP6915280B2 (en) Reflective photomask and reflective photomask blank
WO2022050156A1 (en) Reflection-type mask, reflection-type mask blank, and method for manufacturing reflection-type mask
KR102002441B1 (en) Reflective mask blank, reflective mask, manufacturing method thereof, and manufacturing method of semiconductor device
JP6441012B2 (en) REFLECTIVE MASK BLANK, REFLECTIVE MASK, MANUFACTURING METHOD THEREOF, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP7226389B2 (en) Substrate with film for reflective mask blank and reflective mask blank
JP2003249434A (en) Reflective mask blank for exposure and reflective mask for exposure
JP2020181206A (en) Reflection type mask blank, reflection type mask and manufacturing method of semiconductor device
JP5194547B2 (en) Extreme UV exposure mask and mask blank
JP4622504B2 (en) Mask blank for extreme ultraviolet exposure, mask and pattern transfer method
WO2022138170A1 (en) Reflective mask blank, reflective mask, reflective mask manufacturing method, and semiconductor device manufacturing method
JP4501347B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP2022098729A5 (en)
JP6044213B2 (en) Reflective mask blank for EUV lithography and method for manufacturing the same, and substrate with a reflective layer for the mask blank and method for manufacturing the same
JP4300930B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP4605284B2 (en) Extreme ultraviolet exposure mask, extreme ultraviolet exposure mask blank, and pattern transfer method
TW202244597A (en) Reflection-type mask blank, reflection-type mask, method for manufacturing reflection-type mask, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7226389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150